

Environmental analysis in UK Modern Methods of Construction (MMC) housing: insights from early-stage architectural design process

Article

Accepted Version

Shibeika, A. ORCID: <https://orcid.org/0000-0003-0226-9241> and Oliveira, S. (2024) Environmental analysis in UK Modern Methods of Construction (MMC) housing: insights from early-stage architectural design process. Archnet-IJAR. ISSN 2631-6862 doi: 10.1108/ARCH-08-2024-0356 Available at <https://centaur.reading.ac.uk/119297/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1108/ARCH-08-2024-0356>

Publisher: Emerald Publishing Limited

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Environmental Analysis in UK Modern Methods of Construction (MMC) Housing: Insights from Early-Stage Architectural Design Process

Journal:	<i>Archnet-IJAR: International Journal of Architectural Research</i>
Manuscript ID:	ARCH-08-2024-0356.R2
Manuscript Type:	Research Paper
Keywords:	analysis, environmental, MMC, architects, early-stage design

SCHOLARONE™
Manuscripts

1 2 3 **Environmental Analysis in UK Modern Methods of Construction** 4

5 **(MMC) Housing: Insights from Early-Stage Architectural Design** 6

7 **Process** 8

9
10 Abstract:
11
12

13 **Purpose** 14

15 Modern Methods of Construction (MMC) have been promoted as a solution to
16 address housing shortages and meet sustainability goals in the UK. However, the
17 practical functioning of MMC, particularly in relation to early-stage
18 environmental analyses, remains underexplored. This study aims to fill this gap
19 by providing empirical insights into how architects engage in environmental
20 analysis in early-stage MMC housing designs.
21
22

23 **Design/methodology/approach** 24

25 This qualitative pilot study is based on a detailed case study of a UK architectural
26 firm specializing in modular housing. Semi-structured interviews were conducted
27 with eight architects with varying MMC experience. Thematic analysis of the
28 qualitative data allowed for the exploration of key themes influencing early-stage
29 environmental analysis, offering a narrative account of architects' experiences in
30 MMC practices.
31
32

33 **Findings** 34

35 The study reveals that environmental analysis in MMC is shaped by social,
36 organizational, and project-based factors. Three key themes emerged: uncertainty
37 in environmental assumptions, dependencies on external consultants, and the
38 dominance of Passivhaus principles in design decisions. These factors challenge
39 the integration of environmental considerations during early design stages of
40 MMC projects.
41
42

43 **Research limitations/implications** 44

1
2
3 As this is a single case study, the findings might not be generalizable. Future
4 research should expand on multiple firms and project settings to validate and
5 broaden these findings.
6
7
8

9 **Originality/value**
10
11

12 This study provides in-depth understanding of the challenges architects face
13 when integrating environmental analysis into MMC. This reveals the relational
14 and interdependent nature of environmental analysis in MMC projects, where
15 decisions are shaped by multiple social, organizational, and project-specific
16 factors. By emphasizing these interdependencies, this study provides original
17 insights into how environmental considerations can be integrated more
18 effectively into the early design stages of MMC projects.
19
20
21
22
23

24
25 Keywords: analysis, environmental; MMC; architects, early-stage design,
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 2 3 4 5 6 1. Introduction

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 The delivery of UK sustainable affordable housing at scale and speed has been promoted to largely rely on exploiting modern methods of construction (MMC) (Commons, 2019), specifically prefabricated high-spec modular units (Zhang et al., 2019). MMC generally refers to forms of off-site manufacturing for construction, including modular and panellised systems. In addition to cost and productivity benefits, and through the use of advanced digital technologies and manufacturing precision, MMC homes are thought to provide an overall reduction in energy consumption in comparison with traditionally built new homes (Government, 2018). However, despite its benefits, scholars have highlighted potential negative consequences associated with MMC (Green, 2019). Moreover, the adoption of such innovative construction methods and associated technologies is expected to have multiple and intersecting levels of impact on the project-, firm- and industry-levels (Dowsett et al., 2022),

33 In the UK, concerns and slow adoption still exist within the industry (Pan et al.,
34 2007; Thurairajah et al., 2023), with research showing a low uptake of MMC across the
35 construction sector in general and for housing specifically (Looby et al., 2022). Recent
36 failures of organizations using MMC have been attributed to "innovation negativism,"
37 which is influenced by factors such as incomprehension, lack of evidence, and bad
38 experiences (Saad et al., 2024). This negativism is not solely based on historical
39 perceptions, but is also driven by current issues in communication and the establishment
40 of a solid business case for MMC (Saad, Dulaimi, & Zulu, 2023). Contradictorily, while
41 some studies emphasize the reluctance of the public sector to adopt MMC because of
42 these negative perceptions and a lack of confidence in supply business models (Saad,
43 Dulaimi, & Gorse, 2023), others point to the significant advances and suitability of
44 offsite and pre-manufactured construction methods for mainstream adoption (Ofori-
45

1
2
3 Kuragu & Osei-Kyei, 2021). Furthermore, the literature suggests that the low uptake of
4
5 MMC is not just a matter of perception, but also a reflection of the broader dynamics
6
7 between supply and demand, decision-making processes, and the need for business
8
9 model reforms (Saad, Dulaimi, & Gorse, 2023; Saad, Dulaimi, & Zulu, 2023).
10
11

12 Moreover, recent UK government inquiry into the future of MMC in housing
13 highlights the ongoing struggles of the MMC sector despite government support for its
14 adoption to address housing shortages (Parliament, 2023). The sector faces significant
15 barriers, including financial instability, market fragmentation, a shortage of skilled
16 labour, and a lack of confidence in MMC technologies. Furthermore, inconsistent
17 regulations and standards complicate scalability, whereas public sector reluctance adds
18 to slow uptake. The report calls for a more coordinated and holistic approach from the
19 government, including clearer regulation, financial support, and efforts to bridge the
20 skill gap (Parliament, 2023).
21
22

23 While most of the research in MMC is focused on the building manufacturing
24 and assembly phases (Nguyen et al., 2022), the design and development phase—when
25 design optimisations that are relevant to minimising environmental impacts take place—
26 has received less attention. The challenges associated with the environmental
27 performance of MMC house buildings are focused on: the complex interfacing between
28 the different building systems (Pan, Gibb and Dainty 2006), lead times, and the lack of
29 flexibility for design changes (Alonso-Zandari & Hashemi, 2017), and the lack of
30 design and decision support frameworks, models, or tools for strategic guidance on
31 sustainability (Dave et al., 2017).
32
33

34 The aim of this study is to investigate the process of environmental analysis of
35 MMC developments through the exploration of architects' perceptions and approaches
36 to environmental analysis in early stage MMC housing design. This study draws on an
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 in-depth case study (Stake, 2008) of a leading architecture firm specialising in modular
4 housing design in the UK. The analysis suggests that social and organisational factors,
5
6 as well as the project-based nature of design activities, influence how and if
7
8 environmental analysis is undertaken in the early stages of MMC housing design.
9

10 Furthermore, while contributing to the environmental sustainability of MMC theory and
11 practice, the findings open the need for future exploration into the wider contextual,
12 social, and organisation issues that underpin environmental analysis practices in
13 architectural design projects, including MMC.
14

15 This paper is organised as follows: The following literature review section
16 provides an overview of how the design process for MMC differs significantly from
17 other prefabrication techniques, and then delve into relevant literature on why early-
18 stage design decisions matter for environmental performance and the architect
19 approaches for early-stage environmental analysis. The research methodology section
20 outlines the approach and data collection and analysis methods, followed by the
21 findings section, which is organised around the three themes that emerged from the pilot
22 case study analysis: uncertainty factors, dependency factors, and Passivhaus First.
23 Finally, the discussion and conclusion section outline the relevance of our findings to
24 the extant literature and the focus for future research.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53 2. Literature review 54

55 The design process for Modern Methods of Construction (MMC) differs from
56 other prefabrication techniques in several ways. It emphasizes integration across design,
57 production, and assembly stages, facilitated by BIM to manage information flow and
58
59
60

1
2
3 reduce errors (Peng et al., 2021). Moreover, MMC relies heavily on offsite construction,
4 where components are manufactured in controlled environments before being
5 assembled on-site. This approach contrasts with traditional prefabrication, which may
6 not always involve such extensive offsite work (Doan et al., 2024). MMC also
7 incorporates Design for Manufacture and Assembly (DfMA) principles, ensuring that
8 designs are optimized for both manufacturing and assembly to minimize errors
9 (Gharehbaghi et al., 2021). The design process in MMC also focuses on economic
10 feasibility and productivity, with strategies aimed at reducing costs and labour in
11 mechanical, electrical, and plumbing (MEP) systems (Baek et al., 2023). Overall
12 successful MMC projects rely on interdisciplinary collaboration between architects,
13 engineers, and construction managers to align all aspects of the process.
14
15

16 The distinctive design methodology of MMC, with its emphasis on integration
17 across design, production, and assembly phases, is essential for optimizing both
18 environmental and economic outcomes. International initiatives such as Germany's
19 Aktivhaus provide additional insights into how MMC can incorporate advanced
20 technologies into environmental performance while maintaining flexibility and
21 efficiency (Sobek, 2024). The Aktivhaus project's utilization of photovoltaic systems,
22 heat pumps, and adaptable modular designs demonstrates how early-stage design
23 decisions significantly influence the long-term sustainability of modular construction.
24 These examples highlight the importance of the early integration of environmental
25 considerations into MMC, supporting the assertion that assumptions embedded within
26 the early stages of design can have significant consequences for design outcomes (De
27 Wilde, 2018; Singh et al., 2022)).
28
29

30 This research examines the significance of early-stage design activities within
31 the context of MMC UK housing in relation to environmental performance.
32
33

1
2
3 Accordingly, the subsequent sections will delve into the reasons underlying the
4 importance of early-stage design decisions for environmental performance and the
5 architectural methods for conducting early-stage environmental analyses.
6
7
8
9
10

11 **2.1. Architectural design process and how architects work:**

12

13 Traditional architectural design processes are mainly focused on space, form,
14 aesthetics, and function; they rely on input from a range of domain experts (Østergård et
15 al., 2016). Architects must often deal with incomplete requirements, contradictions, and
16 changing conditions, and solving one issue may lead to other problems (Lin and Gerber
17 2014). These challenges are amplified in Modern Methods of Construction (MMC),
18 which contrasts with traditional material-led approaches that constrain design
19 flexibility. In traditional methods, material selection dictates design and delivery, which
20 often limits innovation. However, MMC enables a building design-led approach, in
21 which the design is optimized for manufacturing and assembly from the start (Mapston
22 & Westbrook, 2010). Technologies such as BIM and DfMA facilitate this shift, enhance
23 quality control, reduce waste, and improve cost efficiency. Consequently, MMC
24 emphasizes the early integration of technical knowledge and promotes collaboration
25 between architects, engineers, and manufacturers, leading to more adaptable, efficient,
26 and sustainable construction practices (Gunawardena & Mendis, 2022).
27
28

29 In general, design decisions depend on the architect's experience (Jabi, 2016;
30 Lawson, 2006), in addition to other factors such as site, legislation, and user
31 requirements. Moreover, as Styhre and Gluch (2009, p. 224) point out, architects' work
32 is "fundamentally collaborative and includes tight communication with various
33 stakeholders, including clients, contractors, and end-users". Architectural design is
34 therefore situated in a complex organisational form, known as constellation, which often
35 limits the extent to which architects and other professional groups engaging in design
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

work are able to “maintain and develop their creative skills in the present economic regime.” (Ibid, p. 225). Oliveira et al. (2020) discussed the need to explore the social and organisational context of environmental analysis as a way of understanding the constraints and opportunities that drive the design process, which is often encountered differently across different scales of both project and organizational practice. The effects of these encounters in MMC settings are still poorly understood.

Styhre and Gluch (2009), with reference to Cohen et al. (2005) study of British architects’ experience of their role in design practice, found that architects identified themselves as artists, businesspeople, and public servants (the last being about providing a quality “built environment for the general public” (p. 226). As they progress in their careers and gain more experience, the realities of continuous struggle between money and aesthetics make architects rebalance their original ambition and educational objective of providing new and creative solutions to housing and built environment problems with a more realistic, although paradoxical, view of what it is possible to accomplish. The sustainability of their professional practice becomes contingent on their resourcefulness and capability to “balance aesthetic, technical, and economic concerns in the specific project.” (p. 228). A key skill of the architect then becomes the ability to stay “attuned to and interpret and translate the different values brought to bear by the many actors involved in the design process. This requires the exercise of lateral thinking, including flexible and creative responses to clients, sensitivity to users’ needs, and working with, rather than against, building codes and regulations.” (p. 241).

2.2. Environmental analysis process and tools:

In the early design stages, ideas about the actual building materialise, setting the context for later developments, including future building performance, and decisions made early in the design process can have significant consequences for the design

1
2
3 outcome (Méndez Echenagucia et al., 2015; Østergård et al., 2016; Zhou, Tam, et al.,
4
5 2023) . The key to optimising the dwellings' environmental performance is addressing
6
7 daylighting and overheating implications through the selection of combinations of units
8
9 (e.g., walls with different window placement and size), appropriate to individual spatial
10
11 and temporal conditions (Fazeli et al., 2022; Shibeika et al., 2021). In the case of rapid
12
13 MMC delivery, this process can be a complex and intensified design optimisation
14
15 problem. The intensification of the design process is mostly due to short lead times and
16
17 can be inadequately informed owing to unknown architects' assumptions about
18
19 environmental performance (Sonja Oliveira et al., 2017). Consequently, insufficient
20
21 environmental analysis is often conducted (De Wilde, 2018), resulting in many cases of
22
23 poorly performing and unhealthy housing.
24
25
26

27
28 Inherently, the early design stage is mostly characterised by high levels of
29
30 uncertainty about different aspects of the design, leading to difficulties in developing a
31
32 clear idea of performance early in the design process (Krish, 2011; Zhou, Ma, et al.,
33
34 2023). As a result, a growing body of research is focused on developing and testing
35
36 methods and tools to reduce uncertainty in the early building design stages (de Wilde,
37
38 2023). For example, machine learning approaches have been adopted to reduce
39
40 environmental uncertainty and help designers evaluate and compare the expected
41
42 environmental performance of buildings (Feng, Lu et al. 2019). Rohde et al. (2021)
43
44 focused on indoor quality and developed an assessment tool that can aid architects and
45
46 designers by providing feedback and design comparisons to enhance early design
47
48 decision making. Rezaei et al. (2019) integrated Building Information Modelling (BIM)
49
50 and Life Cycle Analysis (LCA) to help designers select sustainable materials for
51
52 building design. While useful in providing insights into the possibilities for reducing
53
54
55
56
57
58
59
60

1
2
3 uncertainty, the fine mechanics of how to design a building that delivers good
4 environmental performance remains evasive.
5
6

7 Moreover, environmental analysis and performance prediction in early design
8 often rely on estimation or assumptions based on historical data from similar projects
9 (de Wilde, 2023; Zapata-Poveda & Tweed, 2014), leading to environmental analysis
10 being carried out too late in the design process (Attia et al., 2012). The design process
11 for MMC is more intensive and shorter than that of traditional construction methods,
12 leading to more complex environmental analysis and multi-criterion decision-making
13 (Augenbroe, 2012) which requires higher degrees of process, information, and
14 organisational integration across the MMC project stakeholder.
15
16

17 Environmental analysis relies on multidisciplinary design teams with efficient
18 visualisation of technical information to aid architects in the decision-making process
19 (Landgren et al., 2019), despite the recognised value and benefits of building simulation
20 tools and techniques to improve communication and aid environmental analysis in
21 building design (S. Oliveira et al., 2017), these tools have limitations in providing
22 adequate feedback for design decision-making (Lin & Gerber, 2014), and it has been
23 seen by architects as only an evaluation tool (Jabi, 2016), and cannot provide the
24 architect with the relevant methodology to develop the design solution. For example:
25
26 “*Daylight protractors, heat loss or solar gain calculations do not tell the architect how*
27 *to design the window*” (Lawson, 2006).
28
29

30 When considering environmental performance during the building design
31 process, architects are found to focus on holistic design issues, such as the shape and
32 orientation of the building, passive strategies for heating and lighting, and natural
33 ventilation (Attia et al., 2012; Zhou, Ma, et al., 2023), and engineers are found to be
34 more concerned about the quality and control of the building systems (Attia et al.,
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 2012). Zapata-Poveda and Tweed (2014) highlighted the reliance of architects on
4 informal tools and experience-based advice from building service engineers rather than
5 performance simulation tools during the early stages of design up to RIBA developed
6 design stage three. Such studies provide help with understanding the potential value of
7 MMC building design, but they are still focused on the outcomes rather than on the
8 synthesis of the design process itself. Therefore, the aim of this project is to investigate
9 the process of environmental analysis for MMC developments through the exploration
10 of architects' perceptions and approaches to environmental analysis in early stage MMC
11 housing design.

23 24 25 26 3. Research methodology

27
28 In addition to the literature gap identified above, the research presented in this
29 paper is also driven by the practical need from architectural practice for further
30 understanding of how environmental analysis and related design decisions are
31 embedded in early design stages. While there is an abundance of case studies on energy-
32 efficient smart buildings, most of the research on environmental analysis is focused on
33 building performance analysis and checking whether targets have been met (De Wilde,
34 2018), and less is found about the process leading to the final product and how
35 decisions about environmental analysis were reached.

36
37 This study was based on an exploratory pilot study conducted between March and
38 June 2021, following an in-depth case study approach (Stake, 2008). The case study
39 approach is particularly valuable in architecture, where it can provide a comprehensive
40 understanding of complex issues and contribute to the development of solutions
41 (Ratnasari & Sudradjat, 2023). Moreover, case studies have been instrumental in
42 identifying trends and design methodologies in specific architectural contexts, such as
43 regionalism in Pakistani architecture (Asghar et al., 2020), and have been recognized as
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 a valuable approach in landscape architecture for education, innovation, and knowledge
4 dissemination (Francis, 2001).
5
6
7
8

9 **3.1. Empirical setting**
10
11

12 The following case study focuses on an esteemed and resilient architecture firm
13 that has completed and designed various MMC housing projects for more than a decade.
14
15 The selected firm was chosen as it specializes in housing and has extensive experience
16 in MMC delivery. Additionally, the firm was in the process of developing guidelines for
17 environmental MMC design and had received numerous prestigious awards for
18
19 environmental MMC design and had received numerous prestigious awards for
20
21 successful MMC projects. The selection of this case study was based on the firm's well-
22 known expertise, shared experience, and esteemed reputation in the field. The firm is
23 substantial, employing over 250 individuals, and has been operational since the early
24
25 1970s, with MMC being a consistent aspect of its operations over the past 15 years.
26
27
28
29
30
31

32 The whole practice was invited to participate via an internal call shared by
33 email, in total 8 architects participated in the study, all of whom had varied ranges of
34 MMC expertise and overall architectural practice experience. Although self-selection
35 sampling (Saunders, 2012) may introduce potential bias, it also ensured that participants
36 had relevant experience and expertise in the area under investigation, thus contributing
37 valuable insights into the research. Furthermore, while the sample size was small,
38 research suggests that six to seven interviews typically capture the majority of themes
39 within homogenous groups (Guest et al., 2006; Guest et al., 2020), making the eight
40 interviews conducted sufficient for the scope of this exploratory pilot study. We also
41 ensured diverse roles within the firm were represented to minimize bias towards
42 specific project types or design approaches.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Moreover, the single-case study approach is not without limitations. The firm under study was carefully selected due to its substantial experience in MMC delivery

1
2
3 over a long period, making it a relevant and rich source of data. This approach allowed
4
5 for an in-depth examination of firm-specific practices, which is essential for
6
7 understanding the complexities of MMC in real-world applications. The aim was to
8
9 explore meaning and interpretation rather than generate generalizable findings, and the
10
11 focus on one firm facilitated a more nuanced investigation into environmental analysis
12
13 practices in MMC, which would be more difficult to achieve with a broader but less
14
15 detailed industry-wide study. In future research, expanding the sample to include
16
17 multiple firms and using additional data collection methods, such as surveys or site
18
19 observations, would help further validate and extend the findings of this initial
20
21 exploratory research.

22
23
24 The pilot study was approved by the UWE ethics committee. Within that
25
26 application consent forms were designed to seek participants' agreement before any
27
28 interviews took place. Furthermore, all names and personal data were anonymised and
29
30 stored in a secure place through the whole research period and was only accessed by the
31
32 researchers. Through the analysis and writing up of the case, only job titles were used.

39 **3.2. Data collection methods**

40
41

42 The main source of data for this pilot study was semi-structured interviews with
43
44 key experts within the firm (eight in total). All participants had over five years of
45
46 experience in MMC housing design and held different roles within the firm, from
47
48 project architects to associate directors (see also table 1). In this firm architects
49
50 normally take main design responsibility in one project at a time, while associates and
51
52 directors oversee the work of project architects in multiple projects. The interviews
53
54 aimed to capture wider views from a range of roles to minimise potential bias towards
55
56 specific types of projects or approaches. Each interview lasted between 2 hours 45
57
58 minutes and 4 hours.

Role	Experience of modular housing
Associate	Limited to two projects
Senior architect	Range of projects
Architect	Range of projects
Architect	Limited to one project
Architect	Range of projects
Architect	Limited to one project
Architect	Limited to one project
Associate director	Range of projects

Table 1: Interviewees details

Due to Covid19 restrictions including lockdown, social distancing, and uncertainty regarding project delivery, the construction and MMC industry was faced with, and the interviews were held online rather than in person. The interviews were designed around key thematic areas to address the research aim, which was to investigate the process of environmental analysis for MMC developments through the exploration of architects' perceptions and approaches to environmental analysis in early stage MMC housing design, as outlined below. An indicative sample of the interview questions is provided for each theme.

- Theme 1 - Understanding the nature of the design practice and early-stage environmental analysis design processes, which do not occur in a vacuum, and there are many variables (cost, time, project parties/stakeholders) that play a central role in driving the design process. As mentioned above, the intention was to understand the lived experience of architects in this specific 'MMC housing' context, including their projects' priorities, challenges, and drivers.

1
2
3 ➤ Could you tell us a little on how you consider environmental analysis
4 (particularly daylighting and overheating) in early stage MMC modular
5 housing design stages?

6
7 ➤ Are there particular environmental analysis criteria related to
8 daylighting and overheating that are seen as important to you? Why?

9
10
11 • Theme 2: Understand designers' assumptions and perceptions of environmental
12 analysis given the iterative nature of the design process in its early stage and
13 other project criteria, and this was focused on the Architectural design process
14 and how architects work literature which was discussed in section 2.1

15
16
17 ➤ At those early stages, at which point do you consider implications of
18 environmental analysis decision making on the housing design?

19
20
21 ➤ From your experience what are the challenges involved in considering
22 these implications?

23
24
25 • Theme 3 - Understand designers' relationships with technology, professional
26 identity implications, and career implications/threats, guided by the literature
27 review in section 2.2 above around environmental analysis process and tools.

28
29
30 ➤ What are the skills and knowledge that, in your view, enable you to
31 consider and take into account the environmental criteria for daylighting
32 and overheating? Who else is involved in the decision process?

33
34
35 ➤ In your view, is there a need for any urgent improvements of the
36 processes or practices in this context?

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3.3. Data Analysis method

After completing and transcribing all the interviews, data analysis began with an initial rereading of the interview transcripts to identify key issues and patterns. The data set included more than 20 hours of recordings and approximately 80 pages of transcripts, which were organized into a comprehensive "data bank" (Rynes & Gephart Jr, 2004). The analysis followed a thematic approach, as outlined by Braun and Clarke (2006), with multiple stages to ensure thorough exploration of the data.

The first stage involved descriptive coding, in which individual text segments were coded to capture specific issues related to early-stage environmental considerations in the MMC housing design. Descriptive codes, such as "tools," "regulations," and "design process," are valuable in summarizing key data points and provide a foundation for further analysis (Richards, 2005).

In the second stage, descriptive codes were examined to develop analytical codes (Miles et al., 2020). Analytical codes represented deeper interpretations of the data, moving beyond surface-level observations to highlight underlying patterns and relationships. For instance, the code "making assumptions about performance" was identified as a key concept during this stage, reflecting how architects approach environmental analysis with MMC in uncertain conditions.

Finally, codes were organized into broader themes that captured both implicit and explicit ideas within the data (Miles et al., 2020). This step involved constant comparisons across interviews to ensure that the themes accurately represented recurring ideas across the participants. The process of theme development was iterative, and the research team reviewed and refined the themes through discussion and comparison with the research objectives. Thematic saturation (Miles et al., 2020) was

1
2
3 achieved when no new themes or codes emerged from the additional rereading of the
4 transcripts.
5
6

7 As a result of the thematic coding process, three themes emerged from the data,
8 which are presented and discussed in the following section.
9
10
11
12
13

14 **4. Research findings** 15

16 The problem that the pilot study addresses is the process for environmental
17 analysis for MMC developments, which is achieved through the exploration of
18 architects' perceptions and approaches to environmental analysis in early stage MMC
19 housing design. Several examples of MMC projects were identified through the
20 interview process. One project for a London council incorporated pre-panelised facades
21 and bathroom pods, although it was not primarily modular in nature. A housing
22 association similarly utilized MMC for bathroom pods and facades during their
23 development. Another instance involved a series of 12 small infill sites in London,
24 where offsite construction was considered to address the challenges associated with
25 compact urban spaces. Additionally, a modular housing tower project employed
26 volumetric MMC, with capacity studies focusing on urban design and environmental
27 performance. Lastly, a local authority project incorporated modular units atop existing
28 1960s housing blocks, with the aim of minimizing disruption to residents during the
29 construction process. These projects demonstrate the diverse applications of MMC in
30 both new developments and the retrofitting of existing structures. Each project is
31 associated with environmental analysis, leveraging MMC's potential to enhance energy
32 efficiency, reduce construction waste, and optimize building performance, particularly
33 through improved control over material utilization and building standards during offsite
34 manufacturing.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Overall, three key themes emerged from the analysis of the collected data on the lived experiences of architects and how these insights may help better understand environmental analytical needs in the context of MMC, which will be discussed in more detail in the following subsections.

- Uncertainty factors (making assumptions/understanding ourselves/not ready and no tools).
- Dependency factors (reliance on experts; dependence on clients, contracts, costs, sites, and regulations).
- PassivHaus first, a specific interpretation of this concept, which takes primacy over specifically considering daylighting and overheating as environmental design requirements across a range of contexts in MMC housing.

4.1. Uncertainty factors:

When asked to describe and explain initial approaches to environmental design analysis in project overall and in MMC housing in particular, most participants hesitated to explain what approaches they undertook; instead, they discussing approaches undertaken by others, asking for reassurance during interview if topic covered was 'right' and referring to learning and education, tools and processes needed to integrate environmental analysis early in projects.

Participants often discussed the need to make assumptions on environmental analysis in the early stages of the project. Participant eight noted how '*input*' from other experts '*didn't come to fruition*'; which had the effect on the team needing to '*make certain assumptions that would have been integrated later once the modular layout had been firmed up.*' Others have discussed the lack of knowledge on these issues and the need for wider education and tools.

1
2
3 *'...we're still at very, very early stages to educating or to understand ourselves.*

4
5 *We just about understand ourselves in-house so we're in the motion of probably*
6 *prepared to do the next future project.'* Participant 6

7
8
9
10 Participant three noted how a lack of tools in the early stages of the project prevented
11 the design team from conveying and convincing the implications of poor environmental
12 design.

13
14 *'...But yeah so I guess we have an idea of what's going to work and what's not*
15 *anyway but when you're conveying that to the client, if we had those tools very*
16 *early on where you can have a look, knowing (the room) is always going to be*
17 *dark. It's pretty clear that's not going to be a great room to be in and do we*
18 *want to build there; maybe we should push it somewhere else. That would*
19 *probably make a much stronger argument early on and you could yeah make*
20 *those arguments move convincingly.'*

21
22
23
24 A few participants conveyed their reliance on personal experience as an important way
25 to 'gauge' how a building might perform in the environment. Participant five discussed
26 how the lack of knowledge on the environmental performance of foundation and
27 insulation types in MMC housing construction, drawing on knowledge from personal
28 experience.

29
30 *'....got to be honest I don't have any appreciation of perhaps a different*
31 *foundation type or um insulation type that we would need for volumetric but I*
32 *suppose we would maybe from my personal experience, naively think that a lot*
33 *of the environmental issues - shall we say can be overcome a lot more with the*
34 *panellised offsite construction methodology anyway.'*

35
36
37 Participant five also discussed their reliance on intuition as a guide for decision making:

1
2
3 'You know there is the whole kind of thought process about don't put too much
4 glazing on an elevation and, make sure there's at least a dual aspect for both
5 ventilation and to create a good environment internally. But I can't say that it's
6 driving a scheme you know I don't think I've ever stopped and said wait a
7 second, I need to change that beyond an intuition.'

8
9
10
11
12
13
14
15
16 **4.2. Dependency factors:**

17
18 The most prominent theme highlighted the ways architects approached
19 environmental analysis in the early stage of MMC housing design as being dependent
20 on others, including other experts, clients' interests, types of sites, project costs,
21 regulations, policy, and government. Other experts in terms of assessment of daylight
22 and sunlight, as well as overheating implications, were seen as necessary in the early
23 stages of design.

24
25
26
27
28
29
30
31 Most participants conveyed reliance on either the internal 'Sustainability' expert
32 team or external Mechanical and Electrical (M&E) or other consultants. The
33 engagement of other experts, whether inhouse or outside of the firm involved 'an
34 exercise of going backwards and forwards' before a compromise was reached.

35
36
37
38
39
40
41
42 Participant 8 described a process involving engagement of an M&E consultant who
43
44 'would give clear (window) opening sizes'; meaning that the architects needed to 'work
45 out which parts of the window could open and to what extent' before a compromise was
46 reached – in most instances, the meeting of ventilation rates, daylight, and sunlight
47 meant compromise on other issues—often found too late in the process. Participant
48
49
50
51
52
53
54 seven, similarly conveyed a reliance on others for environmental analysis.

55
56
57
58
59
60 '...that would normally be a separate consultant, normally the energy consultant
would get involved with the overheating so you're right that is a, then a separate
consideration and that might then have another layer of constraints that you

1
2
3 *need to add to the windows...the window positions and sizes...so you kind of end*
4 *up having to balance between the two.'*
5
6
7
8
9
10

11
12 The types of clients and their interests as well as budgets set aside for projects were also
13
14 discussed to influence the extent to which environmental analysis might take place.
15
16
17
18

19 Participant five discusses how interests in wider sustainability goals and climate change
20 by clients often influenced decision making and gave steers how environmental analysis
21 16
22 17
23 18
24 19
25 20
26 21
27 22
28 23
29 24
30 25
31 26
32 27
33 28
34 29
35 30
36 31
37 32
38 33
39 34
40 35
41 36
42 37
43 38
44 39
45 40
46 41
47 42
48 43
49 44
50 45
51 46
52 47
53 48
54 49
55 50
56 51
57 52
58 53
59 54
60 55
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
55310
55311
55312
55313
55314
55315
55316
55317
55318
55319
55320
55321
55322
55323
55324
55325
55326
55327
55328
55329
55330
55331
55332
55333
55334
55335
55336
55337
55338
55339
55340
55341
55342
55343
55344
55345
55346
55347
55348
55349
55350
55351
55352
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
553100
553101
553102
553103
553104
553105
553106
553107
553108
553109
553110
553111
553112
553113
553114
553115
553116
553117
553118
553119
5531100
5531101
5531102
5531103
5531104
5531105
5531106
5531107
5531108
5531109
5531110
5531111
5531112
5531113
5531114
5531115
5531116
5531117
5531118
5531119
55311100
55311101
55311102
55311103
55311104
55311105
55311106
55311107
55311108
55311109
55311110
55311111
55311112
55311113
55311114
55311115
55311116
55311117
55311118
55311119
553111100
553111101
553111102
553111103
553111104
553111105
553111106
553111107
553111108
553111109
553111110
553111111
553111112
553111113
553111114
553111115
553111116
553111117
553111118
553111119
5531111100
5531111101
5531111102
5531111103
5531111104
5531111105
5531111106
5531111107
5531111108
5531111109
5531111110
5531111111
5531111112
5531111113
5531111114
5531111115
5531111116
5531111117
5531111118
5531111119
55311111100
55311111101
55311111102
55311111103
55311111104
55311111105
55311111106
55311111107
55311111108
55311111109
55311111110
55311111111
55311111112
55311111113
55311111114
55311111115
55311111116
55311111117
55311111118
55311111119
553111111100
553111111101
553111111102
553111111103
553111111104
553111111105
553111111106
553111111107
553111111108
553111111109
553111111110
553111111111
553111111112
553111111113
553111111114
553111111115
553111111116
553111111117
553111111118
553111111119
5531111111100
5531111111101
5531111111102
5531111111103
5531111111104
5531111111105
5531111111106
5531111111107
5531111111108
5531111111109
5531111111110
5531111111111
5531111111112
5531111111113
5531111111114
5531111111115
5531111111116
5531111111117
5531111111118
5531111111119
55311111111100
55311111111101
55311111111102
55311111111103
55311111111104
55311111111105
55311111111106
55311111111107
55311111111108
55311111111109
55311111111110
55311111111111
55311111111112
55311111111113
55311111111114
55311111111115
55311111111116
55311111111117
55311111111118
55311111111119
553111111111100
553111111111101
553111111111102
553111111111103
553111111111104
553111111111105
553111111111106
553111111111107
553111111111108
553111111111109
553111111111110
553111111111111
553111111111112
553111111111113
553111111111114
553111111111115
553111111111116
553111111111117
553111111111118
553111111111119
5531111111111100
5531111111111101
5531111111111102
5531111111111103
5531111111111104
5531111111111105
5531111111111106
5531111111111107
5531111111111108
5531111111111109
5531111111111110
5531111111111111
5531111111111112
5531111111111113
5531111111111114
5531111111111115
5531111111111116
5531111111111117
5531111111111118
5531111111111119
55311111111111100
55311111111111101
55311111111111102
55311111111111103
55311111111111104
55311111111111105
55311111111111106
55311111111111107
55311111111111108
55311111111111109
55311111111111110
55311111111111111
55311111111111112
55311111111111113
55311111111111114
55311111111111115
55311111111111116
55311111111111117
55311111111111118
55311111111111119
553111111111111100
553111111111111101
553111111111111102
553111111111111103
553111111111111104
553111111111111105
553111111111111106
553111111111111107
553111111111111108
553111111111111109
553111111111111110
553111111111111111
553111111111111112
553111111111111113
553111111111111114
553111111111111115
553111111111111116
553111111111111117
553111111111111118
553111111111111119
5531111111111111100
5531111111111111101
5531111111111111102
5531111111111111103
5531111111111111104
5531111111111111105
5531111111111111106
5531111111111111107
5531111111111111108
5531111111111111109
5531111111111111110
5531111111111111111
5531111111111111112
5531111111111111113
5531111111111111114
5531111111111111115
5531111111111111116
5531111111111111117
5531111111111111118
5531111111111111119
55311111111111111100
55311111111111111101
55311111111111111102
55311111111111111103
55311111111111111104
55311111111111111105
55311111111111111106
55311111111111111107
55311111111111111108
55311111111111111109
55311111111111111110
55311111111111111111
55311111111111111112
55311111111111111113
55311111111111111114
55311111111111111115
55311111111111111116
55311111111111111117
55311111111111111118
55311111111111111119
553111111111111111100
553111111111111111101
553111111111111111102
553111111111111111103
553111111111111111104
553111111111111111105
553111111111111111106
553111111111111111107
553111111111111111108
553111111111111111109
553111111111111111110
553111111111111111111
553111111111111111112
553111111111111111113
553111111111111111114
553111111111111111115
553111111111111111116
553111111111111111117
553111111111111111118
553111111111111111119
5531111111111111111100
5531111111111111111101
5531111111111111111102
5531111111111111111103
5531111111111111111104
5531111111111111111105
5531111111111111111106
5531111111111111111107
5531111111111111111108
5531111111111111111109
5531111111111111111110
5531111111111111111111
5531111111111111111112
5531111111111111111113
5531111111111111111114
5531111111111111111115
5531111111111111111116
5531111111111111111117
5531111111111111111118
5531111111111111111119
55311111111111111111100
55311111111111111111101
55311111111111111111102
55311111111111111111103
55311111111111111111104
55311111111111111111105
55311111111111111111106
55311111111111111111107
55311111111111111111108
55311111111111111111109
55311111111111111111110
55311111111111111111111
55311111111111111111112
55311111111111111111113
55311111111111111111114
55311111111111111111115
55311111111111111111116
55311111111111111111117
55311111111111111111118
55311111111111111111119
553111111111111111111100
553111111111111111111101
553111111111111111111102
553111111111111111111103
553111111111111111111104
553111111111111111111105
553111111111111111111106
553111111111111111111107
553111111111111111111108
553111111111111111111109
553111111111111111111110
553111111111111111111111
553111111111111111111112
553111111111111111111113
553111111111111111111114
553111111111111111111115
553111111111111111111116
553111111111111111111117
553111111111111111111118
553111111111111111111119
5531111111111111111111100
5531111111111111111111101
5531111111111111111111102
5531111111111111111111103
5531111111111111111111104
5531111111111111111111105
5531111111111111111111106
5531111111111111111111107
5531111111111111111111108
5531111111111111111111109
5531111111111111111111110
5531111111111111111111111
5531111111111111111111112
5531111111111111111111113
5531111111111111111111114
5531111111111111111111115
5531111111111111111111116
5531111111111111111111117
5531111111111111111111118
5531111111111111111111119
55311111111111111111111100
55311111111111111111111101
55311111111111111111111102
55311111111111111111111103
55311111111111111111111104
55311111111111111111111105
55311111111111111111111106
55311111111111111

1
2
3 *consultant appointment...a year and a half down the line we're still recruiting*
4
5 *or asking for this appointment.'*
6
7
8

9 **4.3. PassivHaus first:**
10
11

12 A further theme involved many of the participants referring to PassivHaus as a first-
13 principles approach applied to all projects, regardless of project environmental remit or
14 scope.
15
16

17 *'if a client comes to us with a project then we assume that they're wanting a*
18
19 *passive housing project unless they choose not to have a Passivhaus project is*
20
21 *that, that's kind of the base line that we're trying to achieve.'*
22
23

24 There seems to be a dominant, widely accepted interpretation of this PassivHaus
25 concept that equates environmental analysis against specific criteria (such as daylight
26 and overheating) with a more holistic and demanding design approach, this is
27 highlighted by interviewee 4;
28
29

30 *'..., the new kind of like part L regs and that kind of thing, if we use a*
31
32 *Passivhaus as a base line then we know we've covered those elements and we'll*
33
34 *definitely achieve those, those um standards. So yeah I think it's a good idea to*
35
36 *be starting that as your base line and then if you ask to work backwards.'*
37
38

39 The consequence of this assumption/habit is a loss of sensitivity for practical
40 considerations in specific cases, such as MMC housing, which was our focus.
41
42

43 The findings and insights indicate that the interpretation and translation of the
44 natural environment into building design is dependent on contextual organisational
45 factors such as professional practice identity and how the organisation has legitimated
46 environmental aspects. In architectural practice, massing, elevating, building
47
48

1 orientation, ventilation, heat loss, and daylight/shadowing have always been integral
2 parts of the design process. This might explain why, in the interviews, we did not detect
3 any sense of urgency to automate (or change) the current approach to environmental
4 criteria and analysis or any particular problems perceived by the participating architects.
5
6 On the client side, everything was mainly referred to as compliance- and cost-driven.
7
8 Additionally, although not the key focus of the study, it was found that end users were
9 rarely referred to in the discussions, despite daylighting and overheating being socially
10 experienced differently by different users. Apart from one participant, very little
11 discussion mentioned the values or needs users may place on daylighting or overheating
12 mitigation. We discussed some aspects of the relationships with environmental
13 consultants earlier.

30 5. Discussion and conclusions

31
32 This study set out to investigate the process of environmental analysis of MMC
33 developments through the exploration of architects' perceptions and approaches to
34 environmental analysis in early stage MMC housing design.
35
36

37 One of the key findings of this study is that architects face uncertainty when
38 integrating environmental analysis at the early design stages in MMC projects. This
39 aligns with the existing literature, such as Østergård et al. (2016) and Lin and Gerber
40 (2014), which also highlights the challenge of incomplete information and unpredictable
41 project variables during the early design phases. The current study extends this
42 understanding by demonstrating that in the context of MMC, uncertainty is not only
43 linked to traditional design concerns, such as site-specific conditions and client
44 requirements, but also to the modular nature of the construction itself, where design
45 decisions must account for offsite manufacturing constraints. This adds complexity to
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

environmental analysis, as architects must balance factors, such as energy performance and material efficiency, under conditions of limited foresight.

The study also found that architects working in MMC projects rely heavily on external consultants for specialized environmental analysis, a dependency that influences design decisions. This finding supports previous research on the interdisciplinary nature of MMC, such as Pan et al. (2007) and Ofori-Kuragu and Osei-Kyei (2021), which emphasized the collaborative requirements of modular construction. However, this study provides a more nuanced perspective by revealing that such dependency can create bottlenecks in the design process, particularly when consultants are brought in late or unfamiliar with the specific environmental requirements of MMC. This study highlights the need for earlier and more integrated involvement of environmental consultants in MMC projects to ensure that environmental goals are embedded in the design process from the outset, rather than being treated as a separate or secondary consideration.

A surprising finding was the dominance of Passivhaus-first principles in guiding environmental analysis for MMC projects, even though this approach might not be the most suitable for modular design. While Passivhaus standards are widely recognized for their focus on energy efficiency, this study shows that applying these principles across all projects can limit design flexibility and overlook other environmental considerations. This finding challenges prior research (Johnston et al., 2020) that generally promotes Passivhaus as a leading standard for sustainable design. By revealing the limitations of a one-size-fits-all application of Passivhaus principles, this study contributes to the debate on whether MMC requires more context-specific environmental frameworks tailored to the modular construction process, particularly when balancing energy efficiency with manufacturing constraints.

The insights from this study, as well as prior research, suggest that social and organizational factors, along with the project-based nature of design activities, strongly influence how and when environmental analysis is conducted in early stage MMC housing designs. Earlier studies have called for a holistic approach to the design process, emphasizing the need to consider interrelated variables, such as client demands, cost, and time constraints (Oliveira et al., 2020; Shibeika et al., 2021), in addition to the more intangible aspects of "aesthetic" and "tacit knowledge" within professional teams (Styhre & Gluch, 2009; Tsoukas, 2005). This study builds on these insights by revealing how uncertainty and dependency on external consultants can delay key environmental decisions, thus reinforcing the relational and interdependent nature of environmental analysis in MMC projects.

These findings advance the theoretical understanding by illustrating that environmental analysis in MMC is not an isolated process but is shaped by broader social and organizational dynamics. Moreover, while this study focuses on the UK context, the challenges identified, such as dependency on external expertise and the timing of environmental considerations, are likely applicable to MMC practices globally. These issues reflect broader patterns in modular construction, suggesting that other countries facing similar MMC adoption issues may encounter comparable challenges. This study emphasizes the need for MMC firms, both in the UK and internationally, to invest in internal environmental expertise and ensure that environmental considerations are integrated from the outset. Future research should explore how these challenges manifest in different international contexts, to further refine the global applicability of these findings.

Future research should continue to explore these dynamics across different firm contexts, focusing on how organizational structures and collaborative workflows either

1
2
3 facilitate or hinder the timely and effective integration of environmental analysis into
4
5 MMC design. By addressing these issues, firms can balance energy efficiency, design
6
7 flexibility, and project constraints, thereby improving the environmental and practical
8
9 outcomes of MMC projects.
10
11
12
13
14

15 **Funding details:**

16

17 This research did not receive any specific grant from funding agencies in the public,
18
19 commercial, or not-for-profit sectors.
20
21
22

23 **Disclosure statement:**

24

25 The authors report there are no competing interests to declare.
26
27

30 **References**

31

32 Alonso-Zandari, S., & Hashemi, A. (2017). Prefabrication in the UK housing
33 construction industry.
34
35 Asghar, Q., Abid, U., & Naqvi, S. M. (2020). ARCHITECTURAL ANALYSIS:
36 DISTINCTIVE BUILDING FEATURES IN PAKISTANI ARCHITECTURE.
37 *Journal of Research in Architecture and Planning*, 28, 31-40.
38 https://doi.org/10.53700/jrap2812020_5
39
40 Attia, S., Hensen, J. L. M., Beltrán, L., & De Herde, A. (2012). Selection criteria for
41 building performance simulation tools: contrasting architects' and engineers'
42 needs. *Journal of Building Performance Simulation*, 5(3), 155-169.
43 <https://doi.org/10.1080/19401493.2010.549573>
44
45 Augenbroe, G. (2012). The role of simulation in performance based building. In
46 *Building Performance Simulating for Design and Operation* (Vol.
47 9780203891612, pp. 15-35). <https://doi.org/10.4324/9780203891612>
48
49 Baek, S., Won, J., & Jang, S. (2023). Economic Integrated Structural Framing for BIM-
50 Based Prefabricated Mechanical, Electrical, and Plumbing Racks [Article].
51 *Applied Sciences (Switzerland)*, 13(6), Article 3677.
52 <https://doi.org/10.3390/app13063677>
53
54 Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. *Qualitative
55 Research in Psychology*, 3(2), 77-101.
56 <https://doi.org/10.1191/1478088706qp063oa>
57
58 Cohen, L., Wilkinson, A., Arnold, J., & Finn, R. (2005). 'Remember I'm the bloody
59 architect!' Architects, organizations and discourses of profession. *Work,
employment and society*, 19(4), 775-796.
60 <https://doi.org/10.1177/0950017005058065>
61 Commons, H. o. (2019). *Modern methods of construction*. (HC 1831).

1
2
3 Dave, M., Watson, B., & Prasad, D. (2017). Performance and Perception in Prefab
4 Housing: An Exploratory Industry Survey on Sustainability and Affordability.
5 *Procedia Engineering*, 180, 676-686.
6 <https://doi.org/https://doi.org/10.1016/j.proeng.2017.04.227>

7 De Wilde, P. (2018). *Building performance analysis*. John Wiley & Sons.
8 de Wilde, P. (2023). Building performance simulation in the brave new world of
9 artificial intelligence and digital twins: A systematic review [Review]. *Energy*
10 and *Buildings*, 292, Article 113171.
11 <https://doi.org/10.1016/j.enbuild.2023.113171>

12 Doan, D. T., Mai, T. P. A., GhaffarianHoseini, A., Ghaffarianhoseini, A., & Naismith,
13 N. (2024). A review of the current state and future trends in modern methods of
14 construction research [Review]. *Construction Innovation*.
15 <https://doi.org/10.1108/CI-02-2023-0029>

16 Dowsett, R. M., Green, M. S., & Harty, C. F. (2022). Speculation beyond technology:
17 building scenarios through storytelling. *Buildings and Cities*, 3(1), 534-553.
18 <https://doi.org/10.5334/bc.213>

19 Fazeli, A., Jalaei, F., Khanzadi, M., & Banihashemi, S. (2022). BIM-integrated
20 TOPSIS-Fuzzy framework to optimize selection of sustainable building
21 components. *International Journal of Construction Management*, 22(7), 1240-
22 1259. <https://doi.org/10.1080/15623599.2019.1686836>

23 Francis, M. (2001). A Case Study Method For Landscape Architecture. *Landscape*
24 *Journal*, 20(1), 15-29. <https://doi.org/10.3368/lj.20.1.15>

25 Gharehbaghi, K., Mulowayi, E., Rahmani, F., & Paterno, D. (2021). Case studies in
26 modular prefabrication: Comparative analysis and discoveries. *Journal of*
27 *Physics: Conference Series*,
28 Government, H. (2018). *Industrial Strategy: Construction Sector Deal*.
29 Green, S. (2019). Modern methods of construction: unintended consequences.
30 Guest, G., Bunce, A., & Johnson, L. (2006). How many interviews are enough? An
31 experiment with data saturation and variability. *Field methods*, 18(1), 59-82.
32 Guest, G., Namey, E., & Chen, M. (2020). A simple method to assess and report
33 thematic saturation in qualitative research. *Plos One*, 15(5), Article e0232076.
34 <https://doi.org/10.1371/journal.pone.0232076>

35 Gunawardena, T., & Mendis, P. (2022). Prefabricated Building Systems—Design
36 and Construction. *Encyclopedia*, 2(1), 70-95. <https://www.mdpi.com/2673-8392/2/1/6>

37 Jabi, W. (2016). Linking design and simulation using non-manifold topology.
38 *Architectural Science Review*, 59(4), 323-334.
39 <https://doi.org/10.1080/00038628.2015.1117959>

40 Johnston, D., Siddall, M., Ottinger, O., Peper, S., & Feist, W. (2020). Are the energy
41 savings of the passive house standard reliable? A review of the as-built thermal
42 and space heating performance of passive house dwellings from 1990 to 2018.
43 *Energy Efficiency*, 13(8), 1605-1631. <https://doi.org/10.1007/s12053-020-09855-7>

44 Krish, S. (2011). A practical generative design method. *Computer-Aided Design*, 43(1),
45 88-100. <https://doi.org/https://doi.org/10.1016/j.cad.2010.09.009>

46 Landgren, M., Jakobsen, S. S., Wohlenberg, B., & Jensen, L. B. (2019). Informing
47 sustainable building design: The importance of visualizing technical information
48 and quantifying architectural decisions [Article]. *Archnet-IJAR*, 13(1), 194-203.
49 <https://doi.org/10.1108/ARCH-12-2018-0025>

1
2
3 Lawson, B. (2006). *How designers think: the design process demystified*. Routledge.
4 <https://go.exlibris.link/QsdwCw0b>
5 Lin, S.-H., & Gerber, D. J. (2014). Evolutionary energy performance feedback for
6 design: Multidisciplinary design optimization and performance boundaries for
7 design decision support. *Energy and Buildings*, 84, 426-441.
8 <https://doi.org/https://doi.org/10.1016/j.enbuild.2014.08.034>
9
10 Looby, K. H., Smith, S. T., & Shahrestani, M. (2022). Attitudes towards offsite
11 prefabrication: a fuzzy approach to examining uncertainty within U.K. industry
12 perception. *Intelligent Buildings International*, 14(6), 738-752.
13 <https://doi.org/10.1080/17508975.2021.2004385>
14
15 Mapston, M., & Westbrook, C. (2010). 18 - Prefabricated building units and modern
16 methods of construction (MMC). In M. R. Hall (Ed.), *Materials for Energy*
17 *Efficiency and Thermal Comfort in Buildings* (pp. 427-454). Woodhead
18 Publishing. <https://doi.org/https://doi.org/10.1533/9781845699277.2.427>
19
20 Méndez Echenagucia, T., Capozzoli, A., Cascone, Y., & Sassone, M. (2015). The early
21 design stage of a building envelope: Multi-objective search through heating,
22 cooling and lighting energy performance analysis. *Applied Energy*, 154, 577-
23 591. <https://doi.org/https://doi.org/10.1016/j.apenergy.2015.04.090>
24
25 Miles, M. B., Huberman, A. M. a., & Saldaña, J. a. (2020). *Qualitative data analysis : a*
26 *methods sourcebook* (Fourth edition, International student edition ed.).
27
28 Nguyen, T. D. H. N., Moon, H., & Ahn, Y. (2022). Critical Review of Trends in
29 Modular Integrated Construction Research with a Focus on Sustainability
30 [Review]. *Sustainability (Switzerland)*, 14(19), Article 12282.
<https://doi.org/10.3390/su141912282>
31
32 Ofori-Kuragu, J. K., & Osei-Kyei, R. (2021). Mainstreaming pre-manufactured offsite
33 processes in construction – are we nearly there? *Construction Innovation*, 21(4),
34 743-760. <https://doi.org/10.1108/CI-06-2020-0092>
35
36 Oliveira, S., Marco, E., & Gething, B. (2020). *Energy modelling in architecture: A*
37 *practice guide*. RIBA Publishing.
38
39 Oliveira, S., Marco, E., Gething, B., & Organ, S. (2017). Evolutionary, not
40 revolutionary–logics of early design energy modelling adoption in UK
41 architecture practice [Article]. *Architectural engineering and design*
42 *management*, 13(3), 168-184. <https://doi.org/10.1080/17452007.2016.1267606>
43
44 Oliveira, S., Marco, E., Gething, B., & Organ, S. (2017). Evolutionary, not
45 revolutionary - logics of early design energy modelling adoption in UK
46 architecture practice. *Architectural engineering and design management*, 13(3),
47 168-184. <https://doi.org/10.1080/17452007.2016.1267606>
48
49 Østergård, T., Jensen, R. L., & Maagaard, S. E. (2016). Building simulations supporting
50 decision making in early design – A review. *Renewable and Sustainable Energy*
51 *Reviews*, 61, 187-201. <https://doi.org/https://doi.org/10.1016/j.rser.2016.03.045>
52
53 Pan, W., Gibb, A. G. F., & Dainty, A. R. J. (2007). Perspectives of UK housebuilders
54 on the use of offsite modern methods of construction. *Construction management*
55 *and economics*, 25(2), 183-194. <https://doi.org/10.1080/01446190600827058>
56
57 Parliament, U. (2023, 2023, July 20). *MMC sector may continue to struggle without a*
58 *fresh approach from the government*.
<https://committees.parliament.uk/work/7950/modern-methods-of-construction-whats-gone-wrong/news/199612/mmc-sector-may-continue-to-struggle-without-a-fresh-approach-from-the-government/>
59
60 Peng, L., Peng, Y., & Pan, J. (2021). The Application Practice of BIM Technology in
Prefabricated Building Design. *Advances in Intelligent Systems and Computing*,

1
2
3 Ratnasari, A., & Sudradjat, I. (2023). Case study approach in post-occupancy evaluation
4 research. *ARTEKS : Jurnal Teknik Arsitektur*, 8, 427-434.
5 <https://doi.org/10.30822/arteks.v8i3.2584>

6 Rezaei, F., Bulle, C., & Lesage, P. (2019). Integrating building information modeling
7 and life cycle assessment in the early and detailed building design stages.
8 *Building and Environment*, 153, 158-167.
9 <https://doi.org/https://doi.org/10.1016/j.buildenv.2019.01.034>

10 Richards, L. (2005). *Handling Qualitative Data: A Practical Guide*.

11 Rohde, L., Jensen, R. L., Larsen, O. K., Jönsson, K. T., & Larsen, T. S. (2021). Holistic
12 indoor environmental quality assessment as a driver in early building design.
13 *Building Research & Information*, 49(4), 460-481.
14 <https://doi.org/10.1080/09613218.2020.1770051>

15 Rynes, S., & Gephart Jr, R. P. (2004). Qualitative research and the Academy of
16 Management Journal. *Academy of Management journal*, 47(4), 454-462.
17 <https://doi.org/10.5465/amj.2004.14438580>

18 Saad, A. M., Dulaimi, M., Arogundade, S., Zulu, S. L., & Gorse, C. (2024). Modern
19 methods of construction (MMC) and innovation negativism in the UK public
20 sector. *Built Environment Project and Asset Management*, 14(2), 147-163.
21 <https://doi.org/10.1108/BEPAM-06-2023-0108>

22 Saad, A. M., Dulaimi, M., & Gorse, C. (2023). Prospects of Promoting MMC across the
23 Public Construction Sector: A Systematic Review against the Diffusion of
24 Innovation Theory. *Journal of Architectural Engineering*, 29(3), 03123003.
25 <https://doi.org/doi:10.1061/JAEIED.AEENG-1547>

26 Saad, A. M., Dulaimi, M., & Zulu, S. L. (2023). A Systematic Review of the Business
27 Contingencies Influencing Broader Adoption: Modern Methods of Construction
28 (MMC). *Buildings*, 13(4), 878. <https://www.mdpi.com/2075-5309/13/4/878>

29 Saunders, M. N. K. (2012). Qualitative Organizational Research: Core Methods and
30 Current Challenges. In. SAGE Publications, Inc.
31 <https://doi.org/10.4135/9781526435620>

32 Shibeika, A., Khoukhi, M., Al Khatib, O., Alzahmi, N., Tahnoon, S., Al Dhahri, M., &
33 Alshamsi, N. (2021). Integrated Design Process for High-Performance
34 Buildings; a Case Study from Dubai. *Sustainability*, 13(15), 8529.
35 <https://www.mdpi.com/2071-1050/13/15/8529>

36 Singh, M. M., Deb, C., & Geyer, P. (2022). Early-stage design support combining
37 machine learning and building information modelling [Article]. *Automation in
38 Construction*, 136, Article 104147. <https://doi.org/10.1016/j.autcon.2022.104147>

39 Sobek, W. (2024). *Aktivhaus*. <https://www.wernersobek.com/news/werner-sobek-aktivhaus-showcase-project-p18/>

40 Stake, R. E. (2008). Qualitative case studies. In *Strategies of qualitative inquiry*, 3rd ed.
41 (pp. 119-149). Sage Publications, Inc.

42 Styhre, A., & Gluch, P. (2009). Creativity and Its Discontents: Professional Ideology
43 and Creativity in Architect Work. *Creativity and innovation management*, 18(3),
44 224-233. <https://doi.org/10.1111/j.1467-8691.2009.00513.x>

45 Thurairajah, N., Rathnasinghe, A., Ali, M., & Shashwat, S. (2023). Unexpected
46 Challenges in the Modular Construction Implementation: Are UK Contractors
47 Ready? [Article]. *Sustainability (Switzerland)*, 15(10), Article 8105.
48 <https://doi.org/10.3390/su15108105>

49 Tsoukas, H. (2005). Do we really understand tacit knowledge. *Managing knowledge: an
50 essential reader*, 107, 1-18.

51

52

53

54

55

56

57

58

59

60

1
2
3 Zapata-Poveda, G., & Tweed, C. (2014). Official and informal tools to embed
4 performance in the design of low carbon buildings. An ethnographic study in
5 England and Wales. *Automation in Construction*, 37, 38-47.
6 <https://doi.org/https://doi.org/10.1016/j.autcon.2013.10.001>
7
8 Zhang, R., Zhou, A. S. J., Tahmasebi, S., & Whyte, J. (2019). Long-standing themes
9 and new developments in offsite construction: The case of UK housing.
10 *Proceedings of the Institution of Civil Engineers. Civil engineering*, 172(6), 29-
11 35. <https://doi.org/10.1680/jcien.19.00011>
12 Zhou, Y., Ma, M., Tam, V. W. Y., & Le, K. N. (2023). Design variables affecting the
13 environmental impacts of buildings: A critical review. *Journal of Cleaner
14 Production*, 387, 135921.
15 <https://doi.org/https://doi.org/10.1016/j.jclepro.2023.135921>
16 Zhou, Y., Tam, V. W., & Le, K. N. (2023). Developing a multi-objective optimization
17 model for improving building's environmental performance over the whole
18 design process. *Building and Environment*, 110996.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60