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Abstract

It is important but also challenging to control the full shape of the molecular weight

distribution in polymerization processes since it is an infinite dimensional probabil-

ity density function (PDF). In this work, a self-optimizing control (SOC) strategy is

adopted to achieve the aim of PDF-shaping by maintaining some elaborately selected

controlled variables (CVs) at constant setpoints through online feedback control, even

in the presence of uncertainties. To find optimal CVs, finite moments rather than the

full shape, which corresponds to an infinite-dimensional space, of the PDF are adopted

as elements to parameterize CVs, whilst the optimization problem is to minimize the

distance between the actual PDF and the target PDF. The proposed SOC-PDF method

is demonstrated more effective than the existing stochastic distribution control method

through a pilot semi-batch styrene polymerization case study.
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1 Introduction

The molecular weight distribution (MWD) of a polymer has a significant influence on its end-

use properties, such as rheological (e.g. viscosity, melt index, etc.), mechanical (e.g. tensile

strength, toughness, etc.) and physical and thermal properties (e.g. density, melting point,

etc.)1–4 Therefore, controlling the MWD is a crucial aspect in process control of industrial

polymerization processes, which is a well-established fact in the polymer science literature.

The objective is to find appropriate control methods that can shape the MWD according to

the end-use quality specifications of a polymer.

Nomenclature

ρ(d̃) Probability density function of d̃

ξ Augmented vector with y and u

ξm Measured ξ with noise

δm(i, k) Measurement noise of MWD

∆n(k) nth moments of δm(i, k)

γ(i, t) or γ(i, k) Molecular weight distribution (MWD) with respect to chain length i at

continuous time t or discrete time k

γm(i, k) Measured MWD with noise

λK(t) Kth moments of CP(i, t) at time t

c Self-optimizing controlled variables

cs Setpoints of self-optimizing controlled variables

d Exogenous disturbances
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ec̃ Deviation of c̃ and its optimal trajectory

H Linear combination matrix

J∗
c̃c̃ Optimal Hessian matrix of J with respect to c̃ along the optimal trajectory

J∗
c̃ Optimal gradients of J with respect to c̃ along the optimal trajectory

J∗
ũũ Optimal Hessian matrix of J with respect to ũ along the optimal trajectory

n Augmented noise with ny and nu

nu Measurement noise of u

ny Measurement noise of y

u Control input

W2 Covariance matrix of measurement noise n

x System states

x0 Initial states

y Measurement candidate

µn(k) nth moments of γ(i, k)

ξ̃ Augmented vector with stacked ξ along the time steps and constant 1

ξ̃m Augmented vector with stacked ξm along the time steps and constant 1

B̃ Stacked scaling diagonal matrix

c̃ Stacked self-optimizing controlled variables along the time steps

d̃ Stacked disturbances along the time steps

G̃∗
ξ̃

Stacked gradients of ξ̃ with respect to ũ along the optimal trajectory
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H̃ Augmented matrix with H and cs

ñ Augmented noise with stacked n along the time steps and constant 0

ũ Stacked control input vector along the time steps

W̃2 Stacked block diagonal matrix of W2

CD(i, t) Concentration of dead polymer chains with chain length i at time t [mol/L]

Ci(t) Concentration of initiator at time t [mol/L]

Cm(t) Concentration of monomer at time t [mol/L]

CP(i, t) Concentration of live radicals with chain length i at time t [mol/L]

Cs(t) Concentration of solvent at time t [mol/L]

Di Dead polymer chains with a degree of polymerization i

Ed, Ei, Ep, Etrm, Etrs, Etc, Etd Activation energy for decomposition, initiation, propagation,

chain transfer to monomer and solvent, termination reactions by combination and

disproportionation, respectively [J/mol]

f Initiation efficiency

I Initiator

J Objective function

J∗ Optimal value of the objective function

kd Rate coefficient for decomposition [min−1]

ki Rate coefficient for initiation [min−1]

kp Rate coefficient for propagation [L/(mol·min)]
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ktc Rate coefficient for termination reactions by combination [L/(mol·min)]

ktd Rate coefficient for termination reactions by disproportionation [L/(mol·min)]

ktrm Rate coefficient for chain transfer to monomer [L/(mol·min)]

ktrs Rate coefficient for chain transfer to solvent [L/(mol·min)]

L Loss between the actual and optimal value of the objective function value

Ld Loss related to dusturbances

Ln Loss related to measurement noise

Lgav Global average loss

M Monomer

mK(t) Kth moments of CD(i, t) at time t

Nf Maximum chain length

Pi Live radicals with a chain length i

Q Weighting factor

R Universal gas constant [cal/(mol·K)]

R∗ Primary radicals

S Solvent

T Reaction temperature [K]

Different methods have been devised to control the MWD of polymerization processes

in recent decades. Traditional control methods for polymerization processes can be broadly

categorized into two types: two-step methods and stochastic distribution control. In two-

step methods,2,5–8 offline optimization is first performed to determine optimal trajectories
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for certain measurement variables (optimization layer), such as reactor temperature and/or

feed flow rate. These optimal trajectories are then tracked online (control layer). An op-

timal control solution was proposed to produce a linear emulsion polymer with the desired

MWD within a minimum time using online reaction calorimetry.9 The optimal feed profiles

of monomer and chain-transfer agent were calculated through dynamic programming and im-

plemented experimentally for MWD control in a semi-batch nonlinear emulsion copolymer-

ization system.10 An online two-step method was developed to get the reactor temperature

so as to produce the polymer with the desired number-average degree of polymerization.11

The optimum values for the initiator concentration, chain transfer agent concentration and

addition time, and reactor temperature were determined to achieve the desired MWD and

then the global linearizing control strategy was applied online to achieve the optimal reactor

temperature trajectory.12 These approaches simplify the control problem by focusing on spe-

cific measurable variables, hence it indirectly controls the MWD by manipulating variables

such as reactor temperature. This indirect control does not directly influence the shape of

the MWD, which can limit its effectiveness in achieving desired polymer properties.

Stochastic distribution control (SDC),13,14 on the other hand, directly enables the shape

of MWD to closely approach a target distribution through online optimization. The MWD

is approximated through a linear combination of B-spline basis functions, weighted appro-

priately. The weights associated with the B-spline approximations are dynamically linked

with the control input via ordinary differential equations, and consequently the MWD can

be dynamically controlled by the optimal control input calculated through online dynamic

optimization. This method provides a more direct approach to achieving the desired MWD

but comes with significant computational load for online optimization. Since SDC, through

online numerical optimization, directly obtains control inputs, it cannot necessarily guar-

antee the stability and robustness of the closed-loop system.15 Therefore, the absence of a

well-defined structure for the controller can hamper practical realization. Additionally, SDC

lacks clear physical interpretation and suffers from arising complexity due to intricate MWD
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shapes.

In order to address these challenges, a control structure design strategy known as self-

optimizing control (SOC)16,17 is first introduced into such field of controlling the shape of a

probability density function (PDF). SOC enables the attainment of near-optimal operation

by maintaining constant setpoint values for the controlled variables, even in the presence

of uncertainties. It effectively transforms the complex online optimization problem into a

simpler online feedback control problem by shifting the computational burden to the offline

task of selecting appropriate controlled variables, which results in minimal online calculations

and computational load. Furthermore, since SOC places emphasis on the meticulous selection

of suitable controlled variables rather than directly computing the control input, any feedback

control structure such as a Proportional-Integral-Derivative (PID) controller can be chosen to

achieve self-optimizing control. Besides, uncertainties are taken into account in the selection

of control variables, hence SOC is robust.

The above advantages make SOC different from real-time optimization (RTO) methods.

The following comparative analysis highlights the key differences and similarities between

self-optimizing control (SOC) and other RTO method such as traditional RTO and model-

free RTO based on Bayesian optimization in Table 1.

Nevertheless, making SOC applicable to such PDF-shaping problems, several challenges

have to be addressed. Firstly, it is noteworthy that existing SOC methods primarily focus

on selecting measurement combinations as controlled variables through the minimization of

economic objective functions.18–30 However, when addressing the PDF-shaping problem, the

objective function undergoes a fundamental shift, with economic considerations giving way

to minimizing the tracking error between the actual output PDF and the desired target

distribution. Furthermore, a critical challenge emerges in determining what variables to

control, given the inherent nature of the output PDF as an infinite-dimensional entity that

cannot be directly controlled. Drawing inspiration from the moment problem31 in the field of

mathematical statistics, it is recognized that the truncation problem of the MWD function
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Table 1: Comparison of SOC, Traditional RTO, and Model-Free RTO with Bayesian Opti-
mization

Aspect Self-Optimizing
Control (SOC)

Traditional Real-
Time Optimization
(RTO)

Model-Free RTO
with Bayesian Op-
timization

Approach Model-based with of-
fline optimization

Model-based with re-
peated real-time opti-
mization

Model-free using
probabilistic surro-
gate models

Optimization
Focus

Offline optimization
to minimize global
average loss

Repeated real-time
optimization

Black-box opti-
mization balancing
exploration and ex-
ploitation

Model Re-
quirements

Requires a detailed
mechanistic model

Requires a detailed
mechanistic model

Does not require
explicit mechanistic
models

Online compu-
tational Load

Low during real-time
control due to offline
pre-computation

High due to real-time
model updates and
optimization

High due to iterative
updates and solving
optimization problems

Real-Time
Performance

High efficiency with
quick response time

Potentially slower
response due to re-
peated gradient-based
optimization

Converges faster but
computationally de-
manding

Implementation
Complexity

Low due to simple on-
line feedback control

High due to repeated
model updates and
optimization

High due to iterative
nature and computa-
tional demands

Scalability Scalable to various
systems with shape
control requirements

Scalable but complex
with large-scale sys-
tems

Limited by computa-
tional complexity of
Gaussian processes

in polymerization reactions has a unique solution, meaning that the MWD can be uniquely

determined by its truncated moments.32 Typically, for computational simplicity, it can be

assumed that the MWD follows a specific distribution, such as the Schultz-Zimm distribution,

which contains two unknown parameters. Consequently, the determination of the two lower-

order moments uniquely defines this MWD. With a finite number of lower-order moments, it

is possible to deduce all moment values of the MWD, thereby enabling control of the MWD

by controlling a finite number of lower-order moments. Consequently, finite moments (or

their combinations), rather than infinite PDF, can be regarded as the controlled variables of
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interest.

Therefore, in this work, a novel approach is proposed wherein finite moments of the

output PDF are incorporated as candidate measurements. Offline dynamic optimization is

solved to minimize the tracking error of the PDF, leading to the derivation of an optimal

solution. Concurrently, sensitivity analysis is conducted to gain insights into the system’s

response. Then, since the existing exact local method18,29 only identifies locally optimal

controlled variables, considering uncertainties arising from exogenous disturbances or/and

measurement noise across the entire operational space, the local method may exhibit lim-

ited performance. To overcome this limitation, the global SOC (gSOC) method28 for static

systems is generalized to dynamic cases which is employed to identify globally optimal combi-

nations of moments as controlled variables. A comprehensive comparison is then conducted

between the proposed global dynamic SOC method for PDF-shaping problems (SOC-PDF)

and the SDC method. The effectiveness and efficacy of the SOC-PDF method are validated

through a case study involving a pilot styrene polymerization process. For clarity, the dif-

ferences among existing methods (e.g., Two-step methods and SDC) and the proposed SOC

method for PDF-shaping (SOC-PDF) are compared in Table 2.

Table 2: Comparison of Two-Step Methods, SDC, and SOC-PDF

Two-Step Methods SDC SOC-PDF

Control Approach Offline optimization,
online tracking

Online optimiza-
tion

Offline CV selec-
tion, online feed-
back control

MWD shape control Indirect Direct Direct
Online computational
Load

Low High Low

Physical Interpreta-
tion

Clear Unclear Moderate

Robustness Moderate Low High

This paper makes significant contributions to the field of knowledge in several ways. 1)

self-optimizing control is for the first time introduced to address PDF-shaping problems; 2)

finite moments are adopted as the controlled variables, replacing the inherently complex and
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infinite-dimensional PDF.

The paper is organized as follows. In Section 2, an example for modeling of molecular

weight distribution is introduced, and Section 3 derives the dynamic gSOC method for PDF-

shaping problems in detail. A case study of the proposed methods is given in Section 4, and

finally, the work is concluded in Section ??section:Conclusion.

2 Molecular weight distribution modeling

For the shape control of molecular weight distribution (MWD), it is necessary that it be mea-

surable, either through direct or indirect means. Various techniques exist for direct measure-

ment of MWD, including the high-temperature gel permeation chromatography (HT-GPC)

method,33 Fourier Transform Infrared Spectroscopy (FTI),34 and Multi-Angle Light Scat-

tering (MALS),35 the latter offering real-time insights into molecular weight, size, particle

concentration, and more. In cases where sophisticated instrumentation is lacking, soft sen-

sors36 can serve to estimate the dynamic MWD online based on the equation-oriented (EO)

approach.37 Above approaches ensure that our control methodology remains feasible in prac-

tical industrial settings. Therefore, in order to highlight the focus of this article (which is

to extend self-optimizing control to the full shape control of a distribution), this paper as-

sumes that the MWD can be measured online, with an exemplar of MWD modeling provided

subsequently.

Assume that the kinetic mechanism of a general free-radical polymerization comprises
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the following elementary reactions.

Initiator decomposition I
kd−→ 2R∗

Chain initiation R∗ +M
ki−→ P1

Propagation Pi +M
kp−→ Pi+1

Chain transfer to monomer Pi +M
ktrm−−→ P1 +Di

Chain transfer to solvent (chain transfer agent, CTA) Pi + S
ktrs−−→ P1 +Di

Termination by combination Pi + Pj
ktc−→ Di+j

Termination by disproportionation Pi + Pj
ktd−→ Di +Dj

where I, R∗, M and S denote the initiator, primary radicals, monomer and solvent, respec-

tively, and Pi and Di are the corresponding live and dead polymer chains, with a degree

of polymerization i (the number of monomer units in a polymer chain). Kj = kje
−

Ej
RT

(j = {d,i,p,trm,trs,tc,td}) denotes the reaction constant for decomposition, initiation, prop-

agation, chain transfer to monomer and solvent, and termination reactions by combination

and disproportionation respectively, and Ki = fKd, where f , kj, Ej, R and T is the initiation

efficiency, rate coefficient, activation energy, universal gas constant and reaction temperature

respectively.

The standard model assumptions are listed as follows.38

• All of the reaction steps are elementary and irreversible.

• Quasi-steady-state approximation (QSSA) and long-chain hypothesis (LCH) are satis-

fied.

• The rates of each reaction phase are independent of the live polymer chain length.

Based on the above kinetic mechanism and the model assumptions, the population bal-

ance equations for the concentration of live radicals, CP(i, t), and dead, CD(i, t), polymer
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chains of length i are as follows.

dCP(i, t)

dt
=

{
2fkdCi + ktrmCm

∞∑
i=1

CP(i, t) + ktrsCs

∞∑
i=1

CP(i, t)

}
δ1(i)

+ kpCm (CP(i− 1, t)− CP(i, t))− (ktc + ktd)CP(i, t)
∞∑
i=1

CP(i, t)

− (ktrmCm + ktrsCs)CP(i, t) (1)

dCD(i, t)

dt
= ktdCP(i, t)

∞∑
j=1

CP(j, t) +
1

2
ktc

i−1∑
j=1

CP(j, t)CP(i− j, t) + (ktrmCm + ktrsCs)CP(i, t)

(2)

where Ci, Cm, Cs, CP and CD are the concentration of initiator, monomer, solvent, live

radicals and dead polymer chains respectively. δ1(i) is the Kronecker delta function (i.e.,

δ1(i) = 1 if i = 1 and δ1(i) = 0 if i ̸= 1). The degree of polymerization i is assumed to

only take discrete values (i = 1, 2, · · · , Nf). The maximum number of monomer units Nf can

range from hundreds to thousands. Therefore, solving the full set of differential equations

requires a lot of computation, which is impractical for most relevant scenarios and prevents

the real-time use of such a model. Several methods have been developed to address this

high-dimensionality problem by reducing the infinite system of differential equations to a

low-order system of differential algebra equations such as the method of moments.39 Thus,

the Kth moments of CP(i, t) and CD(i, t) are defined as follows.

λK(t) =
∞∑
i=1

iKCP(i, t), mK(t) =
∞∑
i=2

iKCD(i, t), K = 0, 1, · · · (3)
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Then apply Equation (3) into (1) and (2) to obtain the following equations.

dλK(t)

dt
=2fkdCi + kpCm

K∑
n=0

 K

n

λK−n − kpCmλK

+ (ktrmCm + ktrsCs)λ0 − (ktc + ktd)λ0λK − (ktrmCm + ktrsCs)λK

(4)

dmK(t)

dt
=ktdλ0λK +

1

2
ktc

K∑
n=0

 K

n

λnλK−n + (ktrmCm + ktrsCs)λK (5)

Finite molecular weight moments have been suggested as a way to calculate MWD in free rad-

ical polymerization.39 Statistical methods such as Markov chain,40–42 Weibull distribution43

and Schultz-Zimm distribution44 have also been used to model some polymerization systems.

For many practical problems of linear polymerization under steady-state or quasi-steady state

conditions, the generalized Schulz-Flory distribution45,46 can adequately describe the MWD

of polymer chains. Therefore, the full MWD γ(i, t) (i = 1, 2, · · · , Nf) can be obtained based

on the above methods. Take the Schultz-Zimm distribution as an example and the MWD

can be then calculated by

γ(i, t) =
a(t)a(t)ia(t)−1e

−a(t)i
b(t)

b(t)a(t)Γ(a(t))
(6)

where

Γ(a(t)) =

∫ ∞

0

ia(t)−1e−idi (7)

a(t) =
m2

1(t)

m0(t)m2(t)−m2
1(t)

(8)

b(t) =
m1(t)

m0(t)
(9)
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Remark 1 It is essential to emphasize that the primary focus of the proposed SOC approach

is not on the exact calculation of the MWD but rather on assuming that the MWD is known

and then selecting the optimal linear combination of the moments of the MWD as controlled

variables. This shift in focus means that while accurate modeling of the MWD is important,

the strength of the SOC approach lies in its ability to use selected controlled variables to

achieve robust control.

Remark 2 It should be noted that self-optimizing control possesses the capability to real-

ize the shape control of general distributions, provided they are measurable, with molecular

weight distribution being just one particular instance. It is worth highlighting that the SOC

approach can be extended beyond the control of MWD in polymerization processes. The pro-

posed SOC method is versatile and can be applied to various systems where the shape of

the distribution function needs to be controlled, including particle size distributions (e.g.,

microscopic particles), pore size distributions, energy-related distributions (e.g., temperature

distributions), composition distributions in materials (e.g., alloys) and etc. Therefore, the

scope of applications for SOC extends far beyond, encompassing domains such as paper web

formation processes,47,48 combustion processes,49 powder manufacture,50,51 traffic flow net-

works,52 crystallization processes,53 and others.

3 Dynamic global self-optimizing control of molecular

weight distribution

3.1 Introduction of moments

In the context of SOC, an issue emerges that what measurement variables should be con-

trolled. Since MWD is an infinite-dimensional function, making it difficult to directly control

it with finite manipulated variables, dimensionality reduction is required such as using the

moments of MWD instead of itself. In this case, Herein lies the conundrum: whether the
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MWD γ can be uniquely determined by its moments µn =
∑Nf

i=1 i
nγ(i) (n = 0, 1, · · · ) and

the optimal finite number of moments to be preserved.

The first question can be answered using the moment problem in mathematics, which is

whether a sequence of real numbers sn (n = 0, 1, · · · ) can uniquely determine a probability

density function on an interval of I ∈ R. The moment problem consists of two aspects:

existence and uniqueness, which are that does there exist a positive measure on I with mo-

ments sn (n = 0, 1, · · · ), and in the affirmative, is this positive measure uniquely determined

by the moments sn (n = 0, 1, · · · ). The probability density function on I with moments sn

(n = 0, 1, · · · ) (if exists) is designated as a solution to the moment problem. If the solution

to the moment problem is unique, it is termed determinate; otherwise, it is considered inde-

terminate. There exist three fundamentally distinct types of (closed) intervals: those with

two finite endpoints, those with one finite endpoint, and those with no finite endpoints. In

the latter case, the interval is simply R, while in the former two cases, one can envisage

[0, 1] and [0,∞). For historical reasons, the moment problem on [0,∞) is denoted as the

Stieltjes moment problem, and the moment problem on R is designated as the Hamburger

moment problem. Additionally, the moment problem on [0, 1] is known as the Hausdorff mo-

ment problem. Should the Stieltjes moment problems and the Hamburger moment problems

prove resolvable, they may exhibit an abundance of solutions, rendering them indetermi-

nate moment problems. Whereas, it is elementary in linear algebra to demonstrate that a

positive measure with finite support is uniquely characterized by its moments. By employ-

ing the approximation theorem of Weierstrass and the Riesz representation theorem, one can

extend this outcome to encompass probability density functions with compact support. Con-

sequently, the Hausdorff moment problem is invariably determinate. Concerning existence,

Hausdorff54 established in 1921 that the moment problem possesses a solution on [0, 1] (any

finite interval [a, b] can be normalized as [0, 1]) if and only if the sequence sn (n = 0, 1, · · · ),

is completely monotonic, which is stated in the following theorem.55

Theorem 1 A necessary and sufficient condition for the Hausdorff moment problem to have
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a solution is that the sequence sn (n = 0, 1, · · · ) satisfies the inequalities

(−1)j∆jsn = (−1)j
j∑

i=1

(−1)i

j
i

 sn+i ≥ 0 for all j, n = 0, 1, · · · (10)

If a solution exists, then it is unique.

Since the MWD is generally bounded in the finite support due to the limit of maximum

chain length, it is a type of the Hausdorff moment problem. Since µn (n = 0, 1, · · · ) is the

sequence of moments calculated from the MWD, the existence condition (10) is automatically

satisfied. Besides, due to the uniqueness of the Hausdorff moment problem, the MWD γ can

be uniquely determined by its moments µn (n = 0, 1, · · · ).

However, only finite moments can be available in engineering contexts. The task of

reconstructing a density function when armed solely with a finite set of its moments µm =

[µ1, · · · , µm]
T is recognized as the truncated moment problem. Many approaches55–57 have

been proposed to solve the problem. It is noteworthy that within the framework of SOC,

there is no necessity to contemplate the precise reconstruction of the original distribution

using finite moments. Rather, the focus lies on attaining the optimal combination of moments

that minimizes the objective loss function. Hence, high-order moments may not be requisite;

instead, controlling the combination of lower-order moments at constant values may suffice

to steer the system towards optimal operation. Therefore, the optimal number of preserved

moments is case-dependent and determined through minimization of the objective loss.
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3.2 Problem formulation and dimensionality reduction based on

moments

The following dynamic discrete-time optimization problem for PDF-shaping in polymeriza-

tion systems is considered.

min
ũ

J =

Nf∑
i=1

[γ(i, N)− γt(i)]
2 +

N−1∑
k=0

u(k)TQu(k) (11)

s.t. x(k + 1) = f(x(k),u(k),d(k)) (12)

γ(i, k) = fγ(x(k),u(k),d(k)) (13)

γm(i, k) = γ(i, k) + δ(i, k) (14)

um(k) = u(k) + nu(k) (15)

x(0) = x0 (16)

where x(k) ∈ Rnx and x0 ∈ Rnx denote the system states (such as Ci, Cm, Cs, T , etc)

and initial states. u(k) ∈ Rnu and um(k) ∈ Rnu are the true control input and measured

control input with implementation error. d(k) ∈ Rnd , nu(k) ∈ Rnu and δ(i, k) are exogenous

disturbances, the implementation error added on control input and measurement noise on

the MWD respectively, and they all follow specific distributions. γ(i, k) is the MWD with

chain length of i (i = 1, 2, · · · , Nf) at time step k (k = 0, · · · , N − 1). γt(i) is the target

MWD and γm(i, k) is the actual measured MWD with noise. f is the nonlinear system

function and fγ is the function to calculate MWD such as the function of Schultz-Zimm

distribution (6). J is the objective function to be minimized, where the first term represents

the squared error between the actual MWD and the target at the final time, and the second

term is the input effort with a weighting factor Q. ũ =
[
u(0)T, · · · ,u(N − 1)T

]T ∈ RNnu

is the stacked input vector. Since the input variables have been parameterized as piece-wise

linear, the optimization problem (11)-(16) can be solved through nonlinear programming

to obtain the optimal solution ũ∗(d̃) =
[
u∗(0)T, · · · ,u∗(N − 1)T

]T (where (·)∗ denotes the
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optimal value of the term) and the optimal value of the objective function J∗(d̃) (where

d̃ =
[
d(0)T, · · · ,d(N − 1)T

]T is the stacked disturbance vector along the time step).

Since the chain length i can be enormous, it is not clear what should be controlled and

also difficult to control nearly infinite dimensional distribution functions with finite control

input variables. Based on the introduction in the above section, finite moments of γ(i, k) (or

γm(i, k)) are a promising measurement candidate which can be expressed as follows.

y(k) =
[
µ1(k), · · · , µny(k)

]T (17)

ny(k) =
[
∆1(k), · · · ,∆ny(k)

]T (18)

ym(k) = y(k) + ny(k) (19)

where µn(k) and ∆n(k) are the nth moment of the MWD γ(i, k) and the MWD noise δ(i, k)

respectively.

µn(k) =

Nf∑
i=1

inγ(i, k), n = 1, 2, · · · , ny (20)

∆n(k) =

Nf∑
i=1

inδ(i, k), n = 1, 2, · · · , ny (21)

y(k) is the set of measurement variables containing moments up to order ny and ym(k) is

the measured moment vector with measurement noise ny(k) following a certain distribution.

Therefore, the high-dimensional MWD γ(i, k) is reduced to finite ny-dimensional moment

vector y(k) which can be used for the design of the self-optimizing controlled variable.

Note that it is crucial to determine the number of finite moments and the criterion is

based on the minimization of the global average loss (37) which will be introduced in Section

3.3. The process of determining the number can be summarized as follows.

• Initially, we specify an initial number of moments and minimize the global average loss

to obtain the optimal global average loss. We then incrementally increase the number

of moments and repeat the optimization process. The optimal number of moments is
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determined by analyzing the curve of the optimal global average loss versus the number

of moments.

• The turning point on this curve, where increasing the number of moments no longer

significantly reduces the optimal global average loss, indicates the optimal number of

moments to be used. This method balances the trade-off between the computational

complexity and the accuracy of representing the MWD information.

Remark 3 Since the measurable probability density function is generally discrete with re-

spect to the random variable in practice, γ(i, k) is expressed in a discrete form.

Remark 4 Note that the set of measurement variables used to design self-optimizing con-

trolled variables is not limited to moments; other process variables can also be included such

as temperature, pressure and etc.

3.3 Offline selection of dynamic global self-optimizing controlled

variables

Generally, in most static SOC methods, the primary goal of self-optimizing control is to

carefully choose measurement combinations offline, represented as self-optimizing controlled

variables (CVs), i.e c = [cs,H]

1
ξ

 (where H ∈ Rnu×(ny+nu) is the combination matrix,

ξ =
[
yT,uT

]T ∈ Rny+nu is the extended measurement with u included and cs ∈ Rnu is

the setpoint of CVs c ∈ Rnu). The self-optimizing CVs are selected through minimization

of the steady-state closed-loop loss function which is the error between the actual value

of the objective function and its optimum. The near-optimal operation will be achieved

automatically by ensuring that the CVs are maintained at zero setpoints through online

feedback control since cs has been included in c.

When extended to dynamic cases, all the variables may vary during the batch and can

be stacked to form new stacked matrices or vectors (c̃, H̃, ξ̃) along the time step. Hence the
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dynamic self-optimizing CVs within a batch can be expressed as

c̃ = H̃ξ̃ (22)

where

H̃ =



cs H 0 · · · 0

cs 0 H · · · 0

...
...

... . . . ...

cs 0 0 · · · H


∈ RNnu×(N(ny+nu)+1) (23)

ξ̃ =
[
1, ξ(0)T, · · · , ξ(N − 1)T

]T ∈ RN(ny+nu)+1 (24)

c̃ =
[
c(0)T, c(1)T, · · · , c(N − 1)T

]T ∈ RNnu (25)

c(k) = cs +Hξ(k) ∈ Rnu , k = 0, 1, · · · , N − 1 (26)

ξ(k) =
[
y(k)T,u(k)T

]T ∈ Rny+nu (27)

H̃ is a matrix combined by a time-invariant block diagonal matrix with H on the diago-

nal and a column vector with N constant setpoints cs, which indicates that only current

measurements ξ(k) are utilized to calculate current CVs c(k). Although there are other

structures of H̃ such as the lower-block triangular matrix (all the measurements up to the

present time are used and setpoints are time-varying) and varying block diagonal matrix

(sub-matrix on the diagonal and setpoints are both time-varying), it is proved that the con-

stant block diagonal structure is the most robust and easiest to implement,29,58 and hence

it is adopted in this paper.

This dynamic self-optimizing CVs are selected by minimizing the final closed-loop loss

function L = J(ũfb, d̃)− J∗(d̃) (where the superscript (·)fb denotes the closed-loop value of

the term). Since ũfb is determined after the implementation of the online feedback control for

a given H̃, the evaluation of the loss function is not straightforward. Thus the second-order

Taylor expansion in terms of the free variable c̃ is employed to approximate the closed-loop
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loss.

L = J(ũfb, d̃)− J∗(d̃) ≈ J∗T
c̃ ec̃ + eTc̃ J

∗
c̃c̃ec̃ = eTc̃ J

∗
c̃c̃ec̃ (28)

where ec̃ = c̃fb−c̃∗ is the CV deviation of c̃ around its optimal trajectory c̃∗ =
[
c∗(0)T, · · · , c∗(N − 1)T

]T.

J∗
c̃ = ∂J

∂c̃
|c̃=c̃∗ ∈ RNnu is the gradient of J with respect to c̃ along the optimal trajectory,

hence J∗
c̃ = 0. J∗

c̃c̃ =
∂2J
∂c̃2
|c̃=c̃∗ ∈ RNnu×Nnu is the Hessian matrix of J with respect to c̃ along

the optimal trajectory, which can be obtained by

J∗
c̃c̃ = (H̃G̃∗

ξ̃
)−TJ∗

ũũ(H̃G̃∗
ξ̃
)−1 ∈ RNnu×Nnu (29)

where

G̃∗
ξ̃
=



01×nu 01×nu · · · 01×nu

∂ξ(0)
∂u(0)

0(ny+nu)×nu · · · 0(ny+nu)×nu

∂ξ(1)
∂u(0)

∂ξ(1)
∂u(1)

· · · 0(ny+nu)×nu

...
... . . . ...

∂ξ(N−1)
∂u(0)

∂ξ(N−1)
∂u(1)

· · · ∂ξ(N−1)
∂u(N−1)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
u(k)=u∗(k)

∈ R(N(ny+nu)+1)×Nnu (30)

J∗
ũũ =



∂J2(0)
∂u2(0)

∂J2(0)
∂u(0)u(1)

· · · ∂J2(0)
∂u(0)u(N−1)

∂J2(1)
∂u(1)u(0)

∂J2(1)
∂u2(1)

· · · ∂J2(1)
∂u(1)u(N−1)

...
... . . . ...

∂J2(N−1)
∂u(N−1)u(0)

∂J2(N−1)
∂u(N−1)u(1)

· · · ∂J2(N−1)
∂u2(N−1)



∣∣∣∣∣∣∣∣∣∣∣∣∣
u(k)=u∗(k)

∈ RNnu×Nnu (31)

G̃∗
ξ̃

is the stacked gradients of ξ̃ with respect to ũ along the optimal trajectory, which is a

lower-block triangular matrix due to causality. J∗
ũũ is the optimal Hessian matrix of J with

respect to ũ along the optimal trajectory, which is positive semi-definite.
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Since y(k) and u(k) are measured with noise of ny(k) and nu(k), it can be obtained as

ξm(k) = ξ(k) + n(k) ∈ Rny+nu (32)

n(k) =
[
ny(k)

T,nu(k)
T
]T ∈ Rny+nu (33)

ξ̃m =
[
1, ξm(0)

T, · · · , ξm(N − 1)T
]T ∈ RN(ny+nu)+1 (34)

ñ =
[
0,n(0)T, · · · ,n(N − 1)T

]T ∈ RN(ny+nu)+1 (35)

After feedback control with integral function, the measured CVs are supposed to be exactly

maintained at zero, thus c̃fbm = H̃ξ̃fbm = H̃(ξ̃fb + ñ) = 0Nnu×1 and then H̃ξ̃fb = −H̃ñ. Thus

c̃fb = H̃ξ̃fb = −H̃ñ. While the optimal value can be obtained as c̃∗ = H̃ξ̃∗, the deviation

can be finally obtained as ec̃ = c̃fb − c̃∗ = −H̃(ξ̃∗ + ñ). Therefore, the closed-loop loss can

be simplified to be explicitly related with H̃ as follows.

L ≈ (ξ̃∗ + ñ)TH̃TJ∗
c̃c̃H̃(ξ̃∗ + ñ) (36)

where J∗
c̃c̃ can be calculated through (29).

Since it is considered in a global space spanned by d̃ and ñ, the average loss should be

minimized which can be decomposed into two parts as in the static case.28

Lgav = E(L) = E(Ld) + E(Ln) (37)

where E(·) calculates the expected value of the term. Ld and Ln represent the effect of

disturbances and measurement noise on the global average loss respectively.

Ld =
1

2
ξ̃∗TH̃TJ∗

c̃c̃H̃ξ̃∗, Ln =
1

2
tr(W̃2H̃TJ∗

c̃c̃H̃) (38)

where tr(·) calculates the trace of a matrix. W2 is the covariance matrix of measurement
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noise n(k) and W̃2 is a stacked block-diagonal matrix expressed as follows.

W̃2 = diag

0,W2, · · · ,W2︸ ︷︷ ︸
N

 ∈ R(N(ny+nu)+1)×(N(ny+nu)+1) (39)

W2 = E(n(k)n(k)T) ∈ R(ny+nu)×(ny+nu), k = 0, · · · , N − 1 (40)

= E





∆2
1(k) ∆1(k)∆2(k) · · · ∆1(k)∆ny(k) 0nu×nu

∆2(k)∆1(k) ∆2
2(k) · · · ∆2(k)∆ny(k) 0nu×nu

...
... . . . ... 0nu×nu

∆ny(k)∆1(k) ∆ny(k)∆2(k) · · · ∆2
ny
(k) 0nu×nu

0nu×nu 0nu×nu 0nu×nu 0nu×nu nu(k)nu(k)
T




(41)

=



∑b
i=a i

2E[δ2(i, k)]
∑b

i=a i
3E[δ2(i, k)] · · ·

∑b
i=a i

ny+1E[δ2(i, k)] 0nu×nu∑b
i=a i

3E[δ2(i, k)]
∑b

i=a i
4E[δ2(i, k)] · · ·

∑b
i=a i

ny+2E[δ2(i, k)] 0nu×nu

...
... . . . ... 0nu×nu∑b

i=a i
ny+1E[δ2(i, k)]

∑b
i=a i

ny+2E[δ2(i, k)] · · ·
∑b

i=a i
2nyE[δ2(i, k)] 0nu×nu

0nu×nu 0nu×nu 0nu×nu 0nu×nu σ2
u


(42)

=
b∑

i=a



i2 i3 · · · iny+1 0nu×nu

i3 i4 · · · iny+2 0nu×nu

...
... . . . ... 0nu×nu

iny+1 iny+2 · · · i2ny 0nu×nu

0nu×nu 0nu×nu 0nu×nu 0nu×nu σ2
u


σ2
γ (43)

diag(·) represents to create a block-diagonal matrix with the elements in parentheses as

the values of the diagonal lines of the matrix. The covariance matrix in (43) is obtained

by substituting (18) (21) and (33) into (40). Since the measurement noise added on the

true MWD is assumed to be independent and uniformly distributed in time, the variance of

δ(i, k) is equal for all i ∈ [a, b], i.e. E(δ2(i, k)) = σ2
γ (∀i ∈ [a, b]). In addition, since different
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manipulated variables are independent of each other, the variance of u(k) is a diagonal

matrix, i.e. E(nu(k)nu(k)
T) = σ2

u ∈ Rnu×nu . σ2
u is also a diagonal matrix with the elements

on its diagonal being half of the elements on the diagonal of σ2
u divided by σ2

γ. Note that the

moments of different orders ∆1(k), · · · ,∆ny(k) are correlated and thus the first block matrix

on the diagonal of the block diagonal matrix W2 is full rather than diagonal.

However, since the order of moments of the MWD (µ1(k), · · · , µny(k)) increases expo-

nentially as their order increases, numerical problems will be encountered when obtaining

optimal H̃. Therefore, the moments (and all the available measurements) can be appropri-

ately scaled to resolve the problem. Suppose B̃ is the stacked scaling diagonal matrix shown

as

B̃ = diag

1,B, · · · ,B︸ ︷︷ ︸
N

 ∈ R(N(ny+nu)+1)×(N(ny+nu)+1) (44)

B = diag
(
b1, · · · , bny ,11×nu

)
∈ R(ny+nu)×(ny+nu) (45)

b =
[
b1, · · · , bny ,11×nu

]
∈ R1×(ny+nu) (46)

where b1, · · · , bny is the scaling factors corresponding to y(k), while u(k) remains unscaled

for simplicity. Then it can be obtained that

ξ̃
∗
= B̃ξ̃∗ (47)

ñ = B̃ñ (48)

G̃
∗
ξ̃ = B̃G̃∗

ξ̃
(49)

W̃
2

= diag

0,W
2
, · · · ,W2︸ ︷︷ ︸

N

 (50)

W
2
= W2 · repmat(b) (51)

where ξ̃
∗
, ñ, G̃

∗
ξ̃ , W̃

2

and W
2 are the scaled optimal extended measurements (including

moments and control inputs), scaled measurement noise, optimal gradients of ξ̃ with respect
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to ũ, scaled stacked covariance matrix and scaled covariance matrix, respectively. Note

that repmat(b) ∈ R(ny+nu)×(ny+nu) indicates that b is copied ny + nu times by row and

W2 · repmat(b) in (51) denotes the dot product of W2 and repmat(b). Then substituting

(47) (48) (49) and (29) into (36), it can be obtained that

L ≈ (ξ̃∗ + ñ)TH̃T(H̃G̃∗
ξ̃
)−TJ∗

ũũ(H̃G̃∗
ξ̃
)−1H̃(ξ̃∗ + ñ)

= (B̃−1(ξ̃
∗
+ ñ))TH̃T(H̃B̃−1B̃G̃∗

ξ̃
)−TJ∗

ũũ(H̃B̃−1B̃G̃∗
ξ̃
)−1H̃(B̃−1(ξ̃

∗
+ ñ))

= (ξ̃
∗
+ ñ)T(H̃B̃−1)T(H̃B̃−1G̃

∗
ξ̃)

−TJ∗
ũũ(H̃B̃−1G̃

∗
ξ̃)

−1(H̃B̃−1)(ξ̃
∗
+ ñ)

H̃=H̃B̃−1

======= (ξ̃
∗
+ ñ)TH̃

T

(H̃G̃
∗
ξ̃)

−TJ∗
ũũ(H̃G̃

∗
ξ̃)

−1H̃(ξ̃
∗
+ ñ)

= L (52)

Thus it is indicated in (52) that scaling the measurements is equivalent to a linear transfor-

mation of H̃, i.e. H̃ = H̃B̃−1, which does not influence the optimal value of the loss function.

Therefore, H̃ can be adopted to achieve the same self-optimizing control performance as with

H̃, while H̃ has better numerical performance. Hence, H̃ should be obtained through min-

imization of the global average loss E(L). To achieve this, the global average loss can be

approximated through Monte Carlo simulation by sampling disturbances within the prede-

fined set. Then the optimal H̃ is obtained by solving the following structure-constrained

SOC problem.

min
H̃

Lgav = E(L) =
∫

ρ(d̃)(L
d
+ L

n
)dd̃ ≈ 1

Nd

Nd∑
j=1

(L
d

j + L
n

j ) (53)

s.t. H̃ is constant block diagonal in (23).

where

L
d
=

1

2
ξ̃
∗T
H̃

T

J∗
c̃c̃H̃ξ̃

∗
, Ln

=
1

2
tr(W̃

2

H̃
T

J∗
c̃c̃H̃) (54)
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Algorithm 1: Dynamic global SOC method for PDF-shaping problems (SOC-PDF)
Input: Disturbance sampling set: D; Scaling matrix: B; Scaled covariance matrix

of measurement noise: W
2; Weighting factor: Q.

Output: Optimal combination matrix: H̃.

1 foreach d̃j in D do
2 ũ∗

j , γ∗j , J∗ ← solve the optimization problem (11)-(16);
3 Dimensionality reduction: µ∗

n,j (n = 1, · · · , ny) ← γ∗j based on (20) and then y∗
j

← µ∗
n,j using (17);

4 Obtain scaled stacked vectors ξ̃
∗

and ñ based on (24) (27) (47) and (18) (33)

(35) (48), and G̃
∗
ξ̃ and obtain J∗

ũũ through sensitivity analysis based on (30)
(49) and (31), respectively;

5 Compute Ld

j and Ln

j based on (54) and (29);
6 end

7 H̃ ← solve the structure-constrained SOC problem (53) numerically.

L
d and L

n in (54) are the scaled ones in (38). ρ(d̃) is the probability density function

of d̃. Nd is the number of total sampling points and the subscript (·)j denotes the term

associated with the jth sampled disturbance scenario. Therefore, the optimal scaled stacked

combination matrix H̃ can be obtained by solving (53) numerically.

Unfortunately, such structure-constrained dynamic SOC problem is usually non-convex

and has no closed-form solution in general.59 It can be solved by some numerical optimization

solvers such as sequential quadratic programming (SQP), interior-point method and etc.

In summary, the dynamic global self-optimizing control method for the PDF-shaping

problems (SOC-PDF) is concluded in Algorithm 1.

3.4 Online implementation of SOC

After obtaining optimal H̃ offline based on Algorithm 1, the online control law can be

obtained directly from the optimal CVs under the condition that u(k) is included in the

extended measurement set ξ(k) and the measured CVs at time k should be maintained at

26



zero which can be written as

cfbm(k) = cs +Hξ
fb

m(k) = cs +

[
H

y
H

u

]
︸ ︷︷ ︸

H

 yfb
m(k)

ufb
m(k)


︸ ︷︷ ︸

ξ
fb
m(k)

= 0nu×1 (55)

where (·) denotes the scaled value of the term. H
y ∈ Rnu×ny and H

u ∈ Rnu×nu are the sub-

matrices corresponding to yfb
m(k) and ufb

m(k) in H ∈ R(ny+nu)×(ny+nu). Then the closed-loop

control inputs at time k can be calculated by

ufb
m(k) = −(H

u
)−1

(
cs +H

y
yfb
m(k)

)
(56)

Note that H
u is invertible and an extra constraint can be enforced as H

u
= Inu×nu for

simplicity (where I is the identity matrix of nu × nu). Furthermore, since H
u, Hy and cs

are elements in H̃ and have been obtained offline based on Algorithm 1, ufb
m(k) can be easily

obtained in real-time once yfb
m(k) is measured online.

4 Case study

4.1 Model description

A semi-batch styrene polymerization process model44 is studied as shown in Figure 1. Styrene

is the monomer for polymerization and azobisisobutyronitrile is the initiator. The total feed

flow rate F is the sum of the monomer flow rate Fm and the initiator flow rate Fi. These

two streams are injected into a continuous stirring tank reactor (CSTR) of 3.927 L with

a certain ratio of u = Fm

Fm+Fi
= Fm

F
∈ [0.3, 0.7], which is assumed as control input. The

energy is provided by the heated oil in the CSTR jacket whose temperature is controlled by

a temperature control loop. For simplicity, the reaction temperature is assumed constant at

353 K. The molecular weight distribution is supposed to be measurable or mathematically
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calculated online.

Figure 1: Semi-batch styrene polymerization model in a continuous stirring tank reactor
(CSTR)

The overall ordinary differential equations44 are given as follows, and the nominal values

of process variables are presented in Table 3.

dCi

dt
=
F

V
((1− u)Ci,in − Ci)−KdCi (57)

dCm

dt
=
F

V
(uCm,in − Cm)− 2KiCi − (Kp +Ktrm)Cmψ0 (58)

dψ0

dt
= −F

V
ψ0 + 2KiCi −Ktψ

2
0 (59)

dψ1

dt
= −F

V
ψ1 + 2KiCi +Kpψ0Cm −Ktψ0ψ1 +KtrmCm (ψ0 − ψ1) (60)

dψ2

dt
= −F

V
ψ2 + 2KiCi +KpCm (2ψ1 + ψ0)−Ktψ0ψ2 +KtrmCm (ψ0 − ψ2) (61)

dZ0

dt
= −F

V
Z0 +KtrmCmψ0 +

Kt

2
ψ2
0 (62)

dZ1

dt
= −F

V
Z1 +KtrmCmψ1 +Ktψ0ψ1 (63)

dZ2

dt
= −F

V
Z2 +KtrmCmψ2 +Ktψ0ψ2 +Ktψ

2
1 (64)

where Kj = kje
−

Ej
RT (j = {d,i,p,trm,t}) denotes the reaction constant for decomposition, ini-

tiation, propagation, chain transfer or termination respectively, and Ki = fKd. Ci and

Cm are concentration of initiator and monomer in the CSTR. ψ0, ψ1, ψ2 and Z0, Z1, Z2

are the leading moments of living radicals and dead polymer respectively. The initial
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Table 3: Process Variables and Their Nominal Values

Variable Description Value Unit

f Efficiency of the initiator 0.6 -
kd Rate coefficient for decomposition 9.480×1016 min−1

kp Rate coefficient for propagation 6.306×108 L/(mol ·min)

ktrm Rate coefficient for chain transfer to monomer 1.386×108 L/(mol ·min)

kt Rate coefficient for termination 3.765×1010 L/(mol ·min)

Ed Activation energy for decomposition 30798.5 J/mol

Ep Activation energy for propagation 7067.8 J/mol

Etrm Activation energy for chain transfer to monomer 12671.1 J/mol

Et Activation energy for termination 1680 J/mol

V Volume of the reacting mixture 3.927 L

F Total feed flow rate 0.0238 L/min

T Reaction temperature 353 K

Ci,in Inlet initiator concentration 0.0106 mol/L

Cm,in Inlet monomer concentration 4.81 mol/L

R Universal gas constant 1.987 cal/(mol ·K)

values of all the states are x0 = [Ci(0), Cm(0), ψ0(0), ψ1(0), ψ2(0), Z0(0), Z1(0), Z2(0)]
T =

[0.002, 2.262, 0, 0, 0.0079, 0.0014, 0.624, 425.805]T

Then to obtain molecular weight distribution, the following well-known normalized Schultz–Zimm

distribution function60 is utilized to describe MWD of polystyrene.

γ(i) =
hhih−1e

−hi
Mn

Mh
nΓ(h)

(65)

where

Γ(h) =

∫ ∞

0

ih−1e−idi (66)

h =
Z2

1

Z0Z2 − Z2
1

(67)

Mn =
Z1

Z0

(68)
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i ≥ 0 is the chain length while the maximum chain length is set as 2000 in this case. h

denotes the distribution breadth, Γ(h) is the gamma function and Mn is the number average

chain length. When h = 1, the Schultz–Zimm distribution reduces to another commonly

used distribution for MWD, the exponential Flory distribution.

Remark 5 The leading moments of dead polymer Z0, Z1, Z2 are simply used to calculate

the molecular weight distribution γ based on the normalized Schultz–Zimm distribution (65).

In fact, γ is assumed to be measurable and it is the moments of γ that are applied in self-

optimizing control.

The objective function of SOC for the PDF-shaping problem is defined as

J =
2000∑
i=1

[γ(i, N)− γt(i)]
2 +

N−1∑
k=0

u(k)TQu(k) (69)

with disturbances and moments up to order of 7 (not all of them have to be used in this

case) as

d = [Ci,in, Cm,in, kp]
T (70)

ξ(k) = [µ1(k), µ2(k), · · · , µ7(k), u(k)]
T (71)

where µ1(k), · · · , µ7(k) are the 1st to 7th scaled moments of the MWD γ(i, k) at time k, i.e

ξ(k) = ξ(k) · bT, where b = [10−2, 10−5, 10−8, 10−11, 10−14, 10−17, 10−20, 1]. µ0 is constant 1

since the MWD is a PDF hence not included in ξ(k). The total batch time 400 min is divided

into N = 20 intervals. The penalty weighting factor is set as Q = 0. The disturbances are

assumed unchanged within the batch and varied batch to batch. The variation ranges for

disturbances are defined as ±20 % of their nominal values. The measurement noise on γ(i, k)

and u(k) are both normal distributions with the same zero mean while different variances

σ2
γ = 10−10 and σ2

u = 10−4 respectively. Therefore, the scaled covariance matrix can be
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obtained as

W
2
=



2.669× 10−5 4.004× 10−5 6.408× 10−5 1.068× 10−4 1.832× 10−4 3.206× 10−4 5.702× 10−4 0

4.004× 10−5 6.408× 10−5 1.068× 10−4 1.832× 10−4 3.206× 10−4 5.702× 10−4 0.001 0

6.408× 10−5 1.068× 10−4 1.832× 10−4 3.206× 10−4 5.702× 10−4 0.001 0.002 0

1.068× 10−4 1.832× 10−4 3.206× 10−4 5.702× 10−4 0.001 0.002 0.003 0

1.832× 10−4 3.206× 10−4 5.702× 10−4 0.001 0.002 0.003 0.006 0

3.206× 10−4 5.702× 10−4 0.001 0.002 0.003 0.006 0.012 0

5.702× 10−4 0.001 0.002 0.003 0.006 0.012 0.022 0

0 0 0 0 0 0 0 10−4


(72)

Remark 6 Since the order of magnitude of moments µn becomes larger and larger as the

order increases, the raw moments are scaled to an identical order of magnitude to avoid

numerical issues.

The whole disturbance space is randomly sampled by Nd = 500 Gaussian distributed

scenarios. Through offline minimization of J subjected to the dynamic model equations and

input constraint, optimal data can be obtained and then the optimal H̃ can be acquired

following Algorithm 1. All the computations were executed on a desktop computer with

an Intel Core i5-9400 CPU at 2.90 GHz, 8 GB RAM at 2.90GHz under 64-bit Windows 10

operating system and the algorithm is implemented on Matlab 2021b.

4.2 Results and Discussions

To test the proposed SOC-PDF method, another 100 normally distributed disturbance sce-

narios are generated. The closed-loop global average loss of the objective function for SOC

PDF-shaping problem is applied to quantify the control performance.

To find how many moments should be included in self-optimizing control, different num-

ber of moments are selected to find optimal H̃ and then closed-loop average loss is evaluated
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through the polymerization model as depicted in Figure 2. It is clear that the closed-loop

global average loss decreases with the number of moments ranging from 0 to 7. The perfor-

mance of not using any moment is not satisfactory, which gives an average loss of 1.014×10−5.

This may be due to the fact that no moment information is used, and the control input u

remains constant after online calculation u(k) = 0.5779, thus unable to resist the influence

of disturbances. It shows that choosing one moment (µ1) is good enough without need of

more higher moments. It is probably because that the MWD is unimodal, and the initial

MWD is similar to the target. Hence, controlling only the first moment can make the actual

MWD close to the target distribution. The resulting optimal self-optimizing CVs at each

time step are c(k) = −2.3851+ [0.4309, 1] [µ1(k), u(k)]
T which should be maintained at zero,

and therefore the online control input is directly calculated by u(k) = 2.3851− 0.4309µ1(k).
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Figure 2: Closed-loop global average loss obtained through nonlinear model evaluation using
0 to 7 moments.

When d changes by 20 % (which is the maximum range) from the nominal point (e.g.

d = [0.0127, 5.7720, 7.5672× 108]
T), the trajectories of initiator concentration Ci, monomer

concentration Cm, objective function J and manipulated variable u using the first order
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moment (n = 1) are depicted in Figure 3. In addition, the final MWD curves after self-

optimizing control using no moment (u keeps at constant 0.5779) and using the first order

moment (n = 1) are compared with the target MWD as shown in Figure 4. It is indicated

that under large disturbances, the actual MWD is closer to the target distribution by using

the first order moment (J = 3.625× 10−7) than by using no moments. The trajectory of the

actual MWD after self-optimizing control using the first order moment within the batch is

shown in Figure 5.
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Figure 3: Performance of SOC-PDF when d changes by 20 % from the nominal point.

For comparison, the stochastic distribution control (SDC) method (standard output PDF

control in14) is also implemented on the styrene polymerization process for the same 100

disturbance scenarios. The results are summarized in Table 4 and it can be seen that the

proposed SOC-PDF method (using only the first order moment µ1) outperforms the SDC

method, whose average, maximum and standard deviation of performance index is about

one to two orders of magnitude smaller than the SDC method. Because the SDC method

adopts the optimal control strategy and does not consider the influence of disturbances and

noise, it has poor performance in the global variation range of disturbances. In the contrast,
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Figure 5: Trajectory of the actual MWD after SOC-PDF using the first order moment when
d changes by 20 % from the nominal point.
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SOC-PDF method designs self-optimizing CVs offline based on information of moments and

the PDF-shaping control can be achieved through a very simple online control law even in

the presence of disturbances and noise.

Table 4: Closed-loop global loss evaluated from the original nonlinear dynamic model

Average Maximum Standard deviation

SOC-PDF (this paper) 7.4245×10−7 4.1918×10−6 7.6368×10−7

SDC 2.1025×10−6 1.2616×10−4 1.2654×10−5

5 Conclusion

This paper for the first time introduces self-optimizing control into the field of PDF-shaping

problems and establishes its basic framework. Since it is generally hard to control PDF

directly, the finite moments of the PDF are involved as available measurement variables to

obtain the globally optimal controlled variables offline. When they are controlled constant

online, the PDF is close to the target. As demonstrated in the styrene polymerization case,

the proposed dynamic global self-optimizing control method achieves better performance

than the existing stochastic distribution control method.

However, this work is limited to a simulated environment at present and has not yet been

extended to a real-world polymerization process. For industrial application, several critical

considerations are listed as follows:

• Key process variables, including reactor temperature, pressure, liquid level, feed flow

rates and etc., should be measured online. The real-time data can be acquired using

the OPC (OLE for Process Control) protocol from sensors.

• In cases where online measurement of the molecular weight distribution (MWD) is not

feasible, soft sensors36 can serve to estimate the dynamic MWD online based on the

equation-oriented (EO) approach.37
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• The collected data (under various operational conditions) is used to build and calibrate

the dynamic model of the polymerization process. Based on the developed model and

soft sensors to estimate dynamic MWD, the optimization problem of minimizing the

global average loss is solved offline to determine the optimal controlled variables (CVs).

Then the SOC methodology involves maintaining the CVs at zero setpoints during

online operation, thereby achieving self-optimizing control of the MWD.

Recently, our research group has made significant progress in setting up a pilot polymer-

ization plant. The pilot plant is fully equipped with data communication capabilities, laying

the groundwork for implementing and testing the SOC strategy in a real-world setting in

the future.
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