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We consider the problem of minimizing the L°° norm of a function of the hessian
over a class of maps, subject to a mass constraint involving the L norm of a
function of the gradient and the map itself. We assume zeroth and first order
Dirichlet boundary data, corresponding to the “hinged” and the “clamped” cases.
By employing the method of LP approximations, we establish the existence of a
special L°° minimizer, which solves a divergence PDE system with measure
coefficients as parameters. This is a counterpart of the Aronsson-Euler system
corresponding to this constrained variational problem. Furthermore, we establish
upper and lower bounds for the eigenvalue.
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1. Introduction and main results

Let n, N € N with n > 2, and let 2 € R™ be a bounded open set with Lipschitz
boundary 9f2. In this paper we are interested in studying nonlinear second order L>°
eigenvalue problems. Specifically, we investigate the problem of finding a minimizing
map U : 8 — RY | that solves

£ (D%usc) < () = inf { | F(D20)]| 1< o
v € WES(QRY), Jlg(v,D0) (@) =1} (1)

Additionally, we pursue the necessary conditions that these constrained mini-
mizers must satisfy, in the form of PDEs. In the above, f: Révxnz — R and
g:RY x RN*" _ R are given functions, that will be required to satisfy some
natural assumptions, to be discussed later in this section. We note that R xn?
symbolizes the symmetric subspace of the tensor space RY @ (R™ ® R"™) wherein
the hessians of twice differentiable maps v : Q@ — RY are valued. The functional
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2 E. Clark and N. Katzourakis

Sobolev space Wé’oo(Q; RY) appearing above will taken to be either of:

WSS (URY) . = Wy (RY),
Wre(QRY) 1 = W2 N W= (Q;RY).

(1.2)

The space Wé’m(ﬂ; RY) encompasses the case of so-called clamped boundary con-
ditions, which can be seen as first order Dirichlet or as coupled Dirichlet-Neumann
conditions, requiring |u| = [Du| =0 on Q. On the other hand, Wy (Q;RN)
encompasses the so-called hinged boundary conditions, which are zeroth order
Dirichlet conditions, requiring |u| = 0 on 9S2. This is standard terminology for such
problems, see e.g. [25].

Problem (1.1) lies within the Calculus of Variations in L°°, a modern area, ini-
tiated by Gunnar Aronsson in the 1960s. Since then this field has undergone a
substantial transformation. There are some general complications one must be wary
of when tackling L°° variational problems. For example, the L norm is generally
not Gateaux differentiable, therefore the analogue of the Euler-Lagrange equa-
tions cannot be derived directly by considering variations. Any supremal functional
also has issues with locality in terms of minimization on subdomains. Further, the
space itself lacks some fundamental functional analytic properties, such as reflex-
ivity and separability. Higher order problems and problems involving constraints
present additional difficulties and have been studied even more sparsely, see e.g. [3,
4,9, 10, 2024, 26]. In fact, this paper is an extension of [23] to the second order
case, and generalizes part of the results corresponding to the existence of mini-
mizers and the satisfaction of PDEs from [25]. In turn, the paper [23] generalized
results on the scalar case of eigenvalue problems for the oo-Laplacian ([18, 19]).
For various interesting results, see for instance [2, 3, 6, 8, 28-31].

The vectorial and higher order nature of the problem we are considering herein
precludes the use of standard methods, such as viscosity solutions (see e.g. [1] for a
pedagogical introduction). However, we overcome these difficulties by approximat-
ing by corresponding LP problems for finite p case and let p — oco. The intuition for
using this technique is based on the rudimentary idea that, for a fixed L*° function
on a set of finite measure, its L? norm tends to its L> norm as p — oo. This tech-
nique is rather standard for L°° problems, and in the vectorial higher order case we
consider herein is essentially the only method known. Even the very recent intrinsic
duality method of [6] is limited to scalar-valued first order problems.

To state our main result, we now introduce the required hypotheses for the
functions f and g:

(a) f € CRY™).

(b) fis (Morrey) 2-quasiconvex.

(¢) There exist 0 < Cy < Cy such that, for all X € RN*""\ {0},
0<Cif(X) < Of(X) : X < Cof(X).

(d) There exist Cs,...,Cs >0, >1and 3 < 1: forall X € Révxnz,
O+ G X|* < F(X) < G5 X" + o,

9F(X0)] < Csf(X)P + Co.

(1.3)
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(a) g € CHRN x RNx7),
(b) g is coercive, in the sense that
limy oo { inf,) pyerRNxRN x| (n, P)|=1 g(tn,tP)) = 0.
(c) There exist 0 < C7 < Cs : for all (n, P) € (RN x RV*™)\{(0,0)},
0<Crg(n,P) < Oyg(n,P)-n+0pg(n,P): P < Csg(n, P).

(1.4)

In the above, 0f(X) denotes the the derivative of f whilst J,,g and Opg signifies
the respective partial derivatives. Additionally ‘> and “” represent the Euclidean
inner products. The terminology of (Morrey) 2-quasiconvex refers to the standard
notion for integral functionals for higher order functionals (see e.g. [7, 11, 12, 33]),
namely

F(X) < ][ F(X +D2%)dL", V¢ WE2(QRY), VX eRNV
Q

We note that herein we will be using the following function space symbolizations:
CE(O;RY) == CHO;RY) n W™ (;RY),
WP RY) = WP (RY), p € [1,00),
WP (RY) == W22 Wy P (4 RY), pe [1,00),

Further, we will be using the rescaled L? norms for p € [1, 00), given by

1 » ¥
2l Lr ) = (E"(Q) thlpdﬁn> = <]{2|h|pd£”> )

Finally, we observe that (1.3)(c), implies that f > 0 on RY*7"\ {0}, f(0) = 0 and
f isradially increasing, meaning that ¢ — f(¢X) is increasing on (0, oo) for any fixed
X € RYV>*"*\ {0}. Similarly, (1.4)(c) implies that g > 0 on (RY x RN*")\ {(0, 0)},
g(0,0) =0 and g is radially increasing on RY x RN namely t s g(tn, tP) is
increasing on (0, o) for any fixed (1, P) € (RN x RV*™)\ {(0, 0)}.

Below is our main result, in which we consider both cases of boundary conditions
simultaneously.

THEOREM 1.1. Suppose that the assumptions (1.3) and (1.4) hold true. Then:
(A) The problem (1.1) has a solution us, € Wg™(;RY).
(B) There exist Radon measures
My € MRV 0 € M(Q),
such that

/ﬁquS s dMy = Am/ﬁ(ang(um,Dum) ¢+ Opg(Uoo, Disy) Dqs) dvee
(1.5)
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4 E. Clark and N. Katzourakis

for all test maps ¢ € C3(Q;RY), where
Ao = Hf(Dz(uoo)HLx(Q) > 0. (1.6)

Additionally, we have the following a priori lower bound for the eigenvalue

C +
Ao > ( : & - 03> :
diam(Q) (C/(00,2) 959 1= (fg<1)) + 10pglLe g1y
(1.7)

where (+)T symbolizes the positive part, and C(oo, Q) equals either the con-
stant of the Poincaré inequality (in the case of clamped boundary conditions),
or the constant of the Poincaré-Wirtinger inequality (in the case of hinged
boundary conditions), both taken for p = oo.

If additionally the boundary 0S) is C?, we have the a priori upper bound

2504 (&4 3 &
Aoo < B — ] ) (23" , )
o < Cot Cop (1 sup RO (274 _max (Imileoion)")

Ly

Kk; o Po
1 — (ki o Pg)dq

n—1
. {1 + (1 + ﬁJH"*(aQ) +>
€0

=1

L&({dn<ao}m>} ’
(1.8)

where ¢, C' > 0 are dimensionless universal constants, w(n) is the volume of
the unit ball in R™, H"1(0Q) is the perimeter of Q, {k1, ..., kn_1} are the
principal curvatures of 02, Pq is the orthogonal projection on OX), dg the
distance function of 9S), g¢ is the largest

1
€€ (O,min{l, ~ min }),
i=1,..., ’n,fl”KZiHCO(aQ)

for which we have that dg € C?({dq < €} N Q) and R(t) is the smallest radius
of the N-dimensional ball, for which the sublevel set {g < t} is contained into

the cylinder Bg(t) (0) x RNX" namely

R(t) == inf{R >0: {g <t} CBY(0) RNX”}.

(C) The quadruple (too, Aoo, Moo, Vo) Satisfies the following approxzimation
properties: there exists a sequence of exponents (p;)7° C (n/a) where p; — oo
as j — oo, and for any p, a quadruple

(U, Apy My, 1) € WEP(QRN) x [0,00) x M(QGRN ™) x M(Q),
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such that
Up — Uso, in Cl(ﬁ;RN),
D%y, — D?uy,, in LY (Q;Ré\[x"2), for all g € (1,00),
Ay — Ao, in [0, 00), (1.9)
M, —=~ M, in M(Q;RY*"),
Vp = Voo, in M(SQ),

as p — oo along (p;)7°. Further, u, solves the constrained minimization problem

1£ (D) o) = inf {1fD?0) o)+ v € W (URY), [lg(v, Dv) (o) = 1,
(1.10)

and (up, Ap) satisfies

][f(DQup)P_laf(DQup) :D2pdL
Q
— (A

p)p][g(up, Dup)p_1 <8ng(up,Dup) - ¢+ 0pg(up, Duy) : D¢) dacr
Q

(1.11)
for all test maps ¢ € Wé’ap(Q;RN). Finally, the measures M,,, v, are given by

1 f(D%u,) )pl
M = af D2’LL L 5
P Q) ( Ay (D) 70 (1.12)
Vp g(up, Duy)P~ L7 .

T Q)

We note that one could pursue optimality in theorem 1.1(A) by using L versions
of quasiconvexity, as developed by Barron-Jensen-Wang [5] but adapted to this
higher order case, in regards to the existence of L°° minimizers. However, for parts
(B) and (C) of theorem 1.1 regarding the necessary PDE conditions, we do need
Morrey 2-quasiconvexity, as we rely essentially on the existence of solutions to the
corresponding Euler—Lagrange equations and the theory of Lagrange multipliers in
the finite p case. Further, the measures M., Vs, depend on the minimizer us, in a
non-linear fashion, hence one more could perhaps symbolize them more concisely
as Moo (Uoo ), Voo (o ). Consequently, the significance of these equations is currently
understood to be mostly of conceptual value, rather than of computational nature.
However, it is possible to obtain further information about the underlying structure
of these parametric measure coefficients. This requires techniques such as measure
function pairs and mollifications up to the boundary as in [10, 17, 23], but to keep
the presentation as simple as possible, we refrain from pursuing this -considerably
more technical- endeavour, which also requires stronger assumptions.

2. Proofs

In this section we establish theorem 1.1. Its proof is not labelled explicitly, but will
be completed by proving a combination of smaller subsidiary results, including a
selection of lemmas and propositions.
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Before introducing the approximating problem (the L? case for finite p), we need
to establish a convergence result, which shows that the admissible classes of the
p-problems are non-empty. It is required because the function g appearing in the
constraint is not assumed to be homogeneous, therefore a standard scaling argument
does not suffice.

LEMMA 2.1. For any v € Wé’oo(Q;]RN) \ {0}, there exists (tp)pe(n/a,o0] With t, —
too GS P — 00, such that

||9(tp”vtpD”)||Lp(Q) =1,
for all p € (n/a, oc]. Further, if [|g(v, Dv)||pe(q) = 1, then to = 1.
Proof of lemma 2.1. Fix v € W (;RN) \ {0} and define

Poo(t) := I;lez%(g(tv(x),tDv(a?)), t>0.

It follows that poo(0) =0 and p is continuous on [0, co). We will now show that
Poo s strictly increasing. We first show it is non-decreasing. For any s > 0 and
(n, P) € RY x RN*m\ {(0, 0)}, our assumption (1.4)(c) implies

< C79(37773P)
S
Ong(sn, sP) -1+ dpg(sn,sP) : P

3(77,P)9(577»3P) : (777P)

REF

N

thus s — g(sn, sP) is increasing on (0, co). Hence, for any € Q and ¢ > s > 0 we
have g(tv(z), tDv(x)) > g(sv(zx), sDv(z)), which yields,

Poo(8) = r;lea%g(sv(x), sDv(z)) < r;lea%(g(tv(x),tDv(z)) = pPool(t).

We proceed to demonstrate that ¢+ poo(t) is actually strictly monotonic over
(0, ). Fix to > 0. By Danskin’s theorem [13], the derivative from the right p’(t{)
exists, and is given by the formula

ho(t) = max {9 pg(tov(e). taDv(@)) : (v(a), Do) },

where

0y = {Ee 0 pelto) :g(tov(f),toDv(f))}.
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Hence, by (1.4)(c) we estimate

potf) = - max {9, pyaltov(a) Do) (tov(o),toDu(a) }

> %7 »Lne%i g(tov(z), toDv(z))
_ &
=4

> 0.

Poo (tO)

This implies that po is strictly increasing on (0, co). Next, recall that g is coercive
by assumption (1.4)(b), namely g(sn, sP) — oo as s — oo, for fixed (, P) # (0, 0).
Thus, for any fixed point T € Q with (v(Z), Dv(Z)) # (0, 0), which exists because
by assumption v # 0, we have

tlim Poo(t) = tlim g(tv(T), tDv(T)) = oo.

Since poo(0) =0 and peo(t) — 0o as ¢ — oo, by continuity and the intermediate
value theorem, there exists a number ¢, > 0 such that po(to) = 1, that is

Hg(toov’tooD“)HLoo(Q) =1

If |g(v, Dv)||p () = 1, then o = 1, as a result of the strict monotonicity of peo.
Now let us fix p € (n/a, 0o0) and define the continuous function

pp(t) = ][g(tv,tDv)p dc", t>=0.
Q

Since ¢(0, 0) = 0, it follows that p,(0) = 0 and that
1
20 = gy |
L) S w200y

By Morrey’s theorem and our assumptions, we have that v € C1(Q;RY)\
{0}, therefore L"™({(v, Dv) # (0, 0)}) > 0. Consider the family of functions
{g(tv, tDv)P};~0, defined on {(v, Dv) # (0, 0)} C Q. By the monotonicity of s —
g(sn, sP) on (0, oo) for (n, P) # (0, 0), for s < t we have

g(sv, sDv)P < g(tv, tDv)P, on {(v, Dv) # (0, 0)}.

g(tv, tDv)P dL™.

Since g(tv, tDv)P — oo pointwise on {(v, Dv) # (0, 0)} as t — oo, by the monotone
convergence theorem, we infer that

/ g(tv, tDv)P dL" — oo,
{(v,Dv)#(0,0)}

as t — 0o. As a consequence, p,(t) — oo as t — oo. Since p,(0) =0, by the
intermediate value theorem there exists ¢, > 0 such that p,(t,) = 1, namely

t,v,t,Dv =1.
||g(p P

)HLP(Q)

For the sake of contradiction, suppose that ¢, / t, as p — oo. In this case, there
exists a subsequence (t,,)7° C (n/a, oo) and tg € [0, too) U (tso, 00] such that ¢, —
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to as j — oo. Further, (t,, )7 can assumed to be either monotonically increasing

or decreasing. We first prove that ¢, is finite. If £y = oo, then the sequence (t,,)5°
can be selected to be monotonically increasing. Therefore, by arguing as before,
g(tp,v, tp;Dv) /00 as j — oo, pointwise on {(v, Dv) # (0, 0)}, and the monotone
convergence theorem provides the contradiction

J—00 J—00

L= lim  g(tp,v,t,,Dv)P7 dL" :][ lim g(tp,v,t,, Dv)P7 dL™ = oo.
Q

Consequently, we have that o € [0, too) U (too, 00). Since (tp,v, t, Dv) —
(tov, toDv) uniformly on Q as j — oo, we calculate

1= ||g(tpjv’tijv)||L”J(Q)

= ||g(tov,toDv)||ij Q) +0(1)j—00
= ||g(t0’U,t0D1})HLOC(Q) +0(1)j—>oo
= poo(to) + 0(1)j-cc.

By passing to the limit as j — oo, we obtain a contradiction if ¢, # tg, because
Poo 18 a strictly increasing function and po(tec) = 1. In conclusion, t, — to as
P — 0. O

Utilizing the above result we can now show existence for the approximating
minimization problem for p < co.

LEMMA 2.2. For any p > n/«, the minimization problem (1.10) has a solution u, €
2,ap N
WP (Q;RY).

Proof of lemma 2.2. Let us fix p € (n/a, oo) and vy € Wa'™(Q; RY) where vy # 0.
By application of lemma 2.1, there exists ¢, > 0 such that ||g(t,vo, t,Dvo)| rr) = 1
implying that ¢,vg is indeed an element of the admissible class of (1.10). Hence, we
deduce that the admissible class is non empty. Further, by assumption (1.3)(b), f
is (Morrey) 2-quasiconvex. We now confirm that f? is also (Morrey) 2-quasiconvex
function, as a consequence of Jensen’s inequality: for any fixed X € RY xn* and any
o€ WOZ’OO(Q;RN), we have

P
fP(X) < (][ f(X +D?p) dﬁ”) < ][f(X +D?p)PdL™.
Q Q
By assumption by assumption (1.3)(d), we have for some new C5(p), Cs(p) > 0 that

FX)P < Cs(p)| X + Cs(p),

for any X € RY*"* Moreover, by [33, Theorem 3.6] we have that the functional
v || f(D?v)]| 1 (q) is weakly lower semi-continuous on W2°P(Q; RY) and therefore

the same is true over the closed subspace W *”(; RN). Let (u;)$° be a minimizing
sequence for (1.10). As f >0, it is clear that infiey || f(D?u;)| s () = 0. Since the
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admissible class is non-empty, the infimum is finite. Additionally, by (1.3)(d), we
have the bound

Hlfo(D ;)| e (o) < ||f( (tpvo )HLP(Q)
< HC5|tPD2”0|a + CGHLoo(Q)

< Cs(t)*[D*vo|| F0 () + Cis
< 0.
Now we show that the functional is coercive in W *”(€;RY), arguing separately

for either case of boundary conditions. By assumption (1.3)(d) and the Poincaré
inequality, for any u € WP (Q; RY) (satisfying |u| = [Du| = 0 on 82), we have

(Ll +capac) > ol fip2ract) > Cllulio
Q Q

for a new constant Cj = Cy4(p) > 0. Hence, for any u € Wé’ap(Q; RY),
1F(D*W)[Lr(@) = Ci(llullwz.ar))” = Ca. (2.1)
The above estimate is also true when u € Wé’o‘p (;RY), but since in this case we

have only |u| =0 on 91, it requires an additional justification. By the Poincaré-
Wirtinger inequality involving averages, for any u € Wé’ap (©;RY) we have

where C' = C(a, p, 2) > 0 is a constant. Since |u| = 0 on 99, by the Gauss-Green

theorem we have
/ Dudf™ = / v@ndH" 1t =0,
Q o0

where H"~! denotes the (n — 1)-dimensional Hausdorff measure. In conclusion,

< C|ID%u|| Lor (o),
Lo ()

Du —][Du dacn
Q

HDUHL“P(Q) < CHDQ“HL‘*P(Q)a

for any u € Wiy (Q; RY). The above estimate together with the standard Poincaré
inequality applied to w itself allow to infer that (2.1) holds for any u € Wé’o‘p (;RN)
in both cases of boundary conditions. Returning to our minimizing sequence, by
standard compactness results, exists u, € Wé’ap (4 RY) such that u; — u, in
Wé’ap (RN, as i — oo along a subsequence of indices. Additionally, by the Mor-
rey estimate we have that u; — wu, in C1(Q; RY) as i — oo, along perhaps a further
subsequence. Since u — ||g(u, Du)||z» (o) is weakly continuous on Wé’ap(Q; RN), the
admissible class is weakly closed in W2P(€2;RY) and hence we may pass to the
limit in the constraint. By weak lower semicontinuity of the functional, it follows
that a minimizer u, which satisfies (1.10) does indeed exist. O
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Now we describe the necessary conditions (Euler-Lagrange equations) that
approximating minimizer u, must satisfy. These equations will involve a Lagrange
multiplier, emerging from the constraint ||g(-, D(-))||z») = 1.

LEMMA 2.3. For any p > n/a, let u, be the minimizer of (1.10) procured by lemma
2.2. Then, there exists A\, € R such that the pair (up, \p) satisfies the following
PDE system

][f(D%p)P—laf(D%,,) :D2pdLn
Q
= )\p]{lg(up,Dup)pf1 (&,g(up,Dup) ¢+ 0pg(up, Duy) : DQS) dcr,

for all test maps ¢ € Wé’ap(Q;RN).

In particular, it follows that in both cases u,, is a weak solution in W2er(Q; RY)
to

D : (f(D%u,)P 10 (Duy) )

= N\ | 9(up, Duy,)P~10,9(up, Duyy) — div (g(up,Dup)p_lapg(up,Dup)ﬂ7
(2.2)
where we have used the notation D? : F' = Z?j:l D}, Fij, when F € C?(Q; R™ "),
which is equivalent to the double divergence (applied once column-wise and once
row-wise). Note that in the case of hinged boundary data, we have an additional
natural boundary condition arising (since Du is free on 992), we we will not make

an particular use of this extra information in the sequel, therefore we refrain from
discussing it explicitly.

Proof of lemma 2.3. The result follows by standard results on Lagrange multipliers
in Banach spaces (see e.g. [32, p. 278]), by utilizing assumption (1.3)(d), which
guarantees that the functional is Gateaux differentiable. ]

Now we establish some further results regarding the family of eigenvalues.

LEMMA  2.4. Consider the family of pairs of eigenvectors-eigenvalues
{(up, A\p)}p>ny/a, given by lemma 2.3. Then, for any p > n/a, there exists A, >0
such that

Ap = (Ap)" > 0.
Further, by setting
Ly = Hf(D2up)HLP(Q)’

L\ 7 Cy\ ?
0 — L, <A, <= L.
<(cs> p S (C) v

we have the bounds
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Proof of lemma 2.4. We begin by showing that L, > 0, namely the infimum over
the admissible class of the p-approximating minimization problem is strictly posi-
tive, owing to the constraint and our assumptions (1.3)-(1.4). Indeed, there is only
one map u € W *?(€;RN) for which | f(D?w)|| 1o (0) = 0, namely uo = 0, but this
is not an element of the admissible class since ||g(uo, Dug)||zr(q) = 0. Now consider
the Euler-Lagrange equations in lemma 2.3 and select ¢ := u,, to obtain

][f )P f(D?uy) : D?u, dL™
= )\p][g(up,Dup)’F1 (ang(up,Dup) -up + Opg(up, Duy) Dup) dacn.
Q

As f, g > 0 we can manipulate the respective assumptions (1.3)(c) and (1.4)(c) to
produce the following bounds:

(0%, ac < ][f P19 f(D?uy) : D2uydL”
02][ F(D2u,)P dL™,
Cq ]é 9(up, Dup)? L™ < ]{2 9(up, Duy)P (&;g(upa Dup) - up+
+ Opglup, Duy) : Duy ) dL”
< Gy ]{2 gy, Du,)P L™

The above two estimates, combined with the Euler-Lagrange equations, imply that
1

Ap > 0. Hence, we may therefore define A, := (\,)» > 0. We will now obtain the

upper and lower bounds. We determine the lower bound as follows:

CU(L,)P = O ][ F(D2u,)P dc”
< ][fp 1 6f(D Up) :D2up dcn
= )\p]{zg(up,Dup)p_l (ang(up, Du,) - ¢ + dpg(uy, Duy) : Dup) dacr
< ApCs.
Hence,

=

C\ 7
(C’;) L, < ()‘p) =Ap.

The upper bound is determined analogously, by reversing the direction of the
inequalities. Combining both bounds, we obtain the desired estimate. O
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PROPOSITION 2.5. There exists (oo, Aoo) € W™ (Q;RN) x (0, 00) such that,
along a sequence (p;)° of exponents, we have

Up — Uoo, in C*(Q;RY),
D?u, — D?uy, in Lq(Q;RéVX"Q), for all g € (1,00),
A, — Ay, in [0, 00),

as p; — o0o. Additionally, us, solves the minimization problem (1.1) and A is
given by (1.6). Finally Ao satisfies the uniform bounds (1.7).

Proof of proposition 2.5. Fix p > n/a, ¢ < p and a map vy € Wé’oo(Q;RN) \ {0}.
Then, by lemma 2.1 there exists (,)pe(n/a,00] € (0, 00) such that t, — to as
p — oo and satisfying ||g(t,vo, t,Dvo)| ey = 1 for all p € (n/a, oo]. By Hélder’s
inequality and minimality, we have the following estimate

1F@* o) o0y < /D) oo
Hf(tpD2v0)HLP(Q)
Hf(tPDQUO)HLOO(Q)

K +[f(tD*v0) | L g

NINN

A

oo,

for some K > 0. By (1.3)(d), we have the bound f9(X) > Cy(q)|X|* — C3(q) for
some constants C3(q), C4(q) > 0 and all X € ]Révxnz. By the previous bound, we
conclude that

sup ||D2Up||Laq(Q) < C(q) < o0,

qzp
for some ¢g-dependent constant. By arguing as in the proof of lemma 2.2 through the
use of Poincaré inequalities, we can conclude in both cases of boundary conditions
with the bound

sup [|up||w2.aaq) < C(g) < oo,

q2p
for a new ¢g-dependent constant C’(¢q) > 0. Standard compactness in Sobolev spaces
and a diagonal sequence argument imply the existence of a mapping

uw € () WEP(RY)

n/a<p<oo

and a subsequence (p;)7° such that the desired modes of convergence hold true as

p; — oo along this subsequence of indices. Fix a map v € Wé’oo(Q; RY) satisfying
the required constraint, namely [|g(v, Dv)| p () = 1. In view of lemma 2.1, there
exists (tp)pe(n/a,00) € (0, 00) satisfying that ¢, — 1 as p — oo, and additionally
llg(tpv, t,DV)| 1r() =1 for all p > n/a. By Hélder’s inequality, the definition of
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L, and minimality, we have
||f(D2“P)HLq(Q) S Hf(D2up)||LP(Q) =L, < ||f(tpD2v)HLP(Q)’

for any such v. By the weak lower semi-continuity of the functional on
W5 *(Q;RY), we may let p; — oo to obtain

£ (Do)l o < Timinf Z,
J

< limsup L,

pj—00

N

limsup || f(tp, D*0)|| 1o ()

pj—00

1 (D?0)]| L= (o) -

Now we may let ¢ — oo in the above bound, hence producing

pj—00

||f(D2uoo)HLw(Q) < liminf L, < limsup L, < || f(D*0)||p~(q)-
pj—00

for all mappings v € W™ (Q;RY) satisfying the constraint [g(v, Dv)|pee () = 1.
If we additionally show that in fact u., satisfies the constraint in (1.1), then the
above estimate shows both that it is the desired minimizers (by choosing v := ),
and also that the sequence (L,,)7® converges to the infimum. Now we show that
this is indeed the case. In view of assumption (1.3)(d), the previous estimate implies
also that D%us, € L= (;RY X”2), which together with Poincaré inequalities (as in
the proof of lemma 2.2) shows that in fact us € Wé’oo(Q; RY). By the continuity

of the function g and the fact that u, — us in C1(;RY), we have

1= ||g(“vaup)||LP(Q)
[9(too, Duco) || e () + [19(up, Dup)ll Lo @) — 19(too, Duco) || Lr(a)

= Jlg(ttoos Dttoe) o) + O (19t D) = glttoe, Detoc) [ 12 )

— [|9(too, Dtioo) || L () »
as p; — oo. Consequently, u., satisfies the constraint, and therefore lies in the

admissible class of (1.1). Since v was arbitrary in the energy bound, we conclude
that us in fact solves (1.1). let us now define

Ao = Hf(D2u00)||L°°(Q)'

We now show that Ao, > 0. Indeed, by our assumptions (1.3)—(1.4), there is only one
map in W2 (Q;RY) satisfying || f(D?*uo)|| (o) = 0 and |ug| = 0 on 9, namely
the trivial map ug =0, but ug is not contained in the admissible class of (1.1)
because ||g(uo, Dug)|| (o) = 0. We now show that A, — A as p; — co. By our
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earlier energy estimate, we have L, — A as p; — 0o. By lemma 2.4, we have

1 1
Ci\7” Ca\ 7
0< lim (=) L, < lim A, < lim (=2) L,
lel’noo (Cs) P le—r’noo P lel’noo <C7> P
and therefore A, — A« as p; — oo. To complete the proof we must deduce
the claimed bounds for A... We first establish the lower bound. By utilizing the
Poincaré and Poincaré-Wirtinger inequalities (recall the proof of lemma 2.2) and
that ¢(0, 0) = 0, we estimate

1= Hg(“wD“oo)HLoo(Q)

N

diam(2) HD(g(uooa Duc)) HLOO(Q)

N

diam(Q) (H@ng(uoo, Dtoo ) Dtioo ||L°°(Q) + H@pg(uoc, Duoo)DzuOo HLOQ(Q))

N

diam(€) (HangHLoo((ux,Duoo)(ﬁ)) [Dttos || o (@)
JF||3P9HLoc((uom])uoo)(ﬁ))||D2Uoo||1'ﬁc(ﬂ)>
< 1Dt yliamn(€2) (C (00, D)1, e . oy 0

+ ||8P9\|Loo((uoo,Duoo)(ﬁ))’

where C(co, 2) > 0 is the maximum of the Poincaré and the Poincaré-Wirtinger
inequality constants on Q for p = oo (with the former being equal to diam(f2)). As
g >0 and ||g(uoo, Duso)|| () = 1, we conclude that 0 < g(uee, Dus) < 1 on Q.
Hence (oo, Duoe)(2) C{0< g <1} ={g < 1}. Thus

1< ”DQUOOHLOO(Q)diam(Q)(C(OOvQ)HBWQHLm({ggl}) + ||3P9||Loe({g<1})>

1
Rearranging assumption (1.3)(d), we may write |X| < C, * (f(X) 4+ Cs)a, for any
X eRY xn? Combining this inequality with the previous bound, we deduce

Cf < (Hf(Dzuoo)HLm(Q) + Cs)gdiam(ﬂ)(C(OO,Q)||3n9HLoo({g<1})

+ ||8Pg||L°°({g<1}))7

which leads directly to the claimed lower bound for the eigenvalue.

Now we establish the upper bound for A,,. Since € is by assumption a bounded
domain with C? boundary, by standard results (see e.g. [16, Sec. 14.6]), the distance
function

dg = dist(-,00) : R" — R,

which is in Wli)’coo (R™), is also C? on an inner tubular neighbourhood of 99, namely
there exists g9 € (0, 1) such that

dq € C%W), QOF = {dQ < E} N Q.
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Let us also for convenience symbolize Q. := {dq > ¢} N Q. Let us also fix k € {1, 2},
a unit vector e € RV and ¢ € C?(R") with ¢ = 0 on Q.,. Then, for any ¢y > 0, the
map &y = to(dn)*Ce satisfies

€ € C2(QRYN).

Since dg = 0 on 99 and also D(d3) = 0 on 91, it follows that &, € WI?I’OO(Q; RM)
if k=1, whilst & € Wé’oo(ﬂ; RY) if k = 2. We will consider both cases simultane-
ously and declare this as

€0 € W (Q;RY).
By lemma 2.1, we can adjust the constant ty > 0 to arrange

Hg(foano)HLoo(Q) =1

Hence, & is in the admissible class of the minimization problem (1.1). By minimality
and assumption (1.3), we have the estimate

A < C’5(t0)a(HD%d’ég‘)HLw(QED)) + G (2.3)
By a direct computation, we have

{DQ(dé%C) = k[(k — 1)Ddg ® Ddq + df~'D2dg ¢ + 5D 2.0

+kdg, ! (Ddg ® D¢ + D¢ ® Ddg),

on Q. For any z € Q% let us set Pg(x) := Projyq(z). Then, by [16, Sec. 14.6, L.
14.17], it follows that | — Po(z)| = dq(z), and we also have the next estimates

ldallLoe (050) < €o,

|[Ddallp~@) <1, b (2.5)
DZd < fl_l %

H QHLOO(QEO) Zz:l 1— (K}i ] PQ)dQ Lo (Q%0) ’

where {k1, ..., kn—1} are the principal curvatures of 9Q. By (2.3)-(2.5) we have the
estimate

A < C5(2t)” <D2C||L°°(Q) + D¢ o< (o)

(0%
Kk;oP
e + Cs. (2.6)
1-— (/ﬁ' o Pﬂ)dﬂ L5 (Q50)
It remains to select an appropriate function ¢ in order to estimate its derivatives
in terms of the geometry of 2, and to obtain an estimate for ¢y. For the former, we

n—1
+ <l () (1 +>
1=1

https://doi.org/10.1017/prm.2024.27 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.27
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argue as follows. Let (17°)5-0 be the family of standard mollifying kernels, as e.g. in
[27]. We select

C:=n" * (xgm\0),

which is the regularization of the characteristic of the complement of Q. It follows
that this function satisfies the initial requirements, and additionally

D¢ =77 % (Dxrm) = 1% * (H" 'LoaDdaq),
D2¢  =Dn® % (Dxgm\o) = ;(Dn)ao * (H"1LgoDdg),
0

by standard properties of convolutions and the differentiation of BV functions (see
e.g. [15] and [14, Ch. 5, p. 198]). Then, by Young’s inequality for convolutions, we
have the estimates

c
D%l @y < g H"H(09),
o
D¢l Lo mny < H"H(09), (2.7)
1<l zoe () <1,

for some universal constant C' > 0. Now we work towards an estimate for tg
appearing in (2.3). By assumption (1.4), we have that the sublevel sets {g < t}
are compact in RY x R¥*" for any ¢ > 0. Let us define R(t) as the smallest
radius of the N-dimensional ball, for which {g <t} is contained into the cylinder
BY ) (0) x RN*m:

R(t) = inf {R >0: {g <t} CBY(0)x RNX”}. (2.8)

Then, we define a strictly increasing function p : [0, c0) — [0, 00) by setting

p(t) := t+ sup R(s). (2.9)

0<s<t
Then, p satisfies p(0) = 0, and also that
{g <t} C B, (0) x RV*™,
for any ¢ > 0. Further, by construction,
{1, P) e RY < RY*" . p7L(Jy)) < £} =BY,(0) x RY*™.
The above imply

p X)) < g(n, P), (n,P) € RN x RN,
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Next, since df,¢ vanishes on 9Q U Q. and g(0, 0) = 0, we have

1 = [|g(&, D&) = (0)
= %ggg(ﬁo,Dio)

WV

sup p~ ' (&)
Q¢fo

WV

sup p~ " (toldéCl).
Q=0

Since dg = £0/4 on 90°°/4 and p~! is strictly increasing, the above implies

1

WV

-1 k
m told
max p (toldg,C)

_ 1 60)’“ )
= tol —
6151213)}/(4[) (0(4 <
-1 io)k ) 2.1
P (t0(4 a?z?ﬂc ’ (2.10)

Now we estimate maxygqe,/4 ¢ from below. Fix = € 90c0/4 Then, since the standard
mollifying kernel 7 is a radial function (see e.g. [27]), there exists a universal ¢ > 0
such that 7 > ¢ on By /5(0). Therefore,

() = — an\m<|y — x|>dy

n
€0 JBe,(x) €0

1 _
= (Iy m|>dy
€0 B, 2(x)\Q2 €o

> =~ £"(Be, 2(2)\ Q),
€0

WV

for any x € 900/, Finally, since 0 satisfies the exterior sphere condition, the set
B.,/2(x) \ Q contains a ball B,.(Z) centred at some point Z, where the maximum
possible radius 7 is given by

_ . {Eo . 1 }
r=min4g—, mmn —_—— .
8 Ti=1,...,n—1 H"%‘”CU(BQ)

Therefore, if w(n) is the volume of the unit ball in R™,

c

L7 (Bey 2(2) \ Q)

¢(x)

WV

WV
3
3
&
2
\H/\

https://doi.org/10.1017/prm.2024.27 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.27

18 E. Clark and N. Katzourakis

= cw(n) min (@)" min v
ey 8/ Ti=l.n-1(]

|'€i||00(ag))n

ymin{ i —
= cw(n)min{ —, min ——
923n i=1,...,n—1 (SOHKI'L‘”CO(BQ))H

for any x € 9Q°°/%. Hence, we have established the lower bound

1 1
max ( > cw(n)min —, min @ —— ». 2.11
oo " {an i=teon=1 (g il oo on) } =1

By (2.10) and (2.11), we infer (since 9 < 1 and k € {1, 2}) that

k n—Fk
tO g 4 p(1)€0 1
cw(n) . { 1 ] 1 }
min 530 min —_—
2 iten =1 (e lmilloogom)

32p(1) (s N
< n ] . '
< oy (2 m_ (Isslleoom)”) .12

By (2.6), (2.7), and (2.12), we conclude with the following upper bound for the
eigenvalue:

16p(1) :
cw(n)

C . n—1
.{1+ <1+ ggH)H Lo+ >

i=1

A < Co+ Cs [ (2 + i_lmuaig_l(Ilmllcwam)")]

Kk; o Po
1-— (/Qi o PQ)dQ

«
. (2.13)
Lo (Q%0)

The claimed estimate (1.8) follows from (2.13) above, by recalling that in view of
(2.8)—(2.9), we have

p(1) =14 sup R(t),
0<t<1

and also that the last term of (2.13) is finite at least when
1

2.:11}1“{13571||/%||00(89) '

go <

The result ensues. O

LEMMA 2.6. For any p > (n/a) + 2, there exist measures v, € M(Q) and My, €
M(Q; RiVX”Q) such that, along perhaps a further sequence (p;)7° of exponents, we
have

Vp = Voo, in M(Q),
M, =My, in M(; Révxnz),

as j — oo, where the approximating measures v,, My, are given by (1.12).
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Proof of lemma 2.6. We begin by noting that since g >0 and ||g(u,, Duy)|| (o) =1,
in view of (1.12) we have the bound

p—1

HVP”(Q) = Vp(ﬁ) :]{lg(up,Dup)p_l dL™ < (]{Zg(upﬂDup)p d‘C”) =1

By the sequential weak® compactness of the space of Radon measures we can con-
clude that v, == Vs, in M(Q) up to the passage to a further subsequence. Now we
establish appropriate total variation bounds for the measure M,. Since f > 0, by
the bounds of lemma 2.4 and assumption (1.3), we estimate (for sufficiently large p)

_ D2u,)\? "
1@ = £ (HT) Jormuy)lac
<Ap1][f plef( )"+C6)dz:n
— G5 F(D2u,)P P AL + F(D%u,)P~taL.
AEY g v Ap 1 Q
Hence,
M I@) < (][f ,,w) + e S (f oy ac)
( p 148 (Lp)pfl
= (5 + Cs —
Ag ! AB!
L\
- (2) @m+o
4

/N

<gj> (05(A +1)° +C6>.

The above bound allows to conclude that M, —**Myin M(Q;RY ><”2), along
perhaps a further subsequence of indices (p;)$° as j — oc. O

To conclude the proof of theorem 1.1 we must ensure the PDE system (1.5) is
indeed satisfied by the quadruple (s, Aoo, Moo, Voo )-

LEMMA 2.7. If My, € M($; RiVX"Q) and ve, € M(Q) are the measures obtained in
lemma 2.6, then the pair (uso, Aoo) satisfies (1.5) for all ¢ € C3(;RY).

Proof of lemma 2.7. Fix a test function ¢ € C3(Q;RY) and p > n/a + 2 by (1.12)
we may rewrite the PDE system in (1.11) as follows

/QD2¢ cdM, = A, /Q (Ong(up, Duy,) - ¢ + 0pg(up, Duy) : D(b) dvp,

Recall that, by proposition 2.5, we have A, — A and also (uy, Du,) —
(Uoo, Dusg) uniformly on 2, as p; — oco. By assumption (1.4)(a), we have that
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Ong(up, Duy) — 059(Uoo, Dune) and also dpg(uy, Duy) — Opg(ties, Duss), both
uniformly on 2, as p; — oo. The result ensues by invoking lemma 2.6, in conjunction
with weak*-strong continuity of the duality pairing M(£2) x C'(£2) — R. O
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