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The generation of plausible crystal structures is often the first step in pre-
dicting the structure and properties of a material from its chemical composi-
tion. However, most current methods for crystal structure prediction are
computationally expensive, slowing the pace of innovation. Seeding structure
prediction algorithms with quality generated candidates can overcome a
major bottleneck. Here, we introduce CrystaLLM, a methodology for the ver-
satile generation of crystal structures, based on the autoregressive large lan-
guage modeling (LLM) of the Crystallographic Information File (CIF) format.
Trained on millions of CIF files, CrystaLLM focuses on modeling crystal
structures through text. CrystaLLM can produce plausible crystal structures
for a wide range of inorganic compounds unseen in training, as demonstrated
by ab initio simulations. Our approach challenges conventional representa-
tions of crystals, and demonstrates the potential of LLMs for learning effective

models of crystal chemistry, which will lead to accelerated discovery and
innovation in materials science.

The in silico search for new materials often involves the exploration of
a space of compositions in a chemical system, and the investigation of
various predicted structural phases in that space (see refs. 1,2, and > for
examples). To elucidate the structures of unknown materials, a Crystal
Structure Prediction (CSP) approach is often employed, which
attempts to derive the ground state crystal structure for a given che-
mical composition under specific physical conditions*. CSP approa-
ches are relatively computationally expensive, typically involving ab
initio techniques®. They often begin with the generation of candidate
structures. Examples are the AIRSS®” and USPEX® approaches. Initi-
alizing the search space with sensible structures increases the like-
lihood of success, and decreases the amount of computation required.
Itis therefore expected that effective crystal structure generation tools
would help accelerate the prediction of structures using CSP methods.

Increasingly, techniques from machine learning (ML) and data
science are being used to solve problems in materials science’™. In
particular, generative modeling approaches based on autoencoder
architectures and generative adversarial networks' have been used to
generate crystal structures” . Indeed, generative modeling has
become commonplace, an outcome catalyzed by astounding
advancements in the computational generation of images, audio and

natural language over the last several years'®. The Large Language
Model (LLM) approach, backed by the Transformer architecture”, is
behind state-of-the-art performance on natural language processing
tasks. This approach begins with a generative pre-training step, which
is autoregressive in nature, involving the unsupervised task of pre-
dicting the next token given a sequence of preceding tokens?. When
such models are scaled to billions of parameters, their effectiveness
becomes quite remarkable, as tools such as ChatGPT* demonstrate.

LLMs have recently been used in the context of materials
science’ %, These attempts have been focused on using existing and
publicly accessible LLMs, training, and tuning LLMs for natural lan-
guage generation tasks involving chemical subject matter, or training
LLMs on a corpus of expanded chemical compositions for the pur-
poses of generating unseen compositions. However, the potential of
training LLMs on textual representations of crystal structures has not
been considered. A sole exception is a recent pre-print by Flam-
Shepherd and Aspuru-Guzik, where the idea of generating the struc-
tures of molecules, materials, and protein binding sites with LLMs has
been preliminarily explored®.

Here, we report an LLM specifically designed for crystal genera-
tion. This model is distinctively trained on textual representations of
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inorganic crystal structures, specifically in the Crystallographic Infor-
mation File (CIF) format®, instead of relying solely on natural language
corpora, or chemical compositions alone. The motivation for this
approach originates from two conjectures: The first states that a
sequence of symbols (i.e., tokens) is an appropriate representation
modality for many predictive tasks, including those involving chemical
structure. The idea of representing any domain with a sequence of
tokens may at first seem counter-intuitive. However, consider that
even images can be represented this way, and be subject to the auto-
regressive language modeling of pixels®. This challenges the notion
that domain-specific representations, such as graphs for chemical
structure®, are necessary for superior performance. The second con-
jecture states that LLMs learn more than simply surface statistics and
the conditional probability distribution of tokens. Indeed, auto-
regressive pre-training involving next-token prediction may result in
learning an effective world model: an internalized causal model of the
processes generating the target phenomena. A model which simply
learns spurious correlations in the data is less desirable, as it may have
greater difficulty in generalizing beyond the training distribution.
Recent studies have demonstrated that LLMs trained on sequences of
board game play (e.g., chess and Othello) do indeed track the state of
the board, and probes of the internal activations of the model reveal
the existence of representations of various abstract concepts specific
to the domain®**, We therefore asked whether a model trained to
predict the 3-dimensional coordinates of atoms, digit-by-digit, could
learn the chemistry implicit in crystal structures, and generate unseen
structures, borrowing from its model of the world of atoms.

As such, we herein describe the CrystaLLM model, a tool for
crystal structure generation trained on an extensive corpus of CIF files
representing the structures of millions of inorganic solid-state mate-
rials. Unlike small molecule organic compounds, the generative mod-
eling of inorganic crystals presents unique challenges: the structures
are complex and periodic, are not readily described by simple graphs,
are imbued with different forms of symmetry, and can be constructed
from more than 100 different elements. Even so, the model is capable
of reliably generating correct CIF syntax and physically plausible
crystal structures for many classes of inorganic compounds. More-
over, we demonstrate how sampling from the model can be improved
using the Monte Carlo Tree Search (MCTS) algorithm*>* together with
a pre-trained graph-based neural network predictor of formation
energy.

Results

CrystaLLM is a Transformer-based, decoder-only language model of
the CIF file format, trained autoregressively on a corpus of millions of
CIF files (Fig. 1a). Rather than training on structural representations
derived from the CIF files, the model is directly trained on the stan-
dardized and tokenized text contents of the CIF files. During training,
the model is given a sequence of tokens from the corpus of CIF files,
and is tasked with predicting the tokens which follow each of the given
tokens. Once the model is trained, it can be used to generate new CIF
files, conditioned on some starting sequence of tokens. Generating a
CIF file involves repeatedly sampling tokens from the model, con-
ditioning on the accumulated generated content, until a terminating
condition is reached (Fig. 1b).

To assess the ability of the model to generate structures, a test set
of ~10,000 randomly chosen CIF files is withheld from a training set of
~2.2 million CIF files, and the model is tasked with generating CIF files
beginning from prompts constructed from the test set. Moreover, we
assemble what we call a challenge set, which consists of 70 structures,
58 of which were obtained from the recent literature, and were not in
the training set. The remaining 12 structures are from the training set,
and are included as representatives of different structural classes. They
serve to assess the model’s ability to recover what it has seen in
training, and as a means of comparing the model’s generations of seen

and unseen structures. (Supplementary Table 1 contains the full list of
the challenge set compounds, and their sources.) The permutative
nature of the dataset, with many structures having been derived by
substituting atoms into pre-defined templates, results in a test set with
the potential for some structures to closely resemble those of the
training set. The challenge set provides a source of structures that are
guaranteed to have been produced through a different process.
Moreover, the challenge set constitutes a manageable set of com-
pounds that reflects a variety of solid-state structural classes, allowing
for a fine-grained picture of the model’s capabilities. The test set, on
the other hand, is better suited for a bulk assessment, and originates
from the same distribution as the training set.

The following terminology is used in the remainder of this article:
A formula, reduced formula, or reduced composition, refers to the
empirical formula, or formula unit, which is the simplest, whole-
number ratio of atoms in the compound. An example of a formula is
Ba,MnCr. A cell composition is a chemical formula referring to the
total number of atoms of each type in the unit cell of a crystal. It
represents the chemical formula of the compound as it would appear
in the crystallographic unit cell, which might contain Z formula units.
An example of a cell composition is BagMn;Crs, with a Z of 3.

Training and learned representations

Training consists of iteratively sampling sequences of tokens, of fixed
length, and adjusting the model’s parameters so that it becomes pro-
gressively better at predicting which token should follow a preceding
sequence. (See the “Methods”, and Supplementary Note 2, for more
information on the model architecture and training.) Since it has been
observed that LLM performance improves as the number of model
parameters is increased”, we train a small model, consisting of 25
million parameters, and a large model, consisting of 200 million
parameters.

To monitor the progress of training, we withhold a validation set
that constitutes 10% of the set held-out for training. Over the course of
training, the model continues to improve in terms of its total cross-
entropy loss on the validation set, even after 90,000 iterations (see
Supplementary Fig. 2). We note, however, that improvements appear
to become smaller with more training time.

As a consequence of the model’s architecture, each token in a
processed sequence is mapped to a distinct learned vector repre-
sentation using an embedding table, whose parameters are adjusted
during training. The result is that, through autoregressive training,
distributed representations are learned for each symbol in the voca-
bulary. The vocabulary consists of symbols for atoms, space groups,
and numeric digits. (See Supplementary Note 1 for a detailed
description of the vocabulary and the tokenization procedure.) The
training process appears to result in sensible representations of these
various symbols. Plots of dimensionally-reduced atom and space
group vectors demonstrate a logical structure, where similar entities
cluster together, indicating that intrinsic properties and relationships
are captured. (See Supplementary Fig. 3 for plots of the learned atom
vectors, and Supplementary Fig. 4 for a plot of the learned space group
vectors.) Moreover, examination of the learned numeric digit vectors
reveals that numerical relationships are captured in the representa-
tions, as measurements of cosine and Euclidean distances between the
learned digit vectors demonstrate a logical spatial relationship. (See
Supplementary Fig. 5.) While not explored further in this work, we note
that distributed representations of chemical entities, such as atoms,
are useful for the prediction of materials properties®*’.

Generalizing to unseen structures

To evaluate the ability of the model to generate an unseen structure,
the model is prompted with the structure’s cell composition, and
allowed to generate up to 3000 tokens. The prompt includes the first
line of the CIF file, which consists of the data block header, containing
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Fig. 1| Large language modeling of CIF files. a Core concepts in training the
model: A CIF file (left) is converted into a sequence of symbols, through tokeni-
zation. The sequence is processed by the model, which produces a list of prob-
ability distributions over the vocabulary, for each corresponding symbol in the
input. The resulting predicted probability distributions are evaluated against the
target distributions (which contain the entire probability mass on the correct
subsequent token), using the cross-entropy loss metric. The target tokens are the
input tokens shifted one spot to the left, as the objective is to predict the next token
given a sequence of preceding tokens. The tokens are categorized as CIF tags
(blue), atoms (green), numeric digits (gold), and punctuation (red). Output tokens

(not actually sampled during training) represent the tokens assigned the highest
probability by the model. Underlined tokens represent predicted distributions
assigning a relatively low probability to the correct next token. b Generation of a
CIF file: First, a prompt is constructed by concatenating the symbol data_ with the
desired cell composition, which is then tokenized and processed by the model.
Next, a token is sampled from the predicted distribution for the upcoming token in
the sequence. Finally, the sampled token is added to the accumulating contents of
the CIF file. This procedure continues iteratively until a predefined terminating
condition is met (e.g., two consecutive newline tokens are sampled).

the cell composition of the structure. Subsequently, the model is
prompted with both the structure’s cell composition and space group
and again allowed to generate up to 3000 tokens. The prompt includes
the first several lines of the pre-processed CIF file, up to the line con-
taining the specification of the space group. Prompting the model with
both the cell composition and space group allows us to assess how
reliant the model is on the space group. This process is repeated for all
CIF files of the held-out test set (10,286 in total).

The generated CIF files are then assessed for correctness and
quality. Any syntactically incorrect CIF files are declared invalid. Syn-
tactically correct CIF files are subjected to further analysis, and are
considered to be valid only if specific criteria are met, such as being
consistent in terms of generated structure and declared space group,
and having reasonable bond lengths (see Supplementary Note 3 for
further details on the validation of generated CIF files). The results of
evaluating the generation of the CIF files of the test set using the small
model are presented in Table 1.

The CIF files generated by prompting the model with the cell
composition and space group were compared to the corresponding
CIF files of the test set using a structure matching algorithm. We found
that in 88.1% of cases there was at least one match with a test set
structure within three generation attempts. The fraction of matching
on first attempt and the fraction of matching on all three attempts, are
presented in Supplementary Table 2, where we also provide the cor-
responding matching fractions for formulas that were not seen in
training with any Z.

We further examined how closely the generated cell parameters
resembled the actual cell parameters, for the cases where there was a
structural match. We took the first matching structure for samples that
had at least one generated structure matching the test set structure,
and measured the R* and mean absolute error (MAE) for the true versus
generated cell lengths, the true versus generated (i.e., printed) volume,
and the implied (from generated cell parameters) versus generated
volume. The results are presented in Fig. 2.
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Table 1| Performance of the small model on the held-out
test set

No Space Group With Space Group
Space Group Consistent 98.8% 99.1%
Atom Site Multiplicity 99.4% 99.4%
Consistent
Bond Length Reason- 0.988+0.069 0.988 +0.067
ableness Score
Bond Lengths Reasonable  94.6% 94.6%
Valid 93.8% 94.0%
Longest Valid Generated 145 970
Length
Average Valid Generated  331.9+42.6 339.0+41.4

Length

The percentages represent the fraction of test set compounds which meet the corresponding
criteria. For example, the first row represents the percentage of test set compounds where the
declared space group in the generated CIF file is consistent with the generated structure. Valid
generated length refers to the length of a valid generated CIF file in terms of the number of
tokens.

To further assess the model’s ability to generalize to unseen
structures, we prompted the model with the cell compositions of the
challenge set. The challenge set contains 58 structures not seen in
training. These structures were all manually sourced from the recent
literature, and represent experimentally characterized materials. Cru-
cially, these compounds originate through a process different from the
process which generated the training set (namely, a high-throughput
DFT analysis of hypothetical materials). They also represent a variety of
different structural classes, such as intermetallics, silicates, sulfides
and selenides, borates, phosphates, carbonates, and complex mixed-
anion compounds.

Both the small and large models were prompted with the cell
compositions of the challenge set, both with and without the space
group. A total of 100 attempts were made to generate a structure from
the given cell composition (and optionally space group). We record the
successful generation rate, representing the fraction of compounds
where at least one valid CIF file was generated in the 100 attempts, and
the true match rate, representing the fraction of compounds where
there was a structural match between a valid generated structure and
the true structure reported in the literature. The results are presented
in Table 2 and Supplementary Tables 3-6.

The results in Table 2 indicate that inclusion of the space group in
the prompt increases the likelihood of generating a valid structure, and
of generating a match with the true structure. The large model appears
to be superior to the small model in all categories. While the models
can recover the reported structure more often when the structure was
seen in training, it is noteworthy that they are able to generate unseen
structures which match the reported structure in up to 40% of
the cases.

Comparison with other ML-based approaches

Generative models of materials based on advanced ML techniques
have been developed recently, some concurrently with this work. Due
to the unavailability of source code and complete benchmarking
results for all these emerging models, conducting an in-depth com-
parison between the approaches remains challenging. Nevertheless,
here we present a comparison with other ML-based approaches.
CDVAE", DIiffCSP*°, DiffCSP++*", and UniMat** are examples of
diffusion-based approaches, whereas Gruver et al.** introduced a fine-
tuned version of the LLaMA-2 model** for crystal structure generation.
DiffCSP focuses on CSP through an equivariant diffusion process,
while CDVAE uses a diffusion-based approach within a variational
autoencoder framework for generating periodic materials. DiffCSP++
augments the equivariant diffusion process by introducing support for
space-group constrained generation, through the incorporation of

R2:0.994
MAE: 0.125 A

40

354

301

25 A

Generated Cell Length (A)

5 10 15 20 25 30 35 40
True Cell Length (A)

b 3000
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e Implied: R2: 1.000, MAE: 0.336 A3
2500 A

2000 A

1500

1000 A

Generated Cell Volume (A3)

500 -

1000 1500 2000 2500

True or Implied Cell Volume (R3)

500 3000
Fig. 2 | Generated vs. true or implied cell parameters. a The generated cell
lengths for matching structures of the test set vs. the true cell lengths, when space
group is included. b The generated cell volumes for matching structures of the test
set vs. either the true cell volumes, or the cell volumes implied from the generated
cell parameters, when space group is included. Source data are provided as a
Source Data file.

prior knowledge of Wyckoff positions which constrain the diffusion
process. UniMat re-purposes the 3D U-Net architecture** for
unconditional generation, and generation conditioned on composi-
tion, and is trained on a large dataset of millions of structures.

We compare CrystaLLM to these models in both conditional and
unconditional generation settings. In the (CSP, or conditional) gen-
eration setting, we compare CrystaLLM to these models on four
benchmarks: Perov-5%, Carbon-24*’, MP-20°°, and MPTS-52°". The
Perov-5 dataset consists of 18,928 perovskites, Carbon-24 consists of
10,153 carbon allotropes, MP-20 consists of 45,231 stable inorganic
materials of various classes, while MPTS-52 consists of 40,476 various
inorganic materials. MPTS-52 is by far the most complex dataset, with
up to 52 atoms in the unit cells of the constituent structures. In the
unconditional generation setting, CrystaLLM is compared to these
models on the Perov-5, Carbon-24, and MP-20 benchmarks.

The benchmark datasets have each been split into training, vali-
dation and test sets. All models are trained solely on the training set.
For the CSP task, the models are used to generate 20 structures for
each of the cell compositions of the test set. The models are evaluated
in terms of the match rate, which is the fraction of compositions for
which the true structure was generated within n attempts (we tried
n=1and 20), and the average root mean squared error (RMSE) of the
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Table 2 | Results of the small and large models on the chal-
lenge set, both with a space group (s.g.) and without

Small model Large model

no s.g. with s.g. no s.g. with s.g.
Successful Genera- 85.7% 88.6% 87.1% 91.4%
tion Rate
Match Rate (Seen) 50.0% 50.0% 83.3% 83.3%
Match Rate (Unseen) 25.9% 34.5% 37.9% 4.4%

The first row represents the percentage of cases where the model was able to generate a valid
structure within 100 attempts. The second row represents the percentage of cases where a
generated structure matched the true structure, for the compounds seen in training. The last row
represents the percentage of cases where a generated structure matched the true structure, for
unseen compounds only.

closest candidate for each test set structure. For the unconditional
generation task, the models are given 10,000 generation attempts, and
are evaluated in terms of metrics such as validity rate and coverage. In
the validity tests, following the metrics presented in other studies, a
structure is defined as valid if no interatomic distances are below 0.5 A,
and a composition is defined as valid if a charge neutral combination of
the constituent atoms in the generated stoichiometry is possible.
Coverage measures how closely the generated materials match the
distribution of ground truth materials. Coverage precision is a measure
of how many generated materials are a close match to materials from
the ground truth set and is an indication of the quality of the generated
materials. Being a close match is defined by distance between the
materials with a pre-defined metric (see Supplementary Note 5 for
more details). Coverage recall measures how many of the ground truth
materials are matched by at least one generated material, and is a
measure of how diverse the generated materials are. For example, a
generating process could have high COV-P by simply generating the
same valid material each time, but COV-R would be low in this instance.
The AM(S/C)D measures are similar to coverage statistics, but measure
the minimum distance between a generated material and the materials
in the ground truth set; these measures are also separated across
structural matching (AMSD) and composition matching (AMCD).
While the COV-R and COV-P metrics have become established for the
purposes of evaluating generative models of materials, we note that
they must be interpreted cautiously, as they have several drawbacks.
Primarily, the metrics do not fully account for the novelty of the gen-
erated materials, focusing instead on similarity, which depends on
arbitrarily set thresholds. This can favor models which are overfit to
the dataset, and not necessarily generalizable. Moreover, the metrics
can be sensitive to the relative sizes of the test and generated sets,
which can lead to potentially misleading scores, since a larger gener-
ated set together with a smaller test set might result in artificially high
COV-R values, while a smaller generated set could inflate COV-P values.

The results for the CSP task are presented in Table 3, including the
performance of three different versions of CrystaLLM. Versions a and b
are trained on the benchmark data only and differ in the size of the
model used. Version c is trained on the full 2.3M training points minus
the test set of MPTS-52 and is included to demonstrate how the results
improve with the size of training data, but is not directly comparable to
other models due to the different training data sets.

In the CSP task, CrystaLLM outperforms DiffCSP on three out of
four benchmarks in terms of RMSE for both n=20 and n=1, and in
terms of match rate when constrained to only a single generation
attempt. This is achieved even in the most challenging of the bench-
marks, MPTS-52, which contains structures with larger unit cells and
more atoms.

For the unconditional generation task, the results for both the
small and large CrystaLLM models, with different sampling tempera-
tures are given in Supplementary Table 7. CrystaLLM is competitive
with the other models on this task, and also achieves strong results in

terms of compositional validity on MP-20 and Perov-5, and obtains the
highest COV-P value on Carbon-24. Furthermore, the best AMSD
metrics are achieved by CrystaLLM on all three benchmarks.

CrystaLLM has important advantages when compared to the
other models. In comparison to the diffusion-based methods, Crys-
taLLM supports both conditional and unconditional generation
seamlessly, without requiring any architectural adjustments. More (or
less) information is simply provided in the prompt, accordingly.
Conversely, DiffCSP requires architectural augmentation to support
unconditional generation, and CDVAE also requires an architectural
adjustment to support conditional generation. Another important
advantage is that CrystaLLM natively supports space-group con-
strained generation, with no changes or external processing required.
Conversely, DiffCSP++ was devised as a separate approach dedicated
to handling space-group constrained generation. It relies on a template
retrieval and substitution method when the space group is unknown.
In contrast, CrystaLLM generates a suitable space group automatically,
with no extra work required. The DiffCSP++ template-based approach
consequently makes it difficult to propose structures when no suitable
template exists, which is a limitation that CrystaLLM does not have.
CDVAE and UniMat do not support space group-constrained
generation.

In comparison to the fine-tuned LLaMA-2 model, the largest
CrystaLLM model has 200 million parameters, whereas the smallest
fine-tuned LLaMA-2 model has 7 billion parameters, a difference of
more than an order of magnitude in the number of parameters. The
smaller size of CrystaLLM makes it easier to deploy for inference tasks,
and much more accessible for training and fine-tuning. Additionally,
while the fine-tuned LLaMA-2 model supports the constructs of natural
language in its prompts, the flexibility of its inputs suggests that
CrystaLLM may be conditioned on other properties of the structure as
well, including those not traditionally included in the CIF format.

Finally, as a neural language model, CrystaLLM can leverage the
established practice of fine-tuning, allowing the pre-trained model to
be adapted for the prediction of materials properties. There is far less
precedent in fine-tuning models based on diffusion and variational
autoencoder architectures for tasks involving regression or
classification.

The differences above between CrystaLLM and previous methods
indicate that CrystaLLM has the unique advantage of being a more
flexible, general-purpose model, capable of supporting a number of
different generation use cases, without requiring a switch between
architectural variants, or different models entirely, and which can be
deployed in a cost-effective manner. CrystaLLM can alternate seam-
lessly between unconditional generation (when neither composition
nor space group is known), generation conditioned on composition
only, and generation conditioned on both composition and space
group. Notably, it supports the conditioning of structure generation
on specific symmetry space groups without being restricted, in prin-
ciple, to the availability of known templates, a capability unique to
CrystaLLM.

Examples of generated structures

To further examine the model’s ability to generalize to unseen sce-
narios, we prompted the model with various formulas, and examined
its output. The results are presented in Fig. 3.

An example of the model generalizing to a formula that had been
seen in training, but with different space groups, is presented in Fig. 3a.
The formula, Ba,MnCr, was in the held-out test set, with the R-3m
space group. That combination of formula and space group had not
been seen in training. The model generated a structure matching the
one in the test set on the first attempt, when the space group was
provided.

The model also demonstrated the ability to generate plausible
structures for formulas not seen in training with any Z. An example is
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Table 3 | Benchmark CSP results, with n representing the number of samples generated for each structure of the benchmark
test set.” The CDVAE and DiffCSP results are taken from ref. 40

Perov-5 Carbon-24 MP-20 MPTS-52
Model n Match Rate RMSE Match Rate RMSE Match Rate RMSE Match Rate RMSE
CDVAE 1 45.31 0.1138 17.09 0.2969 33.90 0.1045 5.34 0.2106
CDVAE 20 88.51 0.0464 88.37 0.2286 66.95 0.1026 20.79 0.2085
DiffCSP 1 52.02 0.0760 17.54 0.2759 51.49 0.0631 12.19 0.1786
DiffCSP 20 98.60 0.0128 88.47 0.2192 77.93 0.0492 34.02 0.1749
CrystalLLM ® 1 47.95 0.0966 2113 0.1687 55.85 0.0437 17.47 0.1m3
CrystalLLM ® 20 98.26 0.0236 83.60 0.1523 7514 0.0395 32.98 0.1197
CrystaLLM ° 1 46.10 0.0953 20.25 0.1761 58.70 0.0408 19.21 0.1110
CrystaLLM ® 20 97.60 0.0249 85.17 0.1514 73.97 0.0349 33.75 0.1059
CrystalLLM ° 1 - - - - 28.30 0.0850
CrystalLLM © 20 - - - - - 47.45 0.0780

"Numbers in bold indicate the best n=20 result, while numbers in italics represents the best n=1result, amongst the models trained only on the benchmark training sets.

“Results for the small model architecture trained only on the benchmark training set.
PResults for the large model architecture trained only on the benchmark training sets.

°Results for the small model architecture trained on the original 2.3M-structure dataset without the structures of the MPTS-52 validation or test sets.

the quaternary compound CsCuTePt. This compound was not in the
training set, but was in the held-out test set (with Z=4). The model
generated a structure matching the one in the test set, in the F43m
space group, on the third attempt when the space group was provided.
The generated structure is presented in Fig. 3b.

Figure 3c shows the generated structure of YbMngSng*, an
example of the model generalizing to structural motifs with elements
not seen in training. This formula was not seen in training for any Z, and
was not in the held-out test set. However, ZrMngSng was seen in
training, in the P6/mmm space group. The model generated a struc-
ture in the same space group on the first attempt, without the space
group being provided. The generated structure matched the
ZrMngSng structure, with Yb substituted for Zr, and with cell para-
meters and atomic coordinates adjusted accordingly. This demon-
strates the model performing a structure prediction by analogy
procedure, as commonly used by materials scientists for discovery>*,
despite never having been provided with the procedure to do this.

We now discuss the performance of the model in the context of
four widely known classes crystal structures: rutiles, spinels, elpaso-
lites, and pyrochlores.

Rutiles are a class of binary compounds that adopt a tetragonal
unit cell, in the P4,/mnm space group (Z=2), as is seen in TiO,, from
which this class of materials adopts its name. The general formula for
rutile oxides is MO,, where M is a metallic species in the +4 oxidation
state. Rutile fluorides are also known, where the metal is in the +2
oxidation state. The model’s training dataset consisted of essentially all
of the rutiles one might expect to be able to find in nature. Therefore,
to test the model’s ability to generate unseen rutiles, we requested the
generation of theoretically possible, but unlikely compounds, such as
AuO,. With gold in a highly unlikely +4 oxidation state, AuO, is not
expected to be formed under most conditions. However, the model
was able to imagine what the structure of such a compound might be
(when the space group is provided). While TiO, has cell parameters
a=4.594A, c=2959A, the generated rutile gold variant has
a=4.838A c=3.429 A, reflecting the increased volume occupied by
the larger gold atoms (Fig. 3d).

Spinels are a group of ternary compounds with general formula
AB,X4. The most common combination of elements in spinels is one
where A is a cation in the +2 oxidation state, B is a cation in the +3
oxidation state, and X, normally a chalcogen, is a -2 anion. Spinels
form cubic close-packed structures, with eight tetrahedral, and four
octahedral sites, normally in the Fd3 m space group. To explore the
model’s ability to generate unseen spinels, we selected the thiospinel
Sm,BS,, which was absent from both the training and test sets. The

model was able to generate the expected spinel structure when the cell
composition and space group were provided (Fig. 3e). During training,
the model encountered a number of different oxy-, thio-, and sele-
nospinels, and this likely contributed to its ability to generate this
compound.

Elpasolites are quaternary compounds with the general formula
ABC,X¢. The A and C species are typically alkali metal cations in the +1
oxidation state, B is usually a transition metal cation in the +3 oxidation
state, and X is a halogen anion. The elpasolites are often referred to as
“double perovskites”, since their structures are related to perovskites
by the doubling of their unit cell dimensions, and the replacement of
the divalent cation with alternating monovalent and trivalent cations.
Elpasolites crystallize in the Fm3 m space group, and are the most
common quaternary crystal system reported in the Inorganic Crystal
Structure Database™. We wondered if the CrystaLLM model could
generate elpasolites not seen during training. We selected an elpasolite
from the held-out test, that was not seen in training: the fluoride
KRb,TiFs. The model was able to generate the correct elpasolite
structure when the cell composition and space group was pro-
vided (Fig. 3f).

Finally, we considered pyrochlores, for which the general formula
is A,B,05. Here A, a trivalent cation, and B, a tetravalent cation, are
either rare-earths or transition metals (other oxidation states, e.g.,
combining monovalent and pentavalent cations, are also possible, but
we focus here on the trivalent/tetravalent pyrochlores). Pyrochlores
crystallize in the Fd3 m space group (Z=8). There are many combi-
nations of A and B that are possible for this structure, by using lan-
thanide ions, actinide ions, and Y(III) for the A species, and various
transition metal ions, as well as Ti(IV), Zr(IV), and Hf(IV) for the B
species. We investigated whether CrystaLLM could generate valid
pyrochlore structures for any unseen combinations, and whether it
could estimate reasonable cell parameters in line with the trends
observed for the pyrochlore series, as the cell parameters are expected
to be correlated with the ionic radii of the A and B cations.

We created a space of pyrochlores consisting of 144 compounds
by producing different combinations of A and B species. Of these, 54
were seen in training. We selected 10 compounds from among the 90
not seen in training, and attempted 3 generations with the model, for
each. The cell composition and space group were included in the
prompt. All generations resulted in valid pyrochlore structures. We
subsequently performed DFT relaxation calculations on the first gen-
erated structure for each of the 10 compounds. One case, Ce,V,05,
posed challenges in calculation under the generalized gradient
approximation and was thus excluded from further analysis. The DFT-
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A

Fig. 3 | The generated structures of various inorganic compounds. a Ba,MnCr.
Cell parameters: a, b: 3.778 A, ¢: 27.503 A, a, B: 90.0r, y: 120.0". Color scheme: Ba:
green, Mn: purple, Cr: blue. b CsCuTePt. Cell parameters: a, b, c: 7.153A, a, B, y:
90.0°. Color scheme: Cs: purple, Cu: blue, Te: gold, Pt: white. ¢ YbMn¢Sn. Cell
parameters: a, b: 5.488 A, c: 8.832 A, a, B: 90.0", y:120.0". ZrMn¢Sn, in the training
set, possessed the same structure, but with the following cell parameters: a, b:
5364 A, c:8.933A, a, B: 90.0", y: 120.0". Color scheme: Yb: green, Mn: magenta, Sn:

. try
P e\
VoV

A

gray. d AuQ,. Cell parameters: a, b: 4.838 A 34294, a, B, v: 90.0". Color scheme:
Au: yellow, O: red. e Sm,BS,. Cell parameters: a, b, c: 10.884 A, a, B, y: 90.0". Color
scheme: Sm: light green, B: green, S: yellow. f KRb,TiF¢. Cell parameters: a, b, c:
8.688A, a, B, y: 90.0". Color scheme: K: white, Rb: purple, Ti: brown, F: green.

g LiTa,NiSes (a: 3.517 A, b: 13.362 A, c: 15.156 A), which resembles the recently
reported structure in®’, h Ta,NiSes, seen in training. i NaSn,CuSes, seen in training.
Source data are provided as CIF files in the Source Data file.
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Fig. 4 | Pyrochlore case study results. Generated vs. DFT-derived values of the cell
parameter a for selected pyrochlores not in the training dataset. The error bars

represent the + standard deviation of the value of the a cell parameter for the three
generation attempts (all of which resulted in the pyrochlore structure), while the y-

DFT a (4)

coordinate of the points represents the mean value of the cell parameter across the
three attempts. The inset represents the structure of the generated pyrochlore
Pr,Mn,05, with cell parameters a, b, c: 10.34 A, a, B, y: 90.0". Color scheme: Pr=
yellow, Mn = purple, O =red. Source data are provided as a Source Data file.

derived value of the cell parameter for each of the remaining com-
pounds is plotted against the mean value generated by CrystaLLM in
Fig. 4. A good agreement exists between the DFT-derived and gener-
ated cell lengths, with an R? of 0.62 and MAE of 0.08 A being exhibited.
This example illustrates CrystaLLM’s capability to accurately estimate
cell parameters of compounds not seen in training with any structure.

While the model seems capable of generating structures for many
different classes of inorganic crystals, it does nonetheless have diffi-
culty in certain cases. All of the cases appear to involve systems that are
rare, and under-represented in the training dataset, or missing from
the training set altogether. More precisely, we define a template as a
unique combination of the reduced composition ratio, the space
group, and Z. For example, the combination of the reduced compo-
sition ratio 1:1:3:4, space group Cmcm, and Z=4, represents a unique
template. There are 25,921 unique templates in the dataset.

The problematic cases in the challenge set are largely represented
by unseen templates, and templates for which there are few examples.
For example, validation rates were low for Mg;Pt,Ge,, the structure of
which was reported recently to exist in the P6;smc space group (Z=2)*.
In this case, there were only 38 examples of 7:4:4 systems in the
training dataset, none contained Mg or Pt, and none were in the P6;mc
space group.

The small version of the model also seems to struggle with gen-
erating phosphates, sulfates, carbonates, and organic-inorganic hybrid
structures. Examples include carbonate hydroxide minerals, such as
C0,CO3(0OH),*” and Cu,CO3(OH), (malachite). While present in the
dataset, they belong to a group of analogous structures for which there
are only a handful of examples. While both the small and large versions
of the model can generate Mn,(PO,);, they generally fail to generate a
valid structure for Cas(PO4)3(OH) (hydroxyapatite). A common theme
is the appearance of multiple oxyanions, which can give rise to more
complex arrangements of atoms, for which the model may not have
seen enough examples. In contrast, the model can generate com-
pounds of the perovskite class reliably. However, over 5000 examples
of the ABX3 (X=0, F) system in the Pm3 m space group were seen in

training. Finally, structures represented by CIF files with a relatively
large number of tokens also pose challenges for the models. Future
versions of the model will consider strategies for addressing these
occurrences of class imbalance.

Heuristic search for low-energy structures
The examples generated in the previous section were produced
through top-k random sampling of the model. Essentially, as the CIF
file is generated, each subsequent token is sampled randomly from
amongst the top k tokens, according to their probabilities. (See Sup-
plementary Note 2.4 for a detailed description of top-k sampling.)
However, random sampling may not necessarily result in the most
desirable sequence, and consequently, there are more strategic
approaches for constructing sequences that incorporate the prob-
ability distributions produced by the model, along with additional
heuristics. An example of a heuristic search is Beam Search®®, which is
commonly used in natural language contexts to improve the quality of
generated sequences. Another popular heuristic search algorithm is
MCTS, which has traditionally been used in the context of planning and
games, but has recently also been used to increase the quality of
generated natural language, through incorporation with LLMs®.
Here, we employ the MCTS algorithm, informed by CrystalLLM, to
generate a collection of sequences, which is expected to progressively
yield sequences of increasingly higher quality as the search advances.
In this implementation, each node in the tree represents a cumulative
context of tokens. The algorithm operates through a series of steps,
including selection, expansion, rollout, evaluation, and back-
propagation. The search tree is constructed iteratively, as the search
proceeds (Fig. 5). In the selection phase, nodes are chosen using the
PUCT algorithm (Predictor-Upper Confidence bound applied to
Trees)**®!, which is a principled means of obtaining a balance between
exploring untried nodes, and exploiting promising nodes. The
expansion involves adding child nodes based on predicted prob-
abilities. During the rollout step, the CrystaLLM model is prompted
with token sequences until a terminating condition is met, leading to
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Fig. 5| The Monte Carlo Tree Search decoding procedure. CIF files are generated
as a tree is iteratively constructed, with each iteration guiding the generation of
subsequent structures towards more desirable parameters (e.g., lower formation
energy per atom). The nodes in the tree represent the cumulative contents of a CIF
file at various points. a The Selection step involves descending the tree by choosing
the most promising node at each level, using a variant of the PUCT algorithm.

b During Expansion, an unexplored child node is randomly selected and added to
the tree. If a node has only one highly probable child (represented as empty nodes),

the child node bypasses the Rollout step. ¢ The Rollout step involves prompting the
model with the contents of the selected node, and sampling from the model until a
terminal condition is met, so as to obtain a complete CIF file and an estimate of the
value of a node. d The generated structure is validated and scored, incorporating
the prediction of the structure’s formation energy per atom, as given by a pre-
trained neural network. e Finally, the score is backpropagated through the selected
nodes, which store the accumulated results of each iteration. The resulting gen-
erated CIF file, if valid, is returned.

the evaluation of the completed sequence. Evaluation is conducted
using the ALIGNN (Atomistic Line Graph Neural Network) model of
formation energy per atom®, while the backpropagation step accu-
mulates outcomes in the tree nodes, scoring each based on the quality
of the generated structure. (See Supplementary Note 4 for a more
detailed description of the algorithm.) The objective is to produce
structures with lower formation energy per atom, E;, and the incor-
poration of the ALIGNN model allows for a fast and sufficiently accu-
rate estimate of the target property.

When compared to random sampling, MCTS improves the overall
validity rate for acompound, and also generally produces lower energy
structures. To evaluate the MCTS decoding procedure, we took the 20
most problematic cases of the challenge set where the validity rate was
greater than O, and performed 1000 generation attempts using ran-
dom top-k sampling, and 1000 iterations of MCTS. The results are
presented in Table 4.

When no space group is provided in the prompt, the validity rate
improves in 95% of the cases, and the minimum £ attained improves in
85% of cases. (See Supplementary Tables 8 and 9 for more detailed
results.) In some cases, the validity rate increases as the search pro-
ceeds when using MCTS (see Supplementary Fig. 6).

To further test the performance of MCTS, we applied the proce-
dure to 102 novel compounds generated unconditionally by Crys-
taLLM (see the following section “Generating Novel Materials” for
details of the unconditional generation). On these materials, we per-
formed MCTS decoding with 1000 iterations each, using ALIGNN to
provide feedback. After MCTS, the ALIGNN energy decreased (or
remained constant) for all the compositions, with an average energy
change of -153 + 15 meV/atom (compared to the structures generated
without MCTS). The mean £y, for the 102 structures, as calculated by
DFT, improved by —-56 + 15 meV/atom on average, to 0.34 eV/atom; 22
of those structures were within 0.1eV/atom of the hull. Further
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demonstration of the statistical significance of ALIGNN-based MCTS,
and details of the results, are provided in Supplementary Note 6.
Future improvements of the energy estimators will increase the
effectiveness of the MCTS approach.

Generating novel materials

The discovery of novel and stable compounds can expand the cap-
abilities of materials science. To understand the potential of using
CrystaLLM for generating novel and feasible crystalline solids, we used
the large model trained on the 2.3M-structure dataset to generate
1000 structures unconditionally, and assessed the stability of the novel
compounds among them, using DFT. Of the 1000 generated CIF files,
900 were valid, and 891 represented structurally distinct (i.e., unique)
materials. There were 102 structures which were novel when compared
to the training dataset (established using structure matching). We
performed DFT relaxation of the 102 novel structures, and compared
the energy of each structure with the convex hull as given by the
Materials Project. The mean FEy,; of the 102 novel structures was

Table 4 | Results of MCTS decoding for the 20 most proble-
matic cases of the challenge set

No Space Group With Space Group
Validity Rate Improvement 95.0% 60.0%
Minimum E; Improvement 85.0% 65.0%
Mean E; Improvement 70.0% 65.0%

The percentages represent the fraction of cases with the corresponding improvement after
using MCTS decoding, when compared to random sampling. The first row represents the per-
centage of cases where the validity rate improved. The second row represents the percentage of
cases where the minimum E¢ obtained was improved. The third row represents the percentage of
cases wWhere the mean E; was improved.

Fig. 6 | Unconditionally generated novel structures. The four lowest-energy
novel structures generated unconditionally by the large model. a Ba;Na,Ir,0,; Z=2,
Cm. Cell parameters: a: 10.308 A, b: 5.995 A, ¢:10.269 A, a, y: 90.0r, : 108.5". Color
scheme: Ba: green, Na: orange, Ir: white, O: red. Ey, = 0.00 eV/atom. b NaAlIS, Z=16,
P2,. Cell parameters: a: 10.233, b: 10.277 A, ¢: 13.703 A, a, y: 90.0°, 5: 100.9". Color
scheme: Na: orange, Al: gray, S: yellow. £y, = 0.00 eV/atom. ¢ Ca,YSbOg Z =2, P2/c.

0.40 eV/atom. Notably, we found that 20 structures were within 0.1eV/
atom of the hull, including 3 with £, =0.00 eV/atom. Fig. 6 depicts
the 4 most stable of the novel compounds. (See Supplementary
Table 10 for comprehensive results for the 20 most stable
compounds.)

Inspection of the novel materials revealed that the model gener-
ated a mix of ionic, semi-ionic, and metallic compounds. The com-
pounds with lower energy above the hull tended to be ionic and sem-
jonic in nature. This could be due to the model being better at learning
the coordination rules of ionic and semi-ionic compounds, as they are
typically more defined and stricter than those for metallic compounds.
For example, in most oxides, Fe will be coordinated tetrahedrally or
octahedrally to oxygen. For metallic compounds, it is less defined, a
priori, what the coordination patterns should be. In fact, many metallic
compounds only stabilize due to disorder thanks to the configura-
tional entropy (effects which are not considered here). The model has,
therefore, a better chance of generating a stable ionic material than a
stable ordered metallic compound.

Beyond element substitution
Although CrystaLLM appears to be very effective at finding appro-
priate template systems for a given cell composition, and making the
necessary adjustments of cell parameters to substitute different
atoms, it appears capable of going further, synthesizing information
from different template systems. An example is the selenide
LiTa,NiSes, which is obtained by lithium intercalation into Ta,NiSes®.
The compound LiTa,NiSes was not present in the training set;
however, the layered material Ta,NiSes was (Fig. 3g, h). As LiTa,NiSes
was included in the challenge set, we performed 100 generation
attempts with the model. While the model was not able to recover the
lowest energy structure reported, it did produce structures with close

Cell parameters: a: 5.651 A, b: 5.853 A, ¢: 9.850 A, a, y: 90.0, 5:125.0". Color scheme:
Ca:blue, Y: purple, Sb: bronze, O: red. £y, = 0.00 eV/atom. d Li,FeSiO, Z=4, Pna2;.
Cell parameters: a: 10.988 A, b: 6.278 A, ¢: 5.026 A, a, B, y: 90.0". Color Scheme: Si:
light blue, Fe: dark gray, Li: light green, O: red. Ey,;=0.02 eV/atom. Source data are
provided as CIF files in the Source Data file.
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resemblance to low-energy polymorphs. Upon closer examination of
the dataset, we found that NaSn,CuSes was present (Fig. 3i), which
likely provided some precedent for the intercalation of atoms between
layered structures. It thus appears that the model is capable of inte-
grating information from different template systems to form new
structural predictions.

The CrystaLLM.com web application

To allow for easy and open access to the CrystaLLM model, we make it
available through a web application, published at https://crystallm.
com/. The application allows users to enter in a reduced formula, and
optionally a value for Z and the desired space group. The option to
select the model size is also provided. The request is sent to the model,
and the resulting structure (or the CIF contents, if the structure is
invalid) is presented to the user. By making the model easily accessible,
we hope to contribute a potentially useful tool to the materials
structure research community. We also hope to receive feedback from
users that may help improve future versions of the model.

Discussion

Here, we have shown that LLMs of the CIF format are able to generate
inorganic crystal structures for a variety of known classes. Indeed, the
model is able to produce valid and sensible arrangements of atoms in
3-dimensional space by generating xyz coordinates digit-by-digit. The
model also seems to have captured the relationship between space
group symbols and the symmetries inherent in the structures it
generates.

We chose to build a language model of the CIF format (instead of a
simplified format, for example, which might include a minimal voca-
bulary) for several reasons. First, the CIF format is not particularly
verbose. The model learns the grammatical structure of the format
fairly quickly. We can thus avoid having to devise an intermediate
format that requires inter-conversion between more common formats,
which could also be error prone. Second, we believe that having the
model learn to generate the more redundant parts of the CIF format,
such as the cell volume, and Z, which are inferable from prior inputs,
helps the model to perform better overall.

A number of approaches for crystal structure generation have
been reported®*’. These approaches generally require the existence
of pre-defined structural templates, and are followed by the proce-
dural or ML-assisted substitution of atoms and adjustment of cell
parameters, under the constraint of a specified space group. These
types of approaches can also be enhanced to increase the structural
diversity of generated materials, by allowing partial substitutions and
adjusting substitution probabilities®®. Conversely, CrystaLLM auto-
matically selects the templates which can be applied to a given com-
position, utilizing the implicit templates it has absorbed through
autoregressive training. Moreover, the model can automatically adjust
cell parameters to accommodate the atoms in the unit cell. It can also
produce structures based on templates it has not explicitly encoun-
tered in training, borrowing from its internalized concepts of chemical
structure. In comparison with recently reported diffusion-based ML
methods for crystal generation (CDVAE™ and DiffCSP*°), not only does
CrystaLLM outperform them on established benchmarks in several
aspects, but it also offers additional advantages in terms of flexibility
(e.g., in using symmetry as input) and the potential for fine-tuning,.

While the CrystaLLM model can generate sensible structures, this
does not by itself make it suitable, as is, for CSP. Just as natural lan-
guage LLMs, such as GPT-3 and -4, are not suitable chatbots without
further fine-tuning and alignment, the CrystaLLM model will also need
to be fine-tuned for more advanced tasks. Fine-tuning involves an
additional and separate training step, where the model’s parameters
are adjusted in the context of a different task. This may also involve
altering the model’s output layer, such as to make it suitable for a
regression task. Models can be fine-tuned using a variety of techniques,

but supervised learning and reinforcement learning® are most com-
mon. One might use reinforcement learning, for example, when a task
is not clearly defined as a supervised learning problem. When fine-
tuning natural language LLMs for chatbot applications, it is common to
use Reinforcement Learning from Human Feedback (RLHF)*”". With
RLHF, the idea is to gather data from human annotators to be used to
train a reward model, which scores generated text according to its
desirability. The reward model is then used as part of a reinforcement
learning-based tuning of the LLM. In CSP, one would like to produce
ground-state structures (for some given physical conditions). One
could thus imagine an analogous procedure where CrystalLLM is fine-
tuned for the goal of generating low-energy structures, via feedback
from an external evaluator of the generated structure’s energy,
resulting in what we may call Reinforcement Learning from Thermo-
dynamic Feedback. This procedure would also require a reward model,
and such a model should ideally provide a timely estimate of a struc-
ture’s energy. This excludes time-consuming approaches such as DFT.
A viable approach could make use of a separate ML-based model of
formation energy, such as one based on ALIGNN. Indeed, neural net-
work potentials have been used to accelerate the prediction of crystal
structures, and the identification of potentially stable materials’>">.

There are several limitations with the current approach. First,
none of the structures of the dataset have site-occupancy disorder
(fractional site occupancies). Therefore, CrystaLLM cannot generate
disordered structures, and may not successfully generate structures
for combinations of cell composition and space group that imply a
disordered structure. An example is K,NaTiOFs, which is reported to
be an elpasolite, in the Fm3 m space group (Z=4), with F and O species
sharing the same crystal site’*. Another limitation is that the CIF files of
the dataset were not all created using the same level of theory. The
training set is derived from a combination of DFT sources using dif-
ferent settings, functionals, etc., which may make it difficult for the
model, in some instances, to learn a consistent relationship between
cell composition and detailed structure’™.

Nevertheless, we believe that CrystaLLM will be a useful tool for
crystal structure generation, which is quickly becoming a critical step
in largescale materials discovery®®’¢, and materials informatics. We
plan to explore fine-tuning the model for physical property prediction
tasks, such as the prediction of lattice thermal conductivity, where
experimental data is relatively scarce’””. The architecture of the model
allows it to be fine-tuned for either composition-based or structure-
based prediction tasks. This implies that CrystaLLM may be the basis
for a general-purpose materials informatics model, which can be used
for generative tasks, and fine-tuned for property prediction tasks that
require either composition or structure. If the model is able to transfer
what it has learned about the world of atoms to these various pre-
dictive problems, it may prove to be a quite flexible tool relevant to
many aspects of materials chemistry.

Methods

Dataset curation

The dataset was assembled by obtaining structures from the Materials
Project®®, the OQMD’®, and NOMAD”’, which were originally optimized
using density functional theory (DFT) simulations. Specifically, the
structures from the Materials Project were downloaded in April 2022,
and from NOMAD in April 2023. We use version 1.5 of the OQMD, which
was released in October 2021. In total, ~3.6 million structures were
obtained. This dataset consists of compounds containing anywhere
from 1 to 10 elements, with most consisting of 3 or 4 elements. The
elements up to and including atomic number 94 are present, with the
exception of polonium, astatine, radon, francium, and radium. The
dataset contains roughly 800,000 unique formulas, and 1.2 million
unique cell compositions. When paired with space groups, there are
2.3 million unique cell composition-space group pairs. (See Supple-
mentary Fig. 1.) To choose between duplicate structures containing the
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same cell composition and space group, the structure with the lowest
volume per formula unit was selected. The 2.3 million structures in this
dataset were converted to CIF files using the pymatgen library*°, and
were used for training. The CIF files were created with the pymatgen
option for symmetry finding tolerance set to 0.1 A. All floating point
numbers in the files were rounded to 4 decimal places. The dataset was
split randomly into train, validation, and test sets, such that the
training set consisted of 2,047,889 CIF files, the validation set 227,544
CIF files, and the test set 10,286 CIF files.

CIF syntax standardization and tokenization

The dataset of CIF files was standardized and tokenized prior to
training. The vocabulary consisted of CIF tags, space group symbols,
element symbols, numeric digits, and various punctuation symbols,
for a total of 371 symbols. After tokenization, the training set consisted
of 768 million tokens. See Supplementary Note 1 for further details.

Generative pre-training

The generative pre-training step requires a vocabulary, V, and an
ordered list of tokens ¢/ =(uy, ...,u,), with u; € V. We want to max-
imize the following likelihood:

LO;U)=" " log Pu|u; ¢, ..., u;1;6) 1
i

where c is the size of a context window, P is the conditional probability
distribution to be modeled, and 0 the parameters of a neural network.
We therefore minimize 7(0;U{)= — L, using stochastic gradient des-
cent to adjust the parameters. We use a multi-layer Transformer
decoder® for the neural network, as described in ref. 20. Our model
consists of 25 million parameters, with 8 layers, 8 attention heads, and
an embedding size of 512. We decay the learning rate from 102 to 10™*
over the course of training, and use a batch size of 32. For further
details, see Supplementary Note 2.

Evaluation of generated structures

A CIF file is said to be valid if: (1) the declared space group is consistent
with the generated structure, (2) the generated bond lengths are rea-
sonable, and (3) the declared atom site multiplicity is consistent with
the cell composition. To check if the generated structure is consistent
with the printed space group, we use the SpacegroupAnalyzer class
of the pymatgen library, which uses the spglib library®>. To check if
bond lengths are reasonable, we first use a Voronoi-based nearest-
neighbor algorithm in pymatgen to identify bonded atoms; then, we
establish expected bond lengths based on the electronegativity dif-
ference between the bonded atoms, and their ionic or covalent radii.
We classify a structure as having reasonable bond lengths if all the
detected bond lengths are within 30% of the corresponding expected
bond lengths. See Supplementary Note 3 for more details on how the
validity of a generated CIF file is established.

In some scenarios, we wish to determine whether a generated
structure matches a target structure, which typically represents a
ground-truth structure. To determine whether two structures are a
match, we use the pymatgen StructureMatcher class, which per-
forms a structural similarity assessment of two crystals. We use a
fractional length tolerance of 0.2, a site tolerance of 0.3 A, and an angle
tolerance of 5 degrees, which are the default values in pymatgen. Both
structures are reduced to primitive cells before matching, and are
scaled to equivalent volume.

Benchmark evaluations

To evaluate CrystaLLM on the Perov-5, Carbon-24, MP-20, and MPTS-
52 benchmarks, we consider two different scenarios: (1) the model is
trained only on the benchmark training sets, and (2) the model is
trained on the full 2.3 million-structure dataset minus the validation

and test set structures of the MPTS-52 dataset. For the first scenario,
both the small and large model architectures are used. We use the
same 60-20-20 train/validation/test splits used in the CDVAE study"
for the Perov-5, Carbon-24, and MP-20 datasets, and we use the same
27,380/5,000/8,096 train/validation/test split used in the DiffCSP
study for the MPTS-52 dataset. These models are trained for a fixed
number of iterations: the Perov-5 model is trained for 1750 iterations,
the Carbon-24 model is trained for 8000 iterations, the MP-20 model is
trained for 5000 iterations, and the MPTS-52 model is trained for 3500
iterations. For the second scenario, we train a model with the small
model architecture on the full 2.3 million-structure dataset minus the
structures of the MPTS-52 validation and test sets. The model is trained
for 100,000 iterations. We decay the learning rate from 107 to 10™*
over the course of training, and use a batch size of 32, for all models.
For both scenarios, we take the structures of the test set(s), and
prompt the models with only the cell compositions of these structures.
Models are given 20 attempts to generate a structure. We use top-k
sampling with k =10 and a temperature of 1.0 for all models and in both
scenarios.

To establish the match rate and RMSE, we use the same procedure
defined in the DiffCSP study. Specifically, we use the pymatgen
StructureMatcher class, with a fractional length tolerance of 0.3, a
site tolerance of 0.5 A, and an angle tolerance of 10 degrees, to
determine if a generation attempt matches the ground truth structure.
The RMSE, normalized by {/V /N (where V is the volume of the lattice
and N is the number of sites), is computed between the corresponding
ground truth structure and each matching generated structure. The
test set’s average RMSE is computed by taking the lowest RMSE for
each entry’s matching generated structure.

To evaluate CrystaLLM on the unconditional generation tasks, we
train a model on the training sets of each of the Perov-5, Carbon-24 and
MP-20 datasets, using both the small and large model architectures.
We use the same 60-20-20 train/validation/test splits used in the
CDVAE study™. These models are trained for a fixed number of itera-
tions: the Perov-5 model is trained for 5000 iterations, the Carbon-24
model is trained for 8000 iterations, and the MP-20 model is trained
for 5000 iterations. We decay the learning rate from 107 to 10™* over
the course of training, and use a batch size of 32, for all models. Models
are then given 10,000 generation attempts, starting from the prompt
‘data_’. Each generation attempt results in both a generated cell
composition and structure. We use top-k sampling with k=30 and
temperatures of 0.5 and 0.7 for all models.

To establish the unconditional generation metrics, we follow the
same procedure defined in the CDVAE study. Specifically, structural
fingerprints are created using the CrystalNNFingerprint class with
the “ops” preset, and compositional fingerprints are created using the
ElementProperty class with the “magpie” preset, both provided by
the matminer library®>. For the coverage metrics, we use the standard
cutoff values: for MP-20, we use a structure cutoff of 0.4 and a com-
position cutoff of 10; for Carbon-24 and Perov-5, we use a structure
cutoff of 0.2 and a composition cutoff of 4.

Monte Carlo tree search decoding

The MCTS search tree is constructed iteratively, as the search pro-
ceeds. We maintain a tree width of 5 and maximum tree depth of 1000.
The PUCT constant cpyc is set at 1.0. The expansion involves adding
child nodes based on predicted probabilities. When a node has a
probability of 0.99 or greater, it becomes the only child node, and
bypasses the rollout step. During the rollout step, the CrystaLLM
model is prompted with token sequences until a terminating condition
is met, up to a maximum of 1000 tokens. Evaluation is conducted using
the ALIGNN model of formation energy per atom. The ALIGNN model
is given the generated CIF file, and the predicted formation energy per
atom (in eV) is used to compute the reward. The backpropagation step
accumulates outcomes in the tree nodes, scoring each based on the
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quality of the generated structure, with a reward constant A of 2.0. For
all compounds, we perform 1000 search iterations. See Supplemen-
tary Note 4 for a more detailed description of the algorithm.

Uniqueness and novelty of generated materials

To assess the model’s ability to generate materials unseen in training,
the model is prompted with ‘data_"1000 times, each resulting in a CIF
file. We use top-k sampling with k=10 and a temperature of 1.0. (In
principle, the chosen temperature should affect the trade off between
novelty rate and how reasonable the generated structures are, so
temperature should be considered a parameter to be optimized in
future studies.) To establish uniqueness and novelty of the generated
structures, we use the pymatgen StructureMatcher class, with a
fractional length tolerance of 0.2, a site tolerance of 0.3 A, and an angle
tolerance of 5 degrees. A generated compound is considered unique if
it represents a structural type that appears only once amongst all
compounds generated during the experiment, under the specified
tolerances for lattice dimensions and atomic positions configured for
the StructureMatcher class. A generated compound is considered
novel if it is structurally distinct from all of the compounds in the
dataset used to train the model.

DFT calculations

For the pyrochlore case study, a small number of DFT calculations
were performed using VASP, following as closely as possible the set-
tings used in the OQMD project (where most of the pyrochlore
structures seen in training were taken from). For example, the
recommended PAW potential was used for each element: Zr _sv for
zirconium, Hf _pv for hafnium, Lu_3 for lutetium, Pr_3 for praseody-
mium, Ce_3 for cerium (for the remaining elements, the name of the
PAW potential simply matched the element’s symbol). The Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional®, in the
generalized-gradient approximation, was used in all calculations.
Hubbard (PBE+U) corrections were applied for transition metal ele-
ments with unfilled d levels (Ues=3.8€eV for Mn and 3.1eV for V).
Although the cell parameters reported here correspond to the con-
ventional cubic cell with 8 formula units, the DFT calculations were
performed using the primitive cell with two formula units, and sam-
pling of the reciprocal space corresponding to that primitive cell was
performed using a7 x 7 x 7 grid, as done for all pyrochlore calculations
in the OQMD project.

For the DFT calculation of the energy against hull of the uncon-
ditionally generated compounds, we also used the VASP code, fol-
lowing the Materials Project settings®, i.e., same functional (PBE), Ueg
parameters, PAW potentials, etc. to ensure compatibility with refer-
ence compounds in the hull. Structures generated with CrystaLLM
were relaxed to the nearest local minima within the generated unit cell,
without symmetry constraints on the atomic coordinates (we applied
small random displacements of less than 0.1A to the initial coordi-
nates). All the DFT calculations converged, electronically and ionically,
within the standard convergence thresholds in the Materials
Project setup.

Web application

The web application is made available at https://crystallm.com. The
user of the application is presented with a text field requiring a for-
mula to be entered. Optionally, they may provide the number of
formula units (2), the desired space group, and the size of the model.
Once they press the Generate button, a request is sent to a GPU
server which has the model in memory. The request is converted into
aprompt, and the generated contents are returned to the user.Ifno Z
is provided, we scan through Zvalues of 1, 2, 3, 4, 6, and 8, and return
the first valid structure generated by the model. We validate the
generated structure using the same procedure described previously,
checking that the generated structure is consistent in terms of the

printed space group, and other elements of the CIF file. If no valid
structure can be found, the user is presented with an informative
error message, including the option to view the generated content.
Requests typically take several seconds to process, but can take
longer if no Z is provided and the model has trouble generating a
valid structure for the attempted Z values. Generated structures are
displayed in a web browser-based 3D structure viewer provided by
the Crystal Toolkit framework, upon which the front-end of the web
application is built®®.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Source data are provided with this paper. All trained models, training
sets, and artifacts generated by the models have been deposited to
Zenodo, and the files are publicly accessible®” under the CC-BY 4.0
license. The structures used in the experiments described in this work
were obtained from the Materials Project (https://materialsproject.
org/), the OQMD, and NOMAD. All structures were made available by
those sources under the Creative Commons Attribution 4.0
License®®. Source data are provided with this paper.

Code availability

The code for training and using the CrystaLLM model is open source,
released under the MIT License. The code repository®’ is accessible
online at: https://github.com/lantunes/CrystalLLM.
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