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Abstract

Despite their diversity and importance as ecological indicators and ecosystem service pro-
viders, the macroecology of bats in South Asia is poorly understood, and until recently
studies on the ecological niches of these species have been rare. This study analyses the
ecogeographic predictors of habitat suitability in South Asian bats by conducting ensem-
ble ecological niche modelling using four algorithms (random forests, artificial neural
networks, multivariate adaptive regression splines, and maximum entropy) to define suit-
ability envelopes for 48 selected bat species, based on topographic, hydrographic, land-
use, land-cover, and other anthropogenic impact factors. Anthropogenic impact variables
showed high importance with Median Night-time Light being the biggest driver of habitat
suitability for most of the study species with generally lower suitability of brighter areas.
Projected suitable areas for individual species covered between 6.28% and 22.98% of the
study area. Regions such as the Thar desert of northwestern India were consistently identi-
fied to have low suitability. The Western Ghats in India, the Himalayas in Bhutan, northern
India, and Nepal, and Sri Lanka were identified as suitability hotspots for more than half
the studied species overlapping with human-impacted habitats. This study offers insight
into the impacts of anthropogenic pressure on the macroecology of bats in a megadiverse
region and stresses the importance of analysing ecogeographic effects on ecological niches
and habitat suitability, which can be vital to inform conservation planning and policymak-
ing in the future.

Keywords Ecological niche modelling - Species distribution modelling - Habitat selection -
Ecogeographic factors - Ensemble modelling - Human impacts

Introduction

South Asia is host to 151 species of bats across nine families (Srinivasulu et al. 2023), yet
there is very little information known about their distribution and ecology in this region
(Bates and Harrison 1997). Despite their high diversity and importance as ecological indi-
cators and ecosystem service providers (Jones et al. 2009; Kunz et al. 2011; Altringham
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et al. 2011), bats are relatively underrepresented in macroecological studies, especially in
Asia (but see Srinivasulu et al. 2024). Subject to persecution and superstitions across many
regions of Asia (Frembgen 2006), they are also given very little conservation value, an
issue further complicated after the recent COVID-19 pandemic (MacFarlane and Rocha
2020).

A recent trend in ecology has been the study of abiotic and biotic factors on occurrence
and distribution patterns across various scales, ranging from small communities to global
populations (Leach et al. 2016; Lewis et al. 2017; Lopez et al. 2019). Most studies tend
to focus on climate change as a major factor of species distributions (Aradgjo et al. 2019;
Srinivasulu et al. 2021). However, analyses of biotic [including vegetation, land use and
land cover (LULC)], topographic (elevation and hydrology), and anthropogenic factors are
also vital to understanding distributions and ecological niches (Hughes et al. 2012). Due to
effects of both climate-based and ecological cues (Bates and Harrison 1997) on bat behav-
iour, ecology, and habitat ‘selection’ and suitability, analyses must consider the influence
of both to understand bat distributions and niches. Additionally, a deeper understanding of
the specific impacts of ecogeographical factors on habitats and species can better inform
local management and guide species- and site-specific conservation planning and policy.

In South Asia, bats are distributed across a wide range of habitats from forests to urban
and suburban areas and previous work has offered insight into factors that affect habitat
suitability for regions or groups. Wordley et al. (2015) analysed the association of bats
with agricultural areas and riparian habitats in the Western Ghats, showing that structural
diversity within agricultural habitats improves bat abundance and richness. Other studies
have also shown that bat distribution in urban and suburban areas is affected by factors like
artificial night-time light and distance from the nearest waterbody (Lewanzik et al. 2022),
but the level of association with urban and suburban regions varies between species with
some bats more likely to be distributed in ‘wilder’ areas (Gili et al. 2020). Forest bats have
been found to depend on vegetation structure, and bats in arid and scrubland habitats are
influenced by distance to wetlands and riparian vegetation (Razgour et al. 2018). While
past studies show that bat distributions can be influenced by ecogeographical factors, there
has been no large scale assessment to identify broader drivers and patterns of habitat suit-
ability in South Asian bats.

Ecological niche modelling (ENM) is a method that analyses the known distribution of a
species and measured conditions describing climate, geography, and ecology to extrapolate
an envelope of spatial suitability approximating the species’ niche and quantify the impor-
tance of the different conditions in shaping that niche (Guisan & Thuiller 2005; Aratjo
and Guisan et al. 2006; Sober6n & Arroyo-Peiia, 2017). Importantly, ENM can be used
to gain knowledge of cryptic, rare, or otherwise difficult to study species because these
approaches can identify potential suitable habitat (which may guide monitoring efforts),
as well as revealing the set of environmental conditions that influences potential presence
(Rebelo & Jones 2010; Jeliazkov et al., 2022). Diverse types of environmental conditions
can be considered, but often ENM studies focus on climate variables to project species’
current and future distributions and quantify potential climate change impacts (Guisan &
Thuiller 2005). Some models do analyse ‘biotic’ ecogeographical factors, including biotic
interactions and human activities, and these can offer critical insights and inform conserva-
tion planning and policy (Leach et al. 2016; Cosentino et al. 2023). For example, Hughes
et al. (2012) conducted an ENM study combining abiotic climate and biotic ecogeographic
variables that projected northward shifts in Southeast Asian bats. Combining multiple abi-
otic and biotic factors can create challenging model complexity, but separate models can
be defined with the predicted climatic and ecogeographical suitability areas then compared

@ Springer



Biodiversity and Conservation

and combined to provide a more comprehensive approximation of a species’ niche (John-
son et al. 2019). Additionally, there are many ENM algorithms available which can offer
distinct results; thus, it is advisable to use various algorithms that are then aggregated into
ensemble models for offer better performance and a clearer understanding of model reli-
ability through a combination of goodness-of-fit metrics and inter-algorithm agreement
(Thuiller et al. 2009). Ensemble ENMs can be highly reliable and interpretable even with
presence-only data if robust approaches for generating pseudoabsences (Barbet-Massin
et al. 2012) and standardised protocols for parameterisation (Feng et al. 2019) are applied.

In this study, we assess habitat suitability in South Asian bats using occurrence records
and focusing on ecogeographic factors including land use and land cover, topography,
hydrology, and anthropogenic impact variables. We generate ensemble ENMs incorpo-
rating multiple replicates of pseudo-absence datasets. Results identify the most important
ecogeographic factors and present species habitat suitability maps we use to identify suit-
ability hotspots. We then compare these hotspots with climatically suitable areas defined
in a previous study (Srinivasulu et al. 2024) to offer a comprehensive understanding of
suitability in the region. The results of this study form a foundation for site- and species-
specific bat conservation prioritisation and planning.

Methods
Study area

Our South Asia study area covered approximately 3.75 million sq km, encompassing
Afghanistan, Bangladesh, Bhutan, India, the Maldives, Nepal, Pakistan, and Sri Lanka
(Fig. 1). Due to the barrier formed by the Himalayas (Gayden et al. 2013; Thapa et al.
2021), trans-Himalayan regions of China that fell under the study extent were excluded.
Additionally, due to the isolation and distance between the Nicobar Islands (the most
southeastern territory of India) and north Sumatra, Indonesia was also removed from the
study extent.

Data collection and preparation

There are 151 bat species found in South Asia, belonging to nine families (Emballonu-
ridae, Hipposideridae, Megadermatidae, Miniopteridae, Molossidae, Pteropodidae,
Rhinolophidae, Rhinopomatidae, and Vespertilionidae; Srinivasulu et al. 2023). We
limited our analysis to species not endemic to the Andaman and Nicobar Islands, and
with more than 30 occurrence records confirmed since 1995. These thresholds were
set to ensure temporal consistency with the modelling variables and sufficient occur-
rence data for robust modelling. Our final dataset included 48 species representing all
nine families. Confirmed presence records were collected from various sources (see
Srinivasulu et al. 2024) including peer-reviewed publications (Bates & Harrison 1997,
Srinivasulu & Srinivasulu 2012; Srinivasulu et al. 2021; Raman et al. 2023; Srinivasulu
et al. 2024) and museum collections from the Natural History Museum (UK), Harrison
Institute (UK), Field Museum of Natural History (USA), Zoological Survey of India
(India), and Osmania University Natural History Museum (India). Unpublished records
from surveys conducted by the authors from 2002 to 2023, and personal communica-
tions from local experts confirmed by photographic or other evidence were also used
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Fig. 1 Map of the study area, with excluded regions indicated in grey

to define occurrence. Records that were published before 1995 and subsequently con-
firmed through field visit or local experts after 1995 were also included with the origi-
nal publication as the source.

These occurrence records were spatially rarefied to avoid spatial sampling bias and
autocorrelation (Feng et al. 2019) using the spThin package (Aiello-Lammens et al.
2015) in R 4.3.1 (R Core Team 2023). Spatial rarefaction was done to 2.5 arc-minutes
to match the resolution of the climate data, and duplicate records within the same 2.5
arc-minute grid cell were randomly removed. After data cleaning, a total of 5085 occur-
rences for a final set of 48 species in nine families were used for the subsequent anal-
ysis. The number of occurrences per species ranged from 30 occurrences for Murina
cyclotis and Pipistrellus kuhlii to 439 occurrences for Pteropus medius (Supplementary
Material 1, 2).

Various ecogeographic factors may influence habitat suitability in bats, including
land use and land cover (LULC), hydrography, and topography (Rebelo et al. 2010;
Hughes et al. 2012; Raman et al. 2023; Tuan et al. 2023), but current and accurate data
for South Asia are only available for a limited subset. We selected an initial set of 21
ecogeographical variables (EGVs) based on various ecological hypotheses (See Table 1
in Appendix). All variables were analysed at 2.5 arc-minute resolution to assess spa-
tial patterns on a moderately-fine resolution (approximately 5x5 km). Variables with
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different resolutions were resampled to 2.5 arc-minutes using the ferra package (Hij-
mans 2023) in R; all variables were cropped and masked to our study area.

While modern ENM algorithms can account for (or are not greatly impacted by) issues
caused by multicollinearity in variables, the initial set of variables was reduced to allow
for accurate model transfer and clarity of interpretation. The EGVs were filtered based on
a combined test of variance inflation (VIF) and correlation in the usdm package (Naimi
et al. 2014) in R, such that variables with absolute pairwise Pearson’s r<0.7 were selected.
When the correlation was higher than 0.7, the variable with the highest VIF was removed
to decrease the overall variance inflation in the analysis. A final set of 19 EGVs was
selected for the analysis (See Table 1 in Appendix).

Pseudoabsence data, a prerequisite for presence-only ecological niche modelling (Feng
et al. 2019), were generated for the analysis broadly following Barbet-Massin et al. (2012).
For each species, a minimum of 1000 pseudoabsences were generated; to balance the num-
ber of occurrences and pseudoabsences for the species with fewer occurrences, multiple
pseudoabsence replicate sets were created, each with the same number of pseudoabsences
as selected occurrences for the species. The number of replicate sets was calculated by
dividing 1000 by the number of occurrences and rounding up to the nearest whole number.
Replicate sets ranged from 3 for Pteropus medius (439 occurrences) to 34 for Pipistrellus
kuhlii (30 occurrences). This allowed a minimum of 1000 pseudoabsences for each species
and incorporated a measure of intra-species uncertainty through resampling for the species
with fewer localities (Supplementary Material 2).

Ensemble ecological niche modelling

Ensemble ecological niche models were created for each species using biomod2 (Thu-
iller et al. 2023), an R package that implements the BIOMOD (Thuiller et al. 2009) niche
modelling framework. The ensemble models included four algorithms known to be robust
at large distribution scales (Meller et al. 2014): multivariate adaptive regression splines
(MARS), artificial neural networks (ANN), random forests (RF), and maximum entropy
(MAXENT). Five-fold cross-validation was used to validate the models, and model per-
formance was assessed using area under receiver operating character (ROC) curve (AUC),
and true skill statistic (TSS). To estimate the importance of each EGV to ecogeographic
suitability, we averaged variable contribution, estimated as the difference in model perfor-
mance (AUC) after removal of the variable, over five permutations. Variable importance
was also described based on a ranking of mean permutation importance for each variable
in each species.

For each species a consensus model was created by averaging all individual models with
TSS > 0.5. Predictions from ensemble models for each species were reclassified into binary
output to define ecogeographically suitable and unsuitable areas using a maximum TSS
threshold. Binary hotspot maps of ecogeographic suitability were created by adding binary
predictions of all species to reflect the number of species for which each cell was eco-
geographically suitable (cell values could range from 0 to 48). Hotspots were then defined
exploring three thresholds that reflected suitability for at least 25% (suitable for > 12 spe-
cies), 50% (suitable for>24 species), and 75% (suitable for>36 species) of the 48 study
species. Model uncertainty was reported considering model agreement across individual
replicates within a species, and then averaging across species so that low values represent
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highly certain unsuitability, high values represent highly certain suitability, and values in
between represented uncertainty.

Post-hoc analyses

To understand potential impacts and conservation challenges in detected areas of suita-
bility, we described the land use and land cover (LULC) variables using six main types:
Forests (including needleleaf, evergreen broadleaf, deciduous broadleaf, and mixed trees),
Scrubland (including shrub and herbaceous vegetation), Anthropogenic regions (including
cultivated vegetation, and urban and suburban and suburban and suburban areas), Wetlands
(including open water and flooded vegetation), and Barren regions (including barren rock,
and snow and ice). Anthropogenic impacts were described using the respective means of
the Human Footprint Index and Median Night-time Light variables. The values of each
variable type for all the cells of species binary models and the suitability hotspot models
were then averaged. In the case of the LULC variables, this showed the average representa-
tion of each LULC type in suitable areas (represented as % of the suitable areas covered by
a particular LULC type). For the anthropogenic impact variables, this showed averages of
human footprint and night-time light in suitable areas. Finally, we mapped the overlap and
discrepancies between ecogeographically suitable area models and previously identified
climatically suitable areas (Srinivasulu et al. 2024).

Results
Ecogeographic variables

Variables that best described suitability varied across species, but overall, variables associ-
ated with Anthropogenic Impact had high importance. Amongst these, Median Night-time
Light had the highest average variable contribution values (mean+ SD across all species:
29.03% + 15.48%, min—max: 4.45%-52.8%; Fig. 2; Supplementary Material 2) and was the
top variable for 30 of the 48 study species, across all nine families. All species had poten-
tial suitable areas in ‘dark’ regions, with Median Night-time Light values ranging from
0.87 to 10.77 DN (digital number units; see Table 1 in Appendix), with high inter-cell
variability across their potential suitable area. The Common Pipistrelle Pipistrellus pipist-
rellus and Naked-rumped Tomb bat Taphozous nudiventris were the only species for which
Median Night-time Light averaged > 10 DN. Within these dark regions, for 40 species rela-
tively brighter areas (average cell values for Night-time Light>5 DN) were projected to be
suitable. For 8 species, suitability was associated with relatively darker areas (average cell
values for Median Night-time Light<5 DN). The average Median Night-time Light across
South Asia is 2.75+5.95 DN, and human-inhabited areas across the region had Median
Night-time Light values above 20 DN, with the brightest cells in the study area (63 DN)
seen in large cities in India including Bengaluru, Hyderabad, Kolkata, Mumbai, and New
Delhi, and in Karachi, Pakistan.

Similarly, Human Footprint Index was among the top variables for several species
(ranking second and third in contribution for 12 and 7 species respectively). For 33 species
areas with relatively higher human footprint (> 15 units) were more likely to be occupied,
whereas for 15 species suitability was associated with lower human footprint values (< 15
units). Relative elevation, which describes topography relative to the mean elevation of

@ Springer



Biodiversity and Conservation

Median Nighttime Light
Relative Elevation

Evergreen | c
Broadleaf Trees

Human Footprint Index

Mixed/Other Trees |

Topographic

Position Index

Slope

Shrubs I

Flow Direction | UR—
Barren Areas |

Urban/Built-up Area | 52.58

Deciduous I
Broadleaf Trees

Northernness Exposure

Herbaceous Vegetation |
Easternness Exposure
Needleleaf Trees [
Open Water l
Snow and Ice I

Flooded Vegetation |

0 20 40
% Contribution

Fig.2 Percentage importance of each variable included in the analysis. Each line represents the percentage
contribution of each variable for one species. Thicker lines represent the mean percentage contribution of
that variable across all species. Variable colours correspond to the group (red—Anthropogenic Impact, pur-
ple—topography, blue—LULC, green—hydrography)

South Asia, was one of the most important non-anthropogenic variables, being the top var-
iable for eight species, and the second and third top variable for 17 and 19 species respec-
tively. For 35 species, areas lower than 900 m asl were projected to be suitable, whereas for
13 species areas higher than 900 m asl had projected suitability.

Across all species, an average of 13.40% (SD=4.82%) of the study area was ecogeo-
graphically suitable, ranging from 6.28% in the Least Horseshoe bat Rhinolophus pusil-
lus to 22.98% in Dormer’s Pipistrelle Scotozous dormeri. Ecogeographically suitable areas
were identified in diverse sites across the study area, in various combinations of four pat-
terns: generally distributed suitable areas, suitable areas clustering mainly in the West-
ern Ghats and/or the northeast of the study region, suitable areas clustering mainly in the
Himalayas, generally distributed suitable areas with clusters also in northwest South Asia
(Fig. 3). The pattern of suitable areas in some species matched the distribution of occur-
rence records (Supplementary Material 1, 3), but this varied greatly among species. There
were consistently large areas of low suitability seen in the Thar desert of Rajasthan (in
northwest India), although for some species there were small suitable areas in this region
(Supplementary Material 3). Some species, along with a general distribution of small
suitability across the region, showed large contiguous projected suitable areas in certain
regions. For example, Kelaart’s Pipistrelle Pipistrellus ceylonicus, a widely distributed spe-
cies commonly found near human-inhabited areas, had a generally distributed pattern of
suitability with more suitable areas in the Western Ghats and Nilgiri Hills of south India,
the tropical regions of Sri Lanka (Central, Southern, Western, and Sabaragamuwa prov-
inces), and the river valleys of northern India and Pakistan (ranging from Delhi to the
northern Indus River valley). Similarly, the Lesser False Vampire bat Megaderma spasma
showed a general distribution of predicted suitability combined with high-density areas of
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Rhinolophus pusillus - Himalayas Rhinopoma microphyllum - General & Northwest

Fig. 3 Example from four species that represent the four main patterns of suitability found across species

suitability in the Western Ghats and Sri Lanka, the Andaman and Nicobar Islands, north-
east India, and northern Myanmar. The Greater Mouse-tailed bat Rhinopoma microphyl-
lum, a species found from northern and western Africa to northeastern India and Bang-
ladesh, was the only species which had predicted suitability in the northwest of the study
area, with regions of Afghanistan shown to be suitable in addition to northern India and
Pakistan, and the Deccan Plateau (Supplementary Material 3).

Suitability hotspots

Based on the explored thresholds of > 12, >24, and > 36 species, hotspots of ecogeographic
suitability occupied 21.28%, 7.07%, and 1.04% of the study area respectively. Hotspots
were identified in various locations across the study area, but generally in urban and subur-
ban areas and along linear features like roads, rivers, and hill ranges (Fig. 4). There was no
area suitable for all 48 studied species.

Hotspots of suitability (for>12 species) were located across the study area, but dis-
tribution was not uniform (Fig. 4). The Western Ghats and the Nilgiris, the central and
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Fig.4 Map of ecogeographically suitable hotspot areas based on three thresholds (areas identified as suita-
ble for>12,>24, and > 36 species); and comparative map of ecogeographic and climate suitability hotspots
(for > 24 species) highlighting the relatively few areas of combined ecogeographic and climatic suitability

southwestern provinces of Sri Lanka, the Himalayas extending from northern Pakistan to
northeastern India, and the Andaman and Nicobar Islands showed large amounts of suit-
ability hotspots, while there were fewer suitable areas in the Thar desert and northwest
South Asia. Central India and the plains of northern India comprised fragmented areas of
suitability centred most often around cities and towns, but with a contiguous area of suit-
ability from Jaipur, through Delhi, to Jammu, through northern Pakistan, continuing south-
ward following the Indus River valley (Fig. 4). Similar areas were identified when defining
hotspots based on the threshold for>24 species, although contiguous patches of hotspot
areas became less frequent in the Himalayas. For > 36 species, only small patches of suita-
ble area were seen across the study area, often corresponding to large cities and towns. The
only relatively large contiguous patches were seen in the mountainous regions of northern
India and Pakistan, the central highlands of Sri Lanka, and the southern Western Ghats and
Malabar coast (Fig. 4; Supplementary Material 3).

The Urban and Built-up areas LULC class covered on average approximately half of each
cell in suitability hotspots (mean and SD percentage of each cell covered: 50.04% +44.76%
for hotspots with > 12 species, 50.18% +45.08% for >24 species, 50.68% +46.74% for > 36
species). This exceeds the per-cell average percentage cover of anthropogenic areas across
the study area (25.34% +35.06%) indicating that regions of potential suitability for multiple
species are more often found associated with anthropogenic features than expected. How-
ever, the per-cell cover of anthropogenic habitats were relatively low within each family,
ranging from 1.39% =+ 1% for Rhinolophidae to 9.61% +2.15% for Rhinopomatidae. Bar-
ren areas were the second most common LULC type in suitability areas (19.09% +33.19%
for> 12 species, 17.24 +£32.03% for >24 species, 16.73% +31.68% for>36 species), also
exceeding the average barren land cover across the study area (9.51% +7.14%). The asso-
ciation to barren areas may capture roosting areas, as many of the study species roost in
rocky caves, crevices, and subterranean features (Bates and Harrison 1997). Suitability hot-
spots representing more species (>36 species) were often seen around human habitation
(Fig. 4) but also within ‘wilder’ areas like the southern Western Ghats, capturing a wide
relationship with human-impacted areas in most species, with preferences for different
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types of more natural areas varying more widely (and thus, less likely to show consistently
as suitable in hotspots for many species).

When considering suitability hotpots for at least half the study species (=24 species)
we found that only 1.17% of the study area was projected to be both ecogeographically
and climatically suitable (2.19% for only climatically suitable area, see Srinivasulu et al.
(2024); and 7.07% for only ecogeographically suitable area, Fig. 4). Based on future cli-
matic suitability projections averaged across two global climate models (Canadian Earth
System Model v5 and Hadley Centre Global Environment Model v3), 0.98% and 0.82% of
the study area is expected to be ecogeographically and climatically suitable in 2050 accord-
ing to the SSP2-RCP4.5 and SSP5-RCP8.5 socioeconomic pathways respectively. This rep-
resents a reduction in the suitable area under future climate conditions.

Model evaluation

Model performance varied across species, and all four algorithms were used in the final
ensemble for each species. RF had the highest validation scores on average (mean+ SD)
across all species (TSS: 0.984 +0.017; AUC: 0.999 +0.002), followed by MAXENT (TSS:
0.811+0.108; AUC: 0.908+0.050), MARS (TSS: 0.804+0.120; AUC: 0.943 +0.045),
and ANN (TSS: 0.738 +£0.190; AUC: 0.896 +0.094). Regions of high certainty of suitabil-
ity were seen around urban areas including towns and cities, and small highly certain areas
were seen along major road features, indicating the importance of linear features in habi-
tat suitability across bats. Additionally, a large proportion of the cells in the Indian state
of Kerala, the Central, Western, Sabaragamuwa, and Southern provinces of Sri Lanka,
and the northern Himalayas extending from Afghanistan to India were found highly cer-
tain to be suitable. Regions of highly certain unsuitability were restricted to the Thar and
arid regions of Pakistan and Afghanistan, and smaller areas in various Indian states in the
Gangetic plain. Uncertainty of suitability was recovered across the study region, but mostly
in the Himalayas, the Western Ghats, the northern Eastern Ghats, northeast India, and the
surrounding regions of major metropolitan cities (Supplementary Material 4).

Discussion

Our study identifies Median Night-time Light as the ecogeographical factor with the high-
est importance to map habitat suitability in South Asian bats. Artificial night-time light
is prevalent across many regions in South Asia due to the high human population in the
region, increasing in brightness steadily with higher rates of urban and suburban expansion
and growth (Kaushik et al. 2022). Night-time light impacts bat flight, behaviour, foraging,
and roosting in varied but largely adverse ways (Stone et al. 2015; Spoelstra et al. 2017),
yet to our knowledge, no study has been conducted in South Asia to specifically quantify
the effects of night-time light on bat movement, feeding, and roosting. While generally
important, it is noteworthy that the importance of night-time light varied among species.
Species with differing ecologies and behaviours are likely to be impacted by light levels
differently. Some bats are quite sensitive to light disturbance. For example, Median Night-
time Light was a the most important variable for the fulvous roundleaf bat Hipposideros
fulvus (variable contribution 52.80%), a species generally found in relatively darker areas
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(Median Night-time Light across its projected suitable area is 0.87+3.89 DV). Cooler
lighting with white and green components have been shown to cause significant decreases
in the abundance of species like Rhinolophus (horseshoe bats), and Myotis (mouse-eared
bats; Spoelstra et al. 2017), which are not usually found in or near human habitation. How-
ever, other bats like Pteropodids are more synanthropic and from our analyses appear to
commonly occur in areas with high night-time light values. For example, Median Night-
time Light was a very important variable for Kelaart’s pipistrelle Pipistrellus ceylonicus
(51.32%) and the naked-rumped tomb bat Taphozous nudiventris (47.97%), and in con-
trast with Hipposideros fulvus both species were projected to occur in relatively lighter
environments (Median Night-time Light in projected suitable areas 7.07 +10.03 DV, and
10.49 +9.98 DV respectively. For comparison human-inhabited areas in the region had val-
ues > 20 DN). These species may be more resilient to anthropogenic changes (able to cope
with some artificial night-time light) and some may even benefit—some urban insectivore
species are known to use streetlights in urban and suburban areas as feeding grounds (Her-
mans et al. 2024). Variation can also occur within groups of related species. Bats from
families generally considered to be light-sensitive, like Pteropodidae which primarily use
sight and smell rather than echolocation for navigation (Bates and Harrison 1997), can be
associated with urban areas—e.g., greater short-nosed fruit bat Cynopterus sphinx is com-
monly found in city suburbs due to its association with fruiting trees (Bates and Harrison
1997), and Indian flying fox Pteropus medius has been observed in large colonies in vari-
ous cities and towns (Pandian and Suresh 2021; Roy et al. 2024). Even for species that can
tolerate higher levels of artificial night light, it is important to careful consider lighting
practices to ensure natural communities and ecosystem services are not disrupted (Rowse
et al. 2016; Voigt et al. 2021).

The suitability hotspots in the study area showed large contiguous clusters in northern
India, the Indus River valley in Pakistan, the Himalayas of Bhutan, India, and Nepal, the
Western Ghats in south India, and the highlands of Sri Lanka. This spatial distribution of
hotspots broadly aligned with the Myers et al. (2000), with the highest amount of suitable
area seen in the Indian Western Ghats and across the Sri Lanka hotspot, further emphasis-
ing the importance of this region as a South Asian biodiversity hotspot (Fig. 4). However,
it is important to note that this hotspot also comprises large cities, towns, and complex
infrastructure, and may be threatened by habitat destruction due to lateral expansion. While
there is active conservation in place across the Western Ghats and Sri Lanka (Das et al.
2006; Bambaradeniya 2006), this tends to focus more on charismatic species and there is a
need for bat-specific conservation efforts. Spatial suitability patterns were broadly consist-
ent at all species suitability thresholds; regions suitable for >24 and > 36 species were less
contiguous than those suitable for> 12 species, but the largest contiguous regions consist-
ently remained in the Western Ghats and southwestern Sri Lanka (Fig. 4). Hotspots for half
of the studied species revealed a large area of fragmented suitability in the Western Ghats
of northern Karnataka, roughly situated between Sharavati Valley Wildlife Sanctuary in the
south and Anashi National Park in the north, while the western coast was still projected to
be suitable. The contiguity of suitability hotspots in the Nilgiri and Vindhya hill ranges,
and the lower Himalayas—all regions with very specific and unique ecosystems, habitat
structures, and vegetation (Olson et al. 2001)—was also lower when mapping suitability
for more species (Fig. 4). River valleys, cities and towns, and large wilderness areas were
consistently projected to be suitable for multiple species, and linear structures including
forest corridors and urban and suburban structures such as roads also showed suitability,
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indicating the importance of such features as movement pathways. In some cases, these
linear features may be used by forest- or scrubland-dominant species as corridors between
suitable habitats, therefore making them vital for connectivity. While the higher suitability
of conurbations and roads could be interpreted as an artefact of bias in the collection of
occurrence data, this is not immediately apparent when viewing the occurrence data for our
study species (Supplementary Material 3) and must be explored more deeply. It is impor-
tant to note that these results are applicable only for a relatively small subset of the large
diversity of bats in South Asia (~ 16% of the 151 species present in South Asia).

Suitability hotspots included relatively high proportions of Anthropogenic habitats,
which likely captured common patterns from generalist species that can adapt to human
impacts, but we found variation among groups and species. The lowest cover of anthropo-
genic habitats was found in the suitable areas of Rhinolophidae (horseshoe bats), a family
distributed mostly in forests, caves in South Asia, had, while the highest were found in
the Rhinopomatidae (mouse-tailed bats), a family associated with human habitation and
features such as tombs, ruins, etc., and known anecdotally to be resilient to disturbance.
Common species (e.g., greater short-nosed fruit bat Cynopterus sphinx, and Indian flying
fox Pteropus medius) showed higher association with urban and suburban and human-
inhabited areas than more specialist and more uncommon species (e.g., great roundleaf
bat Hipposideros armiger, and intermediate horseshoe bat Rhinolophus affinis), likely due
to the formers’ generalist ecological niches allowing more resiliency to anthropogenic
disturbance.

Assessing habitat suitability can inform conservation planning and ENM is an especially
effective approach (Jeliazkov et al. 2022). Suitability analyses tend to be climate-focused,
occasionally incorporating topographic variables (Festa et al., 2023), but in regions of high
habitat, species, and structural diversity such as South Asia (Myers et al. 2000; Srinivasulu
and Srinivasulu 2012; Ramankutty et al. 2018; Raman et al. 2023), it is imperative that
ecogeographic factors are also assessed. Regions shown to be climatically suitable may not
be ecogeographically suitable or vice versa. Srinivasulu et al. (2024) defined climatic suit-
ability for 110 species of South Asian bats revealing large contiguous suitability hotspots
in the Himalayas, the Western Ghats, and Sri Lanka, similar to the hotspots described in
this study. While broad area coincided, the overlap of climate and ecogeography suitability
area for the 48 species reveal a much smaller suitable area. Moreover, these combined suit-
ability areas face anthropogenic threats of habitat disturbance and destruction, and in some
cases like the northern Western Ghats, appeared quite fragmented (Anand et al. 2010). Our
results show that failing to consider both climate and ecogeography suitability can overes-
timate suitability, and we highlight the value of combined appraisal. Bats are likely to show
large responses to climate change (Festa et al., 2023), these may outweigh the influence of
ecogeographic factors in future distributions (Wani et al. 2021). However, ecogeographic
factors will likely respond to climate change and socioeconomic development, while we
did not consider projected changes to these factors in our study future studies could further
evaluated these changes under projected shared socioeconomic pathways (O’Neill et al.
2017; Bukovsky et al. 2021).

The results of any ENM study are impacted greatly by various factors including the
quality and filtering of the variables and occurrence data, how pseudoabsence are gener-
ated and results validated (Feng et al. 2019). In our analysis, we selected species with
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a minimum number of occurrences considering representation and model requirements.
We acknowledge that by doing so, rarer species and those occurring in more remote
area were more likely to be excluded. To identify ecogeographical variables we focused
on proposed hypothesised relationships and then filtered to avoid high correlations that
could affect inference. While we aimed to include a wide range of relevant variables,
lack of available information at this scale prevented us from considering some likely
important variables including those related to availability of food resources. We imple-
mented a robust approach to define pseudo-absences that combines geographic con-
straints and replicated random sampling (Srinivasulu et al. 2024). This approach could
be further improved using ecological filtering in niche space (Barbet-Massin et al. 2012;
Iturbide et al. 2015), and a deeper analysis of survey and observation biases in the data.
Finally, we used five-fold crossvalidation which is a widely used method but could be
further improved by spatial block crossvalidation (Valavi et al. 2019). Ensemble ENMs
are relatively new and quite powerful but can be computationally intensive and complex
to interpret, thus often requiring a compromise between performance and feasibility.

Our study offers insight into the role of various ecogeographic factors on bat habitat
suitability in South Asia, highlighting a role of anthropogenic factors, identifying suit-
able habitat hotspots, and revealing a worrying projected loss of ecogeographic and cli-
matically suitable areas in the near future. We focused on describing broad patterns and
effects, but to support conservation and policy we provide species-level results (Supple-
mentary Material 2, 3) that can be used to consider effects within particular regions and
for particular species. Bats in South Asia are a diverse group that faces some challenges.
Some resilient generalist species, like pipistrelles, may be able to cope with human
expansion, but others may be left with few suitable areas. Future work to further our
understanding of bat ecological niches and distributions, including projected changes,
would be needed and benefit from additional occurrence data and improved information
on ecological variables and their projected changes.

Appendix

See Table 1
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