

Origin and dynamics of global atmospheric wavenumber-4 in the Southern mid-latitude during austral summer

Article

Accepted Version

Senapati, B. ORCID: <https://orcid.org/0000-0001-5029-9731>, Deb, P., Dash, M. K. and Behera, S. K. (2022) Origin and dynamics of global atmospheric wavenumber-4 in the Southern mid-latitude during austral summer. *Climate Dynamics*, 59 (5). pp. 1309-1322. ISSN 1432-0894 doi: 10.1007/s00382-021-06040-z Available at <https://centaur.reading.ac.uk/118927/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1007/s00382-021-06040-z>

Publisher: Springer

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 **Origin and dynamics of global atmospheric wavenumber-4 in the Southern
2 mid-latitude during austral summer**

3 **Balaji Senapati¹, Pranab Deb¹, Mihir K. Dash¹, and Swadhin K. Behera²**

4 ¹Centre for Oceans, Rivers, Atmosphere and Land Sciences, Indian Institute of Technology
5 Kharagpur, Kharagpur, West Bengal, India.

6 ²Application Laboratory, VAiG, Japan Agency for Marine-Earth Science and Technology,
7 Yokohama, Kanagawa, Japan.

8 Corresponding author: Mihir K. Dash (mihir@coral.iitkgp.ac.in)

9 **ORCID**

10 *Balaji Senapati*: <https://orcid.org/0000-0001-5029-9731>

11 *Pranab Deb*: <https://orcid.org/0000-0002-1858-0918>

12 *Mihir K. Dash*: <https://orcid.org/0000-0003-1426-7200>

13 *Swadhin K. Behera*: <https://orcid.org/0000-0001-8692-2388>

14 **Abstract**

15 Using empirical orthogonal function analysis, a stationary atmospheric wavenumber-4 (AW4)
16 pattern is identified in the Southern mid-latitudes during austral summer. The generation
17 mechanism and its linkage to Southern Hemisphere climate is explored using a linear response
18 model and composite analysis. It is found that, AW4 pattern is forced by a Rossby wave source
19 in the upstream region of the upper-tropospheric westerly wave-guide. The vortex stretching
20 associated with the anomalous convection over subtropical western Pacific Ocean (near the
21 New Zealand coast) adjacent to the westerly jet triggers the Rossby wave train around mid-
22 November. This disturbance gets trapped in the Southern Hemisphere westerly jet waveguide
23 and circumnavigates the globe. Around 15-25 days later (in early December), a steady AW4
24 pattern is established in the Southern mid-latitudes. Further, correlation analysis suggests the
25 AW4 pattern is independent of other natural variabilities such as El Niño/Southern Oscillation,
26 Southern Annular Mode, and Indian Ocean Dipole. The AW4 pattern is found to influence the
27 rainfall over different parts of South America and Australia by modulating upper-level
28 divergence.

29
30 **Key words:** Atmospheric barotropic wave, teleconnection, linear response theory, Rossby
31 wave, Southern westerly jet

32 **1 Introduction**

33 The intra-seasonal to inter-decadal variabilities in the Southern Hemisphere (SH) atmospheric
34 circulation have been studied extensively using both observations, reanalysis datasets and
35 numerical models (Ghil and Mo 1991; Karoly and Vincent 1998; Kidson 1999; Cai and
36 Watterson 2002; Grimm and Ambrizzi 2009). The Southern Annular Mode (SAM) and the two
37 Pacific South American (PSA) patterns are the dominant modes of variabilities that control the
38 spatio-temporal distribution of temperature, rainfall and sea-ice cover in the SH (Grimm &
39 Ambrizzi 2009; Yuan et al. 2018 and references therein; Kidson 1999; Kiladis & Mo 1998;
40 Kingtse C. Mo & Higgins 1998; Osman & Vera 2020). These modes show close association
41 with ENSO activities (Grimm & Ambrizzi 2009; Mo 2000 and references therein). Indeed, the
42 two PSA patterns, PSA-1 and -2, are associated with ENSO triggered Rossby waves due to
43 anomalous convection over eastern and central Pacific during respective flavours of ENSO
44 events (Mo 2000). These Rossby waves exhibit two distinct wavenumber-3 patterns, which
45 influence several aspects of SH climate, viz., the Antarctic sea ice, South Atlantic SST, and
46 South America climate (Kwok and Comiso 2002; Grimm 2003, 2004; Carvalho et al. 2004;
47 Turner 2004; Rodrigues et al. 2015; Yuan et al. 2018)

48 Generally, alteration in the subtropical jet due to thermal wind balance and wave mean flow
49 interaction in the westerly jet produces Rossby waves (Hoskins & Karoly 1981). Rossby wave
50 teleconnection are particularly strong in the winter hemisphere as a stronger subtropical
51 westerly jet shifts closer to tropics and gets influenced by the tropical diabatic heating (Hoskins
52 & Ambrizzi 1993). Nevertheless, stationary Rossby waves are also generated in the summer
53 hemisphere, especially in SH, if the source of diabatic heating is located in the vicinity of the
54 subtropical jet (Lee et al. 2009). Numerous studies have identified the presence of mid-latitude
55 wave trains in the SH during austral summer (Jury et al. 1995; Fauchereau et al. 2003; Lin and
56 Li 2012; Zhao et al. 2013; Manrique et al. 2015; Nagaraju et al. 2018; Lin 2019; Senapati et
57 al. 2021). These waves have been linked to the co-variability of southern subtropical Indian
58 and Atlantic Ocean dipoles (Fauchereau et al. 2003), South African flood in 2013 (Manrique
59 et al. 2015), triggering of Madden–Julian Oscillation over tropical western Indian Ocean (Zhao
60 et al. 2013), inter-annual variability of summer rainfall over Madagascar (Jury et al. 1995) &
61 northwest Australia (Lin and Li 2012), South Atlantic-South Indian Ocean pattern (Lin 2019)
62 and a global wavenumber-4 SST pattern (Senapati et al. 2021).

63 Recently, Lin (2019) reported an atmospheric barotropic wavenumber-4 pattern restricted
64 within the South Atlantic-South Indian Ocean (SASIO) region. In contrast, a circumglobal

65 atmospheric wavenumber-4 (AW4) pattern in the Southern mid-latitudes, extending well into
66 the southern subtropical Pacific Ocean, has been identified by Manhique et al. (2015) in the
67 atmosphere. Also, it is reported that this AW4 has a potential to affect the marine heat waves
68 and cool spells in Tasman Sea (Chiswell 2021) and flood in South Africa (Manhique et al.
69 2015). Further, Senapati et al. (2021) have shown that a circumglobal wavenumber-4 pattern
70 exists in the southern subtropical sea surface temperature (SST) during austral summer. This
71 circumglobal AW4 pattern was found to show distinct spatial pattern from the SASIO and may
72 exhibits significant covariability among oceanic and atmospheric parameters in the SH
73 (Senapati et al. 2021). While the ocean-atmosphere covariability is ill recognized, the source
74 of the forcing that triggers the AW4 pattern and its location is not well-understood. This study
75 undertakes a thorough investigation of the origin, propagation, and dynamics of this SH
76 circumglobal AW4 pattern which can lead to a significant improvement in the predictability of
77 the SH weather and climate. In other words, we intend to answer the following three questions:
78 (1) What is the dominant circulation anomaly pattern in the southern mid-latitude during austral
79 summer (December-January-February) and its generation mechanism (2) What is/are the
80 source(s) of the disturbance that triggers the circulation, and (3) How it (circulation pattern)
81 impacts the SH weather and climate?

82 **2 Data & methods**

83 The dominant inter-annual mode of variability in circulation over Southern mid-latitude (30°S-
84 60°S) is obtained from the Empirical Orthogonal Function (EOF) analysis for meridional wind
85 anomaly. We used daily and monthly atmospheric variables such as wind (both zonal and
86 meridional component at 250, 500 and 850 hPa), geopotential height at 250 , 500 and 850 hPa,
87 and precipitable water at a horizontal resolution of 2.5°x2.5° (from National Centers for
88 Environmental Prediction-2 reanalysis products (Kanamitsu et al. 2002);
89 <https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html>; 2.5°x2.5°), and monthly SST
90 data at a horizontal resolution of 1°x1° (from Hadley Centre Global Sea Ice and Sea Surface
91 Temperature (Rayner et al. 2003); <https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html>; 1°x1°) during 1979-2018.

93 Firstly, daily and monthly anomaly of all the variables are calculated at each grid point by
94 removing corresponding annual cycle using equation (1). Afterwards, the time series of each
95 variable is detrended by subtracting corresponding linear trend at each grid point using least
96 square fit. In this method, the cost function of a variable ‘S’, $S = \sum_{i=1}^n (y_i - f(x_i))^2$, is

97 minimized to derive the best fit function, where, y_i is the dependent variable and x_i is the
98 independent variable and $f(x_i)$ is the best fit function. Further, for daily composite analysis, a
99 90-day low pass filter in the Fourier domain is applied to remove the intra-seasonal oscillation
100 from the daily anomaly time series. Fast Fourier transform converts the time series data into
101 frequency domain using equation (2). High frequencies maximum of 90 days are filtered out
102 from the frequency domain, and then converted back to the time domain using inverse fast
103 Fourier transform.

104 The monthly/daily anomaly of the monthly/daily time series “ $d(t_{i,j})$ ” at a grid point is
105 calculated by removing its annual cycle “ $d(\bar{t}_i)$ ”, as follows:

106
$$d(t'_{i,j}) = d(t_{i,j}) - d(\bar{t}_i) \quad \text{----- (1)}$$

107 where, i represents month (January to December) or day (all calendar days) and j represents
108 year (i.e. 1979 to 2018). Prime and over bar represent monthly/daily anomaly and
109 corresponding monthly/daily mean respectively.

110 The historical time series $I(t)$ measured over the time interval $0 \leq t \leq T$ is transformed into
111 frequency domain $O(\omega, t)$ for all the frequencies ‘ ω ’ as follows:

112
$$O(\omega, t) = \int_0^T I(t) e^{-i2\pi\omega t} dt \quad \text{----- (2)}$$

113 Further, the co-variability between SASIO and AW4 is analysed using cross-wavelet coherence
114 (Grinsted et al. 2004). Here the coherency of the cross wavelet transform in time-frequency
115 space is measured using equation (8) mentioned in Grinsted et al. (2004). The significance of
116 the wavelet coherence is tested at 5% level using the Monte-Carlo approach (Grinsted et al.
117 2004).

118 Following Deb et al. (2020), the semi-empirical linear step response method is adopted to
119 explore the generation and dynamics of the AW4. Here, the extra-tropical response to tropical
120 forcing is assumed to be linear. According to linear response theory, any signal (S) at time ‘ t ’
121 can be quantified as the weighted sum of previous forcing (F) of last ‘ T ’ days and mean/residual
122 variation:

123
124
$$S(t) = \int_0^T G(l) F(t-l) dl + R \quad \text{----- (3)}$$

125 Where, l and R represents time lag and residual respectively.

126 Here, the rainfall anomaly over the western sub-tropical Pacific is taken as forcing $F(t)$ while
 127 $S(t)$ represents resultant variables (e.g. geopotential height anomaly, meridional wind etc.) at
 128 each grid point over SH (south of equator). ‘T’ represents the imposed maximum cut off lag.
 129 The weights (G ’s) are calculated using a weighted Quasi-green’s functions (Hasselmann et al.
 130 1993) solving equation 3. The elemental assumption in equation (1) is that the southern
 131 subtropical atmosphere responds to western subtropical Pacific rainfall anomaly as a linear
 132 system, and the former does not exert a large local feedback on the later processes. The impact
 133 of other modes of natural variability that influence the southern subtropical atmosphere is
 134 captured by the non-negligible residual term R . Multiple linear least square regression method
 135 is applied on signal ‘ $S(t)$ ’ against lagged rainfall forcing ‘ $F(t)$ ’ to calculate the value of impulse
 136 response $G(l)$ for $l=0, \dots, T$ (for detail method, refer Deb et al. 2020). The step response at any
 137 time lag ‘ l_j ’ is computed by using the value of G ’s in equation (4).

$$138 \quad S_{step}(l_j) \approx \sum_{i=0}^j G(l_i) \Delta l \quad \text{----- (4)}$$

139 The Rossby wave source (RWS) comprises mainly of two components, (i) the vortex stretching
 140 by eddies ($S1$) and (ii) the advection of absolute vorticity by divergent wind ($S2$) (Sardeshmukh
 141 and Hoskins 1988; Jianchun Qin and Robinson 1993):

$$142 \quad RWS = -(\xi + f) \nabla \cdot V\chi - V\chi \cdot \nabla (\xi + f) \quad \text{----- (5)}$$

143 Where, ξ , f , and $V\chi$ are relative vorticity, planetary vorticity, and irrotational wind respectively.
 144 Different climate indices like Oceanic Niño index (ONI; <https://origin.cpc.ncep.noaa.gov>)
 145 from CPC, NOAA; Pacific Decadal Oscillation index (PDO; <https://www.ncdc.noaa.gov>) from
 146 NCDC, NOAA; Indian Ocean Dipole index (IOD; <https://www.esrl.noaa.gov>) from ESRL,
 147 NOAA; Southern Annular Mode index (SAM; <https://climatedataguide.ucar.edu>) from
 148 NCAR/UCAR are adopted. Indian Ocean Sub-tropical Dipole index (IOSD) (Behera and
 149 Yamagata 2001), SST wavenumber-4 index (Senapati et al. 2021), South pacific quadruple
 150 index (Ding et al. 2015), El Niño Modoki index (EMI) (Ashok et al. 2007) and South Atlantic
 151 Sub-tropical Dipole index (SASD) (Morioka et al. 2011) were calculated to examine their
 152 relationship with AW4 index.

153 Various methods were adopted to test the significance of results in this study. Independency of
 154 EOF modes are tested using North criteria (North et al. 1982). North criteria uses the equation
 155 (6) to find out the standard error ($\nabla\chi$) of the corresponding eigenvalues (χ) with ‘ N ’ degrees of
 156 freedom present in the dataset. If the sampling error of a specific eigenvalue ‘ χ ’ is less than the

157 spacing between χ and nearest eigenvalue then the EOF associated with χ is most likely to be
158 independent, else otherwise.

159
$$\nabla\chi = \chi \left(\frac{2}{N}\right)^{1/2} \quad \text{----- (6)}$$

160 The significance of Pearson's linear correlation coefficient 'r' is tested against the null
161 hypothesis using t-test statistic, $t=r\times\sqrt{[(n-2)\div(1-r^2)]}$ having student-t distribution of 'n-2'
162 degrees of freedom. For composite analysis, the sample mean (\bar{x}) is tested against the
163 population mean (μ) with t-test statistic, $t= (\bar{x}-\mu)/(s/\sqrt{n})$; where, s and n represents sample
164 variance and sample size respectively.

165 Further, a first order auto-regressive red noise spectrum (AR1) of 1000 samples is used to test
166 the linear step response during austral summer (Deb et al. 2020). An auto-regressive model
167 predicts the next value of a parameter, (y_{t+1}), in a time series by regressing with that of current
168 value (y_t);

169
$$y_{t+1} = \alpha \times y_t + F_{std} \times R_n \quad \text{----- (7)}$$

170 Where, α and F_{std} are the 1st lag auto-correlation and standard deviation of rainfall forcing F(t)
171 respectively. R_n refers to the normalized random numbers which changes in every iteration.

172 AR1 works as follows: Firstly, AR1 is constructed using equation (7) initialized with the
173 starting value of the rainfall forcing data F(t). Now, actual rainfall forcing data is replaced with
174 AR1 time series in equation (3) to generate a red noise step response at each grid point. This
175 procedure is repeated for 1000 times to give rise to a series of 1000 AR1 step responses at each
176 grid point. Then standard deviation of these 1000 AR1 step response is calculated for each grid
177 point and compared with the actual step response. Finally, the values of actual step response
178 greater than the standard deviation of AR1 step response series is defined as significant.

179 **3 Results**

180 **3.1 AW4 in the SH**

181 In the Southern Hemisphere, two strong jet streams (i) the subtropical westerly jet and (ii) the
182 polar westerly jet exist throughout the year except for the austral summer season. In austral
183 summer, only strong circum-global polar jet exists with its centre over mid latitude (Lin 2019).
184 The westerly jets, due to the wave guide effect, are the plausible pathways for the zonal
185 propagation of Rossby wave train in the Southern Hemisphere (Hoskins & Ambrizzi 1993).

186 Meridional wind anomaly (V-wind) is suitable in representing the deviations from zonal flow
187 and hence used to identify the Rossby wave trains in the Southern mid-latitude (Wirth et al.
188 2018; Lin 2019). The first spatial EOF mode of V-wind anomaly (at 250 hPa, derived from
189 NCEP2 reanalysis) over the southern mid-latitude (30°S-60°S) in austral summer (Fig. 1a)
190 clearly shows the presence of wavenumber-4 structure. Eight alternating anomaly centres are
191 separated from each other by 45° along the zonal direction resulting a standing wave of
192 wavelength 90°. The EOF-1 explains 21.5% of the total variance and is well separated from
193 the EOF-2 (14.67% of total variance) as per the North criteria (North et al. 1982). EOF-2
194 pattern shows the anomalous circulation over the Pacific Ocean, which extends from the south
195 of Australia to the southern tip of South America and then curves towards South America (Fig.
196 not shown). In general, the EOF-2 pattern describes the regional inter-annual variation over
197 Pacific Ocean similar to PSA patterns (Irving and Simmonds 2016). Similar results were also
198 obtained using V-wind from ERA-5 (Fig. 1b). The corresponding principal component (PC1)
199 time series for both the data sets, NCEP2 and ERA5, are shown in figure 1c. A temporal
200 correlation coefficient of 0.99 exists between both the PCs. It is to be mentioned that NCEP2
201 data have been used for remaining analysis. Corresponding PC-1 time series of NCEP2 (red
202 line in Fig. 1c) is considered as the AW4 index in this study. It is worth mentioning that the
203 loading of V-wind anomaly over the Pacific Ocean is maximum as compared to other regions
204 in EOF-1 (Fig. 1a, b). To understand its role, the AW4 index is correlated with geo-potential
205 height anomaly (shaded) and horizontal wind (vectors) at 250 hPa (Fig. 1d). It is to be noted
206 that the correlation vectors presented are structured by the correlation coefficient between AW4
207 index and meridional wind for Y direction and zonal wind for X direction. It is evident that the
208 AW4 index has a strong correlation with the circulation of the wind in association with
209 geopotential height anomaly in the centre of the cells (Fig. 1d). Thus, it can be speculated that
210 the formed AW4 pattern could be the effect of the Rossby wave circumnavigating the globe
211 embedded in the westerly jet (Wirth et al. 2018; Lin 2019).

212 The vertical distribution of AW4 pattern in the troposphere is presented by correlating the AW4
213 index with V-wind (Figs. 2a-c) and geopotential height (Figs. 2d-f) at 250, 500, and 850 hPa.
214 Only significant values satisfying 95% confidence interval are shown in the figure 2. In-phase
215 patterns in V-wind (Figs. 2a-c) and geopotential height (Figs. 2d-f) throughout the atmospheric
216 column in the southern mid-latitudes, implies an equivalent barotropic nature of AW4 pattern.
217 It means, the isobaric surfaces are parallel in the AW4 pattern and the pattern remains same for
218 constant depth of the atmospheric fluid in the Southern mid-latitude. Indeed, the barotropic

219 response from a far-field forcing is already mentioned in previous literature (Hoskins & Karoly
220 1981). Using a threshold value of one standard deviation in the normalized AW4 index, 9
221 extreme positive (1980, 1985, 1994, 1999, 2002, 2008, 2009, 2013, 2018) and 9 extreme
222 negative (1979, 1983, 1990, 1992, 1993, 2000, 2001, 2007, 2017) years are identified for
223 composite analysis. Remarkably, 50% of SST wavenumber-4 composite years (Senapati et al.
224 2021) are matching with that of AW4 (4 negative: 1990, 1992, 2000, 2007 and 3 positive: 1980,
225 1985, and 2018). Also, significant correlation (-0.45 at 99% confidence level) between the two
226 indices (SST wavenumber-4 and AW4) during austral summer, corroborate a strong
227 covariability between atmosphere and ocean. Thus, this study may be helpful to explore and
228 understand the missing link of air-sea coupling that results SST wavenumber-4 pattern
229 (Senapati et al. 2021).

230 Hovmöller diagram of composite V-wind anomaly for positive AW4 years is constructed
231 by averaging meridionally from 30°S to 60°S (Fig. 3), starting from October of the developing
232 year to the March of the positive event year. The Hovmöller diagram shows that the AW4 is
233 stationary from late November to February (Fig. 3). But before the event, an intrusion of
234 anomalies (i.e. advection of vorticity by the divergent wind anomaly) from the west can be
235 seen between 150°E to 150°W during October and that starts developing in November of the
236 preceding year during positive event years (Fig. 3a). On the other hand, an eastward movement
237 of the anomalies is seen between 150°E to 150°W before developing of AW4 into a mature
238 phase during austral summer in negative event years (Fig. 3b). The weakening of the AW4
239 pattern in January is also noticed (Fig. 3b) and needed a separate investigation to understand
240 the cause. Nevertheless, it is clear that the forcing for development of AW4 pattern could be
241 present in the subtropical Pacific Ocean for both positive and negative years.

242 The linkage of AW4 pattern with other known natural climate modes is studied using
243 correlation analysis. Pearson's correlation coefficients of AW4 index with SAM, ONI, IOD,
244 PDO, IOSD, AOSD, EMI and SPQI are 0.2, -0.24, 0.15, 0.01, -0.03, 0.19, -0.2 and 0.01
245 respectively. The significances of these correlation coefficients are tested against two tailed t-
246 test and found to be insignificant at 90% confidence interval. They suggest, the AW4 pattern
247 is largely independent of these climate phenomena and hence taken for a detailed investigation
248 here.

249 **3.2 Dynamics of AW4**

250 The southern mid-latitude is capable of retaining Stationary Rossby waves (of wavenumbers
251 3-6) develop in the SH within 15-20 days of the initiation of the disturbance, and are confined
252 within the westerly jet wave-guide (Hoskins and Ambrizzi 1993; Ambrizzi et al. 1995). To
253 uncover the underlying mechanism of AW4, a daily composite of detrended and filtered 250
254 hPa geopotential height and horizontal wind anomalies for the positive years are shown at 15
255 days interval (Figs. 4a-d). During early November, three cells are observed in the geopotential
256 height and wind in the western Pacific, spreading from tropics to high latitude (Fig. 4a).
257 Subsequently, strong advection of positive geopotential anomaly from south of Australia along
258 with a global wavenumber-3 pattern is observed in mid-November (Fig. 4b). Nearly a fortnight
259 later (during late November) an enhancement positive geopotential height anomaly formed
260 over western Pacific (off-shore of New Zealand) with a well-developed global AW4 pattern
261 (Fig. 4c). Now the AW4 pattern is accompanied with the positive SST anomaly during
262 November over western subtropical Pacific (Fig. 4e) that leads to the Wavenumber-4 pattern
263 in SST anomaly later in the season (Senapati et al. 2021).

264 Development of positive geopotential height anomaly over western subtropical Pacific
265 near New Zealand in mid-November disturbs the atmospheric circulation. Eventually, the
266 disturbance propagates eastward guided by the westerly waveguide and an AW4 pattern is
267 formed in geopotential height anomaly and related circulation in the southern mid-latitude.
268 Overall, the signal takes around 15-25 days to circumnavigate the globe and develop into a
269 well-established AW4 stationary pattern by early December (Fig. 4d), and strengthens
270 gradually.

271 The source of the disturbance is investigated using composites of precipitable water
272 and upper-level divergence (Fig. 4f). Favouring to previous result (Figs. 4a-d), positive
273 precipitation anomaly and divergence during positive AW4 years suggests presence of a
274 diabatic source over western subtropical Pacific. However, simultaneous occurrence of
275 enhanced precipitations over some other regions like Maritime Continent and South Africa
276 leaves us with some ambiguity of the exact source of the AW4 forcing. To avoid this confusion
277 Rossby wave source is identified using equation (5), consisting mainly of vortex stretching
278 (first term (S_1)) and advection of absolute vorticity by divergent wind (second term (S_2)). The
279 correlation map between AW4 index and RWS (Fig. 5a) clearly depicts three regions in the
280 subtropical Pacific Ocean as the possible source for triggering the AW4 pattern, predominantly
281 due to the vortex stretching (Fig. 5b). Vortex stretching term in RWS (Fig. 5b) represents

282 exactly the same as RWS (Fig. 5a). On the other hand, advection of absolute vorticity by
283 divergent wind in RWS are found over the southwest part of the western Pacific (shown by the
284 blue box in fig. 5a) and near western Antarctic continent (Fig. 5c). But, these regions don't
285 contribute to RWS (Fig. 5a) and the region near western Antarctic continent is most probably
286 due to the downstream effect of the Rossby wave.

287 The Rossby wave train propagates eastward in the SH westerly waveguide and hence
288 the wave pattern is most likely forced by a RWS present in the upstream region of the jet. A
289 close inspection of figures 4 and 5 indicates that the region with strong Rossby wave activity,
290 near the entrance of the westerly jet over western subtropical Pacific Ocean (160°E-177°E,
291 30°S-48°S), is the most probable forcing region. During negative years the scenario is
292 apparently opposite (Figs. 4g-j) where the diabatic heating source and associated upper-level
293 divergence (convergence) lies in the eastern (western) subtropical Pacific Ocean (Fig. 4l)
294 accompanied by positive (negative) SST anomaly (Fig. 4k). Diabatic heating in the eastern
295 subtropical Pacific Ocean in association with positive SST anomaly there gives rise to a nearby
296 diabatic sink region accompanied with negative SST anomaly over the western side of the
297 subtropical Pacific Ocean. This situation accommodate the negative geopotential height to
298 strengthen over the subtropical Pacific Ocean which perturbs the atmospheric circulation.
299 Afterwards, this disturbance gets trap in the nearby westerly jet to form AW4 pattern seen in
300 negative years.

301 In the following sub-section, we use the Linear Response Theory to further corroborate
302 this hypothesis that the RWS located over the western subtropical Pacific Ocean (160°E-177°E,
303 30°S-48°S) is the most important source of the AW4 forcing.

304 **3.3 Extratropical Linear response to subtropical RWS**

305 Extratropical linear response due to a RWS placed over western subtropical Pacific (160°E-
306 177°E, 30°S-48°S) can be captured using a linear step response model (Deb et al. 2020). This
307 model provides the response over SH extra-tropics due to a step like change in
308 precipitation/convection over the RWS region. At any time-lag ' l ', the cumulative response
309 can be calculated using equation (4) for a unit 'step-like' change in the forcing parameter.
310 Considering the presence of AW4 pattern in austral summer, daily meridional wind,
311 geopotential height, precipitable water (mm/day), divergence (s^{-1}), and 500 hPa vertical wind
312 (pascal/sec) for December-February season are selected as response data, whereas,
313 precipitation anomaly over western subtropical Pacific (probable source of RWS) from October

314 to February is considered as forcing data. It is to be noted that precipitation anomaly for extra
315 two months (October - November) are considered to provide the lead forcing in the model.
316 Eventually, the model is forced by a precipitation anomaly of 3 mm/day over the RWS region
317 in the western Pacific Ocean adjacent to New Zealand coast (shown by the blue box in fig. 5)
318 and the step response (averaged over 30-40 days) is recorded in meridional-wind anomaly at
319 250hPa (Fig. 6a) and geopotential height anomaly at 250hPa (Fig. 6b). 200hPa V-wind and
320 geopotential height are significant over the southern mid-latitude, suggesting an AW4 pattern
321 similar to the pattern seen in the NCEP2 data (Fig. 1a & 4). Locations of anomalous centers of
322 geopotential height and V-wind clearly represent the formation of 8 anomalous circulation cells
323 accompanying AW4 pattern in the geopotential height anomalies in the mid-latitude belt. Thus,
324 it can be inferred that the AW4 is triggered by anomalous convection over the western
325 subtropical Pacific Ocean, off the New Zealand coast. The diabatic heating, upper-level
326 divergence and vortex stretching associated with this anomalous convection causes a Rossby
327 wave response in the upper atmosphere which assumes a quasi-stationary wavenumber 4
328 structure within ~15-25 days. The AW4 pattern eventually gets trapped in the westerly
329 waveguide in the SH, and becomes a potential source of atmosphere-ocean variability in the
330 SH.

331 **3.4 Effect of AW4 on SH precipitation variability**

332 Inter-annual rainfall variability over South America and Australia are strongly affected by PSA
333 and SASIO patterns in the SH (Grimm 2003, 2004; Grimm and Ambrizzi 2009; Cai et al. 2011;
334 Lin and Li 2012; Yuan et al. 2018; Lin 2019). Remarkably, existence of AW4 over the southern
335 subtropics have also the potential to affect SH continental rainfall. Linear step response (Figs.
336 6c-e) and composite maps (Figs. 6f-h) shows the impact of AW4 on precipitation over Australia
337 and South America (Figs. 6c and 6f). To identify the physical mechanism linking the AW4
338 pattern and the continental rainfall (Figs. 6c & 6f), linear step response (similar to figure 6a)
339 and composite maps of positive years are constructed for 250 hPa divergence and 500 hPa
340 vertical motion (Figs. 6d-e & 6g-h) during austral summer season. A significant upper level
341 divergence (Figs. 6d & 6g) and mid tropospheric vertical motion (Figs. 6e & 6h) can be noticed
342 over South America and Australia which are consistent with the rainfall patterns (Figs. 6c &
343 6f). A horseshoe shaped convergence pattern is observed in the upper troposphere (Fig. 6g)
344 over southern part of South America, associated with a similar structure of descending motion
345 of air (Fig. 6h). This signifies an active sink region over southern South America, marked by a

negative precipitation anomaly (Fig. 6f) over that region. Anomalous circulation caused by AW4 pattern causes a northward (southward) meridional wind in the upper level over the South America (western Atlantic Ocean) during positive years (Fig. 6a). As a consequence of zonal gradient in 250 hPa meridional wind, the upper level wind converges over the region and can be witnessed in figures 6d-e & 6g-h. Upper level convergence favours the air to sink and suppress the rainfall (Figs. 6c & 6f) over the South America. Notably, the origin of SASIO pattern is related to upper level divergence owing to local rainfall anomalies over mid-latitude South America and southwest South Atlantic. Hence, the covariability between SASIO and AW4 pattern is examined using wavelet coherence (Grinsted et al. 2004). The wavelet coherence pretty well shows an insignificant covariability between them except for two years, 1990-91 & 2012-13 (Fig. S1b). Further, statistically insignificant correlation (0.38; at 99% confidence level) between PC's of AW4 and SASIO, approximately 20° phase difference between their loading centers (Fig. S1a) and different sources of forcing (i.e. different RWS) confirm the distinct nature of AW4 from the SASIO pattern. Further, a dipole type precipitation variability accompanied by upper-level divergence/convergence and vertical motion is also noticed in south-eastern and north-western part of Australia (Figs. 6c and 6f). A local upper tropospheric circulation change due to AW4 pattern (Figs. 6a & 4c-d) initiates a similar mechanism to that of South America, which affects the rainfall over the Australia. The anomalous circulation forced by AW4 activity causes an upper-level convergence (divergence) associated with descending (ascending) air motion (Figs. 6d-e & 6g-h) which acts to suppress (enhance) rainfall over the south-eastern (north-western) part of Australia (Figs. 6c & 6f). Notably, lower-level circulation change coupled with local SST variation can also affect the rainfall over south-eastern Australia (Senapati et al. 2021). The scenario is opposite during negative years. Hence, the anomalous circulation generated due to AW4 activity over the Australia and South America affects the weather over the region (Fig. 6c-e). The persistence of the AW4 throughout the season (probably due to the thermodynamic coupling with SST (Senapati et al. 2021)) also affect the seasonal rainfall over the Australia and South America. It can be also noted that, “2013” is a positive extreme AW4 event and matches well with the local circulation changes around South Africa (Figure not shown) during January, 2013 flood (Manhique et al. 2015). Thus, this study can be helpful in understanding such dynamics and teleconnection to improve the short-range to seasonal forecast of SH climate.

377 **4 Discussion and Conclusion**

378 Climate of SH is modulated by several high-latitude modes of variability, e.g., SAM,
379 ACW, AO etc., which are characterised by variations in ocean, sea ice and atmosphere (White
380 and Peterson 1996; Gong and Wang 1999; Hall and Visbeck 2002; Wang 2010; Deb et al.
381 2017). Recently, a circumglobal wavenumber-4 pattern was discovered in the Southern Ocean
382 SST during austral summer (Senapati et al. 2021). It was noted that the SST wave pattern is
383 forced by the atmosphere and sustained for ~3-4 months through a strong thermodynamic
384 coupling. However, the origin and dynamics of the atmospheric wave that forces the ocean to
385 generate the oceanic wave pattern remained unclear.

386 Here, we demonstrate that a stationary global AW4 in the SH during austral summer
387 responsible for modulating SH climate. Using composite analysis and linear response theory,
388 we show that this stationary AW4 pattern is forced by a RWS in the upstream region of the
389 upper-tropospheric westerly wave-guide. The RWS is maintained by anomalous convection
390 and diabatic heating over the western subtropical Pacific Ocean (adjacent to the New Zealand
391 coast), which triggers a Rossby wave response in the upper troposphere through upper level
392 divergence and vortex stretching. The Rossby wave moves poleward, gets trapped in the
393 westerly wave guide and subsequently attains a quasi-stationary structure within ~15-25 days.
394 However, a weak signal is noticed over Indo-Atlantic region as compared to Pacific Ocean
395 (Fig. 1 & 2). This needs to be investigated with coupled ocean-atmosphere model experiments
396 and will be addressed in a future study. Moreover, a lagged correlation analysis is performed
397 between SST wavenumber-4 index and 850 hPa wind anomalies to identify the source of
398 atmospheric wave that yields to SST wavenumber-4 (Senapati et al. 2021). Figure 7 suggests
399 the anomalous circulation over the RWS region near coastal New Zealand leads the SST
400 wavenumber-4 index by up to 3 months implying that the RWS over coastal New Zealand is
401 instrumental in the generation of SST wavenumber-4 pattern via thermodynamic air-sea
402 coupling with AW4 as discussed in the recent study (Senapati et al. 2021). This thermodynamic
403 air-sea coupling further helps in sustaining the AW4 pattern for months.

404 Our study shows that precipitation anomalies over SH continents are strongly
405 modulated by AW4 pattern, e.g., the positive phase of AW4 pattern is associated with a dipole-
406 like precipitation anomaly over Australia (with enhanced and suppressed precipitation over
407 north-western and south-eastern part, respectively), and an increased precipitation (associated
408 with a horseshoe-like upper level divergence) over southern part of South America. Moreover,
409 Senapati et al. (2021) showed that the lower-level circulation change coupled with local SST

410 variation forced by AW4 can also affect the rainfall over southeastern Australia. Interestingly,
411 Manhique et al. (2015) suggested a link between 2013 South Africa flood with an atmospheric
412 wavenumber-4 pattern in the SH. Their wavenumber-4 pattern shows close resemblance to the
413 composite atmospheric circulation anomaly during ‘extreme’ AW4 years (defined as AW4
414 index greater than one standard deviation, figure not shown) suggesting that January, 2013
415 flood in South Africa may be attributed to the global AW4 pattern reported here.

416 Our study makes the first attempt to understand the origin and dynamics of the recently
417 discovered wavenumber-4 teleconnection pattern in the SH which can greatly improve the
418 seasonal-scale predictability of extreme events like floods and droughts. However, the
419 interaction of AW4 with SASIO pattern (Lin 2019) and mid-tropospheric semi-permanent
420 subtropical anticyclones (Reason 2016) remains to be explored.

421 **Acknowledgements**

422 The first author is thankful to the Department of Science and Technology, New Delhi for
423 funding his research through the INSPIRE PhD fellowship programme (IF170092). The
424 authors are also grateful to the Indian Institute of Technology Kharagpur for providing
425 necessary facilities. NCAR Command Language, Climate Data Operator, Python and Matlab
426 have been used for the analysis. Figures are plotted using PyFerret and Matlab.

427 **Declarations**

428 **Data availability**

429 All the data that support the findings of this study are available in Kanamitsu et al. (2002) and
430 Rayner et al. (2003). These datasets are openly accessible in respected sites mentioned in the
431 manuscript.

432 **Code availability**

433 All codes used to perform the analyses in this study are available on request from the
434 corresponding author.

435 **Conflicts of interest**

436 The authors declare no conflict of interests.

437 **References**

438 Ambrizzi T, Hoskins BJ, Huang-Hsiung Hsu (1995) Rossby wave propagation and
439 teleconnection patterns in the austral winter. *J Atmos Sci.* [https://doi.org/10.1175/1520-0469\(1995\)052<3661:RWPATP>2.0.CO;2](https://doi.org/10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2)

440

441 Ashok K, Behera SK, Rao SA, et al (2007) El Niño Modoki and its possible teleconnection. *J*
442 *Geophys Res Ocean* 112:. <https://doi.org/10.1029/2006JC003798>

443 Behera SK, Yamagata T (2001) Subtropical SST dipole events in the southern Indian Ocean.
444 *Geophys Res Lett* 28:327–330. <https://doi.org/10.1029/2000GL011451>

445 Cai W, van Rensch P, Cowan T, Hendon HH (2011) Teleconnection pathways of ENSO and
446 the IOD and the mechanisms for impacts on Australian rainfall. *J Clim.*
447 <https://doi.org/10.1175/2011JCLI4129.1>

448 Cai W, Watterson IG (2002) Modes of interannual variability of the Southern Hemisphere
449 circulation simulated by the CSIRO climate model. *J Clim.*
450 [https://doi.org/10.1175/1520-0442\(2002\)015<1159:MOIVOT>2.0.CO;2](https://doi.org/10.1175/1520-0442(2002)015<1159:MOIVOT>2.0.CO;2)

451 Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic convergence zone:
452 Intensity, form, persistence, and relationships with intraseasonal to interannual activity
453 and extreme rainfall. *J Clim* 17:. [https://doi.org/10.1175/1520-0442\(2004\)017<0088:TSACZI>2.0.CO;2](https://doi.org/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2)

454

455 Chiswell SM (2021) Atmospheric wavenumber-4 driven South Pacific marine heat waves
456 and marine cool spells. *Nat Commun* 12:. <https://doi.org/10.1038/s41467-021-25160-y>

457 Deb P, Dash MK, Dey SP, Pandey PC (2017) Non-annular response of sea ice cover in the
458 Indian sector of the Antarctic during extreme SAM events. *Int J Climatol* 37:.
459 <https://doi.org/10.1002/joc.4730>

460 Deb P, Matthews AJ, Joshi MM, Senior N (2020) The Extratropical Linear Step Response to
461 Tropical Precipitation Anomalies and Its Use in Constraining Projected Circulation
462 Changes under Climate Warming. *J Clim* 33:7217–7231. <https://doi.org/10.1175/JCLI-D-20-0060.1>

463

464 Ding R, Li J, Tseng Y heng (2015) The impact of South Pacific extratropical forcing on
465 ENSO and comparisons with the North Pacific. *Clim Dyn.*
466 <https://doi.org/10.1007/s00382-014-2303-5>

467 Fauchereau N, Trzaska S, Richard Y, et al (2003) Sea-surface temperature co-variability in
468 the southern Atlantic and Indian Oceans and its connections with the atmospheric
469 circulation in the Southern Hemisphere. *Int J Climatol* 23:663–677.
470 <https://doi.org/10.1002/joc.905>

471 Ghil M, Mo K (1991) Intraseasonal Oscillations in the Global Atmosphere. Part2: Southern
472 Hemisphere. *J. Atmos. Sci.*

473 Gong D, Wang S (1999) Definition of Antarctic oscillation index. *Geophys Res Lett.*
474 <https://doi.org/10.1029/1999GL900003>

475 Grimm AM (2004) How do La Niña events disturb the summer monsoon system in Brazil?
476 *Clim Dyn* 22: <https://doi.org/10.1007/s00382-003-0368-7>

477 Grimm AM (2003) The El Niño impact on the summer monsoon in Brazil: Regional
478 processes versus remote influences. *J Clim* 16: [https://doi.org/10.1175/1520-0442\(2003\)016<0263:TENIOT>2.0.CO;2](https://doi.org/10.1175/1520-0442(2003)016<0263:TENIOT>2.0.CO;2)

480 Grimm AM, Ambrizzi T (2009) Teleconnections into South America from the Tropics and
481 Extratropics on Interannual and Intraseasonal Timescales

482 Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and
483 wavelet coherence to geophysical time series. *Nonlinear Process Geophys* 11: <https://doi.org/10.5194/npg-11-561-2004>

485 Hall A, Visbeck M (2002) Synchronous variability in the Southern Hemisphere atmosphere,
486 sea ice, and ocean resulting from the annular mode. *J Clim* 15: [https://doi.org/10.1175/1520-0442\(2002\)015<3043:SVITSH>2.0.CO;2](https://doi.org/10.1175/1520-0442(2002)015<3043:SVITSH>2.0.CO;2)

488 Hasselmann K, Sausen R, Maier-Reimer E, Voss R (1993) On the cold start problem in
489 transient simulations with coupled atmosphere-ocean models. *Clim Dyn.*
490 <https://doi.org/10.1007/BF00210008>

491 Hoskins BJ, Ambrizzi T (1993) Rossby wave propagation on a realistic longitudinally
492 varying flow. *J. Atmos. Sci.* 50:1661–1671

493 Irving D, Simmonds I (2016) A new method for identifying the Pacific-South American
494 pattern and its influence on regional climate variability. *J Clim* 29: <https://doi.org/10.1175/JCLI-D-15-0843.1>

496 Jianchun Qin, Robinson WA (1993) On the Rossby wave source and the steady linear
497 response to tropical forcing. *J Atmos Sci.* [https://doi.org/10.1175/1520-0469\(1993\)050<1819:otrwsa>2.0.co;2](https://doi.org/10.1175/1520-0469(1993)050<1819:otrwsa>2.0.co;2)

499 Jury MR, Parker BA, Raholijao N, Nassor A (1995) Variability of summer rainfall over
500 Madagascar: Climatic determinants at interannual scales. *Int J Climatol.*
501 <https://doi.org/10.1002/joc.3370151203>

502 Kanamitsu M, Ebisuzaki W, Woollen J, et al (2002) NCEP-DOE AMIP-II reanalysis (R-2).
503 *Bull Am Meteorol Soc* 83:. <https://doi.org/10.1175/bams-83-11-1631>

504 Karoly DJ, Vincent DG (1998) Meteorology of the Southern Hemisphere. *Meteorol Monogr.*
505 <https://doi.org/10.1175/0065-9401-27.49.1>

506 Kidson JW (1999) Principal modes of Southern Hemisphere low-frequency variability
507 obtained from NCEP-NCAR reanalyses. *J Clim.* [https://doi.org/10.1175/1520-0442\(1999\)012<2808:PMOSHL>2.0.CO;2](https://doi.org/10.1175/1520-0442(1999)012<2808:PMOSHL>2.0.CO;2)

509 Kiladis GN, Mo KC (1998) Interannual and Intraseasonal Variability in the Southern
510 Hemisphere. In: *Meteorology of the Southern Hemisphere*

511 Kwok R, Comiso JC (2002) Southern Ocean climate and sea ice anomalies associated with
512 the Southern Oscillation. *J Clim* 15:. [https://doi.org/10.1175/1520-0442\(2002\)015<0487:SOCA>2.0.CO;2](https://doi.org/10.1175/1520-0442(2002)015<0487:SOCA>2.0.CO;2)

514 Lin Z (2019) The South Atlantic-South Indian ocean pattern: A zonally oriented
515 teleconnection along the Southern Hemisphere westerly jet in austral summer.
516 *Atmosphere (Basel)* 10:. <https://doi.org/10.3390/atmos10050259>

517 Lin Z, Li Y (2012) Remote influence of the tropical Atlantic on the variability and trend in
518 North West Australia summer rainfall. *J Clim.* <https://doi.org/10.1175/JCLI-D-11-00020.1>

520 Madden RA, Julian PR (1994) Observations of the 40-50-day tropical oscillation - a review.
521 *Mon Weather Rev.* [https://doi.org/10.1175/1520-0493\(1994\)122<0814:OOTDTO>2.0.CO;2](https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2)

523 Manhique AJ, Reason CJC, Silinto B, et al (2015) Extreme rainfall and floods in southern
524 Africa in January 2013 and associated circulation patterns. *Nat Hazards.*
525 <https://doi.org/10.1007/s11069-015-1616-y>

526 Mo KC (2000) Relationships between low-frequency variability in the Southern Hemisphere
527 and sea surface temperature anomalies. *J Clim.* [https://doi.org/10.1175/1520-0442\(2000\)013<3599:RBLFVI>2.0.CO;2](https://doi.org/10.1175/1520-0442(2000)013<3599:RBLFVI>2.0.CO;2)

529 Mo KC, Higgins RW (1998) The Pacific-South American modes and tropical convection
530 during the Southern Hemisphere winter. *Mon Weather Rev.*
531 [https://doi.org/10.1175/1520-0493\(1998\)126<1581:TPSAM>2.0.CO;2](https://doi.org/10.1175/1520-0493(1998)126<1581:TPSAM>2.0.CO;2)

532 Morioka Y, Tozuka T, Yamagata T (2011) On the growth and decay of the subtropical dipole
533 mode in the South Atlantic. *J Clim* 24:5538–5554.
534 <https://doi.org/10.1175/2011JCLI4010.1>

535 Nagaraju C, Ashok K, Balakrishnan Nair TM, et al (2018) Potential influence of the Atlantic
536 Multi-decadal Oscillation in modulating the biennial relationship between Indian and
537 Australian summer monsoons. *Int J Climatol* 38:. <https://doi.org/10.1002/joc.5722>

538 North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling Errors in the Estimation of
539 Empirical Orthogonal Functions. *Mon Weather Rev.* [https://doi.org/10.1175/1520-0493\(1982\)110<0699:seiteo>2.0.co;2](https://doi.org/10.1175/1520-0493(1982)110<0699:seiteo>2.0.co;2)

541 Nuncio M, Yuan X (2015) The influence of the Indian Ocean dipole on Antarctic sea ice. *J
542 Clim.* <https://doi.org/10.1175/JCLI-D-14-00390.1>

543 Osman M, Vera CS (2020) Predictability of extratropical upper-tropospheric circulation in
544 the Southern Hemisphere by its main modes of variability. *J Clim.*
545 <https://doi.org/10.1175/JCLI-D-19-0122.1>

546 Rayner NA, Parker DE, Horton EB, et al (2003) Global analyses of sea surface temperature,
547 sea ice, and night marine air temperature since the late nineteenth century. *J Geophys
548 Res Atmos.* <https://doi.org/10.1029/2002jd002670>

549 Reason CJC (2016) The Bolivian, Botswana, and Bilybara Highs and Southern Hemisphere
550 drought/floods. *Geophys Res Lett* 43:1280–1286.
551 <https://doi.org/10.1002/2015GL067228>

552 Rodrigues RR, Campos EJD, Haarsma R (2015) The impact of ENSO on the south Atlantic
553 subtropical dipole mode. *J Clim* 28:. <https://doi.org/10.1175/JCLI-D-14-00483.1>

554 Sardeshmukh PD, Hoskins BJ (1988) The generation of global rotational flow by steady
555 idealized tropical divergence. *J Atmos Sci.* <https://doi.org/10.1175/1520->

556 0469(1988)045<1228:TGOGRF>2.0.CO;2

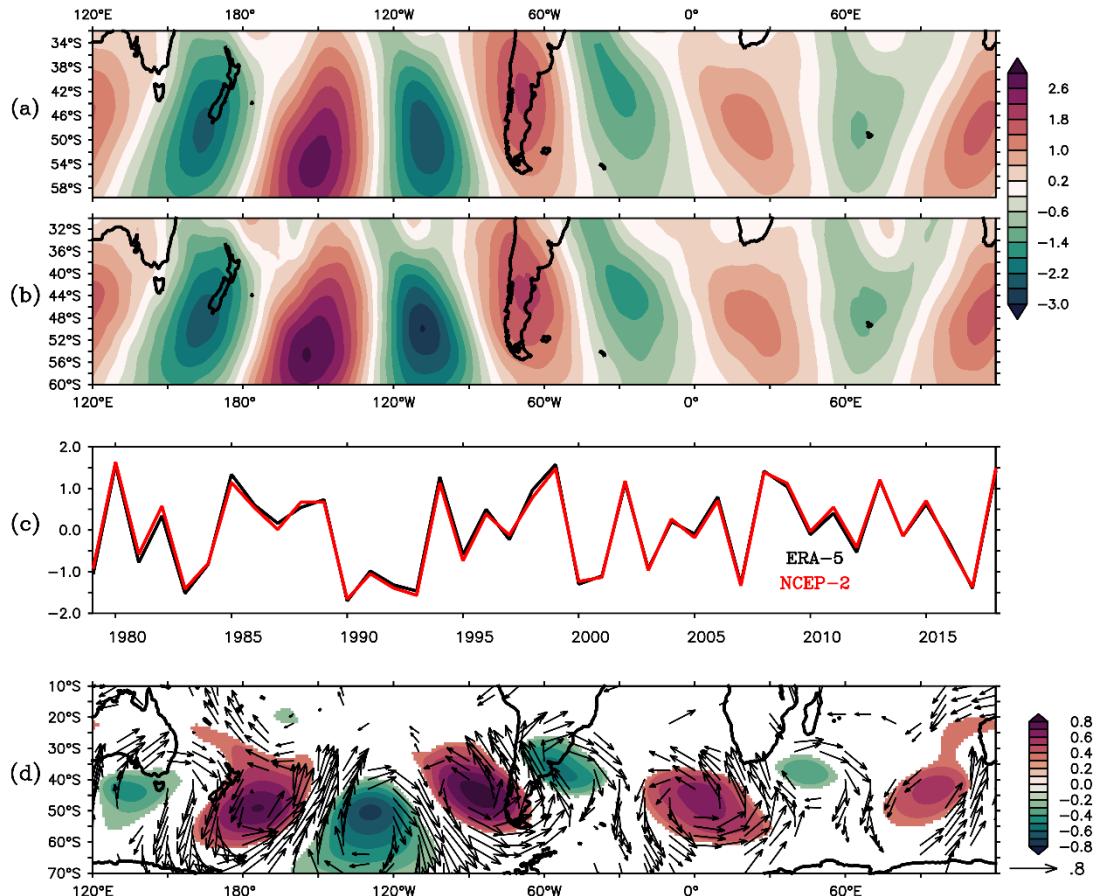
557 Senapati B, Dash MK, Behera SK (2021) Global wave number-4 pattern in the southern
558 subtropical sea surface temperature. *Sci Rep* 11:1–12. <https://doi.org/10.1038/s41598-020-80492-x>

560 Turner J (2004) The El Niño-Southern Oscillation and Antarctica. *Int J Climatol* 24:.
561 <https://doi.org/10.1002/joc.965>

562 Wang F (2010) Subtropical dipole mode in the Southern Hemisphere: A global view.
563 *Geophys Res Lett* 37:1–4. <https://doi.org/10.1029/2010GL042750>

564 White WB, Peterson RG (1996) An Antarctic circumpolar wave in surface pressure, wind,
565 temperature and sea-ice extent. *Nature*. <https://doi.org/10.1038/380699a0>

566 Wirth V, Riemer M, Chang EKM, Martius O (2018) Rossby wave packets on the midlatitude
567 waveguide-A review. *Mon. Weather Rev.*

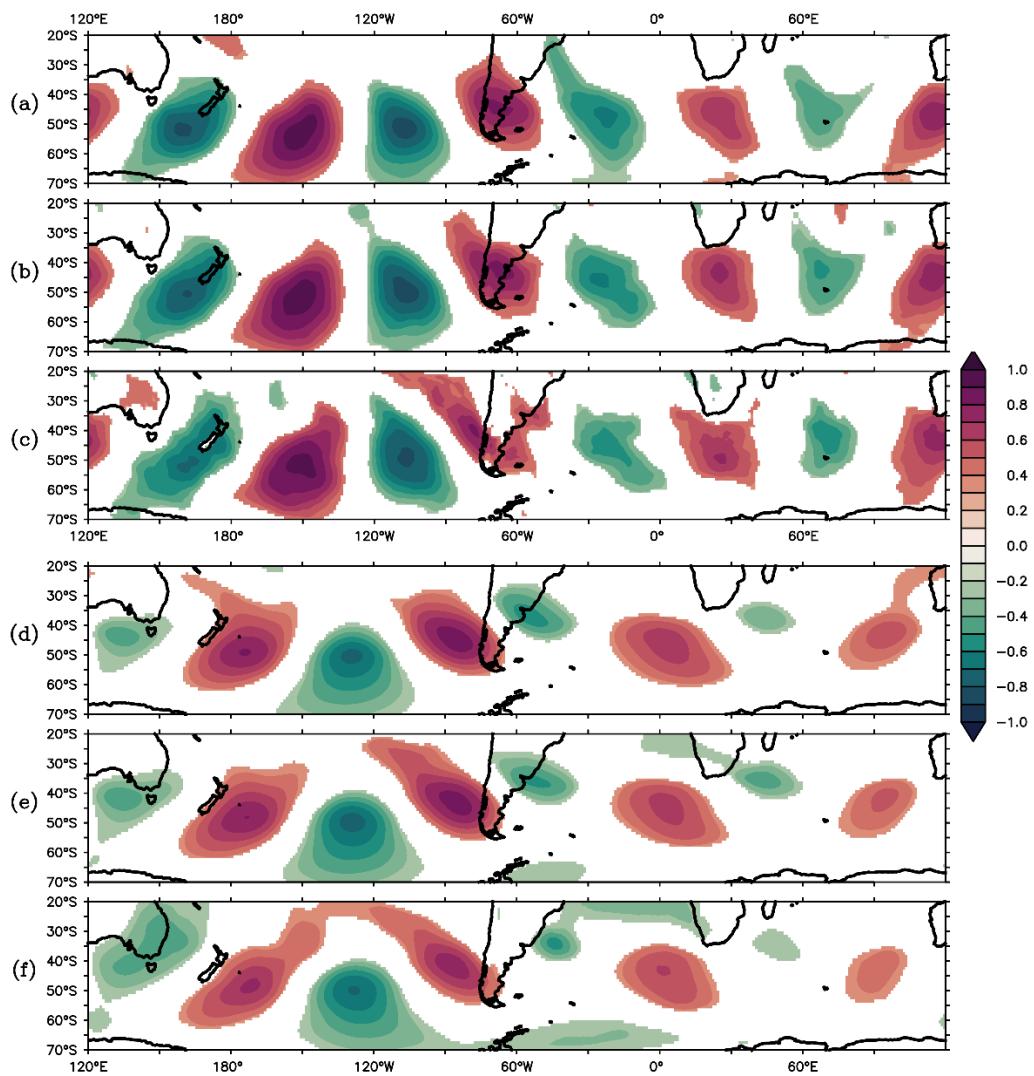

568 Yuan X (2004) ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and
569 mechanisms. *Antarct Sci*. <https://doi.org/10.1017/S0954102004002238>

570 Yuan X, Kaplan MR, Cane MA (2018) The interconnected global climate system-a review of
571 tropical-polar teleconnections. *J. Clim.*

572 Zhao C, Li T, Zhou T (2013) Precursor signals and processes associated with MJO initiation
573 over the tropical indian ocean. *J Clim*. <https://doi.org/10.1175/JCLI-D-12-00113.1>

574

575

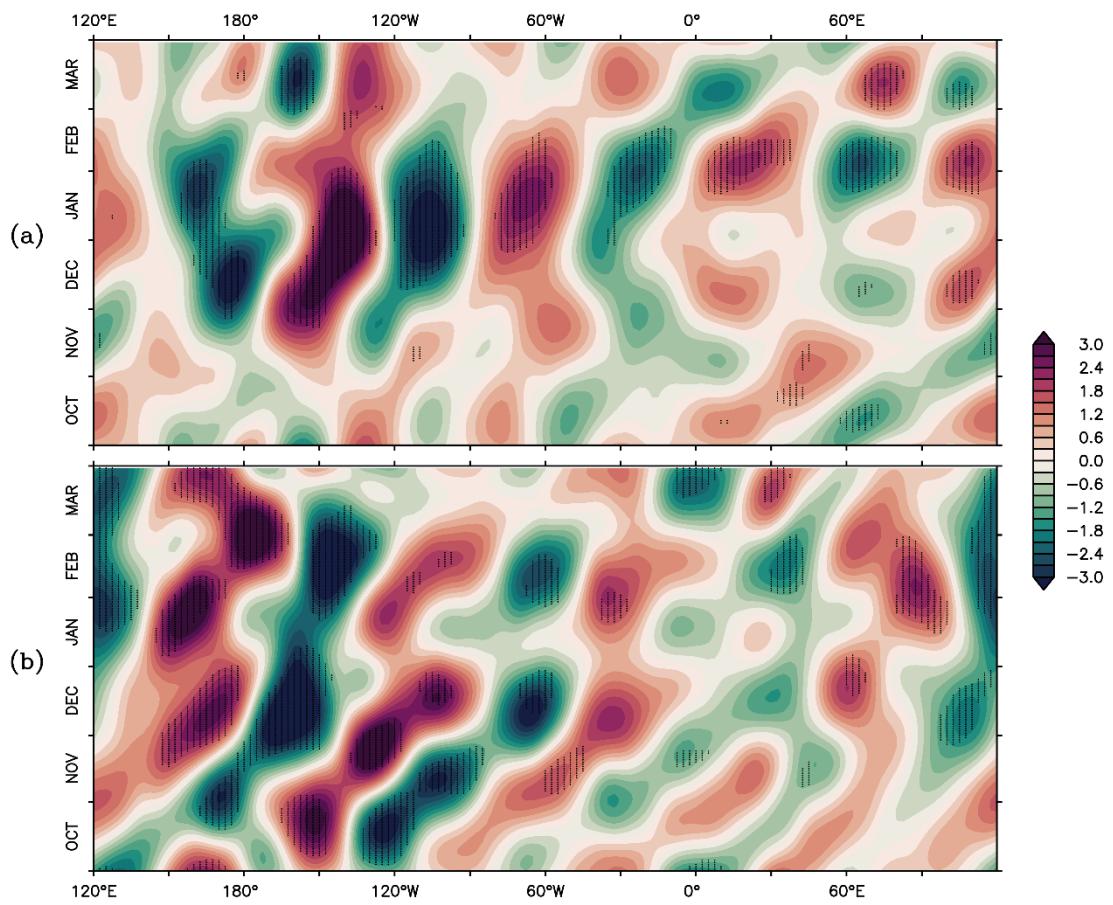


576

577 **Fig. 1** Leading EOF mode of 250 hPa meridional wind anomaly over Southern mid-latitude
 578 during austral summer (December-January-February mean) for (a) NCEP-2 data, (b)
 579 ERA-5 data. (c) Time series of EOF-1 pattern. Solid red (black) line is for NCEP-2 data
 580 (ERA-5 data). (d) Correlation field of AW4 index with geo-potential height anomaly
 581 (filled) and horizontal wind (vectors) at 250 hPa. Values not satisfying 95% confidence
 582 using two tailed student's t-test are suppressed.

583

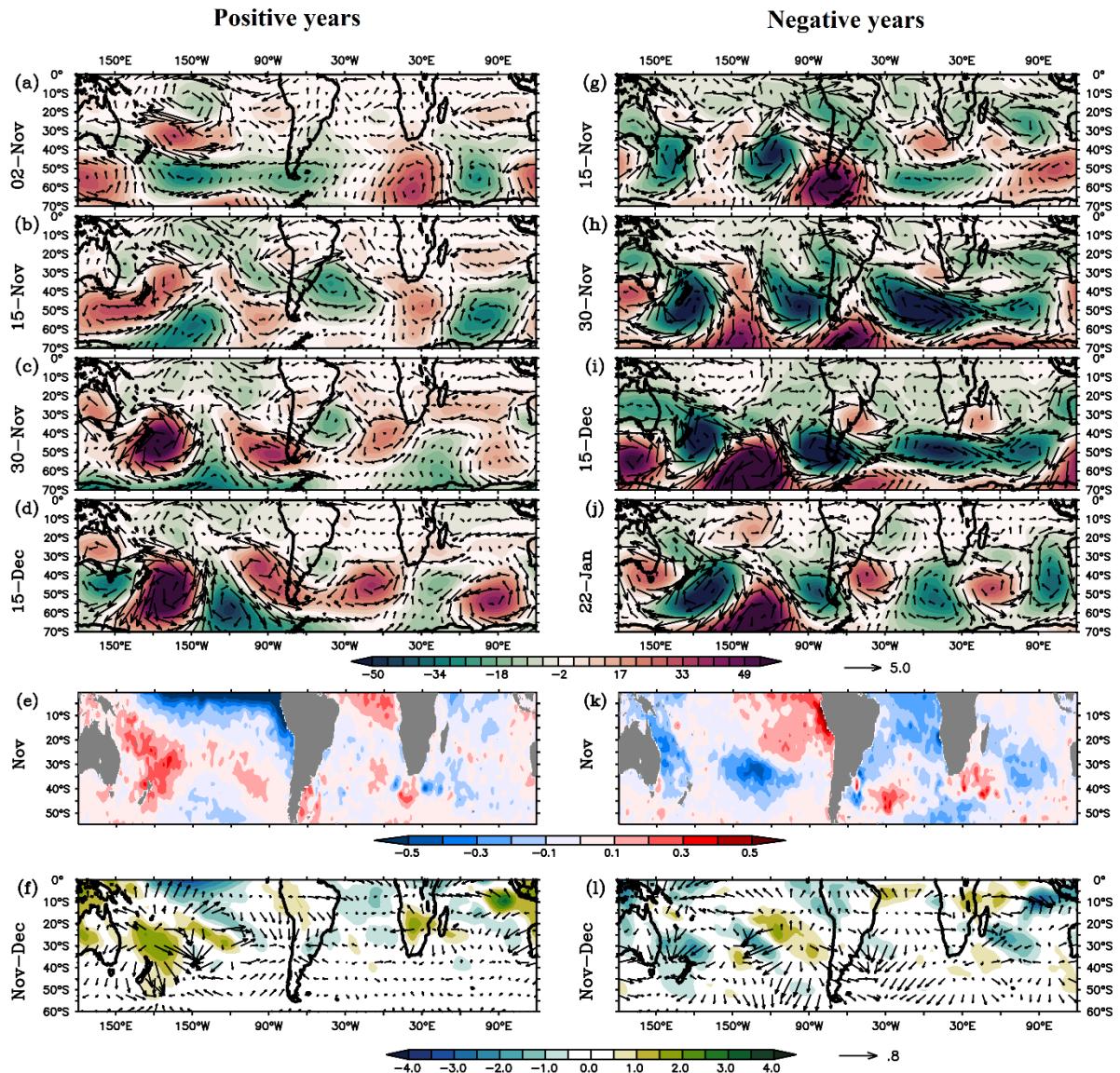
584


585

586

587 **Fig. 2** Correlation map of AW4 index with meridional wind anomalies at (a) 250 hPa, (b) 500
 588 hPa, and (c) 850 hPa, and geo-potential height anomaly at (d) 250 hPa, (e) 500 hPa, and
 589 (f) 850 hPa. Values satisfying 95% significance using two-tailed t-test are shown.

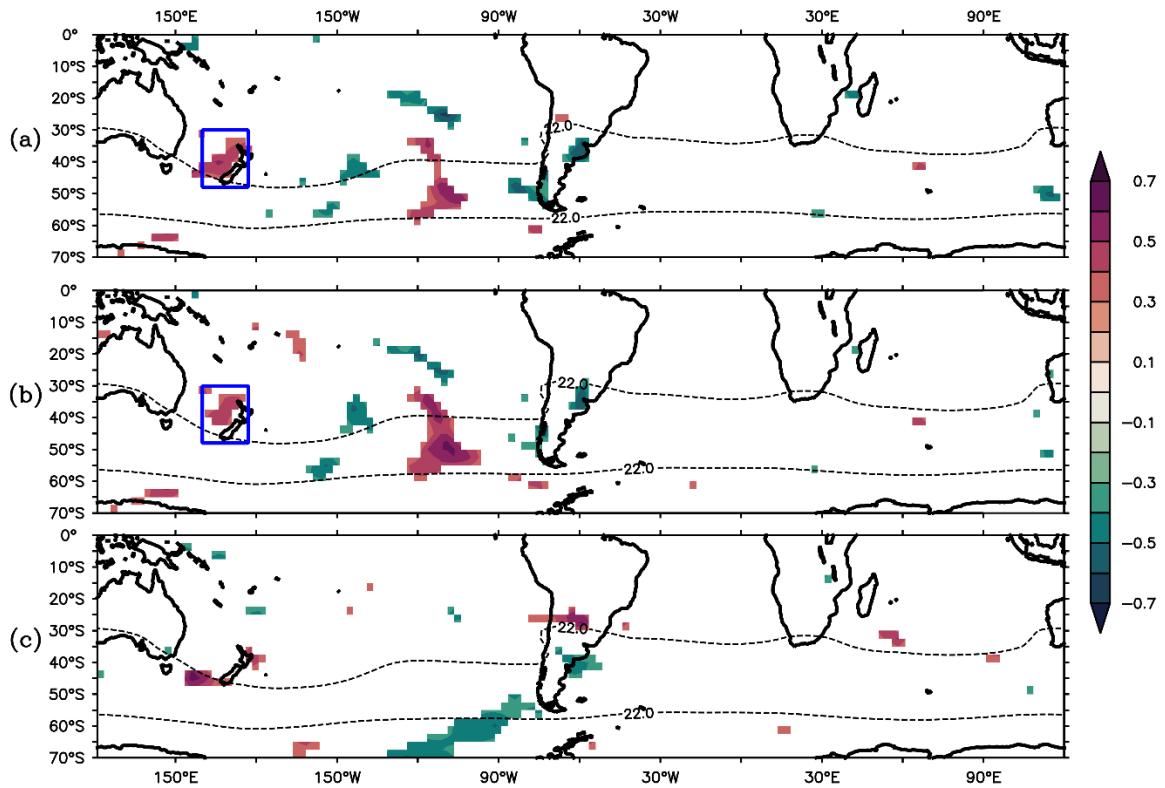
590


591

592

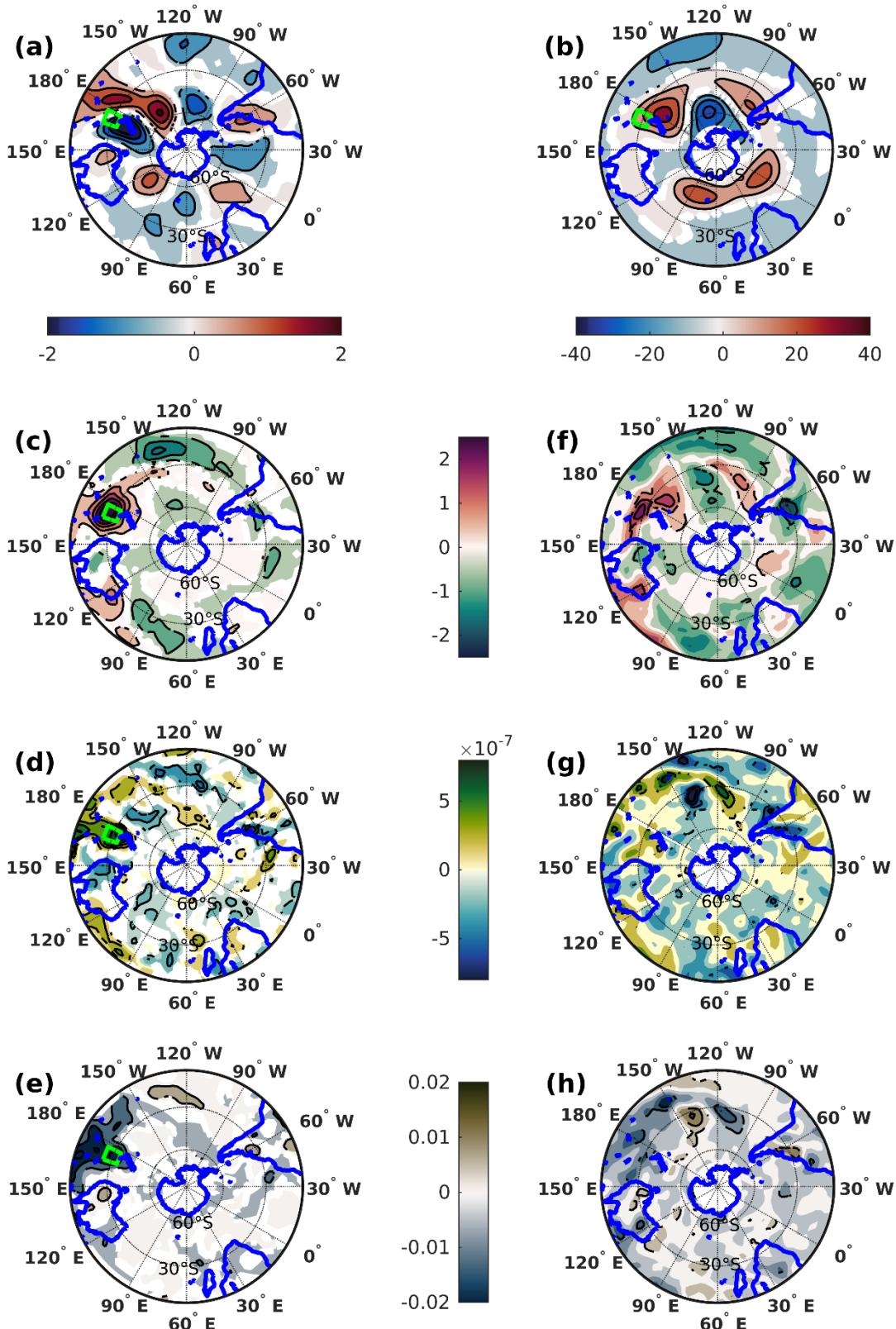
593 **Fig. 3** Hovmöller diagram (30°S-60°S averaged) of daily 250 hPa meridional wind anomaly
 594 during (a) positive years and (b) negative years. Values satisfying 90% significance
 595 using two tailed t-test are dotted.

596



597

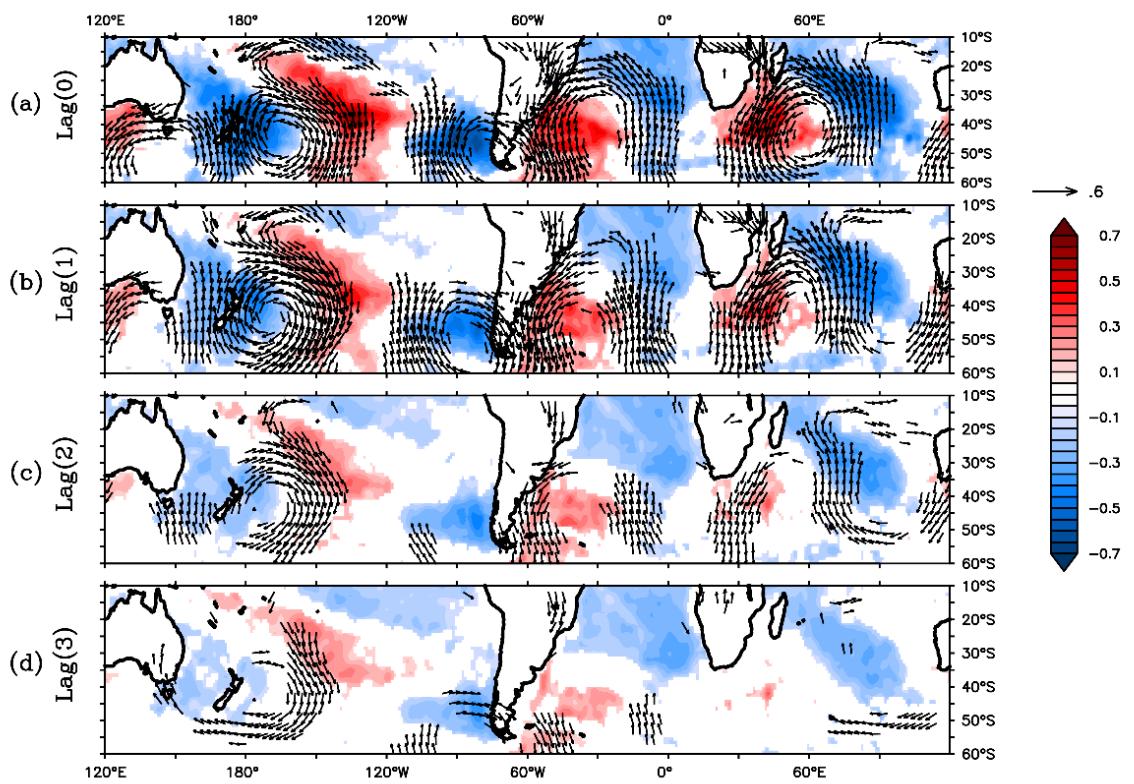
598 **Fig. 4** Left panel (a-f) Composite of daily geopotential height anomaly (filled in meter) and
 599 wind anomaly (vector in m/s) at 250 hPa for (a) 2nd November, (b) 15th November,
 600 (c) 30th November, and (d) 15th December during positive years. Composite of (e)
 601 November SST anomaly, and (f) November-December precipitable water anomaly
 602 (shaded in mm/day) and 250 hPa divergent wind (vector in m/s) during positive years.
 603 Right panel (g-l) is similar to left panel but for negative years.


604

605

606
607 **Fig. 5** Correlation map of AW4 index and (a) RWS, (b) S1, and (c) S2 during austral summer.
608 Values below 95% confidence interval using two tailed student's t-test are suppressed.
609 Dotted black line shows the westerly jet (contour of 22 m/s zonal wind). Blue box
610 (160°E-177°E, 30°S-48°S) represents the potential region of RWS.

611
612



613

614 **Fig. 6** Linear step response function for 250 hPa anomalous (a) meridional wind (b)
 615 geopotential height (c) precipitable water (mm/day) (d) divergence (s^{-1}), and (e) 500
 616 hPa vertical wind (pascal/sec), averaged over lag 30-40 days, forced by a 3 mm/day

area-averaged precipitable water anomaly over the region shown in green box, during DJF of 1979/80–2017/18. Shading is masked out using 1000 samples of first order auto-regressive red noise spectrum, and contour lines are only plotted where the step response function is more than 2 standard deviations of the red noise spectrum. Composite of (f) precipitable water anomaly (in mm/day) (g) 250 hPa divergence (s^{-1}), and (h) 500 hPa vertical wind (pascal/sec) during positive years (contour lines shows 90% significant values using two tailed t-test).

624
625

626
627
628

629 **Fig. 7** Lag cross-correlation between SST W4 index and SST anomaly (filled), and 850 hPa
630 wind anomaly (vectors). Lag “1” stands for 1 month lagging of SST W4 index and so on.
631 Areas not satisfying 99% significance using two tailed student’s t-test are suppressed.

632
633

634 **Supplementary Information: Origin and dynamics of global atmospheric**
635 **wavenumber-4 in the Southern mid-latitude during austral summer**

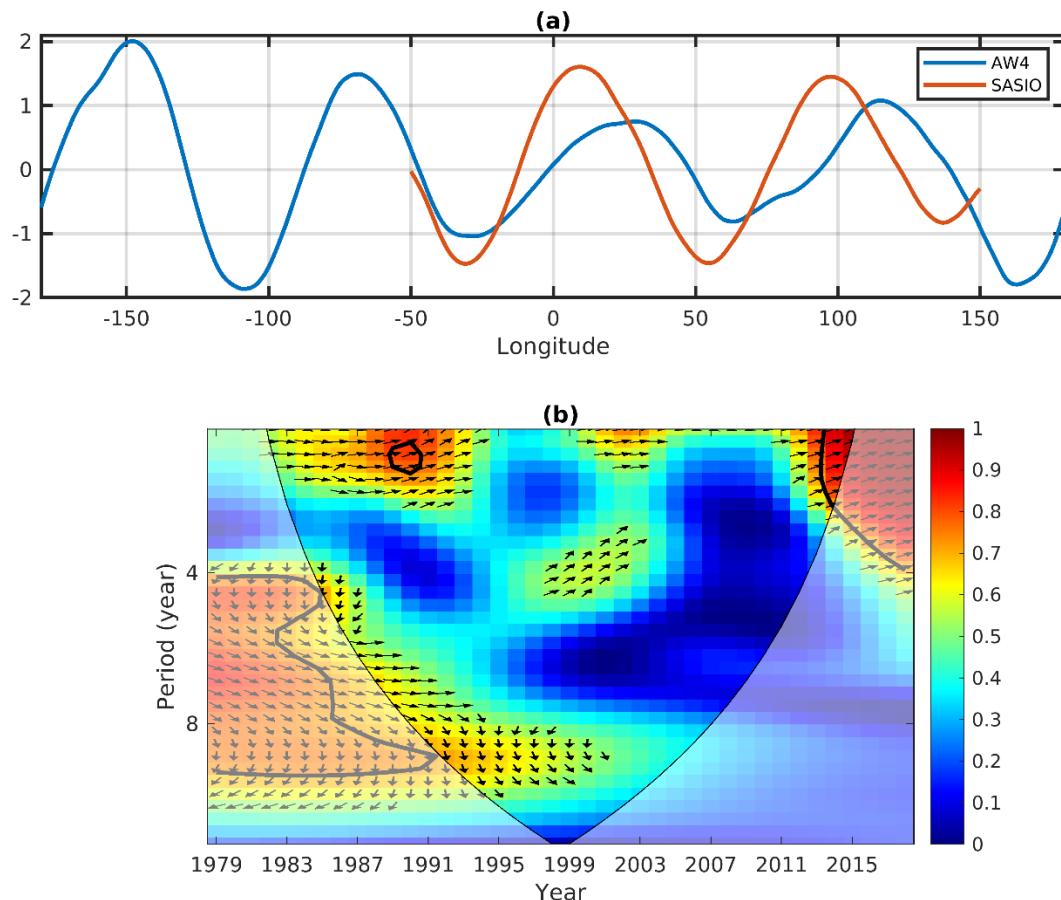
636

637 **Balaji Senapati¹, Pranab Deb¹, Mihir K. Dash¹, and Swadhin K. Behera²**

638 ¹Centre for Oceans, Rivers, Atmosphere and Land Sciences, Indian Institute of Technology
639 Kharagpur, Kharagpur, West Bengal, India.

640 ²Application Laboratory, VAIIG, Japan Agency for Marine-Earth Science and Technology,
641 Yokohama, Kanagawa, Japan.

642


643 Corresponding author: Mihir K. Dash (mihir@coral.iitkgp.ac.in)

644

645 **Contents of this file**

646

647 **Figure S1**

648

649

650 **Fig. S1 (a)** Meridional average of AW4 EOF pattern (blue line) and SASIO EOF pattern (red line). **(b)**
651 The wavelet covariance and phase difference of AW4 index and SASIO time series in the cone of
652 influence. Values higher than 95% confidence interval (using Monte-Carlo approach) are
653 contoured with thick black line. Vectors pointing towards right (left) and down (up) represents the
654 AW4 is in(out)-phase and leading (lagging) the SASIO by 90°. Vectors of lower covariance (less
655 than 0.5) are suppressed.

656