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ABSTRACT
This study aims to explore the forest aboveground biomass rela
tionship to C-band backscatter. A one-hectare area in Wytham 
Woods, located west of Oxford, was selected for this research. The 
area has a total of 525 trees of seven different tree species. The 
Michigan Microwave Canopy Scattering Model (MIMICS), a two- 
layer radiative transfer model, was applied to simulate canopy 
backscatter responses in this deciduous UK forest. Model para
meters related to forest structure were derived from previously 
published terrestrial laser (LiDAR) data. Simulated backscatter was 
performed for co-polarized and cross-polarized modes at a C-band 
frequency range and incidence angles (20° to 45° at 5° increments). 
The research includes five objectives: i) backscatter sensitivity ana
lysis from the variation of different model parameters; ii) backscat
ter seasonal effect under spring–summer (leaf-on) and autumn– 
winter (leaf-off) periods; iii) backscatter comparison between spe
cies as well as between simulated and satellite observations in 
a spatial pattern; iv) relationship between simulated backscatter 
and aboveground biomass; and v) relationship between MIMICS 
forest structure parameters and simulated backscatter. Sensitivity 
analysis results showed significant differences in backscatter from 
changes in leaf distribution, leaf thickness and water content (leaf, 
trunk and soil) for both polarization modes in leaf-on scenarios. 
Leaf-off scenarios presented significant differences from changes in 
branch distribution but only for the co-polarized mode. Seasonal 
variations presented significant backscatter differences between 
spring–summer and autumn–winter scenarios; additionally, back
scatter differences among species for each seasonality in the co- 
polarized mode were observed. The computation of the grid reso
lution (20 m × 20 m) showed a range of backscatter values depend
ing on the grid and incidence angle. Higher backscatter values were 
observed for the satellite data than for the simulated data. Finally, 
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the aboveground biomass and the MIMICS input parameters pre
sented high random variability and little systematic co-variation 
with the total backscatter on both simulated seasons, suggesting 
that more robust allometric equations for biomass estimation are 
required.

1. Introduction

Forest areas are large sinks of atmospheric carbon dioxide at ground level, via absorption 
into the plant tissue through photosynthesis, and account for almost 72% of terrestrial 
carbon in woody biomass and soil (Malhi, Meir, and Brown 2002). Nonetheless, for some 
forests, the carbon sink is drastically declining (Hubau et al. 2020). This means that 
knowledge of the amount of biomass is essential for an understanding of the current 
state of the climate and parameterization in future climate change modelling. 
Understanding the aboveground biomass (AGB), the ‘aboveground standing dry mass 
of live or dead matter from tree or shrub (woody) life forms expressed as a mass per unit 
area’ (Wilkes et al. 2018), is so important that it has been designated an Essential Climate 
Variable (ECV) in the Global Climate Observation System (GCOS).

Optical satellite observations have been commonly used to estimate AGB for forested 
areas, for example, the Normalized Difference Vegetation Index (NDVI, Raymond and 
Chaturvedi 2020; Zhu and Liu 2015) and the Bidirectional Reflectance Distribution 
Function (BRDF, Kumar and Mutanga 2017; Pisek et al. 2021), with the latter used to 
obtain forest physical parameters that are subsequently used for forest carbon modelling. 
Similarly, LiDAR instruments in satellites have been applied for AGB estimation. However, 
the frequency used to emit the laser pulse is unable to penetrate clouds, hence, to get 
a cloud-free mosaic for an accurate AGB, the satellite requires multiple-day composites. 
The lack of continuous data contributes to high uncertainty in AGB prediction (Lu et al.  
2012). On this basis, radar satellite observations have some advantages over optical 
observations due to their cloud-penetrating properties. Furthermore, radar data can be 
used in conjunction with optical observations for forest characterization and biomass 
mapping purposes (Badreldin and Sanchez-Azofeifa 2015). Space-based radar remote 
sensing observations have been widely used to estimate AGB using Synthetic Aperture 
Radar (SAR, de Jesus et al. 2023; Wang et al. 2024; Zeng et al. 2022) and Interferometric 
SAR (InSAR, Balzter, Rowland, and Saich 2007). However, the resolution of the radar data 
(for example, approximately 20 m × 20 m for Sentinel-1, Maslanka et al. 2022)means that 
multiple trees are often present in a single pixel, and thus validation via field measure
ments is often required (Liu et al. 2015), with data aggregation and upscaling to pixel scale 
often being considered (Zhen et al. 2022).

Relationships between polarimetric SAR backscatter (C- and L-bands) and forest bio
mass have previously been obtained (Zeng et al. 2022). However, the SAR backscatter 
intensity is strongly dependent on tree species (Imhoff 1995). This variation in backscatter 
intensity with respect to tree species within a pixel has led to differences in estimated 
AGB, observed by space-based remote sensing techniques (Mitchard et al. 2012).

Additionally, AGB can be estimated using empirical allometric models (Bunce 1968; 
Chung et al. 2017; Kim et al. 2022); these models describe the relationship between 
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measurable ecological variables, typically using either tree height or trunk diameter, or 
both. However, errors in AGB predictions related to empirical model uncertainty (Kim 
et al. 2022) can contribute to significant discrepancies between climatic models 
(Rollinson et al. 2017). These ecological variables can be obtained with in-situ field 
measurements using either destructive (direct) or non-destructive (indirect) methods. 
Examples of destructive methods include harvesting and weighing plant samples from 
a study area (Calders et al. 2014; Lu et al. 2014), while non-destructive field measure
ments include ground-based remote sensing techniques such as Terrestrial Laser 
Scanning (TLS), also known as terrestrial LiDAR (Calders et al. 2014; de Tanago et al.  
2017; Takoudjou et al. 2017).

Whilst field measurements can accurately estimate AGB for a forested region, the 
collection of field observations is time-consuming and geographically limited to spe
cific regions of study. Therefore, space-based remote sensing has been mostly used to 
globally estimate AGB using backscatter intensity (Englhart, Keuck, and Siegert 2011; 
Saatchi et al. 2007). Furthermore, due to the disadvantages of Lidar technology in 
satellite systems (e.g. sensitivity to clouds and atmospheric particles), satellite-radar 
data has become more popular; making use of the repeating orbits of satellites to 
cover the globe and observe regions that are more difficult to reach in person. 
Nonetheless, it is extremely difficult and complex to quantify the individual contribu
tions of vegetation parameters to the radar backscatter signal. Hence, where forested 
areas can be parameterized and the radar backscatter can be simulated, modelling 
approaches are often used to understand the microwave scattering properties of the 
forest canopy (Le Toan et al. 1992), which in turn is crucial for interpreting remote 
sensing data accurately (Treuhaft and Siqueira 2004). Furthermore, simulating radar 
responses over time can help understand how changes in biomass, such as growth, 
deforestation and forest degradation, affect satellite radar signals (Hethcoat et al.  
2021).

Under the radiative transfer (RT) theory (Tsang, Kong, and Shin 1984), several models 
have been developed for the simulation of electromagnetic scattering in forest areas 
(Karam and Fung 1988; Lang and Sighu 1983). Other scattering approaches include the 
distorted Bron approximation based on Maxwell’s equation (Yi-Cheng and Sarabandi  
1995). In RT theory, a two-layer model consists of endless horizontal layers, the top one 
representing the canopy (branches and leaves), a mid-layer consisting of trunks, and 
a bottom layer simulating the ground. Foliage at the upper layer is characterized as 
randomly oriented non-spherical objects and the ground is modelled as a rough surface. 
Other approaches include the treatment of each tree as an individual backscatter object 
(Guoqing and Jon Ranson 1995; Sun, Simonett, and Strahler 1991). In the RT theory, 
energy transport equations can be solved using a discrete ordinate and eigenvalue 
approach (Picard et al. 2004) or the Monte Carlo method (Chuah and Tan 1992; Yang 
et al. 2017).

Despite the diversity in backscatter simulation models, the availability of models and 
guidance is not always possible. Therefore, the accessibility of the Michigan Microwave 
Canopy Scattering Model (MIMICS) (Ulaby et al. 1990a) over other models makes it 
popular in the research community. Moreover, the model has been applied worldwide 
to simulate backscatter responses in a variety of forests (Bosisio and Dechambre 2010; 
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Grover, Quegan, and da Costa Freitas 1999; Karam et al. 1995; Ningthoujam et al. 2016) 
given a reliability on model performance.

This study aims to use the MIMICS model to assess the relationship between estimated 
values of AGB and the simulated C-band backscatter signal using TLS data collected in 
Wytham Woods, UK. The study comprises five objectives:

(1) Determine the significant changes in simulated backscatter through a sensitivity 
analysis of different vegetations and radiometric parameters within the MIMICS 
model.

(2) Examine the seasonal impacts on simulated backscatter to respectively assess 
spring–summer and autumn–winter periods through simulations of leaf-on and 
leaf-off scenarios.

(3) Calculate the mean simulated backscatter for each tree within the 1-ha study 
region of Wytham Woods to estimate differences between species, as well as 
spatial differences in backscatter patterns between simulated and contempora
neous satellite observations (Sentinel-1) in both leaf-on and leaf-off conditions with 
the resolution of 20 m × 20 m.

(4) Assess the relationship between simulated backscatter (VV and VH) and AGB 
values, derived from allometric equations.

(5) Determine the relationship between MIMICS forest structure parameters (e.g. tree 
height and 1st order branch density) and simulated backscatter (VV and VH) of each 
tree in the 1-ha.

2. Materials and methods

2.1. Materials

2.1.1. Michigan microwave canopy scattering model (MIMICS)
MIMICS (Ulaby et al. 1990a, 1990b) is a two-layer radiative transfer model that simulates 
canopy backscatter responses under a discrete scatterer approach. The model divides 
a forest vertically into three regions: a crown layer, a trunk layer, and a rough-surface 
ground layer. The crown layer of an individual tree is assumed to be either an oblate 
spheroid if the crown thickness is greater than the crown diameter or a prolate spheroid if 
the crown thickness is less than the crown diameter and is treated as a mixture of leaves, 
needles, and branches. Leaves are modelled as flat rectangular discs with dimensions 
a and b in the major and minor dimensions, with angle orientations characterized by 
a Probability Distribution Function (PDF). Branches and needles are modelled as dielectric 
cylinders of length L and diameter dc, also with angle orientations characterized by a PDF. 
The trunk region is characterized by an average height H and an average diameter Dc. 
Multiple trees can be modelled by parameterizing a tree density value N, where MIMICS 
will assume them to be vertical cylinders randomly distributed on a horizontal plane. The 
rough-surface ground layer can consist of either soil, water, or snow. Soil is modelled as 
a dielectric material, with a roughness correlation function denoting the surface rough
ness. Snow can be modelled on top of the soil, with snow thickness being parameterized, 
whereas water is parameterized in terms of its salinity.
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The total backscatter is a combination of first-order scattering mechanisms, consisting of 
seven components (Figure 1) in which the sum of all components corresponds to the total 
backscatter. The model output provides the polarization modes, VV, VH, HV and HH at user- 
defined incidence angles and frequencies, within its operational range of 1 GHz−10 GHz. 
Here, only VV and VH backscatters are reported, due to the similarity in values between VV 
and HH (co-polarization) and VH and HV (cross-polarizations). In this contribution, MIMICS 
was used to retrieve the simulated backscatter signals across the C-band range, 4 GHz to 8  
GHz in 2 GHz increments, with incidence angles between 20° and 45° in 5° increments. This 
was done to simulate the range of incidence angles experienced in a Sentinel-1 
Interferometric Wide (IW) swath, 29.1° to 46.0° (Bourbigot et al. 2016)

2.1.2. Study area
Wytham Woods (51°47’N, 1°20’W) is a deciduous forest located to the west of Oxford in 
Southern England, UK. The mean annual rainfall (1993–2008) is 726 mm, and the mean 
annual radiation is 118 Wm−2 (Butt et al. 2009). Its mean annual 2 m air temperature (2014– 
2017, Cooper et al. 2021; Stanley et al. 2023) is 10.6°C, with mean daily air temperature 
ranging from 24.2° in the summer (JJA) and −0.6° during the winter (DJF). Similar mean 
annual values, in the same 3-year period, were recorded for soil temperature at 10 cm above 
ground and 5 cm below the surface. Additionally, volumetric water content registered 
a maximum of 54.9 m3/m3 in the winter (DJF) and a minimum of 23.1 m3/m3 in the summer 
(JJA), with a mean annual value of 42.3 m3/m3. Soil in the area has been classified as shallow 
loam over limestone (Cranfield University 2024) with a soil texture of 40% sand, 40% clay 
and 20% silt. For this study, trees within a 1-ha region (Figure 2) were scanned using TLS 
collected by Calders et al. (2018) to obtain specific parameters for the MIMICS model. This 
1-ha region has previously been the focus of intensive studies (Calders et al. 2018; Kim et al.  
2022; Terryn et al. 2020), which used TLS from a larger 6-ha, with the SW co-ordinates being 
recorded with differential GPS to be located at Lat 51.77550579, Lon −1.33904729 (Origin of 
Local co-ordinates, [0,0]). The 1-ha subset for this study is identical to that of the study by 
Calders et al. (2018), with local coordinates for the SW and NE corners being (40, 100) and 
(140, 200), respectively. The area of interest was dominated by Sycamore trees (Acer 
pseudoplatanus) followed by Ash (Fraxinus excelsior) and Hazel (Corylus avellana) amongst 
other minority species (Hawthorn [Crataegus monogyna], Oak [Quercus robur], and Maple 
[Acer campestre]). Several unidentified species of trees, categorized as ‘unknown’, were also 
present in the area.

Figure 1. MIMICS backscatter components, adapted from (Ulaby et al. 1990b). 1) direct from the 
crown, 2) direct from ground, 3) interaction ground-crown-ground, 4) interaction crown-ground, 5) 
trunk-ground, 6) ground-crown and 7) ground-trunk. The sum of all components corresponds to the 
total backscatter.
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2.1.3. Data collection and processing
TLS was used in conjunction with a semi-automated framework to scan, digitize, and 
create a virtual 3D forest, comprising the 1-ha subregion of Wytham Woods. A full 
description of the TLS method and workflow can be found in Calders et al. (2018). 
Briefly, TLS data were collected over a 6-ha region in leaf-on and leaf-off conditions. 
Following this, forest stand reconstruction was conducted, consisting of three main steps: 
tree segmentation, tree structure modelling, and leaf addition. The virtual 3D forest model 
consisted of leaf-on and leaf-off scans, corresponding to TLS data collected over June– 
July 2015 and December 2015–January 2016, respectively.

Structural variables were extracted from the 3D models that could be used to parameter
ize the radiative transfer model. Individual trees were defined via an identifier (a ‘scene’ and 
‘tree’ number), as well as additional parameters (vertical resolution, and search radius). In 
summary, all object data files associated with unique identifiers are organized as a structure, 
containing all filenames regarding the individual tree. From this metadata structure, the 
points are used to determine the 3D extent of the canopy and tree. Then, the points 
associated with leaves are modelled as tetragons, and the associated leaf parameters are 
calculated (canopy thickness, canopy base height, canopy size, leaf density, and mean leaf 
diameter). Next, the points associated with the woody material (referred to as ‘stems’) are 
used to create a 3D geometric structure of stack cylinders, representing the woody material 
of the tree. Horizontal slices were taken, using the defined vertical resolution, to compute the 
angles between adjacent stem cylinders and thus identify and define branch hierarchy. The 
mean branch length and radius were calculated for all branch hierarchies. Finally, the 
calculated MIMICS input variables were created.

Figure 2. Location of the 1-ha area of interest (black square) inside Wytham Wood. Map data 
copyrighted OpenStreetMap contributors. (OpenStreetMap 2017).
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To parametrize the orientation of the 1st and 2nd order branches within MIMICS, PDFs 
were generated from the observed orientations of the 1st and 2nd order branches of each 
species (Figure 3). For each species, PDFs were also modelled, to attempt to capture the 
distribution, with the root mean square error (RMSE) being calculated to determine the 
accuracy of the modelled branch distribution. Concerning the leaf angle distribution 
(LAD), data do not exist for the Wytham Woods species, and an assumption was made 
based on the author’s field experience. Hence, a uniform distribution was assumed 
(Figure 3). For MIMICS parameters that were not possible to obtain from the TLS data or 
the literature, the MIMCIS default values were used (Appendix A).

Note: erectophile was not used in the simulations as Wytham Wood species do not 
follow this leaf distribution but was provided as a reference to see the differences 
between typical LADs.

2.2. Methods

2.2.1. Model sensitivity analysis
One-at-a-time (OAT) sensitivity analysis was conducted to evaluate the sensitivity of the 
MIMICS model to individual parameters. Parameters from a baseline simulation were 
incrementally changed, with the changes being based on literature values or from mea
sured data: from TLS observations or in-situ field observations. The parameters chosen for 
the OAT sensitivity analysis were a) leaf angle distribution, b) leaf thickness, c) branch 
distribution, d) temperature, e) gravimetric water content (leaf, trunk and soil) and f) soil 
roughness (Table 1 details the range of values used for the OAT sensitivity analysis). OAT 
sensitivity analysis of branch distribution was also evaluated for leaf-on and leaf-off scenar
ios, as well as OAT sensitivity analysis of soil roughness under different gravimetric water 

Figure 3. Measured data (dark blue dots) versus 1st and 2nd-order branches model probability 
distribution for each species: Maple (light green), Sycamore (red), Hael (cyan), Oak (light purple), 
Hawthorn, Ash and Unknown (magenta) with their corresponding calculated error (RMSE) as well as 
probability function of leaf angle distribution (light blue, orange, yellow and dark purple dotted lines).
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content conditions. Linear changes in leaf, trunk and soil water content were based on 
previous research outcomes (Betsch et al. 2011; Köcher et al. 2009; Zhou et al. 2021). A one- 
way Analysis of Variance (ANOVA) was conducted to determine if differences in the total 
backscatter signal were significant (α = 0.05) due to the changes in the first five aforemen
tioned input parameters, for simulations at 4 GHz, 6 GHz and 8 GHz in both VV and VH 
polarization and between 20° and 45° (in 5° increments).

A two-way ANOVA was also performed to compare water content conditions (leaf, trunk 
and soil) against soil roughness. This statistical test assesses the effect of each variable 
(water content against soil roughness) and considers if there is any interaction between 
variables. For simulations with significant differences, the total backscatter was compared 
with the backscatter of each simulated scatter component (Figure 1) to determine the 
component with the greatest influence.

The baseline simulation comprises a Sycamore tree, the dominant species in the area, 
assuming a uniform leaf distribution and 1st and 2nd order branches exhibiting a PDF as 
detailed in Figure 3b. In terms of higher-order branches (i.e. 3rd−6th), a normal distribution 
was assumed. This was due to their tendency to distribute radially to their lower branch axis 
with narrower opening angles (Millet, Bouchard, and Édelin 1999) and their permanence in 
the tree depends on their efficiency in the photosynthesis process (Coder 2018). Ground 
data was parameterised based on multi-year observations (Section 2.1.2), with the mean soil 
and air temperature being set to 10°C and gravimetric water content in the environment 
(leaf, trunk and soil) to 0.45 m3/m3. Soil roughness was assumed to be slightly smooth (i.e. 
Root Mean Square [RMS] being equal to 1.0 cm). The baseline modelling results can be 
found in Appendix B for each scattering component, with Appendix C containing the 
baseline parameters obtained by TLS and Appendix D the LiDAR 3D model.

2.2.2. Seasonal and spatial resolution analysis
For this section, simulations for each tree in the 1-ha region for leaf-on and leaf-off periods 
were run. However, due to the large number of Sycamore trees present within the region, 
and due to computational limitations, only 50% of the Sycamore trees were used in the 
aggregation. The 50% were selected at random, to remove the potential for selection 
biases. Each simulation took place at the C-band range (4 GHz, 6 GHz and 8 GHz) for both 
VV and VH polarizations and between 20° and 45° in 5° increments.

Table 1. MIMICS parameters and its one-at-a-time (OAT) changes.

Parameter Baseline
Sensitivity 

change Source

Leaf distribution Uniform Spherical, 
Planophile

Akerblom et al. 2018 (Figure 3h)

Leaf thickness (cm) 0.1 0.05, 0.013 MIMICS default parameter, mean value between 
default and literature (Sancho-Knapik et al. 2021)

Branch PDF (leaf-on)(a) Sycamore 
[sin(θ 

+30°)20°]

Hawthorn [sin(θ 
+18°)20°], Normal

LiDAR data spring–summer. Sycamore (Figure 3b) 
and Hawthorn (Figure 3d)Branch PDF (leaf-off)(a)

Gravimetric Water content 
(m3/m3)

0.45 (Wet 
environment)

0.05 (Very Dry), 
0.25 (Dry), 0.65 

(Very Wet)

Field data (Cooper et al. 2021; Stanley et al. 2023). 
Applying a linear change in gravimetric water 
content of leaf, trunk and soil.

Air and Soil Temperature (°C) 10 1, 20
Soil roughness 1.0 0.5, 0.0 NA

a) Changes in 1st and 2nd order branch, 3rd to 6th assumed normal distribution.
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For the temporal analysis, a one-way ANOVA was performed for each polarization (VV 
and VH) to determine if total backscatter differences were significant (α = 0.05) between 
seasons across all the trees and incidence angles. A species comparison via a one-way 
ANOVA was conducted to assess if changes in mean total backscatter between the species 
were statistically significant. Additionally, in leaf-on and leaf-off scenarios, the one-way 
ANOVA test was performed to see if differences in simulated backscatter were significant 
as a result of changing incidence angle.

For the spatial resolution comparisons, the 1-ha region was spatially aggregated to 
simulate the spatial resolution of Sentinel-1 (approximately 20 m × 20 m). The spatial 
aggregation was completed by averaging the simulations for each tree within each 
individual pixel. The spatially averaged simulations were also compared to observations 
of Sentinel-1, taken on 25/12/15 and 01/01/16 (representing leaf-off conditions) and 05/ 
07/15 and 10/07/15 (representing leaf-on conditions). To compare the simulations to the 
Sentinel-1 observations, the simulations took place at incidence angles close to the 
Sentinel-1 incidence angles observed over Wytham Woods (35° for simulated against 
36° for observed and 45° for simulated against 43° for observed).

Sentinel-1 IW-GRDH (Interferometric Wide swath mode, Ground Range Detected) data 
was processed using ESA’s Sentinel Application Platform (SNAP), to geolocate and cali
brate the backscatter signal. The processing workflow is similar to that of Filipponi (2019), 
Maslanka et al. (2022), which includes applying an orbital correction, removing the 
thermal and boundary noise artefacts, applying radiometric calibrations, and applying 
a ‘Refined-Lee’ speckle filter, before applying terrain correction, using the Shuttle Radar 
Topography Mission (SRTM) 1 arc-second dataset. The resulting calibrated backscatter 
data was then reprojected to a 20 m by 20 m grid resolution, to match that of the MIMICS 
simulations, before being subset over the Wytham Woods region of interest. Only polar
ization modes VV and VH were used for comparison with the MIMICS model.

2.2.3. AGB estimation and relationship with backscatter
Allometric equations reported in the literature (Table 2) were used to calculate AGB using 
the data for each tree inside the 1-ha subset of Wytham Woods as reported by Terryn et al. 
(2020), except for Sycamore. To provide a consecutive set of tree heights for the Sycamore 
species, the selection of representative trees was obtained from a histogram of heights in 
1-m step, resulting in a representation of 50%.

Simulated backscatter for VV and VH polarizations was compared to the calculated AGB 
(M0, M1, M2 and M3), and a regression model relating simulated C-band backscatter 
against each model was calculated. Although all the allometric models in Table 2 were 
developed for AGB estimation, they have been reported as unsuitable for Wytham Woods 
(Kim et al. 2022). Hence, co-polarized and cross-polarized backscatter was compared to 
AGB calculated using tree volume data (Terryn et al. 2020) and tree density (Kim et al.  
2022).

Additionally, MIMICS input parameters (e.g. tree height and 1st order branch density) 
were compared with simulated backscatter to determine a possible relationship. Finally, 
field measurements, taken from the TLS data, such as DBH, tree height, tree volume, stem 
length, stem distance and crown height were compared with each other to provide 
relationships between variables.
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3. Results

3.1. Sensitivity analysis

Table 3 shows the results of the one-way and two-way OAT ANOVA sensitivity tests as 
detailed in Section 2.2.1 and Table 1. Results are based on the 4 GHz simulations since the 
other two frequencies (6 GHz and 8 GHz) presented similar values (see Appendix B). The 
ANOVA analysis was performed to statistically evaluate differences in total backscatter 
means (from 20° to 45° in 5° increments) between baseline and simulated scenarios for co- 
polarized and cross-polarized modes. For the one-way OAT ANOVA, it was found that 
variations in total backscatter resulting from changes in soil roughness, air and soil tempera
ture as well as 1st and 2nd order branch distributions in the leaf-on scenario were not 

Table 3. p-values of the one-way and two-way ANOVA analyses for 
MIMICS model sensitivity to simulated backscatter at 4 GHz fre
quency of each polarization mode.

Parameter

One-way ANOVA

VV VH

Leaf distribution p < 0.001* p < 0.001*
Leaf thickness (cm) p < 0.001* p < 0.001*
Branch Distribution (leaf-on) p > 0.050 p > 0.050
Branch Distribution (leaf-off) p < 0.010* p > 0.050
Temperature (°C) p > 0.050 p > 0.050
Soil roughness (cm)(a) p > 0.050 p > 0.050
Water content (m3/m3) p < 0.001* p < 0.001*

Two-way ANOVA
Soil roughness (cm) p > 0.050 p > 0.050
Water content (m3/m3) p < 0.001* p < 0.001*
Soil roughness and water content p > 0.050 p > 0.050

a) Simulation with leaf, trunk and soil gravimetric water content of 0.45 m3/m3. 
*Significant differences.

Table 2. Allometric models to obtain the aboveground biomass.
Specie (Scientific Name) Bunce (1968)(a) Kim et al. (2022)(b)

Ash (Fraxinus excelsior) M0 ¼ e � 5:234459þ2:480921�ln Gð Þð Þ M2 ¼ e 0:84þ1:9�ln Dð Þþ0:58�lnðHð ÞÞM1 ¼ e 2:98þ2:30�ln Dð Þð Þ

M3 ¼ e � 1:76þ1:34�ln Dð Þþ0:67�ln Hð Þþ0:48�ln CAð Þð ÞHawthorn (Crataegus monogyna)
Hazel (Corylus avellana) M0 ¼ e � 5:223864þ2:425436�ln Gð Þð Þ

Oak (Quercus robur) M0 ¼ e � 5:501575þ2:531795�ln Gð Þð Þ

Maple (Acer campestre) M0 ¼ e � 5:570499þ2:529411�ln Gð Þð Þ

Unknown
Sycamore (Acer pseudoplatanus) M1 ¼ e 3:15þ2:42�ln Dð Þð Þ

M2 ¼ e 0:78þ2:05�ln Dð Þþ0:64�ln Hð Þð Þ

M3 ¼ e � 1:34þ1:52�ln Dð Þþ0:74�ln Hð Þþ0:36�ln CAð Þð Þ

Specie (Scientific Name) Bunce (1968)(a) Kim et al. (2022)(b)

Ash (Fraxinus excelsior) M0 ¼ e � 5:234459þ2:480921�ln Gð Þð Þ M1 ¼ e 2:98þ2:30�ln Dð Þð Þ

M2 ¼ e 0:84þ1:9�ln Dð Þþ0:58�lnðHð ÞÞ

M3 ¼ e � 1:76þ1:34�ln Dð Þþ0:67�ln Hð Þþ0:48�ln CAð Þð Þ

Hawthorn (Crataegus monogyna)
Hazel (Corylus avellana) M0 ¼ e � 5:223864þ2:425436�ln Gð Þð Þ

Oak (Quercus robur) M0 ¼ e � 5:501575þ2:531795�ln Gð Þð Þ

Maple (Acer campestre) M0 ¼ e � 5:570499þ2:529411�ln Gð Þð Þ

Unknown
Sycamore (Acer pseudoplatanus) M1 ¼ e 3:15þ2:42�ln Dð Þð Þ

M2 ¼ e 0:78þ2:05�ln Dð Þþ0:64�ln Hð Þð Þ

M3 ¼ e � 1:34þ1:52�ln Dð Þþ0:74�ln Hð Þþ0:36�ln CAð Þð Þ

a) Combined locations. G = tree girth (m), derived from diameter at breast height. 
b) Volume (m3) was converted to mass (kg) using density reported in supplementary table S2 in Kim et al. (2022). 

D= diameter at breast height (m), H = tree height (m) and CA = crown area (m2).
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significant, in either the VV or VH simulations. However, for variations in the leaf orientation 
distribution and leaf thickness, in addition to the gravimetric water content in the leaf and 
trunk material, the OAT ANOVA suggests that differences in total backscatter were signifi
cant, in both the VV and VH polarizations. It was also found that the 1st and 2nd order branch 
distributions within the crown for the leaf-off scenario were significantly different for 
simulations in VV, but not in VH. For the two-way OAT ANOVA, it should be noted that 
whilst the gravimetric water content (leaf, trunk, and soil) does produce significant differ
ences in total backscatter, the interactions between gravimetric water content and surface 
roughness do not produce significant differences in total backscatter.

As the direct crown backscatter was by far the most dominant component (Appendix E), 
the results from the OAT sensitivity analysis will show the backscatter variations of this 
component, and only for the variables found to have a significant backscatter difference, as 
observed in the ANOVA study (Table 3). Additionally, the simulations were similar for all 
frequencies simulated (4 GHz, 6 GHz, and 8 GHz, Appendix B), and thus subsequently only 
results from the 4 GHz simulations are shown.

Figure 4 shows the OAT simulations for the uniform leaf orientation distributions (the 
baseline simulation) against planophile and spherical orientations. It can be seen that, for the 
simulated direct crown backscatter in VV polarization, the planophile leaf distribution results in 
a greater change in backscatter with respect to incidence angle (−5.37 dB at 20°, −10.41 dB at 
45°, and mean backscatter of −7.92 dB) compared to that of the uniform baseline simulation 
(−6.98 dB at 20°, −10.23 dB at 45°, and mean backscatter of −8.68 dB) and spherical leaf 
orientation (−8.95 dB at 20°, −9.92 dB at 45°, and mean backscatter of −9.33 dB), whereas the 
opposite is true for the cross-polarized (VH) simulations (planophile: −24.27 dB at 20°, −24.23  
dB at 45°, and mean backscatter of −24.19 dB; uniform: −23.48 dB at 20°, −24.01 dB at 45°, and 
mean backscatter of −23.65 dB, spherical: −22.90 dB at 20°, −23.86 dB at 45°, and mean 
backscatter of −23.27 dB). Additionally, for both VV and VH simulations, the backscatter return 
for the simulations converges as the incidence angle increases from 20° to 45°.

Figure 4. Direct from crown backscatter signal against antenna incidence angle for uniform (blue), 
planophile (red) and spherical leaves distribution (magenta) of co-polarised mode (VV, square) and 
cross-polarised mode (VH, triangle).
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Figure 5 shows the OAT simulations for the leaf thickness sensitivity tests. It was shown 
that, across all incidence angles, decreasing the leaf thickness decreases the backscatter of 
the direct crown VV simulations (e.g. −6.98 dB, −8.40 dB and −12.44 dB for leaf thicknesses 
of 0.1 cm, 0.05 cm and 0.013 cm, respectively, at 20°) but increases the backscatter for the 
direct crown VH simulations (−23.48 dB, −22.04 dB and −19.78 dB for leaf thicknesses of 
0.1 cm, 0.05 cm and 0.013 cm, respectively, at 20°).

Figure 6 shows the OAT simulations for the gravimetric water content (leaf, trunk, and 
soil) sensitivity tests. Whilst for the co-polarization simulations there is a proportional 
reduction in backscatter with the decrement of gravimetric water content, the very dry 
scenario does not follow such a pattern. For example, backscatter in the very dry scenario 
exhibits higher values than those in the dry scenario. For the cross-polarized mode, 
backscatter increases proportionally with gravimetric water content except in the very 
dry scenario in which values are close to the very wet scenario.

3.2. Seasonal analysis

One-way ANOVA tests (Table 4) show that there was a significant difference in seasonality 
(spring–summer represented by leaf-on, autumn–winter represented by leaf-off respec
tively) in total backscatter (VV and VH) across all trees and incidence angles (Figure 7a). 
Regarding the effects of incidence angle on the simulated backscatter, for both seasons, 
Table 4 shows that backscatter differences between species in VV polarized at incidence 
angles less than and equal to 30°, in addition to 35° for the leaf-off simulations, were 
statistically significant. Contrarily, for VH-polarized simulations, differences in backscatter 
were not statistically significant for all incidence angles across both seasons, except for 
the leaf-off simulations at 45°.

Figure 5. Direct from crown backscatter signal against antenna incidence angle for leaf thickness of 
0.1 cm (blue), 0.05 cm (cyan) and 0.013 cm (black) of co-polarised mode (VV, square) and cross- 
polarised mode (VH, triangle).
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In all species, the simulated VV backscatter for leaf-on scenarios was larger than those 
for the leaf-off (Figure 7b). In contrast, in VH mode for leaf-on scenarios across all tree 
species, the simulated backscatter was smaller than in leaf-off scenarios (Figure 7c).

3.3. Spatial analysis

Figures 8 and 9 show the comparison of the spatial simulations for leaf-on and leaf-off 
scenarios with observations of summer and winter backscatter observations from Sentinel-1, 
respectively. For both seasons, observations were taken from two relative orbits (030 and 
132) to get a range of incidence angles across Wytham Woods. A poor agreement was found 

Table 4. p-values of ANOVA analysis for MIMICS seasonal analysis of the simulated backscatter 
4 GHz frequency of each polarization mode.

One way ANOVA

VV VH

Season p < 0.001* p < 0.001*

Leaf-on (Spring–Summer) Leaf-off (Autumn–Winter)

VV VH VV VH

20° p < 0.050* p > 0.050 p < 0.001* p > 0.050
25° p < 0.050* p > 0.050 p < 0.001* p > 0.050
30° p < 0.050* p > 0.050 p < 0.001* p > 0.050
35° p > 0.050 p > 0.050 p < 0.050* p > 0.050
40° p > 0.050 p > 0.050 p > 0.050 p > 0.050
45° p > 0.050 p > 0.050 p > 0.050 p < 0.050*

*Significant differences.

Figure 6. Direct from crown backscatter signal against antenna incidence angle for very dry (red), dry 
(black), wet (cyan) and very wet (blue) scenarios of co-polarised mode (VV = square) and cross- 
polarised mode (VH = triangle). Scenarios are related to water content (m3/m3) of 0.05 for very dry, 
0.25 for dry, 0.45 for wet (baseline) and 0.65 for very wet.
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Figure 7. a) Backscatter box plot of all simulated trees at the 1-ha in spring-summer (leaf-on = L-on) and 
autumn-winter (leaf-off = L-off) periods, a) co-polarised mode (VV) and b) cross-polarised mode (VH). 
Backscatter box plot between species and seasonality c) co-polarised mode (VV) and d) cross-polarised 
mode (VH) backscatter box plot between species and seasonality. The red lines in the box plot represent the 
mean backscatter values, and whiskers the interquartile ranges.
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between simulated and observed backscatter under the 20 m × 20 m grid approach. The 
mean simulated backscatter across the 1-ha region underestimates the backscatter return 
when compared to the observations, regardless of polarization, seasonality, or incidence 
angle (Table 5). Higher differences were observed in the leaf-off (autumn–winter) than in 
leaf-on (spring–summer) scenarios.

3.4. Comparison of AGB against Backscatter

A strong relationship between TLS variables was observed (Figure 10), this is a good 
indicator of the role of structural tree elements (i.e. DBH and tree height) in tree volume, 
which is related to AGB.

Figure 8. Backscatter simulations via MIMICS (a, d, g, j) and Sentinel-1 observations (b, e, h, k) for the 
1-ha area in the leaf-on (spring-summer) scenario for both VV and VH polarisations. Sentinel-1 
observations took place on 10/07/2015 (b, e) and 05/07/2015 (h, k). Scatter plot of simulated against 
observed data (c, f, i, l).
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Figure 9. Backscatter simulations via MIMICS (a, d, g, j) and Sentinel-1 observations (b, e, h, k) for the 
1-ha area in the leaf-off (autumn-winter) scenario for both VV and VH polarisations. Sentinel-1 
observations took place on 01/01/2016 (b, e) and 25/12/15 (h, k). Scatter plot of simulated against 
observed data (c, f, i, l).

Table 5. Mean backscatter values for the MIMICS simulations and sentinel-1 observations, for 
both leaf-on and leaf-off scenarios, representing spring–summer and autumn–winter simula
tions, respectively, across the 1-ha region. Data have been aggregated from Appendix F.

Spring–Summer Autumn–Winter

Backscatter (dB) Angle VV VH VV VH

Simulated 35 −9.53 −21.28 −11.97 −17.94
Observed 36 −7.21 −15.03 −7.29 −12.40
Difference −2.33 −6.25 −4.68 −5.54
Simulated 45 −10.68 −21.85 −12.80 −18.63
Observed 43 −7.99 −15.18 −7.33 −13.11
Difference −2.69 −6.67 −5.47 −5.53
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AGB was calculated using all the allometric models in Table 2, using tree girth 
(derived from DBH), diameter at breast height (DBH), Tree Height (H) and Crown Area 
(CA) as recorded by the TLS, and was compared to leaf-on and leaf-off backscatter 
simulations of all the trees scanned within the 1-ha subregion. Simulations were 
performed in both VV- and VH-polarization, between 20° and 45°, in 5° increments. 
Table 6 shows the R2 values between simulated backscatter and AGB at different 
incidence angles. Regardless of polarization or incidence angle, there was no correla
tion between simulated backscatter and any of the allometric equations and AGB-TLS 
(AGB calculated using tree volume derived from TLS), with all R2 values being less than 
0.5. Nonetheless, AGB-TLS presented slightly better agreement than allometric models. 
Figure 11 shows AGB-TLS against backscatter simulations taking place at 35° corre
sponding to one of the incidence angles experienced by Sentinel-1 over the 1-ha 
region of Wytham Woods.

The R2 values were also calculated between simulated backscatter and crown thick
ness, trunk length, leaf density (leaf-on simulations) and 1st-order branch density (leaf- 
off simulations). Regardless of polarization or incidence angle, there was no correlation 
between simulated backscatter, and any of the tested variables, with all R2 values being 
less than 0.5 (Appendix G). However, it should be noted that there was slightly better 
agreement between leaf density and backscatter in leaf-on simulations as well as 
between branch density and backscatter in leaf-off simulations, compared with AGB 
and simulated backscatter. This is to be expected as the direct crown contribution to the 
total backscatter was found to be dominant at C-band frequencies (e.g. 4 GHz, see 
Appendix E).

Figure 10. Parameters obtained in the latest field study at Wytham Woods, and their corresponding 
correlation coefficient to measure linear correlation between pairs.
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4. Discussion

The sensitivity analysis described in Section 2.2 allows to understand the variability of 
the simulated backscatter (VV and VH) in relation to changes in the value of the input 

Figure 11. Comparison of calculated AGB-TLS against simulated backscatter at incidence angles of 35°. 
Spring-summer season (leaf-on simulations) a) co-polarised (VV) and b) cross-polarised (VH). Autumn- 
winter season (leaf-off simulations) c) co-polarised (VV) and d) cross-polarised (VH).

Table 6. Coefficient of determination (R2) of each allometric model against simulated backscatter at 
different incidence angles for the two polarization modes and both seasonal scenarios.

Angle(θ°)

R2 (Leaf-on simulations)

M0 M1 M2 M3 AGB-TLS(a)

VV VH VV VH VV VH VV VH VV VH

20 1.1E-04 4.0E-03 2.6E-05 4.4E-03 4.8E-05 6.6E-04 5.2E-05 2.7E-03 2.9E-03 4.7E-02
25 1.3E-03 4.8E-03 9.4E-04 5.3E-03 8.8E-04 1.2E-03 1.9E-04 3.8E-03 2.7E-03 4.1E-02
30 3.9E-03 5.5E-03 3.3E-03 6.1E-03 3.2E-03 2.0E-03 1.5E-03 5.1E-03 3.6E-03 3.4E-02
35 7.5E-03 6.1E-03 6.8E-03 6.7E-03 7.1E-03 2.8E-03 5.5E-03 6.7E-03 3.1E-03 3.0E-02
40 9.3E-03 6.5E-03 8.7E-03 7.2E-03 9.4E-03 3.5E-03 8.0E-03 8.2E-03 3.9E-03 2.7E-02
45 8.6E-03 6.8E-03 8.1E-03 7.5E-03 9.4E-03 4.1E-03 7.9E-03 9.5E-03 5.7E-03 2.5E-02

Angle(θ°) R2 (Leaf-off simulations)

M0 M1 M2 M3 AGB-TLS

VV VH VV VH VV VH VV VH VV VH

20 6.0E-03 1.7E-03 5.3E-03 1.8E-03 8.3E-04 3.7E-04 2.6E-03 2.1E-03 9.7E-02 1.7E-02
25 9.2E-03 2.2E-03 8.6E-03 2.3E-03 3.6E-05 8.3E-04 4.1E-04 3.1E-03 5.9E-02 1.4E-02
30 1.2E-02 2.8E-03 1.1E-02 2.9E-03 1.3E-03 1.5E-03 1.2E-04 4.3E-03 3.1E-02 1.0E-02
35 1.4E-02 3.2E-03 1.4E-02 3.4E-03 4.1E-03 2.1E-03 2.8E-03 5.8E-03 2.6E-02 8.4E-03
40 1.5E-02 3.5E-03 1.5E-02 3.7E-03 6.0E-03 2.7E-03 5.3E-03 7.2E-03 1.8E-02 7.2E-03
45 1.4E-02 3.7E-03 1.4E-02 3.9E-03 6.9E-03 3.2E-03 6.4E-03 8.3E-03 1.1E-02 6.1E-03

a) AGB (t m−2) calculated using tree volume data (Terryn et al. 2020) and tree density (Kim et al. 2022).
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parameters. The OAT test showed that there were significant differences in the direct- 
crown backscatter contribution (the dominant contribution to total backscatter) when 
altering the leaf orientation, leaf thickness, and gravimetric water content (leaf, trunk, 
and soil). This is to be expected for the leaf variable changes (orientation and thick
ness), given that at the C-band, the radar backscatter is highly influenced by the crown 
components. Model sensitivity to leaf distribution suggests that assumptions related 
to leaf orientation will lead to statistically significant differences in backscatter return, 
especially at incidence angles of <30°. At incidence angles of ≥30°, the differences are 
not as significant, suggesting that the orientation of the leaf is not as important for 
most of the Sentinel-1 IW swath (Sentinel-1 swath incidence angle ranges from 29.1° 
to 46.0°). Nonetheless, leaf orientation distribution for each tree can be related to 
many factors. For example, leaves can be oriented to increase light exposure, which is 
crucial for photosynthesis (Posada et al. 2012). Additionally, these angles can change 
during the day (Nilsen and Forseth 2018). Furthermore, in dense forests such as 
Wytham Woods, the angles of the leaves might vary allowing them to avoid being 
covered by other leaves, assuring them to receive sufficient light (Miyata and Kohyama  
2016). All of these highlight the diversity in leaf orientation that can occur in individual 
trees regardless of the species and in turn the effect on the scattering mechanism 
impacting biomass predictions due to the assumption of a linear backscatter–biomass 
relationship. The outcomes obtained in our research by modelling backscatter under 
changes in leaf orientation encourage a better in-situ characterization of this leaf 
parameter in forests, and several attempts have been made under the development 
of optical instruments (Lolli et al. 2014) and TLS software (Stovall et al. 2021); however, 
these approaches are limited to small areas, so further research covering larger areas is 
recommended to increase leave orientation samples and thus better characterize their 
variability in trees. Furthermore, since direct knowledge of leaf orientation, is not 
possible under current satellite technology, RT models can also be applied for the 
development of new satellite instruments with more sensitivity to canopy scattering 
mechanisms (Pan, Pierce, and Moghaddam 2005).

Leaf thickness sensitivity analysis showed a relationship between leaf thickness and 
backscatter (increasing/decreasing backscatter for increasing/decreasing leaf thickness at 
VV/VH polarizations). MIMICS calculates leaf scattering assuming an electric current sheet 
of complex resistivity, which depends on leaf thickness and dielectric material, with the 
latter depending on water content (Ulaby et al. 1990b). Simulations were done by varying 
the leaf thickness and assuming the same dielectric material; therefore, the interaction 
between these two variables was not considered. However, it should be noted that in 
nature, variation of the leaf thickness may have a direct effect on the water content and 
indirectly on the dielectric change (Ulaby and Jedlicka 1984). Hence, care must then be 
taken when entering values of leaf thickness and its corresponding dielectric material 
values for accurate backscatter simulation. Also, depending on the elevation of leaves in 
the canopy, their thickness can vary significantly, with thicker leaves higher in the canopy 
exposing them more to light (Koike et al. 2001). Furthermore, variability in leaf thickness 
from the same species in deciduous forests has been reported (da Silva, Helena Porfírio, 
and Rodrigo Rossatto 2024), and additionally, leaf morphology can be related to environ
mental stress adaptation such as water scarcity or high temperature (Cao et al. 2024). Our 
findings show that changes in leaf thickness have important differences in the simulated 
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backscatter, suggesting that biomass estimation from satellite data and under the 
assumption of AGB-backscatter linearity can lead to errors in the predictions of forest 
biomass especially in those subject to environmental stresses due to climate change. 
Hence, it is important to understand the effect of this parameter in the backscatter 
responses under modelling approaches.

Mathematical models are a simplification of reality; the results from MIMICS sensitivity 
analysis assessed parameters and changes where a statistically significant effect was 
observed on simulated backscatter. We found that this information is limited in the 
literature from the available RT models, including MIMICS. Hence, the backscatter effects 
between these models could vary depending on the parameters or their change in value 
(Bosisio and Dechambre 2010) or between modelling approaches (i.e. radiative transfer 
theory or distorted Bron approximation, Saatchi and McDonald 1997). Nonetheless, our 
findings promote two possible applications. a) sensitivity analysis comparison between RT 
models and modelling approaches and b) experimental settings in both the laboratory 
(Morrison et al. 2001) or in-situ (Morrison, Bennett, and Solberg 2013) with the addition of 
parameter measurements (i.e. leaf orientation; leaf thickness; and gravimetric water 
content in leaf, trunk, and soil) for a quantitative comparison with backscatter changes.

The seasonal analysis showed that there was a significant difference when comparing 
the leaf-on and leaf-off (i.e. spring–summer and autumn–winter) backscatter simulations 
at both polarizations. This is to be expected, given that the direct crown is the most 
dominant contributor in the total backscatter at C-band frequencies. Previous studies at 
L-band frequencies (Pan, Pierce, and Moghaddam 2005) have shown that MIMICS simula
tions were dominated by ground−trunk contributions (contributor 6 in Figure 1) for leaf- 
off simulations of backscatter. This was not found to be the case for the leaf-on C-band 
simulations in this study, primarily due to the C-band’s inability to penetrate through the 
canopy as deeply as L-band frequencies (de Jesus, Batista, and Mora Kuplich 2020; Omar, 
Misman, and Kassim 2017). When the leaves were removed (i.e. going from leaf-on to leaf- 
off), the backscatter signal changed significantly, as the main source of the backscatter 
signal (leaves) was removed, and the other elements (branches) became more dominant 
within the total backscatter signal. Seasonality was previously found to be an important 
factor when classifying tree species with space-based SAR observations (Borlaf-Mena et al.  
2023). Our seasonal results highlighted that differences are only important in co-polarized 
(VV) mode at incidence angles less than and equal to 30° (Table 4). Furthermore, the 
findings support the use of the C-band radar from satellite data to track seasonal changes 
in forests, which at the same time has potential implications for understanding forest 
dynamics (Soudani et al. 2021) and ecological processes (Wismann, Boehnke, and 
Schmullius 1995).

The spatial analysis shows that the simulated backscatter for both leaf-on and 
leaf-off scenarios (for both VV- and VH-polarizations) underestimated the back
scatter of the 1-ha region when compared to the observations from Sentinel-1. 
The difference between the mean simulated and mean observed backscatter 
increased with increasing incidence angle, for both the leaf-on and leaf-off scenar
ios, with the VH-polarization differences being greater than those for VV- 
polarization. This general underestimation can be related to MIMICS’s use of 
a uniform-forest layer which does not consider multiple scattering from different 
layers of the crowns – a crown–crown contribution (Pan et al. 2005). Moreover, RT 
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models based on the individual tree approach have shown better agreement with 
satellite data (Guoqing and Jon Ranson 1995). The underrepresentation of 
Sycamore trees (50%) within the spatially binned and averaged data may have 
artificially reduced the simulated backscatter when compared to the observations. 
However, a random sampling method was contemplated for Sycamore tree simula
tions as part of this study to reduce such errors. However, the findings could also 
be an indicator of the potential implication of the low spatial resolution from 
satellite data, restricting the understanding of the role that individual trees play 
in the backscatter signal of the scanned area (e.g. 20 m × 20 m). Ground-based 
radar systems and corresponding process signals (e.g. upscaling) can be a potential 
approach to investigate satellite data uncertainty due to its coarse spatial 
resolution.

It was also shown that there was no correlation between AGB models and 
simulated backscatter for the leaf-on simulations (R2 << 0.5, Table 6); an expected 
result due to the inability of the C-band to penetrate through the leafy canopy. 
A better agreement was expected by removing the leaves, which are one of the 
structural elements that prevents signal penetration. However, this leaf-off scenario 
also presented a lack of correlation between AGB and simulated backscatter. Similar 
non-correlation outcomes have been observed in other models (Ranson et al. 1997). 
Although this no-linearity can be attributed to low signal penetrability from the 
C-band (i.e. a signal mainly ‘sees’ tree crown), under lower frequencies (S-band), 
a low correlation when comparing AGB from airborne SAR observations against 
backscatter simulation has also been reported (Ningthoujam et al. 2016). 
Furthermore, similar results (AGB-backscatter nonlinearity) have been found using 
satellite data in combinations of low and high frequencies, such as L- and X-band 
(Englhart, Keuck, and Siegert 2011) and C- and X-band (Xiaodong et al. 2018). The 
above emphasizes the nondirect linearity between AGB and backscatter, which can 
be due to tree structural complexity, water content variability (leaf, trunk and soil) or 
a combination of them. Multi-frequency (Santi et al. 2017) and polarimetric 
approaches (Zeng et al. 2022) have been developed to address these challenges. 
However, the restricted satellite missions with these sensor capabilities limit the 
application areas, and the complex data processing restricts knowledge of AGB 
from backscatter signals. Nonetheless, modelling approaches can compensate for 
these issues.

It should be noted that the estimations of AGB come from commonly used allometric 
equations derived from TLS measurements; the measurements may contain random 
errors that introduce uncertainty into the estimations, hence affecting the relationship 
with the backscatter signal. Nonetheless, the allometric models applied in this study (i.e. 
M0 in Bunce (1968) and M1, M2 and M3 in Kim et al. (2022)), were shown to be unsuitable 
for this Wytham Woods 1-ha area, which has been previously addressed by Kim et al. 
(2022). Additionally, the AGB calculated by TLS tree volume did not produce a meaningful 
relationship with the simulated C-band backscatter. The previous emphasizes that back
scatter intensity is not proportional to biomass (Woodhouse et al. 2012) and suggests that 
vegetation structures have a significant effect on the signal return. Moreover, no relation
ship was found between C-band backscatter and either of the vegetation structure 
parameters (Appendix G) and likewise at lower frequencies (S-band, Ningthoujam et al.  
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2016), suggesting a more complex role of this feature in the backscatter signal. These 
results strongly support the need for more accurate allometric models to better assess the 
relationship between AGB and C-band signal backscatter. Additionally, we suggest the 
use of new technology such as UAV radar systems in conjunction with TLS for a better 
understanding of the AGB–backscatter relationship.

5. Conclusion

Simulations of the total backscatter using MIMICS in the C-band frequency range showed, 
as expected, that scattering directly from tree crowns is the main contribution element to 
the backscatter signal in both polarization modes. Sensitivity analyses presented impor
tant differences in those parameters presented in the crown, such as leaf distribution, leaf 
thickness and water content (leaf, trunk and soil). In terms of seasonal simulations, spring– 
summer (leaf-on) and autumn–winter (leaf-off), results showed larger values of simulated 
co-polarized backscatter in leaf-on scenarios than in leaf-off scenarios; an opposite 
behaviour was observed in the simulated cross-polarized backscatter. Additionally, impor
tant backscatter differences were observed in the 1-ha area (20 m × 20 m grid resolution) 
between simulated data and satellite data, in which the satellite presented the highest 
values. Finally, the calculated AGB under different allometric models did not show 
a relationship with the backscatter signal, suggesting high variability between AGB and 
backscatter in the C-band as well as the development of better allometric models to 
obtain forest biomass.
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