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A B S T R A C T

Aumann’s seminal agreement theorem deals with the impossibility for agents to acknowledge their distinct
posterior beliefs. We consider agreeing to disagree in an extended framework with lexicographic probability
systems. A weak agreement theorem in the sense of identical posteriors only at the first lexicographic level
obtains. Somewhat surprisingly, a possibility result does emerge for the deeper levels. Agents can agree to
disagree on their posteriors beyond the first lexicographic level. By means of mutual absolute continuity as an
additional assumption, a strong agreement theorem with equal posteriors at every lexicographic level ensues.
Subsequently, we turn to games and provide epistemic conditions for the classical solution concept of perfect
equilibrium. Our lexicographic agreement theorems turn out to be pivotal in this endeavour. The hypotheses of
mutual primary belief in caution, mutual primary belief in rationality, and common knowledge of conjectures
characterize perfect equilibrium epistemically in our lexicographic framework.
. Introduction

The impossibility for two agents to agree to disagree is established
y Aumann (1976)’s seminal agreement theorem. More precisely, if two
ayesian agents with a common prior receive private information and
ave common knowledge of their posterior beliefs, then these poste-
iors must be equal. In other words, distinct posterior beliefs cannot
e common knowledge among Bayesian agents with the same prior
eliefs. In this sense, agents cannot agree to disagree.1 The impossibility
f agreeing to disagree has important implications for any interactive
ituation where, loosely speaking, the mutual acknowledgement of dis-
inct views or assessments is relevant, e.g. trade, speculation, political

✩ Preliminary versions of this work were presented at the 13th Conference on Logic and the Foundations of Game and Decision Theory (LOFT13), Milan, July
018, as well as at the 6th World Congress of the Game Theory Society (GAMES2020), Budapest, July 2021. We are grateful to Adam Brandenburger, Andrés
arvajal, Robert Edwards, Amanda Friedenberg, Stephan Jagau, Andrés Perea, Burkhard Schipper, Elias Tsakas, and two anonymous referees for useful as well
s constructive comments.
∗ Corresponding author at: Department of Economics, University of Liverpool Management School, University of Liverpool, Chatham Street, Liverpool, L69

ZH, United Kingdom.
E-mail address: cwbach@liverpool.ac.uk (C.W. Bach).

1 An extensive literature on agreeing to disagree has emerged. Most contributions reconsider Aumann’s impossibility theorem in more general frameworks.
otably, Bonanno and Nehring (1997) as well as Ménager (2012) provide comprehensive surveys on this literature. Some more recent contributions to the
greeing to disagree literature include Dégremont and Roy (2012), Hellman and Samet (2012), Bach and Perea (2013), Heifetz et al. (2013), Hellman (2013),
emey (2014), Lehrer and Samet (2014), Chen et al. (2015), Dominiak and Lefort (2015), Tarbush (2016), Bach and Cabessa (2017), Gizatulina and Hellman

2019), Pacuit (2018), Tsakas (2018), Liu (2019), as well as Contreras-Tejada et al. (2021).
2 A prominent analysis of economic consequences of agreeing to disagree is Milgrom and Stokey’s (1982) so-called no-trade theorem. Accordingly, if two

raders agree on a prior efficient allocation of goods, then upon receiving private information it cannot be common knowledge that they both have an incentive
o trade.

3 Formally, lexicographic beliefs are modelled in their most general form by lexicographic probability systems due to Blume et al. (1991a).

positions, or legal judgements.2 The array of potential applications for
the agreement theorem is vast.

Here, we explore agreeing to disagree in an extended framework
with lexicographic beliefs. A lexicographic belief is a sequence of
beliefs, where the different beliefs are given in descending order of
importance.3 The sequence’s first component can be viewed as the
agent’s primary doxastic attitude, its second component as his sec-
ondary doxastic attitude, etc. Intuitively, a lexicographically-minded
agent deems his first belief fundamentally more likely than his sec-
ondary belief, which in turn is fundamentally more likely than his
tertiary belief, etc. Lexicographic beliefs resolve the problem of con-
ditioning on events with probability zero. Revising beliefs based on
vailable online 29 September 2023
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Fig. 1. A two player game.

hypotheses that are initially deemed impossible is relevant to hypo-
thetical reasoning. An apt example are games. It can be important for
a player to consider what would happen, if an opponent were to pick
an unexpected choice, in order to act rationally himself.

In game theory, lexicographic beliefs do play a prominent role
and have effectively been put into action to model caution and trem-
bles.4 In particular, they shed essential light on the foundations of
weak dominance arguments and have served to unravel a fundamental
game-theoretic paradox: the so-called inclusion-exclusion problem.5
The paradox arises whenever a player is required to include all, yet to
exclude some, choices for an opponent. This startling tension is inher-
ent in (iterated) weak dominance, also called (iterated) admissibility,
which constitutes one of the most long-standing ideas in game theory
going back at least to Gale (1953).

For an illustration of the inclusion-exclusion problem, consider the
two player game depicted in Fig. 1 with players Alice and Bob, where
Alice chooses a ‘‘row’’ (𝑎 or 𝑏) and Bob picks a ‘‘column’’ (𝑦 or 𝑧). The
unique strategy for Alice in line with weak dominance is 𝑎. Intuitively,
against all choices of Bob, 𝑎 never yields less than 𝑏, and against the
particular strategy 𝑦 of Bob, 𝑎 induces a strictly higher payoff than 𝑏.
For Bob, 𝑦 is strictly worse than 𝑧 against all of Alice’s choices. However,
it seems impossible to support 𝑎 with consistent beliefs, since on the one
hand, Alice needs to assign positive probability to both 𝑦 and 𝑧 to render
𝑎 uniquely optimal for her, while on the other hand, she should assign
probability zero to the never optimal choice 𝑦 for Bob. The remedy
to the paradox lies in lexicographic beliefs. They are capable of not
excluding any choice from consideration yet at the same time deeming
some choices much more – indeed infinitely more – likely than others.
With lexicographic beliefs, the inclusion-exclusion riddle evaporates.
In the preceding example, a lexicographic belief for Alice that assigns
probability one to 𝑧 in its first level and probability one to 𝑦 in its
second level would already form a consistent doxastic attitude filtering
out 𝑎 as her unique optimal strategy.

In terms of Aumann’s impossibility theorem the question of whether
agreeing to disagree is possible or not gains in depth if lexicographic be-
liefs are admitted and hypothetical reasoning can thereby be captured.
For example, consider merchants forming beliefs about the arrival
of a sea shipment. A primary contingency could revolve around the
usual meteorological conditions that can affect the length of sea travel.
Suppose that a secondary contingency would include fundamentally
less likely factors affecting arrival like a pirate attack. If common
knowledge of their posterior beliefs implies agents to agree on their
beliefs given the primary contingency, then they could possibly still
disagree with regards to the secondary contingency. Whether or not
the agents do, could have different implications for the actions they
take based on their (lexicographic) beliefs.

In general, given the importance of lexicographic beliefs in game
theory on the one hand, and given Aumann’s seminal impossibility

4 By now lexicographic beliefs have become a widespread tool in game
heory and have been used, for instance, by Kreps and Wilson (1982), Kreps
nd Ramey (1987), Blume et al. (1991b), Brandenburger (1992b), Börgers
1994), Stahl (1995), Mailath et al. (1997), Asheim (2001, 2002), Govindan
nd Klumpp (2003), Asheim and Perea (2005), Brandenburger et al. (2008),
ang (2015), Dekel et al. (2016), Lee (2016), as well as Catonini and De Vito
2018, 2020).

5 The inclusion-exclusion problem has first been identified by Samuelson
1992), when showing that the solution concept of iterated weak dominance
2

an be inconsistent with common knowledge assumptions. e
result on agreeing to disagree on the other hand, it seems intriguing
to ask how the agreement theorem is affected if standard probabil-
ities are replaced by lexicographic probability systems. To address
this question we define the notion of lexicographic Aumann structure,
where the agents hold a sequence of priors on the basis of which
they compute a sequence of posteriors in the style of Blume et al.
(1991a). In our framework, a weak agreement theorem in the sense
of merely identical first level posteriors obtains. However, we provide
a disagreement result establishing that agents can actually agree to
disagree on their posteriors beyond the first lexicographic level. Au-
mann’s impossibility theorem does therefore not directly generalize
to full-fledged lexicographic reasoning. Based on this observation, we
introduce a condition which essentially states that every lexicographic
level prior either neglects or considers the agents’ private information
synchronically. This condition can be viewed as a variant of standard
mutual absolute continuity from probability theory. With the assistance
of mutual absolute continuity, we provide a strong agreement theorem
which establishes the impossibility of agreeing to lexicographically
disagree.

Naturally, the question arises whether our lexicographic agreement
theorems can be applied to game theory. It would be particularly
illuminating to gain novel insights about classical solution concepts
based on lexicographic agreeing to disagree. A prominent class of
solution concepts in game theory is based on the idea of trembles.
Intuitively, with a very small probability a player may make a mistake
– ‘‘his hand might tremble’’ – in implementing his optimal strategy.
So-called tremble equilibria formalize this intuition by postulating
equilibrium behaviour as the limiting case when the trembles vanish.
The most fundamental solution concept of this kind is Selten’s (1975)
perfect equilibrium.6 A typical feature of tremble equilibria requires all
trembles to satisfy some full support condition. In this sense, tremble
equilibria also formalize cautious players, which suggests a link to
lexicographic beliefs. Indeed, Blume et al. (1991b) investigate this
link and provide a reformulation of perfect equilibrium as well as of
proper equilibrium in terms of lexicographic conjectures, which are
lexicographic beliefs about choices.

However, a characterization of tremble equilibria in terms of inter-
active thinking is still missing. Such an endeavour would imperatively
involve higher-order beliefs, thereby moving beyond the basic doxastic
layer of conjectures. Full interactive reasoning is modelled by imposing
conditions on belief hierarchies which in turn assemble different layers
of iterated beliefs. Conjectures, as beliefs about (opponents’) choices,
only constitute the first such layer. In order to fully describe the
interactive thinking of players, it is crucial to also model their beliefs
about their opponents’ conjectures, their beliefs about their opponents’
beliefs about their opponents’ conjectures, etc. Due to their infinite
nature belief hierarchies are cumbersome objects, but fortunately they
can be represented in a compact way by means of epistemic models due
to Harsanyi (1967–68). The epistemic programme in game theory has
employed such models to unveil the interactive reasoning assumptions
implicitly endorsed by solution concepts in games.

Our lexicographic agreement theorems are capable of shedding
some light on the interactive reasoning underlying perfect equilib-
rium in games. Indeed, we provide epistemic conditions for perfect
equilibrium. The epistemic hypotheses of mutual primary belief in
caution, mutual primary belief in rationality, and common knowledge
of conjectures characterize perfect equilibrium in terms of interactive
reasoning. Our lexicographic agreement theorems play a prominent
role in attaining our epistemic foundation. By means of the weak
agreement theorem, all opponents of any given player can be ensured to

6 Other tremble equilibria have been proposed in the literature, for
nstance, Myerson’s (1978) proper equilibrium, van Damme’s (1984) quasi-
erfect equilibrium, as well as Harsanyi and Selten’s (1988) uniformly perfect
quilibrium.
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hold the same marginal lexicographic conjecture about him. The strong
agreement theorem is used to derive an independence property of the
players’ lexicographic conjectures.

We proceed as follows. The remainder of this section demarcates our
model and results from the related literature. In Section 2, Blume et al.’s
(1991a) lexicographic probability systems are incorporated into state-
based interactive epistemology. Core notation is fixed and key concepts
are defined. Section 3 contains a weak agreement theorem (WAT)
with lexicographic probability systems, while Section 4 brings the
deeper lexicographic levels into focus. Incongruity can obtain beyond
the first level as our disagreement result (DIS) shows. In Section 5,
under mutual absolute continuity, a lexicographically strong agreement
theorem (SAT) is developed. We subsequently turn to games. In Sec-
tion 6, Selten’s (1975) seminal solution concept of perfect equilibrium
is presented. A reformulation of this tremble equilibrium by means of
lexicographic conjectures is furnished along the lines of Blume et al.
(1991b) in Section 7. Epistemic conditions that characterize perfect
equilibrium are put forth in Section 8. Finally, Section 9 offers some
concluding remarks.

1.1. Related literature

By establishing agreement theorems with lexicographic beliefs and
providing epistemic conditions for perfect equilibrium, our contribution
is twofold. On the one hand, we are connected to the literature on
agreeing to disagree that has emerged since Aumann‘s seminal (1976)
impossibility result. On the other hand, the application of our lex-
icographic agreement theorems to epistemically characterize perfect
equilibrium adds to the foundations of game theory.

Our framework extends standard Aumann structures (Aumann,
1974, 1976) by modelling the agents’ beliefs with Blume et al.’s (1991a)
lexicographic probability systems instead of mere probability distribu-
tions. Within this enriched set-up, we explore agreeing to disagree.
Aumann’s (1976) agreement theorem obtains as a special case of WAT,
if the lexicographic common prior is truncated at the first level.

A lexicographic approach to agreeing to disagree is also taken by
Bach and Perea (2013). Notably, their framework admits lexicographic
beliefs as priors yet delivers a standard posterior for every agent. In
contrast, by using lexicographic probability systems, we also model
the posteriors as lexicographic beliefs. This does not only formally
but also conceptually make an essential difference, as the agents’
decision-relevant beliefs are the posteriors which are extended in our
framework. A further restriction of Bach and Perea (2013) is a non-
overlapping support requirement on lexicographic priors, which we
do not impose. The agreement theorem of Bach and Perea (2013) is
implied as another special case of WAT, if the lexicographic posteriors
are truncated at the first level.

Once lexicographic posteriors enter the picture novel insights
emerge. Somewhat surprisingly, our possibility result DIS establishes
that agents can actually agree to disagree with a lexicographic mindset.
In fact, if a non-overlapping support requirement on lexicographic
priors were to be desired, DIS would still remain valid. The additional
assumption of mutual absolute continuity brings about our impossi-
bility result SAT, which can be viewed as a lexicographic agreement
theorem in sensu stricto.

In general, lexicographic probability systems deal with the problem
of how to proceed if something is learned to which initially probability
zero was assigned. An alternative tool for extending probabilities to
handle conditioning on measure zero events are conditional probability
systems due to Rényi (1995). They have prominently been used in
game theory to define the reasoning concept of common strong belief
in rationality for extensive forms by Battigalli and Siniscalchi (2002).
Lexicographic probability systems can be related to conditional prob-
ability systems and equivalences have been established under certain
conditions (e.g. Hammond, 1994; Halpern, 2010; Tsakas, 2014). Lexi-
3

cographic agreeing to disagree is thus indirectly also related to Tsakas d
(2018), who establishes two agreement theorems with conditional
probability systems. However, his results cannot be directly compared
to ours, since the models are too different. While we extend Aumann’s
partitional model by lexicographic probability systems, Tsakas (2018)
uses type structures in the style of Battigalli and Siniscalchi (1999). In
particular, the way in which the agents’ posteriors enter the picture is
inherently distinct. In Tsakas (2018) framework, the agreement con-
cerns a single posterior per agent, while our agreement theorems deal
with lexicographic posteriors. Besides, already the computation of the
first level posterior in our framework depends on which prior assigns
positive probability to the conditioning event (i.e. the respective agent’s
information cell in lexicographic Aumann structures). In contrast, the
determination of the conditioning event to derive the posterior in
Tsakas (2018) model is independent from the prior.

In the game-theoretic part of our paper, we explore the epistemic
foundation of Selten’s (1975) solution concept of perfect equilibrium.
A reformulation of perfect equilibrium by means of lexicographic con-
jectures constitutes the first step. Although such a reformulation has
already been established by Blume et al. (1991b), our Lemma 1 pro-
vides a similar construction for the sake of completeness and self-
containedness. Being concerned with the players’ interactive reasoning,
epistemic foundations go beyond conjectures into the players’ belief
hierarchies. Our Theorems 3 and 4 provide an epistemic character-
ization of perfect equilibrium. They can be viewed as developping
Blume et al.’s (1991a) analysis of perfect equilibrium in terms of
lexicographic conjectures further into the full game-theoretic reason-
ing realm. In some sense, our relation to Blume et al. (1991b) with
regard to perfect equilibrium is analogous to the relation of Aumann
and Brandenburger (1995) to Harsanyi (1973) with regard to Nash
equilibrium: while Harsanyi (1973) has proposed the interpretation of
Nash equilibrium in terms of conjectures, Aumann and Brandenburger
(1995) have taken this crucial insight into an epistemic framework,
unveiling the underlying interactive reasoning assumptions of Nash
equilibrium. Our game-theoretic results could be perceived of as gen-
eralizing Aumann and Brandenburger (1995) from Nash equilibrium to
perfect equilibrium.7

For the special case of two players, perfect equilibrium has been
characterized epistemically by Perea (2012). The supply of epistemic
conditions for perfect equilibrium involving any finite number of play-
ers has still been an open question though, which our Theorems 3 and 4
address. An epistemic analysis of equilibrium notions faces two consid-
erable challenges once more than two players are considered. Firstly,
for a given player, all opponents have to share the same belief about
the player’s choice (‘‘problem of projection’’). Secondly, any player’s
belief about his opponents’ choices needs to be independent (‘‘problem
of independence’’). Our lexicographic agreement theorems turn out
to be pivotal in resolving these intricacies. Besides his restriction to
the two player case, Perea’s (2012) type-based framework is distinct
from our state-based lexicographic Aumann structures with a common
prior. Epistemic conditions for the special setting of two players are
provided by our Proposition 2, which can thus be juxtaposed with
Perea (2012). Our hypotheses of mutual primary belief in caution
and mutual primary belief in rationality are weaker variants of his
common full belief in caution and common full belief in primary
belief in rationality, respectively. Furthermore, mutual knowledge of
lexicographic conjectures embodies a correct beliefs assumption among
our epistemic conditions. In contrast, Perea’s (2012) correct beliefs

7 There are some significant differences though. While Aumann and Bran-
enburger (1995) define knowledge as probability one belief in type-based
tructures, we use the standard notion of knowledge in state-based Aumann
odels to define common knowledge of conjectures. Also, our proofs critically

uild on (lexicographic) agreeing to disagree, whereas the proofs of Aumann
nd Brandenburger take a different route without using (standard) agreeing to

isagree.
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assumption essentially states that each player believes his opponent to
only lexicographically deem possible the player’s actual lexicographic
belief hierarchy. While his epistemic operator is thus doxastic and the
uncertainty is spanned by the full belief hierarchies, our correct beliefs
assumption uses the stronger operator of knowledge but only concerns
the players’ conjectures in terms of uncertainty. Finally, Perea’s (2012)
notion of caution is more restrictive than ours. A player is cautious
according to Perea (2012), whenever, if he lexicographically deems
possible a type for any opponent, then he also lexicographically deems
possible any strategy for that type. In contrast, a player already satisfies
caution in our game-theoretic framework, whenever his lexicographic
conjecture deems possible any strategy for all of his opponents.

2. Preliminaries

In state-based interactive epistemology, knowledge and beliefs are
modelled within the framework of Aumann structures. Formally, an
Aumann structure

 ∶=
(

𝛺, (𝑖)𝑖∈𝐼 , 𝑝
)

consists of a finite set 𝛺 of possible worlds (also called states of the
world), a finite set 𝐼 of agents, a possibility partition 𝑖 of 𝛺 for every
agent 𝑖 ∈ 𝐼 , and a common prior 𝑝 ∶ 𝛺 → [0, 1] such that ∑𝜔∈𝛺 𝑝(𝜔) = 1.
The cell of 𝑖 containing the world 𝜔 is denoted by 𝑖(𝜔) and assembles
those worlds deemed possible by agent 𝑖 at world 𝜔. It is standard to
impose the so-called non-null information assumption which ensures
that no information is excluded a priori, i.e. 𝑝

(

𝑖(𝜔)
)

> 0 for all 𝑖 ∈ 𝐼
and for all 𝜔 ∈ 𝛺.

Agents reason about events which are defined as sets of possible
worlds. The common prior 𝑝 naturally extends to a measure 𝑝 ∶ 2𝛺 →
[0, 1] on the event space by setting 𝑝(𝐸) =

∑

𝜔∈𝐸 𝑝(𝜔) for all 𝐸 ∈ 2𝛺.
Agents are Bayesians and consequently update the common prior with
their private information as follows: the posterior belief of agent 𝑖 in
event 𝐸 at world 𝜔 is given by

𝑝
(

𝐸 ∣ 𝑖(𝜔)
)

=
𝑝
(

𝐸 ∩ 𝑖(𝜔)
)

𝑝
(

𝑖(𝜔)
)

and forms the decision-relevant belief of the agent.
Knowledge is formalized in terms of events. The event of agent 𝑖

nowing event 𝐸, denoted by 𝐾𝑖(𝐸), is defined as

𝐾𝑖(𝐸) ∶= {𝜔 ∈ 𝛺 ∶ 𝑖(𝜔) ⊆ 𝐸}.

If 𝜔 ∈ 𝐾𝑖(𝐸), then 𝑖 is said to know 𝐸 at 𝜔. Mutual knowledge is given
by

𝐾(𝐸) ∶=
⋂

𝑖∈𝐼
𝐾𝑖(𝐸).

Setting 𝐾0(𝐸) ∶= 𝐸, higher-order mutual knowledge is inductively
defined by

𝐾𝑚(𝐸) ∶= 𝐾
(

𝐾𝑚−1(𝐸)
)

for all 𝑚 > 0. Mutual knowledge can also be denoted as 1-order mutual
knowledge. The conjunction of all higher-order mutual knowledge
yields common knowledge, which is formally defined as

𝐶𝐾(𝐸) ∶=
⋂

𝑚>0
𝐾𝑚(𝐸)

for all 𝐸 ∈ 2𝛺. This is often called the iterative definition of common
knowledge. An equivalent formulation due to Aumann (1976) is based
on the meet of the agents’ possibility partitions and typically denoted
as the meet definition of common knowledge.8 Accordingly, common

8 Given two partitions 1 and 2 of some set 𝑆, the partition 1 is called
iner than the partition 2 (or 2 coarser than 1), if each cell of 1 is a subset

of some cell of 2. Given 𝑛 partitions 1,2,… ,𝑛 of 𝑆, the finest partition that
s coarser than 1,2,… ,𝑛 is called the meet of 1,2,… ,𝑛 and is denoted
y ⋀𝑛

𝑖=1 𝑖. Moreover, given 𝑥 ∈ 𝑆, the cell of the meet ⋀𝑛
𝑖=1 𝑖 containing 𝑥

(
⋀𝑛 )
4

s denoted by 𝑖=1 𝑖 (𝑥). o
nowledge is constructed as

𝐾(𝐸) ∶=
{

𝜔 ∈ 𝛺 ∶
(
⋀

𝑖∈𝐼
𝑖
)

(𝜔) ⊆ 𝐸
}

or all 𝐸 ∈ 2𝛺, where (
⋀

𝑖∈𝐼 𝑖)(𝜔) is the cell of the meet that contains
the world 𝜔.9

Lexicographic beliefs are modelled in line with Blume et al. (1991a)’s
notion of lexicographic probability systems. The following definition
provides a direct adaptation of Blume et al. (1991a, Definition 3.1) to
the interactive setting with multiple agents.

Definition 1. Let 𝛺 be a set of possible worlds, 𝐼 be a set of agents,
and 𝑀𝑖 > 0 be some integer. A lexicographic probability system for agent
𝑖 ∈ 𝐼 (𝑖-LPS) is a tuple

𝜌𝑖 = (𝑝1𝑖 ,… , 𝑝𝑀𝑖
𝑖 ),

where 𝑝𝑚𝑖 ∈ 𝛥(𝛺) for all 𝑚 ∈ {1,… ,𝑀𝑖}.

Lexicographic beliefs are thus sequences of standard beliefs. The
index numbers of a lexicographic probability system are also referred
to as lexicographic levels.

Incorporating lexicographic probability systems into Aumann struc-
tures gives rise to the notion of lexicographic Aumann structures.

Definition 2. A lexicographic Aumann structure is a tuple

𝐿 =
(

𝛺, 𝐼, (𝑖)𝑖∈𝐼 , (𝜌𝑖)𝑖∈𝐼
)

,

where

• 𝛺 is a set of possible worlds,
• 𝐼 is a set of agents,
• 𝑖 ⊆ 2𝛺 is a possibility partition of 𝛺 for every agent 𝑖 ∈ 𝐼 ,
• 𝜌𝑖 = (𝑝1𝑖 ,… , 𝑝𝑀𝑖

𝑖 ) is an 𝑖-LPS for every agent 𝑖 ∈ 𝐼 ,
• for every agent 𝑖 ∈ 𝐼 and for every world 𝜔 ∈ 𝛺, there exists a

lexicographic level 𝑚 ∈ {1,… ,𝑀𝑖} such that 𝑝𝑚𝑖
(

𝑖(𝜔)
)

> 0.

The fifth item of Definition 2 ensures that no information is ex-
cluded a priori, and formally reflects the idea of caution. Actually,
this condition can be seen as the lexicographic analogue to Aumann
(1976)’s requirement for all information cells to be non-null events
in the standard framework of Aumann structures. Caution could also
be modelled as follows: for all 𝑖 ∈ 𝐼 and for all 𝜔 ∈ 𝛺 there exists
𝑚 ∈ {1,… ,𝑀𝑖} such that 𝑝𝑚𝑖 (𝜔) > 0. Such a condition is stronger,
as it requires that every world – as opposed to only the information
received – is deemed possible at some lexicographic level. The fifth item
of Definition 2 is thus preferable.

Agents use their information to reason lexicographically about
events. Formally, we adjust Blume et al. (1991a, Definition 4.2) to the
context of lexicographic Aumann structures.

Definition 3. Let 𝐿 be a lexicographic Aumann structure, 𝜔 ∈ 𝛺
be some world, and 𝑖 ∈ 𝐼 be some agent. The conditional lexicographic
probability system of agent 𝑖 given his information at world 𝜔 (𝜔-conditional
𝑖-LPS) is the tuple

𝜌𝜔𝑖 =
(

𝑝𝑚1
𝑖
(

⋅ ∣ 𝑖(𝜔)
)

,… , 𝑝𝑚𝐿𝑖
(

⋅ ∣ 𝑖(𝜔)
)

)

where

9 In fact, Brandenburger and Dekel (1987) propose a more general defini-
ion of common knowledge that can be used without the non-null information
ssumption holding (e.g. in situations where the set 𝛺 of possible worlds is
ncountable). They require posterior beliefs to be proper regular conditional
robabilities and modify the agents’ possibility partitions appropriately in the
ase of null cells. Their notion of common knowledge is iterative and based

n knowledge as probability one posterior belief.
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• the finite sequence of indices (𝑚𝑙)𝐿𝑙=0 is inductively defined by
𝑚0 ∶= 0 and 𝑚𝑙 ∶= min

{

𝑚 ∈ N ∶ 𝑚𝑙−1 < 𝑚 ≤ 𝑀𝑖 and 𝑝𝑚𝑖
(

𝑖(𝜔)
)

>
0
}

if 𝑙 > 0;

• 𝑝𝑚𝑙𝑖
(

𝐸 ∣ 𝑖(𝜔)
)

=
𝑝𝑚𝑙𝑖

(

𝐸∩𝑖(𝜔)
)

𝑝𝑚𝑙𝑖
(

𝑖(𝜔)
) for all 𝐸 ∈ 2𝛺 and for all 𝑙 ∈

{1,… , 𝐿}.

An essential difference between lexicographic Aumann structures
nd the standard framework resides in the former equipping agents
ith multiple levels of – and not unique – posteriors beliefs. Techni-

ally, the sequence (𝑚𝑙)𝐿𝑙=1 of indicies belonging to the 𝜔-conditional
-LPS 𝜌𝜔𝑖 depends on both 𝑖 and 𝜔 and should thus strictly speak-
ng be written as (𝑚𝑖,𝜔,𝑙)

𝐿𝑖,𝜔
𝑙=1 . For the sake of simplicity, the shortcut

otation (𝑚𝑙)𝐿𝑙=1 is adopted, whenever the dependence on 𝑖 and 𝜔 is
lear from the context. Furthermore, attention is restricted to the first

lexicographic posterior levels, where 𝐿 ∶= min{𝐿𝑖,𝜔 > 0 ∶ 𝑖 ∈
and 𝜔 ∈ 𝛺}, in order to ensure that the conditional lexicographic

robability systems of every agent at every world have the same
ength. This restriction is only imposed for technical reasons, so that
he lexicographic level posteriors the agents interactively reason about
xist for all agents. Otherwise events such as ‘‘equal posteriors at
ll lexicographic levels’’ could not be properly defined. Besides, note
hat the lexicographic character of lexicographic probability systems
ctually crystallizes in two ways: an agent’s prior as well as posterior
re furnished with a lexicographic structure.

The common prior assumption in Aumann structures can be directly
eneralized to the lexicographic setting.

efinition 4. Let 𝐿 be a lexicographic Aumann structure. The lex-
cographic Aumann structure 𝐿 satisfies the common prior assumption
CPA), if there exists 𝜌 = (𝑝1,… , 𝑝𝑀 ) ∈

(

𝛥(𝛺)
)𝑀 such that 𝑀 =

in{𝑀𝑖 ∈ N ∶ 𝑖 ∈ 𝐼} and 𝑝𝑚𝑖 = 𝑝𝑚 for all 𝑖 ∈ 𝐼 and for all
∈ {1,… ,𝑀}. In this case, the tuple 𝜌 is called common prior and
𝐿𝐶𝑃 =

(

𝛺, 𝐼, (𝑖)𝑖∈𝐼 , 𝜌
)

is called lexicographic Aumann structure with a
common prior.

With the existence of a common prior, the 𝜔-conditional 𝑖-LPS thus
becomes:

𝜌𝜔𝑖 = 𝜌(⋅ ∣ 𝑖(𝜔)) =
(

𝑝𝑚1
(

⋅ ∣ 𝑖(𝜔)
)

,… , 𝑝𝑚𝐿
(

⋅ ∣ 𝑖(𝜔)
)

)

Analogously to the case of subjective priors, the sequence (𝑚𝑙)𝐿𝑙=1 of
indices should strictly speaking be written as (𝑚𝑖,𝜔,𝑙)𝐿𝑙=1, which we
refrain from doing whenever the dependence on 𝑖 and 𝜔 is clear from
the context.

To preempt any potential confusion about the lexicographic no-
tation: the prior levels are denoted by 𝑚 ∈ {1,… ,𝑀}, while the
posterior levels are represented by 𝑙 ∈ {1,… , 𝐿}. The 𝑙th posterior level
corresponds to the prior level 𝑚𝑙 ∈ {1,… ,𝑀} for all 𝑙 ∈ {1,… , 𝐿}.

According to so-called Harsanyi consistency, differences in agents’
beliefs are to be attributed entirely to differences in the agents’ in-
formation. This doctrine extends to our more general set-up with
lexicographic beliefs. Indeed, Definition 3 ensures that posterior hetero-
geneity is already excluded in the case of the common prior assumption
being satisfied, if the agents face symmetric information (i.e. receive
precisely the same information). Consequently, distinct posteriors need
to be due to information variety.

As an illustration of our formal framework as embodied by Defini-
tions 1 to 4, consider again the sea shipment allusion from Section 1.
A lexicographic Aumann structure (cf. Definition 2) would represent a
situation, where different merchants hold contingent prior beliefs and
are equipped with private information about the arrival of some sea
shipment. Suppose that 𝛺 = {𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔5, 𝜔6, 𝜔7, 𝜔8} comprises
eight worlds. The eight worlds describe eight possible scenarios that
are conceivable by all the merchants:

∙ the shipment arrives in fine weather with no pirate attack occur-
5

ring (𝜔1 ∈ 𝛺),
∙ the sea shipment does not arrive in fine weather with no pirate
attack occurring (𝜔2 ∈ 𝛺),

∙ the shipment arrives in adverse weather with no pirate attack
occurring (𝜔3 ∈ 𝛺),

∙ the shipment does not arrive in adverse weather with no pirate
attack occurring (𝜔4 ∈ 𝛺),

∙ the shipment arrives in fine weather with pirates attacking (𝜔5 ∈
𝛺),

∙ the shipment does not arrive in fine weather with pirates attack-
ing (𝜔6 ∈ 𝛺),

∙ the shipment arrives in adverse weather with pirates attacking
(𝜔7 ∈ 𝛺),

∙ the shipment does not arrive in adverse weather with pirates
attacking (𝜔8 ∈ 𝛺).

Suppose that some merchant 𝑖 ∈ 𝐼 deems it substantially more likely
hat a pirate attack does not occor. In fact, he only considers the latter
o be a hypothetical contingency but he nonetheless does not discard
t entirely from his thinking. Suppose further that 𝑖 enjoys access
o a reliable meteorological source which is signalling fine weather
onditions. Such a state of mind could be modelled in our framework
s follows. Merchant 𝑖’s information partition could be given by 𝑖 =
{𝜔1, 𝜔2, 𝜔5, 𝜔6}, {𝜔3, 𝜔4, 𝜔7, 𝜔8}

}

and suppose that his subjective prior
ould be given by an 𝑖-LPS (cf. Definition 1) as follows: 𝜌𝑖 = (𝑝1𝑖 , 𝑝

2
𝑖 )

uch that 𝑝1𝑖 (𝜔1) =
4
9 , 𝑝1𝑖 (𝜔2) = 𝑝1𝑖 (𝜔3) =

1
9 , and 𝑝1𝑖 (𝜔4) =

3
9 , as well as

𝑝2𝑖 (𝜔5) =
1
4 , 𝑝2𝑖 (𝜔6) =

1
8 , 𝑝2𝑖 (𝜔7) =

1
8 , and 𝑝2𝑖 (𝜔8) =

1
2 . Assume that the

shipment does arrive under fine weather conditions while withstanding
a pirates’ attack. Formally speaking, 𝜔5 becomes the actual state of the
world. The relevant posterior of merchant 𝑖 is the 𝜔5-conditional 𝑖-LPS
(cf. Definition 3) which then obtains as 𝜌𝜔5𝑖 = 𝑝𝑚1

𝑖
(

⋅ ∣ 𝑖(𝜔5)
)

, 𝑝𝑚2
𝑖
(

⋅ ∣
𝑖(𝜔5)

)

such that 𝑝𝑚1
𝑖
(

𝜔1 ∣ 𝑖(𝜔5)
)

= 4
5 and 𝑝𝑚1

𝑖
(

𝜔2 ∣ 𝑖(𝜔5)
)

= 1
5 , as

well as 𝑝𝑚2
𝑖
(

𝜔5 ∣ 𝑖(𝜔5)
)

= 2
3 and 𝑝𝑚2

𝑖
(

𝜔6 ∣ 𝑖(𝜔5)
)

= 1
3 . Moreover,

in the case of the merchants being like-minded – for instance due
to similar relevant past experiences with sea shipments – a common
prior (cf. Definition 4) could be imposed. The sequence of prior beliefs
would then be the same for all merchants, i.e. there would exist 𝜌 =
(𝑝1,… , 𝑝𝑀 ) such that 𝜌𝑗 = 𝜌 for all 𝑗 ∈ 𝐼 .

3. Weak agreement

Since the agents hold levels of posterior beliefs, agreement becomes
a multifarious notion. Identical beliefs can obtain (or not) at different
lexicographic layers. In fact, it is now shown that common knowledge
of lexicographic posteriors ensures the agents’ first level posterior
beliefs to coincide.

Theorem 1 (WAT). Let 𝐿𝐶𝑃 be a lexicographic Aumann structure with
a common prior, 𝐸 ⊆ 𝛺 be some event, and 𝜔 ∈ 𝛺 be some world. If

𝐶𝐾
(

⋂

𝑖∈𝐼

⋂

𝑙∈{1,…,𝐿}

{

𝜔′ ∈ 𝛺 ∶ 𝑝𝑚𝑙
(

𝐸 ∣ 𝑖(𝜔′)
)

= 𝑝𝑚𝑙
(

𝐸 ∣ 𝑖(𝜔)
)}

)

≠ ∅,

hen
𝑚1
(

𝐸 ∣ 𝑖(𝜔)
)

= 𝑝𝑚1
(

𝐸 ∣ 𝑗 (𝜔)
)

or all 𝑖, 𝑗 ∈ 𝐼 .

roof. Let 𝑗 ∈ 𝐼 be some agent, 𝐴𝑗 ⊆ 𝛺 be some set such that
(
⋀

𝑖∈𝐼 𝑖)(𝜔) =
⋃

𝜔′∈𝐴𝑗 𝑗 (𝜔
′) and 𝑗 (𝜔1) ∩𝑗 (𝜔2) = ∅ for all 𝜔1, 𝜔2 ∈ 𝐴𝑗 .

Moreover, let 𝑚 ∈ {1,… ,𝑀} be the first lexicographic level such that
𝑝𝑚

(

(
⋀

𝑖∈𝐼 𝑖)(𝜔)
)

> 0. Consider some world 𝜔̄ ∈ 𝐴𝑗 . If 𝑝𝑚
(

𝑗 (𝜔̄)
)

> 0,
then 𝑝𝑚1

(

⋅ ∣ 𝑗 (𝜔̄)
)

= 𝑝𝑚
(

⋅ ∣ 𝑗 (𝜔̄)
)

, and by Bayesian updating,

𝑝𝑚1
(

𝐸 ∣ 𝑗 (𝜔̄)
)

⋅ 𝑝𝑚
(

𝑗 (𝜔̄)
)

= 𝑝𝑚
(

𝐸 ∩ 𝑗 (𝜔̄)
)

holds. Alternatively, if 𝑝𝑚
(

𝑗 (𝜔̄)
)

= 0, then 𝑝𝑚
(

𝐸 ∩ 𝑗 (𝜔̄)
)

= 0. Since
𝑝𝑚1

(

⋅ ∣ 𝑗 (𝜔̄)
)

is well-defined,
𝑚1
( ) 𝑚( ) 𝑚( )
𝑝 𝐸 ∣ 𝑗 (𝜔̄) ⋅ 𝑝 𝑗 (𝜔̄) = 𝑝 𝐸 ∩ 𝑗 (𝜔̄)
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𝑝

holds trivially. Therefore,

𝑝𝑚1
(

𝐸 ∣ 𝑗 (𝜔′)
)

⋅ 𝑝𝑚
(

𝑗 (𝜔′)
)

= 𝑝𝑚
(

𝐸 ∩ 𝑗 (𝜔′)
)

obtains for all 𝜔′ ∈ 𝐴𝑗 .
As

𝐴𝑗 ⊆ (
⋀

𝑖∈𝐼
𝑖)(𝜔)

⊆ 𝐶𝐾
(

⋂

𝑖∈𝐼

⋂

𝑙∈{1,…,𝐿}

{

𝜔′ ∈ 𝛺 ∶ 𝑝𝑚𝑙
(

𝐸 ∣ 𝑖(𝜔′)
)

= 𝑝𝑚𝑙
(

𝐸 ∣ 𝑖(𝜔)
)}

)

⊆
⋂

𝑖∈𝐼

⋂

𝑙∈{1,…,𝐿}

{

𝜔′ ∈ 𝛺 ∶ 𝑝𝑚𝑙
(

𝐸 ∣ 𝑖(𝜔′)
)

= 𝑝𝑚𝑙
(

𝐸 ∣ 𝑖(𝜔)
)}

,

it is the case that 𝑝𝑚𝑙 (𝐸 ∣ 𝑖(𝜔′)) = 𝑝𝑚𝑙 (𝐸 ∣ 𝑖(𝜔)), for all 𝑖 ∈ 𝐼 for all
𝑙 ∈ {1,… , 𝐿} and for all 𝜔′ ∈ 𝐴𝑗 . In particular, 𝑝𝑚1 (𝐸 ∣ 𝑗 (𝜔′)) = 𝑝𝑚1 (𝐸 ∣
𝑗 (𝜔)) holds for all 𝜔′ ∈ 𝐴𝑗 . It follows that

𝑝𝑚1 (𝐸 ∣ 𝑗 (𝜔)) ⋅ 𝑝𝑚
(

𝑗 (𝜔′)
)

= 𝑝𝑚
(

𝐸 ∩ 𝑗 (𝜔′)
)

holds for all 𝜔′ ∈ 𝐴𝑗 . Summing over all 𝜔′ ∈ 𝐴𝑗 and using countable
additivity yields

𝑝𝑚1
(

𝐸 ∣ 𝑗 (𝜔)
)

=
𝑝𝑚

(

𝐸 ∩ (
⋀

𝑖∈𝐼 𝑖)(𝜔)
)

𝑝𝑚
(

(
⋀

𝑖∈𝐼 𝑖)(𝜔)
) .

Since 𝑗 has been chosen arbitrarily, it can be concluded that

𝑝𝑚1
(

𝐸 ∣ 𝑖(𝜔)
)

= 𝑝𝑚1
(

𝐸 ∣ 𝑗 (𝜔)
)

for all 𝑖, 𝑗 ∈ 𝐼 . ■

Agents can thus not agree to disagree on their first level posterior
beliefs. The preceding result remains silent though on any lexicographic
level deeper than level one. In this sense, WAT establishes a form of
weak agreement within the lexicographic framework.

Note that it is not possible to establish WAT by simply truncating
the lexicographic Aumann structure at the first prior level and then
applying Aumann’s proof of his original agreement theorem to this
simpler structure. This is because the first level prior may not assign
positive probability to some agent’s information cell, which in turn
implies that a deeper level prior needs to be invoked to compute his
first level posterior. Such possibilities need to be accommodated by the
proof of weak agreement theorem.

For the special case of exclusively admitting the first level posteriors
– formally, only considering 𝑝𝑚1

𝑖
(

⋅ ∣ 𝑖(𝜔)
)

for all 𝜔 ∈ 𝛺 and for all
𝑖 ∈ 𝐼 – our framework of lexicographic Aumann structures becomes
essentially equivalent to Bach and Perea (2013)’s model, which only
employs a lexicographic common prior but unique posteriors. Their
non-overlapping support condition across lexicographic prior levels is
not assumed in our framework though. Thus, WAT can be seen as
a generalization of Bach and Perea (2013, Theorem 1). If not only
the posteriors but also the common prior are restricted to a single
probability measure, i.e. 𝑀 = 1, then Aumann (1976)’s model can be
recovered and WAT becomes the original agreement theorem.

4. Disagreement

Attention is now focussed on the deeper lexicographic levels. It turns
out that agents can agree to disagree on posteriors beyond the first
lexicographic level.

Proposition 1 (DIS). There exist a lexicographic Aumann structure 𝐿𝐶𝑃
with a common prior, some event 𝐸 ⊆ 𝛺, and some world 𝜔 ∈ 𝛺, such that

𝐶𝐾
(

⋂

𝑖∈𝐼

⋂

𝑙∈{1,…,𝐿}

{

𝜔′ ∈ 𝛺 ∶ 𝑝𝑚𝑙 (𝐸 ∣ 𝑖(𝜔′)) = 𝑝𝑚𝑙 (𝐸 ∣ 𝑖(𝜔))
}

)

≠ ∅

and

𝑝𝑚𝑙∗ (𝐸 ∣ 𝑖(𝜔)) ≠ 𝑝𝑚
∗
𝑙 (𝐸 ∣ 𝑗 (𝜔))

∗

6

for some 𝑖, 𝑗 ∈ 𝐼 and for some 𝑙 ∈ {2,… , 𝐿}.
Proof. Let 𝐿𝐶𝑃 =
(

𝛺, 𝐼, (𝑖)𝑖∈𝐼 , 𝜌
)

be a lexicographic Aumann
structure with a common prior, where

• 𝛺 = {𝜔1, 𝜔2, 𝜔3, 𝜔4},
• 𝐼 = {𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏},
• 𝐴𝑙𝑖𝑐𝑒 =

{

{𝜔1, 𝜔2}, {𝜔3, 𝜔4}
}

,
• 𝐵𝑜𝑏 = {𝛺},
• and 𝜌 = (𝑝1, 𝑝2, 𝑝3) with 𝑝1(𝜔1) = 1, 𝑝2(𝜔2) = 1

3 , 𝑝2(𝜔3) = 2
3 ,

𝑝3(𝜔4) = 1.

Consider the event 𝐸 = {𝜔1, 𝜔3}. Observe that
𝑚1
(

𝐸 ∣ 𝐴𝑙𝑖𝑐𝑒(𝜔)
)

= 𝑝1
(

𝐸 ∣ 𝐴𝑙𝑖𝑐𝑒(𝜔)
)

= 1

for all 𝜔 ∈ {𝜔1, 𝜔2}, and

𝑝𝑚1
(

𝐸 ∣ 𝐴𝑙𝑖𝑐𝑒(𝜔)
)

= 𝑝2
(

𝐸 ∣ 𝐴𝑙𝑖𝑐𝑒(𝜔)
)

= 1

for all 𝜔 ∈ {𝜔3, 𝜔4}.10 Consequently, 𝑝𝑚1
(

𝐸 ∣ 𝐴𝑙𝑖𝑐𝑒(𝜔)
)

= 1 obtains at
every world 𝜔 ∈ 𝛺. Also, observe that

𝑝𝑚1
(

𝐸 ∣ 𝐵𝑜𝑏(𝜔)
)

= 𝑝1
(

𝐸 ∣ 𝐵𝑜𝑏(𝜔)
)

= 1

for all 𝜔 ∈ 𝛺. Therefore, 𝐴𝑙𝑖𝑐𝑒’s and 𝐵𝑜𝑏’s first level posterior beliefs
of 𝐸 coincide.

Moreover, it is the case that

𝑝𝑚2
(

𝐸 ∣ 𝐴𝑙𝑖𝑐𝑒(𝜔)
)

= 𝑝2
(

𝐸 ∣ 𝐴𝑙𝑖𝑐𝑒(𝜔)
)

= 0

for all 𝜔 ∈ {𝜔1, 𝜔2}, and

𝑝𝑚2
(

𝐸 ∣ 𝐴𝑙𝑖𝑐𝑒(𝜔)
)

= 𝑝3
(

𝐸 ∣ 𝐴𝑙𝑖𝑐𝑒(𝜔)
)

= 0

for all 𝜔 ∈ {𝜔3, 𝜔4}. Hence, 𝑝𝑚2
(

𝐸 ∣ 𝐴𝑙𝑖𝑐𝑒(𝜔)
)

= 0 obtains at every
world 𝜔 ∈ 𝛺. Also,

𝑝𝑚2
(

𝐸 ∣ 𝐵𝑜𝑏(𝜔)
)

= 𝑝2
(

𝐸 ∣ 𝐵𝑜𝑏(𝜔)
)

= 2
3

holds at every world 𝜔 ∈ 𝛺. Therefore, 𝐴𝑙𝑖𝑐𝑒’s and 𝐵𝑜𝑏’s second level
posterior beliefs of 𝐸 do not coincide.

Taking 𝜔 = 𝜔1 guarantees that

CK
(
⋂

𝑖∈𝐼

⋂

𝑙∈{1,…,𝐿}

{

𝜔′ ∈ 𝛺 ∶ 𝑝𝑚𝑙 (𝐸 ∣ 𝑖(𝜔′)) = 𝑝𝑚𝑙 (𝐸 ∣ 𝑖(𝜔))
})

= 𝐶𝐾(𝛺)

= 𝛺 ≠ ∅,

while

𝑝𝑚2 (𝐸 ∣ 𝐴𝑙𝑖𝑐𝑒(𝜔)) = 0 ≠ 2
3
= 𝑝𝑚2 (𝐸 ∣ 𝐵𝑜𝑏(𝜔))

obtains at the second lexicographic level 𝑚2. ■

A possibility result on agreeing to disagree thus emerges with
lexicographic probability systems. Common knowledge of the agents’
lexicographic posteriors does manifestly not suffice to establish agree-
ment at all lexicographic levels. The agents can entertain distinct
posteriors at lexicographic levels beyond one, and at the same time
acknowledge this divergence. This result is somewhat surprising as
it lexicographically counters Aumann’s impossibility theorem. Besides,
note that DIS would still apply and the same proof would remain valid,
if a disjoint support condition were to be imposed on the lexicographic
level priors.

Conceptually, DIS raises the question as to what drives the disagree-
ment in a lexicographically enriched set-up. From Aumann’s agreement
theorem, it is typically concluded that asymmetric information does not
suffice to explain heterogeneity in posterior beliefs of Bayesian agents
with a common prior. Consequently, disagreement can be reached

10 Recall that in the expressions 𝑝𝑚1
(

𝐸 ∣ 𝐴𝑙𝑖𝑐𝑒(𝜔1)
)

and 𝑝𝑚1
(

𝐸 ∣ 𝐴𝑙𝑖𝑐𝑒(𝜔3)
)

,
index 𝑚1 is a shortcut notation for the two different indices 𝑚𝐴𝑙𝑖𝑐𝑒,𝜔1 ,1 and
𝑚𝐴𝑙𝑖𝑐𝑒,𝜔3 ,1, respectively. Hence, equalities 𝑝𝑚1

(

𝐸 ∣ 𝐴𝑙𝑖𝑐𝑒(𝜔1)
)

= 𝑝1
(

𝐸 ∣ 𝐴𝑙𝑖𝑐𝑒(𝜔1)
)

and 𝑝𝑚1
(

𝐸 ∣ 𝐴𝑙𝑖𝑐𝑒(𝜔3)
)

= 𝑝2
(

𝐸 ∣ 𝐴𝑙𝑖𝑐𝑒(𝜔3)
)

imply that 𝑚𝐴𝑙𝑖𝑐𝑒,𝜔1 ,1 = 1 and
𝑚 = 2, respectively.
𝐴𝑙𝑖𝑐𝑒,𝜔3 ,1
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by either weakening the common knowledge assumption or the com-
mon prior assumption. Such a conclusion does no longer apply in
our lexicographic framework, since by DIS heterogeneous posteriors
can obtain despite common knowledge of posteriors as well as the
common prior remaining intact. In contrast to Aumann’s original set-
up with standard beliefs, the lexicographic beliefs in our framework are
capable of capturing hypothetical reasoning. The conceptual conclusion
of Aumann’s impossibility result with regard to disagreement is thus
refined by DIS which detects hypothetical reasoning as a third source
or heterogeneity in posterior beliefs.

. Strong agreement

The impossibility theorem of WAT is weak in the sense that it
nly affects the first lexicographic posterior level and agreement can
lready fall apart at the second level as DIS shows. Further assumptions
bout the agents’ like-mindedness are thus needed for a stronger result
ielding equal posteriors at every lexicographic level. For this purpose
n adaptation of absolute mutual absolute continuity from probability
heory is introduced.

efinition 5. Let 𝐿𝐶𝑃 be a lexicographic Aumann structure with
common prior and 𝜔 ∈ 𝛺 be some world. The common prior 𝜌 is
utually absolutely continuous, whenever
𝑚(𝑖(𝜔)

)

= 0, if and only if, 𝑝𝑚
(

𝑗 (𝜔)
)

= 0

or all 𝜔 ∈ 𝛺, for all 𝑖, 𝑗 ∈ 𝐼 , and for all 𝑚 ∈ {1,… ,𝑀}.

Mutual absolute continuity ensures that at every lexicographic level
he corresponding common prior handles the agents’ information in
ynchrony. In any conceivable contingency, either the received private
nformation at a world is deemed possible for all agents or it is excluded
or everyone. Mutual absolute continuity can thus be viewed as a kind
f lexicographic ‘‘same-excluding’’ condition.

The interpretation of the common prior assumption in the original
umann structures with standard beliefs as agent like-mindedness can
e adapted to our framework with lexicographic beliefs. The lexico-
raphic common prior adds a contingent form of like-mindedness that
lso covers the different layers of hypothetical reasoning a priori. In
his sense a lexicographic common prior that is mutually absolutely
ontinuous constitutes an intensified like-mindedness assumption, where
he players’ hypothetical reasoning conditional on their information is
ligned. In fact, this condition ensures that for every posterior level the
gents’ conditional beliefs are computed with the same level prior. If
he agents violate intensified like-mindedness, then it can happen that
t some posterior level they base their updated beliefs on distinct level
riors. In other words, the lexicographic like-mindedness a priori gets
ost in the process of Bayesian updating. The lexicographic Aumann
tructure constructed in the proof of DIS illustrates this phenomenon.

Formally, our mutual absolute continuity condition imposed on the
ommon prior is closely related to the standard notion in probability
heory which concerns two probability measures. Let 𝜇 and 𝜈 be mea-

sures on some set 𝛺, and define 𝜇 ≪ 𝜈, if 𝜈(𝐹 ) = 0 implies 𝜇(𝐹 ) = 0 for
all 𝐹 ∈ 2𝛺. Let the two measures 𝜇 and 𝜈 be called standard mutually
absolutely continuous, whenever 𝜇 ≪ 𝜈 and 𝜈 ≪ 𝜇.11 Observe that the
common prior 𝜌 induces for every level 𝑚 ∈ {1,… ,𝑀} and for every
player 𝑖 ∈ 𝐼 a measure 𝜇𝑚𝑖 ∶ 2𝛺 → [0, 1] given by

𝜇𝑚𝑖 (𝐹 ) ∶=

⎧

⎪

⎨

⎪

⎩

0 if 𝐹 = ∅
∑

𝜔∈𝐹
𝑝𝑚
(

𝑖(𝜔)
)

∣𝑖(𝜔)∣
otherwise,

11 In probability theory, two mutually absolutely continuous measures are
ometimes also called equivalent.
7

for all 𝐹 ∈ 2𝛺. Now, if 𝜇𝑚𝑖 (𝐹 ) =
∑

𝜔∈𝐹
𝑝𝑚
(

𝑖(𝜔)
)

∣𝑖(𝜔)∣
> 0 for some 𝐹 ∈ 2𝛺,

hen there exists 𝜔′ ∈ 𝐹 such that 𝑝𝑚
(

𝑖(𝜔′)
)

> 0. By the mutual
bsolute continuity condition of Definition 5, 𝑝𝑚

(

𝑗 (𝜔′)
)

> 0 thus holds

oo, and consequently 𝜇𝑚𝑗 (𝐹 ) =
∑

𝜔∈𝐹
𝑝𝑚
(

𝑗 (𝜔)
)

∣𝑗 (𝜔)∣
> 0. Conversely, if

𝑝𝑚
(

𝑖(𝜔)
)

> 0 for some 𝜔 ∈ 𝛺, then 𝜇𝑚𝑖 ({𝜔}) > 0. By standard mutual
absolute continuity, 𝜇𝑚𝑗 ({𝜔}) > 0 hence also obtains, and consequently
𝑝𝑚

(

𝑗 (𝜔)
)

> 0. Therefore, the following formal characterization our
mutual absolute continuity adaptation in terms of standard mutual
absolute continuity from probability theory ensues.

Remark 1. Let 𝐿𝐶𝑃 be a lexicographic Aumann structure with a
common prior. The common prior 𝜌 is mutually absolutely continuous,
if and only if, 𝜇𝑚𝑖 and 𝜇𝑚𝑗 are standard mutually absolutely continuous
for all 𝑖, 𝑗 ∈ 𝐼 and for all 𝑚 ∈ {1,… ,𝑀}.

Mutual absolute continuity in line with Definition 5 can thus be
viewed as a variant of standard mutual absolute continuity from prob-
ability theory.

In fact, our condition of Definition 5 is also similar to Stuart (1997)’s
use of mutual absolute continuity.12 Accordingly, if some agent’s belief
assigns a positive probability to a state (which essentially corresponds
to a possible world in our framework), then so do all the other agents.
Even though Stuart (1997) does not impose any priors, an agent’s belief
in his model can be viewed as a posterior. While the underlying idea of
Stuart’s (1997) mutual absolute continuity and ours is the same – some
form of synchronicity in both consideration and omission – his version
concerns posterior beliefs and possible worlds, whereas ours refers to
prior beliefs and information.

It turns out that mutual absolute continuity together with the com-
mon prior assumption and common knowledge of posteriors implies
that the agents’ posterior beliefs coincide at all lexicographic levels.

Theorem 2 (SAT). Let 𝐿𝐶𝑃 be a lexicographic Aumann structure with
a common prior, 𝐸 ⊆ 𝛺 be some event, and 𝜔 ∈ 𝛺 be some world. If 𝜌 is
mutually absolutely continuous and

CK
(
⋂

𝑖∈𝐼

⋂

𝑙∈{1,…,𝐿}

{

𝜔′ ∈ 𝛺 ∶ 𝑝𝑚𝑙
(

𝐸 ∣ 𝑖(𝜔′)
)

= 𝑝𝑚𝑙
(

𝐸 ∣ 𝑖(𝜔)
)})

≠ ∅,

then

𝑝𝑚𝑙
(

𝐸 ∣ 𝑖(𝜔)
)

= 𝑝𝑚𝑙
(

𝐸 ∣ 𝑗 (𝜔)
)

for all 𝑖, 𝑗 ∈ 𝐼 and for all 𝑙 ∈ {1,… , 𝐿}.

Proof. We first show that if 𝜌 is mutually absolutely continuous, then
the lexicographic indices of the 𝜔′-conditional 𝑖-LPS 𝜌𝜔′𝑖 are the same
for all 𝜔′ ∈ (

⋀

𝑖∈𝐼 𝑖)(𝜔) and for all 𝑖 ∈ 𝐼 . Let 𝑗 ∈ 𝐼 , 𝜔′ ∈ (
⋀

𝑖∈𝐼 𝑖)(𝜔)
as well as (𝑚𝑙)𝐿𝑙=1 and (𝑚′

𝑙)
𝐿
𝑙=1 be the indices of 𝜌𝜔𝑗 and 𝜌𝜔′𝑗 , respectively.

Since 𝜔′ ∈ (
⋀

𝑖∈𝐼 𝑖)(𝜔), the world 𝜔′ is doxastically reachable from
𝜔, i.e., there exists a sequence (𝑃 𝑘)𝑁𝑘=1 of information cells such that
𝜔 ∈ 𝑃 1, 𝜔′ ∈ 𝑃𝑁 , and 𝑃 𝑘 ∩ 𝑃 𝑘+1 ≠ ∅ for all 1 ≤ 𝑘 < 𝑁 . Since 𝜌 is
mutually absolutely continuous, it is the case that, 𝑝𝑚(𝑃 𝑘) = 0 if and
only if 𝑝𝑚(𝑃 𝑘+1) = 0 for all 𝑚 ∈ {1,… ,𝑀} and for all 1 ≤ 𝑘 < 𝑁 .
Thus, 𝑝𝑚(𝑃 1) = 0 if and only if 𝑝𝑚(𝑃𝑁 ) = 0 for all 𝑚 ∈ {1,… ,𝑀}. Since
𝜔 ∈ 𝑗 (𝜔)∩𝑃 1, 𝜔′ ∈ 𝑗 (𝜔′)∩𝑃𝑁 and 𝜌 is mutually absolutely continuous,
it follows that 𝑝𝑚

(

𝑗 (𝜔)
)

= 0 if and only if 𝑝𝑚(𝑃 1) = 0 and 𝑝𝑚
(

𝑗 (𝜔′)
)

=
0 if and only if 𝑝𝑚(𝑃𝑁 ) = 0, and thus 𝑝𝑚

(

𝑗 (𝜔)
)

= 0 if and only if
𝑝𝑚

(

𝑗 (𝜔′)
)

= 0, for all m ∈ {1,… ,𝑀}. Consequently, (𝑚𝑙)𝐿𝑙=1 = (𝑚′
𝑙)
𝐿
𝑙=1.

Now, towards a contradiction, suppose that there exist 𝑗′ ∈ 𝐼 and
𝑙 ∈ {1,… , 𝐿} such that 𝑚′

𝑙 ≠ 𝑚′′
𝑙 , where (𝑚′′

𝑙 )
𝐿
𝑙=1 are the indices of 𝜌𝜔′𝑗′ .

Without loss of generality, suppose that 𝑙 is the least such index. Then,

12 In Stuart (1997), mutual absolute continuity plays an important role in
establishing all period defection in the normal-form model of the finitely
repeated prisoners’ dilemma.
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either 𝑚′
𝑙 < 𝑚

′′
𝑙 , in which case, 𝑝𝑚

′
𝑙
(

𝑗 (𝜔′)
)

> 0 and 𝑝𝑚
′
𝑙
(

𝑗′ (𝜔′)
)

= 0, or
′
𝑙 > 𝑚′′

𝑙 , in which case, 𝑝𝑚
′′
𝑙
(

𝑗 (𝜔′)
)

= 0 and 𝑝𝑚
′′
𝑙
(

𝑗′ (𝜔′)
)

> 0. In both
cases, a contradiction with the mutual absolute continuity of 𝜌 obtains.
Consequently, (𝑚𝑙)𝐿𝑙=1 = (𝑚′

𝑙)
𝐿
𝑙=1 = (𝑚′′

𝑙 )
𝐿
𝑙=1 =∶ (𝑚̄𝑙)𝐿𝑙=1. The 𝜔′-conditional

𝑖-LPS can then be written as

𝜌𝜔
′

𝑖 =𝜌(⋅ ∣ 𝑖(𝜔′)) =
(

𝑝𝑚̄1
(

⋅ ∣ 𝑖(𝜔′)
)

,… , 𝑝𝑚̄𝐿
(

⋅ ∣ 𝑖(𝜔′)
)

)

for all 𝑖 ∈ 𝐼 and for all 𝜔′ ∈ (
⋀

𝑖∈𝐼 𝑖)(𝜔).
We are now ready to derive agreement in posteriors. Let 𝑗′ ∈ 𝐼 and

𝐴𝑗′ ⊆ 𝛺 such that (⋀𝑖∈𝐼 𝑖)(𝜔) =
⋃

𝜔′∈𝐴𝑗′
𝑗′ (𝜔′) and 𝑗′ (𝜔1)∩𝑗′ (𝜔2) = ∅

for all 𝜔1, 𝜔2 ∈ 𝐴𝑗′ . Note that

𝐴𝑗′ ⊆ (
⋀

𝑖∈𝐼
𝑖)(𝜔)

⊆ 𝐶𝐾
(

⋂

𝑖∈𝐼

⋂

𝑙∈{1,…,𝐿}

{

𝜔′ ∈ 𝛺 ∶ 𝑝𝑚𝑙
(

𝐸 ∣ 𝑖(𝜔′)
)

= 𝑝𝑚𝑙
(

𝐸 ∣ 𝑖(𝜔)
)}

)

⊆
⋂

𝑖∈𝐼

⋂

𝑙∈{1,…,𝐿}

{

𝜔′ ∈ 𝛺 ∶ 𝑝𝑚𝑙
(

𝐸 ∣ 𝑖(𝜔′)
)

= 𝑝𝑚𝑙
(

𝐸 ∣ 𝑖(𝜔)
)}

.

Consider some 𝑙′ ∈ {1,… , 𝐿}. It follows that

𝑝𝑚𝑙′
(

𝐸 ∣ 𝑗′ (𝜔)
)

= 𝑝𝑚𝑙′
(

𝐸 ∣ 𝑗′ (𝜔′)
)

=
𝑝𝑚𝑙′

(

𝐸 ∩ 𝑗′ (𝜔′)
)

𝑝𝑚𝑙′
(

𝑗′ (𝜔′)
) =

𝑝𝑚̄𝑙′
(

𝐸 ∩ 𝑗′ (𝜔′)
)

𝑝𝑚̄𝑙′
(

𝑗′ (𝜔′)
)

for all 𝜔′ ∈ 𝐴𝑗′ . Consequently,

𝑝𝑚𝑙′
(

𝐸 ∣ 𝑗′ (𝜔)
)

⋅ 𝑝𝑚̄𝑙′
(

𝑗′ (𝜔′)
)

= 𝑝𝑚̄𝑙′
(

𝐸 ∩ 𝑗′ (𝜔′)
)

,

for all 𝜔′ ∈ 𝐴𝑗′ . Summing over all 𝜔′ ∈ 𝐴𝑗′ and using countable
additivity yields

𝑝𝑚𝑙′
(

𝐸 ∣ 𝑗′ (𝜔)
)

=
𝑝𝑚̄𝑙′

(

𝐸 ∩ (
⋀

𝑖∈𝐼 𝑖)(𝜔)
)

𝑝𝑚̄𝑙′
(

(
⋀

𝑖∈𝐼 𝑖)(𝜔)
) = 𝑝𝑚̄𝑙′

(

𝐸 ∣ (
⋀

𝑖∈𝐼
𝑖)(𝜔)

)

.

ince 𝑗′ and 𝑙′ have been chosen arbitrarily, it can be concluded that
𝑚𝑙
(

𝐸 ∣ 𝑖(𝜔)
)

= 𝑝𝑚𝑙
(

𝐸 ∣ 𝑗 (𝜔)
)

or all 𝑖, 𝑗 ∈ 𝐼 and for all 𝑙 ∈ {1,… , 𝐿}. ■

It is thus impossible for lexicographically-minded agents to agree to
isagree whenever mutual absolute continuity is satisfied. In contrast
o WAT, which only ensures a weak form of agreement at the first
osterior level, SAT establishes strong agreement at all lexicographic
osterior levels.

From a conceptual perspective, agreement is only ensured in the
exicographically enriched framework by a substantial strengthening of
he agents’ like-mindedness. It does not suffice to require a common
rior at all reasoning levels. On top of that, each of these priors also
as to synchronically consider or synchronically neglect the agents’ in-
ormation in order to reconcile their updating. Together with common
nowledge of posteriors, the assumption of intensified like-mindedness
rives the homogeneity of the posteriors in our lexicographic frame-
ork.

The particular lexicographic Aumann structure constructed in the
roof of DIS suggests that SAT qualifies as tight with respect to the
utual absolute continuity condition.13 There the other two key as-

umptions, i.e. common prior as well common knowledge of posteri-
rs, but not mutual absolute continuity hold, while the consequent,
.e. lexicographically identical posterior beliefs, fails.

Continuity in agreeing to lexicographically disagree follows from
AT in the sense that equal prior beliefs up to some lexicographic prior
evel imply equal posterior beliefs up to a corresponding lexicographic
osterior level. Suppose that the common prior assumption is weakened

13 Tightness is interpreted in the style of Aumann and Brandenburger (1995),
.e. whether dropping only one assumption of a result were to already break
ts conclusion.
8

t

such that the agents’ priors coincide up to some level 𝑀̄ < 𝑀 , and
modify the initial lexicographic Aumann structure by truncating the
agent’s lexicographic priors at 𝑀̄ , which is equivalent to imposing

common prior 𝜌 = (𝑝1,… , 𝑝𝑀̄ ). By SAT it follows that common
knowledge of lexicographic posteriors at some world 𝜔 ∈ 𝛺 implies
equal posterior measures for every level 𝑙 ∈

{

1,… ,min{𝐿𝑖,𝜔 ∈ N ∶ 𝑖 ∈
𝐼}

}

in the truncated structure, and hence also up to level min{𝐿𝑖,𝜔 ∈
N ∶ 𝑖 ∈ 𝐼} in the initial lexicographic Aumann structure. In this sense,
the lexicographic impossibility result of SAT is continuous.

6. Perfect equilibrium

Next, we turn to game theory where some of our results on lexi-
cographic agreeing to disagree are employed for an epistemic analysis
of tremble equilibria. In game theory, strategic interaction of multiple
agents is modelled, and possible outcomes are predicted based on dif-
ferent assumptions. Static games with complete information constitute
the most elementary analytical framework. Formally, such games are
represented by a tuple

𝛤 =
(

𝐼, (𝑆𝑖)𝑖∈𝐼 , (𝑈𝑖)𝑖∈𝐼
)

consisting of a finite set 𝐼 of players and finite non-empty strategy sets
𝑆𝑖 as well as real-valued utility functions 𝑈𝑖 with domain ⨉

𝑗∈𝐼 𝑆𝑗 for
every player 𝑖 ∈ 𝐼 . In terms of notation, the set 𝑆−𝑖 ∶=

⨉

𝑗∈𝐼⧵{𝑖} 𝑆𝑗
refers to the product set of the 𝑖’s opponents’ strategy combinations.
The tuple 𝛤 =

(

𝐼, (𝑆𝑖)𝑖∈𝐼 , (𝑈𝑖)𝑖∈𝐼
)

is often also referred to as normal
form. As background hypotheses it is stipulated that all players choose
their strategies simultaneously and that the ingredients of the game,
i.e. the normal form, is common knowledge among the players. Solution
concepts propose plausibility criteria or decision rules in line with
which the players are supposed to act. Formally, a solution concept
defines a subset 𝑆𝐶 ⊆

⨉

𝑖∈𝐼 𝑆𝑖 of the set of all strategy combinations
as possible outcomes of the game.

The solution concept of Nash equilibrium – due to Nash (1950,
1951) – requires players to choose utility maximizing against fixed
strategies of the opponents. In order to ensure existence of an equi-
librium point in any game, also randomizations over strategies are
admitted. The set of choice objects for every player 𝑖 ∈ 𝐼 is thus
enlarged from 𝑆𝑖 to 𝛥(𝑆𝑖), where a typical element 𝜎𝑖 of 𝛥(𝑆𝑖) is called
a mixed strategy of player 𝑖. The utility functions 𝑈𝑖 are extended from
⨉

𝑗∈𝐼 𝑆𝑗 to ⨉

𝑗∈𝐼
(

𝛥(𝑆𝑗 )
)

for every player 𝑖 ∈ 𝐼 by an expected utility
computation. A tuple of mixed strategies 𝜎 = (𝜎𝑗 )𝑗∈𝐼 constitutes a Nash
equilibrium, whenever

𝑠∗𝑖 ∈ argmax𝑠𝑖∈𝑆𝑖
{

∑

𝑠−𝑖∈𝑆−𝑖

(
⨂

𝑗∈𝐼⧵{𝑖}
𝜎𝑗
)

(𝑠−𝑖) ⋅ 𝑈𝑖(𝑠𝑖, 𝑠−𝑖)
}

(1)

for all 𝑠∗𝑖 ∈ supp(𝜎𝑖) and for all 𝑖 ∈ 𝐼 .14 If Eq. (1) holds, 𝑠∗𝑖 is called
a best response to 𝜎−𝑖, where 𝜎−𝑖 ∶= (𝜎𝑗 )𝑗∈𝐼⧵{𝑖}. Player 𝑖 is said to
strictly prefer a strategy 𝑠𝑖 to some other strategy 𝑠′𝑖 given 𝜎−𝑖, when-
ever ∑

𝑠−𝑖∈𝑆−𝑖 (
⨂

𝑗∈𝐼⧵{𝑖} 𝜎𝑗 )(𝑠−𝑖) ⋅ 𝑈𝑖(𝑠𝑖, 𝑠−𝑖) >
∑

𝑠−𝑖∈𝑆−𝑖 (
⨂

𝑗∈𝐼⧵{𝑖} 𝜎𝑗 )(𝑠−𝑖) ⋅
𝑈𝑖(𝑠′𝑖 , 𝑠−𝑖) holds.

In classical game theory, the multiplicity of Nash equilibria in many
games has been deemed unsatisfactory and refinements have thus been
sought. A particular class of equilibrium refinements is based on the
idea that players can make mistakes with small probability. Phrased in
more vivid terms: players possibly tremble when implementing their
strategies. In line with this intuition, various tremble equilibria have
been proposed in the literature. The most basic such solution concept is

14 Given a probability measure 𝑝 ∈ 𝛥(𝑋) on some set 𝑋 its support is defined
as supp(𝑝) ∶= {𝑥 ∈ 𝑋 ∶ 𝑝(𝑥) > 0}. Fixing 𝐾 ∈ N and probability measures 𝑝𝑘 on
ets 𝑋𝑘 for all 𝑘 ∈ {1,… , 𝐾}, ⨂

𝑘∈{1,…,𝐾} 𝑝𝑘 denotes the product measure on
he set ⨉

𝑋 .
𝑘∈{1,…,𝐾} 𝑘
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Fig. 2. Another two player game.

elten’s (1975) perfect equilibrium.15 Essentially, attention is restricted
to Nash equilibria that obtain as limits of sequences of perturbed
strategy combinations. While originally introduced by Selten (1975,
Section 8) as a solution concept for dynamic games, perfect equilibrium
has also been widely used in static games. A formal definition of perfect
equilibrium for the class of static games ensues as follows.

Definition 6. Let 𝛤 be a game and 𝜎 = (𝜎𝑖)𝑖∈𝐼 ∈
⨉

𝑖∈𝐼 𝛥(𝑆𝑖) be a
uple of mixed strategies. The tuple 𝜎 constitutes a perfect equilibrium
f 𝛤 , if there exists a sequence of tuples of mixed strategies (𝜎𝑘)𝑘∈N =
(𝜎𝑘𝑖 )𝑖∈𝐼

)

𝑘∈N ∈
(
⨉

𝑖∈𝐼 𝛥(𝑆𝑖)
)N such that

(i) lim𝑘→∞ 𝜎𝑘 = 𝜎;
(ii) for all 𝑖 ∈ 𝐼 and for all 𝑘 ∈ N, it is the case that supp(𝜎𝑘𝑖 ) = 𝑆𝑖;

(iii) for all 𝑖 ∈ 𝐼 and for all 𝑘 ∈ N, if 𝑠𝑖 ∈ supp(𝜎𝑖), then 𝑠𝑖 is a best
response to 𝜎𝑘−𝑖.

A perfect equilibrium thus always coincides with the limit of a
equence of trembles. Moreover, for every player, his perfect equilib-
ium mixed strategy only assigns positive probability to strategies that
re best responses to any of the opponents’ tremble combinations. It
an be shown that a perfect equilibrium must be a Nash equilibrium
Selten, 1975, Lemma 9). This result essentially rests on the fact that
he expected utilities are continuous in mixed strategy profiles. Con-
ersely, Nash equilibrium does not imply perfect equilibrium. The latter
olution concept thus is stronger than the former. In classical parlance,
erfect equilibrium constitutes a refinement of Nash equilibrium.

The following example illustrates these two solution concepts.

xample 1. Consider the two player game depicted in Fig. 2 with
layers Alice and Bob, where Alice chooses a ‘‘row’’ (𝑎 or 𝑏) and Bob
icks a ‘‘column’’ (𝑦 or 𝑧). The mixed strategy tuple 𝜎 = (𝜎𝐴𝑙𝑖𝑐𝑒, 𝜎𝐵𝑜𝑏),
here 𝜎𝐴𝑙𝑖𝑐𝑒(𝑎) = 1 and 𝜎𝐵𝑜𝑏(𝑦) = 1, forms a Nash equilibrium, as 𝑎

s a best response to 𝜎𝐵𝑜𝑏 and 𝑦 is a best response to 𝜎𝐴𝑙𝑖𝑐𝑒. To see
hat 𝜎 also constitutes a perfect equilibrium, construct a sequence of
uples of mixed strategies (𝜎𝑘)𝑘∈N⧵{0} =

(

(𝜎𝑘𝐴𝑙𝑖𝑐𝑒, 𝜎
𝑘
𝐵𝑜𝑏)

)

𝑘∈N⧵{0} by setting
𝜎𝑘𝐴𝑙𝑖𝑐𝑒(𝑎) = 1 − 1

𝑘+1 , 𝜎𝑘𝐴𝑙𝑖𝑐𝑒(𝑏) = 0 + 1
𝑘+1 , 𝜎𝑘𝐵𝑜𝑏(𝑦) = 1 − 1

𝑘+1 and 𝜎𝑘𝐵𝑜𝑏(𝑧) =
0 + 1

𝑘+1 for all 𝑘 ∈ N ⧵ {0}. Observe that lim𝑘→∞ 𝜎𝑘 = 𝜎 as well as
upp(𝜎𝑘𝐴𝑙𝑖𝑐𝑒) = 𝑆𝐴𝑙𝑖𝑐𝑒 and supp(𝜎𝑘𝐵𝑜𝑏) = 𝑆𝐵𝑜𝑏 for all 𝑘 ∈ N⧵{0}. Moreover,
is a best response to 𝜎𝑘𝐵𝑜𝑏 for all 𝑘 ∈ N ⧵ {0} and 𝑦 is a best response

o 𝜎𝑘𝐴𝑙𝑖𝑐𝑒 for all 𝑘 ∈ N ⧵ {0}. It follows that 𝜎 is a perfect equilibrium.
The mixed strategy tuple 𝜎′ = (𝜎′𝐴𝑙𝑖𝑐𝑒, 𝜎

′
𝐵𝑜𝑏), where 𝜎′𝐴𝑙𝑖𝑐𝑒(𝑏) = 1

nd 𝜎′𝐵𝑜𝑏(𝑧) = 1 also constitutes a Nash equilibrium, since 𝑏 is a
best response to 𝜎𝐵𝑜𝑏 and 𝑧 is a best response to 𝜎𝐴𝑙𝑖𝑐𝑒. However,
it does not form a perfect equilibrium. Suppose that there exists a
sequence of full support mixed strategy tuples (𝜎𝑘𝐴𝑙𝑖𝑐𝑒, 𝜎

𝑘
𝐵𝑜𝑏)𝑘∈N⧵{0} ∈

(

𝛥(𝑆𝐴𝑙𝑖𝑐𝑒) × 𝛥(𝑆𝐵𝑜𝑏)
)N⧵{0} with limit point 𝜎′. Then, 𝑏 cannot be a best

response to 𝜎𝑘𝐵𝑜𝑏 for any 𝑘 ∈ N ⧵ {0}. Indeed, as soon as 𝑦 receives
ositive probability, only 𝑎 can be a best reponse for Alice. It follows
hat 𝜎′ is not a perfect equilibrium. ♣

15 Other tremble equilibria are, for instance, Myerson’s (1978) proper equi-
ibrium, van Damme’s (1984) quasi-perfect equilibrium, as well as Harsanyi
nd Selten’s (1988) uniformly perfect equilibrium.
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7. Lexicographic characterization

It is known that tremble equilibria with their sequences of full
support mixed strategy tuples can be characterized in terms of lex-
icographic conjectures. The latter can be modelled as lexicographic
probability systems in which for every player the set of opponents’
choice combinations defines the basic space of uncertainty. Perfect
equilibrium and proper equilibrium have been reformulated with lexi-
cographic conjectures by Blume et al. (1991b) and shown to be equiv-
alent to their notion of lexicographic Nash equilibrium plus further
restrictions, respectively. In this section we define lexicographic perfect
equilibrium and lexicographic semi-perfect equilibrium. While these
two solution concepts phrased in terms of lexicographic conjectures
essentially correspond to variants of Blume et al.’s (1991b) lexico-
graphic Nash equilibrium, our definitions are aligned with our formal
framework and formulated in a direct way.

Some further concepts and notation need to be introduced. Let 𝛤
be a game and 𝑖 ∈ 𝐼 be some player. A sequence 𝛽𝑖 = (𝑏1𝑖 ,… , 𝑏𝐿𝑖 ) ∈
𝛥(𝑆−𝑖)

)𝐿 of probability measures, for some 𝐿 ∈ N, is called player
’s lexicographic conjecture. For the sake of simplicity we assume the
ame number 𝐿 of levels for all 𝑖 ∈ 𝐼 . A lexicographic conjecture 𝛽𝑖

is cautious, whenever for all 𝑗 ∈ 𝐼 ⧵ {𝑖} and for all 𝑠𝑗 ∈ 𝑆𝑗 , there exists
some lexicographic level 𝑙∗ ∈ {1,… , 𝐿} such that marg𝑆𝑗 𝑏

𝑙∗
𝑖 (𝑠𝑗 ) > 0,

where marg𝑆𝑗 𝑏
𝑙∗
𝑖 (𝑠𝑗 ) ∶=

∑

𝑠−(𝑖,𝑗)∈𝑆−(𝑖,𝑗) 𝑏
𝑙∗
𝑖 (𝑠−(𝑖,𝑗), 𝑠𝑗 ) for all 𝑠𝑗 ∈ 𝑆𝑗 . Given

a strategy 𝑠𝑖 ∈ 𝑆𝑖 and a lexicographic conjecture 𝛽𝑖 = (𝑏1𝑖 ,… , 𝑏𝐿𝑖 ) ∈
(

𝛥(𝑆−𝑖)
)𝐿,

𝑢𝑙𝑖(𝑠𝑖, 𝛽𝑖) ∶=
∑

𝑠−𝑖∈𝑆−𝑖

𝑏𝑙𝑖(𝑠−𝑖) ⋅ 𝑈𝑖(𝑠𝑖, 𝑠−𝑖)

s player 𝑖’s level-𝑙 expected utility for all 𝑙 ∈ {1,… , 𝐿}. Equipped with
lexicographic conjecture 𝛽𝑖 ∈

(

𝛥(𝑆−𝑖)
)𝐿, player 𝑖 strictly lex-prefers a

trategy 𝑠𝑖 ∈ 𝑆𝑖 to some other strategy 𝑠′𝑖 ∈ 𝑆𝑖, whenever there exists a
exicographic level 𝑙∗ ∈ {1,… , 𝐿} such that
𝑙∗
𝑖 (𝑠𝑖, 𝛽𝑖) > 𝑢

𝑙∗
𝑖 (𝑠

′
𝑖 , 𝛽𝑖) and 𝑢𝑙𝑖(𝑠𝑖, 𝛽𝑖) = 𝑢𝑙𝑖(𝑠

′
𝑖 , 𝛽𝑖)

or all 𝑙 < 𝑙∗. A strategy 𝑠∗𝑖 ∈ 𝑆𝑖 is called lex-optimal given 𝛽𝑖, if
here exists no strategy 𝑠𝑖 ∈ 𝑆𝑖 such that 𝑖 strictly lex-prefers 𝑠𝑖 to
∗
𝑖 . Similarly, player 𝑖 is said to be lex-indifferent between 𝑠𝑖 and 𝑠′𝑖 ,
henever 𝑢𝑙𝑖(𝑠𝑖, 𝛽𝑖) = 𝑢𝑙𝑖(𝑠

′
𝑖 , 𝛽𝑖) for all 𝑙 ∈ {1,… , 𝐿}. Player 𝑖 weakly

ex-prefers 𝑠𝑖 to 𝑠′𝑖 , if he strictly lex-prefers the former to the latter or
eels lex-indifferent. A lexicographic conjecture 𝛽𝑖 is called lexicographic
roduct conjecture, if 𝑏𝑙𝑖 =

⨂

𝑗∈𝐼⧵{𝑖} marg𝑆𝑗 𝑏
𝑙
𝑖 holds for all 𝑙 ∈ {1,… , 𝐿},

nd is formally written as

𝑖 ∶=
⨂

𝑗∈𝐼⧵{𝑖}
marg𝑆𝑗 𝛽𝑖 ∶=

(
⨂

𝑗∈𝐼⧵{𝑖}
marg𝑆𝑗 𝑏

1
𝑖 ,… ,

⨂

𝑗∈𝐼⧵{𝑖}
marg𝑆𝑗 𝑏

𝐿
𝑖
)

.

onceptually, a player with a lexicographic product conjecture treats
is opponents’ choices as uncorrelated.16

Selten’s (1975) solution concept of perfect equilibrium can be ex-
ressed in terms of lexicographic conjectures.

efinition 7. Let 𝛤 be a finite game, 𝜎 = (𝜎𝑖)𝑖∈𝐼 ∈
⨉

𝑖∈𝐼
(

𝛥(𝑆𝑖)
)

e a tuple of mixed strategies, and 𝐿 ∈ N. The tuple 𝜎 constitutes a
exicographic perfect equilibrium of 𝛤 , if there exist a tuple 𝛽 = (𝛽𝑖)𝑖∈𝐼 ∈
(

𝛥(𝑆−𝑖)
)𝐿

)

𝑖∈𝐼
of lexicographic conjectures and a lexicographic prod-

ct measure 𝜋 = (𝜋1,… , 𝜋𝐿) ∈
(

𝛥(
⨉

𝑖∈𝐼 𝑆𝑖)
)𝐿 such that for all 𝑖 ∈ 𝐼 , the

ollowing properties hold:

(a) 𝛽𝑖 = (𝑏1𝑖 ,… , 𝑏𝐿𝑖 ) is cautious;

16 While players by assumption do choose independently of course, it is well
known that this does not preclude the possibility that beliefs about opponents’
choices violate statistical independence. Essentially, the reason lies in two
distinct forms of independence – causal and epistemic – which do not imply
each other.
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(b) 𝜎𝑖 = marg𝑆𝑖𝑏
1
𝑗 for all 𝑗 ∈ 𝐼 ⧵ {𝑖};

(c) if 𝑠𝑖 ∈ supp(𝜎𝑖), then 𝑠𝑖 is lex-optimal given 𝛽𝑖;
(d) 𝛽𝑖 =

⨂

𝑗∈𝐼⧵{𝑖} marg𝑆𝑗 𝛽𝑖;
(e) marg𝑆−𝑖𝜋 = 𝛽𝑖.

A lexicographic formulation of perfect equilibrium thus builds on
an interpretation of mixed strategies as conjectures. In this regard,
condition (b) blocks any doxastic ambiguity by requiring that for a
given player all opponents share the same belief about his choice.
The trembles of the classical definition are mimicked via condition
(a) which requires the lexicographic conjectures to be cautious. The
best response property of the perfect equilibrium tuple is ensured
by condition (c) according to which only choices supported by the
player’s lexicographic conjecture receive positive probability. Epistemic
independence is built in via condition (d) postulating that the players’
lexicographic conjectures are the product of their marginals. Each of
the lexicographic beliefs are required by condition (e) to stem from
a joint source. In essence, lexicographic perfect equilibrium corre-
sponds to Blume et al.’s (1991a) lexicographic Nash equilibrium plus
full support at all lexicographic levels, a common prior, and some
independence condition.

The classical and the lexicographic versions of perfect equilibrium
are equivalent.

Lemma 1. Let 𝛤 be a finite game and 𝜎 ∈
⨉

𝑖∈𝐼
(

𝛥(𝑆𝑖)
)

be a tuple of
mixed strategies. The tuple 𝜎 constitutes a perfect equilibrium of 𝛤 , if and
only if, 𝜎 constitutes a lexicographic perfect equilibrium of 𝛤 .

Proof. See Appendix.

The classical formulation (Section 6) and the lexicographic variant
(Definition 7) of perfect equilibrium can thus be used interchangeably.
Lemma 1 is by and large equivalent to Blume et al. (1991b, Proposition
7), where classical perfect equilibrium is characterized in terms of
their notion of lexicographic Nash equilibrium plus some additional
assumptions. For the sake of completeness and self-containedness we
explicitly show the equivalence. However, since Lemma 1 lies outside
the focus of this paper its proof is deferred to the Appendix.

A possibly meaningful weakening of lexicographic perfect equilib-
rium would obtain, if conditions (d) and (e) of Definition 7 were to be
dropped.

Definition 8. Let 𝛤 be a finite game, 𝜎 = (𝜎𝑖)𝑖∈𝐼 ∈
⨉

𝑖∈𝐼
(

𝛥(𝑆𝑖)
)

be a tuple of mixed strategies, and 𝐿 ∈ N. The tuple 𝜎 constitutes a
lexicographic semi-perfect equilibrium of 𝛤 , if there exists a tuple 𝛽 =
(𝛽𝑖)𝑖∈𝐼 ∈

(

(

𝛥(𝑆−𝑖)
)𝐿

)

𝑖∈𝐼
of lexicographic conjectures such that for all

𝑖 ∈ 𝐼 , the following properties hold:

(a) 𝛽𝑖 = (𝑏1𝑖 ,… , 𝑏𝐿𝑖 ) is cautious;
(b) 𝜎𝑖 = marg𝑆𝑖𝑏

1
𝑗 for all 𝑗 ∈ 𝐼 ⧵ {𝑖};

(c) if 𝑠𝑖 ∈ supp(𝜎𝑖), then 𝑠𝑖 is lex-optimal given 𝛽𝑖.

A lexicographic semi-perfect equilibrium does admit a player’s lex-
icographic conjecture about his opponents’ choices to not be indepen-
dent. Accordingly, he may deem it lexicographically possible for some
opponents’ choices to be correlated. Note that correlated beliefs at some
level do not imply the belief that players do not choose independently
from each other. Even though the actions of any two players in a
static game are entirely autonomous, the reasoning leading to these
actions might be related in a way that makes them correlated from the
perspective of a third player. Also, in contrast to perfect equilibrium,
more flexibility about the lexicographic conjectures is permitted by
Definition 8, as they no longer need to be projections of a joint
source. The solution concept of lexicographic semi-perfect equilibrium
basically coincides with Blume et al.’s (1991a) notion of lexicographic
Nash equilibrium plus some full support property.
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It is clear that perfect equilibrium implies semi-perfect equilibrium,
as the latter requires two properties less than the former. The following
example shows that the converse does not hold though.

Example 2. Consider the three player game depicted in Fig. 3 with
players Alice, Bob, and Claire, where Alice chooses a ‘‘row’’ (𝑎 or 𝑏), Bob
picks a ‘‘column’’ (𝑦 or 𝑧), and Claire selects a ‘‘matrix’’ (left, middle, or
right).

It is first shown that the mixed strategy tuple 𝜎 = (𝜎𝐴𝑙𝑖𝑐𝑒, 𝜎𝐵𝑜𝑏,
𝜎𝐶𝑙𝑎𝑖𝑟𝑒), where 𝜎𝐴𝑙𝑖𝑐𝑒(𝑎) = 𝜎𝐴𝑙𝑖𝑐𝑒(𝑏) = 0.5, 𝜎𝐵𝑜𝑏(𝑦) = 𝜎𝐵𝑜𝑏(𝑧) = 0.5,
and 𝜎𝐶𝑙𝑎𝑖𝑟𝑒(middle) = 1 forms a lexicographic semi-perfect equilibrium.
Define conjectures 𝛽𝐴𝑙𝑖𝑐𝑒 = (𝑏1𝐴𝑙𝑖𝑐𝑒, 𝑏

2
𝐴𝑙𝑖𝑐𝑒), 𝛽𝐵𝑜𝑏 = (𝑏1𝐵𝑜𝑏, 𝑏

2
𝐵𝑜𝑏), and

𝛽𝐶𝑙𝑎𝑖𝑟𝑒 = (𝑏1𝐶𝑙𝑎𝑖𝑟𝑒, 𝑏
2
𝐶𝑙𝑎𝑖𝑟𝑒) such that

𝑏1𝐴𝑙𝑖𝑐𝑒 = 0.5 ⋅ (𝑦,middle) + 0.5 ⋅ (𝑧,middle),
𝑏2𝐴𝑙𝑖𝑐𝑒 = 0.5 ⋅ (𝑦, left ) + 0.5 ⋅ (𝑧, right ),
𝑏1𝐵𝑜𝑏 = 0.5 ⋅ (𝑎,middle) + 0.5 ⋅ (𝑏,middle),
𝑏2𝐵𝑜𝑏 = 0.5 ⋅ (𝑎, left ) + 0.5 ⋅ (𝑏, right ),

𝑏1𝐶𝑙𝑎𝑖𝑟𝑒 = 0.5 ⋅ (𝑎, 𝑦) + 0.5 ⋅ (𝑏, 𝑧),

𝑏2𝐶𝑙𝑎𝑖𝑟𝑒 = 1 ⋅ (𝑎, 𝑦).

Each of the three conjectures is cautious, as all choices of all
respective opponents’ receive positive probability at some lexicographic
level. Moreover,

marg𝑆𝐴𝑙𝑖𝑐𝑒𝑏
1
𝐵𝑜𝑏 = marg𝑆𝐴𝑙𝑖𝑐𝑒𝑏

1
𝐶𝑙𝑎𝑖𝑟𝑒 = 0.5 ⋅ 𝑎 + 0.5 ⋅ 𝑏 = 𝜎𝐴𝑙𝑖𝑐𝑒,

marg𝑆𝐵𝑜𝑏𝑏
1
𝐴𝑙𝑖𝑐𝑒 = marg𝑆𝐵𝑜𝑏𝑏

1
𝐶𝑙𝑎𝑖𝑟𝑒 = 0.5 ⋅ 𝑦 + 0.5 ⋅ 𝑧 = 𝜎𝐵𝑜𝑏,

marg𝑆𝐶𝑙𝑎𝑖𝑟𝑒𝑏
1
𝐴𝑙𝑖𝑐𝑒 = marg𝑆𝐶𝑙𝑎𝑖𝑟𝑒𝑏

1
𝐵𝑜𝑏 = middle = 𝜎𝐶𝑙𝑎𝑖𝑟𝑒.

Observe that 𝑎 and 𝑏 are lex-optimal given 𝛽𝐴𝑙𝑖𝑐𝑒, 𝑦 and 𝑧 are
lex-optimal given 𝛽𝐵𝑜𝑏, as well as middle is lex-optimal given 𝛽𝐶𝑙𝑎𝑖𝑟𝑒.
Consequently, 𝜎 constitutes a lexicographic semi-perfect equilibrium.
However, 𝜎 is not lexicographic perfect, as 𝑏1𝐶𝑙𝑎𝑖𝑟𝑒’s probability measure
violates independence and property (𝑑) of Definition 7 is thus not
satisfied. ♣

It could be interesting to explore new solution concepts based
on various weakenings of lexicographic perfect equilibrium such as
lexicographic semi-perfect equilibrium. Another possibility would be to
also admit conjectures that violate the projection property on the first
lexicographic level. A corresponding perfect equilibrium variant could
then be defined directly in terms of lexicographic conjectures and be
required to satisfy the conditions (a) and (c) of Definition 7. We leave
such thoughts for further research.

8. Epistemic characterization

We now explore the interactive reasoning assumptions of perfect
equilibrium and thereby extend the work of Blume et al. (1991b).
While Blume et al. (1991b) characterize perfect equilibrium in terms of
lexicographic conjectures, they do not perform any epistemic analysis
involving higher-order beliefs to unveil the interactive thinking that
drive players to choose in line with this solution concept. The latter
is precisely the focus of this section. A key role will be played by
our results on lexicographic agreeing to disagree. In particular, the
weak agreement theorem (WAT) as well as the strong agreement
theorem (SAT) turn into essential ingredients to establish an epistemic
foundation for perfect equilibrium.

In game theory, reasoning is captured by means of epistemic struc-
tures that are added to the formal framework. Different patterns or
assumptions about reasoning can then be expressed in the form of epis-
temic hypotheses. Classical solution concepts can be characterized in
terms of reasoning by epistemic conditions. In this way, the interactive
thinking a solution concept requires on behalf of the players so that

they act in line with its prediction is made explicit.
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Before we turn to reasoning foundations, some more formal struc-
ure and notions have to be fixed. First of all, the basic framework
f games as embodied by 𝛤 needs to be enlarged by an epistemic
imension. To this end we introduce the notion of a lexicographic
umann model.

efinition 9. Let 𝛤 be a finite game. A lexicographic Aumann model
f 𝛤 is a tuple
𝛤
𝐿𝐶𝑃 =

(

𝛺, 𝜌, 𝐼, (𝑖, 𝑠̂𝑖)𝑖∈𝐼
)

here

• 𝛺 is a set of possible worlds,
• 𝜌 = (𝑝1,… , 𝑝𝑀 ) is a common prior,
• 𝐼 is the set of players from 𝛤 ,
• 𝑖 ⊆ 2𝛺 is player 𝑖’s possibility partition of 𝛺 for all 𝑖 ∈ 𝐼 ,
• 𝑠̂𝑖 ∶ 𝛺 → 𝑆𝑖 is player 𝑖’s choice function that is 𝑖-measurable for

all 𝑖 ∈ 𝐼 , i.e., 𝑠̂𝑖(𝑤′) = 𝑠̂𝑖(𝑤) for all 𝑤,𝑤′ ∈ 𝛺 such that 𝑤′ ∈ 𝑖(𝜔),
• for every player 𝑖 ∈ 𝐼 and for every world 𝜔 ∈ 𝛺, there exists a

level 𝑚 ∈ {1,… ,𝑀} such that 𝑝𝑚
(

𝑖(𝜔)
)

> 0.

A lexicographic Aumann models thus corresponds to a lexicographic
umann structure (Definition 2) supplemented by choice functions for
very player that connect the interactive epistemology to games. It
hen becomes possible to express game-theoretic events and interactive
eliefs as well as knowledge about these.

The event that player 𝑖 chooses strategy 𝑠𝑖 ∈ 𝑆𝑖 is formalized as

𝑠𝑖] ∶= {𝜔 ∈ 𝛺 ∶ 𝑠̂𝑖(𝜔) = 𝑠𝑖}

nd the event that 𝑖’s opponents choose 𝑠−𝑖 ∈ 𝑆−𝑖 is given by

𝑠−𝑖] ∶=
⋂

𝑗∈𝐼⧵{𝑖}
[𝑠𝑗 ].

ote that the 𝑖-measurability of 𝑠̂𝑖 ensures that either 𝑖(𝜔) ⊆ [𝑠𝑖] or
𝑖(𝜔) ⊆ [𝑠𝑖]∁. A lexicographic conjecture function can be defined as
𝑖̂ ∶ 𝛺 →

(

𝛥(𝑆−𝑖)
)𝐿, where

𝑖̂(𝜔)(𝑠−𝑖) =
(

𝑏̂1𝑖 (𝜔)(𝑠−𝑖),… , 𝑏̂𝐿𝑖 (𝜔)(𝑠−𝑖)
)

∶= 𝜌
(

[𝑠−𝑖] ∣ 𝑖(𝜔)
)

=
(

𝑝𝑚1
(

[𝑠−𝑖] ∣ 𝑖(𝜔)
)

,… , 𝑝𝑚𝐿
(

[𝑠−𝑖] ∣ 𝑖(𝜔)
)

)

or all 𝜔 ∈ 𝛺 and for all 𝑠−𝑖 ∈ 𝑆−𝑖. From the 𝑖-measurability of the level
osteriors it follows that 𝛽𝑖 is 𝑖-measurable too, i.e. 𝛽𝑖(𝜔′) = 𝛽𝑖(𝜔) for
ll 𝜔′ ∈ 𝑖(𝜔). Hence, for every lexicographic conjecture 𝛽𝑖 of player 𝑖,
he lexicographic conjecture function induces a coarsening of 𝑖 of the
orm

𝛽𝑖] ∶= {𝜔 ∈ 𝛺 ∶ 𝛽𝑖(𝜔) = 𝛽𝑖}.

s 𝑏̂𝑙𝑖(𝜔)(𝑠−𝑖) = 𝑝𝑚𝑙
(

[𝑠−𝑖] ∣ 𝑖(𝜔)
)

, it is the case that

arg𝑆𝑗 𝑏̂
𝑙
𝑖(𝜔)(𝑠𝑗 ) = 𝑝𝑚𝑙

(

[𝑠𝑗 ] ∣ 𝑖(𝜔)
)

or all 𝜔 ∈ 𝛺, for all 𝑙 = 1,… , 𝐿, for all 𝑠𝑗 ∈ 𝑆𝑗 , and for all 𝑗 ∈ 𝐼 ⧵ {𝑖}.
Epistemic hypotheses can be formalized by means of events. Some

ssumptions that will be used for the purpose of describing the interac-
ive thinking underlying perfect equilibrium are now spelled out. The
et

𝑖 ∶= {𝜔 ∈ 𝛺 ∶ 𝛽𝑖(𝜔) is cautious}

enotes the event that player 𝑖 is cautious and the event that all players
re cautious is given by

∶=
⋂

𝑇𝑖.
11

𝑖∈𝐼
o

he set

𝑖 ∶= {𝜔 ∈ 𝛺 ∶ 𝑠̂𝑖(𝜔) is lex-optimal given 𝛽𝑖(𝜔)}

onstitutes the event that player i is rational and the event that all players
re rational is denoted by

∶=
⋂

𝑖∈𝐼
𝑅𝑖.

iven some event 𝐸 ⊆ 𝛺, the set

𝐵𝑖(𝐸) ∶= {𝜔 ∈ 𝛺 ∶ 𝑝𝑚1
(

𝐸 ∣ 𝑖(𝜔)
)

= 1}

epresents the event that player i primarily believes in E and the event
hat all players primarily believe in E is given by

𝐵 ∶=
⋂

𝑖∈𝐼
𝑃𝐵𝑖.

ote that primary belief concerns the first lexicographic posterior level
= 𝑚1 which may differ from the first lexicographic prior level 𝑚 = 1.

As a preliminary observation we provide an epistemic foundation
or perfect equilibrium in the special case of two player games.

roposition 2. Let 𝛤 be a finite game with two players 𝑖 and 𝑗, 𝛤
𝐿𝐶𝑃

e some lexicographic Aumann model of 𝛤 , and 𝜔∗ ∈ 𝛺 be some world. If
∗ ∈ 𝑃𝐵(𝑇 ) ∩ 𝑃𝐵(𝑅) ∩ 𝐾

(

[𝛽𝑖(𝜔∗)] ∩ [𝛽𝑗 (𝜔∗)]
)

, then there exists a pair of
ixed strategies (𝜎𝑖, 𝜎𝑗 ) ∈ 𝛥(𝑆𝑖) × 𝛥(𝑆𝑗 ) such that

(i) 𝜎𝑖 = 𝑏̂1𝑗 (𝜔
∗) and 𝜎𝑗 = 𝑏̂1𝑖 (𝜔

∗);
(ii) the pair of mixed strategies (𝜎𝑖, 𝜎𝑗 ) constitutes a perfect equilibrium

of 𝛤 .

Proof. (i) Define 𝛽𝑖 ∶= 𝛽𝑖(𝜔∗) and 𝛽𝑗 ∶= 𝛽𝑗 (𝜔∗) as well as 𝜎𝑖 ∶= 𝑏1𝑗 and
𝑗 ∶= 𝑏1𝑖 . Then, 𝜎𝑖 = 𝑏̂1𝑗 (𝜔

∗) and 𝜎𝑗 = 𝑏̂1𝑖 (𝜔
∗) directly obtains.

(ii) Let 𝑘 ∈ {𝑖, 𝑗} be one of the two players and −𝑘 be his opponent.
s 𝜔∗ ∈ 𝐾

(

[𝛽𝑖(𝜔∗)]∩[𝛽𝑗 (𝜔∗)]
)

⊆ 𝐾−𝑘
(

[𝛽𝑘](𝜔∗)
)

, it follows that −𝑘(𝜔∗) ⊆
𝛽𝑘(𝜔∗)] and consequently 𝛽𝑘(𝜔) = 𝛽𝑘(𝜔∗) for all 𝜔 ∈ −𝑘(𝜔∗). As
∗ ∈ 𝑃𝐵(𝑇 ) ⊆ 𝑃𝐵−𝑘(𝑇𝑘), it is the case that

𝑚1
(

𝑇𝑘 ∣ −𝑘(𝜔∗)
)

=
𝑝𝑚1

(

𝑇𝑘 ∩ −𝑘(𝜔∗)
)

𝑝𝑚1
(

−𝑘(𝜔∗)
) = 1

and thus there exists 𝜔′ ∈ 𝑇𝑘 ∩ −𝑘(𝜔∗). Then, 𝛽𝑘(𝜔′) is cautious and
𝑘̂(𝜔′) = 𝛽𝑘(𝜔∗) = 𝛽𝑘. It follows that 𝛽𝑘 is cautious too. Since 𝑘 has been
hosen arbitrarily, property (a) of Definition 7 obtains. In addition,
𝑘 = 𝑏1−𝑘 = marg𝑆𝑘𝑏

1
−𝑘 ensures that property (b) of Definition 7 is

atisfied. Next consider some strategy 𝑠𝑘 ∈ supp(𝜎𝑘) = supp(𝑏̂1−𝑘(𝜔
∗)).

hen, 𝑏̂1−𝑘(𝜔
∗)(𝑠𝑘) = 𝑝𝑚1

(

[𝑠𝑘] ∣ −𝑘(𝜔∗)
)

> 0, and thus there exists
′ ∈ [𝑠𝑘] ∩ supp

(

𝑝𝑚1
(

⋅ ∣ −𝑘(𝜔∗)
))

⊆ [𝑠𝑘] ∩ −𝑘(𝜔∗). Consequently,
̂𝑘(𝜔′) = 𝑠𝑘 and 𝛽𝑘(𝜔′) = 𝛽𝑘(𝜔∗). Also, as 𝜔∗ ∈ 𝑃𝐵(𝑅) ⊆ 𝑃𝐵−𝑘(𝑅𝑘), it is
he case that 𝑝𝑚1

(

𝑅𝑘 ∣ −𝑘(𝜔∗)
)

= 1 and thus supp
(

𝑝𝑚1
(

⋅ ∣ −𝑘(𝜔∗)
))

⊆
𝑘. Hence, 𝜔′ ∈ 𝑅𝑘, i.e. 𝑠̂𝑘(𝜔′) = 𝑠𝑘 is lex-optimal given 𝛽𝑘(𝜔′) =
𝑘̂(𝜔∗) = 𝛽𝑘. This establishes property (c) of Definition 7. Besides, note
hat 𝛽𝑘 = marg𝑆−𝑘𝛽𝑘 =

⨂

𝑗∈𝐼⧵{𝑘} marg𝑆𝑗 𝛽𝑘 holds trivially as there is
nly one opponent for each player, which establishes property (d) of
efinition 7. Finally, define 𝜋 ∶= 𝛽𝑖

⨂

𝛽𝑗 . Then, marg𝑆−𝑘𝜋 = 𝛽𝑘 directly
ollows, and property (e) of Definition 7 is satisfied. ■

The reasoning assumptions underlying perfect equilibrium, if atten-
ion is restricted to two players thus consist of mutual primary belief
n caution, mutual primary belief in rationality, and mutual knowledge
f conjectures.
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m

𝑠
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In order to tame the complications arising once more than two
players are admitted, the epistemic conditions need to be tightened.
The problem of projection can be tackled by strengthening mutual
knowledge of conjectures to common knowledge. By the aid of WAT,
an epistemic foundation then ensues for the notion of lexicographic
semi-perfect equilibrium.

Lemma 2. Let 𝛤 be a finite game, 𝛤
𝐿𝐶𝑃 be some lexicographic Aumann

odel of 𝛤 , and 𝜔∗ ∈ 𝛺 be some world. If 𝜔∗ ∈ 𝑃𝐵(𝑇 ) ∩ 𝑃𝐵(𝑅) ∩
𝐶𝐾

(
⋂

𝑖∈𝐼 [𝛽𝑖(𝜔∗)]
)

, then there exists a tuple of mixed strategies (𝜎∗𝑖 )𝑖∈𝐼 ∈
⨉

𝑖∈𝐼
(

𝛥(𝑆𝑖)
)

such that

(i) 𝜎∗𝑖 = marg𝑆𝑖 𝑏̂
1
𝑗 (𝜔

∗) for all 𝑖 ∈ 𝐼 and for all 𝑗 ∈ 𝐼 ⧵ {𝑖};
(ii) the tuple of mixed strategies (𝜎∗𝑖 )𝑖∈𝐼 constitutes a lexicographic

semi-perfect equilibrium of 𝛤 .

Proof. (i) Consider the tuple of lexicographic conjectures
(

𝛽𝑖(𝜔∗)
)

𝑖∈𝐼 at
world 𝜔∗. Let 𝑖 ∈ 𝐼 be some player. Observe that [𝛽𝑗 (𝜔∗)] ⊆ [𝑏̂𝑙𝑗 (𝜔

∗)] ⊆
[marg𝑆𝑖

(

𝑏̂𝑙𝑗 (𝜔
∗)
)

] for all 𝑙 = 1,… , 𝐿 and for all 𝑗 ∈ 𝐼 ⧵ {𝑖}. Then, by
monotonicity of common knowledge,

𝐶𝐾
(

⋂

𝑗∈𝐼⧵{𝑖}

[

𝛽𝑗 (𝜔∗)
]

)

⊆ 𝐶𝐾
(

⋂

𝑗∈𝐼⧵{𝑖}

⋂

𝑙∈{1,…,𝐿}

[

marg𝑆𝑖 𝑏̂
𝑙
𝑗 (𝜔

∗)
]

)

≠ ∅.

As marg𝑆𝑖 𝑏̂
𝑙
𝑗 (𝜔)(𝑠𝑖) = 𝑝𝑚𝑙

(

[𝑠𝑖] ∣ 𝑗 (𝜔)
)

for all 𝜔 ∈ 𝛺, for all 𝑗 ∈ 𝐼 ⧵ {𝑖},
for all 𝑙 ∈ {1,… , 𝐿}, and for all 𝑠𝑖 ∈ 𝑆𝑖,

𝐶𝐾
(

⋂

𝑗∈𝐼⧵{𝑖}

⋂

𝑙∈{1,…,𝐿}

{

𝜔 ∈ 𝛺 ∶ 𝑝𝑚𝑙
(

[𝑠𝑖] ∣ 𝑗 (𝜔)
)

= 𝑝𝑚𝑙
(

[𝑠𝑖] ∣ 𝑗 (𝜔∗)
)}

)

≠ ∅

holds for all 𝑠𝑖 ∈ 𝑆𝑖. By Theorem 1, it follows that

𝑝𝑚1
(

[𝑠𝑖] ∣ 𝑗 (𝜔∗)
)

= 𝑝𝑚1
(

[𝑠𝑖] ∣ 𝑘(𝜔∗)
)

for all 𝑠𝑖 ∈ 𝑆𝑖 as well as for all 𝑗, 𝑘 ∈ 𝐼 ⧵ {𝑖}, and thus

marg𝑆𝑖 𝑏̂
1
𝑗 (𝜔

∗) = marg𝑆𝑖 𝑏̂
1
𝑘(𝜔

∗)

for all 𝑗, 𝑘 ∈ 𝐼 ⧵ {𝑖}. For every player 𝑖 ∈ 𝐼 , define 𝜎∗𝑖 ∶= marg𝑆𝑖 𝑏̂
1
𝑖′ (𝜔

∗)
for some 𝑖′ ∈ 𝐼 ⧵ {𝑖}. Then, 𝜎∗𝑖 = marg𝑆𝑖 𝑏̂

1
𝑗 (𝜔

∗) holds for all 𝑖 ∈ 𝐼 and for
all 𝑗 ∈ 𝐼 ⧵ {𝑖}.

(ii) Consider the tuple of lexicographic conjectures
(

𝛽𝑖(𝜔∗)
)

𝑖∈𝐼 ,
where 𝛽𝑖(𝜔∗) =

(

𝑏̂1𝑖 (𝜔
∗),… , 𝑏𝐿𝑖 (𝜔

∗)
)

for all 𝑖 ∈ 𝐼 . Let 𝑖, 𝑗 ∈ 𝐼 be two
players such that 𝑖 ≠ 𝑗. Since 𝜔∗ ∈ 𝐶𝐾

(
⋂

𝑖∈𝐼 [𝛽𝑖(𝜔∗)]
)

⊆ 𝐾𝑗
(

[𝛽𝑖(𝜔∗)]
)

, it
follows that 𝑗 (𝜔∗) ⊆ [𝛽𝑖(𝜔∗)], and thus 𝛽𝑖(𝜔) = 𝛽𝑖(𝜔∗) for all 𝜔 ∈ 𝑗 (𝜔∗).
Note that supp

(

𝑝𝑚1
(

⋅ ∣ 𝑗 (𝜔∗)
)

)

⊆ 𝑗 (𝜔∗). Moreover, as 𝜔∗ ∈ 𝑃𝐵𝑗 (𝑇𝑖),

the equation 𝑝𝑚1
(

𝑇𝑖 ∣ 𝑗 (𝜔∗)
)

= 1 holds, thus supp
(

𝑝𝑚1
(

⋅ ∣ 𝑗 (𝜔∗)
)

)

⊆ 𝑇𝑖.

Now, consider 𝜔′ ∈ supp
(

𝑝𝑚1
(

⋅ ∣ 𝑗 (𝜔∗)
)

)

. Then, 𝜔′ ∈ 𝑗 (𝜔∗) ∩ 𝑇𝑖.
Consequently, on the one hand 𝛽𝑖(𝜔′) = 𝛽𝑖(𝜔∗) and on the other
hand 𝛽𝑖(𝜔′) is cautious. Therefore, 𝛽𝑖(𝜔∗) is cautious, which establishes
property (a) of Definition 8.

By part (i), the property 𝜎∗𝑖 = marg𝑆𝑖 𝑏̂
1
𝑗 (𝜔

∗) holds for all 𝑖 ∈ 𝐼 and
for all 𝑗 ∈ 𝐼 ⧵ {𝑖}. Thus property (b) of Definition 8 obtains.

Let 𝑖, 𝑗 ∈ 𝐼 such that 𝑖 ≠ 𝑗 and consider some 𝑠𝑖 ∈ supp(𝜎∗𝑖 ) =
supp

(

marg𝑆𝑖 𝑏̂
1
𝑗 (𝜔

∗)
)

. Thus, marg𝑆𝑖 𝑏̂
1
𝑗 (𝜔

∗)(𝑠𝑖) = 𝑝𝑚1
(

[𝑠𝑖] ∣ 𝑗 (𝜔∗)
)

> 0.
Hence, there exists 𝜔◦ ∈ supp

(

𝑝𝑚1
(

⋅ ∣ 𝑗 (𝜔∗)
)

)

⊆ 𝑗 (𝜔∗) such that
̂𝑖(𝜔◦) = 𝑠𝑖. As shown above, it is also the case that 𝛽𝑖(𝜔) = 𝛽𝑖(𝜔∗) for
all 𝜔 ∈ 𝑗 (𝜔∗). Consequently, 𝛽𝑖(𝜔◦) = 𝛽𝑖(𝜔∗). Since 𝜔∗ ∈ 𝑃𝐵(𝑅) ⊆
𝑃𝐵𝑗 (𝑅𝑖), it holds that 𝑝𝑚1 (𝑅𝑖 ∣ 𝑗 (𝜔∗)) = 1, i.e. 𝜔′ ∈ 𝑅𝑖 for all
𝜔′ ∈ supp

(

𝑝𝑚1
(

⋅ ∣ 𝑗 (𝜔∗)
)

)

. Thus, 𝜔◦ ∈ 𝑅𝑖, i.e. 𝑠̂𝑖(𝜔◦) is lex-optimal
given 𝛽𝑖(𝜔◦). As 𝑠̂𝑖(𝜔◦) = 𝑠𝑖 and 𝛽𝑖(𝜔◦) = 𝛽𝑖(𝜔∗), it follows that 𝑠𝑖 is
lex-optimal given 𝛽𝑖(𝜔∗), which establishes property (c) of Definition 8.

Therefore, (𝜎∗𝑖 )𝑖∈𝐼 constitutes a lexicographic semi-perfect equilib-
rium of 𝛤 . ■

The weak agreement theorem (WAT) plays a major role in the pre-
ceding result, as it ensures that players always agree on their marginal
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conjectures about any common opponent they face in the game. The
possibility that any two players entertain distinct beliefs about a third
player’s choice is thereby blocked and the problem of projection solved.
Formally, condition (i) of Lemma 2 and property (b) of Definition 8 are
driven by WAT.

Yet additional armoury has to be invoked to establish an epistemic
foundation for perfect equilibrium in the general set-up of many player
games. Requiring the common prior to be mutually absolutely continu-
ous enables the application of SAT, which can be used in turn to resolve
the problem of independence.

Theorem 3. Let 𝛤 be a finite game, 𝛤
𝐿𝐶𝑃 be some lexicographic Aumann

model of 𝛤 such that the common prior 𝜌 is mutually absolutely continuous,
and 𝜔∗ ∈ 𝛺 be some world. If 𝜔∗ ∈ 𝑃𝐵(𝑇 ) ∩ 𝑃𝐵(𝑅) ∩ 𝐶𝐾

(
⋂

𝑖∈𝐼 [𝛽𝑖(𝜔∗)]
)

,
then there exists a tuple of mixed strategies (𝜎∗𝑖 )𝑖∈𝐼 ∈

⨉

𝑖∈𝐼
(

𝛥(𝑆𝑖)
)

such that

(i) 𝜎∗𝑖 = marg𝑆𝑖 𝑏̂
1
𝑗 (𝜔

∗) for all 𝑖 ∈ 𝐼 and for all 𝑗 ∈ 𝐼 ⧵ {𝑖};
(ii) the tuple of mixed strategies (𝜎∗𝑖 )𝑖∈𝐼 constitutes a perfect equilibrium

of 𝛤 .

Proof. (i) Consider the tuple of lexicographic conjectures
(

𝛽𝑖(𝜔∗)
)

𝑖∈𝐼
at world 𝜔∗. For every player 𝑖 ∈ 𝐼 , define 𝜎∗𝑖 ∶= marg𝑆𝑖 𝑏̂

1
𝑖′ (𝜔

∗) for some
𝑖′ ∈ 𝐼 ⧵ {𝑖}. Part (i) of Lemma 2 ensures that 𝜎∗𝑖 = marg𝑆𝑖 𝑏̂

1
𝑗 (𝜔

∗) for all
𝑖 ∈ 𝐼 and for all 𝑗 ∈ 𝐼 ⧵ {𝑖}.

(ii) By Lemma 2, properties (a), (b), and (c) of Definition 7 hold.
Let 𝑖 ∈ 𝐼 be some player and 𝑙 ∈ {1,… , 𝐿} be some lexicographic level.
Since 𝐶𝐾

(

⋂

𝑗∈𝐼
[

𝛽𝑗 (𝜔∗)
]

)

≠ ∅, it is the case that

𝐶𝐾
(

[

marg𝑆−𝑖 𝑏̂
𝑙
𝑖(𝜔

∗)
]

)

≠ ∅

𝐶𝐾
(

[

marg𝑆𝑖+1 𝑏̂
𝑙
𝑖(𝜔

∗)
]

)

≠ ∅

𝐶𝐾
(

⋂

𝑗∈{𝑖,𝑖+1}

[

marg𝑆−(𝑖,𝑖+1) 𝑏̂
𝑙
𝑗 (𝜔

∗)
]

)

≠ ∅.

Consider some opponents’ strategy combination 𝑠−𝑖 ∈ 𝑆−𝑖. As 𝑏̂𝑙𝑖(𝜔
∗)(⋅) =

𝑝𝑚𝑙
(

[⋅] ∣ 𝑖(𝜔∗)
)

, it follows that

𝐶𝐾
(

{

𝜔 ∈ 𝛺 ∶ 𝑝𝑚𝑙
(

[𝑠−𝑖] ∣ 𝑖(𝜔)
)

= 𝑝𝑚𝑙
(

[𝑠−𝑖] ∣ 𝑖(𝜔∗)
)}

)

≠ ∅

𝐶𝐾
(

{

𝜔 ∈ 𝛺 ∶ 𝑝𝑚𝑙
(

[𝑠𝑖+1] ∣ 𝑖(𝜔)
)

= 𝑝𝑚𝑙
(

[𝑠𝑖+1] ∣ 𝑖(𝜔∗)
)}

)

≠ ∅

𝐶𝐾
(

⋂

𝑗∈{𝑖,𝑖+1}

{

𝜔 ∈ 𝛺 ∶ 𝑝𝑚𝑙
(

[𝑠−(𝑖,𝑖+1)] ∣ 𝑗 (𝜔)
)

= 𝑝𝑚𝑙
(

[𝑠−(𝑖,𝑖+1)] ∣ 𝑗 (𝜔∗)
)}

)

≠

By the proof of Theorem 2, there exist some indices 𝛼𝑙, 𝛽𝑙 and 𝛾𝑙
independent from 𝑖, 𝑖 + 1 and 𝜔 such that

𝑝𝑚𝑙
(

[𝑠−𝑖] ∣ 𝑖(𝜔)
)

= 𝑝𝛼𝑙
(

[𝑠−𝑖] ∣ (
⋀

𝑖′∈𝐼
𝑖′ )(𝜔∗)

)

𝑝𝑚𝑙
(

[𝑠𝑖+1] ∣ 𝑖(𝜔)
)

= 𝑝𝛽𝑙
(

[𝑠𝑖+1] ∣ (
⋀

𝑖′∈𝐼
𝑖′ )(𝜔∗)

)

𝑝𝑚𝑙
(

[𝑠−(𝑖,𝑖+1)] ∣ 𝑖(𝜔)
)

= 𝑝𝑚𝑙
(

[𝑠−(𝑖,𝑖+1)] ∣ 𝑖+1(𝜔)
)

= 𝑝𝛾𝑙
(

[𝑠−(𝑖,𝑖+1)] ∣ (
⋀

𝑖′∈𝐼
𝑖′ )(𝜔∗)

)

for all 𝜔 ∈ (
⋀

𝑖∈𝐼 𝑖)(𝜔∗). Since 𝜌 is mutually absolutely continuous,
the first part of the proof of Theorem 2 ensures that the lexicographic
levels of 𝜌(⋅ ∣ 𝑖(𝜔)) are the same for all 𝜔 ∈ (

⋀

𝑖∈𝐼 𝑖)(𝜔∗), and thus
𝛼𝑙 = 𝛽𝑙 = 𝛾𝑙 ∶= 𝑚̄𝑙. Moreover, since either 𝑖(𝜔) ⊆ [𝑠𝑖] or 𝑖(𝜔) ⊆ [𝑠𝑖]∁,
the following property holds

𝑝
(

𝐸 ∩ [𝑠𝑖] ∣ 𝑖(𝜔)
)

= 𝑝
(

𝐸 ∣ 𝑖(𝜔)) ⋅ 𝑝([𝑠𝑖] ∣ 𝑖(𝜔)
)

for all probability measures 𝑝 ∈ 𝛥(𝛺), for all 𝐸 ⊆ 𝛺 and for all 𝑖 ∈ 𝐼 .
Let  ∶= {𝑃𝑖+1 ∈ 𝑖+1 ∶ 𝑃𝑖+1 ⊆ (

⋀

𝑖∈𝐼 𝑖)(𝜔∗)} be the possibility cells of
player 𝑖+1 included in the meet cell of 𝜔∗. By using the above properties
together with the law of total probability, it follows that

𝑝𝑚𝑙
(

[𝑠−𝑖] ∣ 𝑖(𝜔∗)
)

= 𝑝𝑚̄𝑙
(

[𝑠−𝑖] ∣ (
⋀

𝑗∈𝐼
𝑗 )(𝜔∗)

)

=
∑

𝑝𝑚̄𝑙
(

[𝑠−𝑖] ∣ 𝑃𝑖+1
)

⋅ 𝑝𝑚̄𝑙
(

𝑃𝑖+1 ∣ (
⋀

𝑗 )(𝜔∗)
)

𝑃𝑖+1∈ 𝑗∈𝐼
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=

=

=

=

A

𝑝

𝑖
𝛽
𝐶

𝛽
t
𝑇
𝑝
D

𝑝

=
∑

𝑃𝑖+1∈
𝑝𝑚̄𝑙

(

[𝑠−(𝑖,𝑖+1)] ∣ 𝑃𝑖+1
)

⋅ 𝑝𝑚̄𝑙
(

[𝑠𝑖+1] ∣ 𝑃𝑖+1
)

⋅ 𝑝𝑚̄𝑙
(

𝑃𝑖+1 ∣ (
⋀

𝑗∈𝐼
𝑗 )(𝜔∗)

)

∑

𝑃𝑖+1∈
𝑝𝑚̄𝑙

(

[𝑠−(𝑖,𝑖+1)] ∣ (
⋀

𝑗∈𝐼
𝑗 )(𝜔∗)

)

⋅ 𝑝𝑚̄𝑙
(

[𝑠𝑖+1] ∣ 𝑃𝑖+1
)

⋅ 𝑝𝑚̄𝑙
(

𝑃𝑖+1 ∣ (
⋀

𝑗∈𝐼
𝑗 )(𝜔∗)

)

𝑝𝑚̄𝑙
(

[𝑠−(𝑖,𝑖+1)] ∣ (
⋀

𝑗∈𝐼
𝑗 )(𝜔∗)

)

⋅
∑

𝑃𝑖+1∈
𝑝𝑚̄𝑙

(

[𝑠𝑖+1] ∣ 𝑃𝑖+1
)

⋅ 𝑝𝑚̄𝑙
(

𝑃𝑖+1 ∣ (
⋀

𝑗∈𝐼
𝑗 )(𝜔∗)

)

𝑝𝑚̄𝑙
(

[𝑠−(𝑖,𝑖+1)] ∣ (
⋀

𝑗∈𝐼
𝑗 )(𝜔∗)

)

⋅ 𝑝𝑚̄𝑙
(

[𝑠𝑖+1] ∣ (
⋀

𝑗∈𝐼
𝑗 )(𝜔∗)

)

𝑝𝑚̄𝑙
(

[𝑠−(𝑖,𝑖+1)] ∣ 𝑖+1(𝜔∗)
)

⋅ 𝑝𝑚̄𝑙
(

[𝑠𝑖+1] ∣ 𝑖(𝜔∗)
)

.

nalogously,
𝑚̄𝑙
(

[𝑠−(𝑖,𝑖+1)] ∣ 𝑖+1(𝜔∗)
)

= 𝑝𝑚̄𝑙
(

[𝑠−(𝑖,𝑖+1,𝑖+2)] ∣ 𝑖+2(𝜔∗)
)

⋅ 𝑝𝑚̄𝑙
(

[𝑠𝑖+2] ∣ 𝑖+1(𝜔∗)
)

ensues, and thus

𝑝𝑚̄𝑙
(

[𝑠−𝑖] ∣ 𝑖(𝜔∗)
)

= 𝑝𝑚̄𝑙
(

[𝑠−(𝑖,𝑖+1,𝑖+2)] ∣ 𝑖+2(𝜔∗)
)

⋅ 𝑝𝑚̄𝑙
(

[𝑠𝑖+2] ∣ 𝑖+1(𝜔∗)
)

⋅ 𝑝𝑚̄𝑙
(

[𝑠𝑖+1] ∣ 𝑖(𝜔∗)
)

.

By induction, it follows that

𝑝𝑚𝑙
(

[𝑠−𝑖] ∣ 𝑖(𝜔∗)
)

=
∏

𝑗∈𝐼⧵{𝑖−1}
𝑝𝑚̄𝑙

(

[𝑠𝑗+1] ∣ 𝑗 (𝜔∗)
)

.

Consequently,

𝑏̂𝑙𝑖(𝜔
∗)(𝑠−𝑖)

= 𝑝𝑚𝑙
(

[𝑠−𝑖] ∣ 𝑖(𝜔∗)
)

=
∏

𝑗∈𝐼⧵{𝑖−1}
𝑝𝑚̄𝑙

(

[𝑠𝑗+1] ∣ 𝑗 (𝜔∗)
)

=
∏

𝑗∈𝐼⧵{𝑖−1}
marg𝑆𝑗+1 𝑏̂

𝑙
𝑗 (𝜔

∗)(𝑠𝑗+1)

=
∏

𝑗∈𝐼⧵{𝑖−1}
marg𝑆𝑗+1 𝑏̂

𝑙
𝑖(𝜔

∗)(𝑠𝑗+1) =
∏

𝑗∈𝐼⧵{𝑖}
marg𝑆𝑗 𝑏̂

𝑙
𝑖(𝜔

∗)(𝑠𝑗 ).

Therefore, 𝛽𝑖(𝜔∗) =
⨂

𝑗∈𝐼⧵{𝑖} marg𝑆𝑗 𝛽𝑖(𝜔
∗), which establishes property

(d) of Definition 7.
Furthermore, let 𝑖 ∈ 𝐼 and 𝑗, 𝑗′ ∈ 𝐼 ⧵ {𝑖} be some players, 𝑠𝑖 ∈ 𝑆𝑖

be some strategy for player 𝑖, and 𝑙 ∈ {1,… , 𝐿} be some lexicographic
level. Observe that

marg𝑆𝑖 𝑏̂
𝑙
𝑗 (𝜔

∗)(𝑠𝑖) = 𝑝𝑚𝑙
(

[𝑠𝑖] ∣ 𝑗 (𝜔∗)
)

= 𝑝𝑚̄𝑙
(

[𝑠𝑖] ∣ (
⋀

𝑖′∈𝐼
𝑖′ )(𝜔∗)

)

= 𝑝𝑚𝑙
(

[𝑠𝑖] ∣ 𝑗′ (𝜔∗)
)

= marg𝑆𝑖 𝑏̂
𝑙
𝑗′ (𝜔

∗)(𝑠𝑖)

and therefore, marg𝑆𝑖𝛽𝑗 (𝜔
∗) = marg𝑆𝑖𝛽𝑗′ (𝜔

∗) for all 𝑖 ∈ 𝐼 and for all
𝑗, 𝑗′ ∈ 𝐼 ⧵ {𝑖}. Now, take 𝑖, 𝑖′ ∈ 𝐼 such that 𝑖 ≠ 𝑖′ and define the
lexicographic product measure

𝜋 ∶= 𝛽𝑖(𝜔∗)⊗marg𝑆𝑖𝛽𝑖′ (𝜔
∗) =

(
⨂

𝑗∈𝐼⧵{𝑖}
marg𝑆𝑗 𝛽𝑖(𝜔

∗)
)

⊗marg𝑆𝑖𝛽𝑖′ (𝜔
∗).

We show that marg𝑆−𝑘𝜋 = 𝛽𝑘(𝜔∗) for all 𝑘 ∈ 𝐼 . First, the definition of 𝜋
combined with property (d) of Definition 7 ensures that

marg𝑆−𝑖𝜋 =
⨂

𝑗∈𝐼⧵{𝑖}
marg𝑆𝑗 𝛽𝑖(𝜔

∗) = 𝛽𝑖(𝜔∗).

If 𝑘 ∈ 𝐼 ⧵ {𝑖}, then the equality of the marginal conjectures established
above together with property (d) of Definition 7 implies that

marg𝑆−𝑘𝜋 =
(

⨂

𝑗∈𝐼⧵{𝑖,𝑘}
marg𝑆𝑗 𝛽𝑖(𝜔

∗)
)

⊗marg𝑆𝑖𝛽𝑖′ (𝜔
∗)

=
(

⨂

𝑗∈𝐼⧵{𝑖,𝑘}
marg𝑆𝑗 𝛽𝑘(𝜔

∗)
)

⊗marg𝑆𝑖𝛽𝑘(𝜔
∗)

=
⨂

𝑗∈𝐼⧵{𝑘}
marg𝑆𝑗 𝛽𝑘(𝜔

∗) = 𝛽𝑘(𝜔∗).

( ̂ ∗ )
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Consequently, 𝜋 and 𝛽𝑖(𝜔 ) 𝑖∈𝐼 satisfy property (e) of Definition 7.
Therefore, (𝜎∗𝑖 )𝑖∈𝐼 forms a lexicographic perfect equilibrium of 𝛤 ,
and thus, by Lemma 1, a perfect equilibrium of 𝛤 . ■

The property that a player’s belief about his opponents’ strategies
is independent poses a rather intricate matter in the proof of The-
orem 3 and its accomplishment is assisted by our strong agreement
theorem (SAT). The effective application of the two lexicographic
agreement theorems (WAT and SAT) in establishing epistemic condi-
tions for perfect equilibrium once again underlines the power that Au-
mann’s seminal impossibility result on agreeing to disagree is capable
of unfolding.

The following result addresses the converse direction by ensuring
that the epistemic conditions of Theorem 3 always exist and can be
aligned with any perfect equilibrium.

Theorem 4. Let 𝛤 be a finite game and 𝜎 = (𝜎𝑖)𝑖∈𝐼 ∈ ×𝑖∈𝐼
(

𝛥(𝑆𝑖)
)

be a tuple of mixed strategies that constitutes a perfect equilibrium of 𝛤 .
Then, there exists a lexicographic Aumann model 𝛤

𝐿𝐶𝑃 of 𝛤 with a world
𝜔∗ ∈ 𝛺 such that the common prior 𝜌 is mutually absolutely continuous,
𝜔∗ ∈ 𝑃𝐵(𝑇 ) ∩ 𝑃𝐵(𝑅) ∩ 𝐶𝐾

(
⋂

𝑖∈𝐼 [𝛽𝑖(𝜔∗)]
)

, as well as 𝜎𝑖 = marg𝑆𝑖 𝑏̂
1
𝑗 (𝜔

∗)
for all 𝑖 ∈ 𝐼 and for all 𝑗 ∈ 𝐼 ⧵ {𝑖}.

Proof. By Lemma 1, 𝜎 forms a lexicographic perfect equilibrium and
there exist a tuple 𝛽 = (𝛽𝑖)𝑖∈𝐼 ∈

(

(

𝛥(𝑆−𝑖)
)𝐿

)

𝑖∈𝐼
of lexicographic

conjectures and a lexicographic product measure 𝜋 = (𝜋1,… , 𝜋𝐿) ∈
(

𝛥(
⨉

𝑖∈𝐼 𝑆𝑖)
)𝐿 in line with the properties (a) to (e) of Definition 7.

Construct the lexicographic Aumann model 𝛤
𝐿𝐶𝑃 =

(

𝛺, 𝜌, 𝐼, (𝑖, 𝑠̂𝑖)𝑖∈𝐼
)

of 𝛤 , where

∙ 𝛺 =
{

𝜔𝑠 ∶ 𝑠 = (𝑠𝑖)𝑖∈𝐼 ∈
⨉

𝑖∈𝐼 𝑆𝑖
}

,
∙ 𝑝𝑚 ∈ 𝛥(𝛺) is defined by 𝑝𝑚(𝜔𝑠) = 𝜋𝑚(𝑠) for all 𝜔𝑠 ∈ 𝛺 and for all
𝑚 ∈ {1,… ,𝑀}, with 𝑀 = 𝐿,

∙ 𝑖(𝜔𝑠) = 𝛺 for all 𝜔𝑠 ∈ 𝛺 and for all 𝑖 ∈ 𝐼 ,
∙ 𝑠̂𝑖 ∶ 𝛺 →

⨉

𝑖∈𝐼 𝑆𝑖 is defined by 𝑠̂𝑖(𝜔𝑠) = 𝑠𝑖, for all 𝜔𝑠 ∈ 𝛺 and for
all 𝑖 ∈ 𝐼 .

As 𝑖(𝜔𝑠) = 𝛺 for all 𝜔𝑠 ∈ 𝛺 and for all 𝑖 ∈ 𝐼 , it directly follows
that 𝑝𝑚

(

𝑖(𝜔𝑠)
)

= 𝑝𝑚
(

𝑗 (𝜔𝑠)
)

= 1, and thus 𝑝𝑙
(

𝑖(𝜔𝑠)
)

= 0 if and only if
𝑝𝑙
(

𝑗 (𝜔𝑠)
)

= 0, for all 𝜔𝑠 ∈ 𝛺, for all 𝑚 ∈ {1,… ,𝑀}, and for all 𝑖, 𝑗 ∈ 𝐼 .
Therefore, 𝜌 is mutually absolutely continuous.

Since 𝑝𝑚
(

𝑖(𝜔𝑠)
)

= 1 for all 𝜔𝑠 ∈ 𝛺, for all 𝑚 ∈ {1,… ,𝑀}, and for
all 𝑖 ∈ 𝐼 , Definition 3 ensures that 𝑚𝑙 = 𝑙 for all 𝑙 ∈ {1,… , 𝐿}. Consider
some player 𝑖 ∈ 𝐼 , some world 𝜔𝑠 ∈ 𝛺, and some lexicographic level
𝑙 ∈ {1,… , 𝐿}. It follows that

𝑏̂𝑙𝑖(𝜔
𝑠)(𝑠′−𝑖) = 𝑝𝑚𝑙

(

[𝑠′−𝑖] ∣ 𝑖(𝜔
𝑠)
)

=
𝑝𝑙
(

𝑖(𝜔𝑠) ∩ [𝑠′−𝑖]
)

𝑝𝑙
(

𝑖(𝜔𝑠)
)

=
𝑝𝑙(𝛺 ∩ [𝑠′−𝑖])

𝑝𝑙(𝛺)
=
𝑝𝑙([𝑠′−𝑖])

1
= 𝜋𝑙({𝑠 ∈

⨉

𝑖∈𝐼
𝑆𝑖 ∶ 𝑠−𝑖 = 𝑠′−𝑖}) =

∑

𝑠𝑖∈𝑆𝑖

𝜋𝑙(𝑠𝑖, 𝑠′−𝑖)

= marg𝑆−𝑖𝜋
𝑙(𝑠′−𝑖) = 𝑏𝑙𝑖(𝑠

′
−𝑖)

for all 𝑠′−𝑖 ∈ 𝑆−𝑖, where the last equality is due to property (e)
of Definition 7. Consequently, 𝛽𝑖(𝜔𝑠) = 𝛽𝑖 for all 𝜔𝑠 ∈ 𝛺 and for all
∈ 𝐼 . Hence, [𝛽𝑖(𝜔𝑠)] = {𝜔𝑠′ ∈ 𝛺 ∶ 𝛽𝑖(𝜔𝑠

′ ) = 𝛽𝑖(𝜔𝑠)} = {𝜔𝑠′ ∈ 𝛺 ∶
𝑖̂(𝜔𝑠

′ ) = 𝛽𝑖} = 𝛺 for all 𝜔𝑠 ∈ 𝛺 as well as for all 𝑖 ∈ 𝐼 , and thus
𝐾
(
⋂

𝑖∈𝐼 [𝛽𝑖(𝜔𝑠)]
)

= 𝐶𝐾(𝛺) = 𝛺.
Next consider some world 𝜔𝑠 ∈ 𝛺 and some player 𝑖 ∈ 𝐼 . Since

𝑖̂(𝜔𝑠) = 𝛽𝑖, property (a) of lexicographic perfect equilibrium ensures
hat 𝛽𝑖(𝜔𝑠) is cautious, i.e. 𝜔𝑠 ∈ 𝑇𝑖. It follows that 𝑇𝑖 = 𝛺, and thus
=

⋂

𝑗∈𝐼 𝑇𝑗 = 𝛺. Consequently, supp
(

𝑝𝑚1 (⋅ ∣ 𝑖(𝜔𝑠))
)

⊆ 𝑇 and hence
𝑚1 (𝑇 ∣ 𝑖(𝜔𝑠)) = 1, i.e. 𝜔𝑠 ∈ 𝑃𝐵𝑖(𝑇 ). Also, by properties (b) and (e) of
efinition 7, it follows that
𝑚1
(

⋅ ∣ 𝑖(𝜔𝑠)
)

= 𝑝1(⋅ ∣ 𝛺) = 𝑝1 = 𝜋1 =
⨂

marg𝑆𝑗𝜋
1

𝑗∈𝐼
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(
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=
⨂

𝑗∈𝐼
marg𝑆𝑗marg𝑆−(𝑗+1)𝜋

1 =
⨂

𝑗∈𝐼
marg𝑆𝑗 𝑏

1
𝑗+1 =

⨂

𝑗∈𝐼
𝜎𝑗

Let 𝜔𝑠′ ∈ supp
(

𝑝𝑚1
(

⋅ ∣ 𝑖(𝜔𝑠)
)

)

. Then, 𝑠′ ∈ supp(
⨂

𝑗∈𝐼 𝜎𝑗 ), i.e. 𝑠′𝑗 ∈
supp(𝜎𝑗 ) for all 𝑗 ∈ 𝐼 . By property (c) of Definition 7, 𝑠′𝑗 is lex-optimal
given 𝛽𝑗 , and hence 𝑠̂𝑗 (𝜔𝑠

′ ) is lex-optimal given 𝛽𝑗 (𝜔𝑠
′ ), i.e. 𝜔𝑠′ ∈ 𝑅𝑗 for

all 𝑗 ∈ 𝐼 . Thus 𝜔𝑠′ ∈
⋂

𝑗∈𝐼 𝑅𝑗 = 𝑅. Hence, supp
(

𝑝𝑚1
(

⋅ ∣ 𝑖(𝜔𝑠)
)

)

⊆ 𝑅.
hus, 𝑝𝑚1

(

𝑅 ∣ 𝑖(𝜔𝑠)
)

= 1, i.e. 𝜔𝑠 ∈ 𝑃𝐵𝑖(𝑅). Since 𝑖 has been chosen
arbitrarily, 𝜔𝑠 ∈

⋂

𝑖∈𝐼 𝑃𝐵𝑖(𝑇 ) ∩
⋂

𝑖∈𝐼 𝑃𝐵𝑖(𝑅) = 𝑃𝐵(𝑇 ) ∩ 𝑃𝐵(𝑅). As 𝜔𝑠
has been picked arbitrarily too, 𝑃𝐵(𝑇 ) ∩ 𝑃𝐵(𝑅) = 𝛺 obtains.

Finally, let 𝜔∗ ∈ 𝛺 be some world and 𝑖 ∈ 𝐼 be some player. Then,
𝜔∗ ∈ 𝑃𝐵(𝑇 ) ∩ 𝑃𝐵(𝑅) ∩ 𝐶𝐾

(
⋂

𝑖∈𝐼 [𝛽𝑖(𝜔∗)]
)

. Furthermore, property (b)
of Definition 7 guarantees that 𝜎𝑖 = marg𝑆𝑖𝑏

1
𝑗 = marg𝑆𝑖 𝑏̂

1
𝑗 (𝜔

∗) for all
𝑗 ∈ 𝐼 ⧵ {𝑖}. Since 𝑖 has been chosen arbitrarily, 𝜎𝑖 = marg𝑆𝑖 𝑏̂

1
𝑗 (𝜔

∗) for all
𝑖 ∈ 𝐼 and for all 𝑗 ∈ 𝐼 ⧵ {𝑖}. ■

Accordingly, the sufficient conditions for perfect equilibrium put
forth by Theorem 3 are not too strong in the sense that every perfect
equilibrium is attainable with them. The conjunction of Theorems 3
and 4 constitutes an epistemic characterization of perfect equilibrium
in terms of mutual primary belief in caution, mutual primary belief in
rationality, and common knowledge of conjectures.

The epistemic programme in game theory has shed light on the rea-
soning assumptions underlying Nash equilibrium.17 The decisive – yet
conceptually not unproblematic – implicit property of Nash equilibrium
lies in some correct beliefs assumption. By requiring common knowl-
edge of conjectures, Theorems 3 and 4 show that a significant dose
of doxastic inerrancy also underlies the more general solution concept
of perfect equilibrium. In contrast, common knowledge of rationality
is not required in terms of reasoning: it is not even needed at the
first lexicographic level. A central conceptual insight due to Aumann
and Brandenburger (1995) for Nash equilibrium – interactive beliefs
in rationality do not enter the picture but only an interactive correct
beliefs condition does – is thus fortified by Theorems 3 and 4 in the
more general context of perfect equilibrium.18 Both Nash equilibrium
and perfect equilibrium hence only require iterated – and thus truly
interactive – beliefs about conjectures and not about rationality or
anything else. Consequently, some correct beliefs property constitutes
the essence of these solution concepts. Nonetheless, the reasoning
foundation for perfect equilibrium stretches beyond the one for Nash
equilibrium. Indeed, some notion of caution is needed in order to reflect
the inherent trembles property of perfect equilibrium, which is absent
from Nash equilibrium though.

9. Conclusion

When interactive epistemology is enriched by lexicographic prob-
ability systems, three results on agreeing to disagree obtain. If the
agents’ posteriors are common knowledge, the weak agreement theo-
rem ensures the first lexicographic level posteriors to coincide. Some-
what unexpectedly, however, disagreement cannot be excluded without
further assumptions on the deeper lexicographic levels. In line with
our disagreement result, agreement can already fail on the second
lexicographic level. Imposing mutual absolute continuity on top of
common knowledge of posteriors, the strong agreement theorem rules
out posterior disagreement at any lexicographic level.

17 For instance, (Brandenburger, 1992a; Aumann and Brandenburger, 1995;
erea, 2007; Barelli, 2009; Bach and Tsakas, 2014; Bonanno, 2018; Bach and
erea, 2020).
18 As Aumann and Brandenburger (1995) as well as Brandenburger (1992a)
ighlight, common knowledge enters the picture in an unexpected way for Nash
quilibrium to ensue: what is needed is common knowledge of the players’
onjectures but not of the players’ rationality (cf. (Aumann and Brandenburger,
995), p. 1163), and then only in games with more than two players (cf.
14

Brandenburger, 1992a), p. 96).
The impossibility of lexicographic agreeing to disagree becomes
n essential tool to shed light on interactive reasoning in games.
pistemic conditions are provided for the classical solution concept
f perfect equilibrium. In particular, the weak agreement theorem
nd the strong agreement theorem fundamentally assist in overcoming
he challenges that arise with more than two players. The reasoning
ssumptions underlying perfect equilibrium are identified in our lex-
cographic framework by mutual primary belief in caution, mutual
rimary belief in rationality, and common knowledge of conjectures.
he solution concept’s key epistemic ingredient thus lies in an interac-
ive correct beliefs assumption, while caution as well as rationality only
ppear in a non-iterated doxastic way on the first lexicographic level.

From a conceptual perspective, our results on the (im)possibility
f lexicographic agreeing to disagree are relevant for situations when
easoning about ordered layers of contingencies is considered. Notably
he original conclusion of Aumann’s agreement theorem breaks down.
greeing to disagree becomes conceivable once hypothetical contin-
encies enter the picture. This could have intriguing consequences for
conomic applications such as the possibility of trade. We leave such
onsiderations for future research.
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ppendix

The proof of Lemma 1 requires some additional results that are laid
ut first.

Given a game 𝛤 , some player 𝑖 ∈ 𝐼 , some strategy 𝑠𝑖 ∈ 𝑆𝑖 of player
, and some general – not necessarily product – probability measure
∈ 𝛥(𝑆−𝑖), player 𝑖’s expected utility of strategy 𝑠𝑖 is defined as

𝑖(𝑠𝑖, 𝑞) ∶=
∑

𝑠−𝑖∈𝑆−𝑖

𝑞(𝑠−𝑖) ⋅ 𝑈𝑖(𝑠𝑖, 𝑠−𝑖).

Let 𝑋 be a finite space, let 𝐿 > 0 be an integer, let 𝛼 = (𝑎1,… , 𝑎𝐿) ∈
𝛥(𝑋)

)𝐿 be a tuple of probability measures and let 𝑟 = (𝑟1,… , 𝑟𝐿−1) ∈
0, 1)𝐿−1 be a tuple of real numbers. Let 𝑟□ 𝛼 be defined by

□ 𝛼 ∶=

⎧

⎪

⎨

⎪

⎩

𝑎1 if 𝐿 = 1
(1 − 𝑟1) ⋅ 𝑎1 + 𝑟1 ⋅ (1 − 𝑟2) ⋅ 𝑎2 + 𝑟1 ⋅ 𝑟2 ⋅ (1 − 𝑟3) ⋅ 𝑎3 +…+
𝑟1 ⋅ 𝑟2 ⋅… ⋅ 𝑟𝐿−2 ⋅ (1 − 𝑟𝐿−1) ⋅ 𝑎𝐿−1 + 𝑟1 ⋅ 𝑟2 ⋅… ⋅ 𝑟𝐿−1 ⋅ 𝑎𝐿

if 𝐿 > 1

Observe that 𝑟□ 𝛼 ∈ 𝛥(𝑋), since
∑

∈𝑋
(𝑟□ 𝛼)(𝑥) = (1 − 𝑟1) + 𝑟1 ⋅ (1 − 𝑟2) + 𝑟1 ⋅ 𝑟2 ⋅ (1 − 𝑟3) +… +

𝑟1 ⋅ 𝑟2 ⋅… ⋅ 𝑟𝐿−2 ⋅ (1 − 𝑟𝐿−1) + 𝑟1 ⋅ 𝑟2 ⋅… ⋅ 𝑟𝐿−1 = 1.

emma A.1. Let 𝛤 be a game, 𝑖 ∈ 𝐼 be a player, 𝑠′𝑖 , 𝑠
′′
𝑖 ∈ 𝑆𝑖 be two

trategies of player 𝑖, 𝛽𝑖 = (𝑏1𝑖 ,… , 𝑏𝐿𝑖 ) ∈
(

𝛥(𝑆−𝑖)
)𝐿 be a lexicographic

onjecture of player 𝑖, and (𝑟𝑛)𝑛∈N =
(

(𝑟1𝑛,… , 𝑟𝐿−1𝑛 )
)

𝑛∈N ∈
[

(0, 1)𝐿−1
]N be

sequence such that lim𝑛→∞ 𝑟𝑛 = 0⃗ ∈ R𝐿−1. Then, the following properties
old:

(i) If 𝑢𝑖(𝑠′𝑖 , 𝑟𝑛 □ 𝛽𝑖) > 𝑢𝑖(𝑠′′𝑖 , 𝑟𝑛 □ 𝛽𝑖) for all 𝑛 ∈ N, then 𝑖 strictly
′ ′′
lex-prefers 𝑠𝑖 to 𝑠𝑖 .
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(ii) If 𝑢𝑖(𝑠′𝑖 , 𝑟𝑛 □ 𝛽𝑖) ≥ 𝑢𝑖(𝑠𝑖, 𝑟𝑛 □ 𝛽𝑖) for all 𝑛 ∈ N and for all 𝑠𝑖 ∈ 𝑆𝑖, then
𝑠′𝑖 is lex-optimal given 𝛽𝑖.

(iii) If 𝑠′𝑖 is lex-optimal given 𝛽𝑖, then there exist a subsequence (𝑟𝑛𝑘 )𝑘∈N of
(𝑟𝑛)𝑛∈N and an index 𝐾 ∈ N such that 𝑢𝑖(𝑠′𝑖 , 𝑟𝑛𝑘 □ 𝛽𝑖) ≥ 𝑢𝑖(𝑠𝑖, 𝑟𝑛𝑘 □ 𝛽𝑖)
for all 𝑘 ≥ 𝐾 and for all 𝑠𝑖 ∈ 𝑆𝑖.

roof. (i) Observe that lim𝑛→∞ 𝑟𝑛 = 0⃗ implies

lim
→∞

𝑟𝑛□ 𝛽𝑖 = lim
𝑛→∞

[

(1−𝑟1𝑛)⋅𝑏
1
𝑖 +𝑟

1
𝑛 ⋅(1−𝑟

2
𝑛)⋅𝑏

2
𝑖 +…+𝑟1𝑛 ⋅𝑟

2
𝑛 ⋅…⋅𝑟𝐿−1𝑛 ⋅𝑏𝐿𝑖

]

= 𝑏1𝑖 .

In addition, for each 𝑙 ∈ {1,… , 𝐿}, define
𝑙 ∶= 𝑢𝑙𝑖(𝑠

′
𝑖 , 𝛽𝑖) − 𝑢

𝑙
𝑖(𝑠

′′
𝑖 , 𝛽𝑖) =

∑

𝑠−𝑖∈𝑆−𝑖

𝑏𝑙𝑖(𝑠−𝑖) ⋅
[

𝑈𝑖(𝑠′𝑖 , 𝑠−𝑖) − 𝑈𝑖(𝑠
′′
𝑖 , 𝑠−𝑖)

]

.

Suppose that 𝑢𝑖(𝑠′𝑖 , 𝑟𝑛 □ 𝛽𝑖) > 𝑢𝑖(𝑠′′𝑖 , 𝑟𝑛 □ 𝛽𝑖) for all 𝑛 ∈ N. It follows that
∑

𝑠−𝑖∈𝑆−𝑖

(𝑟𝑛□ 𝛽𝑖)(𝑠−𝑖) ⋅
[

𝑈𝑖(𝑠′𝑖 , 𝑠−𝑖) − 𝑈𝑖(𝑠
′′
𝑖 , 𝑠−𝑖)

]

= (1 − 𝑟1𝑛) ⋅ 𝛥
1 + 𝑟1𝑛 ⋅ (1 − 𝑟

2
𝑛) ⋅ 𝛥

2 + ⋅… ⋅ +𝑟1𝑛 ⋅ 𝑟
2
𝑛 ⋅… ⋅ 𝑟𝐿−1𝑛 ⋅ 𝛥𝐿 > 0

(2)

for all 𝑛 ∈ N. Consequently,

0 ≤ lim
𝑛→∞

∑

𝑠−𝑖∈𝑆−𝑖

(𝑟𝑛□ 𝛽𝑖)(𝑠−𝑖) ⋅
[

𝑈𝑖(𝑠′𝑖 , 𝑠−𝑖) − 𝑈𝑖(𝑠
′′
𝑖 , 𝑠−𝑖)

]

=
∑

𝑠−𝑖∈𝑆−𝑖

lim
𝑛→∞

(𝑟𝑛□ 𝛽𝑖)(𝑠−𝑖) ⋅
[

𝑈𝑖(𝑠′𝑖 , 𝑠−𝑖) − 𝑈𝑖(𝑠
′′
𝑖 , 𝑠−𝑖)

]

=
∑

𝑠−𝑖∈𝑆−𝑖

𝑏1𝑖 (𝑠−𝑖) ⋅
[

𝑈𝑖(𝑠′𝑖 , 𝑠−𝑖) − 𝑈𝑖(𝑠
′′
𝑖 , 𝑠−𝑖)

]

= 𝛥1.

If 𝛥1 > 0, then 𝑢1𝑖 (𝑠
′
𝑖 , 𝛽𝑖) > 𝑢1𝑖 (𝑠

′′
𝑖 , 𝛽𝑖) and thus 𝑖 strictly lex-prefers 𝑠′𝑖 to

𝑠′′𝑖 . If 𝛥1 = 0, then define the truncated tuples 𝛽(2)𝑖 ∶= (𝑏2𝑖 ,… , 𝑏𝐿𝑖 ) and
(𝑟(2)𝑛 )𝑛∈N ∶=

(

(𝑟2𝑛,… , 𝑟𝐿−1𝑛 )
)

𝑛∈N. Property (2) together with the fact that
𝛥1 = 0 ensures that

0 <
∑

𝑠−𝑖∈𝑆−𝑖

(𝑟𝑛□ 𝛽𝑖)(𝑠−𝑖) ⋅
[

𝑈𝑖(𝑠′𝑖 , 𝑠−𝑖) − 𝑈𝑖(𝑠
′′
𝑖 , 𝑠−𝑖)

]

= (1 − 𝑟1𝑛) ⋅ 𝛥
1 + 𝑟1𝑛 ⋅

∑

𝑠−𝑖∈𝑆−𝑖

(𝑟(2)𝑛 □ 𝛽(2)𝑖 )(𝑠−𝑖) ⋅
[

𝑈𝑖(𝑠′𝑖 , 𝑠−𝑖) − 𝑈𝑖(𝑠
′′
𝑖 , 𝑠−𝑖)

]

= 𝑟1𝑛 ⋅
∑

𝑠−𝑖∈𝑆−𝑖

(𝑟(2)𝑛 □ 𝛽(2)𝑖 )(𝑠−𝑖) ⋅
[

𝑈𝑖(𝑠′𝑖 , 𝑠−𝑖) − 𝑈𝑖(𝑠
′′
𝑖 , 𝑠−𝑖)

]

for all 𝑛 ∈ N, and thus
∑

𝑠−𝑖∈𝑆−𝑖

(𝑟(2)𝑛 □ 𝛽(2)𝑖 )(𝑠−𝑖) ⋅
[

𝑈𝑖(𝑠′𝑖 , 𝑠−𝑖) − 𝑈𝑖(𝑠
′′
𝑖 , 𝑠−𝑖)

]

> 0

for all 𝑛 ∈ N. Consequently,

0 ≤ lim
𝑛→∞

∑

𝑠−𝑖∈𝑆−𝑖

(𝑟(2)𝑛 □ 𝛽(2)𝑖 )(𝑠−𝑖) ⋅
[

𝑈𝑖(𝑠′𝑖 , 𝑠−𝑖) − 𝑈𝑖(𝑠
′′
𝑖 , 𝑠−𝑖)

]

=
∑

𝑠−𝑖∈𝑆−𝑖

lim
𝑛→∞

(𝑟(2)𝑛 □ 𝛽(2)𝑖 )(𝑠−𝑖) ⋅
[

𝑈𝑖(𝑠′𝑖 , 𝑠−𝑖) − 𝑈𝑖(𝑠
′′
𝑖 , 𝑠−𝑖)

]

=
∑

𝑠−𝑖∈𝑆−𝑖

𝑏2𝑖 (𝑠−𝑖) ⋅
[

𝑈𝑖(𝑠′𝑖 , 𝑠−𝑖) − 𝑈𝑖(𝑠
′′
𝑖 , 𝑠−𝑖)

]

= 𝛥2.

If 𝛥2 > 0, then 𝑢2𝑖 (𝑠
′
𝑖 , 𝛽𝑖) > 𝑢2𝑖 (𝑠

′′
𝑖 , 𝛽𝑖) and 𝑢1𝑖 (𝑠

′
𝑖 , 𝛽𝑖) = 𝑢1𝑖 (𝑠

′′
𝑖 , 𝛽𝑖), and

thus 𝑖 strictly lex-prefers 𝑠′𝑖 to 𝑠′′𝑖 . If 𝛥2 = 0, then by continuing in
this fashion for 𝑙 ≥ 3, property (2) ensures that eventually there exists
𝑙∗ ∈ {1,… , 𝐿} such that 𝛥𝑙∗ > 0 and 𝛥𝑙 = 0 for all 0 < 𝑙 < 𝑙∗.
Equivalently, 𝑢𝑙∗𝑖 (𝑠

′
𝑖 , 𝛽𝑖) > 𝑢𝑙∗𝑖 (𝑠

′′
𝑖 , 𝛽𝑖) and 𝑢𝑙𝑖(𝑠

′
𝑖 , 𝛽𝑖) = 𝑢𝑙𝑖(𝑠

′′
𝑖 , 𝛽𝑖) for all

0 < 𝑙 < 𝑙∗. Therefore, 𝑖 strictly lex-prefers 𝑠′𝑖 to 𝑠′′𝑖 .
(ii) Let 𝑠𝑖 ∈ 𝑆𝑖. Suppose that 𝑢𝑖(𝑠′𝑖 , 𝑟𝑛 □ 𝛽𝑖) ≥ 𝑢𝑖(𝑠𝑖, 𝑟𝑛 □ 𝛽𝑖) for all

𝑛 ∈ N. If 𝑢𝑖(𝑠′𝑖 , 𝑟𝑛 □ 𝛽𝑖) = 𝑢𝑖(𝑠𝑖, 𝑟𝑛 □ 𝛽𝑖) for all 𝑛 ∈ N, then by similar
arguments as in the proof of Lemma A.1 (i), it follows that 𝛥𝑙 = 0
for all 𝑙 ∈ {1,… , 𝐿}. Consequently, 𝑖 weakly lex-prefers 𝑠′𝑖 to 𝑠𝑖. If
𝑢𝑖(𝑠′𝑖 , 𝑟𝑛 □ 𝛽𝑖) > 𝑢𝑖(𝑠𝑖, 𝑟𝑛 □ 𝛽𝑖) for some 𝑛∗ ∈ N, then again by similar
arguments as in the proof of Lemma A.1 (i), there exists 𝑙∗ ∈ {1,… , 𝐿}
such that 𝛥𝑙∗ > 0 and 𝛥𝑙 = 0 for all 0 < 𝑙 < 𝑙∗. Hence, 𝑖 weakly
lex-prefers 𝑠′𝑖 to 𝑠𝑖 and, as 𝑠𝑖 has been chosen arbitrarily, 𝑠′𝑖 is thus
lex-optimal given 𝛽𝑖.

(iii) Consider a subsequence (𝑟𝑛𝑘 )𝑘∈N of (𝑟𝑛)𝑛∈N that satisfies the
′
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following property: for every 𝑠𝑖 ∈ 𝑆𝑖, if 𝑢𝑖(𝑠𝑖, 𝑟𝑛𝑘 □ 𝛽𝑖) > 𝑢𝑖(𝑠𝑖 , 𝑟𝑛𝑘 □ 𝛽𝑖)
for infinitely many indices 𝑘 ∈ N, then 𝑢𝑖(𝑠𝑖, 𝑟𝑛𝑘 □ 𝛽𝑖) > 𝑢𝑖(𝑠′𝑖 , 𝑟𝑛𝑘 □ 𝛽𝑖) all
𝑘 ∈ N. Since lim𝑛→∞ 𝑟𝑛 = 0⃗, it is the case that lim𝑘→∞ 𝑟𝑛𝑘 = 0⃗. Suppose
that 𝑠′𝑖 is lex-optimal given 𝛽𝑖. By the contraposition of Lemma A.1 (i),
for all 𝑠𝑖 ∈ 𝑆𝑖, it is not the case that 𝑢𝑖(𝑠𝑖, 𝑟𝑛𝑘 □ 𝛽𝑖) > 𝑢𝑖(𝑠′𝑖 , 𝑟𝑛𝑘 □ 𝛽𝑖) for
all 𝑘 ∈ N. The contraposition of the property of the sequence (𝑟𝑛𝑘 )𝑘∈N
then ensures that, for all 𝑠𝑖 ∈ 𝑆𝑖, it is not the case that 𝑢𝑖(𝑠𝑖, 𝑟𝑛𝑘 □ 𝛽𝑖) >
𝑢𝑖(𝑠′𝑖 , 𝑟𝑘 □ 𝛽𝑖) for infinitely many indices 𝑘 ∈ N. Equivalently, for all
𝑠𝑖 ∈ 𝑆𝑖, there exists 𝐾(𝑠𝑖) ∈ N such that 𝑢𝑖(𝑠′𝑖 , 𝑟𝑛𝑘 □ 𝛽𝑖) ≥ 𝑢𝑖(𝑠𝑖, 𝑟𝑛𝑘 □ 𝛽𝑖)
for all 𝑘 ≥ 𝐾(𝑠𝑖). Consequently, 𝑢𝑖(𝑠′𝑖 , 𝑟𝑛𝑘 □ 𝛽𝑖) ≥ 𝑢𝑖(𝑠𝑖, 𝑟𝑛𝑘 □ 𝛽𝑖) for all
𝑘 ≥ max{𝐾(𝑠𝑖) ∶ 𝑠𝑖 ∈ 𝑆𝑖} and for all 𝑠𝑖 ∈ 𝑆𝑖. ■

Lemma A.2. Let 𝛤 be a game and 𝜓 ∶ 𝛥(
⨉

𝑖∈𝐼 𝑆𝑖) × 𝛥(
⨉

𝑖∈𝐼 𝑆𝑖) → R be
the function defined by

𝜓(𝜎, 𝜎̃) ∶= sup
{

𝑟 ∈ R ∶ 𝜎(𝑠) − 𝑟 ⋅ 𝜎̃(𝑠) ≥ 0, for all 𝑠 ∈
⨉

𝑖∈𝐼
𝑆𝑖
}

.

Then, 𝜓 satisfies the following properties:

(1) 𝜓(𝜎, 𝜎̃) = 1, if and only if, 𝜎 = 𝜎̃.
(2) If supp(𝜎̃) ⊆ supp(𝜎), then 𝜎(𝑠) − 𝜓(𝜎, 𝜎̃) ⋅ 𝜎̃(𝑠) = 0 for some

𝑠 ∈ supp(𝜎).
(3) The function 𝜓(⋅, 𝜎̃) ∶ 𝛥(

⨉

𝑖∈𝐼 𝑆𝑖) → R is continuous, for all 𝜎̃ ∈
𝛥(
⨉

𝑖∈𝐼 𝑆𝑖).

Proof. (1) Suppose that 𝜓(𝜎, 𝜎̃) = 1. Then 𝜎 − 1 ⋅ 𝜎̃ ≥ 0 and thus
𝜎 ≥ 𝜎̃. If 𝜎(𝑠′) > 𝜎̃(𝑠′) for some 𝑠′ ∈ ⨉

𝑖∈𝐼 𝑆𝑖, then 1 =
∑

𝑠∈
⨉

𝑖∈𝐼 𝑆𝑖
𝜎(𝑠) >

∑

𝑠∈
⨉

𝑖∈𝐼 𝑆𝑖
𝜎̃(𝑠) = 1, which is a contradiction. Therefore 𝜎 = 𝜎̃. Con-

versely, suppose that 𝜎 = 𝜎̃. Define 𝛹𝑟 ∶=
{

𝑟 ∈ R ∶ 𝜎(𝑠) − 𝑟 ⋅ 𝜎̃(𝑠) ≥
0, for all 𝑠 ∈ ⨉

𝑖∈𝐼 𝑆𝑖
}

. Since 𝜎−1 ⋅ 𝜎̃ = 0, then 1 ∈ 𝛹𝑟. Let 𝜖 > 0 and let
𝑠 ∈ supp(𝜎) = supp(𝜎̃). Then 𝜎(𝑠) − (1 + 𝜖) ⋅ 𝜎̃(𝑠) = −𝜖 ⋅ 𝜎̃(𝑠) < 0. Hence,
(1 + 𝜖) ∉ 𝛹𝑟 for all 𝜖 > 0. Therefore, 𝜓(𝜎, 𝜎̃) = sup𝑟∈R 𝛹𝑟 = 1.

(2) Towards a contradiction, suppose that supp(𝜎̃) ⊆ supp(𝜎) and
𝜎(𝑠) −𝜓(𝜎, 𝜎̃) ⋅ 𝜎̃(𝑠) > 0 for all 𝑠 ∈ supp(𝜎). Let 𝑠̄ ∈ argmin

{

𝜎(𝑠) −𝜓(𝜎, 𝜎̃) ⋅
𝜎̃(𝑠) ∶ 𝑠 ∈ supp(𝜎̃)

}

and define 𝑟 ∶= (𝜎(𝑠̄)−𝜓(𝜎,𝜎̃)⋅𝜎̃(𝑠̄))
𝜎̃(𝑠̄) and 𝜓 ′(𝜎, 𝜎̃) ∶=

𝜓(𝜎, 𝜎̃) + 𝑟. Since supp(𝜎̃) is finite, 𝑠̄ is well defined. Moreover, as 𝑠̄ ∈
supp(𝜎̃) ⊆ supp(𝜎), then 𝜎(𝑠̄) − 𝜓(𝜎, 𝜎̃) ⋅ 𝜎̃(𝑠̄) > 0, hence 𝑟 > 0, and thus

′(𝜎, 𝜎̃) > 𝜓(𝜎, 𝜎̃). Let 𝑠 ∈ ⨉

𝑖∈𝐼 𝑆𝑖. If 𝑠 ∈ (
⨉

𝑖∈𝐼 𝑆𝑖)⧵ supp(𝜎), then 𝜎(𝑠) =
̃ (𝑠) = 0, and thus 𝜎(𝑠) − 𝜓 ′(𝜎, 𝜎̃) ⋅ 𝜎̃(𝑠) = 0. If 𝑠 ∈ supp(𝜎) ⧵ supp(𝜎̃), then
(𝑠) > 0 and 𝜎̃(𝑠) = 0, and thus 𝜎(𝑠) − 𝜓 ′(𝜎, 𝜎̃) ⋅ 𝜎̃(𝑠) > 0. If 𝑠 ∈ supp(𝜎̃),
hen 𝜎(𝑠) − 𝜓(𝜎, 𝜎̃) ⋅ 𝜎̃(𝑠) ≥ 𝜎(𝑠̄) − 𝜓(𝜎, 𝜎̃) ⋅ 𝜎̃(𝑠̄) > 𝜎(𝑠̄) − 𝜓 ′(𝜎, 𝜎̃) ⋅ 𝜎̃(𝑠̄) =
(𝑠̄)− [𝜓(𝜎, 𝜎̃)+ 𝑟] ⋅ 𝜎̃(𝑠̄) = 𝜎(𝑠̄)−𝜓(𝜎, 𝜎̃) ⋅ 𝜎̃(𝑠)− 𝑟 ⋅ 𝜎̃(𝑠̄) = 0. Consequently,
(𝑠) −𝜓 ′(𝜎, 𝜎̃) ⋅ 𝜎̃(𝑠) ≥ 0 for all 𝑠 ∈ ⨉

𝑖∈𝐼 𝑆𝑖 and 𝜓 ′(𝜎, 𝜎̃) > 𝜓(𝜎, 𝜎̃), which
ontradicts the supremacy of 𝜓(𝜎, 𝜎̃).

(3) Let 𝜎̃ ∈ 𝛥(
⨉

𝑖∈𝐼 𝑆𝑖) and let (𝜎𝑘)𝑘∈N be a sequence such that
im𝑘→∞ 𝜎𝑘 = 𝜎. Then, lim𝑘→∞ 𝜓(𝜎𝑘, 𝜎̃) = 𝜓(lim𝑘→∞ 𝜎𝑘, 𝜎̃) = 𝜓(𝜎, 𝜎̃), and
hus 𝜓(⋅, 𝜎̃) is continuous. ■

emma A.3. Let (𝜎𝑘)𝑘∈N ∈
(

𝛥(
⨉

𝑖∈𝐼 𝑆𝑖)
)N be a sequence of mixed

trategy profiles. Then, there exist a lexicographic probability measure 𝜋 =
𝜋1,… , 𝜋𝐿) ∈

(

𝛥(
⨉

𝑖∈𝐼 𝑆𝑖)
)𝐿 and a sequence (𝑟𝑛)𝑛∈N =

(

(𝑟1𝑛,… , 𝑟𝐿−1𝑛 )
)

𝑛∈N
[

(0, 1)𝐿−1
]N with lim𝑛→∞ 𝑟𝑛 = 0⃗ such that a subsequence (𝜎𝑘𝑛 )𝑛∈N of

𝜎𝑘)𝑘∈N satisfies 𝜎𝑘𝑛 = 𝑟𝑛 □𝜋 for all 𝑛 ∈ N.

roof. Consider a subsequence (𝜎𝑘𝑛 )𝑛∈N of (𝜎𝑘)𝑘∈N that satisfies the
ollowing property: for every 𝑠 ∈

⨉

𝑖∈𝐼 𝑆𝑖, if 𝜎𝑘𝑛 (𝑠) = 0 for infinitely
any indices 𝑛 ∈ N, then 𝜎𝑘𝑛 (𝑠) = 0 for all 𝑛 ∈ N. Then, there exists

ome index 𝑁 ∈ N such that the subsequence (𝜎𝑘𝑛 )𝑛≥𝑁 of (𝜎𝑘𝑛 )𝑛∈N
atisfies the following property: for every 𝑠 ∈

⨉

𝑖∈𝐼 𝑆𝑖, if 𝜎𝑘𝑁 (𝑠) = 0,
hen 𝜎𝑘𝑛 (𝑠) = 0 for all 𝑛 ≥ 𝑁 . By the Bolzano–Weierstrass Theorem,
here exists some convergent subsequence of (𝜎𝑘𝑛 )𝑛≥𝑁 , denoted by
𝜎𝑘)𝑘∈N for the sake of simplicity, with limit 𝜋1 ∶= lim𝑘→∞ 𝜎𝑘.

Either 𝜎𝑘 = 𝜋1 infinitely often or 𝜎𝑘 = 𝜋1 finitely often. Suppose
that 𝜎𝑘 = 𝜋1 infinitely often. Let (𝜎𝑘𝑛 )𝑛∈N be a subsequence of (𝜎𝑘)𝑘∈N
such that 𝜎𝑘𝑛 = 𝜋1 for all 𝑛 ∈ N, let (𝑟𝑛)𝑛∈N be the empty sequence,
and let 𝜋 = (𝜋1). It follows that 𝜎𝑘𝑛 = 𝜋1 = 𝑟𝑛 □𝜋 for all 𝑛 ∈ N, which

completes the proof in this case.
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Otherwise, suppose that 𝜎𝑘 = 𝜋1 finitely often. Then, there exists
∈ N such that 𝜎𝑘 ≠ 𝜋1 for all 𝑘 ≥ 𝑁 . Let (𝜎𝑘𝑛 )𝑛∈N be a subsequence

f (𝜎𝑘)𝑘∈N such that 𝜎𝑘𝑛 ≠ 𝜋1 for all 𝑛 ∈ N. This subsequence is denoted
y (𝜎𝑘)𝑘∈N for the sake of simplicity. By Lemma A.2 (1), 𝜓(𝜎𝑘, 𝜋1) ≠ 1
or all 𝑘 ∈ N. Consider the then well-defined sequence (𝜋2𝑘)𝑘∈N given
y

2
𝑘 ∶=

𝜎𝑘 − 𝜓(𝜎𝑘, 𝜋1) ⋅ 𝜋1

1 − 𝜓(𝜎𝑘, 𝜋1)
(3)

for all 𝑘 ∈ N. Note that for every 𝑠 ∈
⨉

𝑖∈𝐼 𝑆𝑖 and for each 𝑘 ∈ N, if
𝑘(𝑠) = 0, then 𝜋1(𝑠) = 0 and thus 𝜋2𝑘(𝑠) = 0. It follows that supp(𝜋2𝑘) ⊆
upp(𝜎𝑘) for all 𝑘 ∈ N. In addition, Lemma A.2 (2) ensures that for every
∈ N, there exists 𝑠 ∈ supp(𝜎𝑘) such that 𝜎𝑘(𝑠) − 𝜓(𝜎𝑘, 𝜋1) ⋅ 𝜋1(𝑠) = 0,

nd thus 𝑠 ∉ supp(𝜋2𝑘). Consequently, supp(𝜋2𝑘) ⊊ supp(𝜎𝑘) for all 𝑘 ∈ N.
Eq. (3) can be rewritten as

𝑘 = 𝜓(𝜎𝑘, 𝜋1) ⋅ 𝜋1 +
[

1 − 𝜓(𝜎𝑘, 𝜋1)
]

⋅ 𝜋2𝑘 (4)

for all 𝑘 ∈ N, where 𝜓(𝜎𝑘, 𝜋1) ∈ (0, 1). Lemma A.2 (3) and Lemma A.2
1) ensure that lim𝑘→∞ 𝜓(𝜎𝑘, 𝜋1) = 𝜓(lim𝑘→∞ 𝜎𝑘, 𝜋1) = 𝜓(𝜋1, 𝜋1) = 1.
onsider the sequence (𝑟1𝑘)𝑘∈N defined by

1
𝑘 ∶= 1 − 𝜓(𝜎𝑘, 𝜋1) (5)

or all 𝑘 ∈ N, where lim𝑘→∞ 𝑟1𝑘 = 1 − lim𝑘→∞ 𝜓(𝜎𝑘, 𝜋1) = 0. Eqs. (4) and
5) imply that
𝑘 = (1 − 𝑟1𝑘) ⋅ 𝜋

1 + 𝑟1𝑘 ⋅ 𝜋
2
𝑘 (6)

or all 𝑘 ∈ N.
By similar reasoning applied to the sequence (𝜋2𝑘)𝑘∈N, it follows that

there exists a convergent subsequence (𝜋2𝑘𝑛 )𝑛∈N of (𝜋2𝑘)𝑘∈N, also denoted
as (𝜋2𝑘)𝑘∈N for the sake of simplicity, with limit 𝜋2 ∶= lim𝑘→∞ 𝜋2𝑘. Either
𝜋2𝑘 = 𝜋2 infinitely often or 𝜋2𝑘 = 𝜋2 finitely often.

Suppose that 𝜋2𝑘 = 𝜋2 infinitely often. Let (𝜋2𝑘𝑛 )𝑛∈N be a subsequence
of (𝜋2𝑘)𝑘∈N such that 𝜋2𝑘𝑛 = 𝜋2 for all 𝑛 ∈ N, let (𝑟𝑛)𝑛∈N =

(

(𝑟1𝑘𝑛 )
)

𝑛∈N and
let 𝜋 = (𝜋1, 𝜋2). Eq. (6) ensures that

𝜎𝑘𝑛 = (1 − 𝑟1𝑘𝑛 ) ⋅ 𝜋
1 + 𝑟1𝑘𝑛 ⋅ 𝜋

2 = 𝑟𝑛□𝜋

for all 𝑛 ∈ N, which completes the proof in this case.
Otherwise, suppose that 𝜋2𝑘 = 𝜋2 finitely often. There exist sequences

(𝜋3𝑘)𝑘∈N and (𝑟2𝑘)𝑘∈N such that the following properties hold:

𝜋2𝑘 = (1 − 𝑟2𝑘) ⋅ 𝜋
2 + 𝑟2𝑘 ⋅ 𝜋

3
𝑘 (7)

𝜋3𝑘 ∶=
𝜋2𝑘 − 𝜓(𝜋

2
𝑘 , 𝜋

2) ⋅ 𝜋2

1 − 𝜓(𝜋2𝑘 , 𝜋
2)

and supp(𝜋3𝑘) ⊊ supp(𝜋2𝑘) for all 𝑘 ∈ N

𝑟2𝑘 ∶= 1 − 𝜓(𝜋2𝑘 , 𝜋
2) for all 𝑘 ∈ N and lim

𝑘→∞
𝑟2𝑘 = 0.

qs. (6) and (7) imply that
𝑘 = (1 − 𝑟1𝑘) ⋅ 𝜋

1 + 𝑟1𝑘 ⋅
[

(1 − 𝑟2𝑘) ⋅ 𝜋
2 + 𝑟2𝑘 ⋅ 𝜋

3
𝑘
]

. (8)

Iterating the same reasoning for the sequences (𝜋𝑙𝑘)𝑘∈N for 𝑙 ≥
3 guarantees that there exist a lexicographic level 𝐿 ∈ N, 𝜋 =
(𝜋1,… , 𝜋𝐿) ∈

(

𝛥(
⨉

𝑖∈𝐼 𝑆𝑖)
)𝐿, and (𝑟𝑛)𝑛∈N ∈

[

(0, 1)𝐿−1
]N such that

lim𝑛→∞ 𝑟𝑛 = 0⃗ and 𝜎𝑘𝑛 = 𝑟𝑛 □𝜋 for all 𝑛 ∈ N. Note that the iterative
process necessarily terminates after finitely many rounds, since the set
⨉

𝑖∈𝐼 𝑆𝑖 is finite and supp(𝜎𝑘) ⊋ supp(𝜋2𝑘) ⊋ supp(𝜋3𝑘) ⊋ … for all 𝑘
∈ N. ■

Equipped with Lemmas A.1, A.2, A.3, we can now proceed to
formally establish Lemma 1.

Proof (⇒).: Suppose that 𝜎 constitutes a perfect equilibrium of 𝛤 .
Then, there exists a sequence of tuples of mixed strategies (𝜎𝑘)𝑘∈N such
that properties (i), (ii), and (iii) of Definition 6 hold. By Lemma A.3,
there exists a lexicographic probability measure 𝜋 = (𝜋1,… , 𝜋𝐿) ∈
(

𝛥(
⨉

𝑖∈𝐼 𝑆𝑖)
)𝐿 and a sequence (𝑟𝑛)𝑛∈N =

(

(𝑟1𝑛,… , 𝑟𝐿−1𝑛 )
)

𝑛∈N ∈
[

(0, 1)𝐿−1
]N

⃗ 𝑘𝑛 𝑘
16

with lim𝑛→∞ 𝑟𝑛 = 0 such that some subsequence (𝜎 )𝑛∈N of (𝜎 )𝑘∈N can
be expressed as 𝜎𝑘𝑛 = 𝑟𝑛 □𝜋 for all 𝑛 ∈ N. For every 𝑖 ∈ 𝐼 , define the
lexicographic conjecture 𝛽𝑖 ∶= marg𝑆−𝑖𝜋. We show that (𝜎𝑘)𝑘∈N, (𝛽𝑖)𝑖∈𝐼 ,
and 𝜋 satisfy properties (a), (b), (c), (d), and (e) of Definition 7.

First, note that property (e) of Definition 7 is directly satisfied. Since
𝜎𝑘𝑛 = 𝑟𝑛 □𝜋 is a product measure for all 𝑛 ∈ N, it follows that 𝜋 is a
tuple of product measures. Consequently,

𝛽𝑖 = marg𝑆−𝑖𝜋 =
⨂

𝑗∈𝐼⧵{𝑖}
marg𝑆𝑗𝜋

=
⨂

𝑗∈𝐼⧵{𝑖}
marg𝑆𝑗marg𝑆−𝑖𝜋 =

⨂

𝑗∈𝐼⧵{𝑖}
marg𝑆𝑗 𝛽𝑖

for all 𝑖 ∈ 𝐼 , which yields property (d) of Definition 7. Moreover,
property (i) ensures that 𝜎 = lim𝑛→∞ 𝜎𝑘𝑛 = lim𝑛→∞(𝑟𝑛 □𝜋) = 𝜋1. Hence,

𝜎𝑖 = marg𝑆𝑖𝜎 = marg𝑆𝑖𝜋
1 = marg𝑆𝑖marg𝑆−𝑗𝜋

1 = marg𝑆𝑖𝑏
1
𝑗

for all 𝑖 ∈ 𝐼 and all 𝑗 ∈ 𝐼 ⧵ {𝑖}, which establishes property (b) of
Definition 7. Furthermore, property (ii) guarantees that 𝜎𝑘𝑛𝑖 has full
support for all 𝑖 ∈ 𝐼 and for all 𝑛 ∈ N. Thus, 𝜋 and hence 𝛽𝑖, is
cautious for all 𝑖 ∈ 𝐼 , which establishes property (a) of Definition 7.
Finally, let 𝑠𝑖 ∈ supp(𝜎𝑖). By property (iii), 𝑠𝑖 is a best response to
𝜎𝑘𝑛−𝑖 = marg𝑆−𝑖 (𝑟𝑛 □𝜋) = 𝑟𝑛 □ 𝛽𝑖 for all 𝑛 ∈ N. By Lemma A.1 (ii), 𝑠𝑖 is
lex-optimal given 𝛽𝑖, which corresponds to property (c) of Definition 7.
Therefore, 𝜎 = (𝜎𝑖)𝑖∈𝐼 constitutes a lexicographic perfect equilibrium of
𝛤 .

(⇐): Suppose that 𝜎 constitutes a lexicographic perfect equilibrium
of 𝛤 . Then, there exists a tuple of lexicographic conjectures 𝛽 = (𝛽𝑖)𝑖∈𝐼
and a lexicographic product measure 𝜋 = (𝜋1,… , 𝜋𝐿) satisfying prop-
erties (a), (b), (c), (d), and (e) of Definition 7. Consider the sequence
(𝑟𝑛)𝑛∈N =

(

( 1
𝑛+1 ,… , 1

𝑛+1 )
)

𝑛∈N ∈
[

(0, 1)𝐿−1
]N. Note that lim𝑛→∞ 𝑟𝑛 = 0⃗.

For every 𝑖 ∈ 𝐼 and for every 𝑛 ∈ N, define 𝜎𝑛𝑖 ∶= marg𝑆𝑖 (𝑟𝑛 □𝜋)
and 𝜎𝑛 ∶= (𝜎𝑛𝑖 )𝑖∈𝐼 . We show that there exists a subsequence of (𝜎𝑛)𝑛∈N
satisfying properties (i), (ii), (iii) of Definition 6.

Let 𝑖 ∈ 𝐼 be some player. Since 𝑟𝑛 □𝜋 is a product measure and
properties (b) and (e) hold,

lim
𝑛→∞

𝜎𝑛𝑖 = lim
𝑛→∞

marg𝑆𝑖 (𝑟𝑛□𝜋) = lim
𝑛→∞

marg𝑆𝑖marg𝑆−𝑗 (𝑟𝑛□𝜋)

= lim
𝑛→∞

marg𝑆𝑖 (𝑟𝑛□marg𝑆−𝑗𝜋) = lim
𝑛→∞

marg𝑆𝑖 (𝑟𝑛□ 𝛽𝑗 )

= marg𝑆𝑖 lim𝑛→∞
(𝑟𝑛□ 𝛽𝑗 ) = marg𝑆𝑖𝑏

1
𝑗 = 𝜎𝑖

for all 𝑗 ∈ 𝐼 such that 𝑖 ≠ 𝑗. This establishes property (i) of Definition 6.
In addition, let 𝑗 ∈ 𝐼 ⧵{𝑖}, 𝑠𝑗 ∈ 𝑆𝑗 , and 𝑛 ∈ N. List (a) ensures that there
exists a level 𝑙∗ ∈ {1,… , 𝐿} such that marg𝑆𝑗 𝑏

𝑙∗
𝑖 (𝑠𝑗 ) > 0. It follows that

𝜎𝑛𝑗 (𝑠𝑗 ) = marg𝑆𝑗 (𝑟𝑛□𝜋)(𝑠𝑗 ) = marg𝑆𝑗marg𝑆−𝑖 (𝑟𝑛□𝜋)(𝑠𝑗 )

= marg𝑆𝑗 (𝑟𝑛□marg𝑆−𝑖𝜋)(𝑠𝑗 ) = marg𝑆𝑗 (𝑟𝑛□ 𝛽𝑖)(𝑠𝑗 ) > 0.

Hence, supp(𝜎𝑛𝑗 ) = 𝑆𝑗 , which yields property (ii) of Definition 6.
Besides, let 𝑠𝑖 ∈ supp(𝜎𝑖). List (c) ensures that 𝑠𝑖 is lex-optimal given 𝛽𝑖.
By Lemma A.1 (iii), there exists some subsequence (𝑟𝑛𝑘 )𝑘∈N of (𝑟𝑛)𝑛∈N
and some index 𝐾 ∈ N such that 𝑢𝑖(𝑠𝑖, 𝑟𝑛𝑘 □ 𝛽𝑖) ≥ 𝑢𝑖(𝑠′𝑖 , 𝑟𝑛𝑘 □ 𝛽𝑖) for all
𝑘 ≥ 𝐾 and for all 𝑠′𝑖 ∈ 𝑆𝑖. List (e) guarantees that

𝑟𝑛𝑘 □ 𝛽𝑖 = (𝑟𝑛𝑘 □marg𝑆−𝑖𝜋) = marg𝑆−𝑖 (𝑟𝑛𝑘 □𝜋)

=
⨂

𝑗∈𝐼⧵{𝑖}
marg𝑆𝑗 (𝑟𝑛𝑘 □𝜋) =

⨂

𝑗∈𝐼⧵{𝑖}
𝜎𝑛𝑘𝑗 .

Hence, 𝑠𝑖 is a best response to 𝜎𝑛𝑘−𝑖 for all 𝑘 ≥ 𝐾, i.e. the subsequence
(𝜎𝑛𝑘−𝑖 )𝑘≥𝐾 satisfies property (iii) of Definition 6. Consequently, the sub-
sequence (𝜎𝑛𝑘 )𝑘≥𝑁 satisfies properties (i), (ii), (iii) of Definition 6.
Therefore, 𝜎 constitutes a perfect equilibrium of 𝛤 . ■
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