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ARTICLE INFO ABSTRACT
Editor: Ashantha Goonetilleke Agriculture is a major source of nitrogen (N) and phosphorus (P) in freshwater ecosystems, and different
management strategies exist to reduce farmland nutrient losses and thus mitigate freshwater eutrophication. The
Keywords: importance of agricultural sources of N and P as drivers of water quality is known to vary spatially, but quan-
Water quality tification of the relative importance of the nutrient sources shaping this variability remains challenging, especially

Statistical techniques

Waste water

Spatially targeted management
England

with reference to inputs from waste water treatment works. Addressing this knowledge gap is key for targeting
management strategies to where they are likely to have the greatest effect. To advance our understanding in this
area, this study assesses the impact of population density as a driver of the relative importance of agricultural
land use for predicting mean Total Oxidised Nitrogen (TON) and Reactive Phosphorus (RP) concentrations in
rivers in England, using two different data-driven, statistical approaches: a generalised linear model and random
forest. Our results show that agricultural N and P sources dominate in catchments with low population density,
where stream water concentrations are lower and waste water treatment works are numerous, but smaller in
terms of the population equivalent served. Agricultural N and P sources are not important predictors of N and P
in catchments with high population density, where contributions from waste water treatment works dominate.
These results require cautious interpretation, as model validation outcomes show that high TON and RP con-
centrations are consistently underpredicted. Altogether, our results suggest that the relative contribution of
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agricultural sources may be overestimated in densely populated catchments, relative to point sources from waste
water treatment works, and that management strategies to reduce the contribution of agriculture to N and P in
rivers may be better targeted towards catchments with lower population density, as this is where agricultural
land use is the primary source of N and P.

1. Introduction

Disruption of nitrogen (N) and phosphorus (P) cycling through
organic and inorganic N and P fertiliser application, livestock rearing,
and wastewater and industrial effluent release, have dramatically
increased stream water N and P concentrations since World War II,
leading to eutrophication (Howden et al., 2010). In freshwater ecosys-
tems, eutrophication results in a shift to plant communities dominated
by fast-growing competitive species (Mainstone and Parr, 2002; O'Hare
etal., 2018), excess growth of aquatic weeds and phytoplankton, blooms
of harmful algae and the associated negative impacts on invertebrates
and fish (Smith and Schindler, 2009). This in turn adversely impacts on a
range of water uses and societal benefits, including drinking water
abstraction and treatment, livestock watering, water sports, angling,
amenity value and tourism (Environment Agency, 2019).

Agriculture is known to be a major source of N and P, and nutrient
runoff from agricultural practice is an underlying cause of eutrophica-
tion in many catchments (Carpenter et al., 2011; Moss, 2008). N and P
reach streams through wash-off and leaching of nutrients from fertiliser
and manure applications to arable landscapes, and through soil distur-
bance and sediment runoff due to land management practices and
livestock grazing (Nisbet et al., 2022). Because of this, most studies
focusing on diffuse agricultural sources of N and P in England consider
arable and horticultural land cover (Davies and Neal, 2007; Bell et al.,
2021), as well as cattle and sheep grazing (Johnes et al., 1996; Davison
et al., 2008), as the main sources of agricultural N and P in rivers (Defra
2024a and b). A range of measures have been developed to reduce
diffuse pollution from agriculture, including reduced fertiliser usage,
reduced tillage, and crop rotation (Luna Juncal et al., 2023). There are
concerns that these measures do not go far enough to reach water quality
targets, which has led to the focus being increasingly put on land cover
change, usually from crop to forest, peatland or wetland, that is, from
land use that inputs N and P into river systems to one that can capture N
and P (Nisbet et al., 2022). This type of natural habitat restoration often
targets key areas around the sources, pathways, or receptors of N and P,
whilst delivering many other benefits such as habitat creation, shade
creation, carbon sequestration and increase access for recreation
(Langhans et al., 2022).

However, most of the management strategies aimed at reducing
diffuse agricultural sources of N and P are costly to implement and have
implications in terms of reduced yield or added management effort for
farmers. In some cases, farmers receive renumeration for carrying out
management strategies on their land, through payment schemes funded
in various ways, for example through taxes (e.g. the Environmental Land
Management schemes in England) or water utility companies (Nisbet
et al., 2022). Land cover change comes at both an economic and social
cost, as taking agricultural areas out of production has implications for
food security. Because of this, it is important for management strategies
to be spatially targeted to the sites where the measures will have the
biggest positive effect on improving water quality in rivers (Withers
et al., 2014), through an understanding of the effect of key drivers in
different contexts (Spake et al., 2019).

There is some evidence that in densely populated regions the
contribution of agriculture to P concentrations in rivers may be less
important than previously thought (Withers et al., 2014). A comparison
of 10 countries in northwest Europe showed that mean P concentration
in rivers were more strongly correlated with discharges associated with
urban populations than with agricultural variables (Foy, 2007). In
addition to this, a regional study of N concentration in an urban-

dominated region showed that urban is the land characteristic which
is most important in determining nitrate concentrations (Davies and
Neal, 2004), but when the analysis was applied to landscapes across the
UK, the area of arable land proved to be more important (Davies and
Neal, 2007). This could mean that catchments with a low population
density are a better choice for mitigation measures targeting agricultural
sources of N and P, if they are shown to be the dominant cause of
nutrient enrichment in these rivers, and thus more likely to respond to
interventions with improved water quality. However, it is also possible
that point sources from waste water treatment works (WWTWs) domi-
nate in catchments with low population density, but with lower con-
centrations of N and P than catchments with higher population density.

To date, no studies have compared catchments with low population
density to catchments with high population density explicitly and at a
national scale, with respect to the relative contribution of agricultural
sources to N and P concentration. This study aims to fill this gap by using
statistical models to test a series of hypotheses, using England as a case
study. Data-driven, statistical, approaches provide an interesting and
useful contrast to other models that define the relative inputs or flux
transfers from different nutrient sources at the outset, for example,
export co-efficient modelling and similar (Johnes et al., 1996), since the
statistical models determine the relationship between source and
instream concentration through model fitting. England was chosen
because of the availability of water quality and environmental data, and
because catchments with a range of different population densities are
available, including catchments with very high population densities.
Based on previous work, our hypotheses are:

H1. We expected agricultural sources to be the most important pre-
dictor of N and P concentrations in catchments with low population
density (Foy, 2007; Davies and Neal, 2007).

H2. We expected effluent from WWTWs to be the most important
predictor of N and P concentrations in catchments with high population
density, with agricultural sources being less important (Davies and Neal,
2004; Davies and Neal, 2007).

2. Materials and methods
2.1. Data

2.1.1. Dependent variables

We used data from the Water Quality Data Archive (Environment
Agency, 2021) on concentrations of Total Oxidised Nitrogen (TON)
(Total Oxidised as N in mg/1, representing the sum of nitrate and nitrite,
determinand notation 116) and Reactive Phosphorus (RP) (Reactive
Phosphorus as P in mg/1, Orthophosphate, determinand notation 180),
filtered for measurements taken on a river or running surface water, and
taken for monitoring purposes (as opposed to compliance). We chose
these forms of N and P because they are much more commonly measured
that total N and total P for monitoring purposes in England. For example,
the 2019 dataset has 32,753 records for the determinand TON compared
to 6064 for Total N, and 30,875 records for RP and none for Total P. We
downloaded the data for the years 2015 to 2019 and filtered all available
monitoring stations within England to those that had at least one mea-
surement per season per year for this time period, providing us with 528
monitoring stations for TON and 507 for RP. We did this as there is likely
to be substantial seasonal variation in the TON and RP concentrations
(Shen et al., 2020), and we wanted to make sure that this is captured
within the data for all monitoring stations included in the study. We then
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took the mean value for all the TON and RP concentration measurements
for each monitoring station across the five years. We chose to use the
mean value rather than the median, as the mean concentration of N and
P is currently used in relation to standards for N and P in rivers in En-
gland within policy documents (e.g. Defra, 2014). We chose the period
2015-2019 after initial investigations showed that extending this period
meant a drop in monitoring stations that met the criteria of having at
least one measurement per season, particularly as during the COVID
pandemic the number of measurements taken at some monitoring sta-
tions dropped considerably, leaving seasonal gaps.

2.1.2. Catchments

To create catchments for the monitoring stations included in the
study we snapped the geolocation of each monitoring station to the
Centre for Ecology and Hydrology (CEH) 1:50,000 Watercourse
Network dataset (Moore et al., 1994) using the r.stream.snap function
(Jasiewicz, 2021) in GRASS GIS (GRASS Development Team, 2022) with
2 km as the maximum distance tolerance. We then used the Watershed
tool (Spatial Analysis) in ArcGIS Pro (ESRI, 2022) in batch mode, with
the Integrated Hydrological Digital Terrain Model (IHDTM) Outflow
Direction raster in its native 50 m resolution (Morris and Flavin, 1990,
1994) to automatically delineate a catchment for each monitoring sta-
tion. The CEH Watercourse Network dataset is consistent with the
IHDTM Cumulative Catchment area, so the step of snapping the moni-
toring station avoids spatial discrepancies between the monitoring sta-
tions and the IHDTM Cumulative Catchment Area that would lead to
large mistakes in the catchment delineation step.

There were some instances in which the above process did not work,
particularly in flat regions such as East Anglia. These cases were usually
easy to spot as the resulting catchment were very small (< 0.05 km?). In
these cases, the catchments were created manually through visual in-
spection of the data and existing maps of catchment available through
The National River Flow Archive (2023) and the Defra Catchment Ex-
plorer (2023).

There were a few instances in which catchments could not be reliably
defined using the methods described above, and these were removed
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from the dataset. In addition, six catchments were removed because they
fall mostly in Scotland and Wales, and thus have differences in data
availability compared to England, in particular a lack of information on
WWTWs, which are integral to the study. Finally, one catchment was
removed because the monitoring station was immediately downstream
from a fertiliser factory and had extremely high values for TON con-
centration. This process left a total of 515 monitoring stations to model
concentrations of TON and 494 monitoring stations to model concen-
trations of RP. However, many of these catchments overlap, that is, they
contain each other due to them being on the same river or branch of a
river. The observations at monitoring stations that are downstream from
each other are not independent from each other (Schreiber et al., 2022),
as the water passing through them will be affected by the same condi-
tions, processes and events, leading to pseudoreplication, which is an
issue when interpreting the models used in this study (Mets et al., 2017).
To avoid this bias, we grouped the catchments that overlap, and selected
the catchments with the highest elevation monitoring station within
each group. This means that there is a bias towards catchments with a
greater ratio of upland to lowland land cover types, but it maximises the
number of non-overlapping catchments. This is because, it was possible
to keep various monitoring stations, and their associated catchments, on
different tributaries by removing a monitoring station lower in the
landscape (see Fig. Al, in Appendix A, for a sketch that illustrates this
point). This process left a total of 404 monitoring stations to model
concentrations of TON and 383 monitoring stations to model concen-
trations of RP (Fig. 1). For the TON dataset the median catchment size is
51 km? and the catchments cover a total area of approximately 31,500
km?. For the RP dataset the median catchment size is 53 km?, and the
catchments cover a total area of approximately 30,800 km?2. As can be
seen in Fig. 1, most of the monitoring stations are included in both
datasets (379), with a few only included in the TON dataset (25) or the
RP dataset (4).

2.1.3. Independent variables
Based on previous studies, we chose the independent variables for
the models of TON and RP based on the environmental characteristics

/s
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Fig. 1. Mean Total Oxidised Nitrogen (TON) (a) and mean Reactive Phosphorus (RP) (b) for the years 2015-2019 at the monitoring stations initially selected based
on minimum data availability, and after ensuring that the monitoring stations’ catchments did not overlap. For TON n = 404, for RP n = 383.



M. Crowson et al.

likely to impact river N and P concentrations: the proportion of the
catchment with arable and horticultural land cover (Bell et al., 2021),
the proportion of area covered by forest (Johnes and Heathwaite, 1997),
mean population density in the catchment, catchment cattle and calf
density, catchment sheep and lamb density (Davison et al., 2008),
catchment maximum mean precipitation, mean slope (Shen et al.,
2020), channel density, an estimate of the base flow index based on the
Hydrology of Soil Types classification (BFIHOST) (Davison et al., 2008),
the proportion of the catchment designated for conservation and/or
recreation (Eastwood et al., 2016), catchment area (Virro et al., 2022)
and the population equivalent of the WWTWs within the catchment
(Redhead et al., 2018). Population equivalent is a parameter for char-
acterizing the polluting potential of industrial wastewaters (in terms of
biodegradable organic matter). For the models of TON, we also included
the mean atmospheric deposition of N. For the model of RP, we assumed
atmospheric P deposition is relatively low, occurring only from wind-
blown dust, and is unlikely to show any systematic spatial variation at a
small scale (Tipping et al., 2014). A summary of the independent vari-
ables included can be found in Table 1.

All the data preparation steps were carried out in R (R Core Team,
2022), unless otherwise stated. To calculate the proportion of each
catchment with arable and horticultural land cover we used the CEH
Land Cover Map of Great Britain for 2017 at 25 m resolution (Morton
et al., 2020). We used the same dataset to calculate the area covered by
forest in each catchment, considering the classes “Broadleaved wood-
land” and “Coniferous Woodland” together. We acquired a list of all
WWTWs from the Environment Agency, which included the population
equivalent for larger works covered by the Urban Waste Water Treat-
ment Directive, specifically those works that serve population equiva-
lents >2000 (Environment Agency, 2023). For the smaller WWTWs we
assigned a value of 1000 for the population equivalent. We mapped the
WWTWs based on the grid reference of the outlet and added together the
population equivalent of all WWTWs that fall within each catchment.

Mean population density within each catchment was determined
using the Output Areas from the 2011 Census for Population Density

Table 1

Independent variables included in the models for TON and RP. All variables are
continuous. The independent variable marked with * was only used for the
model of TON.

Variable type Independent variable Abbreviation
Land cover Proportion arable and horticultural ArableHortProp
land cover
Land cover Proportion forest land cover ForestProp
Waste Water Population equivalent of waste water ~ PopEquiWWTW
Treatment treatment works in the catchment.
Works Population equivalent is a parameter
for characterizing the polluting
potential of industrial wastewaters
(in terms of biodegradable organic
matter). It expresses the polluting
load of a WWTW in terms of the
population (number of people) that
could produce the same polluting
load.
Catchment size Catchment area CatchmentArea
Soil and geology Estimate of the base flow index based = HOSTBaseFlowIndex
on the Hydrology of Soil Types
classification (BFIHOST)
Precipitation Maximum mean annual precipitation =~ MaxPrecipitation
for 2015-2019
Population Population density PopDensity
Slope Mean slope in the catchment MeanSlope
Atmospheric Mean atmospheric deposition of N AtmosDeposition
deposition* 2015-17*
Channel density Channel density ChannelDensity
Land use Cattle density CattleDensity
Land use Sheep density SheepDensity
Land use Proportion of catchment designated DesignatedAreaProp

for conservation or recreation

Science of the Total Environment 954 (2024) 176589

(Office for National Statistics, 2011). We calculated the mean of the
Output Areas within the catchment, weighted by the area of each
intersection between the Output Areas and the catchment. To estimate
mean cattle density and mean sheep density within each catchment we
used data from the England Agricultural Census, 2016 at 5 km resolution
on the total number of cattle and calves, and the total number of sheep
and lambs (England Agricultural Census, 2016). In each case, the total
number was added across the catchment and divided by the area of the
Agricultural Census grids that intersect with the catchment to estimate
stocking densities.

To calculate the maximum mean annual precipitation for each
catchment we used the HadUK-Grid rainfall data, averaged by year, on a
1 km grid over the UK (Met Office, 2020). We took the mean by grid for
the years 2015 to 2019 and chose the maximum value that fell within
each catchment.

Mean slope was computed for each catchment using the Slope tool
(Spatial Analysis) in ArcGIS and the IHDTM Digital Elevation Model
(Morris and Flavin, 1990, 1994). To determine channel density, we used
the CEH 1:50,000 Watercourse Network dataset (Moore et al., 1994) to
calculate the length of channels within each catchment and divided this
by the catchment’s total area (Rahman and Rahman, 2020). To account
for the soil and geology we calculated a base flow index (BFIHOST) for
each catchment. We used the Hydrology of Soil Types (HOST) dataset
(Boorman et al., 1995; Griffin et al., 2019) as the basis for our calcula-
tions, following the area-weighting method in the Flood Estimation
Handbook volume 5 (Bayliss, 1999; Griffin et al., 2019).

To calculate the proportion of each catchment designated for con-
servation or recreation, we acquired the shapefiles for terrestrial
designated areas on mainland England, based on those described in
Lawton et al. (2010). The designation types considered are National
Parks, Areas of Outstanding Natural Beauty, Ramsar Sites, Special Areas
of Conservation, Special Protection Areas, Local Nature Reserves, Na-
tional Nature Reserves and Sites of Special Scientific Interest (SSSIs) (n
= 6349).

For the models of TON concentration, we included the mean atmo-
spheric deposition of N in the catchment, based on N deposition data at
1 km resolution, from the UK CEH Environmental Information Data
Centre (Tomlinson et al., 2020). We used the period 2015-17, as this
data was not available for after 2017. We took the mean value from all
points within the catchment for each of the four forms of atmospheric
deposition (dry deposition of reduced N, dry deposition of oxidised N,
wet deposition of reduced N and wet deposition of oxidised N) and
added them together to produce a single value.

2.2. Analysis

Our analysis uses catchments characteristics to explain the variation
in N and P concentrations at monitoring stations at a national scale. The
dependent variable used in the statistical models is either the mean TON
or mean RP concentration at monitoring stations between 2015 and
2019 (as described previously in Section 2.1.1). Thus, each row in the
dataset represents a monitoring station, and there is a single summary
value of TON and/or a single summary value of RP for that site. The
independent variables are a series of catchment characteristics sum-
marised to a single value for each monitoring station’s catchment (such
as proportion of different land cover types, mean slope, etc., as described
previously in Section 2.1.3). Agricultural land use is represented by
three different variables: proportion of catchment with arable and hor-
ticultural land cover, cattle density and sheep density, representing the
main agricultural sources of N and P in England (Defra, 2024a and b).

To test out first hypothesis, we selected the catchments from the TON
dataset with a population density below the first quantile for population
density (population density < 0.41 people/ha, n = 101, Fig. 2) to create
a group of catchments to represent low population conditions. We did
the same thing for the RP dataset (population density < 0.40 people/ha,
n = 96, Fig. 2).
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Fig. 2. Mean TON (top two maps) at monitoring stations with catchments with low population density and catchments with high population density for the years
2015-2019 (n = 101 in each case). Mean RP (bottom two maps) at monitoring stations with catchments with low population density and catchments with high
population density for the years 2015-2019 (n = 96 in each case). Catchments with low population density are those below the first quantile for population density in
the full dataset (population density < 0.41 people/ha for TON, population density < 0.40 people/ha for RP), and catchments with a high population density are those
above the fourth quantile for population density in the full dataset (population density > 3.61 people/ha for TON, population density > 3.25 people/ha for RP).

To test our second hypothesis, we selected catchments from the TON
dataset with population density above the fourth quantile for population
density (population density > 3.61 people/ha, n = 101, Fig. 2) to create
a group of catchments to represent high population conditions. We
repeated the process with the RP dataset (population density > 3.25
people/ha, n = 96, Fig. 2). We chose the lower and upper quantile as cut
off points for our two groups of catchments because this allows us to look
for differences between two strongly contrasting groups.

Histograms of the distribution of the dependent variable for each of
these four datasets can be seen in Appendix B, Fig. B1. We ensured that
the independent variables were not strongly correlated in each case
(Pearson’s correlation coefficient < 0.75), as this is a requirement when
interpreting the statistical methods used in this paper. The distribution
of the independent variables for each of the four datasets can be found in
Appendix B (Fig. B2 for TON and Fig. B3 for RP).

2.2.1. Statistical models

We used two methods to model each of the four datasets: negative
binomial generalised linear model and random forest. We chose to use
both a negative binomial generalised linear model and random forest
model in each case to check for consistency of results across models, and
to make use of the different strengths of the two approaches.

Generalised linear models were chosen for use in this study because
they are highly interpretable, as the coefficients are a robust way to gain
insight into the relationships between the independent and dependent
variables, and the relative importance of the dependent variables (Zuur
et al., 2009). They are a generalised form of linear regression (Crawley,
2007), that have previously been used in water quality research to study
pond water quality in the United Kingdom (Spake et al., 2019) and the
occurrence of macroinvertebrates in Guayas River Basin, Ecuador
(Damanik-Ambarita et al., 2016).

Random forest is a widely used machine learning technique,
including in environmental science (e.g. Cutler et al., 2007; Molnar,
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2023; Ross et al., 2021), and was chosen for use in this study due to the
algorithm’s ability to deal with nonlinear interactions and excellent
predictive capability (Yu et al., 2021). Random forest is a method based
on an ensemble of decision trees, that use randomly selected predictor
variables for each tree, as well as randomly selected training data sub-
sets (Breiman, 2001a). Random forest has been successfully used in the
past to model and predict N and P concentrations at a national scale in
the USA (Shen et al., 2020), and annual total nitrogen and total phos-
phorus concentrations in Estonia (Virro et al., 2022). Here we make a
first application to N and P concentrations measured across catchments
in England. An advantage of the random forest approach (compared
with GLM) is its ability to detect non-linear relationships. However, the
results from random forest models are less easy to interpret and there is a
risk of over-fitting (Saarela and Jauhiainen, 2021). Given these com-
plementary strengths and weaknesses, the similarities and differences
between the results from these two methods provide valuable insights
for our study.

2.2.2. Model training and validation

We split each dataset into training and test data using a 70/30 split,
and used the same training and test dataset for both the generalised
linear model and random forest model in each case.

We used the negative binomial model with a log link function to
model the concentrations of RP and TON, implemented using the
function glm.nb in the MASS package in R (Venables and Ripley, 2002; R
Core Team, 2022). We converted the concentrations to integer values
(multiplication by 1000). Fixed covariates considered for the models of
TON and RP were the proportion of arable and horticulture land cover
within the catchment; log of the proportion of forest land cover; log of
the population equivalent of the WWTWs within the catchment; popu-
lation density; log of the density of cattle in the catchment; log of the
density of sheep; log of the maximum mean precipitation; the mean
slope in the catchment; channel density; the HOST base flow index; log
of the proportion of the catchment that is designated for conservation
and/or recreation; log of the total area of the catchment. The atmo-
spheric deposition of N was also included as a fixed covariate for the
model of TON.

Akaike’s Information Criterion (AIC) was used as the selection
criteria for independent variables to be included in our final best models.
We used a stepwise approach, starting with a ‘maximal’ model including
all the fixed covariates and conducting backward model selection (Zuur
et al., 2009) using the function stepAIC in the MASS package (Venables
and Ripley, 2002).

All the covariates were standardised so that the coefficients were
comparable. Model assumptions were verified by plotting residuals
versus fitted values and against each covariate.

To build random forest models for TON and RP, we trained the
randomForest function in the R package randomForest (Liaw and
Wiener, 2002). To optimise model performance, there are two param-
eters that need tuning: the number of features to select when splitting
trees (mtry) and the number of trees to grow (ntree) (Liaw and Wiener,
2002). We used the function tuneRF, also in the randomForest package
(Liaw and Wiener, 2002), to set the value for the parameter mtry (mtry
= 3 for the model of TON for catchments with low population density,
mtry = 4 for the model of TON for catchments with low population
density, mtry = 3 for the model of RP for catchments with low popu-
lation density, and mtry = 1 for catchments with high population den-
sity). We set the parameter ntree to the default of 500, based on various
trial runs and recommendations in the literature (Belgiu and Dragu,
2016). We trained the random forest using the same independent vari-
ables as were selected in the best negative binomial generalised linear
model, however we did not log any of the variable or scale them, as
random forest is invariant to such transformations of the independent
variables, and they make model interpretation more difficult.

For all eight models we calculated the root mean square error
(RMSE), plotted the test data against the concentrations predicted by the
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model, and calculated the strength of the correlation between these
observed and predicted concentrations using Pearson’s correlation co-
efficient. The variation explained by our generalised linear models and
random forest models was calculated using the test data, following the
method implemented in the randomForest package, using the formula: 1
—mse / Var(y).

We assessed the model’s residuals for spatial autocorrelation by
creating a map of the residuals for visual inspection, calculating Moran’s
I, and by plotting a distance-based semivariogram.

2.2.3. Effect size and variable importance

For the negative binomial generalised linear models, we created ef-
fect plots for the independent variables, with all other variables kept at
their mean. For the random forest models, we extracted variable
importance measures using the importance function in the random-
Forest package (Liaw and Wiener, 2002). There is little consensus in the
machine learning literature on how to best calculate the relative
importance of different independent variables (Yu et al., 2021), so we
report two widely used methods to rank predictor variables associated
with random forest: mean decrease in accuracy and mean decrease in
node impurity. Mean decrease in accuracy is computed by permuting
each independent variable in the random forest, comparing the pre-
diction error using the out of bag data, and assessing the increase in error
(mean square error) when each target variable is randomized
(permuted) (Liaw and Wiener, 2002; Yu et al., 2021). Mean decrease in
node impurity is the total decrease in node impurities (residual sum of
squares) from splitting on the variable, averaged over all trees. Both are
implemented within the randomForest package (Liaw and Wiener,
2002).

3. Results
3.1. Model validation

The Pearson correlations between predicted and observed values for
the models of TON are in the range of 0.6-0.9 (df = 28, p < 0.001 in all
cases) across the testing sets (Fig. 3), and for the RP datasets they are in
the range of 0.39-0.84 (df = 28, p < 0.001 in all cases) across the testing
sets (Fig. 4). The models for RP and TON underestimate the higher
values in the dataset. The RMSE for the models are shown in Fig. 3 and
Fig. 4.

The best negative binomial models for TON explain 41 % of the
variation in the test data for catchments with low population density and
35 % in catchments with high population density. The best negative
binomial models for RP explain 47 % of the variation in the test data in
catchments with low population density and 61 % for the catchments
with high population density. The variation in the test data explained by
random forest is 77 % for the TON model of catchments with low pop-
ulation density, 44 % for the TON model of catchments with high pop-
ulation density, 5 % in the case of the RP model for catchments with low
population density and 27 % for the RP model of catchments with high
population density. Moran’s I analyses on the model residuals shows no
significant spatial autocorrelation in the residuals of any of the models
(p-value >0.05) relevant to the scale of analysis.

3.2. Effect size and variable importance

As expected under (H1), the generalised linear model for TON shows
that agricultural sources, namely arable and horticultural land cover,
and cattle density, are significant positive predictors of TON in catch-
ments with low population density, whilst the population equivalent of
WWTWs is not a significant predictor of TON in these catchments
(Table 2a). This is confirmed by the random forest models of TON in
catchments with low population density, as it ranks arable and horti-
cultural land use as one of the top two predictors of TON (with the other
predictor being the HOST base flow index) (Fig. 5a).
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Fig. 3. Correlation plots for the out-of-bag test data (n = 30) for the negative binomial generalised linear model (a) and random forest model (b) of TON in
catchments with low population density, and the negative binomial generalised linear model (c) and random forest model (d) of TON in catchments with high
population density. Horizontal axes show the true values from the test data set, multiplied by 1000 to obtain an integer, whilst the vertical axes show the values
predicted by the model. The dashed line shows the linear regression of the data points and the solid line represents the 1:1 relationship. The box in the upper left
corner gives the Pearson coefficient and the value for RMSE for each model. The labels GLM and RF refer to generalised linear model and random forest respectively.

The results from the models of RP in catchments with low population
density lend some support to (H1), as arable and horticultural land use,
and cattle density, are both significant positive predictors of RP in the
negative binomial generalised linear model of catchments with low
population density (Table 2b), and have a bigger effect size than the
population equivalent of WWTWs in the same model (Table 2b, and
Fig. B4 in Appendix B). However, the population equivalent of WWTWSs
is still a significant predictor in catchments with low population density,
and sheep density has a negative effect. The results from the random
forest model of RP in catchments with low population density show that
arable and horticultural land use and cattle density rank higher than the
population equivalent from WWTWs (Fig. 5b), however the low R? for
this random forest model, as well as the evidence of overfitting (Fig. 4b),
means that these results should be interpreted with caution.

As expected under (H2), the generalised linear model for TON in
catchments with high population density shows that arable and horti-
cultural land cover and sheep density are not significant predictors of
TON, whilst the population equivalent of WWTWs is a significant posi-
tive predictor of TON (Table 2c), with a large effect size (Table 2c,
Fig. B5a in Appendix B). The random forest model for TON in catch-
ments with high population density also supports (H2), with the popu-
lation equivalent of WWTWs ranking as the top predictor of TON
(Fig. 6a).

The results for RP in catchments with high population density also
support (H2), as arable and horticultural land cover is a negative

predictor of RP (Table 2d), whilst the population equivalent of WWTWSs
has a comparatively large positive effect on RP concentrations in these
catchments (Table 2d, Fig. B5c in Appendix B). The random forest for RP
in catchments with high population density confirmed this, with the
population equivalent of WWTWs ranking as one of the top predictors
(with the other being catchment area) (Fig. 6b).

Some of the other catchment characteristics are important to predict
TON and RP in the models, beyond agricultural land use and the pop-
ulation equivalent from WWTWs. For example, the HOST baseflow
index was found to be more important than both arable land cover and
cattle density in the models of TON for catchments with low population
density (Table 2a and Fig. 5a). Other independent variables that have
comparatively high coefficients (positive or negative) in the generalised
linear models and rank highly in the random forest variable important
measures are the maximum average yearly precipitation, catchment
area and mean slope (Table 2, Fig. 5 and Fig. 6).

4. Discussion
4.1. Summary of findings and implications for management

In this study we use data-driven, statistical techniques to model N
and P concentrations nationally in England, comparing the results from
catchments with low population density to catchments with high pop-
ulation density, and demonstrate how these techniques can be used to
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Fig. 4. Correlation plots for the test data (n = 29) for the negative binomial generalised linear model (a) and random forest model (b) of RP in catchments with low
population density, and the negative binomial generalised linear model (c) and random forest model (d) of RP in catchments with high population density. Horizontal
axes show the true values from the test data set, multiplied by 1000 to obtain an integer, whilst the vertical axes show the values predicted by the model. The dashed
line shows the linear regression of the data points and the solid line represents the 1:1 relationship. The box in the upper left corner gives the Pearson coefficient and
the value for RMSE for each model. The labels GLM and RF refer to generalised linear model and random forest respectively.

understand the relative importance of different sources of N and P in a
way that is relevant to management and policy. Our models for N and P
show satisfactory predictive ability for the most part, showing there is
potential to use this approach more widely, although they consistently
underestimate very high mean TON and RP concentrations (approx. >
12 mg N/1 and approx. > 0.8 mg P/1), and the model validation results
were poor for some of the models of RP. In terms of management and
policy, our results suggest that action to reduce agricultural runoff in
low population catchments is needed to mitigate nutrient impairment,
as this is the dominant source of N (and to some extent P), although of
course reductions of inputs from small WWTWs (and septic tanks) will
also be beneficial. Management efforts in catchments with high popu-
lation density should prioritise reducing inputs from WWTWs sources, as
it is the dominant predictor of N and P concentrations in these catch-
ments. These results lend support to previous suggestions (e.g. Withers
et al., 2014) that the contribution of agricultural sources may be over-
estimated in catchments that are densely populated, relative to point
sources from WWTWs.

This study has shown that agricultural sources of N and P are
comparatively more important in catchments with lower population
density. The mean concentrations of TON and RP are lower in the
catchments with lower population density, so WWTWs could have been
just as important in determining these concentrations as the WWTWs in
the higher population density catchments (because the concentrations
are lower and therefore, even though the WWTWs are smaller, their
relative effect could have been the same or greater). It seems likely that
as population increases so do other sources of N and P that were not

directly included in the model — such as runoff from roads and urban
areas, industrial effluent, illegal discharges and septic tanks — which
could cumulatively become an important source of N and/or P, and thus
makes agricultural sources comparatively less important as a predictor
in these catchments. There is a slight correlation between population
density and the population equivalent from WWTWs (Pearson’s corre-
lation <0.37 for all datasets), as would be expected, and this will go
some way towards explaining why the population equivalent of WWTWs
is an important predictor of N and P concentration in catchments with
high population density. Previous studies have suggested that P
enrichment is more likely to be the cause of nutrient impairment in
lowland, high alkalinity rivers (Jarvie et al., 2018), and with this in
mind, a continued emphasis on RP reduction at WWTWs in urban areas
is likely to be the right approach to improving water quality in catch-
ments with high population density.

Whilst this study focuses on the relative contribution of agricultural
land use and WWTWs to N and P concentrations, our results also show
that other catchment characteristics play an important role. The high
importance of the variable representing geology in our models (HOST
base flow index) is in line with a previous study in which the geological
predictor (proportion of catchment located on limestone) was within the
top ten for the feature importance ranking in national-scale random
forest models of total nitrogen and total phosphorus in Estonia (Virro
et al., 2022). This highlights the way that different catchment charac-
teristics mediate the final effect that a particular source of N or P will
have on nutrient concentrations in the stream. With this in mind, it is
important to highlight that the relationships we found in our models are
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Table 2

Formula, estimated regression parameters, standard errors, z-values and p-
values for the minimum adequate negative binomial generalised linear models
of catchments with low population density for the TON data (a) and RP data (b),
and of catchments with high population density for the TON data (c) and RP data
(d). Model R? are 0.41, 0.47, 0.35, and 0.61 respectively.

(a). TONjow pop ~ ArableHortProp + MeanSlope + LogCatchmentArea +
LogCattleDensity + PopDensity + LogMaxPrecipitation + HOSTBaseFlowIndex +
LogDesignatedAreaProp

Estimate  Std. error  zvalue  p-value
Intercept 7.55 0.04 180.35 < 0.001
ArableHortProp 0.35 0.08 452 < 0.001
MeanSlope 0.26 0.08 322 <0.05
LogCatchmentArea 0.09 0.05 1.79 0.073
LogCattleDensity 0.30 0.05 6.17 < 0.001
PopDensity 0.22 0.05 4.07 < 0.001
LogMaxPrecipitation -0.57 0.08 —6.94 < 0.001
HOSTBaseFlowIndex 0.36 0.05 7.08 < 0.001
LogDesignatedAreaProp  —0.15 0.06 —2.29 < 0.05

(b). RPyow pop ~ LogForestProp + ArableHortProp + ChannelDensity +
LogCatchmentArea + LogCattleDensity + LogSheepDensity + PopDensity +
LogPopEquiWWTW

Estimate  Std. error  zvalue  p-value
Intercept 3.68 0.07 51.11 < 0.001
LogForestProp 0.17 0.10 1.74 0.081
ArableHortProp 0.31 0.10 3.09 < 0.01
ChannelDensity 0.19 0.10 2.01 < 0.05
LogCatchmentArea —0.49 0.11 —4.68 < 0.001
LogCattleDensity 0.45 0.11 4.30 < 0.001
LogSheepDensity —0.33 0.14 -2.40 < 0.05
PopDensity 0.33 0.11 2.94 < 0.01
LogPopEquiWWTW 0.30 0.09 3.34 < 0.001

(c). TONhigh pop ~ MeanSlope + ChannelDensity + LogCatchmentArea +
LogCattleDensity + HOSTBaseFlowIndex + LogPopEquiWWTW

Estimate  Std. error  zvalue  p-value
Intercept 8.71 0.05 188.26 < 0.001
MeanSlope -0.25 0.05 —-4.77 < 0.001
ChannelDensity —0.13 0.05 -2.50 < 0.05
LogCatchmentArea -0.24 0.07 -3.55 < 0.001
LogCattleDensity 0.08 0.05 1.47 0.141
HOSTBaseFlowIndex 0.13 0.05 2.61 < 0.01
LogPopEquiWWTW 0.52 0.07 7.62 < 0.001

(d). RPhigh pop ~ ArableHortProp + LogCatchmentArea + LogMaxPrecipitation +
HOSTBaseFlowIndex + LogPopEquiWWTW

Estimate Std. error z value p-value
Intercept 5.65 0.09 65.63 < 0.001
ArableHortProp —0.25 0.11 —2.32 < 0.05
LogCatchmentArea —0.57 0.12 —4.69 < 0.001
LogMaxPrecipitation -0.31 0.11 —2.92 < 0.01
HOSTBaseFlowIndex —-0.35 0.09 -3.78 < 0.001
LogPopEquiWWTW 1.06 0.12 9.28 < 0.001

The independent variables are the proportion of arable and horticultural land
cover; channel density; the HOST base flow index for the catchment; log of the
catchment area; log of the cattle density; log of the proportion of the catchment
designated for recreation or nature conservation; log of the proportion of forest
land cover; log of maximum average yearly precipitation; log of the population
equivalent for all the WWTWs in the catchment; log of the sheep density; mean
slope; population density.

a generalisation based on a large-scale assessment, and regional differ-
ences in the drivers of water quality are likely to exist (Pharaoh et al.,
2024). For local decision making many other aspects will be relevant,
including the local environmental conditions, and social and economic
aspects. Moreover, this approach is limited to making recommendations

Science of the Total Environment 954 (2024) 176589

around large-scale land cover and land management (e.g. livestock
density) changes. Quantification of the overall effectiveness of smaller
scale measures, for example buffer strips, contour ploughing, at the
national, or catchment, scale remain elusive.

4.2. Data and study limitations

There are several limitations to the data used in the study. Firstly, the
geographical distribution of the catchments with low population and
high population density used in this study are not identical (as seen
previously in Fig. 2), which means we cannot completely rule out that
the signal being picked up is due to some other variable that varies
regionally and is not accounted for by the model, such as the main crop
type in arable areas, or the distribution of industry. We also did not have
access to the type of treatment applied to waste water at the different
WWTWs, nor the exact population equivalent for the smaller WWTWs
(those with population equivalent < 2000). Access to this information in
a standardised way across England, Scotland and Wales would help
provide a more nuanced picture of the contribution of WWTWs to N and
P to freshwater ecosystems, and avoid the need to restrict the analysis to
the administrative boundaries of England, as is currently the case.
Finally, whilst the consistency between the two different models is
reassuring (generalised linear models and random forest), more could be
done in the future to assess the effect of data uncertainty, where alter-
native datasets exist or the approximate error in the data is known.

There are other considerations when interpreting the results. Firstly,
the findings of this study cannot be applied to catchments with char-
acteristics outside of the range available for inclusion in this study, such
as upland catchments. Secondly, a limitation of this study is that the
models are not giving information about particulate transport of N and
P, and not separating between organic and inorganic forms. This means
that the results are only able to present a partial picture of N and P
retention, and this is likely to be particularly important for P, as the
particulate transport pathways are known to be important (Reaney
et al., 2011). However, the use of TON and RP means that the focus is on
the predominant forms that affect plant growth, as they are readily
available for uptake (Prasad and Chakraborty, 2019; Angus et al., 2013).
There is also not currently enough data available on Total N and Total P
concentrations, or organic N and P, at monitoring stations in England to
use the approach presented in this study on these deteminands. Thirdly,
there is the question of spatial configuration of the catchment charac-
teristics. The models give insight into the importance of various catch-
ment characteristics which have been summarised at a catchment level,
in generally large catchments, but the situation may be very different at
a local scale. Certain catchments characteristics, such as the proportion
of area covered by forest, were not found to be important in predicting
TON and RP in this study, but they may or may not play a role more
locally in patches or as buffer zones along a river. Finally, defining the
catchment for each of the monitoring stations in an automated way was
challenging, and although we carried out a large quality-control effort
through visual inspection and comparison with other available datasets,
it is possible that some mistakes remain in catchment definition, which
would then affect all independent variables for that monitoring station.

4.3. Future research directions

Much progress has been made to better understand the sources and
dynamics of natural and anthropogenic inputs of N and P into rivers (e.g.
Jarvie et al., 2018; Johnes et al., 2022). However, modelling N and P in
rivers at large scales remains challenging, and different approaches have
emerged to tackle the problem, including empirical models, such as the
export coefficient models (e.g. Redhead et al., 2018; Johnes et al., 1996),
as well as processed based models (e.g. the LTLS Freshwater Model
described in Bell et al., 2021). The increasing availability of large and
often publicly available datasets with water quality measurements and
other environmental data has led to an increase in the use of statistical
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Fig. 5. Variable importance for the random forest for TON in catchments with low population density (a), RP in catchments with low population density (b). In each
case the left hand panel shows the permutation importance and the right hand panel the Gini importance.

techniques to study water quality (Schreiber et al., 2022; Spake et al.,
2019; Moorhouse et al., 2018; Tate et al., 2003), as we have done in this
study. These techniques are in the spirit of a wider body of work that
aims to develop data science and artificial intelligence techniques for the
natural environment (Blair, 2021; Scowen et al., 2021; Breiman, 2001b;
Lucas, 2020), in the hope that environmental science and ecology can
reap the benefit of the increasing quantity and diversity of data available
to researchers. However, the approach we used has limitations,
including inconsistent results between different measures of variable
importance in some cases, and results that may not make sense from a
process perspective, such as the negative effect of arable and horticul-
tural land use on RP concentrations in the generalised linear model for
catchments with high population density. Future work in this area could

10

explore the use of other statistical models, including other machine
learning models. Overall, however, the results from the generalised
linear models and random forest models were fairly consistent with each
other for each dataset, which is reassuring. The model validation results
do, however, highlight that outliers have a strong effect on the models
and that particularly random forest tended to overfit in these situations.

An interesting avenue going forward would be to use the models in
this study to make predictions, that would allow a more nuanced dis-
cussion of the decrease in nutrient concentration that could be expected
to result if land cover change were to take place in different contexts. It is
important to interpret any output from the models, whether it be the
measures of variable importance or predictions, in the context of
broader temporal and spatial change, for example the effect of national
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Fig. 6. Variable importance for the random forest for TON in catchments with high population density (a) and RP in catchments with high population density (b). In
each case the left hand panel shows the permutation importance and the right hand panel the Gini importance.

policy change or climate change, which could have important impacts
on N and P concentrations in the mid to long term. In addition to this,
adapting the approach to take seasonality into account in some way is
probably important to be able to discuss to what extent the findings of
this study are ecologically meaningful, as variable importance may well
vary seasonally and the effect of changes to catchment characteristics
may also be sensitive to seasonality. For example, it would help to
consider ecologically sensitive periods in spring and summer when
rooted aquatic plants and algae grow (Jarvie et al., 2006). Finally,
conducting this type of study in other countries or regions would help
understand to what extent the findings of this study are specific to En-
gland or represent more general patterns due to the nature of N and P

transport and retention.
5. Conclusion

The sources and dynamics of natural and anthropogenic inputs of N
and P into rivers remains a complex problem, and despite substantial
domain knowledge about these processes it remains challenging to
model. However, understanding the relative importance of diffuse
sources from agriculture, and how this varies in different contexts, is
important because it allows us to spatially target management strategies
to the places where they are likely to have the strongest positive effect.
The results of this study need to be interpreted with some caution, but

11
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they do provide some insight and recommendations. Firstly, our results
suggest that management strategies aimed at reducing N and P from
agricultural sources might be better suited to catchments with low (ca. <
0.4 people/ha) population density. This is based on our finding that the
predictors relating to agricultural sources were more important than the
population equivalent of WWTWs in these catchments, as they were
found to have a larger effect size in the generalised linear models, and
ranked higher within the variable importance measures in the random
forest models for these catchments. Secondly, they suggest that to
reduce the concentration of TON and RP in catchments in England with
high (ca. > 3.6 people/ha) population density, a continued focus on
WWTWs as point sources should be a priority, as the population
equivalent of WWTWSs was shown to be the most important variable in
all of the models for these catchments. This is a generalised suggestion
based on a national-scale assessment, local factors would most likely
also be important in any decision-making process. Going forward, more
could be done to make detailed data on WWTWs available, including
their population equivalent and the type of treatments applied, which
would make it easier to include this independent variable in all types of
models.

Climate change is likely to increase pressure on river systems and the
ecosystem services they support, which will increase the need to target
management strategies to preserve the benefits we receive from nature.
The debate about the relative contribution of diffuse agricultural sources
and point sources from WWTWs to N and P concentrations in rivers will
only become more relevant, as these two sources are affected by climate
change in different ways (Wade et al., 2022). One way of furthering our
understanding of these processes is through harnessing the opportu-
nities brought about by the increasing availability of diverse environ-
mental datasets (Lavallin and Downs, 2021; Blair and Henrys, 2023),
and the development of methods and approaches to use these data to
gain insight (Yu et al., 2021). This study explored a particular approach
to this, using well established methods and a broad range of environ-
mental data, highlighting some of the opportunities and challenges in
the approach.
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