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ABSTRACT

Traditional multimode process monitoring methods extract features from time series data. Due to
the catastrophic forgetting effect, data-driven multimode dynamic process monitoring is challenging
based on a single monitoring model paradigm, i.e. the learned knowledge from previous modes may
diminish as operating conditions undergo changes between modes, yet it is impractical to access
all past data to retrain the model. In this work, a novel efficient method of multimodal attentional
principal component analysis (M-APCA) with continual learning ability is introduced. Under the
assumption that data from successive modes are received sequentially, dynamic process data are
modeled using an attention mechanism to capture the relationship between data and the latent space,
whereby meaningful information is concentrated as dynamic features which are extracted via a vector
autoregressive model. In order to overcome the catastrophic forgetting problem, the idea of replay
continual learning is employed. Specifically, past modes’ data which are significant to reflect the
operating conditions, are selected and stored. These are repeatedly used in tandem with sequential
data as replay data. Two types of attention mechanisms are considered and analyzed, each of which
is specifically designed to learn from data in an unsupervised manner, so the overall algorithm is
efficient both in time and storage costs. The proposed attentional principal component analysis and
M-APCA are analyzed against several state-of-the-art methods to highlight the virtues of the proposed
method. Compared with multimode monitoring methods, the effectiveness is demonstrated through
case studies of: a continuous stirred tank heater, the Tennessee Eastman process and a practical coal

pulverizing system.

1. Introduction

Industrial processes often operate under multiple modes
owing to materials, product specifications, maintenance,
etc. [1, 2, 3, 4]. Moreover, the systems are naturally dy-
namic in each mode, with the internal variables being
time-correlated [5]. Multimode dynamic process monitoring
methods have been actively studied and have been divided
into two groups [6], namely, single-model methods and
multiple-model ones. Single-model methods generally trans-
form multiple distributed data into a uniform distribution [7]
or update the parameters adaptively based on the forthcom-
ing data [8], which are difficult to track normal variations
between diverse modes.

Over the past several decades, multiple-model approaches
have become a central branch of research in multimode mon-
itoring. These approaches generally divide training data into
several clusters offline and build local models correspond-
ingly [9]. Then, the mode is identified online according to a
decision function [10], or a global model is constructed by a
weighted sum of local monitoring results based on Bayesian
theory [11]. For instance, Wen et al. proposed the mixture
of canonical variate analysis (MCVA) to monitor multimode
dynamic processes [9], where data were divided into several
clusters via Gaussian mixture models and a local canonical
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variate analysis model was built for each mode. Yao et
al. presented a parallel semi-supervised Gaussian mixture
model for multimode hierarchical quality monitoring [11],
in which a quality regression model was built to deal with
multimode big data and a global monitoring model was
established based on Bayesian fusion. The aforementioned
methods required that data from all potential modes have
already been received for training, so the resulting model
may have to be retrained from scratch when a new mode
arises. Similar modes may be misidentified [12], which may
degrade the monitoring performance. Moreover, normal
data from all potential modes are required to be available
for future learning, which may lead to high computational
and storage costs. However, new modes appear continuously
and thus it is impractical to store complete data in practical
industrial systems. Therefore, it is desirable to investigate ef-
fective methods which are capable of monitoring successive
modes with limited computing and storage resources.
Continual learning has become increasingly popular,
particularly in the field of image processing [13, 14]. The
features are continually extracted from a stream of data and
the previously learned knowledge is accumulated for future
learning. One consistent challenge is catastrophic forgetting,
specifically when training a model using new features would
interfere with the learned knowledge [13]. As summarized
and discussed in [ 13], recent progresses in continual learning
can be categorized into three families based on how the pre-
vious data are used: regularization-based approaches, replay
approaches and parameter isolation approaches. Parameter
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isolation approaches establish different model parameters to
each mode to avoid catastrophic forgetting issue. The previ-
ous mode parameters would be frozen [15] or a mode copy
may be dedicated to each mode [16]. To our best knowledge,
parameter isolation methods are appropriate to overcome
the forgetting of network-based methods, for instance, deep
neural network [17], autoencoder [16] and so on. However,
they have not been applied to multimode process monitoring.

Recently, regularization-based continual learning has
been applied to multimode process monitoring [5, 18, 19],
where a regularized penalty was added to make parame-
ters change less between modes. One key requirement was
the need to evaluate the importance of specific parameters
accurately. For instance, a modified principal component
analysis (PCA) with continual learning ability was first
investigated to monitor successive modes in [19], and the
importance of the PCA model parameters was evaluated
by elastic weight consolidation (EWC) [20]. This method
is abbreviated to PCA-EWC and is suitable for multimode
stationary processes. Subsequently, a modified sparse dy-
namic inner PCA (SDiPCA) was proposed for multimode
dynamic processes [5], and the aforementioned importance
was measured by modified synaptic intelligence (MSI). This
method was denoted as SDiPCA-MSI. However, aforemen-
tioned methods require that data from different modes share
similar features [5, 19], for the previously learned knowl-
edge to be effective for future modes. Briefly speaking, the
regularization monitoring mechanism, which is applied to
short-term tasks, may catastrophically degrade future perfor-
mance due to unfamiliar forthcoming modes [21]. Therefore,
regularization-based continual learning methods are greatly
limited in practical applications as future diverse modes
appear constantly. To alleviate this constraint, a multimode
nonlinear SDIPCA (MNSDiPCA) was presented based on
replay continual learning [22], where multimode features
were extracted from raw data, and intended to be applied for
long-term monitoring tasks.

Against this background, this work investigates an effi-
cient multimode dynamic process monitoring method with
continual learning ability, where data from multiple modes
are collected sequentially. Specifically, attentional PCA
(APCA) is proposed to characterize the relationship between
dynamic variables, in which two attention mechanisms
are investigated and adopted to model the dynamic latent
variables, focusing on the high-value information from
massive data using limited computing resources [23, 24].
It is proposed that replay data, sufficient to reflect the
operating conditions, are selected at the end of each mode
based on cosine similarity and stored for future learning.
When a new mode arrives, inspired by replay continual
learning [13], the current mode data are integrated with
replay data and utilized to learn the model parameters,
providing outstanding performance for all existing modes.
This multimodal APCA method is abbreviated to M-APCA.

The contributions of this paper are outlined below:

a) A novel APCA is presented for dynamic processes,
whereby two attention mechanisms are adopted to focus

on both local and global significant information, while
dynamic features are extracted via a vector autoregres-
sive model. Two unsupervised algorithms are introduced
to pre-train the keys in APCA with analysis while re-
specting the motivations and computational complexity
of the overall algorithm.

b) An efficient novel multimodal APCA with continual
learning ability is proposed for successive dynamic
modes, where data from multiple modes are collected
sequentially. Compared with traditional multimode mon-
itoring approaches [3, 1], only a small amount of his-
torical data are stored and replayed for future learning,
which allows it to consume a few storage and computing
resources.

¢) Different from PCA-EWC [19] and SDiPCA-MSI [5],
since multimodal features are extracted from data in a
raw format, M-APCA is free from the constraint of mode
similarity and can be applied to long-term monitoring of
diverse modes. In addition, it is robust to noise and may
provide enhanced interpretability.

The remainder of this paper is organized below. Section
2 introduces APCA for a single mode dynamic process.
Section 3 elaborates on the technical core of M-APCA
including the replay data selection, the learning algorithm
of two different attention mechanisms and the training and
monitoring procedures of M-APCA. The proposed APCA
and M-APCA are compared with several state-of-the-art
methods to highlight its superiority in Section 4. The com-
parative methodology is designed in Section 5, and the effec-
tiveness of M-APCA is demonstrated by its application for
a continuous stirred tank heater (CSTH) case, the Tennessee
Eastman process (TEP), and a practical coal pulverizing
system. Section 6 is devoted to conclusions.

2. System model

2.1. Attentional PCA for single mode dynamic
process

An attention function [24] consists of a query, key-value
pairs and weightings, which has been widely utilized in
natural language processing (NLP). The output is calculated
by a weighted combination of the values, and the weight
corresponding to each value is calculated by a compatibility
function of the query with the corresponding key. Here, a
novel APCA model is proposed in which a set of dynam-
ical latent attention variables are constructed, followed by
a vector autoregressive (VAR) model to characterize the
dynamical relationship of attention variables.

Let X = {x,},k = 1,..., N as a time instance. N is
the number of samples and x € R™ is a sample query vector
variable. Consider an attention function F: x — ¢(x), and
$(x) = ($;(x)} € R? given by

¢;(x) =Similarity(x,c;),i=1,....q

where C = {c¢;}, i = 1,...,q are a set of g keys.
Similarity(x,c;) is a predetermined similarity metric
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between a query and a set of keys in data space of X. In

this work we used two types of similarity ¢;(x). One of the

most common similarity functions is used [23] given by
xTe

¢i(x) = TI )]

where d > 0 is a scaling hyper-parameter. Alternatively, the
negative Euclidean distance given by
llx = eI

d

.(x) = - )

is also used. Attention is the mapping [25]

q
Attention(x,C,w) = 2 softmax(x,C);w; (3)
i=1
in which
exp(¢;(x))

softmax(x,C); = Py 4
Y1 €xp(¢;(x))

For convenience, Attention(x, C,w) is denoted as ¢
and the function of softmax(-) is denoted as x . Similar to
DiPCA [26], the proposed APCA aims to extract the most
predictable information by a VAR model to characterize the
dynamic relationship. The latent attention variables defined
at time instant k as,

t, = xg’kw 3)

where w = [wy, ..., wq] € R? is the weight vector with
[[w]l, = 1. Over a data set X, the mapped data are denoted
as X4 € RN*4 by using the above attention mechanism and
the kth sample is denoted as x4 correspondingly.

Similar to DiPCA [26], the current latent attention vari-
able is represented by the past ones, namely,

N

te= 2 Bitey + 1% ©)

j=1

where r; is the Gaussian white noise at kth instant and s
is the order of the VAR model. According to (5) and (6),
the prediction of the dynamic latent atfention variables is
described by [25]:

S
L T
e = Z X kWP
=1

T T
= [‘xqﬁ,k—l Xgi—s| (B OW)
where @ denotes the Kronecker product, f = [ﬂl ﬂS]T
and [|Bll, = 1.

In the original work of [23, 24] for NLP, there is a need to
treat triplets {query, key, value} as learnable variables, and
the attention in a large transformer network. In this work, we
used attention in a more simplistic form, since in dynamic
system models, the observed data can be used directly as the

query, rather than being transformed into an embedding as
in a neural language model.

The proposed APCA method extracts the dynamic latent
attention variables by maximizing the covariance between
1, and 7. Our learnable attention variables are C,w and B,
with the objective of APCA being designed as

min J(w, f) = —w’ (Xf;“))T ZPBQw)+ 4, DB

st lwll, =1, IBll, =1
@)

where D is a weighting matrix to make f sparse, and A, is a
predefined regularization coefficient. Sparse representation
is utilized to avoid potential overfitting and further mitigate
catastrophic forgetting [21]. X S;H) and Z are constructed
by [25]

0 T
X(; = [xd)’j x¢’j+1 x¢7,N—S+j—1] , J= 1,...,S+1
®)

z=|x9 x9 - x| ©)

We observe that if the data set X only represents a single
mode, (7) can be solved efficiently, provided C is fixed.
This suggests that a hybrid algorithm can be used to obtain
C, followed by (7). However, if the data set X represents
multiple modes, it is necessary to introduce the problem
statement and outline the objective.

2.2. An outline of M-APCA problem statement

Consider the task of monitoring multimode dynamic
processes, with each of the modes being denoted as My,
K = 1,2,..., and a respective typical data set X%. In
contrast to the common approach of building local models
for each mode then combining them as a global model, a
single adaptive model is obtained such that after the model
is updated by any new M, all previous modes up to Mg _,
can still be represented by the model. The objective is to
build a single model for monitoring multimode dynamic
processes based on APCA, with good performance for all
previous modes and within acceptable costs for replay data
storage.

In order to achieve tractability, computational efficiency
and algorithmic simplicity, a hybrid learning algorithm is
designed in stages, so that the problem is decomposed into
sequential tractable problems. The proposed M-APCA is as
shown in Figure 1. Given Mg, K = 1,..,, the training
data contains X ?{ from Mg, as well as replay data Dy =
{X,,..., X g_,} from previous K — 1 modes. Note that X
(k = 1,...,K — 1) from each previous mode are selected
by cosine similarity in Section 3.1 and stored for future
learning. The keys CX of attention mechanisms are updated
from a prior model parameter set CX~! in Section 3.2. Then,
the VAR parameters {wX, X} are optimized in Section 3.3.
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Mode Mg 1

"Replay data: Dy = {X;
MAPCA parameters: keys C; weight vector w; regression vector 3; projection P

Figure 1: lllustration of M-APCA in three consecutive steps.

A projection matrix PX is acquired to monitor the existing
K modes (for details see Section 3.4).

As a novel method of applying attention mechanism to
nonlinear dynamical systems, this work assumes that data
from multiple modes are collected sequentially. It is also
assumed that any incoming new mode needs to be notified,
which is still a limitation of the proposed method shared
with other multimode monitoring approached [5, 19, 22].
Nevertheless, the dynamics of future modes are assumed
to be unknown which are not predetermined. In practical
applications, the mode label M is defined in situ as it
arrives. Therefore, there is no constraint on the number
of multiple modes. In other words, the proposed M-APCA
method allows different modes to arrive continually in future
and the model is updated when a new mode appears. Mean-
while, similar to DiPCA [26], the dynamic latent features
and static features are extracted simultaneously with no need
of assumptions to the dynamics for multimode processes. In
the case that the automatically determined multiple modes
share a certain degree of similarity, they will furnish diverse
dynamic characteristics to the model and enhance the mon-
itoring performance.

3. Proposed M-APCA algorithm

In this section, the details of M-APCA are introduced to
monitor successive dynamic modes. We start with outlining
the technical aspects which are: replay data selection, train-
ing data preparation and followed by the learning of keys
CX in the attention mechanism in an unsupervised manner
for each mode. Two algorithms have been proposed for the
learning of keys based on (1) and (2) respectively, followed
by the proposed M-APCA in which the objective is settled by
alternating direction of method of multipliers (ADMM) [27].
Finally, the offline training and online monitoring phases are
outlined.

3.1. Training data preparation

While data replay is instrumental for continual learning,
the constraints of efficiency (storage and computing costs)
are met by the proposed algorithm in order to minimize the
replay data size. The subset of data is selected as follows:
Define multiple modes as My, K = 1,2,..., which are

Table 1
Data illustration

Data lllustration
Sensing data solely collected for the Kth mode My, K =1,2,...
Xy Preprocess X(L with zero mean and unit variance, and get X g

X Replayed data selected from X(I)( based on cosine similarity
Xk Preprocess X?( with zero mean and unit variance, and get X
Dy Replay data of previous K — 1 modes

XX Data XX = {Dy, X} are constructed from the existing K
modes and used for training

normalized to zero means and unit variances, to yield X g.
To facilitate exposition, assume that there are Ny samples
in the data matrix X ?( € RNk*m for each mode M K>
which are collected as normal data. Replay data are selected
based on cosine similarity in order to represent the operating
condition with minimal redundancy [22]. Data may contain
different information, and should be selected and stored for
future retraining when the (K + 1)th mode arrives.

The proposed M-APCA algorithm is dependent on both
the sequential current mode data (online) and the replay data
in storage (offline). For clarity, the data preparation steps are
presented. Recall at each mode My, the original normal
data set is X (I)<, K = 1,2, ..., and the normalized data are
X . Alternatively, at the end of each mode Mg, replay

data selection is carried out, and X (;( is obtained based on
cosine similarity, followed by normalization to zero means
and unit variances, to yield X k- Thus, at mode My, we
have the normalized replay data D = {X,,..., Xg_;}
available for the past modes M, ..., Mg_;. Let X K =
{DK,XK} S RN xm pe constructed, where NX is the
number of prepared training samples (combined current
mode’s and replay modes’ data) that is ready to be employed
in the training algorithms. The data have been illustrated in
Table 1.

3.2. Pre-training algorithms for CX

At each mode, the proposed algorithm involves an unsu-
pervised pre-training step to update C upon receiving new
mode X (,)<. We present two algorithms that are specific to
Attention I and II as follows.

3.2.1. Attention I based on (1) using a new maximum
likelihood estimator
Recall Attention I that is based on (1), and the attention
mapping (3) is rewritten as

q
Attention(x,C,w) = 2 softmax(x, C);w; (10)
i=1
Note that softmax(x,C); can be interpreted as the prob-
ability of each key c;, with respect to its corresponding
w; (value in the attention mechanism). Intuitively, the set
of keys C provides a parsimonious representation of XX,
K =1,2,.... We propose that this is obtained using a simple
pre-training algorithm based on the maximum likelihood
est}(mator (MLE) of joint probability of the prepared data set
). Gt
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Algorithm 1 Updating CX based on MLE

Require: Data XX e RNxm_y — 0.1, error .

NK
=1 Yk

1: Initialize r = 1, randomly select ¢ samples from XX to construct the
initial C, calculate the initial J(0) = Zﬁfl Jy based on (11).

: For each data x,(k = 1,..., NK), update ¢; by (12),i =1, ..., q.

: Calculate J(¢) = Z/](V:] Jy» and Jy is calculated by (11).

: Return to step 2 until ||J (1) = J(t = 1)|| <e,lett =1+ 1.

: The optimal cluster centers are denoted as ck = {c“f, e, CZ 1.

Ensure: CK = {c}", ,cf;} is obtained by maximizing J =

(S NS I ]

Consider the instantaneous log-likelihood function

q
Ji = z log softmax(xy, C),

i=1

q q
= ) bi(x) — qlog{ Y exp(e(x;)) (1D
i=1 i=1

We randomly initialize C, then over the data samples
index k, J; is maximized by adjusting C jointly, using the
gradient ascent algorithm subject to the constraint ), ||c;|| =
g, which is necessary to avoid the magnitude of ¢; growing
to infinity. We then have

;’tew — C;Jld + '15Ci

el =) Y llefell, (12)
i

Cc

with é¢; = %Jk = (x; — gsoftmax(x, C);x;)/d for all i,
where n > 0 is a small preset learning rate.

Clearly (11) is data dependent and will only perform
well over the given training data set. Hence in order to
ensure continual learning for multimode data sets, the joint
training of current mode data together with replayed data is
proposed (see data preparation of XX in Section 3.1). At
each mode, the algorithm of updating CX = {¢ IsenesCql
in Attention I is summarized in Algorithm 1. For the mode
My, let X l=x 1- Since replayed data from previous modes
are used, the key parameter CX should capture significant
information of all previous modes based on the maximum
likelihood criterion.

3.2.2. Attention II based on (2) using k-means
clustering algorithm
Whilst the maximum likelihood estimator provides a
general method for any attention mechanism. Here, a simple
method is proposed based on heuristics specific to the model
in the form of Attention II. Recall Attention II based on (2),
and attention mapping turns out to be,

q —[lx—c;|1?
exp(~Lailh)
Attention(x,C,w) = Z m B
llx—c,
i=1 37| exp(——")

w; (13)

We propose to adopt the well known online k-means al-
gorithm [28] to train CcX [25]. The objective of k-means

algorithm can be described as

Nk

4
L = min Z
i=1

k=1x,€S;

% = el (14)

where S;, i = 1,..., g divides data into g disjoint clusters.
When the Kth mode is encountered, the clustering centers
are updated based on the current mode data X x and the
key CX~! of last mode. The procedure of online k-means
algorithm can refer to [28], where the initial cluster centers
are CX-1 = {cq, ... ,cq} and the optimal clustering centers

are denoted as CK = {c’lk, e, cz }. For the first mode, Clis
selected randomly from X.

The rationale that k-means clustering algorithm can be
used for Attention II is explained as follows: Although (14)
is not a probabilistic measure, it can achieve the similar goal
of identifying keys (centers). In fact, for any data x, the
resulting probability if Attention Il is used, softmax(x, C),,
can be sorted in the same order of the Euclidean distance
between x and c¢;, i = 1,...,q. Since the closed form
solution of (14) is the mean of the data points in the cluster,
it is expected that these are well suited for the learning
keys in Attention II. While the replay data are not used in
Attention II, the continual learning ability is maintained via
initialization between successive modes.

Remarks

e Motivation of two methods. The two attention models
arise from different similarity metrics between query
and key in the attention models. For example, At-
tention I adopts cross product to measure directional
similarity, which is more useful than Attention II
for very high-dimensional correlated data sets. Other
Attention model forms can be extended from this
MLE framework, potentially leading to metric learn-
ing. For Attention II, Euclidean distance is utilized
to measure similarity, which may occur the curse of
dimensionality in high-dimensional space. Then, k-
means clustering algorithm is utilized to update the
keys, which is simple and converges quickly. Other
online clustering algorithms can also be adopted to
update the clustering centers.

o The differences of two aforementioned methods. The
online k-means clustering algorithm is used in At-
tention II, in which the key CX is updated based on
data X and CK -1, but without using data replay.
The reason of not using the replay data is that the
k-means clustering algorithm typically does not to
forget about previous modes due to the fact that at
each iteration, only the clusters closest to the new
mode data are updated, indicating some centers that
have been learned in previous modes will basically
remain unchanged in the case of novel modes (due to
initialization using previous centers). Thus, the overall
cluster centers can reflect the information of previous
modes as well as new mode as K increases.
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e Justification of the pre-training algorithms. One of
the novelties of the proposed methods is the model
structure where the latent dynamic variables are in
the form of an attention mechanism. This attention
mechanism can also be interpreted as projecting data
to nonlinear space to capture the underlying nonlin-
earities from the viewpoint of approximation theory.
Moreover, according to the relationship between a
query and a set of keys in the attention mechanism,
the proposed algorithm to learn CX in each mode is
justified here: (i) Since a single model is built for all
modes, the key CX should be updated adaptively, but
also continually so that it represents the compressed
information of all modes; (ii) Without ck being fixed
appropriately according to the data distribution, the
solution to (7) can become intractable for streaming
data applications. Other methods such as stochastic
gradient descent algorithm that are typically used in
attention mechanism estimation [23] will be slower
to converge in real time industrial process monitoring
applications.

o The keys and queries between APCA and NLP. In NLP,
a text embedding is a piece of text projected into a
high-dimensional latent space, attention mechanism
key and query are based on latent space, rather than
original data. In our APCA approach the data is in
real space, no embedding is used. For Attention I, the
keys are estimated by maximizing (11) and the final
results are iterated by (12). In a certain sense, the keys
are a nonlinear transformation of original data. With
regard to Attention II, the keys are clustering centers
of k-means algorithm, which are essentially the linear
transformation of original data. Generally, g is set to
be large to leave space for future modes.

3.3. Objective and solutions

When the mode M arrives, motivated by replay con-
tinual learning, construct data XX = {Dy, X} to build
a single monitoring model for multiple modes. The key CX
is pre-trained via Algorithm 1 or online k-means clustering
algorithm. Map data XX to a high-dimensional space by
(3)—(4), and then calculate the mean ;4‘;2 and variance Ei.
The pre-processed data are denoted as X ;, x with zero mean

and unit variance. Similar to (8) and (9), construct X g)K

; 1 2
(1 <j<s+hand Zg = [x0 XPp = X0 | M-
APCA aims to build one model for sequential modes with
acceptable storage and computing costs. For all K modes,

the objective function of M-APCA is designed as

T
Ix@w.p)=-w" (X53)) Zx BRw)+ 45 DB
15)
with the constraint w’w = 1, g7 = 1.

The parameters w and f are optimized alternatively by
ADMM]27]. The weighting matrix D is updated after each

iteration [29]. Assuming that w/, sz u’éﬂ, B, zz and u; are
available after the ith iteration, the updating procedure at
(i + Dth iteration is summarized as follows:

1) Update parameters about w

argmin Jxw, ')
w (16)

T

st. ww=1

According to Chapter 9 in [27], the parameters are updated
by:

w' .—argm1n<JK(w,ﬁ’)+pw||w—z’w+u’w||2>
w
wi+! 4y
i+1 .
zy = (a7
'+ +u, |
ui+l ._ui +wi+1_zi+l (18)
w T Tw w

where the regularization coefficient p,, is predefined. Take
the derivative with regard to w and let it be zero, then

. -1 .
Wt =20, (Gpx + Gl =200y ) (uly ~Z,)

19)
S .
where G g = EI(XE;,?))TXS;,)KﬂJ'
2) Update p]a_rameters about f
arg min JK(wH'1 )]
b (20)

st. pTp=1
Here, ADMM has the form [27]:

p! =g min (x40 25 )

ﬁi+l +ui
i s
e @
167+ ul
ui+1 - ui + ﬁi+1 _ zi+1 (22)
BB B

where p; is a predefined coefficient. Take the derivative with
regard to f and let it be zero, then

ﬂl+1 :(AlDl+pﬂIS)
1 I i+ GT it i 23)
(3 (1 ow™) Gl 45y () -uj )

T .
where G = (Xf;;”) Zg and (Is®w’+1)TG£ =
T
s+D\T w1 it G+D\T (o) it
x5 ) xGewtt e (X51) X w .
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Algorithm 2 The pseudocode of M-APCA

Require: Normalized data of Kth mode X g, XK, key ck-1 , the number
of dynamic latent variables /, order of VAR model s.
Ensure: Key ck , mean [li, covariance Ei, weight matrix wk , regres-

sion coefficient I'X | projection matrix PX | latent variable matrix T'.

1: Pre-train the key CX based on Algorithm 1 or online k-means cluster-
ing algorithm.

2: Map data XX to a high-dimensional feature space by key CX and (4)
and the mapped data are X g - Calculate mean y‘ll’( and covariance E
and the pre-processed data are labeled as Xy, x.

3: Construct Xffk (1<j<s+1)and Z by (8) and (9), let g = 1.

4: Initialize w® and B° with unit vector, 20 = w®, u® = 0, z = p°
uy=0,i=0.

5: Extract the dynamic component one by one:

a) Calculate 2+, wi*! and w'*! by (17)~(19);

b) Calculate z‘ﬁ“, u;';l and B! by (21)=(23);
¢) Update the weighting matrix D by (24);

d) Calculate the objective function (15). Let i = i + 1, return to step
5a) until convergence.

6: The optimal parameters are denominated as w, and f,, let t, =

g

X bKWg-
Xy xWg
7: Calculate the loading vector L
£ Pe = £X$KX¢.KWg
8: Deflate Xyx as Xyx = Xyp — Xd,’ngpg, the covariance

(X(H'l))TX(” is calculated by (25), j =1,...,s
9: Let g=g+ 1 return to step 4 until extracting / dynamic components.

10: The parameters are denoted as WK = [wl . w,], r« =
B1 ~ B)].PX=|p, - p]andT =[t; - t,]T.
3) Update D
i+l _ . i+1 i+l i+1
D™ =diag {d}*',d}*, - dit}
di+l _ 1 J — 1, s (24)

j - .
‘ﬂ}+l‘+€

where € is a
issue.
Algorithm 2 summarizes the procedure of M-APCA,
where dynamic components are acquired sequentially. When
K =1,let X' = X, and Algorithm 2 is also applied. When
g = 2, once a dynamic component is extracted, deflate X x

as Xy x — Xy xWypy . Thus, (X(Hl))TX(J) is calculated
recursively by

small positive value to avoid ill-conditioning

(X(S-H))TX(”

=p wT(X(H'l))Tx(J) P, _(X(H'l))TX(J) w,p, (25)

g

T(X(H'l))TX + (X(S+1))Tx(1)

where j = 1,...,s, and (25) is adopted in (19) and (23).

3.4. M-APCA for multimode process monitoring
Similar to DiPCA, define the latent attention score t, =
Xy xwgandmatrix T = [t - 1] " where w, is generated
from WX with g=1,...,1. Similarto (8), construct Tj from
T,j =1,...,s + 1. Then, the dynamic relations between

T, and Ty,..., T can be represented by a VAR model
[25], namely,

TS+1 =Tl®S + TZ®S—1 + -+ TS®1 + V

=T,0+V
where T, = [Tl T, - TS] and © = [@s O,y - 01].
The least squares estimate for @ is
-1 _ T
0= (T T ) T, 26)

Then, the prediction of T’y is calculated by
T,,=T7,0 27)

Since TS +1 1s generally dynamic, monitoring the latent
variables directly would lead to high false alarm rates. To
enhance the monitoring performance, define the dynamic
residual V':

V=T-T,, (28)

which is usually stationary if the process operates in a nor-
mal condition. Then, this paper builds a monitoring statistic
based on the Mahalanobis distance to evaluate the variation
of dynamics [30]:

=W-p)Z) - p)" (29)

where u, and X, are the mean value and covariance of V.
After extracting the dynamic features, the remaining features
are static and the static prediction error is calculated by
+1 K\T
E=Xx{"0 -7, (PF) (30)
Similarly, an index is defined to measure the changes of static
features:

=(e— U)X, (e — p)" (31

where u, and Xy are the mean value and covariance of E.

Since dynamic and static characteristics may exist simul-
taneously, two statistics (29) and (31) should be considered
simultaneously. The thresholds of two monitoring statistics
are determined by kernel density estimation (KDE) [31]. If
two statistics are lower than their corresponding thresholds,
the process operates normally; otherwise, a fault is detected
and an alarm is triggered. The flowchart of offline training
and online monitoring phases is depicted in Figure 2. Fault
detection rate (FDR) and false alarm rate (FAR) are consid-
ered to evaluate the monitoring performance.

Remarks

In M-APCA modeling, the dynamic order s and the
number of dynamic latent variables / need to be determined
before optimizing the objective (15). The detailed estimation
method can refer to DiPCA [26]. Once s is determined, 95%
of auto-covariance is extracted by the first / dynamic latent
variables. Therefore, / can be regarded as a function of s and
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Off-line training procedure
Data X from Kth mode |

Online monitoring procedure
| Collect a testing sample x° |'—

Data XX from K modes

. . Preprocess x%and get x based
according to Section 111.A ‘ P g

on the mean and variance

Train M-APCA model by
Algorithm 2 and get
parameters W, P,T, T

Map x to a high-dimensional
space by (3-4) and get x4

Build V,J& ol Compute latent attention
| L:' 3 R_mo e_é | variable by (27), dynamic
calculate dynamic residual residual by (28) and static

V by (28) and static -~
prediction error E by (30) prediction error by (30)

Calculate statistics by (29)

Calculate statistics by (29) and (31)

and (31)

Statistics are
lower than
thresholds

Yes

Calculate thresholds by
KDE

|

Select representative data
X% from X% based on
cosine similarity

Figure 2: The flowchart of M-APCA for multimode dynamic
process monitoring

be written as [ = I(s). It is desired that the prediction error
matrix E contains little dynamic information after extracting
! dynamic latent variables. To estimate an optimal s, an M-
APCA model is trained first and then the prediction error
matrix E is calculated based on the validation data. The
sample crosscorrelation of any two variables in E should
approximate 0, except when s = 0. The calculation of
relevant confidence bounds could refer to [32]. When all
pairs of variables are considered, the total violations of
these confidence bounds are calculated for any (s,/(s)).
The parameter (s, /(s)) is optimal when the corresponding
violations are lowest. When s is too small, the VAR model
(6) could not characterize the dynamic relationship. If the
value of / is smaller than its real one, partial dynamic features
would be contained in E, which may cause high false alarms.
When a new mode arrives, the parameters s and / need to be
estimated again.

4. Discussion and comparative analysis

We discuss the relationship between APCA and self-
attention PCA [33], DiPCA. Then, the association between
the proposed M-APCA algorithm and recent monitoring
methods with continual learning ability is discussed, includ-
ing MNSDiPCA [22], SDiPCA-MSI [5] and PCA-EWC
[19]. MCVA is utilized as a representative approach of tradi-
tional multimode process monitoring methods [9] and would
be compared with approaches using continual learning.

4.1. APCA and self-attention PCA[33]

Both methods are proposed to focus on the local and
global important information, and adapted to monitor a
single dynamic mode. However, there are four distinct dif-
ferences:

a) Optimization objective. Self-attention PCA extracts dy-
namic features via maximizing the variance of mapped
data and the attention output acts as the input of the PCA-
based process monitoring model. APCA is designed
within the framework of DiPCA and maximizes the
covariance between the latent variables and predictions.

b) Ingredients of attention mechanism. The query, keys and
value of self-attention PCA are generated from the same
sensing data. The keys and values of APCA are estimated
by a certain rule, as described in Section 3.

c) Similarity measure. The dot product is adopted in self-
attention PCA, while scaled dot-product and negative
Euclidean distance are utilized to measure the similarity
in APCA.

d) Parameter estimation. For self-attention PCA, the critical
parameters are estimated by singular value decomposi-
tion and the number of principal components is estimated
by cumulative percentage variance. However, the esti-
mation of the arithmetic sequence is not provided. For
APCA, the parameters are estimated by optimizing (15)
when K = 1. The number of dynamic latent variables /
and the order of VAR model s can refer to Section IIL.D.

4.2. APCA and DiPCA

For multimode processes, the keys C represent critical
features and distribution of multimodal data. Through an
attention mechanism, a subset of keys are adaptively se-
lected and the most relevant information is concentrated.
Compared with DiPCA, the ‘position information’ of each
mode’s data is considered automatically. Intuitively speak-
ing, assume one sample x generated from mode My (K =
1,2,...) and the key ¢; (i € {1,...,q}) approaches the
cluster center of mode My, the mapped sample x4(i) is
highly significant after attention mapping. Therefore, M-
APCA will provide excellent performance for sequential
modes.

4.3. M-APCA and MNSDiPCA [22]

M-APCA and MNSDiPCA share partial common char-
acteristics. First, they are both originally motivated from
DiPCA and thus dynamic latent features are extracted via
maximizing the covariance between the latent variable and
its prediction. Replay continual learning is employed to
overcome the catastrophic forgetting problem for multimode
processes. The monitoring model is retrained based on the
current mode data and the representative data from previous
modes, which are selected from each mode based on cosine
similarity. However, there exist two distinctions between M-
APCA and MNSDiPCA:
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a) Data preprocessing manner. MNSDiPCA maps data into
a high-dimensional space via a polynomial function to
settle the nonlinearity. M-APCA focuses on local and
global important information and the dynamic relation-
ship is characterized through the weight of attention
mechanism, namely, softmax(x,C). Two alternative
manners are presented to estimate the keys in the at-
tention mechanism, and more motivation and theoretical
analysis have been provided in Section 3.2.

b) Dimension of processed data. For MNSDiPCA, the di-
mension of the weights vector is fixed and there is a def-
inite functional relationship with the dimension of mea-
sured data. For M-APCA, the dimension of the weights
vector is equal to the number of keys g, which is arbitrary
and determined by prior knowledge. Generally, g is set
to be large enough to leave space for forthcoming novel
dynamic modes.

4.4. M-APCA and regularization-based methods
with continual learning ability

The relationship between M-APCA and regularization-
based methods is discussed, including SDiPCA-MSI [5]
and PCA-EWC [19]. Three methods with continual learning
ability are investigated for mitigating the catastrophic forget-
ting problem of a single model for sequential modes. There
are several differences as follows:

a) The manner of preserving information from previous
modes. M-APCA adopts the principles of replay contin-
ual learning and extracts significant features of all modes
from data in a raw format. With regard to SDiPCA-MSI
and PCA-EWC, a quadratic regularization term is added
to the loss function and the previously learned knowledge
is consolidated by slowing down the learning rate of
mode-sensitive parameters.

b) Data requirement for training. M-APCA selects and
stores a few representative data from each mode, which
are replayed together along with new mode data to estab-
lish a single model. When a new mode arrives, SDiPCA—
MSI and PCA-EWC only utilizes the current mode data
and the existing model parameters to build a monitoring
model for successive modes. Since the training data are
discarded once the learning process finishes, SDiPCA—
MSI and PCA-EWC need less storage space than M-
APCA.

¢) Applications. Since M-APCA extracts features from all
modes’ sensing data, it can monitor diverse modes via a
single model and can be applied to long-term monitoring
tasks. SDIiPCA-MSI and PCA-EWC require similarity
among different modes and are appropriate for short-
term monitoring tasks. Besides, M-APCA and SDiPCA—
MSI are proper for multimode dynamic processes while
PCA-EWC was investigated for multimode stationary
processes.

Table 2

Comparison of online computational complexity
Methods Complexity (flam)
M-APCA (m+20+4)g+Ps+31+m

or Cm+2+4)q+1Ps+31+m
4 3
MNSDIPCA 2= + 3 4 (2 4 hym? + 31+ 6)m + (s + 1)I* + 31

SDiPCA-MSI m2 4+ +3)m+(s+ DI2+31
PCA-EWC 2m? + 3m
MCVA 8(s2m? + sm)K + 2K

4.5. M-APCA and MCVA [9]

MCVA is one typical traditional multimode process
monitoring method, where multimodal data are divided into
several clusters and local monitoring models are built cor-
responding to each mode. It requires complete data and the
model would be retrained from scratch using all normal data
when a novel mode arrives. The storage and computational
resources would increase with the successive emergence of
novel modes in future. Different from MCVA, M-APCA
with continual learning ability is free from the limitation of
complete data and assumes that data from multiple modes
are collected sequentially. When the model training finishes,
a few representative data from this mode are selected to
reduce redundancy and stored for future learning. When a
new mode arrives, replay data from all previous modes and
the current mode data are unified to construct a single model.
Thus, M-APCA needs fewer storage sources than MCVA.

4.6. Online computational complexity

Online computational complexity is an important eval-
uation index of monitoring performance. The term flam
is adopted to measure the complexity, which contains one
addition and one multiplication [34]. For each testing sam-
ple, the preprocessing step needs m flam. For the attention
mapping procedure, calculating ¢p(x) requires (m + 1)g flam
if scaled dot-product is utilized and (2m+1)q flam if negative
Euclidean distance is utilized. Then, calculating (4) needs
2q flam. Calculating the latent attention variables and its
prediction by (27) needs gl and 1?5 flam respectively. Subse-
quently, calculating the dynamic residual by (28) and static
prediction error by (30) requires / and g/ +q flam. Eventually,
calculating two statistics needs 2(/+q) flam. In summary, the
online complexity of M-APCA is (m+21 +4)q+12s+314+m
flam using scaled dot-product, and 2m+21+4)q+1*s+31+m
flam using negative Euclidean distance.

The online computational complexity of five methods is

2
summarized in Table 2. When g > "> the computational

complexity of M-APCA is higher than that of MNSDiPCA.
Note that the bound in the parameter / is different for
these methods. For PCA-EWC and SDiPCA-MSI, /! < m.
Similarly, / < @ for MNSDiPCA and I < g for M-
APCA. In contrast to these four methods, the complexity of
MCVA will increase with the successive emergence of new
modes.
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5. Case studies

In this paper, four state-of-the-art methods are used for
comparison with the proposed method. The effectiveness of
the proposed method with two attention mechanisms is illus-
trated by a CSTH, the TEP and a practical coal pulverizing
system. Besides, an ablation study is conducted to illustrate
the necessity of attention mechanism.

5.1. Comparative experiments and setting
5.1.1. Comparative experiments

This paper considers four successive modes and the com-
parative experiments are designed in Table 5 and Table 7,
where the training information, testing mode and the model
label are listed. MNSDiPCA [22], SDiPCA-MSI [5], PCA-
EWC [19] and MCVA [9] are compared with M-APCA,
to highlight the continual learning ability for monitoring
sequential modes. Specifically, two critical properties of
continual learning, namely, forward transfer learning and
backward transfer learning, can be reflected by the detection
accuracy.

Situations 1-19 are designed to illustrate the continual
learning ability of M-APCA and the catastrophic forgetting
issue of APCA. The experiment schemes and the monitoring
results with Attention I are listed in Table 5, where the simi-
larity is measured by the scaled dot-product and a maximum
likelihood estimator is utilized to estimate the keys. Table 6
summarizes the monitoring results using Attention II, where
the negative Euclidean distance is the similarity metric and
the keys are determined by an online k-means clustering
algorithm. Note that Table 5 and Table 6 share the same
simulation schemes and aim to illustrate effectiveness of the
proposed method with two different attention mechanisms.
Consider the first two modes as an example to depict the
experiment scheme. When the first mode M, has been
trained, the representative data Dz(f( 1) are selected based
on cosine similarity, which are sufficient to represent the
operating conditions of mode M;. When a new mode M,
arrives, data X, are collected and utilized to update the
key C by a maximum likelihood estimator or an online k
means clustering algorithm. Then, D, and X, are adopted
to establish a M-APCA model, which furnishes the continual
learning ability and aims to monitor two modes simultane-
ously. Furthermore, Situation 5 is designed to illustrate the
catastrophic forgetting issue of APCA for multiple modes,
namely, the features of mode M, are overwritten when a
new model is learned. As illustrated by Situations 6-19,
when a new mode arrives, the scheme is designed in a
similar way. M-APCA needs to store representative data D
from previous modes for future learning, thus it consumes
moderate storage resources.

Schemes and monitoring results of comparative methods
are listed in Table 7. Similar to [5, 19], Situations 20-49
are designed to illustrate the continual learning ability of
MNSDiPCA, SDiPCA-MSI and PCA-EWC. Similar to M-
APCA, MNSDiPCA adopted the replay continual learning,
where the model is trained based on the current mode data

and representative data when a new mode arrives. It is de-
sired that the performance of Situations 20-29 is excellent.
Assuming that modes arrive in a sequential manner, the
monitoring model of SDiPCA-MSI and PCA-EWC is up-
dated based on the current data and the model parameters of
the previous modes. Since only data from the current mode
are stored and are discarded when the training procedure
finishes, SDIPCA-MSI and PCA-EWC require the least
storage space among the five comparative methods. When
the successive modes share similarity, the performance of
Situations 30—49 may be satisfactory.

For this work, MCVA divided data into several clusters
by Gaussian mixture model and a local CVA model was
built within each cluster. Then, a global monitoring model
was constructed based on a weighted sum of local models.
For Situations 50-58, when a new mode is encountered, the
MCVA model needs to be retrained from scratch, without
any use of learned knowledge. It requires complete data
from all potential modes for training, so the complete data
from all previous modes must be stored. Thus, it has the
greatest computation and storage requirements than other
comparative methods.

5.1.2. Experimental setting

To enhance the data quality and ensure monitoring per-
formance, several data preprocessing measures are utilized
for three experiments, including data filtering to remove
noise, dealing with outliers, selecting key variables. Besides,
the mode labels of these experiments are available in ad-
vance and a new mode is judged by expert experience, prior
knowledge and data characteristics.

To compare the monitoring performance conveniently,
the setting of the critical parameters is discussed for the
aforementioned methods. For M-APCA, SDiPCA-MSI and
MNSDIiPCA, the order of VAR model s and the number
of dynamic latent variables / are key parameters and deter-
mined in Section 3.4. For MAPCA, the number of keys g
is generally set to be large to leave more space for future
modes and deal with nonlinearity. The hyper-parameter A, is
predefined by users and let 4; be 0.01 in this paper. For PCA—
EWC, the number of principal components is estimated by
cumulative variance contribution rate and its threshold is
0.85. For MCVA, one critical parameter is the number of
local models, which is equivalent to the number of modes
and is a priori in this paper. The monitoring thresholds of
these statistics are calculated by KDE and the confidence
level is 0.99. The detailed values of key parameters are
summarized in Table 3.

5.2. CSTH

The CSTH process is a popular benchmark for multi-
mode dynamic process monitoring, where hot water and
cold water are mixed to meet the requirements [5, 6]. Water
level, temperature and flow are controlled by PI controllers.
For detailed description, one may refer to [35]. This paper
considers two cases and the settings are summarized in Table
4, where data from each mode are collected in a sequential
manner. Six key variables are adopted for monitoring. For
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Table 3
The key parameter setting
Methods CSTH TEP Coal pulverizing system
M-APCA q=16,1=10,5s=3,d=20 q=166,1=28 5s=3,d=200 q=20,1=10,s=3,d =80
q=16,1=10,s=3,d=16 q=66,1=30,s=3,d =200 q=30,s=3,1=18,d =180
MNSDIiPCA s=3,1=14 s=3,1=30 s=3,1=20
SDIPCA-MS| s =2,1=3 s=31=18 s=3,1=
MCVA h=21=3 h=21=4 h=3,1=38
Table 4 modes. Overall, M-APCA with Attention II provides out-
Normal operating modes of CSTH standing performance for successive modes.
Mode Level Temperature ot water The simulation consequences of comparative schemes
Cases  hel  sP sp valve are listed in Table 7. MNSDiPCA enables to monitor Case
M, 13 11 5 1 and Case 2 accurately, where the FDRs are 100% and the
Case 1 ﬁZ 1(1) 1&5 i FARs are no more than 5%. However, it may cost the most
Mj 19 105 5 expensive computational resources among five methods.
M, 10 8 ) SDiPCA-MSI is capable of monitoring Case 1 accurately
Case 2 M, 12 8 4 but fails to monitor Case 2, where the FARs of Situations 31,
My 12 10.5 5.5 32, 36-39 are higher than 13%. SDiPCA-MSI requires that
M, 9 10.5 45

each mode, 1000 normal samples are collected for training
and 1000 testing samples are generated below:

e Case 1: level is added by 0.1 from 501¢A sample;

o Case 2: temperature is added by 0.3 from 501¢h sam-
ple.

As listed in Table 5, M-APCA with Attention I can accu-
rately monitor multiple modes based on a single model. For
Case 1, the FDRs of M-APCA are 100% and the FARs are no
more than 4.6%, meaning that M-APCA effectively enables
monitoring of sequential modes. The FDRs of Situations 6
and 9 are 100% and 87.32%. This reflects the forward transfer
learning ability of M-APCA, namely, the information from
previous modes M, and M, could enhance the monitoring
performance for future similar modes. Conversely, the FARs
of Situations 10-11 and 17-19 are higher than 90%. This
phenomenon indicates that APCA with Attention I suffers
from the catastrophic forgetting issue for successive modes,
where the monitoring model for a single mode fails to detect
the fault in other modes. Similarly, for Case 2, the FDRs of
the Situations 2, 3, 6-8 and 12-15 are higher than 99.80%,
and the FARs are no more than 5.60%. However, the FARs
of Situations 5, 10-11 and 17-19 are higher than 36%. In
summary, M-APCA with Attention I can monitor successive
dynamic modes based on a single model.

The benchmark results for M-APCA and APCA with
Attention II are listed in Table 6. For Case 1 and Case 2,
the FDRs of M-APCA are higher than 99% and the FARs
are no more than 6.4%. However, the FARs of APCA are
higher than 9% for Situations 5, 10-11, and 17-19. With
regard to Case 2, the FARs of Situations 12 and 16 are 0.8%
and 4.4% respectively, which reflects the forward transfer
learning ability of M-APCA that the information from mode
M, enhances the monitoring performance of future similar

data from multiple modes have a certain degree of similarity,
so may be particularly inappropriate for Case 2. For Case
1, PCA-EWC fails to provide better detection performance
than M-APCA since the FARs of of Situations 41-49 are
higher than 8.40%. For Case 2, the FARs of PCA-EWC
are higher than M-APCA in most situations. MCVA cannot
monitor sequential modes accurately. The FDRs of Case 1
are lower than 89% and the FARs are higher than 12%. For
Case 2, the FDRs of Situations 52, 53, 55 and 56 are lower
than 93%.

The testing time of M-APCA with two attention mech-
anisms is less than 0.021 second and is similar for each
situation, as listed in Table 8. The testing time of compar-
ative methods is summarized in Table 9. It is obvious that
the testing time of SDiPCA-MSI is lowest and just lower
than M-APCA. The testing time of MNSDiPCA and PCA-
EWC is higher than that of M-APCA, which would not
increase with continuous emergence of new modes. MCVA
costs the most expensive computational resources for online
applications.

In summary, M-APCA with both Attention I or Attention
II can provide superior monitoring performance compared
to MNSDiPCA, SDiPCA-MSI, PCA-EWC and MCVA,
in terms of detection accuracy and online computational
complexity.

5.3. Tennessee Eastman process

The Tennessee Eastman process is a model of an in-
dustrial complex process and has been widely utilized to
illustrate the effectiveness of multimode process monitoring
methods [36]. For detailed information, refer to [37]. The
data are generated from the Simulink model, which can
be downloaded from http://depts.washington.edu/control/
LARRY/TE/download.html. This paper considers four succes-
sive modes of process operation at three different G/H mass
ratios, as listed in Table 10. 22 measured variables and
9 manipulated variables are utilized for monitoring. The
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Table 5

M-APCA for multimode dynamic process monitoring

Monitoring results (FDR(%) and FAR (%)) of M-APCA and APCA based on Attention |

Methods Training Testing Model [ CSTH TEP Coal pulverizing system

data mode label ‘ Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR
Situation 1 APCA X, M, A 100 1.80 99.80 0.80 98.48 1.25 100 1.50 98.16 O 100 0.45
Situation 2 M-APCA X,, D, M, B 100 0.60 99.80 0.60 97.36 0.75 100 150 100 0.37 100 0.75
Situation 3 M-APCA - M, B 100 2.80 99.60 2.40 97.50 1.50 100 1.50 98.66 4.20 100 0.27
Situation 4  APCA X, M, C 100 0.80 100 0.80 99.01 2,50 100 3.25 100 1.99 100 0.75
Situation 5 APCA - M, C 100 6.60 100 36.20 98.62 3.00 100 3.25 100 38.66 100 30.27
Situation 6 M-APCA X;, D, Ms D 100 0.60 100 1.20 98.81 0.25 100 1.00 93.97 1.50 100 0.47
Situation 7 M-APCA - M, D 100 2.80 98.79 0.80 97.63 1.25 100 1.25 98.49 0 100 0.55
Situation 8 M-APCA - M, D 100 4.40 100 1.40 97.30 2.00 100 2.75 100 224 100 0.75
Situation 9 APCA X3 My & 87.32 1.20 100 2.40 99.41 0.75 100 1.50 9555 3.76 100 41.18
Situation 10 APCA - M, & 100 99.60 100 99.80 100 100 100 100 100 100 100 100
Situation 11  APCA - M, & 100 98.80 100 100 100 100 100 100 100 100 100 100

Situation 12 M-APCA X,, D, My F 100 0.80 100 0.80 99.01 0.25 100 1.00 98.18 0 100 0
Situation 13 M-APCA - M, F 100 2.60 100 2.20 98.02 1.25 100 1.25 98.16 100 0.18
Situation 14 M-APCA - M, F 100 4.60 100 2.00 97.76 0.50 100 1.25 100 1.61 100 0.50
Situation 15 M-APCA - Ms F 100 3.80 100 5.60 99.14 0.75 100 1.50 95.80 1.50 100 0.71
Situation 16 APCA X, My G 100 0.80 100 2.40 99.41 0.75 100 1.50 98.48 155 100 0.31
Situation 17 APCA - M, G 100 97.40 100 100 100 100 100 100 100 100 100 100
Situation 18 APCA - M, G 100 93.60 100 100 100 100 100 100 100 100 100 100
Situation 19 APCA - M G 100 97.00 100 100 100 100 100 100 100 100 100 100

Table 6

Monitoring results (FDR(%) and FAR (%)) of M-APCA and APCA based on Attention Il

CSTH TEP Coal pulverizing system
Methods ‘ Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR
Situation 1 APCA 100 140 100 1.60 98.48 1.00 100 1.25 98.66 0 100 1.00
Situation 2 M-APCA | 100 120 100 0.60 97.56 0.50 100 1.25 100 0.50 100 0.88
Situation 3 M-APCA | 100 580 100 2.20 97.56 0.50 100 0.50 98.83 336 100 1.73
Situation 4 APCA 100 120 100 1.20 98.75 225 100 2.75 100 534 100 1.12
Situation 5 APCA 100 9.20 100 17.60 98.68 4.75 100 5.00 99.66 31.93 100 37.18
Situation 6 M-APCA | 100 0.80 100 1.00 99.21 0.75 100 150 94.17 150 100 0.71
Situation 7 M-APCA | 100 6.40 100 160 97.63 0.75 100 0.75 98.49 0 100 0.91
Situation 8 M-APCA | 100 340 100 0.80 97.50 0.75 100 1.50 100 7.33 100 1.00
Situation 9 APCA 100 140 100 6.40 99.47 050 100 125 97.92 3.01 100 37.16
Situation 10  APCA 100 28.00 100 86.40 99.74 55.00 100 55.25 100 100 100 98.64
Situation 11  APCA 100 29.40 100 74.00 99.87 75.00 100 75.50 100 100 100 100
Situation 12 M-APCA | 100 0.80 100 0.80 98.62 0.50 100 1.25 98.18 0 100 0.20
Situation 13 M-APCA | 100 6.00 99.40 1.20 97.63 0.50 100 0.50 98.16 0 100 0.36
Situation 14 M-APCA | 100 4.00 100 0.60 9756 0.25 100 1.00 100 248 100 0.88
Situation 15 M-APCA | 100 420 100 460 98.88 0.50 100 125 9699 150 100 0.83
Situation 16 APCA |98.99 120 100 4.40 99.47 100 100 1.75 9848 391 100 0.51
Situation 17 APCA 100 40.00 100 99.40 99.54 23,50 100 24.00 100 100 100 96.91
Situation 18  APCA 100 60.80 100 98.40 99.34 3475 100 35.25 100 100 100 97.00
Situation 19  APCA 100 18.20 100 95.00 100 91.25 100 91.50 100 100 100 100

sampling time is 3 minutes. Two cases (Case 3 and Case
4) are considered and share the same training data, namely
1920 normal samples from each mode in Table 10. 1920
testing samples, including the first 400 normal samples and
subsequent 1520 faulty samples, are generated from two
typical faults, and the fault numbers are IDV(11) (Case 3)
and IDV(14) (Case 4).

The monitoring results of M-APCA and APCA with
Attention I and Attention II are listed in Table 5 and Table
6 respectively. M-APCA with Attention I could furnish
continual learning ability and monitor Case 3 and Case 4

accurately, where the FDRs are higher than 97% and the
FARs are lower than 3.0%. When a new mode arrives, a few
data are replayed and utilized to train the M-APCA model,
which can still provide similar monitoring performance with
a single APCA-based monitoring model. For instance, the
FDRs and FARs of Situations 12-15 are close to those of
Situations 16, 1, 4 and 9. The FARs of Situations 10, 11, 17—
19 are 100%, which reflects the catastrophic forgetting issue
of APCA for multimode processes. The aforementioned
analysis can equally be applied to M-APCA and APCA with
Attention II, as listed in Table 6.
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Table 7

M-APCA for multimode dynamic process monitoring

Monitoring results (FDR(%) and FAR (%)) of comparative methods

Methode Training Testing Model ‘ CSTH TEP Coal pulverizing system

data mode  label ‘ Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR
Situation 20 MNSDiPCA X, M, H 100 2.60 100 2.60 99.14 1.75 100 2.00 98.16 0 100 5.09
Situation 21  MNSDiPCA X,, D, M, 1 100 0.60 100 0.80 98.88 2.75 100 3.50 100 0.50 100 1.00
Situation 22 MNSDiPCA - M, 1 100 3.40 100 220 98.48 2.00 100 2.25 98.83 5.88 100 13.82
Situation 23  MNSDiPCA X3, Dy M; J 100 0.60 100 0.80 99.60 250 100 3.25 94.07 150 100 33.14
Situation 24 MNSDiIPCA - M,y J 100 2.80 100 1.00 9835 1.75 100 2.00 98.49 0 100 2.27
Situation 25 MNSDiPCA M, J 100 1.80 100 1.20 98.55 1.50 100 2.25 100 2.73 100 0.75

Situation 26 MNSDiIPCA X, D, My K 100 0.80 100 0.60 99.47 0.75 100 1.25 98.18 0 100 0
Situation 27 MNSDiPCA - M,y K 100 5.00 100 0.60 98.22 1.00 100 1.25 98.16 0 100 3.55
Situation 28 MNSDiPCA - M, K 100 3.80 100 0.60 9835 1.75 100 225 100 1.37 100 0.88
Situation 29 MNSDIPCA - M; K 100 2.00 100 1.80 99.41 275 100 3.50 96.94 0 100 45.09
Situation 30 SDiPCA X, M, L 100 0.40 73.09 0.60 9598 1.00 100 1.00 98.16 0.84 100 0.09
Situation 31 SDiPCA-MSI X, +L M, N 100 0.40 97.59 13.60 93.14 0.75 100 150 100 3.73 100 0.37
Situation 32 SDiIPCA-MSI - M, N 100 0.40 91.16 35.60 9545 3.00 100 3.00 9833 0 100 2.27
Situation 33 SDiPCA-MSI X; + N Mj O 100 0.40 100 5.80 9756 0.75 100 1.50 93.04 150 100 39.05
Situation 34 SDiIPCA-MSI - M, o 100 0.40 97.79 4.60 97.89 18.75 100 19.00 98.00 0 100 9.45
Situation 35 SDiPCA-MSI - M, O 100 0.40 98.39 1.00 98.02 30.35 100 30.75 100 1.86 100 33.25

Situation 36 SDiIPCA-MSI X, +0 My P 100 0.40 100 16.40 9354 0.75 100 1.25 98.30 1.79 99.78 0
Situation 37 SDiPCA-MSI - M, P 100 0.40 100 32.00 96.57 7.00 100 7.00 95.66 0 100 1.27
Situation 38 SDiIPCA-MSI - M, P 100 0.40 100 34.40 95.06 3.00 100 3.75 100 6.34 100 17.13
Situation 39 SDiPCA-MSI - My P 100 0.40 100 26.20 98.75 25.00 100 25.50 92.89 6.02 100 0.59
Situation 40 PCA X, M, Q 20.40 0 22.40 0 95.59 0 99.87 0 97.50 0 99.71 0.91
Situation 41 PCA-EWC X, +0 M, R 100 11.40 100 6.20 95.86 0.25 100 0.75 100 2.73 100 0.38
Situation 42 PCA-EWC - M, R 100 12.80 100 4.40 96.91 0.75 99.87 1.25 97.67 0 99.71 5.64
Situation 43 PCA-EWC X;+R M; S 100 10.00 100 8.60 98.36 0.25 97.50 0.50 98.96 0 100 41.18
Situation 44 PCA-EWC - M, S 100 13.60 100 6.40 97.30 3.25 99.34 3.50 97.67 0 100 29.45
Situation 45 PCA-EWC - M, S 100 11.40 100 6.40 96.97 10.25 100 10.25 100 1.49 100 1.75

Situation 46 PCA-EWC X, +S My T 100 1240 100 6.00 95.72 0.25 100 0.25 98.18 10.58 99.34 0
Situation 47 PCA-EWC - M, T 100 11.20 100 9.00 97.63 225 99.87 225 98.00 0 99.71 0.09
Situation 48 PCA-EWC - M, T 100 9.80 100 8.40 9487 150 100 200 100 7.70 100 0.38
Situation 49 PCA-EWC - M; T 100 8.40 100 12.00 98.82 13.00 100 13.25 99.95 1353 100 8.88
Situation 50 MCVA X..X, M, U. |88.48 18.20 99.80 2.40 96.17 1.25 9855 125 9831 0 100 0.55
Situation 51 MCVA - M, % 81.62 17.00 100 1.00 96.11 1.25 99.93 2.00 100 2248 100 3.25
Situation 52 MCVA X, X,, X5 M, YV |88.08 18.20 92.94 0.20 9578 1.00 98.09 1.00 98.82 1.68 100 43.73
Situation 53 MCVA - M, Vv 81.41 17.00 89.72 0.20 95.84 1.00 99.87 1.75 100 21.49 100 5.12
Situation 54 MCVA - M; Y |7556 2520 100 0.20 96.17 0 95.12 0.25 92.77 451 100 46.51
Situation 55 MCVA X, X5, X53,X, M, w 87.07 17.60 92.94 0.20 94.39 0.25 98.81 0.25 98.48 0 100 45.91
Situation 56 MCVA - M, w |78.99 16.80 89.52 0.20 93.60 0 100 0.50 100 0.87 100 5.25
Situation 57 MCVA - Mj w 76.97 26.40 100 0.20 97.23 0.25 98.09 0.75 100 80.45 100 36.57
Situation 58 MCVA - My w |78.18 12.60 100 0.20 98.15 1.00 100 1.25 99.09 54.03 100 0.41

The monitoring consequences of four comparative meth-
ods are listed in Table 7. MNSDiPCA can monitor Case
3 and Case 4 accurately, where the FDRs are higher than
98% and the FARs are no more than 3.50%. SDiPCA-MSI
fails to deliver excellent performance for Case 3 and Case 4,
where the FARs of Situations 34, 35 and 39 are not less than
19%. For PCA-EWC, the FARs of Situations 45 and 49 are
higher than 10%. In other words, methods based on regular-
ization continual learning could not offer desirable detection
accuracy. Since PCA—-EWC and SDiPCA-MSI required that
multiple modes share similarity in a sense, this phenomenon
may be caused by diverse modes. MCVA cannot provide
better performance than M-APCA with either of the two
attention mechanisms. With regard to Case 3, the FDRs of
Situations 50-56 are lower than 97%.

As listed in Tables 8 and 9, the testing time of M-
APCA, SDiPCA-MSI and PCA-EWC is similar, which
indicates that the online computational complexity is close
and could meet the real-time monitoring demand. The online
computational complexity of MNSDiPCA is medium and

the testing time is less than 2.1 seconds. Similar to CSTH
case, the online computational complexity of MCVA is the
highest and would still increase as K increases, which is in
accordance with the theoretical analysis in Section 4.6.

In conclusion, M-APCA with two attention mechanisms
and MNSDiPCA can deliver optimal performance in con-
sideration of detection accuracy compared with PCA-EWC,
SDiPCA-MSI and MCVA. However, M-APCA inherits
other virtues due to attention mechanisms as mentioned
in Sections 4.2 and 4.3. Besides, M-APCA is obviously
less complicated than MNSDiPCA in this case. Thus, M-
APCA with two attention mechanisms are optimal among
five methods.

5.4. Coal pulverizing system

This paper adopts the coal pulverizing system to illus-
trate the effectiveness of M-APCA, which is one key unit
of a 1030-MW ultra-supercritical thermal power plant in
China. The coal pulverizing system is constructed by coal
feeder, coal mill, rotary separator, raw coal hopper and stone
coal scuttle, as shown in [5, 19]. To improve combustion
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Table 8
Testing time (s) of M-APCA and APCA based on Attention | and Attention Il
‘ CSTH TEP Coal pulverizing system
Methods Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Attention | Attention Il Attention | Attention Il Attention | Attention Il Attention | Attention Il Attention | Attention Il Attention | Attention Il

Situation 1 APCA 0.0180 0.0166 0.0195 0.0158 0.1158 0.1187 0.1014 0.1123 0.0206 0.0179 0.0319 0.0281
Situation 2 M-APCA| 0.0164 0.0202 0.0148 0.0183 0.1034 0.1138 0.1038 0.1148 0.0298 0.0256 0.0287 0.0280
Situation 3 M-APCA| 0.0151 0.0159 0.0155 0.0148 0.1031 0.1163 0.1044 0.1573 0.0175 0.0190 0.0317 0.0257
Situation 4 ~ APCA 0.0153 0.0178 0.0148 0.0169 0.1053 0.1151 0.1030 0.1144 0.0294 0.0260 0.0303 0.0278
Situation 5 APCA 0.0150 0.0163 0.0167 0.0160 0.1875 0.2110 0.1873 0.2097 0.0180 0.0175 0.0310 0.0287
Situation 6 M-APCA| 0.0143 0.0157 0.0175 0.0196 0.1058 0.1141 0.1014 0.1140 0.0722 0.0629 0.0212 0.0211
Situation 7 M-APCA| 0.0148 0.0148 0.0148 0.0141 0.1033 0.1144 0.1022 0.1123 0.0188 0.0154 0.0279 0.0245
Situation 8 M-APCA| 0.0176 0.0145 0.0147 0.0139 0.1014 0.1155 0.1029 0.1162 0.0244 0.0235 0.0284 0.0252
Situation 9 APCA 0.0144 0.0153 0.0146 0.0156 0.1032 0.1135 0.1022 0.1141 0.0663 0.0631 0.0217 0.0202
Situation 10 APCA 0.0149 0.0162 0.0162 0.0155 0.1892 0.2110 0.1956 0.2111 0.0175 0.0181 0.0302 0.0278
Situation 11 APCA 0.0161 0.0155 0.0162 0.0164 0.1889 0.2098 0.1891 0.2080 0.0331 0.0336 0.0302 0.0274
Situation 12 M-APCA | 0.0154 0.0147 0.0164 0.0136 0.1060 0.1152 0.1063 0.1146 0.0995 0.0963 0.0292 0.0274
Situation 13 M-APCA | 0.0141 0.0146 0.0143 0.0152 0.1065 0.1126 0.1029 0.1145 0.0162 0.0154 0.0283 0.0247
Situation 14 M-APCA| 0.0141 0.0145 0.0147 0.0135 0.1028 0.1134 0.1050 0.1136 0.0253 0.0230 0.0272 0.0251
Situation 15 M-APCA | 0.0148 0.0151 0.0149 0.0144 0.1032 0.1135 0.1039 0.1144 0.0638 0.0612 0.0189 0.0175
Situation 16 ~APCA 0.0158 0.0205 0.0203 0.0145 0.1053 0.1169 0.1024 0.1122 0.1126 0.0973 0.0297 0.0272
Situation 17 APCA 0.0156 0.0157 0.0165 0.0168 0.1885 0.2081 0.1880 0.2109 0.0177 0.0169 0.0318 0.0285
Situation 18 APCA 0.0155 0.0183 0.0163 0.0157 0.1950 0.2110 0.1887 0.2126 0.0317 0.0278 0.0313 0.0279
Situation 19 APCA 0.0156 0.0164 0.0160 0.0159 0.1904 0.2123 0.1024 0.2122 0.0694 0.0646 0.0208 0.0190

Table 9 Table 10

Testing time (s) of comparative methods

CSTH TEP
Casel Case2 Case3 Case4 Caseb Case 6

Methods ‘ Pulverizing system

Situation 20 MNSDiPCA 0.1042  0.0964 1.4373 1.4750 0.1107 0.3337
Situation 21 MNSDiPCA 0.1008 0.0931 1.4996 1.3380 0.1277 0.3411
Situation 22 MNSDiPCA 0.1119  0.0943 1.3127 1.2847 0.1067 0.2940
Situation 23 MNSDiPCA 0.0942 0.0953 1.2864 1.2829 0.2179 0.2253
Situation 24 MNSDiPCA 0.0946 0.1097 1.3129 1.2911 0.1044 0.2867
Situation 25 MNSDiPCA 0.1021  0.0947 1.2883 1.2597  0.1259 0.2828
Situation 26 MNSDiPCA 0.0975 0.0957 1.3252 1.2668 0.2728 0.2800
Situation 27 MNSDiPCA 0.1288 0.0897 1.3639 1.9038 0.1310 0.2845
Situation 28 MNSDiPCA 0.0943 0.0976 1.3209 1.3456 0.1295 0.2785
Situation 29 MNSDiPCA 0.0942 0.0933 1.3500 2.0262 0.2171 0.2218
Situation 30 SDiPCA 0.0180 0.0206 0.1733 0.1259  0.0299 0.0213
Situation 31  SDIPCA-MSI | 0.0092 0.0136 0.1143 0.0985 0.0179 0.0182
Situation 32 SDiIPCA-MSI | 0.0080 0.0141 0.1283 0.1292 0.0115 0.0111
Situation 33 SDIPCA-MSI | 0.0054 0.0100 0.2262 0.1108 0.0804 0.0136
Situation 34  SDiPCA-MSI | 0.0086 0.0072 0.1152 0.1132  0.0090 0.0160
Situation 35 SDIPCA-MSI | 0.0055 0.0096 0.1126 0.1247 0.0150 0.0098

Situation 36
Situation 37

SDiPCA-MSI | 0.0065 0.0091 0.1058 0.1461 0.1224 0.0153
SDiPCA-MSI | 0.0064 0.0067 0.1058 0.1037 0.0103 0.0082
Situation 38 SDIPCA-MSI | 0.0086 0.0068 0.1097 0.1011  0.0070 0.0094
Situation 39 SDIPCA-MSI | 0.0065 0.0101 0.1125 0.1068 0.0534 0.0202
Situation 40 PCA 0.0998 0.0439 0.2593 0.1269 0.1006 0.1116

Situation 41 PCA-EWC 0.1134 0.0966 0.1234 0.1084  0.0996 0.1238
Situation 42 PCA-EWC 0.0998 0.0929 0.1054 0.1200 0.0834 0.1179
Situation 43 PCA-EWC 0.1270  0.0916 0.1027 0.1168  0.0987 0.1114
Situation 44 PCA-EWC 0.0921 0.0858 0.0975 0.1174 0.1036 0.0989
Situation 45 PCA-EWC 0.0987 0.2025 0.0964 0.1146  0.0942 0.1095
Situation 46 PCA-EWC 0.1078 0.0929 0.1050 0.1356  0.0932 0.1037
Situation 47 PCA-EWC 0.0925 0.0831 0.1904 0.1077  0.0997 0.1007
Situation 48 PCA-EWC 0.0826 0.1114 0.1680 0.1045 0.1080 0.0978
Situation 49 PCA-EWC 0.0968 0.0844 0.1159 0.1053 0.0871 0.0953
Situation 50 MCVA 0.3989 0.4146 2.6580 2.4805 0.3322 1.5023
Situation 51 MCVA 0.3673 0.3623 2.4690 2.3747  0.4502 1.4792
Situation 52 MCVA 0.4726  0.4362 3.4866 4.0478  0.4222 2.2105
Situation 53 MCVA 0.4638 0.4350 3.5590 4.1025 0.5713 2.1287
Situation 54 MCVA 0.4628 0.4242 3.4743 3.4800 1.0721 1.6441
Situation 55 MCVA 0.5868 0.5456 4.7801 4.5769 0.5157 2.7298
Situation 56 MCVA 0.6504 0.5378 4.7486 4.5575  0.7462 2.7629
Situation 57 MCVA 0.5694 0.5559 4.4991 4.5585 1.3898 2.0696
Situation 58 MCVA 0.6062 0.5321 4.5069 4.5449  1.8268 2.8189

efficiency and ensure the operating safety, this system grinds
raw coal into pulverized coal with desired temperature and
fineness [19, 25]. Two popular types of faults are inves-
tigated in this section, including the abnormalities from
rotary separators (Case 5) and the coal feeders (Case 6). The
variables are selected based on professional knowledge, the
system theory and correlation analysis. Data information is
summarized in Table 11.

The monitoring results of APCA and M-APCA with
Attention I and Attention II are listed in Table 5 and Table

Four operating modes of TEP (Case 3 and Case 4)
Mode label

Desired G/H mass ratio  Desired production

M, 50/50 14076
M, 10/90 14077
M 90/10 11111
M,y 50/50 Maximum

6 respectively, where a maximum likelihood estimator and
online k-means clustering algorithm are adopted to estimate
the keys in the attention mechanisms. As shown in Table 5,
M-APCA with Attention I can detect the faults in multimode
processes accurately. For Case 5, the FARs of M-APCA
are lower than 4.3%. The FDRs of Situations 6, 9 and 15
are 93.97%, 95.55% and 95.80%, which indicates that the
fault in mode M is slightly difficult to detect. The FDRs
of Situations 2, 3, 7, 8, 12—14 approach 100%. The FARs of
Situations 5, 10, 11 and 17-19 are higher than 38%, which
signifies that APCA suffers from the catastrophic forgetting
issue for successive modes and the model for one mode
fails to detect faults in another mode. For Case 6, the FDRs
of M-APCA are 100%. The FARs of Situations 6 and 9
are 0.47% and 41.18%, which means that information from
modes M; and M, enhances the monitoring performance
for future similar mode M. This demonstrates the forward
transfer learning ability of M-APCA. Furthermore, the FARs
of Situations 1 and 13 are 0.45% and 0.18%, which indicates
that the information of future mode M, is favorable of
improving the performance towards the previous mode M.
This phenomenon reflects the backward forward learning
ability of M-APCA. Similar to Case 5, the FARs of Sit-
uations 5, 10, 11 and 17-19 are higher than 30% and are
unacceptable. Note that the FARs of Situations 6 and 15
are 0.47% and 0.71%, respectively. This phenomenon may
be due to the significant difference between modes M5 and
M,. The mode M, is not able to provide valuable informa-
tion for monitoring mode M. Since a few replay data from
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Table 11
Experimental data of the practical coal pulverizing system
Cases Mode N.un_wber of Number of Fau.lt Fault cause
label  training data  testing data  location
M,y 2880 720 120 Rotor separator cooling fan trips
Case 5 M, 2880 1080 806 Rotary separator trip
M, 2880 2160 134 Large vibration
My 2880 2880 1230 Cooling fan trip of inverter cabinet
M, 2160 1440 1101 Coal block of the coal pipe
Case 6 M, 2520 1440 801 The coal feeder belt is broken
My 1080 1080 846 The coal feeder does not drop coal
My 2160 2160 984 The coal feeder does not drop coal

M are utilized for training the model 7, the FARs show a
slightly upward trend for Situations 6 and 15. The analysis
can be equally applied to the results in Table 6, which also
illustrates the effectiveness of M-APCA with Attention II for
sequential modes. In summary, the continual learning ability
of the proposed M-APCA is illustrated through Situations
1-19, highlighting the forward transfer learning ability and
backward transfer learning ability.

The monitoring results of the comparative methods are
summarized in Table 7. MNSDiPCA can monitor Case 5
accurately, but fails to detect the faults of Case 6, where
the FARs of Situations 22, 23 and 29 are higher than 13%.
Similar to M-APCA, the FARs of Situations 23 and 29 are
33.14% and 45.09% respectively. M-APCA and MNSDiPCA
used replay continual learning and may encounter the similar
issues. Besides, for mode M, the testing procedure is
affected by manual intervention when the system operates
normally, which is also a critical factor causing high FARs.
SDiPCA-MSI can provide ordinary performance for Case
5, where the FDRs are higher than 92.5% and the FARs
are lower than 7%. However, it fails to monitor Case 6
accurately, where the FARs of Situations 33, 35 and 38 are
higher than 17%. Similarly, PCA-EWC fails to detect the
faults accurately in Cases 5 and 6. For Case 5, the FARs of
Situations 46 and 49 are higher than 10%. For Case 6, the
FARs of Situations 43 and 44 are higher than 29%. MCVA
is unable to provide outstanding performance for Cases 5 and
6. For Case 5, the FARs of Situations 51, 53, 57 and 58 are
higher than 21%. Besides, the FARs of Situations 52, 54, 55
and 57 are higher than 36% for Case 6.

With regard to the online computational complexity,
the testing time of SDiPCA-MSI is the lowest in most
situations and M-APCA takes second place; PCA-EWC
and MNSDiPCA place in the center; MCVA is the highest.
According to the analysis mentioned above, the proposed
M-APCA method with Attention I or Attention II offers the
optimal performance considering accuracy with respect to
computing and storage resources.

5.5. Ablation study

In this section, an ablation study is conducted to illustrate
the effectiveness of two attention mechanisms. Similar to the
experiments designed in Table 5, attention mechanism is not

utilized and the method is referred to M-PCA for multimode
process monitoring.

The monitoring results of six cases are summarized in
Table 12. For Case 1, the FDRs of Situations 6 and 12 are
74.20% and 77.00%. For Case 2, the FDRs of Situations 1—
3 are lower than 94%. M-PCA fails to monitor four modes
of CSTH based on a model. Using attention mechanism is
beneficial to focusing on high-value information and en-
hancing the performance. For TEP, M-PCA could provide
similar monitoring performance with M-APCA, where the
FDRs are higher than 95%. For the practical coal pulverizing
system, M-PCA can detect the fault of Case 5 accurately.
However, M-PCA cannot provide satisfactory performance
for Case 6, where the FARs of Situations 3, 6 and 15 are
higher than 16%. Through the comparative results in Tables
5, 6 and 12, it can be concluded that attention mechanism is
necessary and significant for delivering optimal monitoring
performance.

6. Conclusion

This paper has introduced a novel efficient multimodal
attentional PCA with continual learning ability for multi-
mode dynamic processes, where an attention mechanism is
adopted to focus on the important information from massive
data via the dynamic features. Two types of attention models
are embedded with a VAR model. To address continual
learning with multimode tasks, the idea of replay is used to
store previous data selectively. When a new mode arrives,
the current mode data and replayed data are jointly used
to build a single monitoring model for multiple modes. For
either type of attention mechanism, the associated key CX is
updated using maximum likelihood estimation or online k-
means cluster algorithm as appropriate. In contrast to tradi-
tional multimode methods, data from multiple modes are as-
sumed to be collected sequentially, and only the representa-
tive data for each mode are stored for future learning, which
reduces consumption of computing and storage resources.
Moreover, compared with PCA-EWC and SDiPCA-MSI,
M-APCA does not require modes to be similar and can be
applied to long-term monitoring tasks. Compared with sev-
eral state-of-the-art methods, the effectiveness of M-APCA
is illustrated through benchmark case studies of a continuous
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Table 12
Monitoring results (FDR(%) and FAR (%)) of M-PCA
CSTH TEP Coal pulverizing system
Methods \ Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR
Situation 1 PCA 99.20 0 86.00 0 97.11 0 99.87 0 97.00 0 99.71 3.18
Situation 2 M-PCA | 94.80 0 93.80 0.20 96.51 0 100 0 100 0.62 100 0.75
Situation 3 M-PCA 100 1.60 93.60 0.40 96.91 0 99.87 0 97.84 0 100 16.64
Situation 6 M-PCA | 74.20 0 100 0 98.29 0.25 100 0.25 95.76 0 100 32.66
Situation 7 M-PCA 100 1.40 100 0 96.58 0 99.87 0 97.67 0 99.71 9.55
Situation 8 M-PCA 100 2.20 100 0 95.79 0 100 0 100 5.09 100 0.63
Situation 12 M-PCA | 77.00 0 100 0 97.43 0 99.93 0 98.00 0.16 99.34 0
Situation 13 M-PCA 100 1.00 100 0 96.45 0 99.87 0 97.84 0 99.71 1.91
Situation 14 M-PCA 100 1.40 100 0 95.79 0 100 0 100 6.96 100 0.75
Situation 15 M-PCA 100 0.80 100 1.20 98.29 0 100 0 98.37 150 100 34.67

stirred tank heater, the Tennessee Eastman process and a
practical coal pulverizing system.

In future, the automatic mode identification would be
investigated and the graceful forgetting ability would be
considered to leave abundant space for future modes. Be-
sides, the interrelationship among different modes would be
explored.
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