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ARTICLE INFO ABSTRACT

Edited by Jing M. Chen The stability of a climate data record (CDR) is essential for evaluating long-term trends in surface temperature
using remote sensing products. In the case of a satellite-derived CDR of land surface temperature (LST), this
includes the stability of processing steps prior to the estimation of the target climate variable. Instability in the
masking of cloud-affected observations can result in non-geophysical trends in a LST CDR. This paper provides an
assessment of cloud detection performance stability over a 25-year LST CDR generated using data from the
second Along-Track Scanning Radiometer (ATSR-2), the Advanced Along-Track Scanning Radiometer (AATSR),
the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Sea and Land Surface Temperature
Radiometer (SLSTR). We evaluate three cloud detection methodologies, one fully Bayesian, one naive proba-
bilistic and the operational threshold-based cloud mask provided with each sensor, at four in-situ ceilometer
sites. Of the 12 algorithm-site combinations assessed, only two (17 %) were stable across the full timeseries with
respect to both cloud contamination and missed clear-sky observations. Five (42 %) were stable with respect to
missed clear-sky observations only. The associated impacts on LST trends in the CDR could be as large as (+/—)
0.73 K per decade (0.43 K per decade above the target stability), which means that attention needs to be paid to
this aspect of stability in order to understand uncertainty in long-term observed trends. Given that cloud
detection stability has not to our knowledge been previously assessed for any target climate variable, this
conclusion may apply more broadly to other satellite-derived CDRs.
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1. Introduction

Climate data records (CDRs) of Earth surface temperature are
becoming increasingly important for assessing global temperature
trends over recent decades (Bento et al., 2017; Riffler et al., 2015; Foster
and Rahmstorf, 2011; Merchant et al., 2019; Bulgin et al., 2020). CDRs
generated using remote sensing data typically combine observations
from several sensors to make multidecadal records (Duguay-Tetzlaff
et al., 2015; Lieberherr and Wunderle, 2018; Merchant et al., 2019),
improving the signal-to-noise ratio for detecting climate induced
changes (Foster and Rahmstorf, 2011). The temporal stability of a sur-
face temperature CDR is critical for valid detection and attribution of a
climate signal in temperature trends (Good et al., 2022; Kogler et al.,
2012). This research is therefore relevant for a wide range of climate
applications of land surface temperature (LST) data, including urban

LST (Ding et al., 2020; J. A. Peeling et al., 2024), surface energy balance
(Ji et al., 2019), crop stress (Anderson et al., 2016), land cover change
(Kayet et al., 2016) and LST angular effects (He et al., 2024; Na et al.,
2024).

Surface temperature CDRs can be generated from satellite sensors
measuring at infrared or microwave wavelengths (Li et al., 2013). For
climate studies, the LST user community requests global data at 0.05
degrees (Aldred et al., 2023), necessitating the use of infrared sensors
providing data at a higher spatial resolution than their microwave
counterparts (Li et al., 2013). Threshold level stability requirements (the
minimum level for which the data are useable) for LST are 0.3 K per
decade, with breakthrough and goal targets of 0.2 K and 0.1 K per
decade respectively (Global Climate Observing System, 2022). CDR
stability is often assessed by comparison of the retrieved geophysical
variable (in this case surface temperature) to another source of data, for
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example in-situ measurements (Good et al., 2017, 2022; Merchant et al.,
2019; Berry et al., 2018). Interpretation of such comparisons needs to
account for the level of instability in the reference data as well as the
CDR.

Retrieving LST from infrared sensors requires a pre-processing step
to detect and remove cloud contaminated observations (Bulgin et al.,
2022; Frey et al., 2008; Simpson et al., 2001; Zavody et al., 2000). No
cloud detection methodology is perfect (Bulgin et al., 2018; Simpson
et al., 2000), and therefore all surface-temperature CDRs suffer from a
degree of cloud contamination causing corresponding errors in retrieved
surface temperature.

Temporal stability in the performance of a cloud detection algorithm
as applied to a surface temperature CDR, is key to ensuring that non-
geophysical temperature trends do not arise as a direct result of this
pre-processing step. Where CDRs are constructed using data from mul-
tiple sensors, cloud detection methodologies may differ as data pro-
ducers often focus on applying a sensor-specific “best” algorithm rather
than a CDR-consistent algorithm (Kogler et al., 2012). This can result in
systematic changes to the fraction of cloud-contaminated data over time
or non-physical “jumps” in cloud detection performance between sen-
sors, attributable to differences in algorithm or channel selection. Even
in the application of a consistent algorithm across multiple sensors,
changes in channel calibration can cause differences in cloud detection
performance.

Although cloud contamination can lead to significant biases in the
retrieved surface temperature, quantifying the uncertainty that arises
from miss-classification in the cloud-clearing process remains a chal-
lenge. Establishing a cloud detection ‘truth’ against which to evaluate
automated cloud-clearing performance is challenging. Field of view
differences between satellite and ground-based instruments can limit
comparisons and generating cloud masks from semi-automated systems
or expert inspection is time consuming even for small amounts of data
(Bulgin et al., 2022).

For LST retrievals made on the satellite image grid, a given ‘clear-
sky’ pixel meets one of two criteria: 1) it has been mistakenly classified
as clear-sky, in which case the retrieved surface temperature is uncertain
due to the presence of cloud in the satellite field of view or 2) it has been
correctly classified as clear-sky and there is no associated uncertainty
due to cloud contamination. For higher-level products where LST re-
trievals are re-gridded or averaged, the propagation of this uncertainty
from the cloud contaminated observations needs to be accounted for. As
such, many uncertainty budgets are unable to quantify this uncertainty
component despite noting its importance (Bulgin et al., 2016a; Ghent
et al., 2019).

In this paper, we evaluate the stability in cloud detection perfor-
mance across a 25-year LST CDR generated within the European Space
Agency (ESA) Climate Change Initiative (CCI) programme (Hollmann
et al., 2013). Three different cloud-clearing algorithms are compared: a)
a fully Bayesian clear/not-clear classifier (Bulgin et al., 2022; Merchant
et al., 2005), b) a naive probabilistic approach (Bulgin et al., 2014) and
c) the threshold-based operational cloud detection algorithms for each
sensor (Ackerman et al., 1998; Birks, 2007; European Space Agency,
2023; Zavody et al., 2000). Comparisons are made against in-situ ceil-
ometer data at all locations with long-term data records: Ny Alesund,
North Slope of Alaska, Oliktok Point and Southern Great Plains. We first
asses the stability of the cloud detection algorithms, considering the
frequency with which clear-sky observations are actually cloud-
contaminated and the number of clear-sky observations erroneously
flagged as cloud. We then assess the impact of the cloud detection per-
formance on the LST data record in comparison with clear-sky data and
quantify the timeseries biases associated with mis-classification of clear
and cloudy pixels, before assessing the characteristics of the observa-
tions that are incorrectly flagged.

The rest of this paper is structured as follows: Section 2 describes the
overall workflow of the study. Section 3 describes both the contents
(satellite data, in-situ data, cloud detection algorithms and LST
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retrieval) and the construction of the match-up dataset used for all the
analysis in this paper. Section 4 gives details of the metrics and methods
used for data analysis and Section 5 contains the results. Section 6 in-
cludes a detailed discussion of the findings and the paper concludes in
Section 7.

2. Methodology and workflow

Fig. 1 shows the workflow for the study. On the left are the main
components of the workflow and on the right the inputs at each stage of
the workflow, which relate to different sections of this manuscript. The
first stage is the generation of a match-up database, which requires both
satellite and ceilometer data inputs as described in Section 2. The next
stage is the calculation of the key metrics for assessing cloud detecting
stability; the fraction of clear-sky pixels that are actually cloud
contaminated (CC) and the fraction of clear-sky pixels ‘missed’ by the
cloud detection algorithm (MC). Full details of this stage are found in
Section 3. The third stage is to assess the cloud detection stability
including the consideration of uncertainties and external factors. These
results are shown in Section 4. The final stage is to evaluate the impact of
cloud detection instability on the LST stability (Section 5).

3. Match-up dataset

A match-up dataset was developed for the analysis in this paper,
synthesising both satellite observations and in-situ data. The subsections
below describe each of the inputs in detail, after which we describe the
matching process.

3.1. Satellite data

The LST CDR is comprised of data from four satellite instruments:
ATSR-2 aboard the second European Remote sensing Satellite (ERS-2),
AATSR aboard the Environmental Satellite (EnviSat), MODIS aboard the
National Oceanic and Atmospheric Administration Terra platform and
SLSTR-A aboard the Sentinel 3A satellite (Donlon et al., 2012; IDE-
AS+AATSR QC Team, 2016; Masuoka et al., 1998). Each satellite in the
CDR is polar-orbiting with a local-time equator overpass of 10:30
(22:30) for ATSR-2 and MODIS, and 10:00 (22:00) for AATSR and
SLSTR. The four instruments all have channels at infrared and visible
wavelengths, designed to facilitate both surface temperature retrieval
and cloud detection.

Table 1 summarises the characteristics of the four instruments.
ATSR-2 and AATSR data have a resolution of 1 km at nadir. For MODIS,
only the 1 km resolution channels are listed in Table 1 (the instrument
has a further 8 channels at 250-500 m resolution, not relevant to this
study). SLSTR data at reflectance wavelengths have a resolution of 500
m, mapped independently of the infrared data to the satellite image grid.
The higher resolution channels are aligned with the infrared using a
simple 2 x 2 averaging (Coppo et al., 2010). MODIS and SLSTR have a
wider swath width than ATSR-2 and AATSR instruments. MODIS and
SLSTR observations are therefore limited to the satellite zenith angle
range of 0-22 degrees (effectively reducing the usable swath width to
match the earlier instruments), to ensure consistency between all in-
struments in the CDR. The data used in this study are from v1.00 of the
LST CCI algorithm (Perry et al., 2020). No temporal correction has been
made to the nominal overpass time of the satellite in the data used for
this study to account for the time difference across the satellite swath,
but time differences are limited by the restricted satellite zenith angle
range.

3.2. In-situ ceilometer data
The satellite data are matched to the locations of four ceilometers,

which provide a measure of the height of the lowest cloud base. These
ceilometers are located in Ny Alesund in Svalbard (Maturilli and Herber,
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Fig. 1. Workflow for the assessment of cloud detection stability and its impact on LST stability.

Table 1
Instrument characteristics for the sensors used in the satellite CDR.
Sensor Satellite Equator Channels (ym) CDR time
Overpass period
Time
ATSR- ERS-2 10:30 and 0.55, 0.67, 0.87, 1.61, 3.7, 1995-2002
2 22:30 10.85, 12.0
AATSR EnviSat 10:00 and 0.55, 0.67, 0.87, 1.61, 3.7, 2002-2012
22:00 10.85, 12.0
MODIS Terra 10:30 and 0.42, 0.44, 0.49, 0.53, 2012-2016
22:30 0.56, 0.65, 0.68, 0.75,
0.87, 0.91, 0.936, 0.94,
1.38, 3.75, 3.96, 4.05,
4.47, 4.52, 6.72, 7.33,
8.55, 9.73, 11.03, 12.02,
13.34, 13.64, 13.94, 14.24
SLSTR Sentinel 10:00 and 0.56, 0.66, 0.87, 1.38, 1.6, 2016-2020
3A 22:00 2.25, 3.74, 10.85, 12.0

2017), the North Slope of Alaska and Oliktok Point (both on the Arctic
coastline) (Morris et al., 1996) and the Southern Great Plains in Okla-
homa (Morris et al., 1996). The primary characteristics of the ceilometer
locations and measurements are given in Table 2 and Fig. 2. These four
sites were chosen as they meet the following two criteria: a) dataset
length sufficient to overlap with two or more of the satellite sensors used

Table 2
Characteristics of the four ceilometer sites used to determine cloud base height.

Fig. 2. Site locations of the four ceilometers: Ny Alesund (NY), North Slope of
Alaska (NSA), Oliktok Point (OLI) and Southern Great Plains (SGP).

in the CDR, and b): attenuation height of at least 13 km, sufficient to
detect cirrus cloud (many ceilometers have attenuation heights of ~8
km so do not meet this criterion). Throughout the remainder of this
paper, the sites will be referred to by their short names as given in
Table 2: NY, NSA, OLI and SGP.

Location Facility Latitude  Longitude  Attenuation Height Dataset Measurement Site Characteristics
Length Frequency
Ny Alesund National Environment 789N 119E 13th July 1998 to 1998-2016 1 min Within the Arctic Circle.
(NY) Research Council (NERC) 24th Aug 2011 13 km, Snow cover is dominant year round,
15 km thereafter temperatures exceed freezing in summer
months.
North Slope of Atmospheric Radiation 71.3N 156.6 W 15-20 km 2000-2019 30s Within the Arctic Circle. Snow cover in
Alaska (NSA) Measurement (ARM) winter months. Tundra thaws in
summer.
Oliktok Point ARM 70.5N 1499 W 20 km 2014-2019 30s Within the Arctic Circle. Snow cover in
(OLD winter months. Tundra thaws in
summer.
Southern Great ARM 36.6 N 97.5W 25 km 1997-2018 1 min Located in an area of cattle pasture.
Plains Continental climate (warm summers and
(SGP) cool winters).
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3.3. Satellite to in-situ data matching

The satellite data are matched to the in-situ observations with a
maximum spatial separation of 1 km (commensurate with the resolution
of the satellite data) and a maximum time difference of 30 s. The time
difference is minimised to prevent cloud movement between satellite
and in-situ data pairs giving genuinely different cloud detection results.

The satellite matchups that are extracted comprise 31 across-track
pixels by 7 along-track pixels, centred on the location of the ceilom-
eter instrument. This larger across-track data extraction is required, to
take account of the viewing geometry differences between the satellite
and ceilometer. The ceilometer instrument looks directly upwards in the
vertical, whilst the satellite looks downward, with a satellite viewing
zenith angle restricted to between 0 and 22 degrees. The satellite pixel
matched to the ceilometer observation is the one having the geometry
nearest to that shown in Fig. 3, i.e., that whose line-of-sight views cloud
above the cloud-base detected by the ceilometer. This requires ac-
counting for both cloud base height and satellite zenith angle. The un-
certainty on the cloud base height estimation from the ceilometer data is
+/— 5 m (Morris, 2016) and is negligible in this choice of pixel.

In the absence of cloud (clear-sky conditions as seen by the ceilom-
eter) the reference height for collocating the satellite observation is set
to 6 km. This mid-tropospheric height, where many clouds are located is
chosen to maximise the overlapping volume sensed by the satellite and
ceilometer viewing geometries in the clear-sky case. Also recorded in
these cases is the length of time before and after the match-up time,
during which the ceilometer records clear-sky conditions, referred to as
the clear-sky history.

3.4. Cloud detection algorithms

Cloud detection stability is assessed using three different algorithms:
1) Bayesian cloud detection, 2) probabilistic cloud detection and 3)
operational cloud detection algorithms. The reason for choosing these
algorithms is as follows. The Bayesian cloud detection scheme has been
designed to work for surface temperature retrievals and has a long his-
tory of application to sea surface temperature climate data records
(Embury et al., 2024; Merchant et al., 2019). The probabilistic cloud
detection algorithm is routinely applied to LST products from polar
orbiting sensors within the ESA LST CCI project (Ghent et al., 2019;
Ghent et al., 2017), including those used together to form CDRs. Finally,
the operational cloud detection algorithms are the ones supplied directly

% Satellite
'3

/

5

Cloud base

height
1
1

Location of satellite pixel observing Ceilometer

the same cloud as the ceilometer

Fig. 3. Schematic illustrating the possible across-track offset in the ground
projection of the satellite pixel observing the same cloud feature as the ceil-
ometer. Where a cloud base height is detected by the ceilometer, the best
matched satellite pixel for cloud detection comparison purposes is the one
which intersects with the atmospheric column immediately above this cloud
base height.
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with the satellite data and would be available to users applying their
own LST retrieval schemes (Ackerman et al., 1998; Birks, 2007; Euro-
pean Space Agency, 2023; Zavody et al., 2000).

3.4.1. Bayesian cloud detection (UoR)

A detailed description of the Bayesian cloud detection algorithm as
applied over land is provided elsewhere (Bulgin et al., 2022; Merchant
et al., 2005) so we provide only a brief overview here. Bayes’ theorem
can be applied to the problem of cloud detection to calculate the prob-
ability that a given observation is cloud-free. The probability of a clear-
sky pixel P(c|y",xb), is conditional on prior information of the back-

ground state (x*) and the observation vector (y°) as shown by Eq. (1).

P(©)P(y°lx’,c)
P(c)P(y*|x*,¢)

The background state (x*) is a reduced state vector including skin
temperature, total column water vapour and aerosol optical depth,
constrained by hourly ERA5 numerical weather prediction (NWP)
reanalysis data and aerosol optical depth from the Copernicus Atmo-
sphere Monitoring Service (CAMS) (Bulgin et al., 2022; Hersbach et al.,
2020; Inness et al., 2019). P(c) and P(c) are the prior probabilities of
cloud and cloud-free conditions respectively as specified by the ERA5
cloud fraction, with P(c) constrained between 0.5 and 0.95 (Bulgin et al.,
2022). The observation vector (y°) is comprised of the satellite obser-
vations at infrared and, during the day, reflectance wavelengths. The 11
and 12 pm channels are always used, with the addition of the 3.7 pm
channel at night and the 0.6, 0.8 and 1.6 pm channels during the day
(Table 3). P(y°|x®,c) is the clear-sky probability of the observations
given background conditions and is simulated using a fast radiative
transfer model (RTTOV 12.3, (Hocking et al., 2019)). P(y°|x®,c) is the
cloudy sky equivalent, pre-calculated and stored in the form of a look-up
table due to the significant computation expense of simulating all
possible cloudy sky conditions (Bulgin et al., 2022). A threshold of 0.5 is
placed on the resultant clear-sky probability to generate a binary cloud
mask, above which, pixels are considered clear. This algorithm was
developed at the University of Reading and is referred to using the
shorthand ‘UoR’ throughout this manuscript.

-1

P(cly’, x’) = |1+ €h)

3.4.2. Probabilistic cloud detection (UoL)

The naive probabilistic cloud detection algorithm compares a given
satellite observation against a pre-calculated probability density func-
tion (PDF) of clear-sky conditions for the pixel location. These PDFs are
generated from clear-sky simulations using a fast radiative transfer
model (RTTOV11.2, (Hocking et al., 2015)) run at the European Centre
for Medium Wave Forecasting (ECMWF) profile locations in the ERA-
Interim reanalysis (Bulgin et al., 2014). Temporal interpolation is
employed between the 6-hourly timesteps of ERA-Interim and spatial
interpolation is bi-linear between ERA-Interim profile locations (Bulgin
et al.,, 2014). The PDF is constructed by taking the mean simulated
brightness temperature and the standard deviation of the observational
climatology from the corresponding 5 x 5 degree grid cell, dependent on
month, biome and day/night partitioning (Bulgin et al., 2014). The
observational climatology is constructed using data from AATSR for 27

Table 3
Summary of wavelengths used for each cloud detection algorithm over land.

Algorithm Channel wavelengths / pm

Day Night
Bayesian 0.6, 0.8, 1.6, 11, 12 3.7,11,12
Probabilistic 11,12 3.7,11,12
SADIST 0.5, 0.6, 0.8, 11, 12 3.7,11,12
Basic Cloud Mask 0.5, 0.6, 0.8, 1.4, 11, 12 3.7,11,12

MODIS Cloud 0.6,0.8,1.4,3.7, 3.9, 11, 12, 3.7,3.9,6.7,7.3,11, 12,
Mask 13.9 13.9
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biomes, derived from the GlobCover land cover classification (Ghent
etal., 2017). Pixels are determined to be cloudy if they fall outside of the
95 % limit of either of the two tests employed. At night the observations
are tested against the simulated 12 pm temperature and 11-3.7 pm
differences. During the day the observations are tested against the
simulated 12 pm temperature and 11-12 pm differences (Table 3)
(Bulgin et al., 2014). This algorithm was developed at the University of
Leicester and is referred to using the shorthand ‘UoL’ throughout this
manuscript.

3.4.3. Operational cloud detection (Oper)

The operational cloud masks are all based on a series of threshold
tests. ATSR-2 and AATSR data are provided with the Synthesis of ATSR
Data Into Sea-Surface Temperature (SADIST) cloud mask, which has
been adapted for use over land (Birks, 20077; Zavody et al., 2000). The
tests employed are for gross cloud, thin cirrus, medium/high level cloud,
fog/stratus and during the daytime only, a test based on the normalised
difference vegetation index (NDVI) and a snow test. The channels
employed in these tests are shown in Table 3. SLSTR follows on from
ATSR-2 and AATSR in the ESA satellite instrument series (although there
was a 4-year gap between the failure of AATSR in 2012 and the launch of
SLSTR in 2016). The SLSTR cloud mask is therefore an evolution of the
SADIST cloud mask, referred to as the ‘basic cloud mask’ in SLSTR
products (European Space Agency, 2023). It employs the same series of
tests as those used by SADIST, with the addition of an 11 pm spatial
coherence test and a 1.375 pm threshold test (European Space Agency,
2023). In this study we use the summary cloud mask.

The MODIS operational cloud mask provides a gradated confidence,
classifying each pixel as either cloudy, probably cloud, probably clear or
confidently clear (Ackerman et al., 2010). For the purpose of this study,
we implement a binary mask, which considers all ‘cloudy’ and ‘probably
cloud’ pixels to be cloud and the remainder clear-sky. MODIS tests
include identification of thin cirrus, low-level water clouds, high and
mid-level clouds, and surface/low clouds. During the day additional
reflectance tests are used and at night a comparison is made between the
observations and expected clear-sky surface temperatures (Ackerman
et al., 2010). The channels used in the cloud-masking algorithm are
summarised in Table 3. These series of algorithms are referred to by the
shorthand ‘Oper’ throughout this manuscript.

3.5. LST retrieval

A LST retrieval was made for all observations within the match-up
database (irrespective of the cloud masking outcome of any given al-
gorithm), facilitating comparison of LST values as would be retrieved
when applying different cloud-clearing algorithms. The Leicester ATSR
and SLSTR Processor for Land Surface Temperature (LASPLAST) (Ghent
et al., 2017) algorithm is applied to all sensors within the CDR. Full
details of this split-window retrieval algorithm are provided in (Ghent
et al., 2017).

4. Metrics and definitions

We define in this section the series of metrics and definitions that we
use throughout this paper. The results section refers to these definitions
as appropriate to save repetition throughout the manuscript.

4.1. Match-up data comparisons

Match-up data at four in-situ locations are evaluated in this paper. Ny
Alesund (Svalbard, Europe), North Slope of Alaska (Alaska, North
America) and Oliktok Point (Alaska, North America) are all high-
latitude sites in the northern hemisphere, whilst the Southern Great
Plains (Oklahoma, North America) is mid-latitude site. The temporal
frequency of satellite to in-situ matches varies by site. At higher lati-
tudes, match-up frequency reaches 90-min time intervals where
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consecutive satellite overpasses view the same location. In the mid-
latitudes overpass frequency occurs a maximum of twice a day with
intervals up to 2-3 days in-between, depending on the swath width and
return time of the satellite. We therefore analyse the data at quarter-year
intervals: January-March (JFM), April-June (AMJ), July-September
(JAS) and October-December (OND) and ensure that any statistics
calculated are based on a minimum of 20 matchups in each season.

4.2. Cloud performance metrics

For each ceilometer-satellite match-up we know the state of the
ceilometer path (clear/cloud), the length of clear-sky history before and
after the ceilometer-satellite match (given by the ceilometer) and the
satellite path’s classification (clear/cloud) according to each of the
cloud detection algorithms (Fig. 4). The true state of the satellite path is
unknown and may differ from the ceilometer path due to the difference
in viewing geometry and spatial footprint of the observation (see Section
3.3).

The ceilometer-satellite matches can be split into three groups: a)
clear-sky ceilometer data with at least 90 s of clear-sky observations
before and after the time of the match (S), b) clear-sky ceilometer data
with fewer than 90 s of clear-sky observations before and/or after the
time of the match (T) and c) cloudy ceilometer data (U). Choosing a
value of +/— 90 s for the clear-sky history ensures that at a minimum the
ceilometer observation prior to and following the matched data were
both clear. For ceilometers with an observation frequency greater than
every minute, this window would encompass more observations.

For each of these classes of observations (S, T and U), the fraction of
observations where the satellite path is truly clear or the satellite path is
truly cloud will sum to one, but the fractions themselves are unknown
(represented by letters a-f, Fig. 4). In each case (a-f), the cloud detection
algorithms will then classify the satellite path as either clear or cloudy
(each pair of fractions again sums to one, represented by the letters G-R,
Fig. 4).

Using the variables in this contingency table (Fig. 4) we can
formulate two metrics of interest: 1) the fraction of clear-sky LST clas-
sifications that is likely to be contaminated by cloud (CC) and 2) the
fraction of clear-sky pixels that are misclassified as cloud (MC).

SbI + TdM + UfQ

= 2
cc S(aG + bl) + T(cK + dM) + U(eO + fQ) @
Ceilometer Path Satellite Path Satellite Path
(true state) (classified state)
[G] Clear
Clear [a] _ Clear </
(+/- 90 seconds clear-sky W Cloud
history) <
[S] . | I_— Clear
[b]  Cloud S
] Cloud
K Clear
Clear [c] _ Clear <y
(< +/- 90 seconds clear-sky F Cloud
histol
Y < M Cl
[T ear
} Cloud </]\/
[N] Cloud
O Clear
[e] Clear <y
Cloud [(py — Cloud
(] 4
|[Ql — Clear
[f] Cloud i e NN
[R] Cloud
KNOWN UNKNOWN KNOWN

Fig. 4. Schematic illustrating the relationship between the state of the ceil-
ometer path, the true state of the satellite path and the classified state of the
satellite path.
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SaH + TcL + UeP

Mc = S(aH + bJ) + T(cL + dN) + U(eP + fR)

3

We assume that the underlying probabilities of truly clear-sky pixels
being classified as clear or misclassified as cloudy by a given cloud
detection algorithm are consistent and independent of the reported state
from the ceilometer. These assumptions imply the following: G = K =
O;H =L =P;,I=M=Qand J =N =R. For cloudy observations, we
also match the satellite path directly to the height of the cloud base
observed for the ceilometer, which gives a high degree of certainty thata
truly cloudy satellite path was viewed, so we can assume that e = 0 and
therefore f = 1.

Considering first the calculation of CC (Eq. (2)), we can define the
following quantities where V is the number of all clear-sky ceilometer
observations with a long clear-sky history, classified as clear-sky by the
given cloud detection algorithm. W is the equivalent metric for the clear-
sky ceilometer observations with a shorter clear-sky history. X is the
number of cloudy ceilometer observations where the satellite path is
classified as clear-sky.

V = S(aG +bI) “4
W = T(cK + dM) 5
X=UQ (6)

Substituting these quantities into Eq. (2) gives:

Sb+ Td) X, + X
o ST Xy X &

V+W+X

Here, all variables are known from the match-up datasets except for b
and d, which cannot be directly observed. However, we can assess the
sensitivity of CC and MC to plausible values. By choosing upper (worst
case), lower (best case) and most-likely values for these variables, we
can calculate a sensitivity of the CC metric to varying amounts of cloud
contamination.

The best-case scenario is that the ceilometer result always accurately
reflects the true state of the satellite path, in which case b = d = 0 %. The
reasons to expect this not to be the case are 1) the larger atmospheric
column observed by the satellite (1 km pixels at nadir) in comparison
with the ceilometer, 2) cloud movement between the times of the ceil-
ometer and satellite observations and 3) inconsistencies in the atmo-
spheric path observed by the ceilometer and the satellite due to
differences in viewing geometry.

The likelihood of inconsistency in the atmospheric path increases
with satellite viewing zenith angle and can be represented by the dis-
tance of the matched satellite pixel as projected onto the ground, from
the satellite pixel containing the ceilometer (pixel shift). This ranges
between 0 and 2 for the viewing geometries considered in this paper.
The values chosen for b and d are therefore dependent on this difference.

Values for b and d are shown in Table 4. The fraction of clear-sky
ceilometer cases where the true state of the satellite path is cloudy (b)
is 0 % in the best case for all pixel shifts. As b is a fraction of S, where we

Table 4
Sensitivity analysis for calculating b and d dependent on ground-shift in matched
satellite pixel.

b No shift 1-pixel shift 2-pixel shift
Best case 0% 0% 0%

Most likely (realistic case) 0% 2% 5%

Worst case 0% 5% 10 %

d No shift 1-pixel shift 2-pixel shift
Best case 0% 0 % 0%

Most likely (realistic case) 5% 20 % 50 %

Worst case 10 % 50 % 80 %
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have a clear-sky history of +/— 90 s from the time of the match, we
assume that in all cases where there is no shift, the likelihood of cloud
contamination in the satellite path is 0 %. As the pixel shift increases and
the ceilometer-satellite paths diverge, the likelihood of cloud contami-
nation increases. We use values of 2 % and 5 % (most likely and worst
case) for a 1-pixel shift and 5 % and 10 % respectively for a 2-pixel shift,
to test the sensitivity of CC to b.

d is the equivalent fraction to b, but applied to the set of matchesin T,
where the clear-sky history for each match is shorter than +/— 90 s. In
this case, the chances of cloud contamination are greatly increased. In
the best case, we again assume 0 % for each pixel shift. We then test the
sensitivity by defining d as 5 % for the no-shift most-likely case, 20 % for
the 1-pixel shift and 50 % for the 2-pixel shift 50 %. In the worst-case
scenario, we use values of 10, 50 and 80 % respectively.

The percentage of pixels with different ground-pixel shifts is location
specific (Table 5). We use this information along with the range of values
given in Table 4 for the sensitivity analysis to calculate location specific
values for b and d for each case (best, most likely and worst). For
example, to calculate d in the most likely case for Ny Alesund we use:
d = (19*0.05) + (41*0.2) + (40*0.5) = 29.2%. The location specific
split in the percentage of clear-sky observations that fall into groups S
and T is accounted for by independently multiplying the total number of
observations in each group by b or d.

Returning to Eq. (3), we can define three further metrics from the
data we have available. a is the number of clear-sky observations in
group S that are classified as cloud by the given cloud detection algo-
rithm. g is the equivalent metric for group T. y is the number of cloudy
ceilometer observations also classified as cloud by the given algorithm.

a = S(aH+bJ) (8
B = T(cL+dN) ©)
y=UR 10

Substituting these values into Eq. (3) gives Eq. (11). a and ¢ can be
calculated as (1 — b) and (1 — d) respectively.

H(Sa + Tc)
MC=———F7F— 11
a+p+y an
Finally, we solve for H using previously defined parameters:
S = SaG + SaH + SbI 4 SbJ 12)
Substituting in Egs. (4 and 10), then dividing by S gives:
1=aH+by;+ Vi (13)
1-by;;—V
He Ju~—Ys a4

a

H is therefore calculated on a location and algorithm-specific basis.

4.3. Monte-Carlo Theil-Sen slopes

To calculate timeseries trends, we follow an updated version of the
methodology used by (Good et al., 2022), when calculating LST tem-
poral stability with reference to two-metre air temperature data. The
Theil-Sen regression calculates pairwise slopes between each data point

Table 5
Percentage of matches with no, one and two ground-pixel shifts in the matching
of the ceilometer and satellite observations.

Location No Shift 1-Pixel Shift 2-Pixel Shift
NY 19 % 41 % 40 %
NSA 18 % 46 % 36 %
OLI 9% 53 % 38 %

SGP 21 % 50 % 29 %
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in the timeseries and takes the median of these slopes as the slope
estimator, making it less sensitive to outliers (Sen, 1968). One limitation
of this approach as used by (Good et al., 2022) is that it doesn’t account
for the uncertainty in the input data. We therefore adopt a Monte-Carlo
Theil-Sen approach, whereby we calculate the Theil-Sen median over
10,000 iterations (Metropolis and Ulam, 1949; Sen, 1968). We seed the
Monte-Carlo iteration with the original datapoints and sample randomly
within the upper and lower bounds (best and worst case scenarios) for
each observation thereafter. From the resultant distribution of 10,000
median slopes, we take the mean and two sigma to describe the slope
and variability. If the two sigma bounds on the slope encompass a slope
of zero, we consider the timeseries to be stable.

5. Results
5.1. Match-up data characteristics

Fig. 5 (panels a-d) shows the quarterly mean cloud fraction, calcu-
lated independently for each sensor using all matches in each timeseries.
A sensor is included in the analysis where there are three or more years
of match-ups available. The data record at OLI is shorter and only
MODIS-T and SLSTR-A have more than three years of ceilometer
matches. Error bars indicate the standard error on the calculation of the
mean. Note that the scales on the y-axis of these figures are different for
each location. NY has the highest cloud fraction (ranging between 0.68
and 0.81 for AATSR and MODIS), peaking in JAS, with a minimum in
JFM. NSA and OLI are both located in northern Alaska but have quite
different annual cycles in cloud fraction. For NSA, the cloud fraction is
lowest in AMJ (0.22-0.35) and highest in OND (0.45-0.49) for AATSR,
MODIS and SLSTR (but less variable for ATSR-2). At OLI, the cloud
fraction is consistent year-round for MODIS (0.36-0.41). The SLSTR
cloud fraction is more variable, but the data also have a higher uncer-
tainty. In SGP, cloud fraction is at a minimum in JAS and a maximum in
JFM, ranging between 0.38 and 0.66.

The seasonal LST climatology is plotted in Fig. 5 (panels e-h) for all,
day and nighttime observations. To calculate the climatology, we use all
matches in group S, with a no ground pixel shift between the satellite
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and ceilometer (Section 4.2), where we are confident that the ceilometer
clear-sky observations are also clear for the satellite path. Nighttime is
defined as all solar zenith angles greater than 85 degrees. All sites have
an LST minimum in JFM and a maximum in JAS as they are all located in
the northern hemisphere. NY, NSA and OLI are all high latitude sites
with similar LST ranges. Daytime minimums are 254.5, 248.5 and 248.7
K for each site respectively (occurring in JFM) and daytime maximums
are 275.4, 273.3 and 275.1 K (in JAS). Nighttime minimums in JFM are
252.2, 244.6 and 247.5 K; 1.2-3.9 K cooler than the daytime minimums.
Nighttime maximums in JAS are 267.4, 269.1 and 264 K. The largest
temperature difference between day and night occurs in AMJ. In SGP,
increased daytime solar heating increases the difference between day-
time and nighttime LST. Nighttime LST has a minimum of 275.1 K in
JFM and a maximum of 296.7 K. Daytime equivalents are 287.6 and
313.9K.

Fig. 6 shows the CC and MC performance metrics (defined in section
4.2). The solid line shows the most likely case with the shading repre-
senting the range between the best and worst case for each metric. In NY,
UoR has the lowest fraction of algorithm-defined clear-sky pixels
contaminated by cloud, ranging between 0.36 and 0.53, with a mini-
mum in AMJ. CC is higher for both the UoL and Oper algorithms
(0.48-0.66). The possible range of CC values is small for all seasons and
algorithms (00.02-0.04). In NSA the most likely CC value is similar for
all algorithms in OND (0.43-0.46), diverging across the other seasons
with a minimum for Oper in AMJ and a minimum for UoR and UoL in
JAS. The range in values between the best and worst case is also a bit
larger (0.03-0.06). OLI has similar values of CC to NSA, with lower
fractions for Oper (0.24-0.31) and UoR (0.27-0.35), than UoL
(0.28-0.43). In SGP, CC follows the same seasonal pattern for all algo-
rithms with a minimum in JAS (0.16-0.21) and a maximum in JFM for
Oper and UoL (0.3-0.39), and OND for UoR (0.29). The possible range in
CC values in OLI and SGP is the lowest of all sites considered
(0.01-0.03).

MC typically has an inverse relationship to CC. In NY, MC is lowest in
JAS for all algorithms (0.08-0.15), peaking in JFM (0.24-0.31). The
range of possible CC values varies between 0.02 and 0.05 for all algo-
rithms. In NSA and OLI, MC is much larger than for NY and SGP. In OLI,
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Fig. 5. Match-up characteristics for the four in-situ ceilometer sites (NY, NSA, OLI and SGP from left to right). Variables shown are the quarterly cloud fraction for
each satellite sensor (top) and the climatological LST for each site (bottom).
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Fig. 6. Cloud detection performance for the ceilometer-satellite matches (NY, NSA, OLI and SGP from left to right). Variables shown are the fraction of clear-sky data
contaminated by cloud (CC) for each cloud detection algorithm (top) and the fraction of clear-sky data erroneously screened as cloud (MC) (bottom) by each of the
cloud detection algorithms. In all cases, the most likely case is represented by the solid lines, with shading representing the possible range of values (best case to worst
case). For more information on how this range is defined, please refer to Section 4.2.

a larger fraction of the clear-sky observations has a short clear-sky his-
tory (group T, 29 %), reflected in the greater possible range of values for
MC (0.05-0.12). In both NSA and OLI, MC peaks in AMJ (0.6-0.65 for
NSA, 0.58-0.64 for OLI). The season with the minimum MC is algorithm
and location specific. The lowest MC fractions for any site are found for
the UoL and Oper algorithms in SGP, with a minimum in JFM
(0.05-0.07) and a maximum in JAS (0.1-0.14). The UoR algorithm
performs less well here, with MC ranging between 0.29 and 0.4.

5.2. Cloud detection metric timeseries

Fig. 7 shows timeseries plots of the annual CC and MC metrics (most
likely values) for each ceilometer site. Data are only included where
every season is represented in the annual average. This is important in
the calculation of stability in the annual mean performance metrics as
they show considerable seasonal variability (Fig. 6). Where full seasonal
representation is unavailable due to gaps in the ceilometer or satellite
data record (early 2000’s and 2010 for some sites), these years are
omitted.

Overall performance is algorithm, location and sensor specific.
Consistent with the seasonal analysis in Fig. 6, CC is largest in NY,
ranging between 0.34 and 0.63 for UoR, 0.44-0.68 for UoL and
0.35-0.71 for Oper. Some temporal variability is evident in CC for all
algorithms, with lower values at the beginning of the AATSR part of the
CDR and then again at the end of the AATSR record and first year of
MODIS. In the next section we discuss whether this variability could be
related to external factors.

In NSA, there is less coherent temporal variability in CC. CC is most
variable for UoR, with peaks in 2005, 2006, and 2015. The overall CC
rates are lower than for NY: 0.24-0.55 for UoR, 0.28-0.44 for UoL and
0.27-0.44 for Oper. In OLI, Oper has the lowest CC values (0.21-0.24)
and there is a step-change between MODIS and SLSTR for the UoL al-
gorithm. CC values for MODIS data are 0.28-0.39 and for SLSTR data,
0.4-0.46. In SGP, CC is the lowest of the four sites analysed, but there is
significant interannual variability with a range of 0.34 for UoR, 0.2 for
UoL and 0.27 for Oper.

For MC, there is a step-change for all algorithms for NY, where MC is
high during the ATSR-2 data record and then lower thereafter. MC is
highest in NSA and OLI. For NSA, MC ranges between 0.5 and 0.64 for
UoR, 0.39-0.63 for UoL and 0.41-0.63 for Oper. The largest MC values
are seen in 2003 and 2016-2019. In OLI there is evident upward trend in
MC for UoL rising from 0.33 in 2014 to 0.46 in 2019. MC is lowest for
SGP with a significant difference between UoL and Oper (0.0-0.26 and
0.0-0.15 respectively) and UoR (0.25-0.41). MC rises for UoL during the
SLSTR data record.

5.3. Stability in cloud-detection performance metrics

The first step in assessing whether the cloud clearing algorithm
employed prior to the LST retrieval has the potential to generate non-
geophysical trends in the LST data is to assess the temporal stability of
the performance metrics, CC and MC. We do this using the Monte-Carlo
Theil-Sen methods described in Section 4.3. The results are provided in
Table 6. We assess the stability of the performance metrics for each
sensor individually, where we have at least three years of matches, and
then for the full timeseries. The slope and confidence interval values
provided in Table 6 are for the Monte-Carlo Theil-Sen fit to the whole
timeseries.

Considering first CC, only two timeseries meet the stability criteria:
UoR at NSA and SGP. In these cases where CC is considered stable for the
entire timeseries of matches, each sensor taken on an individual basis
would be considered unstable with the exception of MODIS for SGP.
With the exception of ATSR-2 at NSA for UoL and Oper and MODIS for
UoR at SGP, all sensor-specific results for other site-algorithm compar-
isons also fail to meet the stability criterion (shown by the red colours in
Table 6).

For MC, timeseries stability is achieved for UoR at NSA, OLI and SGP,
and for Oper at OLI and SGP. A greater number of individual sensor
records are also stable across all cloud detection algorithms. The only
data record where all sensors and the timeseries are stable is for UoR at
OLL In some cases, all contributing sensors can be stable e.g. Oper at NY,
but the timeseries as a whole is unstable.
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Fig. 7. Annual CC (a-d) and MC (e-h) metrics for the UoR (blue), UoL (red) and Oper (green) cloud detection algorithms at each of the ceilometer locations. Trend
lines represent the Monte-Carlo Theil-Sen mean timeseries slopes as described in Section 4.3. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

5.4. External factors

Cloud mask performance can be affected by external factors such as
viewing geometry, cloud type and the total cloud-fraction, which we
must first consider before drawing conclusions on the impact of the
performance metric stability on the LST timeseries. Fig. 8 shows the
relationship between the CC and MC metrics for each algorithm and
location with respect to satellite zenith angle, solar zenith angle and the
lowest cloud base height. The satellite zenith angle of all matchups is
restricted to 0-22 degrees for consistency with the narrower swath
width of the ATSR-2 and AATSR instruments. No dependence on satel-
lite zenith angle within this range is apparent for any of the metrics at

any of the ceilometer locations.

The solar zenith angle range is site specific. NY is the most northerly
site, where the solar zenith angle minimum is 50-60 degrees. NSA and
OLI are slightly further south, so solar zenith angles between 40 and 50
degrees also occur in the matchups. For SGP, daytime matches occur
with solar zenith angles between 10 and 70 degrees. Twilight conditions
are not seen due to the latitude of the ceilometer site and the equatorial
overpass time of the satellites. All night-time observations are plotted to
the right-hand side of the grey dashed line in Fig. 8 panels e-h. At SGP,
UoR CC is lower at night than during the day and UoL MC is higher at
night than during the day. At NY, MC increases under twilight condi-
tions for all algorithms.
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Table 6
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Stability assessment of performance metrics CC and MCS, by sensor and for the entire timeseries. Monte Carlo Theil-Sen slopes
and confidence intervals (as described in Section 4.3) are presented. The stability column indicates the stability for the indi-
vidual sensors (ATSR-2, AATSR, MODIS and SLSTR represented by 1, 2, 3 and 4 respectively) and all (A) sensors in the
timeseries. Analysis is only performed for a given sensor where 3+ years of matchups are available.

Slope (S), Lower Confidence Interval (LCI), Upper Confidence Interval (UCI)
Cloud contaminated data Stable? Missed clear-sky data Stable?
Location | Algorithm S LCI UCI 1] 2| 3| 4 S LCI UCI 1 2| 3| 4
UoR 0.0044 0.0033 | 0.0055 -0.0043 | -0.0058 | -0.0028
NY UoL -0.0019 | -0.003 | -0.0008 0.0062 0.0042 0.0082
Oper -0.0073 | -0.0087 | -0.0059 -0.01 -0.011 | -0.0088
UoR 0.0014 | -0.0005 | 0.0033 0.0002 | -0.0019 | 0.0022
Nas UoL 0.0035 | 0.0023 | 0.0046 0.009 | 00059 | 0012
Oper -0.0015 | -0.0027 | -0.0003 -0.0029 | -0.005 | -0.0008
UoR 0.021 0.017 0.025 -0.0096 | -0.025 0.0057
oL UoL 0.022 | 0017 | 0.028 0.05 0.036 | 0.064
Oper -0.0036 | -0.0069 | -0.0004 0.0053 | -0.0094 0.02
UoR -0.0002 | -0.006 | 0.0001 0.0008 | -0.00002 | 0.0016
SGP UoL -0.0026 | -0.0031 | -0.002 0.0039 0.0028 0.005
Oper -0.0007 | -0.0012 | -0.0002 0.0004 | -0.0003 | 0.0012
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Fig. 8. External factors affecting CC and MC metrics for each of the four ceilometer sites (from left to right: NY, NSA, OLI and SGP). Metrics are plotted as a function
of satellite zenith angle (top), solar zenith angle (middle) and the lowest cloud base (bottom). For the solar zenith angle plots (e-h), nighttime matches are all plotted

in the 90-100-degree bin to the right of the grey dashed line.

The cloud base range is location dependent, with a maximum of 9 km
at the polar locations and 13 km in SGP. This is consistent with the
latitudinal variation in tropopause height, which is lower at the poles
than at the equator. Except for UoL at OLI (which shows poor perfor-
mance for all cloud base heights), the cloud contaminated fraction of
observations typically increases with cloud base height. Intuitively this
makes sense as the cloud optical thickness of high-level cirrus cloud is
typically lower than cumulus or stratus cloud features, reducing the
cloud signal in the observations.

Considering temporal evolution of the external factors that influence

10

cloud detection; the range of solar zenith angles in matchups at each
ceilometer site should be consistent given no orbital drift in the satellites
used to generate the CDR. Cloud type and amount has changed over time
(Mao et al., 2019; Norris, 2005) so we must account for this in our
stability analysis. Cloud fraction varies on the two-to-three-year time-
scale at all sites, with a slightly decreasing (but highly variable) trend
with time apparent for SGP (not shown).

Cloud fraction (CF) and CC are positively correlated for all three
algorithms at NY at the 95 % confidence interval with r values of 0.79,
0.66 and 0.55 for UoR, UoL and Oper respectively. CF and CC are also
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positively correlated for UoR at NSA (r = 0.62), for Oper at OLI (r =
0.86) and for UoL and Oper at SGP (r = 0.78 and r = 0.66 respectively).
We can account for the CF variability in the stability analysis by
multiplying CC by 1-CF, prior to calculating the Monte-Carlo Theil-Sen
slopes. This has no impact on the stability of the results presented in
Table 6 and we therefore conclude that temporal variability in CF is not
a major contributor to instability in the CC metric.

5.5. LST impacts

Having established that the cloud mask performance metrics can be
unstable for reasons that are not obviously linked to external controlling
factors (section 5.4) it is important to consider the impact of these in-
stabilities on the LST timeseries. To do this we calculate the ‘true’ LST
for each in-situ site and seasonal average, taking clear-sky observations
from the ‘S’ group only (where cloud contamination is less likely in the
satellite path), limiting matches to those where the satellite ground pixel
was no more than one removed from the ground pixel containing the
ceilometer. These constraints allow a 2 % (most likely) contamination
by cloud (Table 4) for the matches with one ground pixel shift. This is
considered an acceptable trade off to increase the number of satellite-
ceilometer matches available for the analysis. For clear-sky data, using
a mid-tropospheric matching height of 6 km (Section 3.3) results in
fewer matches with no ground pixel shift, as the satellite viewing ge-
ometry needs to be close to nadir for this occur. For cloudy matches, a
cloud base below 6 km increases the occurrence of pixels with no ground
shift across a wider range of off-nadir satellite viewing angles. In each
case we calculate the anomaly by subtracting the seasonal climatology
in each location, calculated using the same constraints on clear-sky
pixels as the LST calculated from the satellite observations. In this
analysis, we do not the omit years where some seasons are underrep-
resented due to gaps in the data record as we are now focusing on LST
anomalies.

The same process is undertaken to calculate the anomalies in the
‘algorithm defined’ LST. This consists of LST from the pixels correctly
identified as clear-sky by the satellite cloud detection algorithm and the
cloudy pixels that have been falsely flagged as clear-sky. Stability is
assessed by subtracting the timeseries of annual average anomalies for
the true LST time series, from the algorithm-specific time series and
fitting a linear trend to the result. The results are shown in Fig. 9 and
Table 7. OLI is omitted due to the relatively short duration of the data
record (8 years) compared to the GCOS definition of LST stability,
measured in kelvin per decade.

Based on the relatively short timeseries of matches available, the UoL
and Oper algorithms are stable in NSA and the UoR and Oper algorithms
in SGP, to within the GCOS threshold requirement of 0.3 K per decade.
However, some caution must be applied here in the interpretation of
these results due to the large interannual variability (of order 2-4 K) in
the anomaly difference timeseries and the inevitable dependence of the
stability on dataset length (max 22 years). These timeseries also indicate
a site-specific bias in the LST timeseries dependent on the cloud
screening algorithm used. In NY, this is of order 2 K for UoL and 4 K for

a)

Ny Alesund

North Slope of Alaska
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Table 7
LST stability in kelvin per decade arising from cloud detection instability, for the
UoR, UoL and Oper algorithms at the NY, NSA and SGP ceilometer locations.

NY NSA SGP
UoR 0.4 -0.73 0.21
UoL 0.38 0.18 0.5
Oper 0.36 0.01 0.29

UoR. In NSA the bias is larger for UoL (~3.5 K) and for both sites close to
0 K for Oper. In SGP, UoR has a clear cold bias of ~5 K.

5.6. Characterising CC and MC observations

LST stability requires a balancing of the two mechanisms by which
cloud detection can fail: 1) the omitted clear-sky data due to over-
screening and 2) the cloud contaminated pixels missed in the cloud
screening process. The approach taken in constructing these matches
allows us to look at the characteristics of both the missed clear-sky ob-
servations and the unscreened cloud for each of the evaluated algo-
rithms. We do this first for the missed clear-sky observations, selecting
the ceilometer clear-sky observations in group S, limiting these matches
to where the ground pixel for the satellite path contains the ceilometer
location (no shift), where we are confident that the cloud contamination
likelihood is 0 % under these conditions. We plot the PDF of the dif-
ference between the LST in each pixel that is wrongly flagged as cloud
minus the seasonal LST climatology (Fig. 10). Each location, algorithm
and season is considered independently. For the cloud contamination
equivalent plot, we take all matches in group U and identify those that
are not correctly flagged by each of the evaluated algorithms. No limit is
placed on the ground shift in the matched pixel as the cloud height is
matched directly (we are certain that the cloud is in both the ceilometer
and satellite field of view). LST is retrieved for these pixels (which will
include the effect of the cloud on the retrieved surface temperature) and
we plot the PDF of the difference between these LSTs and the climato-
logical LST (Fig. 11). In all cases we fit a Gaussian distribution to the
PDF.

The mean value and number of observations corresponding to each
PDF are provided in Table 8 for the missed clear-sky pixels (corre-
sponding to Fig. 10), and Table 9 for the cloud contaminated pixels
(corresponding to Fig. 11). Considering first the missed clear-sky pixels;
in NY the largest numbers of missed pixels during the day occur in AMJ
and JAS with the largest proportion missed by UoR. Despite having the
largest number of pixels missed, the temperature difference of these
pixels is smaller relative to the climatology for UoR than for UoL (—1.58
K compared with —3.37 K in AMJ, —0.07 K compared with —4.61 K in
JAS). This is important, as the smaller the temperature bias in the missed
observations, the smaller the impact of excluding these values when
calculating an average LST over a grid cell.

For Oper the temperature difference is negative in AMJ (—2.28 K)
and positive in JAS (1.33 K). At night, the largest number of missed
pixels occur in JFM and OND for all algorithms. In these months cloud
and snow-covered ground surfaces are more frequently of a similar
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Fig. 9. LST stability for the satellite-ceilometer matches at NY, NSA and SGP. Timeseries show the ‘algorithm-specific’ LST anomalies minus the ‘true’ LST anomalies.

Stability is determined using a linear fit to the resulting difference.
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Fig. 10. Seasonal probability density functions for the missed clear-sky pixels in the ceilometer-satellite matches for each location. Results are presented inde-
pendently for each algorithm: UoR (blue), UoL (red) and Oper (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)
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Fig. 11. Seasonal probability density functions for the cloud contaminated pixels in the ceilometer-satellite matches for each location. Results are presented
independently for each algorithm: UoR (blue), UoL (red) and Oper (green). (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

temperature, making it harder to differentiate cloud from snow where
only thermal channels are available. The cloud masks have a tendency to
over-screen, the impact of which is typically exclusion of pixels colder
than the climatology, with mean values of —2.15 K and — 4.24 K for UoR
in JFM and OND respectively, and — 4.04 K and — 5.19 K for UoL. For
Oper, the mean temperature difference for the missed pixels is smaller,
—1.43 K and — 1.55 K in JFM and OND.
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NSA follows a similar pattern for daytime over-screening, with AMJ
and JAS having the highest numbers. UoR and Oper miss the largest
number of matches, with very similar statistics in the missed matches for
both. In AMJ the temperature bias is small relative to the climatology
(—0.18 K and — 0.21 K for UoR and Oper respectively), but larger in JAS
(—2.98 K and — 3.18 K). For UoL, despite over-screening fewer obser-
vations, the difference in these observations from the climatology is
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Table 8
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Missed clear-sky PDF mean values and number of missed observations for day (bold) and night.

PDF Mean Number of Observations
JFM AMJ JAS OND JFM AMJ JAS OND
NY UoR —0.8 —-2.15 —1.58 0.14 —0.07 —0.43 —0.004 —4.24 36 125 161 17 89 18 5 160
UoL —2.25 —-4.04 —3.37 -6.9 —4.61 —-6.9 —0.5 -5.19 16 59 84 11 27 11 3 85
Oper —2.76 —1.43 —2.28 -1.39 1.33 -1.08 0.54 —-1.55 8 120 77 8 56 23 4 167
NSA UoR 0.16 —1.08 —0.18 1.6 —2.98 —1.02 0.5 —1.45 60 101 132 27 97 39 25 94
UoL 0.45 —-3.72 —3.24 —0.16 —9.18 —5.14 —1.41 -1.77 24 90 59 20 55 23 18 69
Oper 2.2 —1.58 —0.21 1.6 —-3.18 -1.26 —2.29 0.04 20 74 106 14 94 31 14 86
OLI UoR —7.32 4.67 —5.96 3.32 —1.72 0.36 0.005 —5.54 1 8 5 3 7 5 2 5
UoL - -1.79 —22.9 - - 3.47 - -8.74 2 1 0 0 4 0 1
Oper —7.32 5.13 —6.45 1.54 —2.08 0.36 0.005 —5.85 1 6 5 2 7 5 2 5
SGP UoR —1.48 -0.3 2.13 -1.8 1.45 —0.11 1.25 —2.42 22 15 22 15 32 6 37 7
UoL - 3.73 - —13.64 - -1.07 - -1.13 0 3 0 2 1] 3 0 1
Oper —1.54 -3.61 - —13.64 13.18 —6.08 —10.16 0.94 5 4 0 2 1 8 6 6
Table 9
Cloud PDF mean values and number of cloud contaminated observations for day (bold) and night.
PDF Mean Number of Observations
JFM AMJ JAS OND JFM AMJ JAS OND
NY UoR - 7.23 6.65 1.65 0.63 1.68 - 6.26 0 426 159 1 247 97 0 671
UoL 1.58 4.13 1.46 4.53 —1.86 0.98 3.04 3.81 135 1048 586 32 910 225 39 1537
Oper —1.15 4.66 —2.08 3.48 —4.74 -2.0 1.63 3.44 151 593 746 27 464 189 24 972
NSA UoR 18.2 2.65 11.1 1.21 11.3 1.24 7.69 —0.43 2 187 28 26 30 65 2 260
UoL 3.42 4.36 4.11 2.58 6.95 2.42 4.52 0.69 69 293 118 65 102 53 32 382
Oper —1.08 2.07 0.89 -0.73 3.32 —2.64 0.19 —-0.75 69 204 73 36 54 69 31 304
OLI UoR 4.15 1.93 7.33 -0.25 4.07 9.33 2.4 -5.15 10 34 9 6 13 11 5 32
UoL 4.98 1.54 —-1.1 0.27 —-3.16 2.55 —6.56 —-5.76 46 127 71 22 126 71 22 138
Oper 4.02 1.72 8.0 1.83 6.38 3.97 —1.2 —-3.25 8 21 11 4 20 6 5 16
SGP UoR —2.12 -1.76 —5.12 —2.42 —7.16 -0.18 —6.05 —-2.72 10 29 12 33 10 31 19 30
UoL —5.61 —2.84 —4.51 —2.05 —5.01 —1.53 —4.2 —-2.67 77 80 85 50 55 43 38 75
Oper —2.83 —-2.71 —2.98 —4.91 —4.7 -3.31 —1.32 -3.18 51 63 64 54 49 54 40 47
larger (—3.24 K and — 9.18 K). The larger differences would result in a 6.26 K).

bigger discrepancy between the true LST averaged over a given time-
frame and the sub-sampled LST due to over-screening. At night, matches
are more frequently missed in JFM and OND but the temperature dif-
ference of these missed observations is smaller than observed in NY
(—1.08 and — 1.02 K for UoR, —3.72 and — 1.77 K for UoL and — 1.58
and 0.04 K for Oper).

Under sampling in OLI and SGP is much less frequent than for NY and
NSA. All algorithms have between 0 and 8 missed pixels in any given
season so it is difficult to draw conclusions on the type of pixel likely to
be erroneously masked as cloud in this case. For UoL and Oper the
numbers of missed clear-sky pixels are similar in SGP. For UoR, the
number of missed pixels is slightly higher (mostly during the day) with a
range in the mean temperature difference of these missed matches of
between —1.48 and 2.13 K across the year.

We consider now the cloud contaminated observations that remain
unscreened by each of the evaluated algorithms. In NY, the largest
numbers of cloud-contaminated observations occur in AMJ and JAS for
daytime matches. The absolute numbers are significantly larger for UoL
(586 and 910) and Oper (746 and 464) than they are for UoR (159 and
247). The temperature difference of these cloud contaminated obser-
vations relative to the climatology is algorithm dependent. For UoR the
temperature differences are positive (6.65 K and 0.63 K in AMJ and
JAS). For UoL the sign of the temperature difference is different for the
two seasons (1.46 and — 1.86 K) and for Oper the difference is negative
(—2.08 and — 4.74 K). At night, the largest number of cloud-
contaminated pixels occur in JFM and OND. UoL has significantly
more cloud-contaminated observations than Oper (1048 and 1537
compared with 593 and 972) but very similar positive temperature
biases in the undetected cloud (4.13 and 3.81 K for UoL and 4.66 and
3.44 K for Oper). UoR has fewer cloud contaminated observations (426
and 671), but they have a larger positive temperature bias (7.23 and
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In NSA, UoR has relatively few cloud-contaminated observations
during the day, but those that do occur are significantly warmer than the
climatology, with the mean temperature difference ranging between
7.69 and 18.2 K. For UoL the mean value of the cloud-contaminated
observations is also warmer than the climatology (3.42-6.95 K). At
night, more cloud-contaminated observations occur, particularly during
JFM and OND. For UoR and UoL the temperature differences are
generally positive, but smaller than the daytime case (—0.43 to 2.65 K
for UoR and 0.69 to 4.36 K for UoL). For Oper the temperature difference
is positive in JFM (2.07 K) and negative throughout the remainder of the
year (—0.73 to —2.64 K).

In OLI, UoL has the largest number of cloud-contaminated daytime
matches. The maximum number occurs in JAS with a negative tem-
perature bias of —3.16 K, but the largest temperature bias is in OND
(—6.56 K). For UoR and Oper, fewer cloud-contaminated matches occur,
but tend to have a positive temperature bias. At night, the cloud
contaminated temperature bias is negative for all algorithms in OND
(—3.25 to —5.76 K), but positive during the remainder of the year with
the exception of UoR in AMJ.

In SGP, the numbers of cloud-contaminated matches are more
consistent across all seasons for each of the algorithms. The mean tem-
perature of these contaminated matches is always colder than the
climatology with larger cold biases during the day than at night. For
UoR, the number of cloud contaminated matches is lowest, but the mean
temperature difference largest during the day (—2.12 to —7.16 K
compared with —4.2 to —5.61 K for UoL and — 1.32 K to —4.7 K for
Oper). At night, cold biases from cloud contamination are generally
smaller for UoR and UoL, but larger for Oper.

Considering the cloud detection stability results (Table 6), our un-
derstanding of the missed clear sky observations (Fig. 10) and cloud
contaminated matches (Fig. 11) we can evaluate the LST stability in
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results section 5.5. From the cloud detection stability results only two
timeseries were stable with respect to both missed clear sky observations
and cloud contamination: UoR in an NSA and SGP. These were stable
with respect to the full-time series, but not for every individual sensor
within the time series. From the LST stability analysis we had four stable
time series: UoL and Oper at NSA and UoR and Oper at SGP.

Stability with respect to both cloud detection metrics is required for
stability in the LST time series. In addition to this stability, there is
another aspect that is also important for LST retrieval; namely stability
in the surface temperature of the missed clear-sky pixels (relative to the
climatology) over time, and likewise stability in the temperature of the
cloud contaminated pixels in relation to the climatology, over time. For
example, the same fraction of cloud contaminated observations may
occur every year over the duration of a time series but if the temperature
profile of those cloud contaminated pixels changes with respect to the
climatology, stability in the LST time series cannot be guaranteed.

Variability can also occur as a result of sampling frequency when
there is seasonal variation in the temperature bias of missed clear-sky
pixels or cloud contaminated pixels relative to the climatology. For
example, if the number of daytime missed clear-sky pixels increased
over the time series relative to nighttime missed clear-sky matches this
might alter the LST bias with time. Large natural variability in the
annual average LST anomaly also makes detection of the impact of cloud
masking stability in the LST signal very challenging.

6. Discussion

Understanding dataset stability is necessary for accurate assessment
of uncertainties in temporal trends, but the stability of pre- or post-
processing steps (e.g. cloud detection) in the provision of CDRs are
rarely considered. Nonetheless they are important as they have the po-
tential to introduce non-geophysical trends into the data, which may
affect comparisons with reference datasets (e.g. in-situ data) that do not
require the same screening. We demonstrate here the complexity
involved in assessing cloud detection performance metric stability,
given that validation data for cloudy/clear status cannot be assumed
perfect. Metrics can vary between sensors as the result of external
(geophysical) factors such as changes in cloud amount or due to changes
in screening performance, e.g. tuning differences in the cloud screening,
between sensors (non-geophysical). Metrics can also be location
dependent (biome, cloud regime, viewing geometry) and these factors
can affect different cloud screening algorithms in different ways.
Achieving temporal stability in cloud masking performance requires
both within-sensor stability and across-sensor stability.

Where reference data exist, we have demonstrated here a novel
methodology for identifying a plausible range in the CC and MC metrics.
The range can then be used to specify the uncertainty in the cloud
detection metrics, essential in the calculation of stability metrics. We
demonstrate that this stability can be calculated to within a high level of
accuracy, which is far beyond the accuracy within which LST stability
can be calculated. The large interannual variability in LST makes it
difficult to assess the impact of the cloud masking stability as the signal
is masked by natural variability over the short time duration of the
existing satellite LST CDRs as matched to ceilometer data.

Cloud affecting a single pixel retrieval can result in a significantly
biased LST. Typically, this temperature bias is assumed to be cold, but
we have shown that warm biases from cloud can occur in polar regions.
Most users do not use the per-pixel retrieved products directly, but use
gridded data, which is likely already to have undergone some form of
averaging, and they may then further average the data for the purpose of
their analysis if they are looking at longer-term variability, seasonal
effects or larger-scale spatial variability. The process of averaging the
data in space and time has the effect of diluting the bias, making the net
impact of cloud contamination on the calculated metric dependent on
the cloud contaminated fraction of the data as shown in this manuscript.

Quantifying the uncertainty associated with cloud contamination is
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therefore difficult. Returning to the single pixel example, a cloud
contaminated pixel will have a retrieved LST with a large uncertainty
attributable to cloud. However, a neighbouring correctly-classified
clear-sky pixel will have no uncertainty associated with the cloud
detection. Therefore, specifying an uncertainty associated with a binary
classification, rather than a gradated scale is complex. Correct attribu-
tion of the uncertainty would require certainty on the accuracy of the
classification, and indeed if this was known, the errors in the classifi-
cation would be corrected. Assigning a ‘generic’ uncertainty at the pixel
level would result in an overestimation for correctly classified pixels and
likely an underestimation for the erroneously classified pixels in an
attempt not to penalise the correct classification too severely. If the
uncertainty cannot be well defined at the pixel level, then it cannot be
propagated through into gridded, higher-level products. One possible
approach is to define an uncertainty on the gridded product, as is done
for the sampling uncertainty (Bulgin et al., 2016b), which would be a
function of the cloud contaminated fraction and would require some
dependence on latitude and/or biome (and possibly other external
factors).

Returning to the question of how to quantify cloud contamination
uncertainty at the per-pixel level (enabling propagation through to all
products), one approach could be to base this on the probability that a
pixel is cloud contaminated, thereby providing a gradated scale rather
than a binary classification. This information is available from the UoR
and UoL cloud detection algorithms, but not all cloud-screening meth-
odologies provide such information, particularly when they are based on
threshold testing. Where such information does exist, challenges would
remain in quantifying the potential impact of cloud contamination on
the retrieved LST. For example, cloud type would be a determining
factor here; thick, convective cloud will have a larger impact on the
retrieved LST than thin, broken or partially-transparent cirrus cloud.

The assessment of cloud masking stability presented here is limited
geographically by the availability of readily available reference data.
The sites evaluated in this manuscript were limited to four (three of
which are in polar regions) due to: 1) the limited number of ceilometer
sites with long data records and 2) the limited number of ceilometers
with sufficient attenuation heights to observe cirrus cloud. Both are
required to assess long-term temporal stability and make a fair com-
parison between in-situ and satellite observations (as satellites see the
full atmospheric column). These four sites are insufficient to charac-
terise the variability in cloud masking stability likely to arise in different
regions of the world due to varying atmospheric and cloud regimes.
More data are required to extend this type of analysis and increase
global representivity. One approach to increasing the viability of this
type of analysis across the globe could be satellite-following ceilometers
(with attenuation heights sufficient to detect cirrus cloud). By removing
the limitation of a fixed nadir viewing angle of the ceilometer in the
matching process, the number of clear-sky matches would increase. This
is a forward-looking solution but doesn’t address historical data gaps
from in-situ cloud-viewing ceilometers.

This paper has demonstrated that temporal instability in the per-
formance of cloud detection algorithms can impact the stability of long-
term LST trends. Research and development of cloud-detection methods
has been on-going throughout the satellite era (more than 40 years),
during which time no perfect automated methodology has been found.
The definition of ‘perfect’ is also subjective; dependent on the applica-
tion/purpose of the cloud mask and difficult to define where the answer
isn’t clear-cut e.g. where exactly is the edge of a cloud? The solution to
this problem therefore lies in thoroughly understanding the mechanisms
of cloud masking instability and quantifying their impact sufficiently to
estimate corrections when calculating trends in LST, or at least esti-
mating the consequent uncertainty in the observed LST changes.

It would be premature to derive such a correction at this stage due to
the geographical limitations of the analysis presented here, imposed by
the lack of appropriate in-situ data available to validate cloud mask
stability. A more geographically complete understanding of the
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mechanisms could be achieved using shorter-term ceilometer records
(covering only one or two of the most recent satellite sensors contrib-
uting to the CDR discussed in this manuscript), as newer ceilometers are
more likely to have sufficient attenuation heights to detect cirrus cloud.
New in-situ sensors, such as satellite-tracking ceilometers (as discussed
above) would remove ambiguity in the matches between the satellite
and ceilometer that arise with the sensors seeing a different atmospheric
path. Both could be used to improve our understanding of how/why
cloud detection algorithms fail and the spatial variability in these
failures.

At the current time, the most appropriate course of action is making
data producers aware of this source of instability so that they can take
steps to promote its quantification (for their particular product/appli-
cation and in lobbying for new in-situ instruments specifically designed
to facilitate cloud mask validation) and include this in the uncertainty
information provided with their data. The second step is to alert users to
this source of long-term instability in the data, promoting the use of the
uncertainty information provided with data products to account for this
instability when calculating long-term trends in LST, and applying the
same principles to other geophysical variables that are reliant on cloud
detection prior to retrieval. These are the top priorities in the near-term
for exploiting the results presented in this paper.

7. Conclusions

We have demonstrated in this paper that cloud detection method-
ologies cannot be assumed to be temporally stable and that in-
consistencies in their performance can result in instabilities as large as
+/— 0.73 K per decade, which is 0.43 K larger than the threshold sta-
bility target as set in the GCOS requirements. This assessment is of
relevance to LST data users as cloud masking instability affects the
calculation of uncertainties in long-term trends. To the best of our
knowledge, cloud detection stability has not been previously assessed
for any other target climate variable, so the conclusions drawn here may
apply more widely to other satellite-derived CDRs that are reliant on
cloud detection as a pre-processing step. Further assessments of a similar
nature should be made following updates to cloud detection method-
ologies in LST CDR generation (for example for v2.0 of the LST CCI
dataset using an updated version of the UoL algorithm). The ability to
carry out these assessments would be greatly enhanced by the devel-
opment of satellite-following ceilometry.
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