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Email: e.h.v.knight@pgr.reading.ac.uk 1. Spatial modelling approaches to aid land-use decisions which benefit both wildlife

Funding information and humans are often limited to the comparison of pre-determined landscape
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NE/V007890/1, NE/T002182/1 and NE/ Furthermore, the needs of wildlife are often under-represented when considered
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scenarios, which may not reflect the true optimum landscape for any end-user.

alongside human financial interests in these approaches.

Handling Editor: Nicolas Lecomte 2. We develop a method of addressing these gaps using a case-study of wild bees
in the UK, an important group whose declines may adversely affect both human
economies and surrounding ecosystems. By combining the genetic algorithm
NSGA-II with a process-based pollinator model which simulates bee foraging and
population dynamics, Poll4pop, we ‘evolve’ a typical UK agricultural landscape
to identify optimum land cover configurations for three different guilds of wild
bee. These configurations are compared to those resulting from optimisations for
farm income alone, as well as optimisations that seek a compromise between bee
populations and farm income objectives.

3. We find that the land cover proportions in landscapes optimised for each bee
guild reflect their nesting habitat preferences rather than foraging preferences,
highlighting a limiting resource within the study landscape. The spatially explicit

nature of these optimised landscapes illustrates how improvement for a given
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target species may be limited by differences between their movement range and
the scale of the units being improved. Land cover composition and configuration
differ significantly in landscapes optimised for farm income and bee population
growth simultaneously and illustrate how human agents are required to compro-
mise much more when the multifaceted nature of biodiversity is recognised and
represented by multiple objectives within an optimisation framework. Our meth-
ods provide a way to quantify the extent to which real-life landscapes promote or
compromise objectives for different landscape end-users.

4. Our investigation suggests that optimisation set-up (decision-unit scales, tradi-
tional choice of a single biodiversity metric) can bias outcomes towards human-
centric solutions. It also demonstrates the importance of representing the
individual requirements of different actors with different landscape-level needs

when using genetic algorithms to support biodiversity-inclusive decision-making

KEYWORDS

1 | INTRODUCTION

Human economic activity places significant pressure on global biodi-
versity, resulting in undesirable trade-offs for both ecosystems and
ecosystem services (IPBES, 2019). This is prominent in agricultural
contexts (Mattison & Norris, 2005), affecting key groups such as
wild bees. These are crucial for maintaining diverse, resilient pollina-
tion networks (Hutchinson et al., 2022) and provide significant polli-
nation services to crops (Hutchinson et al., 2021; Rader et al., 2012)
and wild flora (Ollerton et al., 2011). However, intensive agricultural
practices can cause habitat loss and fragmentation, reducing pollen,
nectar and nesting resources for wild bees (Dicks et al., 2021) and
causing declines in diversity and abundance (Turley et al., 2022).

With growing global awareness of the societal and economic
impacts of biodiversity loss, and political pressure to reverse these
declines (e.g. Convention on Biological Diversity, 2022), there is
increasing interest in developing ‘multi-functional landscapes’ that
deliver both economic outcomes and sustainable ecosystem service
benefits (Boesing et al., 2024). However, significant challenges re-
main in identifying how habitats in farm-scale landscapes should be
arranged to mediate the apparently conflicting goals of humans and
wild species such as bees (Gillespie et al., 2022).

Spatial modelling approaches, especially process-based mod-
els that predict population dynamics by simulating underlying
ecological processes, provide a useful means of assessing land
cover configurations for wildlife while accounting for synergetic
or conflicting human needs. Numerous such models have been
developed to simulate pollinator populations across landscapes,
for example Bumble-BEEHAVE (Becher et al., 2018) and Poll4pop
(Gardner et al., 2020). These approaches often rely on data from

in multi-functional landscapes.

Agroecology, ecological modelling, genetic algorithms, landscape optimisation, land-use
decisions, multi-functional landscapes, pollinators, spatial modelling

real landscapes or simply compare sets of pre-defined scenarios (e.g.
Graham & Nassauer, 2019; Twiston-Davies et al., 2021), which may
not reflect truly ‘optimal landscapes’ for the target taxa. However,
using process-based models in a mathematical optimisation frame-
work may be a novel approach to identifying optimal landscape con-
figurations for multiple ecosystem objectives.

Previous studies (e.g. Elliot et al., 2019) have optimised ecosys-
tem services across landscapes using ‘threshold’ or ‘reference-point’
techniques which guide the search using pre-defined criteria often
based on decision-maker preferences. However, an optimisation ap-
proach which seeks to unconditionally maximise all goals at once can
allow us to ‘evolve’ land cover configurations towards an optimum
for all actors with minimal preconceptions about how they should
be arranged.

One such method is the genetic algorithm, a metaheuristic op-
timisation technique that imitates evolutionary principles. Here,
a population of ‘individuals’ defined by bounded parameters is
‘evolved’ through simulated selection, recombination and mutation
towards a solution with maximum ‘fitness’ according to one or many
pre-defined objectives (Mirjalili, 2019). Where there are multiple
objectives, the algorithm seeks a solution which simultaneously
maximises the scores of several (potentially conflicting) goals by
approximating the Pareto front, that is, the set of solutions where
no objective can be improved without diminishing the outcome of
another (Veldhuizen & Lamont, 1998). These algorithms have rarely
been used in the context of landscape decision-making from an eco-
logical perspective (Seppelt et al., 2013) and to our knowledge have
never been combined with process-based species models to identify
optimal landscapes for species abundance and investigate related
trade-offs.

85U8017 SUOWILLOD BA 81D 3ol jdde sy Ag peusenob ale sejoie VO ‘88N Jo se|n. Joj AriqiT8ulIUQ /8|1 UO (SUORIPUOD-pUR-SWIBIW0D A8 | 1M A1 Ul |Uo//SdNL) SUORIPUOD PUe SW | 84} 88S *[Z0Z/0T/80] Uo ARiqiauluo A8|IM ‘B9 1 Ad vZyyT  XOTZ-T02/TTTT OT/I0p/Wod AS|IM ARiq 1 BulUO'S [euINossg//Sdiy Wiy papeojumod ‘0 ‘X0TZTH0Z



KNIGHT €T AL.

BRITISH

In ecosystem service-focused landscape optimisation ap-
proaches (e.g. Desaegher et al., 2021), biodiversity is usually seen
as a constraint to the optimisation goals. However, recentring these
goals around the abundance or diversity of target species them-
selves is a novel and useful approach to optimising landscapes for
both humans and wildlife. For example, changes in pollinator popu-
lations have historically been assessed with focus on market forces
and economic indicators (H3ussler et al., 2017). However, these
metrics rarely fully account for economic benefits offered by wild
pollinators, nor the costs of replacing their services with managed
pollinators (IPBES, 2016). Holistic, bottom-up approaches to ecosys-
tem management are therefore recommended to ensure long-term
sustainable land use (Senapathi et al., 2015), which can be repre-
sented using this combined modelling approach.

Furthermore, accounting for the varied forage and nesting pref-
erences of wild bees (IPBES, 2016) is also important when designing
land cover configurations that support resilient pollination services.
Defining cover types and habitats based on the species-specific ser-
vices they provide can offer a more detailed view of how individual
species or groups respond to land cover changes (Betts et al., 2014).
This specificity is often overlooked when general biodiversity met-
rics are utilised (Chiarucci et al., 2011).

With these considerations in mind, we aimed to investigate
the potential benefits of combining a multi-objective optimisation
approach with process-based ecological models to inform multi-
functional land-use decision-making (The Royal Society, 2023).
We utilised a combination of the genetic algorithm NSGA-II (Deb
et al., 2002) and Poll4pop, a validated, process-based pollinator
abundance and visitation model that simulates bee foraging and
population dynamics (Gardner et al., 2020; Haussler et al., 2017;
Figure S1), to explore how an agricultural landscape can be
‘evolved’ to provide theoretical optimum land cover configura-

tions for

a. the abundance of one or more guilds of wild bee,
b. farm income (a human-centric optimisation) and

c. all bee guilds and farm income collectively.

Methods in Ecology and Evolution B
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2 | MATERIALS AND METHODS
2.1 | Studylandscape

We examined land cover (i.e. the physical material assigned to the
land surface of one unit within the landscape) configuration in a rep-
resentative agricultural landscape with mixed land use. A 10x 10km
area was selected corresponding to GB National Grid square SK86,
as used by Image et al. (2023) (Figure 1). This represents a typical
agriculturally dominated UK landscape which contains pollinator-
dependent, mass-flowering crops and potential for woodland crea-
tion. The 10km scale of this landscape was both large enough for the
ecological processes simulated by Poll4pop (see Section 2.3.2 for
description) and computationally feasible for the optimisation pro-
cess. Our subsequent optimisations generate simulated landscapes
by superimposing different land cover types onto a fixed template of
the field boundaries in this grid square.

UK Centre for Ecology and Hydrology Land Cover, Land Cover
Plus, and UK Woody Linear Feature spatial data were downloaded
from the EDINA Digimap service and converted to raster format at
25m pixel resolution (UKCEH, 2016, 2020, 2021). Arable field mar-
gins and woodland boundary edge features were simulated by re-
spectively rasterising the borders of arable fields and woodlands in
the land cover rasters.

2.1.1 | Optimised area

Within the centre of the study landscape, a smaller optimisable area
(radius=2000m) was defined (Figure 1). This radius is larger than the
movement ranges of all target guilds (Table S1) and provides enough
fields (303) to allow exploration of land cover configuration effects.
Within this optimisable area, urban/suburban and semi-natural land
cover types were considered fixed since these could not realistically
be converted or may be considered protected.

This gives a total area for optimisation of 1360ha. As mean
farm size in the UK is 81 ha, and 101ha in the East Midlands

368,000 —
366,000 —
FIGURE 1 2020 land cover
configuration of the 10 x 10km study
area, which is situated south-west of 364,000
Lincoln, UK. The central zone in brighter
colours represents the optimised region
(radius=2km), while the remaining fields 362,000 —
were not included in the optimisation
process, representing a ‘fixed’ surrounding
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(DEFRA, 2022), the optimised area may be considered equivalent
to a cluster of farms engaged in collaborative decision-making, sur-
rounded by a larger, fixed landscape that cannot be influenced by

the cluster's decision makers.

2.1.2 | Permitted land cover choices

During optimisation, each field within the optimisable area was
permitted to adopt one of eight land cover types reflecting those
already found within the study landscape: broad/field beans (Vicia
faba), cereal, coniferous woodland, deciduous woodland, fallow,
improved permanent grasslands, oilseed rape (Brassica napus; OSR)
or unimproved meadow. Cereals were aggregated into a single cat-
egory because they neither provide floral resources to, nor require

pollination services from, bees.

2.2 | Study guilds

We studied three wild bee guilds, all parameterised in the Poll4pop
model (Gardner et al., 2020): ground-nesting bumblebees (GNB),
tree-nesting bumblebees (TNB) and ground-nesting solitary bees
(GNS). According to the model parameters, GNB and TNB have the
same movement ranges but different nesting preferences, whereas
GNB and GNS have similar nesting preferences but different move-

ment ranges.

2.3 | Genetic algorithm (NSGA-II)

The NSGA-II algorithm is a box-constrained, elitist, non-dominated
sorting, genetic algorithm (utilised in this study via the NSGA2R
package in R (Tsou, 2022)). This algorithm is conventionally used
for multi-objective optimisation where the scores of multiple, con-
flicting objectives are maximised simultaneously. However, where
required the algorithm can be adapted for single-objective optimisa-
tions (see Supporting Information).

This algorithm was used to evolve a population of landscapes
whose ‘genomes’ are represented by a set of discrete codes corre-
sponding to the type of land cover in each field. Thus, different land
cover codes represent so-called ‘alleles’, sequentially denoting the
features of different individuals in the population.

Within the algorithm, the Poll4pop model (see Section 2.3.2) is
run on each of these different land cover configurations. The ‘fit-
test’ individual landscapes (e.g. the spatial configurations supporting
most bees) from each generation are selected as parents for a new
generation using non-dominated sorting (i.e. landscapes are ranked
higher than others when they are better regarding at least one ob-
jective and not worse regarding any other), and then by maximum
crowding distance along the Pareto front within these ranks. These
undergo recombination (or ‘crossover’) and produce ‘offspring’ land-
scapes which then experience mutation to produce a new, fitter

population of landscapes. This process is then repeated for a number
of generations defined according to the needs of the optimisation
experiment (Figure 2).

Traditionally, NSGA-II generates values from a bounded contin-
uous scale that represent ‘genes’ in the population whose fitness
will be assessed in each generation. This process was adapted in the
landscape optimisation context because the ‘genes’ are categorical
codes representing different land cover types, with no specific log-
ical order or relationship to one another. The new or modified steps

of the NSGA2R optimisation process are outlined below.

2.3.1 | Initialising the population

A population of landscapes (each based on the field boundary tem-
plate of SK86 (Figure 1)) is randomly generated by the genetic algo-
rithm so that the proximate process of natural selection can occur.
A ‘genome’ is defined for each landscape in the initial population by
generating a random set of codes corresponding to the eight permit-
ted land cover choices described in Section 2.1.2. These are super-
imposed onto each field in the optimised section of the landscape
(Figure S3).

2.3.2 | Assessing fitness

The fitness function used to assess the success of each bee guild in
these optimisations was adapted from the Poll4pop model. Poll4pop
is a spatially explicit, process-based model that predicts bee abun-
dance across a given landscape by simulating their central-place for-
aging, population growth and the dispersal of reproductive females
(Gardner et al., 2020; Haussler et al., 2017; Figure S1). In this fitness
function, rasterised land cover and edge feature maps are used as in-
puts. Edge feature rasters for arable margins and woodland bounda-
ries are created based on the composition of each new landscape
created in each generation. The model then generates nesting and
seasonal floral resource maps for each specified pollinator guild by
attributing scores (determined by expert opinion) to each land cover
type based on the amount of floral cover, floral attractiveness and
nesting attractiveness typically provided.

Literature data about the bees' typical movement ranges and life
histories are used to simulate their nesting and foraging behaviour
in this landscape and thus predict population growth. The bees'
movements are simulated at the pixel scale (25m resolution) using
attractiveness-weighted distance decay kernels, meaning the ef-
fects of habitat connectivity and landscape heterogeneities on both
day-to-day foraging and intergenerational dispersal are accounted
for by the model.

From this, a raster of predicted visitation rates of the specified
guild to each pixel is generated for each active season. For each
guild, a seasonally unbiased ‘fitness’ score is then calculated by mul-
tiplying the total spring and summer floral visitation rates to each
pixel. This score represents the abundance of foraging bees in the
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FIGURE 2 Applying the NSGA2R optimisation process in the context of land-use decision-making for wild bee populations and/or farm
income. Npop is the number of individual landscapes in the population, as defined by the optimiser.

landscape across both seasons and is used by the genetic algorithm
as a fitness measure to compare the suitability of each generated
landscape, for each bee guild.

An economic, ‘farmer’ fitness function was also defined to inves-
tigate trade-offs between farm income and bee diversity. This as-
sesses fitness by estimating the total income farmers could receive
from each landscape, based on crop price and agri-environment
scheme payment rate data for each land cover type (Table 1). Due
to omitting production costs and variability in factors such as sale
prices, this is not necessarily representative of the true return profile
(e.g. gross margin) that a farmer would derive from the theoretical
landscape. However, this approach allows us to test trade-offs with
a conflicting objective that incorporates some dependence on other
objectives, via the crop pollination service modifying oilseed rape
and field bean yield.

Yield for these pollinator-dependent crops is assumed to increase
with increased visitation (Garratt et al., 2014). Consequently, the yields
listed in Table 1 for these crops are assumed to correspond to the
mean per-pixel visitation rate for that crop in the real-life landscape.
These are adjusted for optimised landscapes by calculating yield ad-
justment values assuming a linear relationship with visitation rate for
field beans, and a curved relationship for oilseed rape (Gardner, 2020,
personal communication; see Equations $1/52). Actual yield values in
optimised landscapes are then adjusted according to Equation (1) (see

derivation in Supporting Information; Figure S4):

Y=Y0+(a—ao), 1)

where Y = normalised crop vyield (tonnes per ha), Y, = national
mean crop yield (tonnes per ha), a = yield adjustment values of
crop in specified pixel of the optimised landscape (tonnes per ha),
ap = mean yield adjustment value of the crop in the real-life land-
scape (tonnes per ha).

Farm incomes are calculated for the whole landscape, to incor-
porate the additional yield benefits that the optimised area may
provide to surrounding farms through promoting increased bee
visitation.

Overall, the fitness function outputs one score for each specified
objective (Figure S5). In multi-objective optimisations, these scores
are not conflated and are treated separately throughout the optimi-

sation process.

2.3.3 | Modifications of original NSGA2R functions

Once tournament selection has created a ‘mating pool’ of the fit-
test landscapes in each generation, crossover between pairs of
parent landscapes occurs to produce child landscapes with inher-
ited characteristics from both parents. This happens on a gene-by-
gene (i.e. field-by-field) basis at a rate determined by a specified
crossover probability (e.g. Table S2). The original algorithm, which
assumes parameter values are continuous, selects an interme-
diate ‘child’ value between the two gene values of the parents.
This is not meaningful when the gene values represent discrete,
categorical land cover codes. However, some inherent order does
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TABLE 1 The calculated theoretical income of each land cover type and their assumed income proxy (AHDB, 2022; DEFRA et al., 2021;

Haw, 2017).
Yield, Y

Land cover type (tonnes per ha) Price (£ per tonne)
Oilseed rape 2.7 348.93
Field beans 3) 204.42
Cereal NA NA
Improved permanent NA NA
grasslands
Unimproved meadow NA NA
Fallow NA NA
Coniferous woodland NA NA
Deciduous woodland NA NA

Price

(£ per ha per year) Payment proxy

NA AUK Crop income

NA AUK Crop income

1117.52 AUK Crop income: wheat

496.20 British Hay & Straw Merchant's
Association: pick up baled seed hay

511.00 Countryside Stewardship Scheme:
AB1 nectar flower mix

522.00 Countryside Stewardship Scheme
payments: AB15 two-year sown
legume fallow

45.46 Forestry Commission: carbon and
timber returns for lowland conifer on
55-year rotation at £6 per tonne of
carbon sequestered (2017)

11.00 Forestry Commission: carbon and

timber returns for broadleaved
woodland (game/biodiversity) on
100-year rotation at £6 per tonne of
carbon sequestered (2017)

Note: Yield per ha and price per tonne are included for pollinator-dependent crops, because these were used in the visitation-rate scaling process
described above. All data are taken from 2020 unless otherwise specified. AUK stands for Agriculture in the United Kingdom.

appear among the chosen land cover types when they are ranked
by how much fitness each type contributes to the landscape ac-
cording to the model used in the fitness function. Consequently,
when optimising for bee abundance, we modified the crossover
function to create a scale of land cover types ranked by an average
of the Poll4pop-defined nesting and floral scores for each speci-
fied guild of bee (Figure 3c). The algorithm then selects a child
value positioned between the two parent land cover types on this
scale (Figure S6). This approach would not have been meaningful
in optimisations where farm income was included as an objective
because the values of various crops were adjusted for each land-
scape according to bee visitation rates. Therefore, in these circum-
stances land covers were assigned randomly to fields in the child
landscape where the crossover probability was met.

The mutation process serves to maintain genetic diversity within
the population of solutions, and to prohibit premature convergence
to local optima. We modified the NSGA2R mutation function to ac-
count for categorical land cover data by allocating a random land
cover to child fields when the specified mutation probability was

met (Figure S7).

2.4 | Optimisation experiments

241 | Optimising landscapes for wild bees

Here, we investigated the differences between landscape solu-
tions for the three bee guilds, optimised both individually and

simultaneously, to explore how the optimisation routine compro-
mises between different habitat and foraging preferences. Single-
objective optimisations were executed for the three individual guilds
of bee (GNB, TNB and GNS), as well as multi-objective optimisations
for all three guilds at once. All guilds were valued equally in the com-

bined objective function.

2.4.2 | Optimising landscapes for wild
bees and humans

Here, we investigated how introducing a human-based objective
to the bee-focused optimisation affects its solution. We first ran
single-objective economic optimisations, then multi-objective op-
timisations with four objectives: maximising total floral visitation
rates for each bee guild and maximising the economic income for the
farmer. Again, the needs of all four actors were weighted equally.

2.5 | Analyses

Based on preliminary trials, we ran the NSGA2R algorithm with a
population of 50 landscapes for 100 generations in each experi-
ment. Other NSGA2R parameters were left at their default values
(Figure S8; Table S2). Each experiment was repeated 25 times with
different random seeds on the Imperial College High Performance
Computing (HPC) cluster to allow exploration of variation among
solutions.
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of solutions for each set of objectives in
(a) single-objective and (b) multi-objective
optimisations. GNB, ground-nesting
bumblebees; GNS, ground-nesting solitary
bees; TNB, tree-nesting bumblebees.
Error bars represent standard deviation on
land cover proportions for each landscape
(Table S3). (c) Expert-allocated nesting
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R version 4.1.3 was used for all analyses (R Core Team, 2022).
Due to run-time constraints, 6% of optimisations did not com-
plete on the HPC. Of the remaining solutions, analyses were
performed on only the highest-ranked landscapes from the final
population generated in each trial. Note that the number of high-
ranking landscape configurations for each repeat varied due to
differing arrangements of the final population along the Pareto
Front. Therefore, sample sizes from each optimisation were dif-
ferent; in total, 1978 solution landscapes were included in our
analyses (Table S3). Mean patch area of solution landscapes was
calculated using the ‘landscapemetrics’ package in R (Hesselbarth
et al., 2019). Interactions between the objectives of the optimisa-
tions and land cover proportions of the populations of landscape

solutions were assessed using ANOVA.

g g
@
ualld] .. . rullf
3 | RESULTS
3.1 | Landscape composition
3.1.1 | Single-objective optimisations

The mean proportion of each land cover within the final optimised
area for single-objective optimisations are shown in Figure 3a.
These proportions were significantly different across optimisations
(ANOVA, F3; 510,=850.946, p<0.01). The dominant predicted land
covers were unimproved meadow when optimising for ground-
nesting bumblebees (GNB), fallow for ground-nesting solitary bees
(GNS), deciduous woodland for tree-nesting bumblebees (TNB) and

cereal in optimisations for farm income.

85U8017 SUOWILLOD BA 81D 3ol jdde sy Ag peusenob ale sejoie VO ‘88N Jo se|n. Joj AriqiT8ulIUQ /8|1 UO (SUORIPUOD-pUR-SWIBIW0D A8 | 1M A1 Ul |Uo//SdNL) SUORIPUOD PUe SW | 84} 88S *[Z0Z/0T/80] Uo ARiqiauluo A8|IM ‘B9 1 Ad vZyyT  XOTZ-T02/TTTT OT/I0p/Wod AS|IM ARiq 1 BulUO'S [euINossg//Sdiy Wiy papeojumod ‘0 ‘X0TZTH0Z



KNIGHT €T AL.

Methods in Ecology and Evol i

In solutions to single-objective optimisations for each bee guild, we
found positive relationships between the mean proportion of each op-
timised land cover type and both the floral and nesting resource scores
allocated to that land cover type in the Poll4pop model (Figure 3c). This
correlation was significant in all tests but one and was consistently
stronger with nesting score than with floral score (Table 2).

3.1.2 | Multi-objective optimisations

The proportions of each land cover type predicted from the multi-
objective optimisations are shown in Figure 3b. These were also
significantly different from each other (ANOVA, F15y13672:483.424,
p <0.01). Deciduous woodland was predicted to be the most abun-
dant land cover in both multi-objective optimisations, however de-
ciduous tree cover was significantly higher when not including the
farmer (Tukey HSD, p <0.01). Cereal was the second most prevalent
land cover when including the farmer, and significantly greater than
all other land cover types apart from deciduous woodland (Tukey
HSD, p<0.01). While the proportions of deciduous woodland, fal-
low and unimproved meadow were significantly lower when the
farmer was included compared to the bee-only optimisation, the
proportions of beans, cereal, improved grassland and oilseed rape
were significantly higher (Tukey HSD, p <0.01).

3.2 | Landscape configuration

The mean land cover patch area within the optimised area
was dependent on the objective of the optimisation (ANOVA,
Fs197,=42.031, p<0.01; Figure 4a). The mean patch area in the
TNB solutions was significantly greater than for any other set of
objectives (Tukey HSD, p<0.01). Conversely, mean patch area in
the solutions for the farmer-inclusive multi-objective optimisa-
tions was significantly smaller than for any other set of objectives
(Tukey HSD, p<0.01). Examples of these differences are visual-
ised in Figure 4b.

3.3 | Objective fitness

Figure 5 shows that, for each bee guild, the mean fitness (i.e. guild
abundance) of solution landscapes was higher in their respective single-

objective optimisations compared to the land cover configuration in

the real-life landscape. However, abundances were lower in the single-
objective ‘farmer’ optimisation compared to all other optimisations.
Conversely, the fitness (i.e. theoretical income) of solution landscapes
for the farmer was slightly lower than in the real-life landscape in all
optimisations (this may relate to how anthropocentrically organised
the ‘real-life’ landscape already is; see Section 4.2.3).

When measured across the whole 10 x 10km grid square, the rel-
ative fitness of solutions for TNB was greater than that for GNB in
two thirds of optimisations; however, it was always lower than that
of GNB when only the optimised region of solution landscapes was
considered. Optimal landscape fitness for GNS was always similar
(or even reduced) compared to the predicted abundance for the real-
life landscape when measured across the whole grid square but was

consistently higher in the optimised region.

4 | DISCUSSION
4.1 | Ecological implications
4.1.1 | Habitat composition

The most prevalent land cover types in landscapes optimised for
each bee guild separately were consistently those which (accord-
ing to the specifications of the model) provide the best nesting
resources for that guild, rather than floral resources (Figure 3a,c;
Table 2). Our outcomes suggest that prioritising nesting habitat is a
key factor when attempting to increase wild bee diversity, perhaps
because bees are central place foragers and often nest site-limited
(Verboven et al., 2014). However, Haussler et al. (2017), using a
predecessor of Poll4pop, found late-flowering foraging resources
to be the main limiting factor within the landscape, even when
nesting resources were reduced by 50%. These contrasting find-
ings highlight the need for more direct investigations regarding the
relative importance of different resources for wild bees (Harmon-
Threatt, 2020; Requier & Leonhardt, 2020). This demonstrates how
the combination of process-based ecological models with genetic
algorithms may facilitate better identification of limiting factors in
a landscape, which may have previously been overlooked.
Landscapes optimised for ground-nesting solitary bees (GNS)
and ground-nesting bumblebees (GNB) were each dominated by
deciduous woodland, fallow and unimproved meadow (Figure 3a).
Contrastingly, landscapes optimised for tree-nesting bumblebees

(TNB) were dominated by deciduous woodland, a valuable nesting

TABLE 2 Spearman's rank correlations between Poll4pop-allocated floral or nesting scores for each optimised land cover type for each
bee guild, and the respective mean proportions of the same land cover types in solutions of single-objective optimisations for each guild.

Poll4pop score Ground-nesting bumblebees Tree-nesting bumblebees Ground-nesting solitary bees

Floral 0.762* 0.595 0.833*

Nesting 0.922** 0.878** 0.976**

Note: N=8in all tests.
*p<0.05. **p<0.01.
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and forage habitat for TNB (Liczner & Colla, 2019; Figure 3c). This
illustrates that landscape optimisation for the benefit of one taxon
may cause habitat loss and fragmentation for another (Holzkdmper
et al., 2006; Figure 3c).

Landscapes optimised only for farm income were dominated
by cereal, which provides the greatest farm income but minimal re-
sources for bees (Figure 3c). This was very different to patterns of
optimised land cover distribution for any single bee guild.

Similarly, the average composition of landscapes optimised for
all three bee guilds simultaneously differed significantly when the
farmer was also included (Figure 3b), demonstrating this conflict
between human-centric and wildlife-centric objectives. Although
seminatural (deciduous woodland/ unimproved meadow) and

Landcover Type

Coniferous Woodland Fallow Oilseed Rape
Deciduous Woodland Improved Permanent Grasslands Unimproved Meadow

regenerative habitats (fallow) were prevalent in landscapes opti-
mised for all three bee guilds and the farmer simultaneously, pro-
viding some compromise for maintaining both bee populations and
farm income (Evans et al., 2018), no solutions completely resolved
this trade-off. Both farm income and bee abundance in these com-
promise landscapes were consistently lower than in landscapes opti-
mised for each objective separately (Figure 5).

4.1.2 | Habitat configuration

The spatially explicit nature of our optimised landscapes al-
lows exploration of both the key effects of configuration on bee

85U8017 SUOWILLOD BA 81D 3ol jdde sy Ag peusenob ale sejoie VO ‘88N Jo se|n. Joj AriqiT8ulIUQ /8|1 UO (SUORIPUOD-pUR-SWIBIW0D A8 | 1M A1 Ul |Uo//SdNL) SUORIPUOD PUe SW | 84} 88S *[Z0Z/0T/80] Uo ARiqiauluo A8|IM ‘B9 1 Ad vZyyT  XOTZ-T02/TTTT OT/I0p/Wod AS|IM ARiq 1 BulUO'S [euINossg//Sdiy Wiy papeojumod ‘0 ‘X0TZTH0Z



KNIGHT €T AL.

Methods in Ecology and Evo

BRITISH
ECOLOGICAL
SOCIETY

~ 06 Whole grid square Optimised region
X 3 = % L = u
k i
0.5 E 10.0

:
| Toa4 I ] u u

8 751 & - - [
3 [) *
c8o03 -

©

e = 5.0
BEo2
28 E
af us
8& 0.1 -
£
= )y A A A A A & ¥ S
S ooty
E * & by x L e e S T T
o
]
= Q 2 A Q 2 [©) A

W e % % ok ol I N
N o x o x (N o x o x
X " o a7
Y Y
O’e, S
Obj (s) of op
) Score in real-life
Lear:‘dd—s::saepre I oNB @ TNB A GNS Farmer -- Iacggesc'g;:a I

FIGURE 5 Relative fitness of solution landscapes generated by each optimisation experiment compared to the fitness predicted for the
real-life landscape for ground-nesting bumblebees (GNB), tree-nesting bumblebees (TNB), ground-nesting solitary bees (GNS) and farmers

across the whole grid square (left) and the optimised region of the grid square (right). Fitness was normalised by dividing mean fitness of
solution landscapes for each end-user by its predicted fitness for the real-life landscape. Note log scale. Points below zero denote lower
fitness than the real-life landscape and vice versa. Error bars show standard deviations. See Table S3 for sample sizes.

abundance (Gillespie et al., 2022) and the effects of managing for 4.2 | Modelling implications
multiple species groups alongside humans. We found lower patch
area (i.e. higher landscape fragmentation) in landscapes optimised 421 | Representing the needs of individual groups

for farmers and bees simultaneously than any other set of objec-
tives. However, in individually optimised landscapes, both wild
bees and farmers benefitted from less fragmented landscapes
(Figure 4a,b). This could be because there are few land cover op-
tions in our model that are optimally beneficial for both bees and
humans. Therefore, meeting multiple objectives requires more
landscape heterogeneity and, consequently, smaller patch sizes.
This supports the work of Memmah et al. (2015), who showed that
attempting to assign land covers to prescribed land parcels in a
way that meets every objective may result in solutions that are not
optimal for any objective.

GNS have a much smaller foraging range than the bumblebee
guilds and hence require greater density of habitat patches in the
landscapes they traverse (Gathmann & Tscharntke, 2002). However,
the expectation of smaller patch size for GNS was not reflected in
our results (Figure 4a,b). One explanation could be because the min-
imum patch size was constrained by field sizes in the real-life land-
scape (mean field size in the optimised region=4.5ha), which are
potentially already greater than the optimum patch size for GNS (for-
aging kernel=191m in Poll4pop). This is supported by the smaller
increase in predicted abundance for GNS than for TNB or GNB in
their individually optimised landscapes (Figure 5), perhaps because
many land covers were beneficial for all three guilds, but the existing
field sizes were innately more suitable to GNB and TNB movement
ranges. This further highlights the potential trade-offs in managing
for multiple guilds that may previously have been perceived to have
similar needs.

The needs of non-human species are often conflated into simpli-
fied ‘biodiversity’ metrics in landscape optimisations, (e.g. Juutinen
et al.,, 2019)—that is, a single objective. In contrast, the outcomes
of our experiments are driven by several individually represented
groups of species that all contribute towards biodiversity but have
different habitat preferences. This approach provides more detailed
insights into the requirements of different taxa and the challenges
of reaching acceptable compromises between the needs of humans
and individual species groups, or even simply between different spe-
cies groups (e.g. Figure S9).

In the farmer-inclusive multi-objective optimisation, one human
objective was outnumbered by three bee objectives, whereas in
similar experiments, a single biodiversity objective is often outnum-
bered by multiple anthropocentric ecosystem service metrics (e.g.
Verhagen et al., 2018). Our alternative set-up allows exploration of
how much the bee guilds are required to compromise when the land-
scape is also used for income, rather than the reverse. Accordingly,
in the farmer-inclusive multi-objective optimisation, the average
visitation rate of each bee guild still increased throughout the gen-
erations of the optimisation process (compared to the random start-
ing landscape), indicating improved landscape suitability for bees.
In contrast, farm income generally decreased (Figure S10). This in-
formation, that is the relationship between theoretical income loss
to the farmer and quantified improvement of wild bee populations,
could be used to help determine acceptable thresholds of compro-
mise (and, thus, compensation for economic loss), which account not
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just for farm income foregone but also the amount of biodiversity
improvement desired.

Additionally, our results capture differences in the ways taxa
with different ecologies are likely to experience changes to the
landscape. For example, unlike the other two guilds, the predicted
abundance of GNS in optimised landscapes is only higher than the
real-life landscape when the optimised region is considered alone,
and not when calculated across the whole grid square (Figure 5).
This is perhaps because their smaller foraging range reduces ben-
eficial spill over of populations from the optimised region into
the surrounding landscape. Similarly, compared to the original
landscape, TNB abundance sometimes improved more than GNB
abundance when measured across the whole grid square, but al-
ways less when measured across only the optimised region. This
could be due to lack of woodlands causing TNB nest limitation
in the real-life landscape. The algorithm thus tends to create a
nesting hotspot (i.e. more trees; Figure 3a) in the optimised re-
gion, enhancing the landscape-level population by relying on TNB
having access to foraging resources outside the optimised region.
However, when the fitness of the surrounding landscape was not
included, the necessary balance of resources was not available and
hence the TNB underperformed compared to the GNB. This high-
lights the need to consider individual traits—for example foraging
ranges—of species or groups throughout the optimisation process
(Lima & Zollner, 1996).

Overall, we show that using multiple objectives to represent
the multifaceted nature of biodiversity produces (a) less anthropo-
biased landscape solutions, and (b) more detail about how landscape
changes may affect the various species in question. This alternative
approach—a computational equivalent of ‘multi-species placemak-
ing’ (Olsen, 2022)—may help identify discrepancies and acceptable
balances between the wide-ranging needs of wildlife and human
stakeholders. Future land cover optimisations should consider the
balance between multiple ecocentric and anthropocentric objec-
tives, and how this may affect their landscape solutions.

4.2.2 | Realism of solutions

Due to the simplifications and assumptions inherent in any ecological
modelling or optimisation procedure, some aspects of our optimised
landscapes may not be entirely realistic. For example, in this set of
experiments, we did not consider crop management practices such
as rotation or blocking, which may temporally and spatially constrain
aspects of the landscape. However, our approach is not designed to
predict exact land cover configurations that should be implemented.
Rather, it should be used as a supportive tool in the decision-making
process by finding multiple high-quality landscape solutions in a rea-
sonable computational timeframe (Memmabh et al., 2015). This allows
identification of patterns and similarities from different solutions,
which can be used to inform decision-making. Furthermore, the at-
tractiveness and feasibility of landscape configurations is often sub-
jective and difficult to formulate within the algorithm. Therefore, an
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iterative approach between expert opinion and optimisation proce-
dures may be advisable, allowing stakeholders to engage with a rep-
resentative range of solutions (Stewart et al., 2004).

In every modelling exercise, there is a balance to be found be-
tween realism and simplification. For example, allowing completely
random allocation of land cover types to fields within the chosen
area is unlikely to comply with how farmers typically choose to
configure their fields. However, we allowed this here because the
resulting landscapes provide novel insights into how different habi-
tat configurations could enhance pollinator numbers. Future exper-
iments could improve realism by adjusting and constraining which
land cover types can be introduced on a field-by-field basis via the
lower and upper bounds parameters (e.g. Verhagen et al., 2018).
Similarly, linear and sub-field features (e.g. uncultivated arable mar-
gins, hedgerows) remained fixed in our experiments. Since farmers
may be more willing to alter these features (as changes are less likely
to affect overall farm income), future optimisation experiments
should include aspects such as the width or type of field boundary
features that could be established.

Despite the fact that our optimisation approach was relatively
unbiased, the results of our optimisations were still constrained by
the spatial arrangement of existing fields—that is, field sizes were
assumed to remain constant. Therefore, despite the equal consider-
ation of bee and human needs in the optimisation process, there is
still human-driven subversion of true optima for bees. While using
the existing field sizes and shapes of the real landscape is a realistic
constraint on decision making, it also bypasses a rare opportunity
to explore optimal landscapes for bees outside of human-defined
environments. Optimising landscapes with no limits on field size or
location is an avenue for further investigation, which would also pro-
vide a more detailed outlook on landscape configuration, potentially
revealing more insight into aspects such as optimal habitat patch size

for each guild of bee.

4.2.3 | Model limitations

Although not all experiments completely converged, the plateauing
improvements in fitness displayed in Figure S10 suggest the solu-
tions may be approaching optima. However, we note that algorithm
stagnation and true optima can be hard to distinguish without much
longer run-times than was feasible for our pilot study. The result-
ing landscapes nevertheless provide useful insights into synergies
and trade-offs between objectives. Our bee-centric results appear
to be ecologically realistic, and the mean predicted abundance of
each guild was higher in their individually optimised landscapes
compared to the real-life landscape (Figure 5). The lack of complete
convergence may explain why the predicted income of landscapes
optimised for farmers alone remained fractionally lower than the
real-life landscape. This suggests that these solutions are converg-
ing towards a composition similar to the real landscape, which is
essentially already optimised for farm income (Figure S2). Allowing
each optimisation to run for more generations may provide more
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certainty and more understanding of optimal spatial configurations
within the landscape. In future studies, a more detailed sensitivity
analysis (e.g. Pinel et al., 2012) could be conducted to determine ini-
tial parameters such as population size and ensure global optima can
be reached in the allotted optimisation timeframe. Further explo-
ration is also required into the effects of modifying the crossover/
mutation functions of the genetic algorithm on the step-size of the
algorithm in the parameter search space.

The scalability of our approach may be limited in terms of intro-
ducing more objectives. Separating solutions by Pareto dominance
has been shown to become less viable when more than three objec-
tives are used in one optimisation, thereby decreasing the search
efficiency of the algorithm (Ishibuchi et al., 2008). This could explain
the high number of rank 1 solutions resulting from our optimisations
including all four objectives (Table S3). However, we still deem these
results worthy of analysis because Figure S10 suggests our solutions
may be approaching optima. Similarly, introducing more parame-
ters (e.g. more land cover choices), or increasing the optimised area,
could also reduce efficiency. Therefore, with the current available
data, our approach may be most useful at a small scale. Our solutions
may not apply to the whole landscape but could instead represent
‘biodiversity islands’ where parcels of land may be dedicated to im-
proving wild bee populations.

We quantified the uncertainties associated with our results by
repeating each experiment 25 times with different random seeds,
producing a population of 50 distinct optimised landscapes each
time. There are also stochastic elements in the Poll4pop model
used to calculate fitness, for example nest allocation according
to a Poisson distribution (Gardner et al., 2020). Therefore, no two
sets of landscape solutions generated from optimisations with the
same objectives should ever be the same. However, we did not ac-
count for uncertainty in the underlying parameters of the Poll4pop
model (e.g. expert-determined nesting/floral attractiveness of land
cover classes). This could be achieved in future studies by drawing
randomly from these parameters' certainty distributions in each
optimisation run (e.g. Image et al., 2022). Future work in progress
proposes a methodology for integrating uncertainties in optimisa-
tion procedures with uncertainties in complex process-based mod-

els (Petrovskii et al., 2024, manuscript in preparation).

5 | CONCLUSIONS

We have demonstrated how a process-based ecological model can
be combined with a genetic algorithm to identify optimum land cover
composition and configurations that account for both the habitat
preferences and movement ranges of different taxa. This suggests
there is potential to apply these methods to other scenarios using al-
ternative process-based species models (e.g. Rangeshiftr; Malchow
et al., 2021). Such approaches could support more effective conser-
vation land-use decision-making by more holistically representing
how different taxa use and experience landscapes. This case study
also highlights two key considerations for future work applying

similar techniques to other landscapes or ecological scenarios. First,
using process-based models that simulate species' behaviour, and
examining which resources the optimisation then prioritises, can
help to identify which resources are likely to be limiting to popula-
tions and why. Second, our results suggest that optimisations should
give more consideration to the number of anthropocentric objec-
tives versus the number of ecocentric objectives used, given the

strong effect this has on the final ‘optimal’ land cover solutions.
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STATEMENT ON INCLUSION

Our study investigated a modelling approach regarding theoretical
landscapes, and as such no local data collection or stakeholder en-
gagement took place. However, the range of authors from different
backgrounds provided a diverse set of viewpoints, which may rep-
resent the perspectives of various stakeholders in our theoretical

scenarios.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the
Supporting Information section at the end of this article.

Figure S1: Overview of the Poll4pop model, which was parameterised
and validated for four bee guilds in the UK by Gardner et al. (2020):
Ground-nesting bumblebees, tree-nesting bumblebees, ground-
nesting solitary bees and cavity-nesting solitary bees.

Figure S2: Landcover proportions of the original 10 x 10 km SK86 grid
square used as reference landscape in our optimisation experiments.
Figure S3: Landscape initialisation process.

Figure S4: Visualisation of the derivation of Equation (1).

Figure S5: Visualisation of how the fitness function calculates scores
for each objective, using the output 10x 10km rasters with 25 m
pixel resolution.

Figure S6: The crossover process, which occurs for each field if a
specified crossover probability (default value=0.7) is met.

Figure S7: Summary of the crossover and mutation process.
Landcovers in the lefthand table are ranked by an average of
Poll4pop-defined nesting and floral scores for each guild of bee.
Figure S8: To ensure the choice of population size and generations
parameters was sensible, preliminary investigations were executed
in which multi-objective optimisations with different combinations
of population size and maximum number of generations were run.
Figure S9: (A) Normalised objective fitness scores for final

landscapes of multi-objective optimisations including only bees. (B)
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Normalised objective fitness scores for final landscapes of multi-
objective optimisations including bees and the farmer.

Figure S10: Evolution of mean fitness score for each objective in
each generation, separated by the type of optimisation being carried
out.

Table S1: Mean of foraging kernels of bee guilds used in the
optimisation process, as defined by the Poll4pop model (Gardner
et al., 2020).

Table S2: Values and of origins of subjective NSGA2R algorithm
parameters, as used in all optimisation experiments.

Table S3: Number of completed optimisations and final population
landscapes analysed for each objective (i.e. ‘end-user’ of the

optimised landscape) and radius.
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