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Abstract. Multi-modal problems can be effectively addressed using mul-
tiple hypothesis frameworks, but integrating these frameworks into learn-
ing models poses significant challenges. This paper introduces a Struc-
tured Radial Basis Function Network (s-RBFN) as an ensemble of mul-
tiple hypothesis predictors for regression. During the training of the pre-
dictors, first the centroidal Voronoi tessellations are formed based on
their losses and the true labels, representing geometrically the set of
multiple hypotheses. Then, the trained predictors are used to compute
a structured dataset with their predictions, including centers and scales
for the basis functions. A radial basis function network, with each ba-
sis function focused on a particular hypothesis, is subsequently trained
using this structured dataset for multiple hypotheses prediction. The
s-RBFN is designed to train efficiently while controlling diversity in en-
semble learning parametrically. The least-squares approach for training
the structured ensemble model provides a closed-form solution for mul-
tiple hypotheses and structured predictions. During the formation of the
structured dataset, a parameter is employed to avoid mode collapse by
controlling tessellation shapes. This parameter provides a mechanism to
balance diversity and generalization performance for the s-RBFN. The
empirical validation on two multivariate prediction datasets—air qual-
ity and energy appliance predictions—demonstrates the superior gen-
eralization performance and computational efficiency of the structured
ensemble model compared to other models and their single-hypothesis
counterparts.

Keywords: diversity · ensemble learning · multiple hypotheses predic-
tion · radial basis functions · Voronoi tessellations.

1 Introduction

Multi-modality focuses on perception with a set of hypotheses instead of a single
output to learn processes. Notable existing approaches include Multiple Choice
Learning (MCL) [8, 9], Multiple Hypotheses Prediction (MHP) [16], Mixture-Of-
Experts [21], Bagging [2], Boosting [7], and Meta-Learning [20]. Among them,



MCL differs in that it uses the output of different models or hypotheses as inputs
to a structured ensemble model (or multiple structured prediction/classification
task models), which are heterogeneous ensemble predictors that can vary in size,
parameters, and architecture [8]. Diverse Multiple Choice Learning (DivMCL),
is an extension proposed for diverse multi-output structured prediction by in-
cluding a diversity encouraging term in the loss function used for training the
models [9]. While DivMCL provides diversity, it trains separate networks which
makes information exchange between individual predictors harder. To cope with
this, the DivMCL ideas are extended by instead of training separate networks for
each choice, the individual hypotheses are combined with Voronoi tessellations
formed by the predictors’ losses in a shared architecture. This allows sharing of
information among predictors during training [16]. But, it is not clear how to
optimally combine these predictors into an ensemble. To the best of the authors’
knowledge, there is no existing method that optimally combines structured pre-
dictions from multiple hypotheses prediction with an ensemble learning model
that can be trained with a closed-form solution [8, 9, 16].

Another important aspect in enhancing generalization of ensembles is the
diversity of individual predictors. Diversity in this context has been extensively
researched in literature, e.g., using Bias-Variance-Covariance decomposition [18],
ambiguity decomposition [10], and their hybrid extensions [3]. However, there
is also not a unifying framework for diversity in ensemble learning. Moreover,
there is no clear connection in the literature between geometric properties of loss
functions for individual predictors and diversity in ensemble learning [19]. This
work focuses on the definition of diversity in ensemble learning as the variety of
outputs from base learners that can improve the generalization performance of
ensemble models [19].

Building on previous aspects [9, 16, 19], a new approach for multiple hypothe-
ses prediction using a structured ensemble model is presented. In this approach,
predictions from a set of base learners or individual predictors are used as inputs
for a radial basis function network, with each predictor or hypothesis focusing on
a specific basis function. The model is referred to as the Structured Radial Basis
Function Network (s-RBFN). During training, the base learners form centroidal
Voronoi tessellations (CVT), with each hypothesis or base learner assigned to
a particular tessellation. A parametric formula from multiple hypotheses frame-
work [16] is used to weight the updates of the base learner parameters in each
iteration of gradient descent, preventing mode collapse and ensuring that all
predictions fall within their respective tessellations. In this work, this strategy
is applied to control diversity in ensemble learning similar to DivMCL [9] with
the mechanism from MHP [16], enhancing generalization performance. The pro-
posed s-RBFN can then be optimized using least squares, providing faster train-
ing compared to other existing structured models that rely on gradient descent
or non-convex methods [8, 9, 16].

The paper is organized as follows: Section 2 presents a revision of the previ-
ous work in structured ensemble learning and diversity; Section 3 presents the



proposed model; Section 4 presents the experimental results and discussions; and
finally, Section 5 provides the concluding remarks and outlook.

2 Literature Review

Multiple hypotheses prediction (MHP) methods extend semi-supervised ensem-
bles and other single-loss, single-output systems to multiple outputs providing a
piece-wise constant approximation of the conditional output space. They differ
from mixture density networks by representing the uncertainty through a dis-
crete set of hypotheses [16]. These models initially employed training techniques
from multiple choice learning [1, 9] and later exploited the geometric properties
from Voronoi tessellations formed by losses of the individual predictors as mul-
tiple hypothesis [16]. These approaches tend to be based on Winner-Takes-it-All
(WTA) loss, meaning that the best base learner among all predictors gets up-
dated during their training. A partial solution is a relaxed version of WTA [16]
where in addition to the winner predictor, the other predictors also get updated
for each iteration. It alleviates the convergence problem of the WTA, but still
leads to hypotheses with incorrect modes. Moreover, when optimizing for a mix-
ture distribution, the issues of numerical instabilities and mode collapsing arise.
For this purpose, the evolving WTA loss was proposed [13] which addresses these
issues by preserving the distribution, yielding regularly distributed hypotheses.
Although this somewhat mitigates the issue but still the problem of how to com-
bine the multiple hypothesis efficiently in a structured ensemble model persists.

Another aspect of MHP is the use of diversity which can serve as effective
regularization - leading to possibly worse performance on training data, but
better generalization on unseen test data [9]. Traditional diversity measures of-
ten assess the correlation or discrepancy between predictions of two models and
their collective performance [11]. Recent innovations have introduced the Bias-
Variance-Diversity decomposition, a nuanced framework that integrates various
functional forms for each loss and directly links diversity to the expectation
of ensemble ambiguity [19]. This approach goes beyond the traditional Am-
biguity and Bias-Variance-Covariance decompositions, limited to squared-loss
and arithmetic-mean combiners [10, 18]. In practice, strategies like bagging and
boosting facilitate diversity among base learners by manipulating data, thus in-
troducing structural and data diversity. Additional methods quantify diversity
through non-maximal predictions and employ metrics such as the logarithm of
ensemble diversity (LED) and ensemble entropy [15, 20]. More recently, MCL and
DivMCL demonstrate superior test accuracy and better generalization compared
to traditional multi-output prediction methods [8, 9]. These approaches empha-
size minimizing oracle loss by focusing on specific hypothesis, contrasting with
broader Mixture-of-Expert models [15, 20, 9, 8, 12]. Ultimately, the strategic in-
tegration of diversity not only serves as an effective regularization mechanism
but also critically enhances the predictive accuracy and reliability of ensemble
models, especially in managing out-of-distribution data. By optimizing ensem-
ble diversity through sophisticated decomposition models and diverse ensemble



strategies, researchers can effectively balance error components to minimize over-
all mean-squared error, resulting in significantly improved predictions [18, 4].

3 Proposed Methodology

In this section, first the multiple hypotheses prediction with Voronoi Tessella-
tions is presented. Later, it is explained how this could be scaled to operate in
a structured setting for regression applications. This is done by generating the
structured dataset using the MHP base learners’ predictions. Finally the opti-
mization of the s-RBFN using the structured dataset is efficiently carried out by
least squares approach.

In the supervised learning setting, given training instances {xi}Ni=1 and ground-
truth labels {yi}Ni=1, the multiple hypotheses case involves a set of prediction
functions {fθj

(x)}Mj=1 with corresponding model parameters Θ = {θj}Mj=1. As-
suming the training samples follow the distribution p(x, y), the expected error
for a loss function L is expressed as:

∫
X

M∑
j=1

∫
Yj(fθj

(x))

L(fθj (x), y) p(x, y) dy dx (1)

During training, the Voronoi tessellation of the label space is induced by the
losses computed from M predictors and given as Y =

⋃M
j=1 Yj(fθj

(x)) where
Yj(fθj (xi)) represents the j th cell with fθj (xi) being the closest of the M pre-
dictions to the label data for each training iteration [16]:

Yj(fθj (xi)) =
{
yi ∈ Yj : L(fθj (xi), yi) < L(fθk

(xi), yi)∀k ̸= j
}

(2)

While implementing (2), a typical approach adopted to avoid mode collapse
is to relax the best-of-M approach by updating all predictors in each iteration [8,
9]. Existing works either focus on multi-output prediction or does not provide an
efficient way to combine the base learners or multiple hypotheses, often relying
on numerical methods [8, 9, 14]. To this end, the aim of this work is to efficiently
combine, in a structured model, the set of hypotheses that form the centroidal
Voronoi tessellations. Additionally, the hypothesis that manipulating the shape
of the tessellations formed during the training of the predictors, that has direct
implications in generalization performance, is validated in the experiments. This
is due to the diversity in ensemble learning induced by the predictors.

3.1 Structured Dataset Formation

Two step approach have been taken for structured dataset formation. Firstly,
the set of predictors {fθj

(x)}Mj=1 are trained with stochastic gradient descent
with randomly initialised weights. Secondly, these learned models are used to
generate the predictions that form the structured dataset.



In each ith iteration, using the j th prediction fθj
(xi) and the true label yi,

the predictors’ parameters are updated using the stochastic gradient descent as
follows:

θj = θj − ηj

(
∂L(fθj

(xi), yi)

∂θj
+

λp

N
θj

)
δ
(
Yj

(
fθj (xi)

))
(3)

where ηj denotes the learning rate for the j th predictor and the norm loss is
computed as L(fθj

(xi), yi) = ∥fθj
(xi)− yi∥22+

λp

2N

∑M
j=1 θ

2
j with the regulariza-

tion parameter λp. The function δ (Yj (fθj(xi))) serves as an indicator with a
parameter 0 < ε < 1 that can alter the shape of the tessellation during training
[16]. This parameter enhances diversity in the structured dataset for ensemble
generalization by regulating the extent to which non-top predictors’ parameters
are updated in each training iteration. It is defined as:

δ(y ∈ Yj(fθj
(x))) =

{
1− ε if is true

ε
M−1 otherwise (4)

When the training of the predictors is completed, the same set of training
instances {xi}Ni=1 are used to generate structured dataset. To elaborate, if the
prediction obtained after the forward pass for j th predictor on a particular train-
ing instance xi is denoted as fθj

(xi), then the resulting predictions for the entire
structured dataset can be written in the matrix form as:

D(ε) =

 fθ1 (x1) . . . fθM
(x1)

...
. . .

...
fθ1

(xN ) . . . fθM
(xN )

 (5)

with D(ε) ∈ RN×M being the matrix of predictions for a particular diversity
parameter 0 ≤ ε ≤ 1. Similarly, for any test set with test instances {x′

i}ni=1, the
structured test set D(ε)′ ∈ Rn×M is given by the predictions {fθj

(x′
i)}ni=1. For

any structured test dataset, the predictors use the same set of parameters Θ
obtained after training using stochastic gradient descent.

3.2 s-RBFN Optimisation

The structured dataset is used as input for the radial basis function network,
with each j th predictor or hypothesis fθj (x) associated to a particular basis
function ϕ

(
fθj

(x) , µj , σj

)
, i.e., a map Φ (D(ε)) : RN×M → RN×M is obtained

by applying the basis function ϕ (·) to each element of D(ε), transforming it
into:

Φ (D(ε)) =

ϕ(fθ1
(x1), µ1, σ1) . . . ϕ(fθM

(x1), µM , σM )
...

. . .
...

ϕ(fθ1
(xN ), µ1, σ1) . . . ϕ(fθM

(xN ), µM , σM )





In this work, the Gaussian basis function ϕ (·) = exp
(

−1
2σ2

j

∣∣fθj (xi)− µj

∣∣2)
have been used where the centers cj and scales Sj parameters for the basis func-
tions are computed from each column j of the structured training dataset D(ε)

and are computed by µj =
1
N

∑N
i=1 fθj (xi), and σj =

√∑N
i=1

(fθj
(xi)−µj)

2

(N−1) .
The s-RBFN formulation can now be expressed in matrix form as follows:

ŷ = Φ (D(ε))w =

ϕ (fθ1 (x1) , µ1, σ1) . . . ϕ (fθM
(x1) , µM , σM )

...
. . .

...
ϕ (fθ1 (xN ) , µ1, σ1) . . . ϕ (fθM

(xN ) , µM , σM )


 w1

...
wM


(6)

The optimal weights {wi}Mj=1 in (6) can now be simply obtained by least-
squares with regularization parameter λs for the structured model using:

w =
(
Φ (D(ε))

T
Φ (D(ε)) + λs ∗ I(mxm)

)−1

Φ (D(ε))
T
y (7)

Fig. 1: Model architecture with structured data obtained from neural networks’
predictions and the ground-truth labels y forming centroidal Voronoi tessella-
tions based on the neural networks’ losses (Left box). The s-RBFN uses these
predictions to estimate the ground-truth labels ŷ, with L representing the s-
RBFN norm loss (Right Box).

The whole approach presented above has been summarized in the Figure 1
where the model is shown with the structured data obtained in the left box,
using neural networks as predictors. The label data is assigned to a particular



Voronoi tessellations depending on how far it is from the predictions of the base
learners. This tessellation represents the multiple hypotheses prediction target
values, y (Left box in Figure 1). Once training is completed, the predictions from
the trained predictors, using all training instances as input, are used as input
data for training a radial basis function network (s-RBFN) via least-squares.
The estimates ŷ in Figure 1 of the multiple hypotheses prediction ground-truth
labels y are given by the output from the s-RBFN (Right box in Figure 1). L
represents the L2 norm loss between the ground-truth labels and their estimates.

4 Experiments

4.1 Datasets

An Air Quality dataset [6] and the Appliances Energy Prediction dataset [5] are
have been employed in this study. The first dataset consists of 9358 instances of
hourly averaged responses from five metal oxide chemical sensors embedded in
an air quality chemical multisensor device. The data was recorded from March
2004 to February 2005, and represents the longest freely available recordings of
on-field responses from deployed air quality chemical sensor devices [6]. The goal
is to predict absolute humidity values with the rest of variables in a multivariate
regression problem. The second dataset consist of 10 minutes timestamps for 4.5
months making up over 20 thousand instances from 29 features. The goal is to
predict energy appliances in a low energy building [5].

4.2 Models Performance & Comparisons

For the individual predictors, a 2-layer multi-layer perceptron (MLP) have been
used with the number of neurons in each layer as κ, learning rates η, multiplica-
tive factor of the initial weights χ, and regularization parameters λp. For the
s-RBFN model, the number of predictors or hypotheses is given by M , diversity
parameter ε, and s-RBFN regularization parameters λs. All values used for the
hyper-parameters are displayed in Table 1.

For the experiments, the top performing models’ versions from the origi-
nal papers of the two used datasets [6, 17, 5], are replicated for comparison (top
competitors). These are the Linear Model (LM), Random Forest (RF), Gradient-
Boost (Gboost), and Support Vector Machine Radial Basis Function (SVM-
RBF). To elaborate, for the s-RBFN, the experiments are performed with 10
simulations for each combination of hyper-parameters from Table 1. The mean
and standard deviations of the RMSE for each of the 10-folds are recorded as
performance measures. In total, the experiments have been performed with 80
different model hyper-parameters’ configurations (also including the single hy-
pothesis M = 1). Additionally, for further comparison, the bench-marking results
using the baseline multiple hypothesis prediction (arithmetic combiner) model
[16] are also included, in which the ensemble of individual predictors forming
Voronoi Tessellations as their arithmetic mean are employed.



Table 1: Sets of values for the s-RBFN hyperparameters

(a) M number of hypotheses, κ number of neurons per layer, η learning rates
for the predictors, χ is a multiplicative factor for random initial predictors’
weights Θ.

M κ η χ

[2, 5, 10, 20, 35] [20, 200, 2000] [0.03, 0.3] [0.0001, 0.01, 0.1, 1]

(b) ε is the diversity parameter, λp is the regularization parameter for the
predictors, λs is the regularization parameter for the s-RBFN.

ε λp λs

[0, 0.1, 0.35, 0.5] [0, 0.0001, 0.01, 0.07] [0, 3, 5]

Absolute Humidity Prediction In Table 2, the 10 cross-folds mean and
standard deviation RMSE values for the top performing versions of all models
on the test set are presented. The RMSE for the 80 different hyper-parameter
configurations are computed and its first and third quartiles are shown in this
table. For the rest of the models, 80 different hyper-parameters are applied for
comparison.

The best model by generalization performance is the s-RBFN when the
hyper-parameters are optimized. The SVM-RBF is the second best performing
model. The arithmetic combiner has the lowest standard deviation and con-
sequently has the smallest variation of the mean RMSE for all quartiles. The
s-RBFN has a quarter of the 80 different hyper-parameter configurations’ mean
RMSE values lower than all other models except for the SVM-RBF, due to its
higher standard deviation.

Table 2: Absolute humidity prediction: Mean and standard deviation of the
10-fold cross-validation RMSE for the models with the top-performing hyper-
parameters configuration in generalization performance. First and third quartiles
are shown for all models from 80 different hyper-parameter configurations.

Models Top Model std dev First Quartile Third Quartile
Linear Model 7692.78 1657.53 8189.84 10488.35
SVM-RBF 29.83 1.99 34.80 37.65
Random Forest 55.66 15.47 69.00 91.55
Gradient Boosting 55.76 38.73 93.92 151.58
Arithmetic Combiner 39.19 0.15 41.75 43.93
s-RBFN 22.46 9.14 38.98 54.71



Table 3: Energy appliance prediction: Mean and standard deviation of the 10-fold
cross-validation RMSE for the models with the top-performing hyper-parameters
configuration in generalization performance. First and third quartiles are shown
for all models from 80 different hyper-parameter configurations.

Models Top Model std dev First Quartile Third Quartile
Linear Model 281.76 297.69 321.39 803.31
SVM-RBF 104.68 1.27 107.26 109.01
Random Forest 298.46 29.35 328.48 373.81
Gradient Boosting 292.08 67.26 389.10 476.89
Arithmetic Combiner 115.17 0.11 128.54 144.83
s-RBFN 101.12 2.42 102.36 109.96

Energy Appliance Prediction For the energy appliance dataset the same
set of experiments are performed as for the air quality dataset. In line with
the results displayed in Table 2, in Table 3 it can be seen how the s-RBFN is
the best performing model with less standard deviation than in the previous
dataset. This makes the model best performer in the first and third quartiles.
The arithmetic combiner is the model with lowest standard deviation and the
SVM-RBFN is the second best performing model, in line with the air absolute
humidity prediction experiments.

Thus, both the dataset, it has been validated empirically that the s-RBFN
is the best performing model in terms of generalization performance and for a
range of different hyper-parameters.

4.3 Diversity & Generalization Performance

In this section, the hypothesis of the improvement in generalization performance
of the s-RBFN for different values of the diversity parameter ε and the number
of hypotheses M is verified. Figures 2 and 3 show, for the air quality and energy
appliances test sets respectively, the mean RMSE and 90% confidence interval
using 10-fold cross-validation for each hyper-parameter configuration, and for
different values of the number of hypotheses M and diversity parameter ε. The
horizontal axis represents the pairs of hyper-parameters M and ε.

The results in Figure 2 indicate, for the absolute humidity prediction experi-
ments with the air quality test set, that the generalization performance increases
with the diversity parameter up to a certain number of hypotheses, but decreases
if the number of hypotheses is too large. In this set of experiments the optimal
pair for M = 10 and ε = 0.35 is well defined. For this pair of hyper-parameters
the s-RBFN achieves the best performance, equal to the shown in Table 2. It can
be shown that increasing ε for two hypotheses worsen the generalization perfor-
mance, meaning that a minimum number of hypotheses is needed for diversity
to improve generalization capabilities.

In Figure 3, the energy appliances prediction dataset shows the same con-
clusion with some different results. For relatively large number of hypotheses



(M = 10, 20) the s-RBFN achieves the best performance in generalization for
relatively large ε = 0.35. However, this improvement is not observed for M = 2
and M = 5, as for five hypotheses the best model has ε = 0.1, with the case of
ε = 0.35 being worse than for the case of ε = 0. It is reasonable to believe that
for each number of hypotheses there is an optimal level of diversity, or ε, for
the s-RBFN model. In the case of two hypotheses (M = 2), there is no impact
of diversity due to the low number of individual predictors. Moreover, for this
case, the performance is very good, suggesting that while diversity can enhance
generalization performance for a given number of hypotheses, there may be cases
in which the individual predictor alone is good enough for prediction in the test
set.

Fig. 2: Air quality test set: Mean RMSE and 90% confidence interval from 10-
fold cross-validation for different configurations for hyper-parameters M and ε.

Fig. 3: Energy appliances test set: Mean RMSE and 90% confidence interval from
10-fold cross-validation for different configurations for hyper-parameters M and
ε.



4.4 Impact of Regularization

In this section, the purpose is to understand the contribution of the regularization
parameter for the s-RBFN in generalization performance. The regularization pa-
rameter λs has a clear effect in reducing the uncertainty of the hyper-parameters
in the prediction of the structured ensemble model. For the air quality test set,
in Figure 4a, it can be seen that for greater values of the regularization param-
eter, the mean RMSE for different hyper-parameter configurations remain more
constant. Additionally, the standard deviation is lower for greater values of λs,
as shown in Figure 4b. The same pattern is observed in the energy appliances
test set with Figures 5a and 5b. It can be concluded that the regularization
parameter reduces the uncertainty of the s-RBFN hyper-parameters. It also im-
proves the s-RBFN generalization performance, on average, for any value of the
hyper-parameters.

(a) Mean RMSE (b) Standard deviation RMSE

Fig. 4: Air quality test set: (a) Mean and (b) Standard deviation RMSE for 10-
Fold cross-validation for different s-RBFN regularization parameters and hyper-
parameter configurations.

In summary, the experiments demonstrate that diversity in structured en-
semble models, particularly in the s-RBFN, is a distinctive feature of these ar-
chitectures. There are instances where a single-hypothesis model may perform
optimally. This indicates that diversity is not universally beneficial for enhanc-
ing generalization performance but rather improves performance contingent on a
specific number of hypotheses. The experiments suggest there is indeed an opti-
mal level of diversity, ε, for each number of hypotheses. Conversely, there exists a
maximum number of hypotheses beyond which the performance of the ensemble
model deteriorates, regardless of the ε level, indicating limits to the benefits of
diversification. Similarly, for ε values exceeding 0.35, there is a noticeable decline
in overall generalization capabilities.



(a) Mean RMSE (b) Standard deviation RMSE

Fig. 5: Energy Appliance test set: (a) Mean and (b) Standard deviation RMSE
for 10-Fold cross-validation for different s-RBFN regularization parameters and
hyper-parameter configurations.

5 Conclusion

This work introduces a novel structured ensemble model for single-output mul-
tiple hypotheses prediction. The presented model incorporates geometric prop-
erties of centroidal Voronoi tessellations with the individual predictors’ losses
during training. By altering the shape of the tessellations through a parametric
mechanism, the diversity is introduced to the structured dataset for the s-RBFN
model. It has been validated through experiments that the s-RBFN model sur-
passes other models in generalization performance across a range of hypotheses
numbers and diversity parameters. This model is the fastest to train once the
structured dataset is prepared using its closed-form expression. Additionally, it
facilitates easy control over diversity in structured ensemble learning and mul-
tiple hypotheses prediction for single-output regression problems through the
diversity parameter. It is crucial to analyze the appropriate number of hypothe-
ses and diversity hyper-parameters for a specific dataset, as these are highly
correlated with the generalization performance capabilities of the s-RBFN.

For future work, several areas can be explored to enhance structured en-
semble models in multiple hypotheses prediction. For instance, this work uses
tabular data for regression with a simple 2-layer network as individual predic-
tors. It would be interesting to employ more datasets from other modalities,
e.g., visual or text datasets and use deeper architectures. This would allow to
further investigate the relationship between model diversity, complexity and the
generalization performance.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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