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ARTICLE INFO ABSTRACT

Keywords: Macrophages are a type of white blood cell that play a significant role in determining the inflammatory
Macrophage response associated with a wide range of medical conditions. They are highly plastic, having the capacity
I‘fﬂam"fﬂtlon ) to adopt numerous polarisation states or ‘phenotypes’ with disparate pro- or anti-inflammatory roles. Many
ig;:égon analysis previous studies divide macrophages into two categorisations: M1 macrophages are largely pro-inflammatory

in nature, while M2 macrophages are largely restorative. However, there is a growing body of evidence
that the M1 and M2 classifications represent the extremes of a much broader spectrum of phenotypes, and
that intermediate phenotypes can play important roles in the progression or treatment of many medical
conditions. In this article, we present a model of macrophage dynamics that includes a continuous description
of phenotype, and hence incorporates intermediate phenotype configurations. We describe macrophage
phenotype switching via nonlinear convective flux terms that scale with background levels of generic pro-
and anti-inflammatory mediators. Through numerical simulation and bifurcation analysis, we unravel the
model’s resulting dynamics, paying close attention to the system’s multistability and the extent to which
key macrophage-mediator interactions provide bifurcations that act as switches between chronic states and
restoration of health. We show that interactions that promote M1-like phenotypes generally result in a greater
array of stable chronic states, while interactions that promote M2-like phenotypes can promote restoration of
health. Additionally, our model admits oscillatory solutions reminiscent of relapsing-remitting conditions, with
macrophages being largely polarised toward anti-inflammatory activity during remission, but with intermediate
phenotypes playing a role in inflammatory flare-ups. We conclude by reflecting on our observations in the
context of the ongoing pursuance of novel therapeutic interventions.

1. Introduction cytokines, with the potential to either worsen or repair inflammatory
damage [1,4]. Given that macrophages play such a substantial role

Macrophages are hlghly versatile immune cells that play pivotal in determining the switch between healthy and chronic outcomes for

roles in controlling the inflammatory damage that underlies many
medical conditions, including auto-immune disorders such as rheuma-
toid arthritis, cardiovascular diseases, neurodegenerative conditions
(such as Alzheimer’s or Parkinson’s disease), diabetes, and some can-
cers, to name a few. Macrophages’ roles are numerous, and depend
strongly upon their ‘activation state’ or ‘phenotype’, which can change
dynamically in a manner that is dependent upon the inflammatory
environment in which they reside (among many other factors) [1,2].
One of the principal roles of macrophages (in their role as the immune
system’s ‘big eaters’) is to remove unwanted harmful material (includ-
ing apoptotic cells) via phagocytosis, in order to minimise the potential
for further tissue damage [3]. Alongside this, and depending on their
phenotype, macrophages can release either pro- or anti-inflammatory
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patients, and given that macrophage roles are so strongly linked to
the inflammatory environment, understanding the connections between
macrophage phenotype switching and resulting inflammatory dynam-
ics is an important goal, especially in the ongoing search for novel
therapeutic interventions.

Unambiguously categorising distinct macrophage phenotypes (or
polarisation/activation states) is a difficult task, as there is no unique
way to quantify a macrophage’s polarisation. Instead, macrophage
polarisation states are associated with broad categorisations that are
implicated based on levels of expression of certain markers, produc-
tion of certain cytokines, or measures of other cellular functions and
properties [5]. Historically, the most common nomenclature has been
to divide macrophages into two distinct classes labelled “M1” and “M2”

0025-5564/© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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(or similarly “classically activated” and “alternatively activated”), with
M1 macrophages being linked to pro-inflammatory responses and M2
macrophages being associated with restorative activity [6-9]. How-
ever, such categorisations are generally contentious and considered
to be overly simplistic descriptions of a much more complex land-
scape of potential polarisation states. For example, in the context of
rheumatoid arthritis, five relevant macrophage subtypes have been
identified in in vitro assays that consider morphological characteristics,
gene expression data related to phenotype markers, and functional
aspects including production of Reactive Oxygen Species (ROS) [10].
Increasingly, studies point to the existence of various intermediate
or “mixed” macrophage phenotypes that exhibit, for example, some
features akin to M1 and some features akin to M2; see, e.g. [11-14].
In this sense, we could regard macrophage phenotype as a continuous
variable, parameterising a spectrum of states that lie between the M1
and M2 extremes.

Given the complexity of the macrophage phenotype landscape,
many previous mathematical models that have sought to understand
the dynamics associated with inflammatory conditions have typically
incorporated a small, finite number of macrophage phenotypes. In
some cases, all macrophages are lumped together as a single ‘ho-
mogenised’ population, which commonly interacts with other cell pop-
ulations and/or various pro- or anti-inflammatory mediators to deter-
mine the resulting inflammatory outcome. Previous works that have
taken a homogenisation approach include models of cancers [15,16],
stroke [17] and atherosclerosis [18], as well as models that focus upon
aspects of the inflammatory response that transfer readily between
numerous inflammatory conditions [19-21]. We note, in particular, the
work of [22], which used a dynamical systems analysis to study a series
of models of inflammation in a generic context, in order to understand
which interactions are key in providing bifurcations that underpin
switching between resolving and chronic outcomes. Amongst the au-
thors’ conclusions was the fact that the rate at which macrophages
remove harmful apoptotic cells is a key parameter that drives this
switching of outcomes, and is a target for therapeutic manipulation.
While the models of [22] used a homogenised approach, with all
macrophages assumed restorative, we note that phagocytosis of apop-
totic cells is actually primarily attributed to the M2 phenotype, with the
M1 phenotype largely being regarded as more deleterious. The models
of [22] were later extended to a spatial setting, via partial-differential-
equation (PDE) and agent-based approaches, to elucidate the influence
of immune cell and mediator motility upon inflammatory dynamics
and outcomes [23,24]. Throughout all of these models, macrophage
phenotypes do not feature explicitly, and there is hence a risk that the
models may over-simplify some key phenotype-specific feedbacks (as
described above).

As our understanding of disparate macrophage phenotypes has con-
tinued to advance over recent years, increasingly mathematical models
have gone beyond the homogenisation approach to include two or
more distinct phenotypes. Examples of such models can be found in
contexts including inflammatory bowel disease [25], hepatitis [26,27],
asthma [28], and cancer [29-31], to list just a few. More recently,
in [32], we presented extensions of the models of [22] to include
two populations of macrophages of opposing phenotypes (referred to
as pro- and anti-inflammatory macrophages, but loosely representa-
tive of the M1/M2 categorisation). Taking a systematic approach, we
presented a series of models of increasing complexity, starting with a
model of a homogenised macrophage population, before building to
a two-macrophage-phenotype model, and finally supplementing this
with additional feedbacks from a coexistent population of neutrophils.
Moving from each model to the next, we examined changes in the
bifurcation structures of the models as new feedbacks were added,
in order to understand the role each model interaction has in de-
termining the resulting dynamics and the switch between chronic
and healthy outcomes. Our analysis revealed that incorporating two
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distinct macrophage phenotypes resulted in additional oscillatory so-
lutions (reminiscent of inflammatory conditions that exhibit relapsing—
remitting characteristics) not observed in the previous models of [22].
These oscillatory solutions were most evident for large macrophage
populations, for which there is scope for larger disparity between
the numbers of macrophages of each phenotype. Furthermore, rates
of macrophage phenotype switching were shown to impact resulting
outcomes in a largely intuitive manner; high rates of switching toward
the restorative phenotype can eliminate chronic outcomes entirely, and
high rates of switching toward the pro-inflammatory phenotype can
both worsen chronic outcomes and promote further chronic configu-
rations through increased multistability. We note that these findings
are consistent with the fact that active manipulation of macrophage
phenotype is one area of focus in treatment of various inflammatory
conditions [33,34].

While the two-phenotype models of [32] do make progress to-
ward a better understanding of the dynamics underlying inflammatory
conditions, we note that this perspective still represents a degree of
over-simplicity that omits the influence of ‘intermediate’ phenotypes.
We seek to address this here. While some previous models have ex-
plicitly included discrete intermediate or mixed phenotypes (e.g. [29,
301), models that incorporate a continuum description of macrophage
phenotypes are comparatively sparse. In [35], in order to understand
the roles of heterogeneous macrophage populations upon solid tumour
aggregation, two models are presented and compared: one which takes
a two-phenotype (pro-tumour and anti-tumour) approach, and one
which considers a macrophage population that is structured according
to a continuous phenotype variable. These models were compared
via steady state analysis and numerical simulation; while numerical
simulations were similar between these approaches, the two-phenotype
model was shown to exhibit greater multistability. The interactions
of heterogeneous macrophage populations with tumours have also
been modelled via agent-based approaches, which can include contin-
uous descriptions of polarisation states [36,37]. We note that, to our
knowledge, no authors have to date interrogated a continuum-based
description of macrophage polarisation states via an approach of formal
bifurcation analysis; this approach forms the focus of our work here.

In this article, we develop a new PDE-based extension of the two-
phenotype models of [32] that utilises a continuous description of
macrophage polarisation states that accounts for intermediate phe-
notypes. For simplicity, we restrict attention to the interactions of
macrophages with background inflammatory mediators, and neglect
the roles of other immune cells here. Our model incorporates a spec-
trum of phenotype configurations that ranges between extreme con-
figurations representing fully pro-inflammatory (M1) and fully anti-
inflammatory (M2) phenotypes, and model phenotype switching via
convective flux terms whose magnitudes scale under the influence of
generic populations of pro- and anti-inflammatory mediators, which to-
gether provide a description of the inflammatory environment in which
our macrophage population resides. We analyse our model through
numerical simulation (conducted in Matlab) and dynamical systems
analysis (including via the numerical continuation package XPPAUT,
as described in [38,39]). Supporting Matlab and XPPAUT codes are
provided online! in order to facilitate re-use of this model in future
inflammation studies that may, for example, include more detailed
descriptions of inflammatory mediators or incorporate other immune
cells. Throughout our analysis, we are interested in the extent to
which key cellular and mediator interactions provide switches between
resolving and chronic outcomes via corresponding bifurcations, and
the extent to which this switching of outcomes is influenced by shifts
in macrophage phenotype. Throughout, we pay close attention to the
extent to which our macrophage population is polarised toward pro- or

1 See github.com/martinrnelson/MacrophageContinuum.
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Table 1
Summary of the dependent variables appearing in our model, with corresponding
units.

Variable Meaning Units

m* Macrophage density (per tissue volume) cellsmm™
g* Anti-inflammatory mediator concentration pgmm™
c* Pro-inflammatory mediator concentration pgmm~™>

anti-inflammatory phenotypes, and the corresponding role of interme-
diate phenotypes that do not feature in the previous models of [32].
To conclude, we reflect on our dynamical systems observations in the
context of the ongoing search for therapeutic interventions in a range
of inflammatory conditions.

2. Model

We model macrophages on a continuous spectrum of phenotypes,
classified according to their levels of pro/anti-inflammatory activity.
We denote the number of macrophages by m* (t*, p), where t* represents
time and stars are used to distinguish dimensional variables from their
dimensionless counterparts below. The independent variable p € [-1, 1]
here parameterises macrophage phenotypes, with p = 1 corresponding
to a fully pro-inflammatory phenotype and p = —1 corresponding
to a fully anti-inflammatory phenotype. Additionally, we introduce
variables c¢* (+*) and g* (+*) to represent concentrations of generic pro-
and anti-inflammatory mediators present in the tissue of interest; thus,
c¢* and g* together describe the inflammatory landscape in which
macrophages reside. (The dependent variables appearing in our model
are also summarised in Table 1.) We expect macrophages to switch
phenotype dynamically in response to changes in the inflammatory
context, with high levels of inflammation (¢* high, g* low) driving a
shift toward pro-inflammatory macrophage phenotypes, and low levels
of inflammation promoting a shift to the anti-inflammatory pheno-
types typically found in resident macrophage populations in healthy
tissues [40]. A schematic illustration of the interactions included in our
model is shown in Fig. 1.

We model phenotype switching via two convective fluxes, q**
and q~*, which shift macrophages toward pro-inflammatory and anti-
inflammatory phenotypes respectively. We expect pro-inflammatory
mediators, ¢*, to drive macrophages to become more pro-inflammatory,
and expect the strength of the corresponding flux to be largest for fully
anti-inflammatory macrophages (with p = —1), with macrophages at
the fully pro-inflammatory end of the phenotype spectrum (p = 1) not
being affected at all. Thus, we write

qt =ajc" (1 -pym". (€))

Similarly, anti-inflammatory mediators, g*, drive phenotypic switching
in the opposing direction, with the greatest effect on macrophages with
p= 1. We write

q " =-ag"(1+p)m". 2
Here, the parameters «] and o] describe the rates of phenotypic switch-
ing in response to environmental cues from mediators. We also note
that these choices of flux terms constrain macrophages to the domain
p € [-1,1], since q** is zero when p =1 and q~* is zero when p = —1.

Following [32], we assume that macrophages proliferate logistically
up to some maximum population size m _ (which we expect to vary
between tissues), and that the rate of proliferation is enhanced in the
presence of pro-inflammatory mediators (¢*). Additionally, we incorpo-
rate macrophage loss (due to either cell death or migration away from
the tissue of interest) at a constant rate P Thus, we have the following
partial differential equation that governs the macrophage population:
om* 0

preas a (aic* (1 =pym* —ajg* (14 p)m*)
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m*

=k* (c* + cy.) R(p)m;,. <1 - m*T > —ypm", 3)
max

in which k*c}. is the baseline rate of macrophage proliferation in the

absence of pro-inflammatory mediators, R(p) is a function specifying

which phenotypic configuration newly acquired macrophages reside

in (specified in Section 3 below), and m.(t*) is the total number of

macrophages present in the system at a given time, given by:

1
m;i (t*) =/ m* (t*,p) dp. ()

1
To prescribe mediator dynamics, we take the interactions given in
the models of [32] as a guide, noting that macrophages can produce
both pro- and anti-inflammatory mediators (in a manner that depends
on their phenotype). Our mediator dynamics are governed by the
following ordinary differential equations:

dg* ! .

e =K;/ fipym*dp -y g", )
-1

dc* * ! % % ks % sk

= fr(pym*dp — 8¢ g* —yic*, (6)
-1

in which K, and «’ parameterise rates of mediator production, Yy
and y; parameterise rates of mediator decay, * represents a miti-
gating effect of anti-inflammatory mediators against pro-inflammatory
mediators, and the functions f;(p) and f,(p) describe how the rates
of production of each group of mediators varies as a function of
macrophage phenotype. For simplicity, we assume linear dependences
for the latter, i.e.

fap =32 @)
that is, macrophages that are in a fully pro-inflammatory configuration
(p = 1) produce no anti-inflammatory mediators at all and, likewise,
macrophages that are fully anti-inflammatory (p = —1) produce no
pro-inflammatory mediators.

We solve the system (3)—(7) subject to initial conditions represent-
ing an initially positive population of macrophages and some appropri-
ate mediator concentrations. We therefore prescribe

1_
fip) = T”

* *

m = mjy(p), =¢js g =gy att"=0. (8
2.1. Nondimensionalisation

To simplify our analysis below, we nondimensionalise (3)-(8) by
introducing the following scalings:

2
1 . v Ve Ye
* * _ ‘¢ * __ ¢ * o __ C
= Ft’ &=5¢ =0 m= - m ©)
c &

which yields the following system of dimensionless equations:

aa—':l + aip (arc(1=p)ym—ayg (1 +p)m)

= (c+er) Ry (1 - m’t’:) — . (10)
% [I Fiomdp - 7,8, an
% =, [I Fr@mdp - cg —c, a2
with
mp () = /_ 11 m(t, p)dp. as)

In (10)-(12) above, we have introduced the following dimensionless
parameter groupings:

Yy Y KFk* k*c*

T
Ye = —0» Ym = —0> K. = or = — a4)
£ "o ©orger v
e 5K M .
ap = ﬁ’ a = F’ Mpax 7*2 ( )
c
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Decay Decay
’y; Removal ’y:
Anti-Inflammatory 5* Pro-Inflammatory
Mediators _ Mediators ,
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oo x X
Production by : E E 4 Production by
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’fgfl(p) : P ke f2(p)
v : :
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Recruitment e ' 5 Loss
* . : *
k R(p) E : Tm

Phenbtypes (p)

Fig. 1. Schematic illustration of the interactions included in our model. Arrows indicate production terms or positive fluxes, lines terminated with bars represent loss terms, and
dashed arrows indicate that corresponding macrophage behaviours scale with environmental cues represented by relevant mediator concentrations. Green/red triangles respectively

indicate feedbacks whose strength increases/decreases with the phenotype variable p.

We solve (10)—(13) subject to the initial conditions:

m = mgy(p), c=cp, g2=28 atr=0. (16)

2.2. Parameters

A summary of the dimensional parameters appearing in our model
is provided in Table 2. We note that theoretical studies of inflammation,
in general, suffer from difficulties in accurately inferring corresponding
model parameters due to limitations in available experimental data.
This is due to a variety of factors, including a lack of suitable non-
invasive experimental protocols, the fact that parameter values would
be likely to have significant variability between differing inflammatory
conditions and affected tissues, and due to patients with inflammatory
conditions commonly reporting late to medical professionals, limiting
the extent to which the onset of the acute inflammatory phase can
be interrogated. Furthermore, we note that inferring rate parameters,
in particular, would require temporal data that is difficult to obtain
in vivo. In light of these limitations, it is more practical to estimate
the orders of magnitude of corresponding dimensionless parameter
groupings based on our knowledge of which mechanisms dominate.
Our approach is to construct a baseline set of dimensionless parameter
values (given in Table 3) which reflects available knowledge around
dominant mechanisms, and to then analyse the impact of variations
in these parameters via numerical simulation and bifurcation analysis.
Where possible, we configure our baseline parameter choices to be
consistent with those of [32], in order to facilitate comparison of the
PDE model discussed here with related ODE models discussed in [32].

The decay rates of individual mediators are reasonably well doc-
umented, but can vary according to the medical context in question.
For example, the half-lives of the pro-inflammatory cytokines IL-14,
IL-8 and TNFa have been indicated to lie in the range 18.2-24 min,
while the anti-inflammatory cytokine IL-1RA decays more slowly with
a half-life in the range 4-6h [41]. In our model, this could suggest that
Ve = y; /vy < 1. However, some cytokines (e.g. IL-6) can have both
pro- and anti-inflammatory effects [41], suggesting that y, ~ 1 in some

contexts. Here, following [32], we take y, = 0.2 as our default value in
Table 3.

Identifying accurate values for the parameters that govern
macrophage population dynamics is difficult in general, since these
depend upon the scale of the affected tissue. However, the rate of
macrophage loss (7)) has been documented (in the context of wound
healing) to lie in the range 0.2-1.41 per day [42,43], indicating that
macrophage loss occurs at a slower rate than decay of pro-inflammatory
mediators; we hence set y,, =y, /y¥ < 1 in Table 3. Accurately prescrib-
ing the rate of proliferation/recruitment of the macrophage populations
in isolation is hindered by the fact that macrophage proliferation rates
are known to depend on background levels of inflammatory media-
tors [44]. In (10), we assume that macrophage proliferation rates take
a linear dependence upon pro-inflammatory mediator concentrations
(i.e. of the form ¢ + ¢;) and, under the expectation that proliferation
rates should appreciably increase in the presence of pro-inflammatory
mediators, we expect ¢ to be small in comparison to the scale over
which ¢ varies. We therefore set ¢; = 0.01 in Table 3. Likewise, since
the maximal macrophage population size will depend heavily on the
size of the tissue of interest, we follow [32] in choosing m,,,, =25 as a
baseline value in Table 3.

We expect macrophage phenotype switching toward the pro-
inflammatory end of the spectrum («;) to dominate the converse
direction (@,) as many inflammatory conditions are associated with
increased ratios of pro-inflammatory macrophages [45,46]; thus we
expect a; > a, in general.

The remaining mediator production rate parameter, k_, is not read-
ily available from existing literature. Following [32], we choose k., =
0.35 as our baseline value; however, we note that our definition of
k. here varies slightly from that of [32], since its interpretation here
is inherently linked to the manner in which the mediator production
functions f,(p) and, indirectly, f,(p) are prescribed. Here, we choose
f1(p) and f,(p) to be O(1) functions, and vary the strength of the
production of mediators via k,. Variations of all parameter values
around these baseline values are examined throughout our analyses
below.
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Table 2
Summary of the dimensional parameters appearing in the model, with corresponding units.
Parameter Meaning Units
Macrophage parameters
k* Rate of (logistic) growth of macrophage population mm? pg~! day™!
cr Pro-inflammatory mediator concentration at which macrophage proliferation is at its minimal rate pgmm™
m o Maximum size of macrophage population cellsmm—
a) Rate of macrophage phenotype switching toward pro-inflammatory phenotypes mm? pg~! day~'
a; Rate of macrophage phenotype switching toward anti-inflammatory phenotypes mm? pg~! day™’
7 Rate of loss of macrophages (all phenotypes) day™!
Anti-inflammatory mediator parameters
Ky Rate of production by macrophages pgcell™! day™!
Ye Decay rate day™!
Pro-inflammatory mediator parameters
kY Rate of production by macrophages pgcell™! day™!
v: Decay rate day’]
5* Rate of loss due to mitigating effect of anti-inflammatory mediators mm? pg~! day™!

Table 3
Summary of the dimensionless parameters appearing in the model. Parameter values
are estimated as described in Section 2.2.

Parameter  Expression Meaning Baseline value

K. Kk} /5Ky Rate of production of 0.35
pro-inflammatory mediators

Ym vulr Decay of macrophages 0.05

Ve velv! Decay of anti-inflammatory 0.2
mediators

cr k*cr/r} Rate of macrophage proliferation 0.01
in the absence of ¢

My SR /r:*  Maximum macrophage population 25
size

a a; fk* Macrophage phenotype switching 1
(anti to pro)

a, a; /8 Macrophage phenotype switching 0.01
(pro to anti)

3. Results

In the following sections, we use a combination of numerical sim-
ulations conducted in Matlab and bifurcation analyses conducted in
XPPAUT to analyse the system (10)—(13). In both cases, the correspond-
ing codes involve a finite difference discretisation in the phenotype
variable p, which converts our PDE system into a system of ODEs
that can be simulated using standard in-built solvers. More details
of the numerical scheme are given in Appendix. Throughout, we are
interested in whether (for a given set of parameter values) the system
admits a positive steady state that represents chronic inflammation,
returns to a ‘healthy’ steady state in which pro-inflammatory compo-
nents are zero, or provides more complex dynamics such as oscillatory
solutions (which could be likened to inflammatory conditions that
exhibit relapsing-remitting characteristics). We will observe that, often,
the system may exhibit multiple of these potential solutions for a fixed
parameter set, with the switch between outcomes being governed by
initial conditions. We will also draw comparisons of the results of
this PDE model against earlier models that have less detailed descrip-
tions of macrophage phenotypes to elucidate the extent to which our
conclusions may be sensitive to the modelling approach.

3.1. Stability of the zero state

It is trivial to see that the system (10)-(13) has a steady state at
m = g = ¢ = 0. Since this steady state contains no pro-inflammatory
components, we regard this configuration as one type of resolved
outcome. In order to determine the stability of this steady state, we
linearise (10)-(13) by introducing the following scalings:

m(t, p) = em(t,p),  gt) =€g@), c(n) = €¢(v), a7

and write
1
my = s/ m(t, p)dp = efp. (18)
-1
At O(¢e), (10)—(12) reduce to
o N N
o = er ROy =y, . 19)
dg ! . .
d—g = / S1(p)imdp — 7,8, (20)
1 -1
dé :
i Kc/ fo(pyindp — ¢. @1
t -1

For the linear choices of f(p) and f,(p) given in (7), we can simplify
the integrals in (20) and (21) by noting the following (in which we
write f(p) in place of f|(p) or f,(p) for compactness):

1 1
/f(p)mdp=%/ (1 p)mdp
-1 -1
1

(22)

Noting that /i is independent of p, the bracketed terms in (22) cancel
and we have

1
N 1.
[ rwinan =Y. @3)
-1
Since (23) reveals that (20) and (21) depend only upon i, rather than
itself, it is helpful to reformulate (19) in terms of #; and eliminate
entirely. We note that

>

>

dimy a4 ',
—_— == mdp
dr dr —1

1 ~

om
= —d
4/,1 ot P

1
= / crR(p)iy — v, dp,
-1

(24)

in which the final equality comes from (19). Restricting attention to the
case R(p) = 1 for ease, (24) then provides
dny

1 1
d—=cT/ rthp—ym/ mdp = (2er —v,,) g,
! -1 -1

(25)

in which we have again noted that i is independent of p.

With (25) replacing (19), and with (20) and (21) rewritten accord-
ing to (23), (19)—(21) can be expressed as the following linear system:
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’hT 2CT_}’m 0 Y;IT
dl ~|_ 1 A
3 g |= 3 7 0 g (26)
A KC _ A
é \ > 0 1)\ ¢
J

Since the Jacobian matrix J is triangular, its eigenvalues are given by
its diagonal entries. For the zero state to be stable, we require all the
eigenvalues of J have negative real part. Thus, the zero state is stable
provided that

Ym
< —. 27
er <2 @27

The stability of the zero state is therefore determined by the underlying
growth/decay dynamics of the macrophage population in the absence
of inflammatory stimuli, with ¢; representing the rate of growth of the
macrophage population in the absence of pro-inflammatory mediators,
and y,, being the rate of loss of macrophages as they vacate the tissue
or die.

3.2. Solutions for R(p) =1

For simplicity, we begin our numerical analysis with consideration
of the case R(p) = 1, for which all macrophage phenotypes are recruited
uniformly. While this is not necessarily a biologically realistic assump-
tion, it provides a useful starting point for our mathematical analysis;
we examine the impact of non-uniform choices of R(p) in Section 3.3
below.

Fig. 2 illustrates some typical solutions to (10)-(13). Here, we
hold all parameters fixed at the values of Table 3 but vary y, to
illustrate the range of permissible solutions. For Ye=1 (Fig. 2(a)), the
system attains a steady state configuration in which pro-inflammatory
mediator concentrations are high, anti-inflammatory mediator concen-
trations are low, and macrophages are polarised entirely toward pro-
inflammatory phenotypes. This configuration represents a chronic in-
flammatory outcome. Reducing ¥, tO its default value of 0.2 (Fig. 2(b)),
results in higher levels of anti-inflammatory mediators, which stimu-
lates macrophage phenotype switching toward anti-inflammatory phe-
notypes (via the flux term arising from (2)). Here, the system attains
a stable oscillatory configuration (periodic orbit) with macrophages
mostly polarised toward anti-inflammatory activity but also with pe-
riodic surges of more pro-inflammatory phenotypes that prevent the in-
flammation being mitigated against entirely. Levels of pro-
inflammatory mediators are lower than in Fig. 2(a) due to the upscaled
role of the anti-inflammatory mediators and macrophages, but the
solution is nonetheless chronic. In Fig. 2(c), we set v, = 001 and
observe that, while pro-inflammatory mediator concentrations are ini-
tially sufficiently high to drive macrophages toward pro-inflammatory
phenotypes, rapid accumulation of anti-inflammatory mediators then
reverses the direction of phenotypic switching, moving macrophages
toward anti-inflammatory configurations. Here, pro-inflammatory me-
diator concentrations eventually reach zero and the macrophage pop-
ulation ultimately leaves the tissue entirely as the macrophage decay
term via y,, outweighs the growth term (c;) in (10); the system reaches
the zero state, which is stable for these parameter choices according
to (27). We regard this configuration as a healthy outcome in which
inflammation is resolved entirely.

We note that, in Fig. 2, we have illustrated typical outcomes by
varying one of our model parameters (7, in this case). Equally, for
some parameters, we could illustrate similar results by holding pa-
rameters fixed and varying our initial conditions, since the model is
bistable for many parameter choices. In order to elucidate how our
model’s solutions depend on each of our parameters more fully, we
perform bifurcation analyses in XPPAUT to track the coordinates of
steady states and oscillatory solutions as a function of each parameter.
(See Appendix for further details of the numerical scheme used; the
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Table 4
Abbreviations used in annotations of Figs. 3 and 4.
Abbreviation Description
(Res) Resolution: the only stable solution is the steady state at zero
(Chr) Chronic: the only stable solution is a single chronic steady
state
(B) The model is bistable with both resolving and chronic steady
states permissible
(Multi) The model permits more than two stable steady states, one
of which is the zero state
(Res/Osc) The model converges to either the zero state or an
oscillatory solution
(B/Osc) The model converges to either the zero state, a unique
chronic state or an oscillatory solution
(Chr:2) The model has two stable chronic steady states; the zero

state is unstable

corresponding XPPAUT code is also available online.) Fig. 3 illustrates
bifurcation diagrams for each of our seven model parameters, holding
all unspecified parameters at the values given in Table 3. The vertical
axes in the figures show the pro-inflammatory mediator concentration,
¢, which is a proxy for the severity of chronically inflamed states. The
inset figures in the top-right of each panel provide an indication of
the corresponding macrophage phenotypes for each branch; colouring
represents the ‘median’ macrophage phenotype, calculated according
to

A b mp
Prmedign = MINp € [_1’ 1] : / mdp > 7’ (28)
-1

with configurations for which m; = 0 coloured black. Dark blue or dark
red colourings indicate that the distribution of macrophage phenotypes
is mostly anti-inflammatory or mostly pro-inflammatory, respectively.
In the case of periodic solutions, we colour branches by evaluating
(28) at the points of the orbit at which the pro-inflammatory mediator
concentrations are highest and lowest; the difference in colour between
the upper and lower branches indicates the extent to which the ‘median
phenotype’ shifts during each oscillatory cycle.

For the parameter values of Table 3, the model permits resolution
via convergence to the zero state (as per (27), labelled “Res” in Fig. 3),
or chronic oscillatory outcomes as shown in Fig. 2(b) (labelled “Osc”
in Fig. 3). In general, we observe that changes in parameter values
that stimulate macrophage numbers, either directly (y,, smaller, or ¢y
larger) or indirectly via pro-inflammatory mediators (x, larger), can
act to overwhelm oscillations, eliminating them via a Hopf bifurcation
and often giving rise to a chronic steady state. Furthermore, increasing
¢ and/or reducing y,, can destabilise the zero state via a transcritical
bifurcation corresponding to (27), resulting in a configuration of the
model in which a chronic steady state outcome is guaranteed (de-
marked by “Chr” in Fig. 3). Conversely, increasing y,, or decreasing c;
(both of which reduce the size of the macrophage population) results
in a growth of the amplitude of oscillatory solutions, until the periodic
orbit ultimately collides with a neighbouring saddle (with ¢ ~ 0)
and is hence eliminated via a homoclinic bifurcation. For sufficiently
large choices of y,, in particular, the only permissible solution is
one of resolution, the zero state being the only stable solution here.
Intuitively, we may make converse conclusions regarding stimulation
or repression of anti-inflammatory mediators, in comparison to those
of pro-inflammatory mediators: for y, small, we have large numbers
of anti-inflammatory mediators and chronic outcomes are eliminated;
oscillations exist for values of y, lying between a Hopf bifurcation and a
homoclinic bifurcation; and moderate to large choices of Ye (for which
anti-inflammatory mediator contributions are lesser) reveal regions of
bistability or multistability (labelled “B” and “Multi” in Fig. 3) in which
there are two or more stable steady states and the system may attain
either resolved or chronic steady-state outcomes.

The existence of oscillatory solutions requires a reasonably large
macrophage population, oscillations being eliminated entirely for m,,,
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Fig. 2. Numerical simulations of (10)-(13) subject to initial conditions ¢(0) = g(0) = 0.5 and m(0,p) = 10 for (a) y, = 1, (b) y, = 0.2 and (c) y, = 0.01, R(p) = 1 and all
unspecified parameters as given in Table 3. In each row, we show the pro-inflammatory mediator concentrations (c(#), left), the anti-inflammatory mediator concentrations (g(r),
centre) and the distribution of macrophage phenotypes (m(t, p), right). In the right-hand panels, the colour-bar represents the number density of each macrophage phenotype, with
anti-inflammatory phenotypes at the base of the figures (p = —1) and pro-inflammatory phenotypes at the top of the figures (p = 1). In (a) and (c), the model approaches steady
states with macrophages polarised toward pro- and anti-inflammatory phenotypes respectively, while in (b) the model attains an oscillatory solution that includes a distribution of

intermediate phenotypes but with polarisation biased toward anti-inflammatory activity.

small. This observation is consistent with the findings of corresponding
ODE models given by [32]; see e.g Figure 6(b) of [32]. Further-
more, we observe that oscillatory solutions generally correspond to
macrophage configurations that comprise primarily anti-inflammatory
and intermediate phenotypes; large numbers of strongly pro- inflam-
matory macrophage phenotypes generally correspond to the existence
of stable chronic steady states. In some sense, we may liken our
observed oscillatory solutions to conditions with relapsing-remitting
characteristics; while a typical periodic orbit includes phases where
the macrophage population is almost entirely polarised at or close to
the anti-inflammatory end of the spectrum (p = -1), inflammatory
flare-ups arise concordant with surges in the numbers of intermediate
macrophage phenotypes that are more pro-inflammatory in nature (an
example of which is shown in Fig. 3(b)).

The phenotype switching parameters, «; and a,, play a joint role
in controlling many of the above observations. For «; fixed at its
default value of Table 3, varying a, reveals a window of a,-values
in which oscillations exist, bounded between two Hopf bifurcations.
(See Fig. 3(d).) For «, fixed at its default value, smaller choices of
a; result in a bistable configuration in which the model attains either

the zero state or a weakly-inflamed chronic state that is mitigated by
macrophage polarisation toward anti-inflammatory phenotypes. Mean-
while, larger choice of «; can give rise to a new chronic state in
which pro-inflammatory mediator concentrations are much higher and
macrophages are primarily polarised toward pro-inflammatory pheno-
types (as shown in Fig. 3(c)). In order to fully understand the joint
effect of these two parameters (and others), it is helpful to track the
coordinates of the bifurcations observed above in two-dimensional
slices of parameter space, as illustrated in Fig. 4.

Fig. 4 illustrates various two-parameter bifurcation diagrams that
reveal a reasonably complex interdependence between our model pa-
rameters, illustrating numerous areas of parameter space in which
model outcomes are distinct. Here, we place particular focus upon the
parameters y,, (which indirectly controls the size of the macrophage
population and influences the scope for resolution via (27)), «; and
a, (which control phenotype switching), and x, and Vg (which to-
gether govern the scales of supporting inflammatory mediators). While
two-parameter bifurcation diagrams involving other parameter combi-
nations were examined, these are omitted for brevity here since they
did not reveal any additional novel dynamics not otherwise captured in
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red represent steady states and periodic orbits respectively. Inset: the same curves, but instead coloured according to the median macrophage phenotype given by (28). A list of

abbreviations is given in Table 4.

Fig. 4. In Fig. 4(a,b), we expose how the macrophage phenotype switch-
ing parameters (a; and a,) act in tandem with the rate of macrophage
decay (y,,) to control the location of corresponding bifurcations. From
(27), we know that the zero state (which corresponds to resolution of
inflammation) is destabilised via a transcritical bifurcation at y,, = 0.02
(for the parameter values of Table 3). This transcritical bifurcation is

shown as blue curves in Fig. 4(a,b). To the left of these curves, y,,
is relatively small and the macrophage population is relatively large,
and the model is relatively sensitive to phenotype switching via «; and
a,, which together determine the number of chronic steady states that
exist. For «; small or «, large, macrophage polarisation is driven pri-
marily toward anti-inflammatory phenotypes and there exists a unique



S. Almansour et al.

0 0.02 0.04 0.06 0.08 0.1
a2

(c)

Mathematical Biosciences 377 (2024) 109289

0.1
0.08
C91.06
0.04

0.02

0 0.05 0.1 0.15 0.2

< (Res)
2 (Res/Osc) ]
(Multi)
I (B)
0
0 0.2 0.4 0.6 0.8 1

Fig. 4. Bifurcation diagrams illustrating bifurcations of (10)—(13) in two-dimensional slices of parameter space. Red curves represent saddle-node bifurcations; black curves represent
Hopf bifurcations; blue curves represent transcritical bifurcations. All unspecified parameters are as given in Table 3. A list of abbreviations is given in Table 4.

chronic state corresponding to relatively low-level inflammation. For «;
large or a, small, macrophage phenotype switching in the direction of
pro-inflammatory phenotypes is stronger and we may obtain a second
chronic steady state corresponding to more severe inflammation (i.e.
with ¢ larger). (See, also, Fig. 3(c,d).) For y,, larger, so that the zero
state is stable, a; and a, effect a switch in the existence/stability of
chronic steady states, moving the model between configurations of
guaranteed resolution («; small or a, large) or bistability with both
chronic and resolved outcomes permissible (a; large or a, small). This
joint role of a; and «a, is further elucidated in Fig. 4(c), in which we
track bifurcations in («,,a,)-space. For intermediate values of y,,, a;
and a,, we find Hopf bifurcations that can give rise to oscillations as
shown above in Figs. 2(b) and 3.

In Fig. 4(d), we draw similar conclusions regarding the param-
eters that control the concentrations of the two species of inflam-
matory mediators (i.e. k., which controls the rate of growth of pro-
inflammatory mediators, and y,, which controls the rate of decay of
anti-inflammatory mediators population). Intuitively, for «, and y, both
small, pro-inflammatory mediator concentrations are small and anti-
inflammatory mediator concentrations are large, and the model attains
a configuration in which resolution of inflammation is guaranteed.
When these parameters are both large, chronic steady states are pro-
moted and the model attains a bistable configuration (noting that the
resolved state at zero is always stable here due to the values of y,, and

cr satisfying (27)). Intermediate choices of «, and y, can give rise to
oscillatory solutions or additional chronic states as we have already
observed in Fig. 3(f,g).

3.3. Varying R(p)

We, here, investigate the extent to which our choice of recruitment
function R(p) = 1 above influences the observed dynamics. That is,
we seek to understand the manner in which the existence or stabil-
ity of healthy and chronic outcomes depends upon the polarisation
state of newly recruited macrophages. Here, we take R(p) to be of a
Gaussian-like shape given by

Y
R(p) = exp (—(”6—2")) , 29

where y parameterises the ‘mean phenotype’ of newly recruited
macrophages and ¢ captures the level of variability in recruited macro
phage phenotypes. In the limit 4 — 1, newly recruited macrophages
are primarily polarised toward pro-inflammatory activity, whereas the
limit 4 — —1 corresponds to recruitment of primarily anti-inflammatory
phenotypes. We note that in the limit ¢ — oo we have R(p) — 1, and
we recover the previous case of Section 3.2.

In Fig. 5, we show bifurcation diagrams akin to Fig. 3(a) but with
R(p) as given by (29), for a range of x and o values. Here, we treat
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Fig. 5. Bifurcation diagrams illustrating solutions of (10)-(13) with R(p) given by (29), for varying choices of y and . All unspecified parameters are as in Table 3. Solid/dashed
black curves represent stable/unstable steady state solutions. Solid red curves represent stable periodic orbits. (Unstable periodic orbits are omitted in (c) for clarity.).

the rate of macrophage loss y,, as our primary bifurcation parameter
and examine how the number and nature of steady states and the
positions of related bifurcations are influenced by changes in R(p). We
note that, in principle, we could choose any of the seven parameters
analysed in Fig. 3 as our bifurcation parameter here; however, our
rationale for focusing upon y,, in particular lies in the fact that this
parameter (as a convenient proxy for the size of the macrophage
population) has very direct biological interpretation, and has a well-
understood role in affecting the stability of the zero-state via (27). In
Fig. 3(a), for R(p) = 1, we observed that the healthy state is stable
for y,, > 0.02 (as per (27)), and for sufficiently large values of y,, this
is the only stable configuration. Additionally, two branches of chronic
configurations exist for smaller choices of y,,: a stable branch of low-
level chronic solutions exists for y,, < 0.043 and is then destabilised
via a Hopf bifurcation giving rise to low-level oscillations supported
by a primarily anti-inflammatory macrophage population; meanwhile,
a second branch of higher-level chronic inflammation (supported by
a largely pro-inflammatory macrophage population) exists for values
of y,, below a corresponding saddle-node bifurcation (at y,, ~ 0.033).
As Fig. 5(g-i) show, we recover these results in the limit 6 — o. For
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o ~ O(1), the three fundamental branches of solutions above persist,
but may shift in parameter space and/or exhibit stability changes.

Taking the limit ¢ — 0, so that the distribution of recruited
macrophage phenotypes becomes increasingly narrow, results in some
small changes to the location of the transcritical bifurcation that bounds
the stability of the healthy steady state. However, this appears to be
an artefact of having no normalising constant in (29) — a deliberate
choice here to ensure that R(p) —» 1 as ¢ — co. As we gradually reduce
o, we slightly slow the total rate of recruitment of new macrophages,
and hence slightly enhance the stability of the healthy state (shifting
the transcritical bifurcation to the left in Fig. 5). This behaviour is
symmetrical in variations of u.

Changes to the healthy steady state and its corresponding tran-
scritical bifurcation are relatively slight in comparison to the influ-
ence of R(p) upon chronic states. Intuitively, polarisation of recruited
macrophages toward pro-inflammatory phenotypes has the effect of
promoting chronic configurations. In the case of the higher-level
chronic state of Fig. 3, the saddle node that provides the upper bound
in y,, for this branch shifts toward larger y,,—values as y — 1, rendering
this state permissible for a broader range of choices of y,,. Additionally,
the limit 4 — 1 can also drive stability changes on the low-level
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Fig. 6. Distributions of macrophage phenotypes, m(t, p), for the oscillatory solutions of Fig. 5(d-f), for y,, = 0.035 (and all unspecified parameters are as given in Table 3), for
initial conditions ¢(0) = g(0) = 0.5 and m(0, p) = 10. The colour-bar represents the number density of each macrophage phenotype, with anti-inflammatory phenotypes at the base
of the figures (p = —1) and pro-inflammatory phenotypes at the top of the figures (p = 1).

chronic branch, as shown for ¢ = 0.5 in Fig. 5(c). Here two additional
(subcritical) Hopf bifurcations are introduced, providing additional
stable steady-state solutions (and unstable periodic orbits, not plotted)
in regions of parameter space in which restoration of the healthy state
was previously guaranteed.

Interrogating the distributions of macrophage phenotypes that un-
derlie the branches of solutions shown in Fig. 5 reveals that steady
state solutions qualitatively recover the two steady state cases shown
in Fig. 2 (a,c) regardless of our choice of R(p). That is, chronic steady
states involve strong polarisation of macrophages toward the pro-
inflammatory end of the spectrum (similar to Fig. 2(a)), while resolu-
tion is generally preceded by polarisation of the macrophage population
toward anti-inflammatory phenotypes (similar to Fig. 2(c)). However,
oscillatory solutions do exhibit some dependence on the prescription
of R(p). In Fig. 6, we plot the temporal evolution of the distribution
of macrophage phenotypes corresponding to the oscillations found at
¥m = 0.035 in Fig. 5(d-f). As observed for R(p) = 1 in Section 3.2, os-
cillatory solutions continue to require a reasonably significant number
of anti-inflammatory macrophages. However, taking x4 — 1, so that re-
cruited macrophages are biased toward pro-inflammatory phenotypes,
can intuitively result in oscillatory solutions that encompass a much
broader range of phenotypes than previously observed. In particular,
the oscillatory solution shown in Fig. 6(c) includes macrophages of
phenotypes spanning the vast majority of the interval p € [-1, 1].

In Fig. 7, we track the y,,—coordinates of the bifurcations shown in
Fig. 5 as we vary o, for y = —1 (dashed lines) and x = 1 (solid lines).
At the top of the figure, as ¢ — oo, all bifurcation curves converge to
the corresponding y,,—coordinates of the bifurcations in Fig. 3(a). As
we reduce o, the extent to which the dashed and solid lines diverge
from one-another reflects the extent to which the model is sensitive
to the prescription of R(p). Shown in blue in Fig. 7, the position of
the transcritical bifurcation that determines the stability of the healthy
zero state has very weak dependence on o; furthermore, its position is
identical for 4 = —1 and pu = 1. The healthy state is unstable to the left
of the illustrated blue curve, guaranteeing chronic outcomes here. As
we move from g = —1 toward u = 1, the saddle-node bifurcation that
bounds the high-level branch of chronic solutions (shown in magenta)
traverses left to right, yielding an expanding region of stable, high-
level chronic solutions as ¢ reduces. Meanwhile, for ¢ ~ O(1), the
low-level chronic branch expands as u4 — 1 or shrinks as 4 — —I.
As shown in Fig. 3(a), solutions on the low-level chronic branch are
mostly unstable in the limit 6 — oo; however, for 4 ~ 1, reducing o
ultimately results in a pair of new subcritical Hopf bifurcations which
bound a region of additional stable steady states on this low-level
branch. These additional stable states exist below the corresponding
black curve in Fig. 7. These additional Hopf bifurcations collide with
the corresponding saddle-node branch via fold-Hopf bifurcations at the
points labelled “FH” in Fig. 7.
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4. Discussion

Macrophages are highly plastic cells with the propensity to po-
larise into a diverse spectrum of phenotypes. Our model, presented
here, has sought to address the fact that many previous mathematical
models of inflammation-related systems take one of two approaches
to describing diverse macrophage populations: either by incorporating
a single homogenised population that averages phenotype-specific in-
teractions; or, by incorporating two distinct and opposing phenotypes,
typically representing e.g. the M1/M2 categorisation nomenclature.
Instead, our model allows for intermediate phenotypes, by placing all
possible macrophage phenotypes on a continuous spectrum according
to their levels of pro/anti-inflammatory activity. Our model incorpo-
rates phenotype switching via nonlinear flux terms that are enhanced
by environmental cues, with high concentrations of pro-inflammatory
mediators driving macrophages to polarise toward pro-inflammatory
phenotypes (synonymous with the M1 classification), and high concen-
trations of anti-inflammatory mediators driving the converse (resulting
in phenotypes associated with tissue resident macrophages and the M2
classification). Through numerical simulation (in Matlab) and bifurca-
tion analysis (in XPPAUT), we have examined the manner in which
the rates of macrophage population growth, phenotype switching, and
mediator interactions affect switches between healthy and chronic
outcomes.

We note that macrophage numbers in tissues can increase due
to both proliferation and recruitment, or a combination of both of
these [47]. In our model, we do not distinguish between these mech-
anisms explicitly; however, we assume that the net effect of these
mechanisms can be modelled via a corresponding logistic growth term
(in (3)) up to a tissue-specific carrying capacity m;, . Importantly, our
model incorporates, via the function R(p), the potential for us to specify
the phenotype-coordinates of macrophages that are newly added to
the tissue of interest. For simplicity and mathematical tractability, we
began our analysis by focusing on the case R(p) = 1 representing the
idea that all phenotypes are recruited uniformly. While this is unlikely
to be biologically realistic in many settings, this provided a useful
starting point for our analysis, and allowed us to separately examine
the manner in which variations in R(p) affect the resulting dynamics.

For R(p) = 1, we observed that the model exhibits three funda-
mental types of solution, as follows. Firstly, the model may attain a
steady state in which all components of the model reach zero. We
regard this as a ‘healthy’ state, since it encompasses no inflammatory
stimuli. This zero state is stable provided that the rate of macrophage
loss (y}) sufficiently outweighs the basal rate of macrophage pro-
liferation/recruitment in the absence of pro-inflammatory mediators
(c.’;), as per (27). Secondly, the model may attain a chronic steady
state with positive numbers of macrophages and (in particular) pro-
inflammatory mediators. Often, these chronic steady states are sup-
ported by a macrophage population that is mostly polarised toward
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for u = +1. FH = fold-Hopf bifurcation.

pro-inflammatory phenotypes. Thirdly, the model may converge to-
ward stable oscillatory solutions that are reminiscent of conditions that
exhibit relapsing-remitting characteristics. Throughout our analysis,
oscillatory solutions have always been supported by macrophage popu-
lations that are mostly polarised toward anti-inflammatory phenotypes,
with periods of remission generally corresponding to a macrophage
population that almost entirely lies close to p —1, and inflam-
matory flare-ups corresponding to surges in macrophages of more
pro-inflammatory phenotypes (such as in Fig. 2(b)). (This has some
similarity to conditions such as rheumatoid arthritis, whose oscillatory
timecourses involve a complex dependence upon both M1 and M2
macrophages, as well as intermediate phenotypes [48].) In many areas
of parameter space, two or more of the above solutions co-exist, and the
model is bistable or multistable, with resulting inflammatory outcomes
dependent upon our choice of initial conditions. In Figs. 3 and 4, we ex-
posed the extent to which the existence/stability of the above solutions
depends upon our model parameters. In particular, we observed that
rapid rates of macrophage loss (7)) can eliminate chronic outcomes
entirely (since macrophages are the only pro-inflammatory source in
this model), while rapid macrophage proliferation/recruitment (c;)
promotes chronic outcomes, and that strong rates of macrophage phe-
notype switching toward pro-inflammatory phenotypes (a}) promotes
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chronic steady-state outcomes, while phenotype switching toward anti-
inflammatory phenotypes (a;) can promote both resolution and low
level chronic oscillations (in a manner that is dependent upon the
model’s remaining parameters).

In Section 3.3, we examined the extent to which the observations
above are sensitive to our prescription of the phenotype of newly
recruited macrophages. To do so, we set the corresponding recruitment
function R(p) to have a Gaussian-like shape, and examined the effects of
variation of the mean (u) and standard deviation (¢) of this Gaussian. In
the limit ¢ — oo, our analysis recovers the case R(p) = 1 exactly. For ¢ ~
O(1), while the fundamental solutions discussed for R(p) = 1 above still
persist, the locations of corresponding bifurcation points shift some-
what as a function of the recruited macrophage phenotype. Our analysis
revealed that the stability of the healthy (zero) state exhibits very weak
sensitivity to the phenotype of recruited macrophages, and instead
depends more broadly on overall macrophage numbers. This is partially
an artefact of the fact that our prescription of the pro-inflammatory
mediator production function f,(p) in (7) equips all macrophages with
p # 1 with at least some pro-inflammatory influence. Chronic solu-
tions, however, exhibit more sensitivity to recruited phenotypes, with
recruitment weighted toward pro-inflammatory phenotypes (4 — 1)
resulting in the expansion of regions of parameter space that permit
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chronic outcomes and (in some cases) the creation of new chronic
steady state configurations. Meanwhile, biasing macrophage recruit-
ment toward anti-inflammatory phenotypes (4 — —1) largely promotes
resolution of inflammation. We highlight, once again, that the function
R(p) here incorporates both proliferation of existing macrophages and
recruitment of new macrophages from the vasculature. This provides a
potentially complex landscape of newly added macrophage phenotypes,
with proliferation of existing tissue resident macrophages more likely
to provide macrophages polarised toward anti-inflammatory activity,
and recruitment of macrophages from the blood stream more likely
to provide macrophages that are pro-inflammatory in nature. In most
biologically relevant cases, we expect the latter of these mechanisms
to dominate, with Fig. 7 illustrating that this can result in a relatively
complex spectrum of chronic outcomes.

It is helpful to draw comparisons of our PDE model against previ-
ous ODE models of similar macrophage interactions in inflammatory
settings. In particular, we note that our PDE model presented here is
designed as a natural extension of “Model 2” of [32] to account for
intermediate macrophage phenotypes. Broadly, we find that many of
our observations share commonality with those of “Model 2” in [32].
The macro-scale roles of each parameter indicated in Fig. 3 largely
align with those of the previous ODE model: large rates of macrophage
loss (y,,) drive the model toward a healthy zero state, while y,, small
yields chronic configurations; oscillatory solutions exist for reasonably
large macrophage populations (m,,,, large); and strong macrophage
polarisation toward pro-inflammatory phenotypes («,) drives chronic
outcomes with the converse (a,) generally driving resolution. While
these overarching conclusions result readily from both the ODE and
PDE constructions of the model, some intermediate bifurcations do
differ slightly. For example, one key difference between these models
is that the ODE model exhibits a healthy steady state with positive
anti-inflammatory components (macrophages and mediators), while
the PDE model exhibits just a unique healthy state at zero. In the ODE
model, the zero state tends to change stability through collision with
the positive healthy state at a transcritical bifurcation, whereas in the
PDE model the zero state bifurcates to a solution in which macrophages
are slightly biased toward pro-inflammatory phenotypes (e.g. yellow
configurations in Fig. 3). This is an artefact, partly, of our choice of f,,
which is non-zero for all p # —1, rendering all macrophage phenotypes
with p # —1 slightly pro-inflammatory. We note that it is common for
models of inflammation to regard a steady state at zero to correspond
to resolution [22,23,26,27,49-51] on the basis that the cell population
being modelled represents the extent to which cell numbers in a given
tissue are elevated above a certain healthy homeostatic baseline. Our
PDE model is in line with this perspective; however, we note that a
reformulation of the model in which a baseline population of entirely
anti-inflammatory (tissue resident) macrophages sits at or below p =
—1, for example, would be a simple task to allow the model to recover
the potential for positive healthy steady states to exist. Furthermore,
we note that our PDE model incorporates a more advanced description
of macrophage proliferation/recruitment than the corresponding ODE
model of [32] does, which focuses entirely on proliferation of exist-
ing macrophages and a resultant source of entirely anti-inflammatory
macrophages. Through our analysis above, particularly that of Sec-
tion 3.3, we have illustrated that this more-advanced description has
the potential to generate a more diverse range of solutions than is
afforded by the corresponding ODE model. Additionally, a key obser-
vation from the PDE model is that oscillatory solutions are generally
supported by a macrophage population that is largely polarised toward
anti-inflammatory phenotypes. We also observe oscillatory solutions in
the corresponding ODE model (which incorporates two explicit and
opposing phenotypes); however, our PDE model more readily exposes
the extent to which intermediate phenotypes may play a supporting
role.

Two key observations of this model are that macrophage recruit-
ment that is strongly polarised toward pro-inflammatory phenotypes
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(synonymous with the M1 classification) can provide a broadening
spectrum of chronic outcomes (Figs. 5 and 7, for y — 1), and that ampli-
fication of macrophage phenotype switching toward anti-inflammatory
phenotypes (c¢f. M2 macrophages) via &7 can promote restoration of
health. These conclusions align with corresponding in vitro observa-
tions. For example, elevated numbers of M1 macrophages (versus M2)
are linked to the onset of various inflammation-related conditions,
including diabetes [52], osteoarthritis [53,54], and neurodegenerative
conditions [55]. Moreover, actively manipulating macrophage pheno-
types is an area of focus in the treatment of many conditions [33,34].
In rheumatoid arthritis, for example, various macromolecular interven-
tions (as well as disease modifying anti-rheumatic drugs; DMARDs)
have been identified (in animal tests) to both block M1 activation and
stimulate polarisation toward the M2 phenotype. A thorough review
of these is given by [56]. Furthermore, some treatments improve
patient outcomes by explicitly depleting macrophage numbers, in or-
der to downscale the pro-inflammatory feedbacks of (particularly M1)
macrophages [34]. We observe corresponding features in our analysis
of this model; for example, rapid rates of macrophage loss (y,, large)
generally result in the model reaching a monostable configuration in
which a healthy outcome is guaranteed (see e.g Figs. 3(a), 5 and 7).

In constructing our PDE model, we have modelled the complex
range of macrophage phenotypes on a continuous spectrum of in-
flammatory activity. This has presented novel mathematical insight
into the role of intermediate phenotypes, in particular. However, we
note that the biological classification of specific macrophage pheno-
types and where they may sit on our inflammatory spectrum is an
extremely complex task that is hampered not only by the multi-factorial
nature of macrophages’ roles in inflammation, but also by a signifi-
cant lack of experimental data against which to validate mathematical
models of inflammation in general. In order to construct the model,
we have deployed reasonably speculative choices of fluxes represent-
ing phenotype-switching (q**, q=*) and terms representing the extent
to which differing phenotypes produce differing levels of pro/anti-
inflammatory mediators (f(p) and f,(p), which we assume are linear
in p here). Throughout, our approach has been to make the simplest
possible choices of such terms, while retaining essential biological
realism. However, we note that our choices of f| and f5, in particular,
are likely to somewhat over-simplify a more complex dependence upon
phenotype. Our model elucidates the role that intermediate phenotypes
can play in a complex inflammatory environment, but (as with any
other mathematical model of inflammation) requires greater avail-
ability of experimental data in order to fully justify some inherent
modelling assumptions. This remains an area for consideration in the
future, should further experimental data become available. Addition-
ally, a natural extension of the current model could be to additionally
incorporate other immune cell populations (e.g. neutrophils, as studied
in previous ODE models including [22] and “Model 3” of [32]). Given
the anticipated complexity of the resultant models, we leave this is a
target for future work.

In closing, we note that mathematical models of inflammatory
systems such as that presented here have the propensity to identify
the dominant mechanisms in driving the switch between chronic con-
figurations and resolution of inflammatory damage, and hence exhibit
scope to contribute to the identification of novel therapeutic targets.
Being a key regulator of the inflammatory response, it is crucial that
mathematical models adopt robust descriptions of relevant macrophage
populations that include the possibility for intermediate phenotypes.
With the scientific perspective on potential macrophage phenotypes
continuing to rapidly evolve, there is great scope for continued de-
velopment of mathematical models with more finessed descriptions of
polarisation states that, with careful parameterisation, may ultimately
contribute to the identification of new treatments.
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Appendix. Numerical scheme

We solve the system (10)—(13) numerically via a method of lines
approach, by discretising in the phenotype variable, p, to obtain a
system of ODEs which we solve via in-built ODE solvers in Matlab and
XPPAUT.

We discretise in p by introducing N + 1 equally-spaced meshpoints
p; given by

pj=—1+jdp for j=0,...,N, (A1)

where dp = 2/N is the corresponding meshpoint spacing. Further-
more, we write m;(f) = m(t,p;) to represent the approximation of the
macrophage variable at a given phenotype meshpoint.

We approximate the flux terms in (10) via standard, first-order finite
difference approximations. To ensure numerical stability, we take an
upwinding approach in which we choose forward or backward finite
difference approximations depending on the direction of the flux. Since
the term containing «;c represents flux in the positive p-direction,
we employ a backward difference approximation for the derivative
evaluated on meshpoint j, writing

= (0 =p;)m; = (L=pjy)m_y) +Odp),  (A2)

d
o (1 —pym) O

P=pj
forall j =1,..., N. Conversely, since the term containing a, g represents
flux in the negative p-direction, we employ the following forward
difference approximation:

== (L pjgr) mip = (1 +p;) m;) +O(dp), (A3)

9
%((1 +p)m) O

p=p;j
for all j = 0,..., N — 1. On the boundaries, we adapt (A.2) and (A.3)
to reflect that m = 0 for all points outside of the domain p € [-1,1],
writing

9
0_1)((1 —p)ym)

1
d—(l—po)m0+(9(dp), (A.4)
p=pg 9P

d
o (1 +pym)

1
=—d—(1+pN)mN+(9(dp). (A.5)
P=pn P

We evaluate the integrals in (11) and (12) via trapezium rule, writing

1 d N-1
/1 fipymdp =~ 7” (fi (po) mo + i (pw) my +2 Y £i (p)) m,~> = F(),

=l

(A.6)
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for i = 1,2. Similarly, we evaluate m(t) according to

d N-1
mT(t):Tp<m0+mN+2 ij> (A7)

Jj=1
Under these approximations, the system (10)-(13) gives rise to the
following system of N + 3 ODEs at leading order:

dm, ac ag
d_tO :—ﬁ ((1=py) my) + (12_p (14 py) my = (14 py) mg)
+ (¢ +cr) R(py)my <1 - r > = YmMps (A.8)
mmax
dm; ac
d_t/ Ty ((1=pj)m; = (1=p;-) m;_y)
ag
+dz—p((1+Pj+1)mj+1 = (L+p;)m))
+(c+cT) R(pj)mT (1 _ )
mmax
= YmM;, forj=1,...,N -1, (A.9)
dm ac g
d_tN = —ﬁ ((1 —PN)'"N - (1 _pN—l)mN—l) + dz_p (— (1 +PN)mN)
+ (c+cr) R@pyImy (1 - ) — YuMy (A.10)
max
dg
o = Fi() - 1,8, (A.11)
de =k, F)—cg—c, (A.12)

dr
with F,(¢), F,(r) and my(¢) as given in (A.6) and (A.7). Throughout this
paper, numerical simulations and bifurcation analyses are based upon
implementations of the system (A.8)-(A.12) in Matlab and XPPAUT
with N = 100. In Matlab, this ODE system is solved using the in-
built solver ode45. In XPPAUT, we implement the adaptive, implicit
solver CVODE as described in [38]. We also note that implementation
of the ODEs that result from semi-discretisation of a PDE system (such
as (A.8)-(A.10)) is most easily achieved via the use of XPPAUT array
structures; a useful tutorial that describes implementation of such
systems is provided by [39]. In both Matlab and XPPAUT, convergence
tests have been performed to ensure that our choice of N does not
adversely affect the accuracy of our results; details are omitted here
for brevity. Both Matlab and XPPAUT codes are available online at
github.com/martinrnelson/MacrophageContinuum.
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