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ABSTRACT

Endothelial dysfunction is a risk factor for atherosclerosis and includes impaired endothelium-
dependent vasodilatation. We have shown previously that low density lipoprotein (LDL) can be
oxidized by iron in the lysosomes of macrophages. Macrophage lysis in atherosclerotic lesions
might expose endothelial cells to this oxidized LDL and adversely affect their function. LDL was
oxidized by ferrous sulfate (5uM) for 24h at pH 4.5 at 37°C. Aortas from male Wistar rats were cut
into rings and subjected to wire myography for isometric tension recording. The rings were
incubated with or without oxidized LDL (50ug protein/ml) for one hour, constricted with 100nM
phenylephrine and relaxation to acetylcholine (1nM — 3uM) was measured. There was about 50%
less relaxation in the presence of this oxidized LDL. Endothelial-independent vasodilatation
induced by sodium nitroprusside was less affected by oxidized LDL. Oxidized LDL increased the
formation of reactive oxygen species by the aortic rings and by cultured human aortic and dermal
microvascular endothelial cells, which might have inactivated nitric oxide. Acetylcholine increased
the activatory phosphorylation of eNOS (ser-1177), but oxidized LDL had little effect on this
activation in cultured human aortic endothelial cells. These findings raise the possibility that LDL
oxidized in lysosomes and released from lysed macrophages might decrease vasodilatation in
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atherosclerotic arteries.

Introduction

Impaired arterial vasodilatation is a risk factor for car-
diovascular disease, a major cause of death in the
world [1]. Endothelial cells dilate arteries by generating
nitric oxide, endothelium-derived hyperpolarisation and
prostacyclin [2-4]. Nitric oxide is produced by endothe-
lial nitric oxide synthase (eNOS), which has a complex
mechanism of activation [5]. As well as mediating
vasodilatation and regulating blood pressure, nitric
oxide affects many other processes, such as, inflamma-
tion and platelet activity [5]. Vasodilatation is well
known to be decreased by low density lipoprotein
(LDL) oxidized by copper ions [6-12] or by endothelial
cells [11,13].

There has been a great deal of interest in the oxida-
tion of low density lipoprotein (LDL) [14], as oxidized
LDL has many pro-atherogenic activities [14,15], in
addition to decreasing vasodilatation. It is widely

assumed that LDL is oxidized in the extracellular space
of the intima of the arterial wall, but we have discov-
ered that it can be oxidized by redox-active iron in the
lysosomes of macrophages, a prominent cell type pres-
ent in atherosclerotic lesions [16-18]. The mechanisms
of LDL oxidation at lysosomal pH (about 4.5) might well
be different to those of LDL oxidation by copper or cul-
tured cells at pH 7.4 [19] and this might alter the effects
of the oxidized LDL on cells. Very little is known about
how the pH of oxidation affects the oxidation prod-
ucts in LDL.

As macrophage death is a prominent feature of
advanced atherosclerotic lesions [20] and oxidized cho-
lesteryl esters can cause the exocytosis of the contents
of lysosomes in macrophages [21], it is possible that
LDL which was oxidized in lysosomes might be released
into the extracellular space of atherosclerotic lesions
and interact with cells present in these lesions, includ-
ing the endothelium. We have therefore investigated if
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LDL oxidized under lysosomal conditions, that is by
iron at lysosomal pH (pH 4.5), can affect the vasodila-
tation of arteries. We show here that LDL oxidized
under these conditions can indeed decrease vasodila-
tation of rat aortas and present data regarding the
mechanisms that might be involved.

Materials and methods
Myography

Male healthy Wistar rats (12-14week-old, body weight
250-350g, n=10) were anesthetized by isoflurane and
killed by cervical dislocation. The thoracic aorta was
immediately and carefully removed and placed in ice
cold Krebs' solution (118 mM NaCl, 3.6mM KCl, 1.2mM
MgSO4, 1.2mM KH2PO4, 25mM CaCl2, 11TmM glucose
and 24mM NaHCO3). The aortas were cleaned of adi-
pose and connective tissue, cut into rings (2mm width)
and mounted on a wire myograph (Danish Myo
Technology, 620M) connected to a force transducer
(PowerLab ML846, ADInstruments) and the LabChart 7
Software suite (ADInstruments) for isometric tension
recording, as previously described [22]. Briefly, the organ
bath was filled with Krebs' solution heated at 37°C and
bubbled with carbogen (95% 02 and 5% CO2). The aor-
tic rings were subjected to zero tension followed by
equilibration for 30min and then stretched to a stan-
dardized tension of 10mN [23]. The rings were
pre-constricted with the a,-adrenoceptor agonist phen-
ylephrine (100nM) and only arteries that were able to
relax by >75% to the muscarinic agonist acetylcholine
(1TuM) were deemed to have functional endothelium
and used for further study. In arteries preconstructed to
about 80% of maximal phenylephrine-induced tone
(50—-300nM  phenylephrine), concentration-response
curves to acetylcholine (1nM-3uM) were obtained to
confirm that the aortic rings were responding as
expected. Rings were then washed several times with
Krebs’ solution and incubated with oxidized LDL (50pug
protein/ml) for 60min before being contracted with
phenylephrine and relaxed with acetylcholine (1nM -
3uM). Aortic rings were also treated with sodium nitro-
prusside (1 nM — 3 uM) to assess endothelium-independent
vasodilatation.

Oxidized LDL

LDL was isolated from healthy volunteers by sequential
density ultracentrifugation (1.019-1.063g/ml), as
described previously [24]. It was oxidized by FeSO,
(5uM) for 24h at 37°C in 150mM/10mM sodium ace-
tate buffer of pH 4.5 [25].

Culture of endothelial cells

SV40 large T antigen-transformed human dermal micro-
vascular endothelial cells (HMEC-1) were obtained from
the Center For Disease Control and Prevention (Atlanta,
Georgia) and were grown in MCDB 131 supplemented
with 10% (v/v) heat-inactivated FBS, L-glutamine
(1.461g/l), hydrocortisone acetate (1mM) and human
epidermal growth factor (10ng/ml).

Human aortic endothelial cells (Lonza) were cultured
in EBM™-2 Endothelial Cell Growth Basal Medium-2
containing fetal bovine serum, human epidermal
growth factor, vascular endothelial growth factor,
R3-insulin-like growth factor-1, ascorbic acid, hydrocor-
tisone, human fibroblast growth factor-f, heparin, gen-
tamicin and amphotericin-B (Lonza).

Measurement of reactive oxygen species in aortic
rings and cultured endothelial cells

After the wire myography experiments, the rat aorta was
frozen in liquid nitrogen-cooled isopentane and mounted
in Optimal Cutting Temperature compound cooled by dry
ice/ethanol and cryosections (10um) were prepared.
Superoxide production by the aortic sections or cultures
of endothelial cells was detected by a dihydroethidium
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Figure 1. Effect of LDL oxidized by iron at pH 4.5 on vasodila-
tation. Rat aortic rings were incubated for 60min with LDL
oxidized by FeSO, at pH 4.5 (50 g protein/ml), contracted by
phenylephrine (100 nM) and the relaxations by increasing con-
centrations of (A) acetylcholine or (B) sodium nitroprusside
were measured in a wire myograph. The means+SEM of 5
independent experiments were compared by a t-test. * indi-
cates p<0.05 for the ECy, compared to the controls.



assay, according to the manufacturer’s instructions. In brief,
aortic ring sections or cells were incubated with 10uM
dihydroethidium in PBS for 30min, fluorescence was mea-
sured with a fluorescence microscope with an excitation
wavelength of 488nm and quantified using ImageJ analy-
sis software.

Western blots

Proteins from human aortic endothelial cells were
extracted using RIPA buffer (Sigma-Aldrich) and Halt™
protease and phosphatase inhibitor (ThermoFisher
Scientific). Western blotting was performed [26] for total
and phosphorylated eNOS. Proteins in the lysates were
separated by sodium dodecy! sulfate-polyacylamide gel
electrophoresis (SDS-PAGE) on 10-12% gels and trans-
ferred to polyvinylidene difluoride membranes (Millipore).
The membranes were blocked by incubation in 10mM
Tris-buffered 100mM NaCl, pH 7.5 containing 0.1% (v/v)
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Tween 20 and 5% (v/v) nonfat dry milk for 1h to
decrease nonspecific binding, followed by a 24h incuba-
tion at 4°C with rabbit polyclonal antibodies to eNOS
and phosphorylated-eNOS antibody (ser-1177) (1:1,000
dilution) (Cell Signaling Technology). (B-Actin (mouse
monoclonal, Developmental Studies Hybridoma Bank)
was used as a loading control. The membranes were
washed in Tris-buffered saline containing 0.1% (v/v)
Tween 20 before incubation for 1h at room temperature
with a horseradish peroxidase-conjugated secondary
antibody (Invitrogen). The membranes were then washed
and developed using ECL substrate (ThermoFisher
Scientific). Band intensities were measured using Image J.

Immunoflurorescence measurement of
phosphorylated eNOS

Human aortic endothelial cells grown on glass covers-
lips were washed once with PBS and then incubated
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Figure 2. Effect of oxidized LDL on reactive oxygen species formation by sections of rat aorta. Representative dihydroethidium
fluorescence image of the control (A) and oxidized LDL-treated (B) aortic tissue. Quantification of dihydroethidium fluorescence (C).
The mean+SEM of five experiments is shown. Paired t-test. ***p <0.001.
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at 37°C with oxidized LDL (50ug protein/ml) for
60min, followed by acetylcholine (3uM) for 8min.
Control and oxidized LDL treated cells were then
washed by phosphate buffer and fixed for 10 min with
4% (w/v) paraformaldehyde in phosphate buffer. After
fixation, the cells were rinsed three times with phos-
phate buffer, permeabilised with 0.1% Triton X-100 for
2min and rinsed three times in phosphate buffer. Cells
were then incubated for 24h at 4°C with a monoclo-
nal antibody to phosphorylated eNOS (ser1177) (20 ug/
ml) in phosphate buffer plus 1% (w/v) bovine serum
albumin. Cells were washed three times with phos-
phate buffer and then incubated for 60 min at room
temperature with a goat anti-rabbit secondary anti-
body (20ug/ml) in phosphate buffer containing 1%
(w/v) bovine serum albumin. Cells were washed three
times with phosphate buffer and once in de-ionised
water, mounted in Fluorescence Mounting medium
(Dako) and examined using a Zeiss Axioskop epifluo-
rescence microscope.
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Statistics

The mean+SEM of the given number (n) of indepen-
dent experiments is shown. In isolated arteries n corre-
sponds to the number of animals used. A paired t-test
or one- or two-way ANOVA and a Bonferroni or Tukey’s
post-hoc test were used to compare treatments as
appropriate using GraphPad Prism 4software (Ja Jolla,
CA, USA). A p value of < 0.05 was considered statisti-
cally significant.

Results

Effects of oxidized LDL on relaxation of aortic
rings

We investigated the effects of LDL oxidized under lyso-
somal conditions on arterial vasodilatation. Rat aortic
rings pre-incubated with LDL oxidized by ferrous ions
at lysosomal pH (pH 4.5) showed less relaxation induced
by acetylcholine than did the control aortic rings and
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Figure 3. Effect of oxidized LDL on reactive oxygen generation by cultured endothelial cells. Human aortic endothelial cells (A, B)
or human dermal microvascular endothelial cells (C, D) were treated for 1h with control LDL or LDL that had previously been
oxidized with 5uM FeSO, for 24h at pH 4.5 (both at 50 ug protein/ml). Reactive oxygen species were measured using dihydro-
ethidium. DAPI was used to stain the nuclei in the microvascular cells. The mean +SEM of five independent experiments is shown.

**%¥p < 0.001 (ANOVA, followed by tukey’s post hoc test).



the EC,, was significantly increased (Figure 1A). This
was due mainly to an effect on the endothelial cells,
rather than the smooth muscle cells, as there was less
effect of oxidized LDL on endothelium-independent
relaxation induced by sodium nitroprusside, especially
at low sodium nitroprusside concentrations (Figure 1B).

Effect of oxidized LDL on reactive oxygen species
in aortic rings and cultured endothelial cells

We next investigated the mechanisms responsible for
this decreased vasodilatation. One possibility is that
the oxidized LDL increased the formation of superox-
ide, as superoxide can inactivate nitric oxide. Oxidized
LDL increased the generation of reactive oxygen spe-
cies, mainly superoxide, by rat aortic sections, as mea-
sured using dihydroethidium (Figure 2). To investigate
the mechanisms responsible for the decreased vasodi-
latation in more detail, we used cultured endothelial
cells. In agreement with its effect on rat aortic rings,
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LDL oxidized under lysosomal conditions increased the
generation of reactive oxygen species by cultured
endothelial cells from both large and small blood ves-
sels, namely human aortic endothelial cells and human
dermal microvascular endothelial cells (Figure 3).
Control LDL had no effect.

Effect of oxidized LDL on eNOS phosphorylation

As eNOS is activated by phosphorylation, we investi-
gated the effect of the oxidized LDL on the phosphor-
ylation of this enzyme using western blots. Incubation
of human aortic endothelial cells in culture with ace-
tylcholine (3uM) for 8min increased the levels of
phosphorylated eNOS (Figure 4A and B). Pre-incubation
with control LDL or oxidized LDL had no effect on
the phosphorylation of eNOS (Figure 4A and B). We
explored this further using immunofluorescence with
the cultured endothelial cells. This confirmed that ace-
tylcholine alone or in cells pretreated with native LDL
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Figure 4. Phosphorylated and total eNOS in cultured human aortic endothelial cells measured by Western blotting. Endothelial
cells (A, B) were incubated for 1h with control LDL or LDL that had been oxidized by 5puM FeSO, for 24h at pH 4.5 (both at 50 ug
protein/ml). Acetylcholine (3 pM) was added for 8 min and the cells were then lysed and total and phosphorylated eNOS (ser-1177)
measured by Western blotting. Protein levels were normalized to beta-actin. lllustrative western blots are shown. The mean+SEM

of three independent experiments is shown. *indicates p <0.05.
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Figure 5. Phosphorylated eNOS in endothelial cells measured
by immunofluorescence microscopy. Human aortic endothelial
cells were incubated for 1h with control LDL or LDL that had
been oxidized by 5uM FeSO, for 24h at pH 4.5 (both at 50ug
protein/ml) and then with acetylcholine (3uM) for 8min.
Phosphorylated eNOS (ser-1177) was measured by immunoflu-
orescence microscopy, with DAPI used to stain the nuclei. The
mean+SEM of three independent experiments is shown. ***
indicates p<0.001 test compared to the control (two-way
ANOVA, followed by Tukey’s post hoc test).
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increased eNOS phosphorylation, but this phosphory-
lation was not statistically significantly increased com-
pared to the control cells in the cells pre-incubated
with oxidized LDL (Figure 5A and B).

Discussion

Oxidized LDL is well known to decrease vasodilata-
tion mediated by nitric oxide but there are many
forms of oxidized LDL. LDL is often oxidized by cop-
per at pH 7.4 but this type of oxidation is unlikely to
take place in vivo. We have shown that LDL can be
oxidized by iron in the lysosomes of macrophages
[16]. Macrophage death occurs in atherosclerosis,

especially in advanced atherosclerotic lesions [20],
and oxidized LDL might be released from their lyso-
somes to the interstitial fluid of the arterial wall when
the cells lyse. Also oxidized cholesteryl esters have
been shown to cause the exocytosis of the contents
of lysosomes in macrophages [21]. The extracellular
oxidized LDL might adversely affect the function of
endothelial cells.

We have shown here that the relaxation of rat aortic
rings by acetylcholine was decreased by LDL oxidized
under lysosomal conditions, that is by iron at low pH
(Figure 1A). The relaxation by sodium nitroprusside,
which is not dependent on the endothelium, was not
decreased significantly by oxidized LDL (Figure 1B),
suggesting that the main effect of the oxidized LDL
was on the endothelial cells.

The generation of reactive oxygen species by the
aortic rings was increased by oxidized LDL (Figure 2).
This raises the possibility that at least some of the
decrease in vasodilatation might have been due to
reactive oxygen species, mainly superoxide, inactivat-
ing nitric oxide, which is itself a free radical. To
explore this in more detail, we incubated two types
of cultured endothelial cells, human aortic and
human dermal microvascular endothelial cells, with
oxidized LDL. We found that oxidized LDL, but not
control LDL, increased reactive oxygen species gener-
ation in both types of cells (Figure 3). It has previ-
ously been shown that LDL oxidized by copper at pH
7.4 bound to LOX-1 on bovine aortic endothelial cells
and increased superoxide formation by the cells,
which inactivated nitric oxide and decreased its lev-
els inside the cells [27].

We then investigated the activation by phosphoryla-
tion of eNOS in cultured human aortic endothelial
cells. eNOS is activated by phosphorylation at ser-1177
(in the human enzyme) by Akt [28,29]. Western blot-
ting and immunofluorescence microscopy showed that
acetylcholine increased the phosphorylation of eNOS,
but oxidized LDL had no major effect on this activation
(Figures 4 and 5).

In conclusion, LDL oxidized under lysosomal condi-
tions might have inhibited endothelium-dependent
vasodilatation by inactivating nitric oxide with superox-
ide radicals. These results raise the possibility that LDL
oxidized in lysosomes of macrophages might decrease
vasodilatation of arteries when the macrophages die
and lyse releasing their oxidized LDL into the intersti-
tial space of atherosclerotic lesions. This adds to the
list of potentially atherogenic effects caused by the
oxidation of LDL in the lysosomes of macrophages,
namely the increased secretion of pro-inflammatory
cytokines and the increase in pH of the lysosomes [30].
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