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Abstract 9 

Global warming is rapidly shifting climate conditions away from what societies and 10 

ecosystems are adapted to. While the magnitude of changes in mean and extreme climate 11 

are broadly studied, regional rates of change, a key driver of climate risk, have received less 12 

attention. Here we show, using large ensembles of climate model simulations, that large 13 

parts of the tropics and subtropics, encompassing 70% of current global population, are 14 

expected to experience unprecedented (>2 standard deviations) joint rates of change in 15 

temperature and precipitation extremes combined over the next 20 years, under a high 16 

emissions scenario, dropping to 20% under strong emissions mitigation. This is dominated 17 

by temperature extremes, with most of the world experiencing unusual (>1 standard 18 

deviation) rates relative to the pre-industrial, but unusual changes also occur for 19 

precipitation extremes in northern high latitudes, Southern and Eastern Asia and equatorial 20 

Africa. However, internal variability is high for 20-year trends, meaning that in the near-21 

term, trends of the opposite sign are still likely for precipitation extremes, and rare but not 22 

impossible for temperature extremes. We also find that rapid clean-up of aerosol emissions, 23 
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mostly over Asia, leads to accelerated co-located increases in warm extremes and influences 24 

the Asian summer monsoons.  25 

 26 

Many aspects of the climate are currently entering conditions unprecedented in millennia1. 27 

The present sustained rate of global mean surface warming is also unprecedented in at least 28 

the last 2000 years2–4. Climate risk, and the ability of nature and society to adapt to these new 29 

conditions, depend critically on the local rates of change of mean and extreme conditions5,6. 30 

Whilst nature and society are accustomed to a certain amount of regional change, due to 31 

natural and internal variability of the climate system on various timescales, changes that occur 32 

faster than this can be expected to have particularly strong impacts. For instance, rapid 33 

changes increase the risk of unprecedented conditions and extreme events such as the record-34 

shattering heatwave in the US Pacific Northwest in 2021, which was deemed impossible 35 

without climate change7,8. 36 

Extreme events further account for a disproportionate share of the realized impacts of climate 37 

change. For instance, heatwaves may cause heat stress and excess mortality of both people 38 

and livestock, stress to ecosystems, reduced agricultural yields, difficulties in cooling power 39 

plants, and transport disruption. Similarly, precipitation extremes can lead to flooding and 40 

damage to settlements, infrastructure, crops and ecosystems, increased erosion and reduced 41 

water quality9. Thus, society seems particularly vulnerable to high rates of change of extremes, 42 

especially when multiple hazards increase at once. There is also an increasing risk of 43 

compound events, where extreme conditions occur simultaneously or in succession, which 44 

can combine non-linearly to result in greater impacts than would be expected from the sum 45 

of each individual component10,11. The 2022 Pakistan floods were likely such an occurrence, 46 
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where an early heat wave transitioned into an unprecedentedly wet monsoon season. Other 47 

examples include combined heat and drought, increasing the risk of wildfires and exacerbating 48 

impacts on crops and ecosystems, or the combination of storm surges, caused by strong 49 

onshore winds, and heavy inland precipitation, exacerbating coastal flooding10,11. Thus, if a 50 

region is projected to experience rapid rates of change in two or more types of extremes, then 51 

the rates and intensities of unprecedented compound events may also increase rapidly.   52 

Nevertheless, sustained decadal rates of change under global warming remain little studied in 53 

comparison to absolute changes, such as average temperatures or changes to the return 54 

values of extreme events. For example, the recent IPCC 6th Assessment Report did not 55 

systematically assess regional rates of change beyond mean temperatures and precipitation, 56 

or include them as a dedicated indicator when quantifying climate risk12. Also, there is little 57 

literature available on how concurrent changes in multiple climate forcers, such as long-lived 58 

greenhouse gases and short-lived aerosol emissions, can combine to dampen or amplify 59 

regional rates of change on decadal scales.  60 

Here we examine projected rates of change in temperature and precipitation extremes over 61 

the period 2021-2040 (‘near-term’), and beyond, compared to pre-industrial rates and 62 

variability, using four large ensembles of CMIP6 climate model simulations (ACCESS-ESM1-5, 63 

EC-Earth3, CanESM5 and MPI-ESM1-2-LR; see Methods and Table S1). We focus on regional 64 

changes, due to their increased relevance to the experience of people and ecosystems 65 

compared to the global mean, and identify regions projected to experience substantial 66 

changes in rates of one or more extreme event index over the coming decades. The main 67 

novelty of our study is to quantify how current forced changes and internal variability interact 68 

and play out on a decadal time scale, for a set of commonly used indicators of change. 69 
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In the following, we first give examples of how near-term regional rates of change of extreme 70 

events are projected to accelerate beyond typical pre-industrial variability, even under strong 71 

mitigation of greenhouse gas and aerosol emissions, with a focus on areas with strong 72 

changes, high population, or both. We then analyse the joint near-term evolution of extreme 73 

temperatures and 5-day rainfall events and examine how much of the world’s population will 74 

experience unprecedented rates in one or both indices13–15. Finally, we discuss how 20-year 75 

trends in both indices evolve through to 2080, and the influence of near-term aerosol emission 76 

changes on regional rates of change of extreme events.  77 

 78 

Changes in rates for single extremes indices 79 

In Figure 1, we show near-term (2021-2040) rates of change in the annual maximum of daily 80 

maximum temperature (TXx), and the amount of precipitation during the wettest 5-day period 81 

of the year (Rx5day), compared to the spread of 20-year trends in pre-industrial (PI) 82 

conditions. Results shown are from ACCESS-ESM1-5. We use this model for illustration, as it 83 

has results that are broadly representative of the multi-model results. ACCESS-ESM1-5 has an 84 

Equilibrium Climate Sensitivity (ECS) within the IPCC assessed range (3.9 °C; Methods), and 85 

jointly, our four models (shown in the supplement) broadly span the range. This includes a so-86 

called “hot model”, with an ECS of 5.6 °C (CanESM5). We show a selection of IPCC AR6 87 

regions16 where multiple models project clear changes in rates relative to the PI, prioritising 88 

those with high present-day population density (see Figure 2) and ensuring representation of 89 

all populated continents where we find clear changes (Methods). The remaining regions are 90 

shown in Figure S1 and S2. 91 
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 92 

Figure 1: Near-term trends in extremes indices compared to pre-industrial trends. Trends in 93 

(a) TXx (°C per decade) and (b) Rx5day (mm per decade) for selected AR6 regions for 2021-94 

2040 compared to 20-year trends in the pre-industrial period, as simulated by the ACCESS-95 

ESM1-5 40-member large ensemble. For the near-term future, SSP1-2.6 is shown in blue, 96 

SSP5-8.5 in red, whilst the pre-industrial period (PI, defined as 1850-1900) is shown in grey. 97 

Ensemble mean (median) trends are shown with thick (thin) horizontal lines, the standard 98 

deviation spread across members is shown by the boxes for near-term, or dark grey shading 99 

for the pre-industrial, and the entire ensemble spread is shown with the whiskers or light grey 100 

shading respectively. Asterisks indicate whether the difference between PI and near-term 101 

trend distributions are significant based on a K-S test (p<0.05). Other models and regions are 102 

shown in Figures S1 and S2. 103 

 104 

For TXx, we find very strong warm shifts in the near-term distribution of 20-year rates of 105 

change, relative to PI, across the ACCESS-ESM1-5 ensemble (K-S test, p<0.05, asterisks, see 106 
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Methods) for all regions in Figure 1a, and for both the high and low emission scenarios. Whilst 107 

larger changes relative to the PI can generally be seen in SSP5-8.5 compared to SSP1-2.6, 108 

significant changes in rate distributions can be seen in both scenarios and scenario differences 109 

are small compared to the overall ensemble spread. The other climate models show a similar 110 

overall pattern of results, although CanESM5 tends to show more distinct changes, whilst MPI-111 

ESM1-2-LR shows less distinct changes (Figure S1). These results may reflect their differing 112 

climate sensitivities (see Table S1) in agreement with Smith et al., (2015)4 and Chavaillaz et al. 113 

(2016)15.  114 

Figure 1b shows equivalent results for Rx5day. The regions of clear rapid change in extreme 115 

precipitation relative to PI trends tend to include the mid-to high northern latitudes, low 116 

latitude Asian and equatorial African countries. Differences in rates of change between the 117 

near-term and PI are less clear than for TXx, owing primarily to the higher variability of 118 

precipitation. Nevertheless, a significant shift towards wetter extremes is seen for both 119 

scenarios in all but one region shown (West Africa), with the near-term ensemble mean rate 120 

moving out of the PI standard deviation ensemble spread for at least one scenario (except for 121 

Central Africa). Note that the other large ensembles show much clearer changes in rates for 122 

West Africa and Central Africa (Figure S2). Scenario differences are also less distinct than for 123 

TXx, albeit with hints of stronger differences in regions where the two scenarios differ most 124 

strongly in their future aerosol emissions (Supplement). Statistically significant differences in 125 

trend distributions in Rx5day between the near-future and PI are also found in many other 126 

regions, almost always in a wettening direction (Figure S2).  127 

We have also investigated rates of change of consecutive dry days (CDD); see Figures S23-26 128 

and S10. Changes in rates are less clear than for TXx or Rx5day compared to pre-industrial 129 
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trends, although statistically significant changes in trend distributions in CDD do occur in some 130 

regions. 131 

 132 

Simultaneous changes in rates for multiple extremes 133 

We now investigate the joint evolution of projected rates of change in both indices. The map 134 

in Figure 2 highlights regions undergoing substantial changes in joint rates of change for the 135 

near-future relative to the pre-industrial period. Specifically, regions are highlighted that 136 

experience a change in ensemble mean joint rates greater than two standard deviations 137 

(S.D.s) of pre-industrial trend variability in at least 3 out of 4 models (see Methods). This can 138 

be interpreted as a region very likely experiencing sustained, unprecedented rates of change 139 

for two or more decades, given that a 2+ standard deviation trend based on large ensembles 140 

has a low probability of having occurred over the single realisation of the real world with its 141 

limited sample size. Under SSP5-8.5, more than a third of land regions experience joint 142 

changes >2 S.D.s for the 2021-2040 period. The regions are clustered at lower latitudes, and 143 

often contain low-income countries that are particularly vulnerable to the impacts of climate 144 

change, exacerbating the climate risk from this compound hazard. Southern Asia and the 145 

Arabian Peninsula are projected to see these unprecedented joint changes also under SSP1-146 

2.6. If we weaken the criterium to one standard deviation of PI variability, almost all regions 147 

experience such joint near-term changes under SSP5-8.5, and most also under SSP1-2.6 148 

(Figure 3f).  149 

The scatterplots in Figure 2 show regional mean near-term rates of changes in TXx vs Rx5day 150 

for ACCESS-ESM1-5. To illustrate the influence of internal variability, we include all ensemble 151 

members, as well as the ensemble mean and standard deviation spread, and how this 152 
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compares to the 1 and 2 standard deviation spread of PI rates of change (ellipses, see 153 

Methods). The regions shown are those having clear joint changes in the central map, 154 

prioritising those with high population, and ensuring at least one region per continent is 155 

selected (the rest are shown in Figure S5). In all of these regions, the cloud of points 156 

representing the ensemble spread for near-term trends is shifting away from the pre-157 

industrial ellipses17. Differences between scenarios can be seen, but they are small compared 158 

to the size of internal variability. Indeed, trends of the opposite sign to the ensemble means 159 

are quite common for some ensemble members for Rx5day over the next 20 years, and cooling 160 

trends for TXx are also seen in some members. Broadly consistent results for other models are 161 

shown in Figure S6-8. 162 

 163 
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 164 

Figure 2: Regional joint near-term trends in TXx and Rx5day: The central map highlights the 165 

regions that show an ensemble mean combined rate of change of TXx and Rx5day for 2021-166 

2040 that is more than 2 standard deviations of variability in pre-industrial 20-year rates of 167 

change in at least 3 out of 4 models (see Methods) in SSP5-8.5 (light turquoise shading) and 168 

both SSP1-2.6 and 5-8.5 (dark turquoise shading). Population density for 2020 from the 169 

GPWv4 dataset18 is shown with red shading. Scatterplots show, for selected regions, the trend 170 

in TXx (x-axes) vs Rx5day (y-axes) per decade for 2021-2040 for each ensemble member (dots), 171 

and their ensemble mean trend and standard deviation spread (crosses) for SSP1-2.6 (blue) 172 

and SSP5-8.5 (red) based on the ACCESS-ESM1-5 ensemble. Ellipses show confidence regions 173 
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for pre-industrial variability of 20-year trends: solid for the 40th percentile confidence ellipse 174 

(corresponding to approximately 1 standard deviation) and dashed for 86.5th percentile ellipse 175 

(~2 standard deviations, see Methods). The ensemble mean PI trend is indicated with a small 176 

black cross. 177 

 178 

Figure 3a-b shows the full spatial patterns of near-term joint TXx and Rx5day rates of change 179 

for the ACCESS-ESM1-5 ensemble mean. Combined changes exceed 2 or even 2.5 standard 180 

deviations in much of Northern Africa and the Arabian Peninsula, and parts of N.E. South 181 

America, Eastern Africa and the Tibetan Plateau under SSP5-8.5. There are also combined 182 

rates of change between 1-2 standard deviations over much of northern South America, 183 

southern Africa, southern Asia, Western Australia and some parts of North America and 184 

Northern Asia. Under SSP1-2.6 changes are more muted but still exceed 1 standard deviation 185 

over many low latitude locations. Results are similar for the other models (Figure S9), albeit 186 

weaker in MPI-ESM1-2-LR.  187 

Figure 3 c-h shows regions with ensemble mean changes in rates exceeding 1 or 2 standard 188 

deviations of pre-industrial trend variability in at least 3 of 4 models, for joint changes, and 189 

also each index separately. Most land regions experience joint rates of change >1 S.D. in both 190 

scenarios, and a large part of the tropics and subtropics experience joint rates >2 S.D.s under 191 

SSP5-8.5, but also under SSP1-2.6 for south Asia and the Arabian Peninsula. Almost all regions 192 

also experience changes in rates of TXx >1 S.D. in at least one scenario, and parts of Africa, 193 

northern South America, Western central Asia, the Arabian Peninsula and southern Europe 194 

experience changes >2 S.D.s. These latter are regions with low trend variability (Figure S17) 195 

and also correspond well to the regions experiencing the earliest emergence of (absolute) 196 
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mean and extreme temperature changes from interannual variability19–23. Fewer regions 197 

experience large changes in rates for Rx5day, but nevertheless, changes greater than 1 S.D. 198 

are seen in most high latitude regions in the northern hemisphere, and also in equatorial Africa 199 

and southern and eastern Asia. Central Africa is the only region surpassing 2 S.D.s for Rx5day. 200 

Again, this pattern reflects that of earliest mean and extreme precipitation emergence20,24,25. 201 

Results for individual models can be seen in Figure S4.  202 

 203 

Figure 3: Spatial patterns of near-term joint rates of change in extremes, and their 204 

components. Top row: ACCESS-ESM1-5 ensemble mean combined near-term rates of change 205 
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for TXx and Rx5day expressed in standard deviations of pre-industrial variability of trends, a) 206 

for SSP1-2.6, and b) for SSP5-8.5. (c-h) Regions with near-term ensemble mean rates of change 207 

greater than 2 (c-e), and 1 (f-h) standard deviations of pre-industrial variability in 20-year 208 

trends in at least 3 of 4 models. Panels c and f are for both indices combined (as in Figure 2), 209 

whilst d+g is for TXx and e+h for Rx5day. Shading colour indicates which scenario(s) the 210 

threshold is crossed in (see Methods for details). 211 

 212 

Population affected 213 

In Table 1 we show the percentage of global population affected by near-term rates of change 214 

larger than 2, 1.5 and 1 standard deviation of pre-industrial variability in 20-year trends, which 215 

we define here as unprecedented, highly unusual and unusual respectively. Population 216 

affected is taken as the sum of (present-day, land-based) population in regions where 3 or 217 

more models show ensemble mean changes in rates passing these thresholds (Methods).  218 

 219 

 220 

Table 1: Percentage of the world’s population affected by strong rates of change of climate 221 

extremes in the next 20 years: The proportion of global population that will experience near-222 

term (2021-2040) rates of change larger than 2 (“unprecedented”), 1.5 (“highly unusual”) and 223 

1 (“unusual”) standard deviations of pre-industrial variability in 20-year trends, based on the 224 

regions highlighted in Figure 3c-h and S3.  225 

% world pop. Joint Changes TXx Rx5day

affected ssp126 ssp585 ssp126 ssp585 ssp126 ssp585

>2 S.D. 19.9 68.8 0.9 20.9 0.0 1.7

>1.5 S.D. 59.9 83.3 37.5 72.9 0.0 6.5

>1 S.D. 76.9 90.5 74.5 88.8 19.2 55.9
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 226 

Under SSP5-8.5, almost 70% of the world’s current population will experience unprecedented 227 

joint rates of change of both indices combined, 83% very unusual and 91% unusual. Even 228 

under strong mitigation (SSP1-2.6) 20% of the world’s population will experience joint rates 229 

larger than 2 S.D.s of PI trends, 60% >1.5 S.D.s, and 77% >1 S.D. A large proportion of 230 

population will experience unprecedented (21%), highly unusual (73%) or unusual (89%) rates 231 

of change in temperature extremes under SSP5-8.5. This proportion reduces under strong 232 

mitigation, but still reaches 38% and 75% for highly unusual and unusual rates of change, 233 

respectively. Finally, a smaller proportion of global population will be affected by large 234 

changes in rates for precipitation extremes given their higher variability compared to forced 235 

changes, but nevertheless 56% of people will experience rates >1 S.D. of pre-industrial rates 236 

under SSP5-8.5 and 19% under SSP1-2.6.  237 

The reason that more people are affected by large changes in joint rates than might be 238 

expected from individual changes in TXx and Rx5day, is that to exceed e.g. 2 S.D.s for joint 239 

changes, both individual indices would only need to change by 1.4 S.D.s each (see Methods). 240 

When very populous regions, e.g. South Asia or East Asia cross a threshold, this makes a large 241 

difference to the population affected.  242 

 243 

Rates beyond 2040, and the influence of aerosol cleanup 244 

We have also investigated the continued evolution of regional rates of change beyond 2040, 245 

and the potential influences of strong near-term reductions in aerosol emissions. Both are 246 

shown in detail in the Supplementary Information. As expected, rates of change remain high 247 

throughout the 21st century under SSP5-8.5, while they broadly decline in SSP1-2.6 and are 248 
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largely consistent with preindustrial rates by 2080 (Figures S10-S13). However, even under 249 

very strong emissions mitigation and Paris-compatible global warming, we find regions of 250 

strong forced rates of change of extreme events until 2060, particularly for warm extremes. 251 

Further studies of rates of change, up to and after stabilization of global warming, are 252 

therefore warranted. For aerosols, we exploit the fact that over the period 2021-2040, SSP1-253 

2.6 and SSP3-7.0 have only moderately different greenhouse gas concentration trends (Figure 254 

S14) but marked differences in aerosol trends, predominantly over Asia. While results are 255 

mixed, we do find that aerosol cleanup is associated with an enhanced increase in the warmest 256 

days in both summer and winter months over parts of Southern and Eastern Asia, 257 

accompanied by a wintertime (DJF) wetting (Figure S15). These results are consistent with the 258 

expected influence of a loss of regional, near-source aerosol induced surface cooling. Effects 259 

on Asian summer monsoon precipitation were mixed, with two models (ACCESS-ESM1-5 and 260 

MPI-ESM1-2-LR) showing statistically significant enhanced monsoon season wet extreme 261 

rates. 262 

Discussion  263 

The present analysis is based primarily on large ensembles of climate model simulations, 264 

which allow us to explore the role of internal variability, whilst also being able to pin down the 265 

models’ forced response. This depends, however, on the models being able to realistically 266 

simulate decadal rates of change, and their responses to climate forcing. Overall, for the 267 

ensemble means we find a robust evolution of both hot and wet extremes across the four 268 

models studied, albeit with regional differences consistent with known biases such as 269 

monsoon climatologies (Wilcox et al. 2020), and response strengths broadly in line with 270 

modelled Equilibrium Climate Sensitivities, particularly for TXx. When looking at individual 271 
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realizations there is substantial variability in regional rates of change, even on 20-year 272 

timescales, including uncertainty in the sign of the trends. While a lack of pre-industrial 273 

observations makes characterizing unprecedented rates of change in climate extremes 274 

challenging, large ensembles do indicate how rates of change will likely change between the 275 

pre-industrial period and the present day. As our main process of interest here is the internal 276 

variability that leads to decadal scale rates of change (and its interactions with forced changes) 277 

we have primarily evaluated model performance against this metric (Supplementary Figures 278 

S18). Daily precipitation information is unfortunately sparse in many regions, and the short 279 

observational record does not allow a large sample of short-term trend periods. However, for 280 

TXx, modelled 20-year trend variability is consistent with observational estimates for the 281 

majority of regions. For Rx5day it is well represented in ACCESS-ESM1-5 and CanESM5, 282 

especially in the key regions shown in Figures 1-2, but is underestimated in a number of 283 

regions in EC-Earth3 and MPI-ESM1-2-LR. Underestimated trend variability may be related to 284 

underestimated climatological mean Rx5day, with possible consequences for the size of 285 

forced trends (see discussion in supplement), but is unlikely to influence our key results. 286 

Assessing whether models are fit-for-purpose for projecting decadal rates of change is clearly 287 

a remaining challenge, which cannot be fully resolved with currently available datasets. For 288 

the analysis presented here, our overall conclusions of rapid near-term rates of change in 289 

major populated regions are generally supported by an agreement between models, 290 

observations and reanalysis.  291 

Climate models can also have deficiencies in representing processes such as convective 292 

extreme precipitation, which must be parameterized at these resolutions, or mean-state 293 

biases. By using four different models we capture some inter-model uncertainty, although this 294 

small sample will not fully reflect model uncertainty across CMIP6. The sample of models used 295 
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include ones that have high climate sensitivities relative to the IPCC likely range (Methods) 296 

which may lead to stronger rates for these particular models (see also Smith et al, 20154; 297 

Chavaillaz et al., 201615) . There is, however, no a priori reason to exclude so-called “hot 298 

models” for regional trend analyses, so we do not perform a model selection or weighting of 299 

their results here.  300 

Whilst over large parts of the globe, these four models agree on the patterns of changes, if 301 

not the magnitude, there are regions where Rx5day or CDD are of opposite sign in different 302 

models, consistent with greater model uncertainties in projections of precipitation-related 303 

quantities than temperature-related ones found in previous studies11,26,27. These differences 304 

all constitute uncertainties that should be borne in mind when considering the results of this 305 

study.   306 

Another caveat is our usage of global, coarse-resolution models, and large geographical 307 

regions. These do not capture the full spatial patterns of trends, for which regional, high-308 

resolution modelling would be useful. However, current regional climate models have no, or 309 

only rudimentary, treatment of aerosols, and which influences rates-of-change of extreme 310 

events both directly and indirectly28,29. Further, the indices used in the present analysis (TXx, 311 

Rx5day, CDD) are useful, but not necessarily the most impact relevant in all regions. Further 312 

work is critically needed on regional rates-of-change of extremes using updated regional 313 

models, and locally adapted, multi-hazard indicators. 314 

We find that over the coming decades, regional trends in extreme weather well beyond 315 

internal variability are likely in many regions, affecting a large fraction of global population, 316 

even under strong emissions mitigation. These conclusions emphasize the need for both 317 
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continued mitigation and adaptation to potentially unprecedented changes over the next 20 318 

years even under a low emissions scenario. 319 
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Online Methods 423 

Climate model simulations 424 

We analyse four large ensembles of climate model simulations produced as part of the CMIP6 425 

exercise30: ACCESS-ESM1-5 (40 members31), MPI-ESM1-2-LR (3032), CanESM5 (5033) and EC-426 

Earth3 (57; 20 for the preindustrial case34,35). See Table S1 for details. The equilibrium climate 427 

sensitivities (ECS) of these models range from the IPCC AR6 best estimate (MPI-ESM1-2-LR; 428 

3.0°C for a doubling of CO2 concentrations), to a value at the upper end of the CMIP6 range 429 

(CanESM5; 5.6°C)1,36. ACCESS-ESM1-5 has an ECS of 3.9°C, EC-Earth3 has 4.3°C. The IPCC likely 430 

range is 2.5-4°C and very likely range 2-5°C. 431 

We use the historical CMIP6 simulations for the pre-industrial period, and the future scenarios 432 

SSP1-2.6, SSP5-8.5 and SSP3-7.0. The historical simulations are forced with observed records 433 

of both anthropogenic and natural forcing agents, including greenhouse gases, anthropogenic 434 

aerosols, volcanic aerosols, solar variability and land-use change30. The future scenarios 435 

include various possible trajectories of greenhouse gas emissions, land use and aerosols37. To 436 

assess the influence of emissions trajectories on trends over the coming 20 years, we contrast 437 

a very low (SSP1-2.6) and very high (SSP5-8.5) greenhouse gas emissions scenario. When 438 

examining trends related to aerosol clean-up, we contrast SSP1-2.6 with SSP3-7.0, the former 439 

having rapid aerosol reductions over the next 20 years, notably from India and China, and the 440 

latter having continued growth of emissions (see Figure S14).  441 

We use ACCESS-ESM1-5 as an example model in the main text, since it has a climate sensitivity 442 

consistent with recent assessments, and middle of the range results compared to the other 443 

models, as well as reasonable trend variability compared to ERA5 (Supplementary Material). 444 
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The other models are fully presented in the supplement. Multi-model results are based on all 445 

four models, as described below.   446 

Extreme event indices 447 

We analyse regional trends in two widely used climate extremes indices that form part of the 448 

Expert Team on Climate Change Detection and Indices (ETCCDI) set of  indices38: The annual 449 

maximum of daily maximum temperatures (TXx), as a measure of heat extremes, and the total 450 

precipitation falling in the wettest 5 consecutive day period of the year (Rx5day) as a measure 451 

of wet extremes. We also present further analysis for dry extremes in the supplement, for the 452 

maximum number of consecutive dry days per year (CDD). We use a version where the dry 453 

spell is not allowed to continue past the year boundary, i.e. the maximum value is 365 days 454 

per year.  455 

Near-term and preindustrial trends 456 

We calculate trends over the period 2021-2040, defined here as the “near-term”, using a 457 

linear regression of yearly ETCCDI index values for each model ensemble member. For regional 458 

results we calculate the regional-mean land-only time series first and then calculate trends, 459 

whilst for spatial plots trends are calculated per grid cell. We also calculate 20-year trends for 460 

the preindustrial (PI) period by examining 20-year periods within the time frame 1850-1900, 461 

shifting the start year by 5 years each time. This yields a total sample size of 7x 20-year trends 462 

per ensemble member. This method was chosen to avoid trends driven by the effect of 463 

volcanic eruptions overly influencing the PI trends (see Figure S16).  464 

Combined rates of change 465 
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As well as near-term rates of change for the separate extreme indices, we examine joint rates 466 

of change in TXx and Rx5day, to identify regions subject to multiple stressors at the same time. 467 

In order to relate changes to preindustrial variability of 20-year trends, we convert changes in 468 

both indices to units of standard deviations of their PI trend variability. We then define a 469 

combined trend as the sum of squares of the two metric trends:  470 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑡𝑟𝑒𝑛𝑑 =  √(
𝑅𝑇𝑋𝑥

𝑛𝑒𝑎𝑟−𝑡𝑒𝑟𝑚 − 𝑅𝑇𝑋𝑥
𝑃𝐼

𝜎(𝑟𝑇𝑋𝑥
𝑃𝐼 )

)

2

+ (
𝑅𝑅𝑥5𝑑𝑎𝑦

𝑛𝑒𝑎𝑟−𝑡𝑒𝑟𝑚 − 𝑅𝑅𝑥5𝑑𝑎𝑦
𝑃𝐼

𝜎(𝑟𝑅𝑥5𝑑𝑎𝑦
𝑃𝐼 )

)

2

 471 

Here, rx
y is the 20-year rate-of-change in a single ensemble member, for indicator x in period 472 

y (near-term future or preindustrial (PI)), Rx
y is the corresponding ensemble mean, and σ is the 473 

standard deviation across all ensemble members. 474 

As an example, if both indices exhibit an increase in the ensemble mean rate of change 475 

between the near-term and PI that is 1 standard deviation of the PI variability of trends, then 476 

the combined trend will be 1.4. 477 

Evaluation against observational datasets 478 

To assess the representation of 20-year trend variability in the climate models used for this 479 

study, we perform a regional comparison with the ERA5 reanalysis39 for TXx and Rx5day, and 480 

additionally the Rainfall Estimates on a Gridded Network (REGEN) daily gauge-based dataset 481 

for Rx5day40. ERA5 temperature and precipitation data were available for the period 1941-482 

2022 on a 0.25°grid, whilst REGEN is available from 1950-2016 on a 1°grid. REGEN combines 483 

stations from the Global Precipitation Climatology Centre (GPCC)41, Global Historical 484 

Climatology Network – Daily (GHCN-daily)42 and other sources, and is available as two 485 

versions: REGEN-LONG, which includes only stations with at least 40 years of data, and REGEN-486 
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ALL, which includes a much larger number of stations. Each is spatially interpolated and comes 487 

with a data quality mask. TXx and Rx5day were calculated in the same way as for the climate 488 

model data. The results of the evaluation are presented in the Supplementary Materials 489 

(Figures S18). 490 

Region selection 491 

We calculate regional results for the 46 land regions defined as part of the IPCC sixth 492 

assessment cycle16, with a further masking applied to retain only grid cells with >50% land. 493 

These regions are widely used for climate studies and are a refined version of those used in 494 

previous IPCC cycles. They are defined with climate homogeneity in mind, both in terms of 495 

historical mean climate and projections, whilst also being large enough to be appropriate for 496 

use with the CMIP6 generation of models, at around 1 degree resolution. 497 

Where a sub-selection of regions is shown, e.g. in Figures 1 and 2, these are subjectively 498 

chosen based on a combination of 1) showing a clear shift in the distribution of trends away 499 

from the pre-industrial equivalent, 2) prioritising regions with high population density and 3) 500 

representing all continents where we find clear changes. More specifically, for combined rates 501 

of change, and for TXx point 1) is based on regions undergoing an ensemble mean rate at least 502 

1.5 standard deviations bigger than the PI equivalent in at least three models (as seen in 503 

Figures 3 and S3), whilst for Rx5day, where changes are less clear relative to PI due to higher 504 

intrinsic variability, we use a lower threshold of 1 standard deviation. Results for remaining 505 

regions are shown in the supplement. 506 

Colour coding of SSPs in multi-model regional map figures 507 

In Figures 2, 3, S3 and S4, regions are colour coded according to the SSP in which a given 508 

threshold is crossed. The thresholds are defined as when the change in ensemble mean rates 509 
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between the PI and near-term is greater than the PI 20-year trend variability by a certain 510 

number of standard deviations.  511 

Two SSPs are examined (SSP1-2.6 and SSP5-8.5). For single model plots there are thus four 512 

options for threshold crossing: In either SSP5-8.5, or SSP1-2.6, or both, or none. For the multi 513 

model plots, we use the following colour coding: 514 

1) The given threshold must be passed in at least 3 of 4 models for a colour to be assigned.  515 

 516 

2) The colour categories are then as follows: 517 

- “In both SSPs” (teal)- at least 3 models cross the threshold for both SSPs (this includes 518 

situations where 3 models cross the threshold in both SSPs, and the last model crosses 519 

for only one SSP) 520 

- “Mostly in SSP5-8.5” (light cyan)- More models cross the threshold for SSP5-8.5 than 521 

for SSP1-2.6  522 

- “Mostly in SSP1-2.6” (yellow)- More models cross the threshold for SSP1-2.6 than for 523 

SSP5-8.5 524 

- Inconsistent SSPs (orange)- any combination that does not fit into the previous 525 

categories e.g. two models only cross the threshold in SSP5-8.5 and the other two only 526 

for SSP1-2.6, or 1 model only SSP5-8.5, another only SSP1-2.6 and the remaining two 527 

both SSPs. 528 

Population calculations 529 

Population density and totals for the year 2020 are taken from the United Nations World 530 

Population Prospects Gridded Population of the World, Adjusted Version 4 dataset, on a 1 531 

degree grid18,43. Whilst population will change over the next 20 years, some of the regions 532 
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with the clearest acceleration in rates of change are also those where population is projected 533 

to increase fastest e.g. Africa, likely putting our results on the conservative side. When 534 

calculating the percentage of the global population affected by near-term rates of change in 535 

extreme indices greater than a given threshold of preindustrial variability of 20-year trends, 536 

we sum up the populations in the AR6 WG1 regions affected by such changes as shown in 537 

Figure 3c-f and S3. These are regions where 3 out of 4 large ensembles show ensemble mean 538 

changes in rates passing these thresholds. For SSP5-8.5 estimates we include teal, light cyan 539 

and orange regions (i.e. threshold is crossed mostly in SSP5-8.5, both SSPs and inconsistent 540 

SSPs respectively- see previous section), and for SSP1-2-6 teal, yellow and orange regions 541 

(both SSPs, mostly SSP1-2.6 and inconsistent SSPs respectively).  542 

Since the climate data are masked to land only, we also mask population data to land only 543 

when calculating the total population affected. This means that 90.8% of the world’s 544 

population is considered in our analysis. Population affected is then expressed as a percentage 545 

of total global unmasked population. This means that our population affected estimates are 546 

on the conservative side, since we cannot say anything about the remaining population, for 547 

example in some small islands. 548 

Statistical Testing 549 

We use a two-sample Kolmogorov Smirnov test (K-S test) to test whether the differences 550 

between empirical distributions of 20-year trends between two periods or two scenarios from 551 

a given climate model ensemble are statistically significant at the 5% significance level. The K-552 

S test is a non-parametric test which compares two samples and tries to determine whether 553 

these come from the same underlying continuous distribution by examining the maximum 554 

distance between the empirical distribution functions based on the two samples. For this test, 555 
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the underlying distribution does not have to be specified or even known and it takes both 556 

location and shape of the distribution into account. 557 

Ellipses 558 

The ellipses shown in Figures 2, S5-8 and S19-22 correspond to the area covered by the 40th 559 

and 86.5th percentiles of the bivariate distributions of the 20-year trends in TXx vs Rx5day for 560 

the preindustrial period, estimated from their respective covariance matrices. This 561 

corresponds approximately to one and two standard deviations, respectively, of the chi-562 

squared distribution generated from the sum of the squared components of the bivariate 563 

distribution. 564 

 565 

 566 

Data availability 567 

The climate model data used for this analysis are publicly available from the ESGF portals 568 

e.g. https://esgf-data.dkrz.de/search/cmip6-dkrz/. ETCCDI indices for CMIP6 models are 569 

available from the Copernicus Climate Data Store at 570 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-extreme-indices-571 

cmip6?tab=overview. ERA5 temperature and precipitation data are available from  572 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-573 

levels?tab=overview. REGEN-LONG is available from https://zenodo.org/records/4922162 574 

and REGEN-ALL from https://zenodo.org/records/4922160. Population data are available 575 

from https://sedac.ciesin.columbia.edu/data/collection/gpw-v4.  576 

 577 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-extreme-indices-cmip6?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-extreme-indices-cmip6?tab=overview
https://zenodo.org/records/4922162
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
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Code availability 578 

The code used in this analysis will be deposited in a publicly accessible archive and made 579 

available upon publication of this manuscript. 580 
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