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Abstract

This paper introduces forward-looking measures of the network connectedness of
fears in the financial system, arising due to the good and bad beliefs of market partic-
ipants about uncertainty that spreads unequally across a network of banks. We argue
that this asymmetric network structure extracted from call and put traded option prices
of the main U.S. banks contains valuable information for predicting macroeconomic
conditions and economic uncertainty, and it can serve as a tool for forward-looking

systemic risk monitoring.

Acknowledgements: We are grateful to the editor, Bryan Graham, and three anonymous refer-
ees for their useful comments and suggestions, which have greatly improved the paper. We are
indebted to Jon Danielsson, Robert Faff, Jaideep Oberoi, Sotiris Staikouras, Jean-Pierre Zigrand,
and the participants at the Royal Economic Society annual conference 2019, IESD 2019, and CFE
2019 for many useful comments, suggestions, and discussions. Jozef Barunik gratefully acknowl-
edges support from the Czech Science Foundation under the EXPRO GX19-28231X project. Mat-
tia Bevilacqua gratefully acknowledges the support of the Economic and Social Research Council
(ESRC) in funding the Systemic Risk Centre [grant number ES/K002309/1 and ES/R009724/1].
A number of additional results accompanying the main analysis are relegated to the Online Ap-
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1 Introduction

The financial sector plays an important role in the functioning of the economy through intermedi-
ation. Shocks to the financial system impact the real economy largely, yet despite the enormous
efforts of researchers and policy makers, we do not understand the mechanism fully. Similar to
consumers, firms, and countries creating ever-intensifying linkages in a world economy, the fi-
nancial sector is connected more than ever before. A critical issue for central bankers and policy
makers is how to measure such network connections and understand how they are related to future
economic downturns. However, network connectedness remains an incompletely defined concept,
and the impact of the financial network structure on the real economy remains poorly understood.

To contribute to this debate, we develop a novel forward-looking set of measures of connec-
tivity in the financial system and study their usefulness in relation to the real economy. Using
traded option prices, we measure how market fears stemming from uncertainty' about future price
fluctuations covary across financial companies and how shocks to these fears create a network and
spread within that network. We argue that the beliefs of investors buying call and put options are
linked in a different way and that they can be used to extract asymmetric information about the net-
work structure of the financial system. Exploring these networks of good and bad fears, we show
that the information contained in the novel forward-looking measures of network connectedness is
valuable for forecasting macroeconomic conditions as well as economic uncertainty measures. In
contrast to the previous literature measuring ex post systemic risk (see Billio et al., 2012; Diebold
and Yilmaz, 2014; Hautsch et al., 2014; Hirdle et al., 2016; Geraci and Gnabo, 2018), we aim to
provide an ex ante systemic risk alarm bell that is useful for anticipating the propagation of risk in

the financial sector.

"Note that option prices are often used to measure the forward-looking volatility of the whole
market in the financial literature (see Fleming et al., 1995; Christensen and Prabhala, 1998; Wha-
ley, 2009). Moreover, Santa-Clara and Yan (2010) argued that the measures extracted from options
are the ex ante risks assessed by option investors. Our definition of fears and their measurement

using option prices for individual banks are discussed in detail in section 2.
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Working with fear as a function of the good and bad outcomes expected by option buyers, a
key ingredient of our approach is the measurement of such information from traded option prices.
While good and bad volatility measures are well established in the literature (see Barndorff-Nielsen
et al., 2010; Patton and Sheppard, 2015; Segal et al., 2015; Feunou et al., 2017; Kilic and Shalias-
tovich, 2018; Bollerslev et al., 2017), these notions applied to asymmetric responses of volatility
to surprise shocks are exclusively based on ex post measures. Our novelty is in proposing forward-
looking measures in the network context, as well as studying how shocks to market agents’ expec-
tations on both sides of the market create asymmetric linkages in the financial network. With the
forward-looking information about the two sides of the financial network, it is useful to study its in-
formation content for the development of the real economy, especially about economic downturns.
For this purpose, we first construct a new dataset of daily forward-looking volatility measures sep-
arately from the traded call and put option prices of major financial institutions, representing the
financial network of the U.S. economy.? Then, we construct the asymmetric network of the two
sides of the market expectations to investigate the structural characteristics of the financial system.

The network measures are built in the tradition of dynamic predictive modeling under mis-
specification, and important causal linkages are approximated via vector autoregression models
(Diebold and Yilmaz, 2009, 2012; Diebold and Yilmaz, 2014). The connectedness from put op-
tion prices measures how shocks to investors’ expectations associated with bad volatility, which
could be linked to a possible decrease in economic growth (see Segal et al., 2015; Barunik et al.,

2016; Feunou et al., 2017; Bollerslev et al., 2017), travel across the network. When constructed

2Qur focus on the network connectedness of the main U.S. financial stocks is motivated by the
fact that financial institutions have always been under the magnifying glass of investors, practi-
tioners and academics for their pivotal role in systemic risk terms. Excellent discussions along
this line can be found in Billio et al. (2012), Diebold and Yilmaz (2014), Barunik and Krehlik
(2018) and Geraci and Gnabo (2018). The financial sector’s systemic risk exposure may lead to
macroeconomic decline and macroeconomic contagion (Allen et al., 2012), so it should be closely

monitored.
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from call option prices, the network measure indicates how shocks to a positive direction associ-
ated with events that may trigger higher returns (Diebold and Yilmaz, 2015) and good volatility
spread across the system. Ultimately, we document the in-sample and out-of-sample predictive
power of the asymmetric network connectedness with respect to macroeconomic and uncertainty

indicators, and we find that they can be related to future economic activities.

2 Good and Bad Fear, Investor Beliefs and Option Implied Volatil-

ity

Academics, policy makers, and practitioners fear uncertainty regarding future price fluctuations
measured by volatility. To study the network of such fears in the market, we develop forward-
looking measures reflecting investor beliefs from data. One of the most popular measures of ex-
pectations about uncertainty is the volatility implied by traded option prices. To track investors’
beliefs and to allow for one to trade on forward-looking volatility, the Chicago Board Options Ex-
change introduced a popular volatility index—VIX—extracting expectations from options prices
in a model-free manner. The concept was later formalized by Bakshi and Madan (2000); Bakshi
et al. (2003) and has quickly gained popularity in the literature as well as among practitioners and
policy makers as an “investor fear gauge” (Diebold and Yilmaz, 2014).

Occurring in response to the anticipation of perceived risks, fear has negative connotations
and is often mistaken for bad events or threats. However, fear may be more complicated. More
nuanced and referring to a variety of situations, fear can be thought of as a function of an event. A
possible positive or negative outcome of an event itself then determines the perception of such fear.
As an example, let us consider a possible increase in stock price in response to the announcement
of a friendly takeover. Per se, the increased price fluctuation signals increased uncertainty in the
market, hence greater risk and fear. The outcome of the transaction is however positive for all the
participants, and the increased uncertainty is connected to the positive event in this case. There is

always a chance of the expectation not being realized, but the event is the deciding factor.
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Since investors tend to react differently to “state-dependent” uncertainty and because markets
move with positive and negative expectations of investors, it is important to be able to gauge those
beliefs. By the use of good fear and bad fear, we label these two complementary situations. Beliefs
connected to a good state (bad state) of the economy—good (bad) fears—reflect the situation where
an investor fears uncertainty regarding price fluctuations, but the uncertainty itself is connected to
a positive (negative) outcome. The realization of the positive outcome, connected to a good fear,
resulting in stock price increases (and therefore firm value) signals strong economic performance.
Moreover, the realization of the negative outcome, connected to a bad fear, results in falling prices
and therefore in deteriorating firm value, which signals weak economic performance.

To capture the good and bad fears, we use forward-looking uncertainty measures that are inti-
mately related to the VIX methodology inferring fears from traded option prices in a model-free
manner. Instead of looking at the whole U.S. stock market index, we are interested in measur-
ing fears at the individual company level, more specifically focusing on the U.S. financial sector.
Hence, we develop a methodology to measure uncertainty about individual companies disentan-
gling the aggregate implied volatility into good and bad volatilities connected to the positive and

negative state of markets, respectively.

2.1 Inferring Good and Bad Fear from Option Prices

Formalizing the discussion, we consider the price of a volatility contract that pays off the squared
log return R? , = (py41 — py)? at time ¢ + 1 with p, denoting the natural logarithm of the share
price F, of the underlying bank at time ¢. Under the risk-neutral measure, the implied variance is

defined as the price of the contract:
Var, = ¢ E? [R2,,] (1)

with risk-free rate rf . The implied variance, [Var;, measures expected fluctuations in the underly-

ing asset’s options contract over a fixed horizon of 30 days. Naturally, this tracks investors’ fears
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that are directly connected to uncertainty regarding next period’s expected price movements. Fur-
thermore, Bakshi et al. (2003) suggest that one can use out-of-money (OTM) call and put option

prices to compute the implied variance as

> 92(1 —log(K/P, P o(1 +log(P/ K
]IVart:/ ( ‘}?g / t))C(t,t+1,K)dK+/ (1+ O;?g YE) pt 41, K)dK,
P Jo

NG J/

-~

TV
]IVar?' [Var,”

2
where C(.) and P(.) denote the time ¢ prices of call and put contracts, respectively, with time to
maturity of one period and a strike price of K. Call option prices reflect a good state of the economy
for the stock, while the prices of a put option reflect a bad state of the economy for the stock. The
two states are most of the time associated with contrasting investors’ beliefs and future expectations
(e.g., Buraschi and Jiltsov, 2006), which will create key components of the network that we aim to
build in the next sections. While the equity index OTM puts are usually associated with hedging
and insurance against equity market drops (Han, 2008; Bondarenko, 2014), the equity index OTM
calls are more commonly associated with optimistic beliefs (Buraschi and Jiltsov, 2006).

Corresponding to an intuitive measure of good and bad events in the stock markets character-
ized by positive and negative returns, the payoff from the volatility contract can be written as in

Kilic and Shaliastovich (2018):

- _d
IVar, = e " EP [R2 I{r,11 > 0}] +e " EZ [RZ I{r, ., <0}]. (3)
]W‘a,r:r W::r;

Intuitively, good and bad components of the payoff add to the total, and the prices of its compo-
nents can be computed in a model-free way from a bundle of option prices upon a discretization
of formula (2). The total implied variance is the weighted sum of the option prices, and its com-
ponents are identified by claims that have payoffs related to the sign of the realized return. Hence,
good implied variance is identified by call options that pay off only in case the realized return is

positive, and bad implied variance is then identified by put options that pay off only if a negative
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return is realized. To obtain the model-free good and bad implied variance estimates H@J and
H@rz as a discretization of equation (2), we adopt call and put option prices interpolated around
the next 30 days, considering all available strikes for each individual stock options, as detailed in
section A in the Online Appendix .

The annualized square roots of the quantities computed for individual companies are then la-
beled as IVIX ™ and IVIX~ denoting individual, model-free good and bad implied volatility mea-
sures of the expected price fluctuations in the underlying asset’s call (put) options over the next
month, the pay off of which is related to the positive (negative) return. IVIX™ captures good fear
referring to future uncertainty about the pay off from call options being positive over the next
month, and IVIX™ captures bad fear referring to future uncertainty about the pay off from put op-
tions being negative over the next month. In addition, we will work with IVIX , which aggregates
the good and bad information.

The important characteristics of the network fear connectedness defined in the next section is
the predictive power of implied volatility from call and put options that is influenced by the com-
position of market investors, including speculators, as well as by the demand pressures motivated
by hedging or speculation trading activities. Lemmon and Ni (2014) found evidence of differences
in trading patterns, with individual stock options being mainly driven by unsophisticated investors
looking to speculate and index options dominated by hedging demands from sophisticated in-
vestors. Speculators may prefer using options for trading to obtain higher leverage (Gao and Lin,
2015), and they can contribute to reinforcing a financial crisis. In addition, demand behavior plays
important role in explaining the observed implied volatilities (Bollen and Whaley, 2004; Garleanu
et al., 2009). When option investors receive positive news, the volume of buyer-initiated call trades
and/or seller-initiated put trades increases, boosting the implied volatility of call options relative
to put options. When option investors receive negative news, the volume of seller initiated call
trades and/or buyer initiated put trades increases, which will inflate now the implied volatilities
from put options. Thus, the robustness of the network connectedness measure introduced in this

paper depends directly on the robustness of the options market. With the advancement of stock
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option markets globally, we can envisage that our measures will become valuable tools for central

banks and policy makers worldwide.

2.2 Data on U.S. Financial Institutions

We estimate the good and bad fears of investors about the major financial institutions representing
the financial network of the U.S. economy, namely, J.P. Morgan (JPM), Bank of America (BAC),
Wells Fargo (WFC), Citigroup (C), Goldman Sachs (GS), Morgan Stanley (MS), U.S. Bancorp
(USB), American Express (AXP), PNC Group (PNC) and Bank of New York Mellon (BK). Daily
option prices were collected from OptionMetrics®, while financial information and market prices
are collected from Bloomberg. The dataset ranges from 03-01-2000 to 29-12-2017, covering the
2008 crisis and the remarkable boom that occurred after the crisis. Our sample contains 4528 daily
observations for each series. Table A1 in the Online Appendix describes the characteristics of the
U.S. financial companies in our sample.

The time dynamics of implied volatility series is illustrated in Figure 1 for the Citigroup case.
The volatility spikes in alignment with the global financial crisis causing increased uncertainty.
High values can also be associated with Citigroup’s acquisition of European American Bank and
Banamex in mid-2001 and March 2012, when the Federal Reserve reported that Citigroup was one
of the few main banks that failed the stress tests. High values mean that investors show the highest

levels of fears about future fluctuations in prices connected to corresponding outcome.

Data  on  U.S. stock options are specifically collected from  IvyD-
BUS/v3.1/History/IVYOPPRCD and IvyDBUS/v3.1.1/History/IVYOPPRCD at ftp.ivydb.

com.
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Figure 1: Good and Bad Implied Volatilities of Citigroup
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Notes: The figure shows the aggregate IVIX (black bold), good IVIX* (gray dashed) and bad
IVIX™ (black dashed) for Citigroup. The NBER recession periods are highlighted in gray. The

selected period spans from 03-01-2000 to 29-12-2017 at a daily frequency.
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Table A2 in the Online Appendix further reports the descriptive statistics for the IVIX , IVIX™
, and IVIX™ of the ten main financial institutions. We identify Bank of America to show the
highest IVIX and IVIX™ average values, followed by Citigroup, while Morgan Stanley presents
the highest IVIX™ average value. On the opposite side, the volatility implied by option prices is
lowest for American Express, reaching the lowest minimum values.

The measured volatilities are strongly serially correlated, distributed asymmetrically with strong
positive skewness and excess kurtosis, and possibly nonstationary. An approximate normality con-
venient for further analysis is obtained by taking natural logarithms, and we keep in mind the de-
pendence when building an approximating model. While creating the network of fears in the next
section, we will assume that the dynamics come from shifts in the unconditional variances creating
nonstationarity. Similarly to (Staricd and Granger, 2005), this leads to a convenient approximation
of nonstationary data locally by stationary models.

The main drivers of the implied volatilities creating uncertainty in the markets are idiosyncratic
news such as merger and acquisitions deals, restructuring and other negotiations. The expectations
of investors also react strongly to macroeconomic events such as the dot-com bubble burst, the
Enron scandal, the 9/11 terrorist attack, the global financial crisis and the European sovereign debt
crisis. A mixture of idiosyncratic and systemic events is found to affect the financial stock implied
volatility through the options market, and these shocks then create the network that we aim to

measure in the next section.

3 Asymmetric Network Connectedness of Fears

Institutions are connected directly through counterparty risk, contractual obligations or other gen-
eral business relationships. High-frequency analysis of such networks requires a high-frequency
balance sheet and other information, which is generally unavailable. In contrast, option prices and
volatility measured in high frequencies reflect the decisions of many agents assessing risks from

the existing linkages. The pure market-based approach we use in contrast to other network tech-

11
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niques allows us to monitor the network on a daily frequency as well as to use its forward-looking
strength at the cost of minimal assumption.

Working with forward-looking information, we are naturally interested in knowing how a shock
to the expected volatility of a stock 7 will transmit to future expectations about the volatility of a
stock k. These will define weighted and directed networks. Aggregating this information can
provide a systemwide measure of forward-looking connectedness that will measure how strongly
investors’ expectations are interconnected.

Network connectedness working with causal linkages can be characterized well through vari-
ance decompositions from a vector autoregression approximation model (Diebold and Yilmaz,
2009, 2012). Variance decompositions provide useful information about how much of the future
variance of variable j is due to shocks in variable k. Aggregating variance decompositions yields a
simple way to measure how the system is interconnected. Diebold and Yilmaz (2014) argued that
variance decompositions are intimately linked to modern network theory and recently proposed
measures of various types of systemic risk, such as marginal expected shortfall (Acharya et al.,
2017) and Delta CoVaR (Adrian and Brunnermeier, 2016). Our analysis is also adjacent to that
of Song (2018), who developed technical conditions for a network to explain microfinancing de-
cision. Previous literature examined how shocks to volatility measured ex post create linkages in
the network. Employing implied volatility measures, we derive informatively different measures

of interconnectedness.*

4Since our connectedness measures are directly related to key measures of connectedness used
in the network literature, hence to systemic risk measures, this study also contributes to the sys-
temic risk literature. Fundamental information transmission from one bank to another has also
been considered as a source of banks’ connectedness. Systemic risk may also come from the inter-
action between asset commonality and funding maturity through an informational channel. This
systemic risk is higher, especially when bad information about banks’ future solvency arrives in the
economy and the asset structures are clustered (see Allen et al., 2012). All these market situations

can be better understood in a more general framework for banks’ information contagion based on

12
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To construct the asymmetric fear connectedness measures, we use the implied volatility indexes
computed for the main financial institutions in combination with connectedness measures based on
generalized variance decompositions of a vector autoregressive (VAR) approximation model due
to Diebold and Yilmaz (2012). In particular, we consider a covariance stationary /V-variate process

IVIX; = (IVIX],, ..., IVIXy,) att = 1,..., T described by the VAR model of order p as

IVIX; = &, IVIX]_ | + ®IVIX! , + ... + ®,IVIX;  + ¢, (4)

with ®,,..., ®, coefficient matrices, and €, being white noise with a (possibly nondiagonal) co-
variance matrix 3. In this model, each variable is regressed on its own p lags, as well as the p lags
of all of the other variables in the system; hence, the matrices of the coefficients contain complete
information about the connections between variables. It is useful to work with (N x N) matrix
lag-polynomial ®(L) = [Ixy — ®,L — ... — ®,LP] with I identity matrix, as the model can
be written concisely as ®(L)IVIX] = €;. Assuming that the roots of |®(z)| lie outside the unit
circle, the VAR process has the following vector moving average (i.e., MA(00)) representation:
IVIX] = ¥(L)e;, where W(L) matrix of infinite lag polynomials can be calculated recursively
from ®(L) = [¥(L)]~! and is key to understanding its dynamics. Since ¥(L) contains an infi-
nite number of lags, it must be approximated with the moving average coefficients W, calculated
at h = 1,..., H horizons. The connectedness measures rely on variance decompositions, which
are transformations of the ¥, and allow for the measurement of the contribution of shocks to the
system.

To construct connectedness measures of aggregate and decomposed good and bad fears, we
consider different vectors IVIX; € {IVIX,, IVIX; , IVIX; }. Since a shock to a variable in
the model does not necessarily appear alone, i.e., orthogonally to shocks to other variables, an
identification scheme is a crucial step in the calculation of variance decompositions. Standard

approaches relying on Cholesky factorization depend on the ordering of the variables and compli-

volatility since good or bad news in relation to banks influences banks’ stock volatility.

13
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cate the measures. The generalized identification proposed by Pesaran and Shin (1998) produces

variance decompositions that are invariant to ordering and can be written in the form®

ol — i 2o (T4Z) )"
D DN 751 JATF

; (&)

where W, is a (N x N) matrix of moving average coefficients at lag h defined above, and
Okk = 2. The Ofk denotes the contribution of the kth variable to the variance of forecast
error of the element j at horizon h. As the rows of the variance decomposition matrix 87 do not
necessarily sum to one, each entry is normalized by the row sum as Efk = ka / fo:l Hij Now,
the Zjvzl éfk = 1 for any % and the sum of all elements in 5H is equal to NV by construction.
Note that 5fk provides a pairwise measure of connectedness from j to k at horizon H. Variance
decompositions form a network adjacency matrix defining a weighted, directed network.

The network connectedness measure is then defined as the share of variance in the forecasts
contributed by errors other than own errors or as the ratio of the sum of the off-diagonal elements

to the sum of the entire matrix (Diebold and Yilmaz, 2012):

cH = 100-%- ST 6 (©6)
1<j#k<N
and hence, C* is the relative contribution to the forecast variances from the other variables in the
system.
Similarly to the network aggregate connectedness measure that infers systemwide connected-
ness, we can define measures that will reveal when an individual bank in the system is a volatility

transmitter or receiver. The directional connectedness that measures how much of each bank’s j

>(A); . denotes the jth row and kth column of matrix A denoted in bold. (A);. denotes the
full jth row; this is similar for the columns. > A, where A is a matrix that denotes the sum of all

elements of the matrix A.
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variance is due to other banks j # £ in the system is given by

1
Cjee =100+ Z ejk, @

defining the so-called FROM connectedness that can be precisely interpreted as from-degrees (often
called out-degrees in the network literature) associated with the nodes of the weighted directed
network represented by the variance decompositions matrix. Similarly, the contribution of asset j

to variances in other variables is computed as

Ch . —100- —. iv: (§H> )
e N : ki

and this is the so-called TO connectedness. Again, this can be precisely interpreted as to-degrees
(often called in-degrees in the network literature) associated with the nodes of the weighted di-
rected network represented by the variance decompositions matrix. These two measures show how
other assets contribute to the risk of asset j and how asset j contributes to the riskiness of oth-
ers. Further, a NET connectedness measure showing whether a bank is inducing more risk than

it receives from other banks in the system can be calculated as the difference of the directional

measures, CH, =CH —(CH

JNET e — Cj- One might also be interested in pairwise relations of risk that can

further be described by the PAIRWISE connectedness measure given by C = 100- - <§f = éﬁ) .
To contrast the network connectedness of fundamentally different beliefs revealed by IVIX™
and IVIX~ , we define asymmetric fear connectedness. Aggregate fear connectedness (C) and
good (C1) and bad (C™) fears in the system can be readily calculated by using appropriate IVIX,
IVIX" and IVIX™ measures. When C™ # C~, we have asymmetry in connectedness due to
different investors’ expectations, which we define as the measure of asymmetric fear connectedness

(AFC):
AFC=C"—-C". 9)

In other words, when AFC > 0, connectedness due to IVIX™ is greater than connectedness due
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to IVIX™ , and vice versa. To shed new light on the nature and sign of the transmitted or received
volatility for every financial institution in the system, we compute the directional NET as the dif-

ference between good TO and good FROM as Cjypr = C;“ ",. — C/._. and between bad TO and

bad FROM as C; g = C;,, — C;,_,. Finally, we compute the asymmetric directional NET as the

. + — o + —
difference between C; gy and C; ygr as AFCiner = Clypr — Cj et

3.1 Link to the Network Literature

The connectedness measures introduced above are intimately related to modern network theory.
Algebraically, the adjacency matrix capturing information about network linkages carries all infor-
mation about the network, and any sensible measure must be related to it. For example, a typical
metric used by the wide network literature that provides the user with information about the rela-
tive importance or influence of nodes and edges is network centrality. The literature is often also
interested in the density describing the proportion of direct ties in a network relative to the total
number of the ties. The most useful for our purposes are measures based on the node degree and
the closely related concept of network diameter that captures the number of links to other nodes.
The distribution shape of the node degrees is closely related to network behavior. As for the con-
nectedness of the network, the location of the degree distribution is key, and hence, the mean of the
degree distribution emerges as a benchmark measure of overall network connectedness. Closely
related to the idea of distance, the diameter of a network measuring the maximum distance between
any two nodes is another measure of network connectedness.

The variance decomposition matrix defining network adjacency matrix is then readily used
as a network connectedness that is intimately related to network node degrees and mean degree
(Diebold and Yilmaz, 2014). Networks defined by variance decompositions are however more
sophisticated than classical network structures. In a typical network, the adjacency matrix is filled
with zero and one entries, depending on the node being linked or not, respectively. In the above
notion, the variance decompositions can be viewed as a weighted link showing the strength of the

connection. In addition, the links are directed, meaning that the j to k link is not necessarily the
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same as the k to j link, and hence, the adjacency matrix is not symmetric, and so weighted, directed
versions of network connectedness statistics can be defined readily including degrees, degree dis-
tributions, distances and diameters. Thus, the total directional connectedness measures introduced
in the previous section are in-degrees and out-degrees (probability distributions of FROM or to de-
grees across nodes), and the total connectedness measure is simply the mean degree of the network.

Ultimately, the network connectedness measures based on variance decompositions are tightly
linked to and built upon the tradition of dynamic predictive modeling under misspecification pio-
neered by White (1996). At the same time, this framework shares similarities with the graphical
(network) models contributions focusing on causal linkages as pioneered by White and Chalak
(2009). To capture the causal linkages with the strongly dependent data, one needs to think about
more sophisticated tools; hence, the approach unified and conceptualized by Diebold and Yilmaz
(2014) seems appropriate. Using the network topology of good and bad fears later for forecasting,
we believe that variance decompositions as a sophisticated network connectedness measure will

be more useful than traditional measures due to the reasons discussed.

4 Fear Connectedness in the Financial Network

We begin the empirical analysis discussing how individual banks contribute to the aggregate fear

connectedness of the network, and we document the time dynamics of connectedness.

4.1 Directed Network Connectedness of Fear: Static Analysis

The static analysis of the weighted, directed network of fear for the ten main U.S. financial insti-

tutions is reported in Table 1.° The diagonal values quantify the impact of own shocks to expec-

®We use a forecast horizon of 12 days and a VAR order equal to four based on the information
criteria. For a dynamic version of the measures, we use a 200-day rolling window. We have also
examined the static analysis within a range of different VAR lags and forecast horizons, respec-

tively, such as p € {2,3,4,5},and h € {4,6, 10, 14}, together with different rolling window sizes.
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tations, while off-diagonal elements reveal how fear spreads from one bank to other banks in the
financial sector. The directional FROM connectedness measure documenting vulnerability of the
banks to receive shocks from others in the network ranges from 43.93% for Bank of America to
70.08% for Bank of New York Mellon, which is the highest receiver. The directional TO connect-
edness measuring the strength of banks transmitting shocks in the bottom row of the table ranges
from 19.92% for Bank of America to 108.85% for Goldman Sachs, the latter being identified as
the largest transmitter, which in line with the literature identifying Goldman Sachs as being sys-

tematically important using ex post measures (see Hautsch et al., 2014; Geraci and Gnabo, 2018).

The results do not change materially and are available from the authors upon request.
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Table 1: Static Fear Connectedness in the Financial Sector

JPM
BAC
WEC
CITI
GS
MS
USB
AXP
PNC
BK

TO
NET

IVIX Connectedness

JPM BAC WFC CITI GS MS USB AXP PNC BK

2.16 3.58 326 1036 946 8.69 6.63 206  6.77
4.03 3.04 3.28 8.20 705 567 499 1.65 5.98
6.93 1.78 461 11.11 637 7.19 5.63 5.66 6.26
5.23 2.09 3.44 8.92 720 569 544 233 494
6.34 225 4.81 5.54 1829 935 736 2.29 8.19
6.91 2.58 412  5.11  20.29 859 640 2.86 8.74
8.23 2.26 497 434 13.62 9.67 7.67 348 9.39
7.14 251 4.21 445 1265 1147 1042 3.02 8.37
5.82 1.34 4.93 3.11 8.69 753 6.85 4.22 7.57
7.19 290 425 421 1497 1450 1038 7.77 3.87
57.86 19.92 3738 3796 108.85 91.57 72.87 56.14 27.25 66.25
484 -2401 -18.19 -735 4440 2592 921 -8.13 -22.84 -3.82

FROM

53.01
43.93
55.58
45.32
64.44
65.65
63.66
64.28
50.10
70.08

TOTAL
57.61

Notes: The table contains a decomposition of forecast error variance computed for the aggregate IVIX

indexes for the ten main U.S. banks. Elements in the off-diagonal entries are the PAIRWISE directional

connectedness, while the diagonal elements (in gray) are the banks’ own variance. The off-diagonal

row and column sum to TO and FROM connectedness, respectively. The NET row at the bottom is the

difference between TO and FROM. The bottom-right element is the total connectedness index in the

system. The selected time period spans from 03-01-2000 to 29-12-2017.
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The PAIRWISE values in the off-diagonal entries indicate the directional connectedness be-
tween the corresponding companies. The highest PAIRWISE connectedness emerges from Goldman
Sachs to Morgan Stanley, with 20.29% of the Morgan Stanley’s future variation due to the shocks
from Goldman Sachs. The second-highest number is in the opposite direction, with 18.29% due
to the shocks from Morgan Stanley; hence, this pair seems to create the strongest bidirectional
connection. The positive values of the NET connectedness point to fear transmitters, while the
negative values identify fear receivers in the system, with Goldman Sachs (44.4%) and Morgan
Stanley (25.92%) being the main fear transmitters in the system. The total fear connectedness

being 57.61% documents a rather strongly connected network of fears in the financial system.

4.2 Directed Network Connectedness of Fear: Time Dynamics

With the dynamic evolution of the markets, we expect the network to also show strong time dy-

namics.
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Figure 2: Total Fear Connectedness Index
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Notes: This figure shows the total fear connectedness for the ten main financial institutions’ ag-
gregate IVIX indexes. The NBER recession periods are highlighted in gray. The selected period
spans from 03-01-2000 to 29-12-2017 at a daily frequency.
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Figure 2 illustrates how the total fear connectedness index spiked twice in the early 2000s due
to several specific pieces of news and M&A deals and to the burst of the dot-com bubble in March
2000. These events, in addition to others, such as the 9/11 terrorist attack and the Enron and MCI
WorldCom scandals, are found to have increased the total fear connectedness index at the end of
2001 from 45% to 75% in only one year. The index remained at high levels, close to 80%, for
a few years until it decreased in mid-2004. This period was followed by several smaller cycles
corresponding to the U.S. tightening its monetary policy and increases in long-term interest rates.
The total connectedness index rose again in February 2007 in alignment with the beginning of the
subprime crisis. After decreasing for few months, it jumped up in mid-2007, increasing by more
than 20% to levels near 80%. In the middle of the global financial crisis, the index spiked again
in accordance with the losses of Merrill Lynch and the collapse of Lehman Brothers in September
2008, documenting the increasing strength of the network of fears.

It is interesting to note that the connectedness of fears was almost gradually increasing from
2004 with few local peaks corresponding to the Great Financial Crisis and Eurozone sovereign debt
crisis (May 2010 and August 2011). We notice that the index level remained high thereafter, point-
ing to increased uncertainty, even during more tranquil times such as in periods after the global
financial crisis. Previous studies using historical volatility measures documented a high level of
connectedness after the global financial crisis and European sovereign debt crisis when looking at
firms within the U.S. financial sector (see Diebold and Yilmaz, 2015; Barunik and Kfrehlik, 2018).
We notice a peak in the fear connectedness after those events, with the average value being above
the precrisis range. This might be due to the fact that we are looking at the network of expecta-
tions about future volatility based on ex ante measures in contrast with the previous literature that
used ex post measures. The option trading activity (e.g., speculative activity) might also play a
role in increasing the forward-looking volatility connectedness within the financial system. Hence,
the dynamics of connectedness show that shocks to expectations about future uncertainty play an

increasingly important role in the financial network.
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S Asymmetric Fear Connectedness in the Financial Network

5.1 Asymmetric Fear Connectedness: Static Analysis

Moving to the network of good and bad fears, we first look at the unconditional analysis reported
in Table 2. We document weaker connections in both networks of good and bad fears, meaning
that shocks to expectations about uncertainty connected to positive and negative returns create
weaker networks. We find that Morgan Stanley is most vulnerable to shocks to both good fears
(46.84%) and bad fears (34.97%), while Goldman Sachs is found to be the largest transmitter
of good fears (61.02%) and bad fears (55.01%), and the pair shows the highest good and bad

PAIRWISE connectedness.
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Since Goldman Sachs plays a pivotal role in the financial sector, being an aggregate transmitter
regardless of the nature of the uncertainty, we also document interesting dynamics for other banks
switching roles from NET receiver to NET transmitter, or vice versa, confirming asymmetries in
the transmission mechanism. PNC Bank, Bank of America and Bank of New York Mellon are
found to be the weakest banks, given that they receive volatility from the system regardless of the

volatility measure.

5.2 Asymmetric Fear Connectedness: Time Dynamics

The evolution of good and bad fear network connectedness and asymmetric fear connectedness is
depicted in Figure 3, confirming that in the financial sector, good fears are more strongly connected
than bad fears for the entire period. However, in some specific periods, such as during the two

recessions and during the Eurozone sovereign debt crisis, bad fear connectedness also increased.
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Table 2: Asymmetric Fear Connectedness in the Financial Sector

IVIX* Connectedness

JPM BAC WFC CITI GS MS USB AXP PNC BK FROM
JPM 079 155 167 411 528 553 2.79 0.73 3.82 26.30
BAC 0.90 1.85 336 228 252 0.80 3.63 090 420 20.48
WFC 3.04 0.88 353 620 139 380 4.13 1.01 3.70 27.74
CITT 0.72 205 2.10 404 1.73 148 2.79 1.88 2.49 19.32
GS 250 1.09 478 4.05 12.18 595 5.31 1.15 4.63 41.68
MS 405 176 239 356 17.76 4.03 3.64 1.88 7.72 46.84
USB 472 039 400 294 7.15 2.66 5.59 2.53 6.13 36.16
AXP 270 170 390 283 7.81 479 598 1.95 4.96 36.65
PNC 261 092 277 378 392 380 490 4.05 4.77 31.57
BK 3.67 217 346 261 771 1008 6.52 5.98 2.90 45.14
TO 2496 11.81 26.85 2837 61.02 4446 39.02 3795 1497 4245 TOTAL
NET -133 -8.66 -0.88 9.05 19.33 -2.37 2.85 1.29 -16.59 -2.68 33.19

IVIX~ Connectedness

JPM BAC WFC CITI GS MS USB AXP PNC BK FROM
JPM 1.50 054 386 504 345 6.28 3.97 0.69 1.54 26.91
BAC 0.89 392 268 257 419 279 0.45 091 1.45 19.88
WFC 1.79 2.75 457 542 1.83 2.08 2.69 2.99 2.29 26.46
CITI 243 233 282 242 257 1.71 2.10 1.09 1.76 19.26
GS 143 091 340 2.80 10.39 4.13 3.01 0.58 1.48 28.16
MS 285 224 225 371 15.69 2.90 1.32 0.83 3.15 34.97
USB 654 189 169 307 643 3.33 4.05 0.68 1.20 28.94
AXP 313 024 320 496 858 230 6.58 1.80 1.84 32.67
PNC 257 148 275 1.61 477 094 132 2.49 1.28 19.27
BK 1.23 260 379 361 4.04 579 147 1.82 1.27 25.67
TO 2292 1599 2437 3092 55.01 3484 2929 2194 10.87 16.03 TOTAL
NET -398 -3.89 -2.08 11.65 26.84 -0.12 035 -10.72 -8.39 -9.64 26.22

Notes: The table contains the adjacency matrix of the good and bad fear networks as forecast error

variance decompositions computed for the IVIX* andIVIX~ for the ten main U.S. banks. The el-

ements in the off-diagonal entries are the PAIRWISE directional connectedness, while the diagonal

elements (in gray) are banks’ own variance. The off-diagonal row and column sum to TO and FROM

directional connectedness, respectively. The NET row at the bottom is the difference between TO and

FROM. The bottom-right element is the total connectedness index in the system. The selected time

period spans from 03-01-2000 to 29-12-2017.
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Figure 3: Fear Connectedness Indexes and AFC
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Notes: The upper plot shows the comparison between aggregate (C), good (C*) and bad (C~) con-

nectedness measures plotted by a black solid line, gray dashed line and black dotted line, respec-

tively. The bottom plot shows the asymmetric fear connectedness (AFC). The NBER recession

periods are highlighted in gray. The selected period spans from 03-01-2000 to 29-12-2017 at a

daily frequency.
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Connectedness due to shocks in good fears spike before the 2000-2001 dot-com bubble, drag-
ging up the aggregate connectedness, and dropping quickly after the bubble burst. Shocks to bad
fears create less strong connections in comparison to shocks to good fears before a recession (al-
most 50% difference in 2002-2003), while they play an equal role during the recession.

With a rather high correlation of the good and bad connectedness measures of 90%, it is inter-
esting to note that both series strongly co-move and tend to deviate from the aggregate connect-
edness in some periods. The peak in bad connectedness during 2005 can be attributed to extreme
uncertainty about a possible U.S. housing bubble burst, reflected in the stronger connections of ex-
pectations of put option buyers. More interestingly, both measures increased well before the crisis
during 2007, when their values almost doubled. A similar situation occurred at the beginning of
2011 in accordance with the Eurozone sovereign debt crisis, while the last increase in 2014-2015
is followed by the decreasing strength of the connections.

The connectedness of bad fears is stronger than that of good fears only during 2005, 2006 and
2011. In these periods, shocks to the expectations of put option buyers create a stronger network.
Put options reflect investors’ expectations about uncertainty connected to decreasing prices and
future financial and economic downturns since they are traded as insurance assets (e.g., Bollen and
Whaley, 2004; Ang et al., 2006; Bondarenko, 2014). Hence, the connectedness of bad fears (C™)

appears to be a useful monitoring tool candidate, and we aim to explore it in further sections.

5.3 Case Study: Goldman Sachs

In addition to the time evolution of connectedness, it is also interesting to study the role of insti-
tutions in the network. We discuss the dynamics of a representative bank, Goldman Sachs, which

is the main transmitter of fears in the system.’” Figure 4 illustrates the measures denoting the NET

7A detailed ranking of the institutions as NET good or NET bad fear transmitters or receivers
is presented in section B of the Online Appendix . The Online Appendix also contains similar
case studies of other financial institutions found to be the top NET aggregate fear transmitters and

receivers in our previous analysis (section C). The same notation will apply for these banks, and
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good fear as Cfig ygr and the NET bad fear as Cg; SNET-

In January 2000, Goldman Sachs and Lehman Brothers were the lead managers of the first
internet bond offering for the World Bank, which is found to correspond to one of the highest
levels of C, sner received by Goldman Sachs. When Goldman Sachs purchased Spear, Leeds and
Kellogg in September 2000 for more than $6 billion, significant good and bad fear was transmitted
into the system. In 2003, Goldman Sachs took an almost 50% stake in a joint venture, together
with JBWere, which resulted in a spike of Cfig g1 transmitted, together with an increase in ab-
sorbed Cig npr- We find Cig ngr transmission during the financial crisis, especially in 2007, when
Goldman Sachs’ traders bet against the mortgage market, which exhibited an alarming pessimistic

signal to the U.S. financial sector.

major specific company events, along with systematic events, will be reported for the selected time

period.

28

d-a|011B/}S8.4/NPa IWI08Ip//:dNY Woly papeojumoq

0 € 1S2U/ZEELB8L/E00L0 € 1S84/ZILL 0L/1OP/IP

1202 Ae|\ gz uo Jasn xassng jo Aysianiun Aq jpd-gool



Review of Economics and Statistics Just Accepted MS.
https: //doi.org/10.1162/rest _a_01003

© 2020 by the President and Fellows of Harvard College and the
Massachusetts Institute of Technology

Figure 4: Good and Bad Net Fear Connectedness — Goldman Sachs
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Notes: The figure shows the NET good fear connectedness, cgsym, and NET bad fear connected-

ness, Cg S.NET for Goldman Sachs, together with the AFC, computed as the difference between the

two. The main specific company events during the time period are reported as follows: [A] First

Internet Bond Offering [B] Spear, Leeds and Kellogg Acquisitions [C] Joint Venture with JBWere

[D] Short-Selling of Subprime Mortgage-Backed Securities [E] $10 Bn. Preferred Stock from

TARP [F] TARP Repayment [G] JBWere Full Control [H] Global Alpha Shutdown [I] $17 Bn.

Bond Offering by Apple Inc. The NBER recession periods are highlighted in gray. The selected

period spans from 03-01-2000 to 29-12-2017 at a daily frequency.
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In October 2008, Goldman Sachs received a $10-billion preferred stock investment from the
U.S. Treasury as part of the Troubled Asset Relief Program (TARP). This bailout intervention ap-
peared to increase the instability of the U.S. financial sector, resulting in an increase in transmitted

asxer- 10 June 2009, Goldman Sachs repaid the U.S. TARP investment, resulting in a drop in
the transmitted NET Cgg g1 but also in an increase in the received C/ig ygr as a sign of recovery.
One of the highest peaks of C&LS’NET received is found in April 2013, when Goldman Sachs, to-
gether with Deutsche Bank, led a $17 billion bond offering by Apple Inc. During the same year,
Goldman Sachs led Twitter’s IPO. Both IPOs resulted in a stable C/, snet reception and a C g ngr
transmission from that time onward.

Note that CZg ygr measures are computed as a difference between good TO and FROM (trans-
mitters and receivers of good fear), implying that NET measures reflect not only systematic events
related to the bank but also possibly other events with respect to others in the system. For this
reason we also study the predictive power of the measures with respect to banks’ performance
and show the usefulness of the decomposed NET measures from a microeconomic point of view.?

The next section focuses on the predictive ability of the network connectedness measures from a

macroeconomic point of view.

6 Predictive Power of Fear Connectedness Measures

Our main interest in building the ex ante network connectedness measures is to see if they are help-
ful in predicting future macroeconomic conditions, as well as the potential increase in economic
uncertainty. Our hypothesis is that forward-looking connectedness measures may result in an early
warning tool to forecast declines in the U.S. macroeconomic conditions or increases in financial
and economic uncertainty. We select the following monthly indicators, which reflect the macroe-
conomic and economic conditions, such as the Aruoba-Diebold-Scotti (ADS) Business Condition

Index (Aruoba et al., 2009), the Chicago FED National Activity Index, CFNAI, the Kansas City

8Due to page constraints, we relegate this analysis to section D of the Online Appendix .
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Financial Stress Index (KCFSI) (see Hakkio et al., 2009), the NBER recession period dummy vari-
able and the U.S. Industrial Production (IP). As uncertainty proxies, we select the Economic Policy
Uncertainty (EPU) index (see Baker et al., 2016), the GeoPolitical Risk (GPR) index by Caldara
and Iacoviello (2018), the Economic Uncertainty Index (EUI) by Bali et al. (2014), the Chicago
Board of Exchange (CBOE) VIX, and the average conditional volatility based on GARCH(1,1) of
some U.S. macroeconomic variables (AVGVOL). They are collected according to their available
sample at a monthly frequency.’

The connectedness measures for this exercise are computed every month by aggregating three
months of implied volatility observations (60 trading days) with regard to the indexes, IVIX ,
IVIX~ and IVIX™T , for every financial institution.!® The quarterly connectedness measures are
rolled every month to produce monthly C;, C;” and C;” observations that reflect the previous quarter.
The monthly macroeconomic and uncertainty indicators are taken as the average of the previous
quarter, and recession is marked binary as 1 when the average obtains values > 0.5 and 0 when the
average obtains values < 0.5. This process allows us to match the information from the fear con-
nectedness indexes with the macro and uncertainty indicators, thus creating monthly observations
that reflect the information in the previous quarter.

Our main hypothesis is that the forward-looking measures of the network are informative for
the future of both economic conditions and economic uncertainty. Further, the decomposed con-
nectedness measures C; and C;” may carry additional information compared to the aggregate fear
index C;. To test these hypotheses, we investigate both the in-sample and out-of-sample predictive

power of the fear networks with the main focus being on the latter.

A more detailed description of the selected variables and their sources is provided in section

El in the Online Appendix .
For the main analysis, we compute the connectedness measures with a number of VAR lags

equal to 1. Different VAR lags choice does not materially change our results. The results are

available from the authors upon request.

31

d-a|011B/}S8.4/NPa IWI08Ip//:dNY Woly papeojumoq

0 € 1S2U/ZEELB8L/E00L0 € 1S84/ZILL 0L/1OP/IP

1202 Ae|\ gz uo Jasn xassng jo Aysianiun Aq jpd-gool



Review of Economics and Statistics Just Accepted MS.
https: //doi.org/10.1162/rest _a_01003

© 2020 by the President and Fellows of Harvard College and the
Massachusetts Institute of Technology

We run the following predictive equations:

11

Xeoh = Bo+ BCi+ Y wXer + € (10)
k=0
11
Xesn = Po+B7C +B7C +> Xk + e, (1)
k=0

where X € {ADS, CFNAI, KCSFI, NBER, IP, EPU, GPR, EUI, VIX, AVGVOL} is one of the
macroeconomic and economic uncertainty indicators for h = 1, ..., 12-step-ahead horizons up to
one year. The traditional aggregate variables used as indicators are highly persistent with high
first-order autocorrelations, alleviating concerns about the estimates. Hence, we add the lags of
the indicators to control for persistence. We are mainly interested in finding if the networks are
informative for the h = 1,..., 12-step predictions; we include up to 12 lags of the dependent
variables in the predictive regressions and show whether or not our connectedness measures are still
found to be significant, even after taking into account these control variables. A similar approach
has been taken by Allen et al. (2012) and Almeida et al. (2017); hence, the choice of the regressions
makes our analysis directly comparable to the literature. For the NBER recession dichotomous
variable, a probit regression is fitted, while for the other variables, least squares regressions are
estimated. Bootstrapped standard errors are reported in the tables with respect to the in-sample
analysis.!!

The impact of the fear connectedness of the financial sector on macroeconomic conditions and

uncertainty measures in terms of 3, 3~ and S coefficients is summarized in section E2 in the On-

""We are aware of the possible issue concerning “generated” regressors in our in-sample analy-
sis, requiring adjustments to the standard errors. The network measure dimension /V is relatively
small, and the regularity conditions of Bai and Ng (2006) may not hold since the least squares
estimates are /7' consistent and asymptotically normal if \/T/—N — 0. Therefore, we estimate
our standard errors in the in-sample analysis using a bootstrapping approach (see Gospodinov and

Ng, 2013).
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line Appendix for the sake of space. With respect to the in-sample analysis, our findings indicate
that even after controlling for 12 lags of the endogenous variables, the 3~ and T coefficients of the
decomposed connectedness measures are found to be significantly different from zero in a number
of cases, showing greater strength in comparison to the aggregate connectedness captured by [3.
We observe that the connectedness of both bad (C; ) and good (C;") fear in financial sector has ad-
ditional explanatory power for ADS Business Condition Index, CFNAI Index of National Activity
and U.S. Industrial Production index approximately a quarter to a year in advance. In addition, the
connectedness of bad fears can signal a recession, providing an early-warning alarm a few months
before the aggregate C;, emphasizing the importance of investors’ expectations contained in the
put options. We also perform the same predictive exercise by grouping the information contained
in C; and C;" as a ratio between the two. We still achieve similar findings with a more compact
and parsimonious equation. We report the set of in-sample predictability results in section E2 and
E3 in the Online Appendix . In the next subsection, we focus on the usefulness of our networks for

out-of-sample predictability.

6.1 Out-of-Sample Prediction of Macroeconomic Conditions and Uncertainty

A natural way to assess the out-of-sample predictability power of our networks is to compare the
full models, including the connectedness measures with restricted models, where 5 = = = 8+ =
0. In case the network measures are informative about predictions, we should document significant
improvement of the out-of-sample errors from the full model in comparison to the restricted model
accompanied by the nonzero in-sample estimates of these coefficients.

Keeping the precrisis period of 2000-2007 as the in-sample period, we estimate the coefficients
of the models and use the rest of the sample for out-of-sample comparison of the forecast errors.
The choice of the predictive regressions is mainly driven by parsimony. We compare their out-of-
sample performance with a pure autoregressive structure, with the aim of checking whether or not

the addition of our network measures increase predictability.'?

12As a robustness check, we have also checked the performance of our models compared to a
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Since we are comparing nested models, we use the mean square forecast error (MSFE)-adjusted
statistics of Clark and West (2007) for comparing the nested model forecasts, which performs well
in finite samples. The (MSFE)-adjusted statistics test the null hypothesis that the restricted model
average MSFE is less than or equal to the full model MSFE against the one-sided (upper-tail)
alternative hypothesis that the benchmark restricted model error is greater than the error from full
model. This corresponds to the null hypothesis, that information contained in the network does not

improve forecasts in terms of errors.

simple historical average (rolled every quarter as to match the information content of our network

measures). The results are reported in section E4 of the Online Appendix .
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Table 3: Out-of-Sample Macroeconomic and Uncertainty Indicator Prediction

ADS CFNAI KCSFI NBER IP
Horizon Predictor MSFE adj. MSFE adj. MSFE adj. MSFE adj. MSFE adj.
1 C 0.69 1.90* 0.88 1.25 0.49
C, &Cf 0.50 2.05%%* 0.60 2.45%%* 1.30%*
3 C 0.89 1.93%* 1.20 1.27* 0.20
C, &C; 1.09 2277k 0.55 1.59%* 1.26%*
6 C, 0.49 2.03%%* 0.84 1.31 0.22
C, &Cf 0.50 2.32%%% 0.87 -0.58 0.95
12 C 0.56 1.81%* 0.52 1.52% 0.38
C, &Cf 0.38 2.14%% 0.30 1.26%* 2.03%*
EPU GPR EUI VIX AVGVOL
Forecast Predictor MSEFE adj. MSEFE ad;. MSEFE adj. MSFE ad;. MSEFE adj.
1 Cy 2.778%* 3.29%%* 1.64%* 3.03#%* -1.32
C, &Cf 2.64%%* 2.82%*% 1.35% 3.09%#** -1.28
3 C 3. 15%#* 327w 1.63* 3201 -1.31
C, &Cf 3.06%** 2.98%*%* 1.71%% 2.69%%* -0.78
6 C 3.03##* 3.25% %% 1.52% 3.08##* -1.37
C, &Cf 2.52%%% 277 1.65%* 277k -1.09
12 C 2.65%* 3.09%#%* 1.61°%* 2.86%** -1.35
C, &Cf 2.09%%* 2.947%*% 1.87%* 2.347%*% -1.46

Notes: The table presents the Clark and West (2007) mean square forecast error (MSFE)-adjusted
statistic comparing the out-of-sample predictions from the full models with our connectedness
measures and restricted model with 8 = 8~ = 3% = 0. The in-sample period is between 2000-
2007, while the rest is considered as the out-of-sample evaluation forecast period. The results
are reported for the forecast horizons € {1, 3,6, 12}. Rejections of the null hypothesis, that the
full model containing network information C; or C; and C,” does not improve the predictions, are
reported as x, xx, and x * *, for the 10%, 5%, and 1% significance levels, respectively.

35

d-a|011B/}S8.4/NPa IWI08Ip//:dNY Woly papeojumoq

0 € 1S2U/ZEELB8L/E00L0 € 1S84/ZILL 0L/1OP/IP

1202 Ae|\ gz uo Jasn xassng jo Aysianiun Aq jpd-gool



Review of Economics and Statistics Just Accepted MS.
https: //doi.org/10.1162/rest _a_01003

© 2020 by the President and Fellows of Harvard College and the
Massachusetts Institute of Technology

Table 3 reports the out-of-sample results. Assessing the predictability of economic conditions,
the full predictive regression with aggregate network connectedness yields significantly lower fore-
cast errors for CFNALI at all forecast horizons and the indicator of NBER recession for 3 and 12
horizons. When both good and bad networks are added to the predictive regression, the statistics
for the CFNAI and NBER recession errors improve, and we also improve our forecasts of indus-
trial production. Looking at uncertainty indicators, we find that network connectedness improves
the predictions of all uncertainty indicators across all forecast horizons significantly, with the only
exception being macroeconomic average volatility.

Overall, both the in-sample and out-of-sample findings lead us to the conclusion that the infor-
mation contained in the connectedness indexes, especially when decomposed, includes predictive
information about a number of indicators of economic conditions and uncertainty, showing the

usefulness of the forward-looking measures we have developed.

7 Conclusion

The asymmetric network connectedness measures of fears were constructed to study the transmis-
sion of different shocks on fears extracted from the two sides of the stock options market in the
U.S. financial network, as represented by the ten main U.S. financial institutions. The decomposed
connectedness measures provide valuable forward-looking information, reflecting future investors’
expectations about uncertainty.

Financial institutions play different roles as good/bad fear transmitters/receivers. From a sys-
temic risk point of view, our new methodology provides a richer and more detailed picture of bank
networks. For instance, we identify banks that are predominantly receivers of fear as well as those
transmitting fear in the financial system. Being able to identify the more systemically important fi-
nancial institutions can be helpful for preventing the spread of volatility and risk within the system,
preparing financial institutions and policy makers to implement prudent operations in advance.

Having an ex ante monitoring tool for systemic risk is particularly useful for financial stability
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and market supervision. In addition, the asymmetric connectedness measures play an important
role in signaling changes in future macroeconomic activity or uncertainty indicators. Our empirical
analysis points out that there is significant predictive information in the good and bad fear network
connectedness related to future macroeconomic activity or uncertainty, providing better predictive

tools than the aggregate network.
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