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Abstract

Extreme events such as heat waves and cold spells, droughts, heavy rain, and
storms are particularly challenging to predict accurately due to their rarity and
chaotic nature, and because of model limitations. However, recent studies have
shown that there might be systemic predictability that is not being leveraged,
whose exploitation could meet the need for reliable predictions of aggregated
extreme weather measures on timescales from weeks to decades ahead.
Recently, numerous studies have been devoted to the use of artificial intelli-
gence (Al) to study predictability and make climate predictions. Al techniques
have shown great potential to improve the prediction of extreme events and
uncover their links to large-scale and local drivers. Machine and deep learning
have been explored to enhance prediction, while causal discovery and explain-
able AI have been tested to improve our understanding of the processes under-
lying predictability. Hybrid predictions combining AI, which can reveal
unknown spatiotemporal connections from data, with climate models that pro-
vide the theoretical foundation and interpretability of the physical world, have
shown that improving prediction skills of extremes on climate-relevant time-
scales is possible. However, numerous challenges persist in various aspects,
including data curation, model uncertainty, generalizability, reproducibility of
methods, and workflows. This review aims at overviewing achievements and
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challenges in the use of Al techniques to improve the prediction of extremes at
the subseasonal to decadal timescale. A few best practices are identified to
increase trust in these novel techniques, and future perspectives are envisaged
for further scientific development.

This article is categorized under:
Climate Models and Modeling > Knowledge Generation with Models
The Social Status of Climate Change Knowledge > Climate Science and
Decision Making

KEYWORDS

artificial intelligence, climate extreme events, climate forecasting, hybrid modeling,
subseasonal to decadal

1 | INTRODUCTION

Weather and climate extremes strongly affect many aspects of our society and the natural environment. Being an intrin-

sic part of a changing climate, there is extensive evidence that the probability and intensity of extreme events have

increased and will continue to do so in a warming world (AghaKouchak et al., 2020; Alexander et al., 2006; Orlowsky &

Seneviratne, 2012). Therefore, policy-makers and stakeholders urgently need reliable predictions of occurrence proba-

bilities or other aggregated measures of extreme weather on timescales from days to decades. However, the predictive

skill of extreme events remains limited, despite recent advancements in weather and climate prediction systems.
Challenges are multiple:

+ The anthropogenic climate forcing has accelerated since the beginning of the 21st century, mainly due to growing
global economy and reduced absorbing efficiency of land and ocean CO, sinks (Canadell et al., 2007). Studies based
on an older attribution period frequently underestimate the effect of global warming on the probability of unprece-
dented recent extremes, reflecting the difference between frequencies during the attribution period and out-of-sample
verification period (Diffenbaugh, 2020).

« The physical processes driving the occurrence of extreme events differ among timescales, posing unique research
questions, and requiring distinct definitions of the event to understand the underlying mechanisms.

« The number of past extreme events is intrinsically small and many may be overlooked due to scarcity of the observa-
tion availability (Seneviratne et al., 2021). Therefore, ensembles of dynamical models are often entrusted with the
detection and attribution of their drivers, with possible misinterpretations caused by model limitations.

» Poor representation of key processes and feedback mechanisms in state-of-the-art numerical climate models,
combined with uncertainties in the initial state, complicates predictions in a complex, and chaotic system like the
atmosphere (Faranda et al., 2017).

To face these challenges, the international scientific community has made important steps in the last two decades. On
the one hand, the World Climate Research Programme (WCRP) has launched initiatives on near-term climate predic-
tion within the new-born Earth System Modeling core project (https://www.wcrp-climate.org/esmo-overview), like the
Lighthouse activity on Explaining and Predicting Earth System Change (EPESC; Findell et al., 2021; see https://www.
wecrp-climate.org/epesc). These initiatives aim at developing numerical experiments for subseasonal-to-interdecadal
variability, predictability, and predictions, and at delivering, a quantitative understanding of the changes spanning the
Earth system through process-based detection and attribution.

Additionally, significant advancements in Earth observation technologies have enhanced the accuracy and scope of
collected data (Board, 2019; Guo et al., 2015; Zhang et al., 2022). The launch of the EU Copernicus program, the world's
most ambitious program on Earth Observation, the deployment of new satellite systems and sensors (e.g., MODIS,
Sentinel) providing high-resolution images of the Earth's surface, and an increasing collaboration between regional
space agencies have boosted available information.
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This era of “big data” has, in turn, fueled the application of artificial intelligence (AI) in many domains of Earth sci-
ence (Boukabara et al., 2021; Huntingford et al., 2019; Irrgang et al., 2021; Reichstein et al., 2019; Sun et al., 2022). Al
here refers to any methodology, including machine learning (ML) and deep learning (DL), in which machines emulate
human intelligence to solve tasks based on available data. Al algorithms can learn nonlinear relationships between
input and output or to extract spatial and temporal patterns from massive datasets, without prior knowledge of the
underlying Earth system processes and dynamics. This makes Al particularly useful for applications lacking have a
complete theory. For instance, Al can explore subtle or hidden linkages among Earth system's variables, to uncover rel-
evant processes not yet implemented in physically based models. Additional benefits include AI's flexibility to employ a
wider range of input variables, such as novel remote sensing observations, as opposed to physics-based models that use
traditionally assumed correlated input variables. Al can thus help exploit the full potential of big data, leading to new
insights into Earth system processes that can inform model development and evaluation.

Progress in Al-based forecasting on weather timescales, that is, less than 10 days, has been remarkable in the last
few years. In parallel with the rapid rise of Al, forecasting institutes worldwide and Big Tech companies have seized
upon the opportunity to improve weather forecasts, gaining skills comparable to that of state-of-the-art dynamical pre-
dictions (Bi et al., 2023; Keisler, 2022; Lam et al., 2022; Pathak et al., 2022), even for unprecedented extreme events
(Pasche et al., 2024). Recently, a cascade ML system has surpassed the ECMWF high-resolution forecast on a 15-day
lead time (Chen et al., 2023).

TABLE 1 List of acronyms often used in this article.

Acronym Extended name
Climate AMV Atlantic multidecadal variability

ENSO El Nifio southern oscillation

MJO Madden Julian oscillation

PDO Pacific decadal oscillation

QBO Quasi-Biennial oscillation

S2D Subseasonal to decadal

S28 Subseasonal to seasonal

SPI Standardized precipitation index

SSW Sudden stratospheric warming
Algorithms ANN Artificial neural network

CNN Convolutional neural network

ELM Extreme learning machine

GAN Generative adversarial model

LSTM Long short-term memory

FS Feature selection

RF Random forest

SVR Support vector regression

XAI eXplainable artificial intelligence

XGBoost eXtreme gradient boosting
Metrics BSS Brier skill score

CSI Critical score index

MAE Mean absolute value

MCC Matthews correlation coefficient

ROC Relative operating characteristics

RMSE Root mean square error

RPSS Ranked probability skill score
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Compared to the short timescales, progress on the subseasonal to decadal (S2D) timescale has been less striking. A
fundamental challenge is the limited amount of independent training data, roughly one or two orders of magnitude
smaller than for weather timescales. In fact, weather predictions may target individual extreme events, while climate
prediction can only aggregate events over time (Meehl et al., 2021), making the number of past observational samples
inevitably smaller for climate predictions. This has hampered the development of long-lead forecasts of extremes like
drought and warm spells, which likely have some predictability at the S2D scale. The predictability of the climate sys-
tem beyond the deterministic timescale may be greater than current CMIP6 climate models suggest (Scaife &
Smith, 2018; Smith et al., 2019). In fact, an increasing number of articles has been published since the “S2S reboot”
opinion paper (Cohen et al., 2019), that claimed that ML techniques developed in computer science could increase the
accuracy of predictions at subseasonal to seasonal (S2S) scale.

So far, the development of Al methods for the prediction of extreme events has been overlooked, despite their criti-
cal applications and usefulness in real life (Watson, 2022). A recent review (Salcedo-Sanz et al., 2024) addressed the
problem of Al for extreme events in terms of attribution, characterization, and prediction, with detailed information on
applicable algorithms. Olivetti and Messori (2024) have recently published a perspective paper on the role of DL in
weather predictions.

The present survey explores Al's potential to improve the prediction of extremes at the S2D timescale, and to reveal
their links to large-scale and local drivers. By reviewing recent literature on Al applications for climate predictions of
extreme events and the prospects brought by the combination of empirical and dynamical methods, it discusses the
challenges of the data-driven approach and future perspectives, providing climate scientists with a state-of-the-art
framework available for rigorous future applications.

Given the frequent appeal to acronyms for climate modes of variability and Al algorithms, we summarize and
define those recurrently used in this article in Table 1.

2 | PREDICTION AND PREDICTABILITY OF EXTREME EVENTS AT
SEASONAL TO DECADAL TIMESCALES

2.1 | Definitions of extreme events and their prediction beyond the weather timescale

An event is generally considered extreme if the value of a variable exceeds (or lies below) a given threshold, which can
be defined in different ways to focus on specific aspects of the extremes and meet application needs. For example, one
definition counts the number of days where temperature, precipitation, etc. exceeds a relative threshold, such as the
daily 90th or 99th percentile over a reference period. This can occur at any time of the year, with different seasonal
impacts. It is also possible to count events that exceed an absolute threshold, like 35°C, or 50 mm/h of rain, focusing on
specific impacts such as health or flood risk. These definitions are standardized in Climpact (https://climpact-sci.org/
indices/), a widely used set of indices for identifying and comparing extreme events.

More complex definitions of extremes are based on Extreme Value Theory (EVT; Coles et al., 2001), which differs
from methods considering only values exceeding a certain threshold in aiming at fitting extreme values into statistical
distributions. The Generalized Pareto Distribution (GPD) and the Generalized Extreme Value (GEV) distribution are
the main families that provide information about the probability density function of the extreme values. Both downsize
the original time-series to only select extreme data-points. GPD relies on the Peak Over Threshold approach, selecting
points exceeding a high threshold as extremes (e.g., Roth et al., 2014; Yiou et al., 2008), while GEV uses the Block Max-
ima approach, which divides data into temporal blocks (e.g., months or years) to obtain the maximum of each block
(e.g., Ben Alaya et al., 2020; Russell & Huang, 2021). A typical application of EVT is to compute return levels of a mete-
orological events like high precipitation, wind-speed, and temperatures (e.g., Ban et al., 2020; Parey et al., 2019; Zahid
et al., 2017).

Extreme weather events development depends on a favorable initial state, the presence of large-scale drivers, posi-
tive feedback, and stochastic processes (Sillmann et al., 2017). What marks the distinction between a climate prediction
and a weather prediction of these events is the timescale: while specific weather predictions can be made up to 10-
15 days in advance, weather as such becomes deterministically unpredictable beyond this time scale (Lorenz, 1969,
1982). Few days ahead of the occurrence of an extreme weather event, it is possible to make predictions of its occur-
rence and amplitude, with considerable detail about its location, onset, and duration, if the local and remote processes
leading to its generation are properly initialized and well predicted (Domeisen et al., 2023). Deterministic forecasts can
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be made up to 10 days ahead for specific extremes linked with long-lasting atmospheric patterns (e.g., heatwaves; Fra-
gkoulidis et al., 2018).

Climate predictions target longer forecast times (seasons, years, or decades) and are necessarily probabilistic,
predicting tendencies of the climate system rather than individual events (Meehl et al., 2021). Beyond the deterministic
predictability limit, forecasts include probability distributions of the intensity and duration of extremes (Domeisen
et al., 2022), temporal propensity of their occurrence (Prodhomme et al., 2022), or change in their frequency (Delgado-
Torres et al., 2023). These characteristics are those potentially captured by a climate prediction of extremes (Figure 1):
therefore, in this review, a climate extreme is defined as a temporal aggregation (from weeks to several years) of specific
characteristics of an extreme event, like frequency, intensity, and duration. Deterministic weather forecasts will not be
discussed since the scientific questions and the approaches to fulfill them can differ.

Verifying predictions of climate extremes at the S2D scale requires metrics beyond the classical anomaly correlation
coefficient or root mean squared error (ACC and RMSE, respectively; Wilks, 2011), which may fail to depict the com-
plexity of the phenomena by only considering the “predictable signal” (i.e., the ensemble mean; Kharin &
Zwiers, 2002).

Rarity of sample events introduces sampling uncertainty in verification statistics (Casati et al., 2008). By definition,
a climate extreme does not happen frequently, and correctly forecasting that an extreme will not occur is often consid-
ered a success. On the other hand, a correct forecast of nonoccurrence is easier to achieve than a forecast of occurrence
(Jolliffe & Stephenson, 2012), and this should be accounted for in categorical scores. For instance, the Matthews correla-
tion coefficient (MCC; Matthews, 1975) produces a high score only if the prediction is good in all the four confusion
matrix categories, accounting for the imbalance between class sizes. The critical score index (CSI) is independent of the
number of correct forecasts of nonevents, therefore it has often been used for this task (Schaefer, 1990). A different but
related measure of extreme forecast quality is discrimination, visualized by the area below the relative operating charac-
teristic (ROC; Mason & Graham, 2002), whose associated score indicates the forecast's ability to correctly anticipate the

Y = f ( Xpreds, 0 )

D
=)
=)
 —|
| se— |

Intensity Propensity

© |/

o
c
3 Neural Network
| )
Frequency  Magntitude! 7 e s
o Bayesian Inference
Trend Others | Others

FIGURE 1 Schematic representation of the Al-based climate prediction function. Y represents the predictand or target, that is a
measure of certain aspects characterizing the extremes of interest (e.g., intensity, frequency, etc.). Xpreds are the predictors, such as modes of
variability, or variables describing the state of an Earth System component that affects the troposphere, where the extreme takes place
(illustrated as the circle at the center of the figure). These predictors act on the troposphere at different timescales: Sub-days to several days
for meteorological drivers (light blue), weeks to ~2 months for land surface drivers (green), weeks to multi-years for stratospheric drivers
(gray), months to decades for ocean drivers (dark blue). 6 represents the parameters of the Al algorithm used to train the model (f).
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occurrence or non-occurrence of a predefined event. Reliability and resolution are assessed by metrics like the Brier
and the ranked probability skill scores (BSS; Brier, 1950; RPSS, Epstein, 1969), that use the entire forecast ensemble to
predict the likelihood of an aggregated period (e.g., a season or many years) exceeding a certain extreme threshold
(e.g., Delgado-Torres et al., 2023; Torralba et al., 2024). A shortcoming of categorical metrics is that rarity can lead to
small or zero counts of extremes, and statistical methods to deal with such sparseness may not be always effective
(Agresti, 2002).

The recent adoption of Al for extreme predictions has made common metrics often insufficient for human interpre-
tation of results. Climate scientists generally use ML models as black boxes with no understanding of the model learn-
ing process and the justifications behind its decisions, making interpretability an important passage between model
verification and the decision based on model's prediction. The interpretability tool mainly used in climate science is
SHAP (SHapley Additive exPlanations; Lundberg & Lee, 2017), which assigns each feature of the ML/DL model an
importance score, ultimately creating a ranking of importance among features.

2.2 | Predictability at different timescales

On (multi-)weekly to decadal timescales, both local and remote physical processes can contribute to the predictability
of climate extremes (Figure 1). These mechanisms act seamlessly across timescales, but their relative contribution varies
across forecast times and relates to the degree and timescale of interaction between the troposphere (target of this
review) and the slower-evolving climate components (Mariotti et al., 2018).

In general, land-atmosphere coupled processes convey predictability over weeks to a few months, primarily modu-
lating the occurrence, duration, and intensity of droughts and heat waves (Materia et al., 2022; Miralles et al., 2019).
Stratospheric variability and stratosphere-troposphere coupling provide potential predictability from subseasonal to
multi-annual timescales (Scaife et al., 2022 and references therein). For example, sudden stratospheric warmings may
influence the tropospheric midlatitude jet stream (Kidston et al., 2015) for many weeks, causing, prolonged cold
extremes (Domeisen et al., 2020), while the teleconnection between the QBO and northern hemisphere circulation has
shown to affect precipitation amounts in the western Pacific on multi-annual scale (Gray et al., 2018). Ocean-
atmosphere coupled mechanisms act on a wide range of timescales, from weeks to multiple years (see Santoso
et al., 2017 for extreme ENSO events; Hardiman et al., 2020 for S2S drivers of record warm European winters, Ding
et al., 2022 for multi-year predictability of ENSO warm/cold phases), while the effects of slow modes such as the Atlan-
tic Multi-decadal Variability span decades (Zhang et al., 2019).

These variations and their interlinks with the troposphere act as boundary conditions for the atmospheric circula-
tion (Shukla, 1998), contributing to oscillations like MJO (Zhang, 2005; Zhang et al., 2020) or ENSO (Capotondi
et al., 2015; Rasmusson & Wallace, 1983), and patterns like blocking and quasi-stationary waves (Reinhold &
Pierrehumbert, 1982), able to give the atmosphere persistence characteristics.

These modes of variability and couplings drive the insurgence of climate extremes, with different timescales poten-
tially interfering with each other and affecting the amplitude and characteristics of extremes. For example, a negative
PDO phase is associated with prolonged wet phases in the southeastern US winter (Fuentes-Franco et al., 2016). Sea-
sonal damp anomalies are often reduced during El Nifio years, while they are reinforced in winters marked by La Nifia
(Wang et al., 2014). However, during a phase of an active MJO, the extratropical response can amplify or mask the
interannual ENSO signal for a few weeks in the southeastern US, potentially resulting in precipitation extremes of
the opposite sign than anticipated by the ENSO phase (Arcodia et al., 2020).

Initialization with observed climate conditions allows coupled climate models to capture mechanisms of internally
generated climate variations. Large trends in boundary conditions, such as greenhouse gases and aerosols, may also rep-
resent a source of predictability (Meehl et al., 2009) increasingly important with longer lead times, with the impact of
background warming becoming evident in decadal predictions (Bellucci et al., 2015; Smith et al., 2019). However, the
contribution of trends to predictability is also detected at subseasonal and seasonal timescales (Butler et al., 2019;
Patterson et al., 2022; Wulff et al., 2022), particularly in summer when year-to-year variability is lower, potentially
increasing the skill of extremes forecasts (Prodhomme et al., 2022).

Al has significant potential to enhance the predictive skill of climate extremes across timescales, possibly advancing
our scientific understanding and societal preparedness (Huntingford et al., 2019). Sophisticated data-driven approaches
offer the opportunity to harness the interconnections of climate drivers and processes, including local and remote inter-
actions, stratosphere-troposphere couplings, and ocean-atmosphere interactions (see Figure 1). Al algorithms can
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effectively analyze vast climate data and identify complex patterns that influence extreme events nonlinearly, without
using potentially biased numerical Earth system models. Moreover, methods of explainable AI and causal discovery
algorithms (e.g., Lundberg & Lee, 2017; Section 2.1) can elucidate the relative contribution of various climate drivers,
such as PDO, ENSO, and the AMV, and their interaction in modulating climate extremes.

3 | AI-BASED PREDICTIONS OF CLIMATE EXTREMES: AN OVERVIEW

We overview the three main families of climate extremes holding predictability at the S2D timescale: extreme tempera-
tures (heat waves and cold spells), droughts, and cyclones (storms and heavy rains). The use of different AI approaches
and meteorological datasets, the lack of well-established benchmarks, the specificity in the definition of extremes, and
the geographical variability of the applications, make a systematic comparison of the different studies virtually impossi-
ble. Many examples of extremes predicted using ML/DL algorithms are discussed in this section and summarized in
Table 2, together with an overview of the perspective of combining AI with numerical models in a so-called hybrid
approach.

3.1 | Extreme temperatures

Hot extremes are becoming more frequent, intense, and longer because of anthropogenic climate change (Dunn
et al., 2020), with heatwaves being their most common manifestation (Barriopedro et al., 2023; Thompson et al., 2023).
Cold spells are expected to become less frequent, durable, and intense in a warming world, but still pose significant
challenges especially in the northern mid-latitudes during boreal winter (Matthias & Kretschmer, 2020; Tomassini
et al., 2012).

Classifying temperature extremes can be challenging, since definitions differ according to the specific scientific
questions, sectoral application, and timescale. Temperature extremes are often detected as (consecutive) days exceeding
a certain threshold (e.g., Perkins & Alexander, 2013; Russo et al., 2014; Sillmann et al., 2013), but approaches based on
cumulative metrics, are also used (Russo & Domeisen, 2023). Extreme indices cover a wide range of attributes, such as
amplitude, intensity, duration, and frequency (Zhang et al., 2011), but defining extreme events is complicated when
linked to climate predictions, since definitions are on one hand related to impacts, on the other hand, limited by S2D
predictability. Prodhomme et al. (2022) introduced the concept of heat wave propensity to assess the predisposition of a
season to heat waves, claiming that a seasonal forecast may more easily predict such a characteristic. Ragone
et al. (2018) used a definition that merges temperature and geopotential height anomalies to detect long-lasting heat
waves as temporal and spatial averages, improving the statistics of extremely rare events (Ragone & Bouchet, 2021).

AT's ability to forecast various aspects of temperature extremes on S2D timescale is demonstrated in several studies
using various methods. Decision-tree-based ensemble methods like RF and XGBoost (He et al., 2021; Kiefer et al., 2023;
van Straaten et al., 2022; Weirich-Benet et al., 2023) are often chosen for their robustness against overfitting. He
et al. (2021), found that a simpler XGBoost trained on both reanalysis and observational data compares favorably to DL
methods, outperforming climatology and least square models based on climate indices and persistence of previous
weeks' anomalies. The presence of a well-defined test set and out-of-a-bag cross-validation provides a comprehensive
benchmark for the comparison of AI methods for subseasonal forecasts, although stricter definitions of extremes are
needed. van Straaten et al. (2022) and Kiefer et al. (2023) used RFs with explainability tools to investigate the influence
of atmospheric, oceanic, and land surface states on the occurrence of heat and cold extremes. Al algorithms learn from
data relationships that are either well-known or have traditionally not been considered part of the relevant processes
and outperform climatology and the background trend. However, the lack of an out-of-sample test set makes results
sensitive to possible overfitting. A clear distinction between validation and test is present in Weirich-Benet et al. (2023),
whose RF outperforms persistence and climatology up to 6 weeks ahead of a heatwave, competing well with the
ECMWF dynamical forecast.

Neural networks (NN) like CNNs, LSTMs, and transformers benefit from directly taking in spatiotemporal informa-
tion (Jacques-Dumas et al., 2022; Miloshevich et al., 2023). Given the limited occurrence of extreme temperature events
in historical data, NNs are often trained on data from numerical climate model simulations (Chattopadhyay
et al., 2020). Given the imbalance between extremes and nonextremes, many studies undersampled the training set
using only a fraction of the nonheatwave samples. Jacques-Dumas et al. (2022) achieve relevant forecast quality for
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TABLE 2

Type of

extreme

Heat extreme

Droughts

WIREs

Reference
(timescale)

Ham et al., 2019
(Multiseasonal)

He et al., 2021
(Subseasonal)

Jacques-Dumas
et al., 2022
(Subseasonal)

Kiefer et al., 2023
(Subseasonal)

Lopez-Gomez
et al., 2023
(Subseasonal)

Miloshevich
et al., 2023
(Seasonal)

Pyrina et al., 2021

Polkova

et al., 2021
(Subseasonal to
seasonal)
Trenary &
DelSole, 2023
(Subseasonal)
Van Straaten
et al., 2022
(Subseasonal)
Weirich-Benet

etal., 2023
(Subseasonal)

Danandeh Mehr
et al., 2022
(Subseasonal)

Deo and
Sahin (2015)

MATERIA ET AL.

Al methods
CNN

Multitask FS
K-nearest neighbor
Lasso regression
XGBoost
CNN-LSTM

CNN, Transfer
learning

RF + shap XAT;
QRF + shap XAI

CNN

CNN

Multilinear
regression based on
PCA and CCA

NN + causality
algorithm (Causal
Effect Network)

Laplacian
eigenvectors +
Lasso

RF + shap XAI

RF + linear model

ANN, CNN, LSTM,
CNN-LSTM

ELM

List of publications using Al for the predictions of extremes at the S2D timescale.

Datasets

Large ensemble of CMIP5 historical runs
and reanalysis

Training: >100 model and reanalysis
years

Validation/test: reanalysis 1976-2017

Daily observations

Training 1986-2016

5-day CV over the last 5 years
Test: 2017-2018

Multi-daily climate model outputs for the
summer months

Training: 900 model years

Test: 100 model years

Daily Nov-Apr temperature observations
from 1950 to 2020.

Training: every year until 2000 and each
year excluding the predicted year from
2001 to 2020

All days from 43 years of reanalysis.
Training: 34 years

Validation: 4 years

Test: 5 years

Dynamical model of 8000 years
Stratified 10-fold cross-validation

Several reanalysis/observational products
Training ~60 years
Test ~30 years

Reanalysis

10-day averages over the winter period
Training ~32 years

Test ~8 years

Dynamical model(s) 3000 years
Reanalysis

Reanalysis
Training and test: 1981-2019, 5-fold CV

Weekly observation and reanalysis.
Training: 1981-2000

Validation: 2001-2009

Test: 2010-2018

Observation during 45 years (1971-2016),
70/30 training and test

Monthly historical observations (1958-
2008 for training, 2009-2011 for testing)

Benchmark and metrics

Initialized climate model
ACC

Reanalysis climatology
Spatial cosine similarity

No benchmark provided
MCC for different levels of
heat extremes magnitude

Reanalysis climatological
ensemble
CRPSS, BSS

Persistence; initialized model
prediction
Categorical scores

Model climatology

Reanalysis of persistence and
climatology
ACC

Initialized climate model
ACC, ROC

Climatology, ENSO regression

Reanalysis climatology; Trend
BSS

Initialized climate model;
persistence, climatology
Categorical scores, BSS and
RMSE

Statistics scores including
RMSE, MAE, Nash-Sutcliffe
coeff.

ANN

MAE, RMSE, Coeff of
Determination, Willmott Index
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TABLE 2 (Continued)
Type of Reference
extreme (timescale) Al methods Datasets
Dikshit et al., 2021 LSTM Gridded observations during 120 years
(Subseasonal to (1901-2018) 85/15 training and test
seasonal)
Dikshit & LSTM + XAI Observations during 120 years
Pradhan, 2021 (1901-2018) 85/15 training and test
(Seasonal)
Felsche & ANN + XAI Regional climate model, 50 ens members
Ludwig, 2021 Training: 42 years (2150 samples)
(Subseasonal) Test: 6 years
Li et al., 2021 RF, SVR, ELM Monthly observations
(Subseasonal to 30 moving training periods of 88 years for
seasonal) 30 sample tests
Mokhtarzad ANN, ANFIS, SVM  ~30 years of meteorological observations
et al., 2017 (1984-2012)
(Seasonal) 85/15 training/test
Poornima & LSTM Reanalysis daily data
Pushpalatha, 2019 Training 55 years
(Seasonal) Test 1 year
Raza et al., 2022 ELM, multi-layer Monthly observation
(Seasonal) perceptron Training 1951-2013
Test 2014-2016
Rhee & Im, 2017 DT, RF, Extremely  Observation, remote sensing data, model
(Subseasonal to randomized trees) forecast data (2003-2015), leave-1 year-
seasonal) out cross-validation
Sahoo et al., 2019 LSTM-RNN, RNN Observation during 50 years (1971-2020)
(Subseasonal)
Zhang et al., 2019  XGBoost; ANN Observations during ~60 years (1961-
(Seasonal) 2017)
Training/test in a 10-fold cross-validation
Fu et al., 2023 CNN; Transfer CESM climate simulations, HighResMIP
(Seasonal) learning simulations, and decadal prediction
simulations, ERAS5 reanalysis
~3000 years for NH
~1500 years for SH
Storms and Polkova NN + causality Reanalysis
heavy etal., 2021 algorithm (Causal 10-day averages over the winter period
precipitation  (Subseasonal to Effect Network) Training ~32 years
seasonal) Test ~8 years
Richman et al. SVR Observations 1984-2015
(2017) (Seasonal)
Scheuerer ANN/CNN Weekly precipitation amounts over 20
et al., 2020 cool seasons
(Subseasonal) Training: 19¥61 samples (LOOCV)

Test: 1*61 samples

—WI ]_EyJ9_°f31

Benchmark and metrics

No benchmark specified
ROC score, MAE, RMSE, R2
over observations

No benchmark provided
RMSE, R2, Nash-Sutcliffe
coeff.

Model generated droughts
Simple counting of model
drought

Comparison of the three ML
methods
BS and BSS

Observed SPI
R, RMSE, and cumulative
distribution function

No benchmark provided
RMSE, mean absolute error,
R2 (unclear observational
ground)

Autoregressive moving average
RMSE, MAE, Willmott index,
Pearson correlation

Climatology; Numerical
forecasts

Accuracy measure for drought
category classification

Persistence
RMSE, Efficiency coefficient,
R, MAE

Distributed lag nonlinear
model

Cross-validated R2, RMSE,
MAE

Initialized seasonal forecasts
Simple count of the seasonal
number of cyclones in
comparison to observations

Initialized climate model
BSS, ROC, ACC

Statistical model
TCs count, MAE, RMSEt

Empirically corrected
initialized forecast
RPSS

(Continues)
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TABLE 2 (Continued)

Type of Reference
extreme (timescale) Al methods Datasets Benchmark and metrics
Tan et al., 2018 RF + Lasso Reanalysis Lasso + RF with no feature
(Seasonal) Training: 1978-2011 selection, MLR
Test: 2012-2016 MAE, R2
Vosper et al., 2023 GAN IBTrACS + MSWEP Bilinear interpolation of low-
resolution data
Zhang et al., 2023  RF NASA's Goddard Earth Observation Observed precipitation on

System model version five (GEOS5) regular grid (PRISM
precipitation dataset)

long-lasting heatwaves, although the lack of a generalizability test makes their result conditional on the model output
used for training. Miloshevich et al. (2023) extensively discuss the problem of data scarcity when predicting extremes,
and show significant forecast skill for heatwaves in France, identifying in a combination between geopotential and soil
moisture as the best predictor. Their results might be even undermined by the lack of ocean drivers, whose initial state
is known to impart predictability at monthly and longer timescales. Lopez-Gomez et al. (2023), instead, use all the avail-
able information without explicit undersampling, finding that their NN architecture performs better than ECMWF's
forecast system for extremely hot days beyond the 2-week forecast time.

Multiple linear regression approaches with tailored filtering procedures also show success (Miller & Wang, 2019;
Pyrina et al., 2021; Trenary & DelSole, 2023). These studies are possibly affected by information leakage from training
to the verification samples, typical of the standard use of leave-one-out cross-validation (von Storch & Zwiers, 1999),
but link to the AI important goal of identifying and disentangling drivers to supplement incomplete theory. Suarez-
Gutierrez et al. (2020) uses Multiple Linear Regression to understand dynamical and thermodynamical contributions to
European heat extremes: they use moving threshold definition of extremes to account for the increasing trend, finding
atmospheric blocking and soil moisture initial conditions crucial for realistic prediction.

3.2 | Droughts

Drought has wide-ranging impacts on the environment and society, and its risk is expected to increase in a warmer
future climate (Chiang et al., 2021; Wilhite, 2000). Skillful drought predictions with sufficient lead time remain a chal-
lenge, due to multiple driving factors across different spatial and temporal scales (Hao et al., 2018) and the complex
nature of drought. Various indices based on individual or multiple hydro-climatic factors have been developed to meet
the need for applications. These include standardized precipitation index (SPI; McKee et al., 1993) and the Palmer
drought severity index (PDSI; Palmer, 1965) for meteorological droughts, the Streamflow Drought Index (SDI;
Nalbantis & Tsakiris, 2009) for hydrologic droughts, and the SPI including the effect of evapotranspiration (SPEI;
Vicente-Serrano et al., 2010) for agricultural applications.

Droughts are primarily triggered by anomalies in hydrologic and meteorological conditions, including precipitation
deficit, high temperature, or evapotranspiration. Land-atmosphere interaction and remote processes such as sea surface
temperature variations and short-term atmospheric variability (e.g., MJO) also play an important role (Schubert
et al., 2007). Furthermore, long-term droughts are associated with the mechanisms that control hydroclimate at multi-
year scales, such as decadal ocean variability, deep soil moisture variability, and the impact of climate change and
human activities (Esit et al., 2021; Schubert et al., 2007).

While improved weather and climate predictions using AI can potentially enhance drought condition estimations,
the verification of these AI approaches focusing on drought events is still lacking. In general, Al in drought prediction
involves predicting drought severity using several input data, including hydrometeorological variables and tele-
connection indices (Hao et al., 2018).

ANNS often outperform traditional statistical models, such as regression models and autoregressive moving average
models, as shown by Poornima and Pushpalatha (2019) in a comparative study. However, their study's test set is only
1 year, and the work fails to provide details about the observational data chosen for verification, therefore its results are
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difficult to reproduce. Mokhtarzad et al. (2017) show how complex networks may handle large amounts of nonlinear
data-providing SPI and SPEI indices very close to those observed. DL algorithms such as Multi-Layer Perceptrons,
LSTM, and CNN have also shown effective performance for drought prediction. Dikshit et al. (2021) uses an LSTM
architecture to forecast spatial variations of SPI and SPEI at the subseasonal timescale with promising results, though
lacking a proper benchmark. Sahoo et al. (2019) work on a different but related variable, that is the low flow at a gauge
station in the Mahanadi River (India). Their LSTM NN, with a very clear separation between training, validation, and
test sets, beats the persistence benchmark.

Tree-based models like RF or XGBoost, less prone to overfitting problems, are useful for drought prediction with
multiple input predictors. These models effectively process multi-source data such as ground observation, remote sens-
ing data, and climate model output. Rhee and Im (2017) find that tree-based algorithms perform approximately as well
as climatology for droughts in South Korea 1-6 months in advance and better than numerical forecasts. Zhang
et al. (2019) show that an XGBoost decision tree outperforms a lagged nonlinear model and an ANN for predicting SPEI
in central China up to 6 months ahead.

Identifying the most effective ML algorithm for drought prediction is challenging, but the Extreme Learning
Machine (ELM) often proves highly skillful. ELM implements a single-hidden layer feedforward neural network, simi-
lar to a multi-layer perceptron ANN, and generally provides good generalization performance at a fast-learning speed
(Huang et al., 2006). Li et al. (2021) developed three ML models using Random Forest (RF), support vector regression
(SVR), and ELM to predict the Standardized Precipitation-Evapotranspiration Index (SPEI) with 1- and 3-month lead
times, using previous sea surface temperatures (SST) as predictors. These models are tested on four river basins with dif-
ferent climates and frequent droughts (Colorado, Danube, Orange, and Pearl River), and ELM shows the best prediction
skill for all of them. Deo and Sahin (2015) compare predictions of the monthly effective drought index in Australia
using ELM and conventional ANN, finding that ELM outperformed ANN in predicting drought duration and severity
while also demonstrating faster learning and training speeds. Raza et al. (2022) compare ELM's performance in
predicting droughts across several weather stations in Pakistan against another ANN, the multi-layer perceptron, and
an autoregressive stochastic model. Results show that ELM produced the best drought predictions for nearly all meteo-
rological stations at different forecast times, while also being the most efficient during training and the fastest in gener-
ating forecasts. The authors suggest that ELM should be used as an early warning tool for drought forecasting.

More recent studies have suggested combining AI models to take advantage of different algorithms. For instance,
CNN merged with RNNs better captures time series dependence (Danandeh Mehr et al., 2022), outperforming all com-
pared ML models for 1-month-ahead drought forecasting. Extensive examples of Al applications in drought prediction
are found in AghaKouchak et al. (2022) or Prodhan et al. (2022). A wide range of Al algorithms have shown progress in
predicting drought occurrence and related characteristics. However, most studies are geographically limited to areas
with available ground data, making generalization complicated. Recent efforts focus on understanding drivers’ contri-
bution to drought prediction by applying explainable AI (Dikshit & Pradhan, 2021; Felsche & Ludwig, 2021).

AT has also demonstrated potential in predicting drought impacts. For instance, Sutanto et al. (2019) show that RF
can forecast drought-affected sectors such as agriculture, energy, or wildfire with several months' lead time.
AghaKouchak et al. (2022) noted that while current studies mainly focus on prediction accuracy, quantifying uncer-
tainties in AI models is needed. This study also suggests using AI as more than just a drought prediction model, propos-
ing it as a tool to discover unknown drought drivers

3.3 | Cyclones and heavy precipitation

Synoptic scale cyclones, both in the tropics and the mid-latitudes, cause considerable economic damage (Mendelsohn
et al., 2012) due to associated heavy precipitation, strong winds, and storm surges. Climate change could exacerbate the
severity of such extremes, but not necessarily their frequency (Knutson et al., 2020), and predicting their variability on
S2D timescales remains challenging (Befort et al., 2022). Heavy precipitation events are not always linked to large-scale
weather systems such as cyclones or fronts: many impactful events are instead linked to short-lived, small-scale severe
convective events. These extremes are even more challenging for operational climate prediction systems, as their spatial
resolution is too coarse to allow the explicit representation of convection. Indeed, numerical climate prediction systems'
skill for extreme precipitation substantially decreases beyond a few days in most regions where it has been analyzed
(e.g., King et al., 2020; Rivoire et al., 2022).
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Characterizing synoptic-scale cyclones is in principle relatively straightforward, as they are associated with macro-
scopic features in large-scale atmospheric fields such as mean sea level pressure or atmospheric vorticity. Metrics used
to describe such extremes range from simple counting to more sophisticated indices aggregating frequency and inten-
sity (e.g., Emanuel, 2005). In contrast, characterizing small-scale heavy precipitation is more sensitive to the method
used to define the extreme, for example, exceedance of an absolute value or of a given climatological percentile
(Scoccimarro et al., 2013).

Al techniques have been successfully applied to improve the prediction of both cyclones and heavy precipitation
events. Examples of ML/DL methods used to predict tropical cyclone (TC) occurrence include CNNs and RFs. RF pro-
vides more interpretability on the role of different drivers, and outperforms nonlinear regression models in predicting
TCs in the Western North Pacific (Tan et al., 2018). CNN shows higher prediction skill compared to numerical models,
particularly when leveraging transfer learning techniques to exploit larger training sets from modeling data (Fu
et al., 2023). On the other hand, increased skill from complex architecture often reduces interpretability. de Burgh-Day
and Leeuwenburg (2023) propose ablation studies to overcome DL models' interpretability issues while retaining their
good skill.

Richman et al. (2017) used SVR to predict the number of seasonal TCs in the North Atlantic and their spatial distri-
bution, outperforming the statistical forecast in place, even if they lack an out-of-sample test. Regression-based
approaches have also shown promising results for subseasonal predictions of precipitation (Zhang et al., 2023). A major
weakness for localized precipitation extremes is the absence of uniform benchmarking datasets, which hinders the com-
parison of different methodologies. The representation of precipitation extremes is less reliable in global reanalyzes,
leading to the choice of localized observational reference datasets, which are often limited to single countries or regions
(Scheuerer et al., 2020; Zhang et al., 2023). The use of high-resolution, high-frequency global precipitation datasets
(e.g., Beck et al., 2017) as a benchmarking standard could improve the robustness of comparisons across studies.

A promising framework for S2D prediction of cyclones is hybrid statistical dynamical predictions. This approach
improves the skill of numerical prediction systems in representing weather extremes by finding relationships between
large-scale drivers (generally well predicted by dynamical models) and extreme events. It has been applied to precipita-
tion fields, providing probabilistic forecast of precipitation at the subseasonal timescale (Scheuerer et al., 2020). Their
ANN/CNN architecture, using predictors from the ECMWF subseasonal forecast, improves forecast of high precipita-
tion accumulation, in week 2, but degrades in weeks 3-4, suggesting the need for additional large-scale predictors.

Several AI applications enhance prediction of climate extremes by improving the way climate forecast model out-
puts are processed. Polkova et al. (2021) used causal discovery algorithms to understand and improve numerical sea-
sonal forecasts of marine cold air outbreaks, identifying atmospheric circulation patterns and local sea surface
temperature as valuable predictors. Applications aimed at improving the representation of wind and precipitation fields
exploit DL algorithms trained on high-resolution observations to improve the representation of precipitation (Vosper
et al.,, 2023) or wind patterns (Yang, Zhang, et al., 2022) associated with cyclones, effectively acting as a form of
downscaling.

3.4 | Hybrid climate prediction of extremes

Hybrid climate predictions, which combine numerical forecasting techniques with AI methods, have emerged as a
promising approach for improving the accuracy and reliability of climate predictions. This approach leverages the phys-
ical consistency of dynamical models and the flexibility and adaptability of ML/DL models. This section reviews recent
advances in hybrid modeling for predicting weather and climate extremes. We follow the typology developed for hydro-
logical forecasting by Slater et al. (2023) and focus on three main areas: (1) a coupled approach where AI improves the
parametrization and initialization of climate models, (2) a serial approach where climate model outputs are post-
processed or blended with ML, and (3) a statistical-dynamical approach where climate models are used to train a data-
driven model.

The first area addresses the major challenge of accurately representing small-scale processes in climate models, such
as cloud formation and convective storms, critical for predicting some types of weather and climate extremes. Al can
improve the representation of these processes leading to enhanced predictions of extremes. For instance, Rasp
et al. (2018) and Gentine et al. (2018) employ NNs to parametrize convection and cloud processes within the atmo-
spheric column of a climate model. The NNs are trained in multi-scale cloud-resolving simulations to emulate fine-scale
modeled processes for coarser-scale forecasts (Figure 2a). Steps towards coupling are also being made for land-surface
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FIGURE 2 Schematic representation of methods to combine dynamical models with machine or deep learning to create hybrid

predictions.

parametrizations (EIGhawi et al., 2023). Stability of the AI algorithm and generalization to unseen situations are a pre-
requisite for skillful coupled performance, which is why these algorithms are designed to adhere to known physical

relations.

The second area of hybrid prediction uses ML techniques to post-process climate model outputs, correct model bias,
and/or downscale model outputs. Statistical models learn systematic biases between forecasts and observations, improv-
ing the reliability of extremes' predictions by correcting the probability distribution. For example, errors in model-
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generated heavy precipitation are corrected by learning the precipitation patterns induced by ENSO and applying those
to forecasted ENSO (perfect prognosis approach; Doss-Gollin et al., 2018, Strazzo et al., 2019, Figure 2b). Systematic
errors between forecasts and observations can also be learned with Model Output Statistics algorithms (Figure 2c),
where links between predictors and predictands are those of the models (Glahn & Lowry, 1972). Current ML techniques
can learn non-linear relations (Haupt et al., 2021; Schulz & Lerch, 2022; Vannitsem et al., 2021) and thus apply correc-
tions depending on the weather conditions in which an extreme is occurring. On subseasonal time scales, studies have
employed fully connected NNs (Fan et al., 2023; van Straaten et al., 2023), convolutional and UNet-type NNs (Horat &
Lerch, 2023; Scheuerer et al., 2020), RFs (Zhang et al., 2023), regression models (Hwang et al., 2019), and Bayesian
methods (Schepen et al., 2014; Specq & Batté, 2020; Strazzo et al., 2019). These post-processing methods produce proba-
bilistic forecasts of weekly, bi-weekly, or monthly accumulated precipitation or average temperature.

Statistical post-processing models can also evaluate the dynamical models they correct, relating error characteristics
to the weather circumstances under which they occur, thus expanding the physical understanding of extremes that
would be limited by only using numerical models (Mouatadid et al., 2023; Silva et al., 2022; van Straaten et al., 2023).

The third category of hybrid predictions, statistical-dynamical forecasting (Slater et al., 2023) combines dynamical
predictions with different empirical, purely data-driven approaches (Figure 2d). One way is to use statistical methods to
provide first-guess prediction of important state variables (e.g., NAO) related to the extreme, and then weigh or select
dynamical simulations accordingly (Dobrynin et al., 2018; Neddermann et al., 2019; Polkova et al., 2021). The first-guess
prediction can be based on expert-informed regression models (Dobrynin et al., 2018), or using causal discovery algo-
rithms (Polkova et al., 2021).

Training a ML model on climate model simulations, and integrating data from large climate model ensembles, is
also possible. Known as transfer learning (Figure 2e; Weiss et al., 2016), this approach expands the size of available
training sets (Andersson et al., 2021; Gibson et al., 2021; Ham et al., 2019), offering a more statistically robust version of
the climate system and its future trends. Combining multiple models or ensemble realizations can further expand the
dataset by some orders of magnitude, allowing better generalization under future climate conditions. Additionally,
data-driven models based on causal discovery algorithms can be fitted to dynamical simulations to evaluate the pres-
ence of known links in the climate system (di Capua et al., 2022).

4 | CHALLENGES IN THE APPLICATION OF ARTIFICIAL INTELLIGENCE
APPROACHES

The vehemence with which AT has irrupted in the climate prediction discussion comes with numerous unresolved chal-
lenges that must be addressed to build trust in this emerging technology at the service of climate applications. We iden-
tify five major areas of challenges (Figure 3) and propose a few best practices that should be acknowledged and carried
out in future studies.

4.1 | Data and processing

Extreme events are rare by definition, and their increasing likelihood in a non-stationary climate (White et al., 2023)
poses important scientific challenges for improving climate predictions using Al In fact, the scarcity of historical data
and the absence of unprecedented events in the past, make any statistical approach based on observations prone to fail-
ure (Miloshevich et al., 2023). The physical processes driving climate extremes have time cycles ranging from weeks to
years, with different seasons exhibiting varying predictive relations. Additionally, many climate variables are temporally
correlated at multiple time scales (He et al., 2021), complicating the acquisition of sufficient (effective) samples to learn
from. This problem is more pronounced with longer forecast periods, limiting the verification of time-independent fore-
casts: multi-annual (5-10 years) predictions, whose training sample relies on current atmospheric reanalysis
(e.g., ERAS5, Hersbach et al., 2020), may only have a dozen samples for training.

As discussed in Section 3, transfer learning can potentially enlarge the learning sample using climate model data,
provided relevant processes are realistically represented and model systematic errors are characterized through process-
based studies (Eyring et al., 2019). Thus, the climate model selection becomes a crucial part of the pipeline with signifi-
cant implications for the ML models' final performance. Recent studies have followed various approaches to ameliorate
this issue. Some choose a single model that accurately represents the physical processes behind the targeted tasks
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Challenges in Al-based Prediction of Climate Extremes
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FIGURE 3 The current challenges facing the prediction of climate extremes with AL Major areas of difficulty (Data and processing,
Uncertainty, Interpretability and Causability, Generalizability, and Reproducibility) are shown in black, and accompanied by a
complementary icon, while related tasks discussed in the text (Section 4) are shown in white.

(Gibson et al., 2021; Miloshevich et al., 2023), while others pool many models into the training set to capture robust sig-
nals (Ham et al., 2019; Ling et al., 2022; Pan et al., 2022). Furthermore, this procedure can be extended by a second
training loop, known as fine-tuning, where the ML model is further trained using available observations (Andersson
et al., 2021; Ham et al., 2019; Pan et al., 2022), to account for the biases in the first training.

Despite methods to extend the training dataset, the so-called imbalanced learning problem (He & Ma, 2013) is
inherent to extreme forecasting. Being rare events, extremes (events in the distribution’s tails) result in a large ratio
between extreme and nonextreme samples. Imbalanced learning leads to models that are less confident in predicting
extreme states resulting in unskilful predictions if not adequately addressed. Proposed solutions often employ
resampling techniques, where either the minority class is oversampled or the majority class gets undersampled either
through random sampling of the currently available samples (Miloshevich et al., 2023), or by generating new samples
using interpolation [Synthetic Minority Oversampling Technique (SMOTE); Chawla et al., 2002]. However, re-sampling
do not add extra information from the few available extra samples, and some studies point out that resampling may
result in unreliable probabilities (Fissler et al., 2022).

Several extreme events are clearly affected by the background global warming trend. An increase in heat wave fre-
quency and magnitude (and the concurrent decrease of cold spells) is occurring virtually everywhere in the world,
while heavy precipitation, storm intensity, and drought frequency/duration only locally show increments likely linked
to a warming climate. This raises questions on how to handle this anthropogenic constraint to separate its induced pre-
dictability from the natural predictability of the system. Many studies simply perform an out-of-sample pre-processing
by detrending the training time-series before applying the learning algorithm (e.g., Weirich-Benet et al., 2023). While
this approach allows to isolate of natural variability, it excludes a significant source of predictability across multiple
timescales (Bellucci et al., 2015; Prodhomme et al., 2022; van Straaten et al., 2023). There is no general solution, and
the treatment of trends mostly depends on the specific goals and research questions Al-based predictions are designed
for. Improving prediction skills for climate services would benefit from including the trend during learning, while
removing it makes sense if the aim is to uncover potential drivers for the studied extreme and separate human-made
contribution from natural variability (Zeder & Fischer, 2023). This approach requires an additional choice of trend
removal methods (Frankcombe et al., 2015), variables to be detrended, and dealing with variables indirectly affected by
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the background trend (e.g., soil moisture). Efforts in this sense have been limited within the ML framework for climate
predictions of extremes.

4.2 | Uncertainties

Due to the inherent complexity and chaoticity of the climate system, the relationship between predictors and
predictands is intrinsically probabilistic, lacking a one-to-one correspondence. Thus, climate predictions of extreme
events are subject to significant uncertainties, particularly aleatoric uncertainties that significantly impact the potential
predictability of an extreme event (Lucente et al., 2022). Aleatoric uncertainty can be further split into homoscedastic
(invariant to different inputs), and heteroscedastic (varying over different inputs), therefore noisier. This result in over-/
under-confident predictions, therefore understanding the statistical properties of the extreme and modeling them
accordingly is essential. Likewise, uncertainties in data and ML methods (i.e., epistemic uncertainties) also affect pre-
diction. Hence, probabilistic models are best suited to express the combined uncertainties (Miloshevich et al., 2023; van
Straaten et al., 2022), providing a distribution of possible future states that better characterize the nature of the predic-
tion problem. Such distributions are most informative to decision-makers when calibrated, ensuring issued probabilities
match observed occurrences (Gneiting et al., 2007). Many ML methods produce probabilistic forecasts, but not all
explicit output uncertainty distributions (Luo et al., 2022). Thus, reliable probabilistic ML modeling remains a vital
research line in climate prediction of extremes.

Regarding probabilistic approaches, one specific method for ANN is the dropout Monte Carlo approach, during
training, a small fraction of neurons are randomly “dropped out” (i.e., deactivated) in each iteration making the trained
network more robust (Scher & Messori, 2021). During inference (after training is completed), uncertainty can be quanti-
fied by sampling different predictions, each time deactivating random neurons. In contrast, methods like variational
autoencoders (VAEs; Kingma & Welling, 2019) or diffusion models (Yang, Lee, et al., 2022), learn the data’s underlying
probability distribution to sample an ensemble of predictions. Other methods applicable to any ML model train an
ensemble of models on data subsets of the data or using different random seeds (e.g., Weyn et al., 2021), or retaining
multiple “best estimators” to optimize the hyperparameters. In all these cases uncertainty is treated in a post hoc fash-
ion with no guarantee for calibration.

4.3 | Interpretability and causability

One of the key pitfalls of using AI for predicting climate extremes is the opacity of the model's decision-making process.
With few exceptions (e.g., see linear/logistic regression, decision trees, and newly introduced DL; see Agarwal
et al., 2021; Barnes et al., 2022; Chen et al., 2019), most ML/DL algorithms are highly complex and non-transparent,
making their predictions difficult to interpret. Although high accuracy might be sufficient and interpretability might be
less of an issue for some applications (e.g., machine translation or text generation), for high-stakes climate applications
and extreme event prediction interpretability is crucial. Trust in the forecast becomes more essential when verification
data is limited verification data, as in the S2S/S2D context. There are examples of AI models predicting correctly for the
wrong reasons (known as “clever Hans” models; see Lapuschkin et al., 2019). Thus, interpretability becomes fundamen-
tal to test against “clever Hans” models and to ensure that the model has learned relevant processes rather than spuri-
ous associations.

To address interpretability, the computer science community has developed tools that can be used to explain predic-
tions of black-box AI models in a post-prediction setting, known as eXplainable Al (XAI; Buhrmester et al., 2019;
Tjoa & Guan, 2019; Das & Rad, 2020). XAI has attracted attention in numerous fields, including geosciences
(e.g., Barnes et al., 2020; Ebert-Uphoff & Hilburn, 2020; McGovern et al., 2019; Toms et al., 2020), by making black box
models more transparent, building trust, fine-tuning poor performing models and providing scientific insights
(Mamalakis, Barnes, & Ebert, 2022; McGovern et al., 2019). Given the importance of instilling interpretability XAI
methods have been successfully applied to forecast climate extremes as well (see Pegion et al., 2022; Salcedo-Sanz
et al., 2024; van Straaten et al., 2022).

Despite XAI potential, challenges remain in climate prediction of extremes and geosciences in general. First, XAl
tools are imperfect, and their representation of AI models may depend on the application and the prediction setting
(Mamalakis, Ebert-Uphoff, & Barnes, 2022). Some studies have pointed out issues with faithfulness to the ML/DL
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model, comprehensibility of their results, and reproducibility of the XAI methods (Mamalakis et al., 2022, 2023). Due to
these pitfalls, some argue for developing inherently interpretable AI models instead of XAI (Rudin, 2019; Rudin
et al., 2022). Even assuming XAl tools are faithful, their insights should only be used to highlight sources of predictabil-
ity and not to infer causality, as AI models might be using nonphysical relationships (spurious correlations) to make
predictions. The limitation in drawing causal conclusions from XAI applications is a significant challenge (Holzinger
et al.,, 2021; Mamalakis, Ebert-Uphoff, & Barnes, 2022; Silva & Keller, 2024). Physics-guided AI (also known as
knowledge-guided or physics-informed Al) is a promising approach to impose physical realism in the prediction algo-
rithms and limit spurious correlations during training (Section 5), but this area of research is still in its infancy.

4.4 | Generalizability

Generalizability or generalization refers to the model's ability to make accurate predictions beyond the spatio-temporal
boundaries of the training datasets. Traditional ML/DL algorithms assume that training and testing (unseen) data are
identically distributed and that relationships between inputs and targets learned during training are valid for testing
data. However, in climate science applications, this assumption often fails when models predict extreme values lying
outside the climatological distribution of the training data. This out-of-distribution generalization issue can consider-
ably degrade model performance, especially under a warming climate that shifts spatial and temporal distributions of
Earth system variables, as current relationships may no longer be valid in the future (D'Amour et al., 2020; O'Gorman &
Dwyer, 2018; Rasp et al., 2018). Predicting extreme events across diverse climatic regimes also poses a challenge, as
ML/DL model accuracy can vary substantially when applied to contrasting climate zones, such as training in humid
regions and predicting in arid ones (Meyer & Pebesma, 2021; O et al., 2020). Therefore, understanding model perfor-
mance on unseen conditions without labeled data is a fundamental challenge for enhancing the robustness of ML/DL
models.

Recent studies show that large and diverse training data from various climate regimes are crucial for robust model
performance, even when a model is used over limited geographic regions. Al can infer temporal variabilities of extreme
events from contemporary spatial variabilities (space-for-time approach; O et al., 2020; Wi & Steinschneider, 2022).
Physics-informed ML/DL also shows a promising step forward for enhancing model robustness (Wi &
Steinschneider, 2022). However, out-of-distribution generalization has not been sufficiently explored yet in the context
of climate extreme predictions.

4.5 | Reproducibility

Reproducibility refers to the ability of researchers to independently replicate and verify study results given access to
data, methods, and procedures employed. This is a minimal prerequisite for ensuring that findings are reliable and
trustworthy, particularly in innovative and highly transformative tasks as for ML applications in climate predictions,
where new techniques, algorithms, and workflows are published or at an accelerating rate.

However, more than 60% of earth scientists have failed to reproduce other researchers’ work, and over 40% could
not reproduce their own experiments (Baker, 2016), raising concerns about a “reproducibility crisis” exacerbated in Al
literature (Hutson, 2018). A significant issue is the frequent lack of shared source code, due to reasons such as reluc-
tance of disclosing ongoing work, eagerness for competitive advantage, or discomfort with scripting skills
(Gundersen & Kjensmo, 2018). Additionally, datasets used for training are often not made available to the community.

Sharing codes and data is crucial, but detailed documentation of the conducted investigation and experiments is
equally important. Comprehensive documentation facilitates independent replication of results, increases trust, reduces
the effort, and lowers barriers for others to reproduce the experiments. In drafting this review, several papers were
excluded because the description of methodology was poor or inaccurate, making the findings questionable.

The scarcity of common datasets and evaluation metrics hinders the intercomparison of climate extreme prediction
studies. Benchmarks can make algorithms quantitatively inter-comparable and foster competition. Well-curated bench-
mark datasets enable collaboration between researchers with different expertise, like climate and computer scientists
(Rasp et al., 2020). However, designing standardized datasets is complicated due to the high-dimensional and multi-
faceted nature of climate problems (Dueben et al., 2022). Efforts to build benchmark datasets are ongoing for weather-
scale forecasts where the atmosphere is still deterministic (WeatherBENCH; Rasp et al., 2020, 2023), or multi-decadal
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BOX 1 Best practices to improve trust in Al-based forecast of extremes.

While artificial intelligence provides tools to target potential windows of predictability and eventually improve
prediction skill of extreme events, this skill by itself is insufficient. Trust is essential for any early action, which
is the ultimate goal of forecasts. Currently, Al-based forecasting generally suffers from a lack of trust for multi-
ple reasons: (1) the exact data processing is often nontransparent and nonreproducible, (2) there are many tech-
nical pitfalls that have resulted in exaggerated claims on ML-based skill, and (3) methods are often used as
black-boxes with the sources of predictability unexplained.

To overcome this lack of trust, we recommend the following “good practices”:

1. Data, workflows, and analyses should be transparent and easily reproducible across different big-volume
datasets. This can technically be achieved by linking open-source software to big climate data platforms,
then studies should provide access to the source code, the actual Al model (via appropriate repository,
e.g., Github), and exact data used, including preprocessing and postprocessing (on publicly accessible data
platforms, e.g., Climate Data Store).

2. Studies should use standardized benchmark datasets and multiple skill-metrics. The use of single and/or
uncritical skill metrics (e.g., correlation or area under the ROC curve) can easily lead to inflated skill
estimates.

3. Validation should be described step by step, and preferably multiple cross-validation approaches should be
tested (Sweet et al., 2023), being aware of the possibility of information leakage from train to test data
(Risbey et al., 2021). Ideally, all pre-processing (deseasonalizing, standardizing, etc.) is performed out of
sample, though in practice this can be challenging due to lack of independent data samples.

4. Proper and suitable quantification of uncertainties should be prioritized in order to minimize epistemic
uncertainties and sample all possible aleatoric uncertainties.

5. An effort in understanding sources of predictability and underlying physical mechanisms is required. Inter-
preting machine learning models should be a top priority, with interpretability focusing on causality instead
of association. Explainable AI can provide insights into the sources of predictability, but a commitment
towards interpretable models is highly encouraged (Rudin, 2019).

timescale where the climate response is largely driven by socioeconomic scenarios (ClimateBENCH; Watson-Parris
et al., 2022). However, no such benchmarks exist yet for climate predictions, which involve a wide range of process
timescales and intricate interactions within and across scales (Box 1).

5 | FUTURE PERSPECTIVES

Artificial intelligence has proven powerful to target potential windows of predictability and improve forecast skill at
S2D time scale. In the last 5 years, the presence of ML/DL algorithms has exponentially grown in studies targeting the
prediction of extreme events weeks and seasons ahead. Evolution and progress in this topic have been extraordinarily
quick, and we expect even faster-growing development (Figure 4).

For predictions on inter-annual to decadal time scales, the observational record of rare events provides relatively
few independent samples, which impedes robust training and therefore the proliferation of studies on extremes at such
a timescale. To be applicable for real-world climate predictions, sufficient useful information must be learned from
numerical model simulations (Section 4.1). Applications of such transfer learning implementations include IOD, sea
ice, and precipitation seasonal forecasts (Andersson et al., 2021; Gibson et al., 2021; Ling et al., 2022), medium-range
weather forecasts (Rasp & Thuerey, 2021), or reconstruction of climate observations (Kadow et al., 2020). Increasing
the training sample size is promising for climate predictions of extremes (Miloshevich et al., 2023), especially very rare
ones for which only a vast ensemble may cover enough samples.

Recent methods constraining or sub-selecting simulations from large climate model ensembles improved the skill of
decadal and multi-decadal climate projections by aligning the phases of internal variability modes with the observed
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FIGURE 4 Perspectives and opportunities in Al-based prediction of extremes.

climate (De Luca et al., 2023; Mahmood et al., 2022). These constraints involve numerous choices, implying sensitivities
of the results to specific prediction targets both in space and time. We suggest that ML/DL can be useful to further opti-
mize these methods, for example, by learning the most effective constraining criteria or identifying optimal analogs
leading to the genesis of extreme events, to select those simulations providing the highest skill at a specific region
and time.

Whether data are representative and comprehensive enough for the ML/DL model to be generalizable and finding
the boundary between physical-knowledge and data-learning are major challenges (Balaji, 2021). Discarding the under-
lying structure of equations seems impossible without incurring in several issues. As learning is only as good as the
training data, the resulting NN may not generalize well or violate some basic physics such as the conservation laws. In
hydrological modeling, these issues have been addressed by employing an end-to-end hybrid modeling approach based
on a ML/DL algorithm constrained by energy (Zhao et al., 2019) or water (Kraft et al., 2022) conservation. Beucler
et al. (2021) successfully emulated convective processes using NN while enforcing conservation laws. So-called physics-
constrained ML thrived at extracting information in observations while maintaining model interpretability and physical
consistency. Ideally, it is possible to venture into learning the fundamental physics by learning the underlying equations
for well-known systems (Brunton et al., 2016) and the structure of parameterizations from data, with the advantage of
intrinsic interpretability (Zanna & Bolton, 2020). In this context, “learning the physics” means solve closed-form equa-
tions for unresolved physics on resolved-scale tendencies, using relations in the data. Resolving the turbulent vertical
mixing in the atmospheric boundary layer, for example, may be key to fully understand the atmosphere-land process
able to modulate heat waves at subseasonal and seasonal scales.

As pointed out in the sidebar, exploiting the potential of those techniques requires addressing issues related to trust
in the Al models. Introducing open-source benchmark datasets can enhance the community's confidence by providing
a framework to compare different models on common grounds (O et al., 2020; Mamalakis, Ebert-Uphoff, &
Barnes, 2022; see also Section 4.5). Yet, similar examples for climate prediction of extreme events are not available. In
particular, introducing a platform to ensure reproducibility according to the FAIR (Findable, Accessible, Interoperable,
Reusable; Wilkinson et al., 2016) approach toward ML applications in weather and climate appears undelayable. The
Canonical Workflow Framework for Research (CWFR) has been proposed to ensure the FAIRness and reproducibility
of these practices (Mozaffari et al., 2022), targeting data, algorithms, tools, and workflows.

Most Al-based climate prediction models are developed for deterministic predictions, but providing predictions in a
probabilistic framework is beneficial for robust estimation of uncertainties and skill improvement. Al-based models
offer a larger spectrum of approaches to predict probabilities, but well-calibrated estimates of uncertainties should be
ensured, such as introducing perturbations in the initial conditions or creating model ensembles. Calibration can
be better achieved when methods are directly trained to output distributions, and when probabilistic loss is used.
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Common methods range from distributional regression (networks; e.g., Hu, Ghazvinian, et al., 2023; Schulz &
Lerch, 2022), to (implicit) quantile networks (e.g., Bremnes, 2020; Dabney et al., 2018), to histogram-estimation net-
works (e.g., Scheuerer et al., 2020), or Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs;
e.g., Tuel & Martius, 2022).

Numerous unexplored probabilistic ML methods might suit the prediction of climate extremes, like Bayesian NNs
(Polson & Sokolov, 2017) or nonparametric models like Gaussian Processes (Rasmussen & Williams, 2005), that have
yet not received much attention. Generative models, including Variational Auto Encoders (VAEs; Kingma &
Welling, 2019), Generative Adversarial Networks (GANs; Goodfellow, 2016), Normalizing Flows models (Papamakarios
et al., 2019), and Diffusion Models (Yang, Lee, et al., 2022), have only very rec explored for climate predictions of
extremes (Spuler et al., 2024), while for weather extremes these techniques have been employed in several applications
(Lam et al., 2022; Lessig et al., 2023; Price et al., 2023; Thuemmel et al., 2023). Conformal prediction (Vovk et al., 2005)
is another interesting probabilistic approach focusing on distribution-free uncertainty quantification and reliable proba-
bilities, essential to decision-making applications of climate predictions.

While AI research has examined individual extreme events (Section 2), work on predictions of compound extremes
is still in its infancy (Zhang et al., 2020). Examples include flooding caused by co-occurrence of high sea level and pre-
cipitation, causing substantial runoff in coastal areas (Bevacqua et al., 2019; Wahl et al., 2015); compound hot-dry
events linked to persistent anticyclonic weather systems (Bevacqua et al., 2022; De Luca & Donat, 2023; Yin
et al., 2023); and heavy precipitation-high wind speed events during cyclonic weather (De Luca et al., 2020; Martius
et al., 2016; Zscheischler et al., 2021).

At the time of writing this article, few studies have investigated AI for compound extreme events prediction, particu-
larly at the S2D scale. Park and Lee (2020) assessed coastal flooding as the compound effect of high tides and heavy
rainfall in South Korea, developing a future (2030-2080) compound risk map using ML algorithms like k-nearest neigh-
bor, RF, and support vector machine. Sampurno et al. (2022) used a hydrodynamic model trained with similar ML
models, to predict compound flooding over the Kapuas River delta (Indonesia) at the weather timescale. In addition,
Al-based techniques help quantify relationships between the extremes of two variables (Zhang et al., 2022). Bayesian
networks (Sanuy et al., 2020) and ANN (Huang et al., 2021) have been used to understand compound extremes, while
complex networks are found capable to drive causal relationships between two or more variables (Sun et al., 2022). In
conclusion, scientific knowledge for Al-based skillful predictions of compound extremes exists, and as co-occurrence
and interaction of climate extremes often generate more severe socioeconomic impacts (Zscheischler et al., 2018),
implementing this knowledge at the S2D timescale may prove useful for planning climate adaptation strategies.

As the community refines AI technologies, we stand to gain invaluable insights to prepare, mitigate, and adapt to
climate extremes with greater precision and foresight. The integration of Al into climate prediction of extremes holds
immense potential for building more resilient and sustainable societies in the face of an increasingly variable and
changing climate.
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