

Personality matters in consumer preferences for cultured meat in China

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Jin, S., Zhai, Q., Yuan, R., Asioli, D. ORCID:
<https://orcid.org/0000-0003-2274-8450> and Nayga Jr, R. M. (2025) Personality matters in consumer preferences for cultured meat in China. *Food Quality and Preference*, 123. 105317. ISSN 0950-3293 doi: 10.1016/j.foodqual.2024.105317 Available at <https://centaur.reading.ac.uk/118422/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1016/j.foodqual.2024.105317>

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

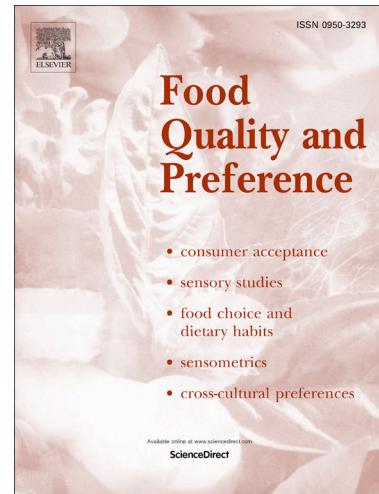
Journal Pre-proofs

Personality matters in consumer preferences for cultured meat in China

Shaosheng Jin, Qianqian Zhai, Rao Yuan, Daniele Asioli, Rodolfo M. Nayga Jr

PII: S0950-3293(24)00219-2

DOI: <https://doi.org/10.1016/j.foodqual.2024.105317>


Reference: FQAP 105317

To appear in: *Food Quality and Preference*

Received Date: 1 December 2023

Revised Date: 27 July 2024

Accepted Date: 5 September 2024

Please cite this article as: Jin, S., Zhai, Q., Yuan, R., Asioli, D., Nayga, R.M. Jr, Personality matters in consumer preferences for cultured meat in China, *Food Quality and Preference* (2024), doi: <https://doi.org/10.1016/j.foodqual.2024.105317>

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier Ltd.

1 **Personality Matters in Consumer Preferences for Cultured Meat in China**

2

3 **ABSTRACT**

4 This study extends our current knowledge of consumer preferences for cultured meat. We explored
 5 if personality traits have a role in affecting Chinese urban consumer choice behavior for cultured meat.
 6 We performed a choice experiment (CE) and used cultured chicken breast as a case study. The results
 7 indicate that personality traits (i.e., agreeableness, neuroticism, and conscientiousness) influence
 8 consumer preference for cultured meat. Our findings provide valuable insights into the psychology
 9 of consumer preferences and attitudes that can help to effectively communicate the nature of cultured
 10 meat to the public. They also have relevant implications for cultured-meat producers, and policy
 11 makers.

12

13

14 **KEYWORDS:** China; chicken breast; consumer preferences; choice experiment; chicken breast;
 15 cultured meat; personality traits.

16

17 **1. INTRODUCTION**

18 China is the world's largest meat-consuming country; indeed, its meat consumption has risen to 93.39
 19 million tons in 2023 (OECD/FAO, 2023), and this trend is expected to increase over the next decades
 20 (Wang, 2022). However, conventional farm-raised meat production and consumption lead to a series
 21 of negative externalities related to climate, natural environment, human health, and animal welfare
 22 (Godfray et al., 2018; Tuomisto, 2019; Zhang et al., 2020a). This has led to an emergency for policy
 23 makers to make food production and consumption more sustainable, as well as reduce conventional
 24 meat production and consumption (Post et al., 2020). In 2021, the Chinese government released a
 25 five-year plan that includes the development of meat alternatives, including cultured meat (Ministry
 26 of Agriculture and Rural Affairs of China, 2021). Cultured meat has substantial potential to address
 27 the problems posed by conventional meat because its production can be more efficient than
 28 conventional meat in terms of greenhouse gas emissions¹, water consumption, and land use (Post,
 29 2012; Post et al., 2020).

¹ Recent research has been inconclusive about the carbon footprint advantages of cultured over conventional meat (Sinke et al., 2023; Lynch and Pierrehumbert, 2019), which depends on the availability of decarbonized-energy generation and the specific production systems that are realized. Indeed, initially, cultured-meat production results in less warming compared to conventional meat, but this gap narrows in the long term, and in some cases the latter causes far less warming. This is because CH₄ (methane) emissions from conventional meat production do not accumulate, unlike CO₂, which is the type of GHG mainly produced by cultured meat (Lynch and Pierrehumbert, 2019).

30

31

32 However, a challenge for the widespread adoption of cultured meat technology is consumer
 33 acceptance (Post, 2020). Indeed, most consumers are unwilling to buy cultured meat (e.g., Gómez-
 34 Luciano et al., 2019; Bryant et al., 2019; Siegrist and Hartmann, 2020ab; Dupont et al., 2020;
 35 Weinrich et al., 2020; Zhang et al., 2020b, Asioli et al., 2022). Even though Chinese consumers have
 36 a greater willingness to buy (WTB) cultured meat compared to European countries (Bryant et al.,
 37 2019; Siegrist and Hartmann, 2020a), their willingness to pay for cultured meat remains negative
 38 (Zhang et al., 2020; Wang, 2022; Ortega et al., 2022; Yuan et al., 2022; Chen et al., 2023). Several
 39 factors have been identified as possible determinants for negative attitudes toward cultured meat.
 40 Among them, food neophobia, perception of unnaturalness, distrust of biotechnology, evoked disgust,
 41 safety concerns, nutrition concerns, ethical concerns, as well as individual characteristics and cultural
 42 factors, play a relevant role (Siegrist et al., 2018; Bryant and Barnett, 2020; Siegrist and Hartmann,
 43 2020a; Siegrist and Hartmann, 2020b; Asioli et al., 2022).

44

45 Personality, defined as the relatively enduring patterns of people thinking, feeling, and behaving
 46 (Hofstee, 1994), consistently emerges as a stable and influential predictor for consumer choice.
 47 Despite not being fixed over an individual's life cycle, personalities tend to exhibit stability,
 48 particularly among adults (Heckman, 2011). Changes in personality among adults are generally small
 49 and have negligible effects on their economic and social decisions (Cobb-Clark and Schurer, 2012).
 50 Furthermore, personalities have significant explanatory power in explaining economic preferences
 51 compared to other attitude and value variables (Lin et al., 2019). In addition, personality traits have
 52 been found to significantly influence consumer food-purchasing behavior. For example, prior studies
 53 have identified that personality traits can influence individual choice behavior in different contexts,
 54 including health issues, lifestyle, and economic decisions (e.g., Almlund et al., 2011; Ferguson et al.,
 55 2011; Keller and Siegrist, 2015; Spinelli et al., 2018). Personality traits also have a significant
 56 influence on consumers' choices for food products. Prior literature revealed that personality traits
 57 impact consumers' choice of organic food (Grebitus and Dumortier, 2016; Bazzani et al., 2017), local
 58 food (Bazzani et al., 2017), genetically modified (GM) foods (DeLong and Grebitus, 2018; Lin et al.,
 59 2019), specialty coffee (Ufer et al., 2019), and apples and wines (Grebitus et al., 2013). To illustrate,
 60 consumers exhibiting higher levels of openness, conscientiousness, and neuroticism are more willing
 61 to accept GM foods (DeLong and Grebitus, 2018; Lin et al., 2019). On the other hand, individuals
 62 with higher levels of agreeableness are less willing to accept GM foods (Ardebili and Rickertsen,
 63 2020).

64

65 On the basis of prior studies (DeLong and Grebitus, 2018; Lin et al., 2019; Ardebili and
 66 Rickertsen, 2020; Ufer et al., 2019) on the relationship between personality traits and food technology,
 67 we hypothesize that individuals who exhibit greater levels of openness, conscientiousness, or

68 neuroticism will have a higher valuation for cultured meat, while those who exhibit greater levels of
 69 agreeableness will have a lower valuation for cultured meat. Furthermore, we hypothesize that
 70 individuals who exhibit higher levels of agency would show a higher valuation for cultured meat.
 71 First, Ufer et al. (2019) found that consumers with higher levels of agency tend to have a greater
 72 tolerance for risk. Since previous research has found that consumers perceive cultured meat to be
 73 risky (Pakseresht et al., 2022), its purchase may involve a certain level of risk. Therefore, consumers
 74 with higher levels of risk tolerance are more likely to be willing to pay a premium price for cultured
 75 meat. In addition, dominant consumers, because of their self-confidence and willingness to embrace
 76 new experiences (Utkarsh et al., 2019), they may be more likely to accept cultured meat as a new
 77 product and demonstrate a higher WTP for it. Second, agency is also linked to social influence and
 78 the desire to maintain or enhance one's status (Cheng et al, 2010; Louvet et al., 2019). Thus,
 79 consumers with higher level of agency may perceive cultured meat as a novel and high-status product,
 80 aligning with their self-image and social aspirations. Such perception can drive consumers to be
 81 willing to pay a premium price to secure cultured meat and reinforce their status. Third, since higher
 82 agency levels correlate with assertiveness in decision-making (Cheng et al, 2010), dominant
 83 consumers may tend to be more decisive and proactive in their choices, which may lead them to be
 84 willing to pay a premium price to ensure they obtain the product (i.e., cultured meat) they desire.

85

86 Despite the important role of personality traits in consumer food choice, to the best of our
 87 knowledge, no study has explored the role of personality traits in consumer preference for cultured
 88 meat. To fill this void, we tested, for the first time, whether and how personality traits affect Chinese
 89 consumer preferences for cultured fresh skinless boneless chicken breast products by using a
 90 hypothetical choice experiment (CE). The innovative aspect of this work is that it is the first study
 91 that provides evidence on whether personality traits are related to consumer preference toward
 92 cultured meat, which can provide useful information for producers, policy makers, and academia.
 93 Specifically, if personality traits explain consumer preference heterogeneity for cultured meat, then
 94 there could be relevant implications for producers of cultured meat to better position and
 95 communicate to targeted groups who have a positive attitude for cultured meat. For instance, if our
 96 study reveals that individuals with specific personality traits, such as openness or conscientiousness,
 97 are more inclined toward cultured meat, producers can tailor their marketing messages accordingly.
 98 This might involve identifying these target groups by analyzing their behavior, for example, through
 99 social platforms. The results of this study can also provide insights for policy makers to develop
 100 effective communication strategies and education campaigns specifically targeted at consumers with
 101 particular personality traits with the aim of promoting cultured-meat technology. For instance, if
 102 certain personality traits are identified as positively related to acceptance of cultured meat,
 103 policymakers can design campaigns that speak directly to consumers who have these traits. This
 104 might involve emphasizing the sustainable and innovative aspects of cultured meat for individuals
 105 with high openness, addressing health and safety concerns for those high in conscientiousness, or
 106 highlighting the social and ethical dimensions for individuals with heightened agreeableness.
 107 Moreover, recognizing the role of personality traits in shaping attitudes toward cultured meat can
 108 guide the development of educational programs that address specific concerns or misconceptions

109 associated with different traits. For example, if neuroticism is found to be a factor influencing
 110 skepticism about cultured meat, then educational campaigns can provide accurate information to
 111 alleviate these concerns and promote a more positive perception.

112

113 This study is structured as follows. First, an extensive literature review of personality traits and
 114 cultured meat preference is provided. Second, a description of the applied methodology and
 115 econometric analysis used in this study is illustrated. Third, the results of this study are presented and
 116 discussed. Finally, conclusions, policy implications, and future research avenues are provided.

117

118 2. LITERATURE REVIEW ON PERSONALITY TRAITS

119 Personality traits of an individual describe a relatively stable pattern of behavior, thoughts, and
 120 emotions (Roberts, 2009). A variety of personality trait models and scales have been developed to
 121 capture and organize individual differences among people (Lin et al., 2019). One of the main models
 122 is the Five Factor Model or the “Big Five” (John and Srivastava, 1999). The Big Five personality
 123 traits include openness to experience, conscientiousness, extraversion, agreeableness, and
 124 neuroticism (McCrae and Costa, 1999). For example, openness to experience characterizes someone
 125 who is intellectually curious and tends to seek new experiences and explore novel ideas (Zhao and
 126 Seibert, 2006). Someone with a high level of extraversion enjoys social activities and prefers to be
 127 with others than being alone (LePine and Van Dyne, 2001), while individuals who score high on
 128 neuroticism tend to be nervous and often express negative attitudes (LePine and Van Dyne, 2001).
 129 These personality traits work together to describe broad behavioral tendencies associated with future
 130 behavior and behavioral outcomes (Baumert et al., 2017). Lachman and Waver (1997) subsequently
 131 added “agency” to the Big Five traits to address dominance and assertiveness and created the so-
 132 called “Big Six” personality traits. People with high agency are likely to satisfy themselves and ensure
 133 control over their decisions (Grebitus et al., 2013). The Big Six personality traits scale has been
 134 applied in different fields such as studies on consumer food preference over the past decades (e.g.,
 135 DeLong and Grebitus, 2018).

136

137 Big Five and Big Six personality traits scales have been largely used in several studies to
 138 investigate consumer food choices, product labeling, and consumer attitudes toward new and
 139 unfamiliar food. For example, Conner et al. (2017) discovered that plant-based food consumption is
 140 positively linked to openness, extraversion, and conscientiousness. In terms of product labeling,
 141 DeLong and Grebitus (2018) found that consumers who scored high in conscientiousness prefer
 142 labeled GM animal products, while Ardebili and Rickertsen (2020) found that conscientiousness and
 143 agreeableness are negatively related to consumer acceptance of GMO salmon. Peschel et al. (2019),
 144 using the ‘Big Six’ model to investigate US consumer preference for dried fruit, found that
 145 neuroticism and agency were positively related to production method labeling. Nezlek and Forestell

146 (2019) identified a negative relationship between food neophobia, openness, and extraversion, and
 147 that approach motive toward new foods was positively related to openness and agreeableness. Some
 148 authors found that the relationship between personality traits and food purchasing depends on the
 149 country as well as culture. For example, in a study on consumer preferences for GM pork in China,
 150 Italy, and the United States, Lin et al. (2019) found that openness was positively related to consumer
 151 acceptance of GM pork in all three countries, while conscientiousness was negatively related to
 152 consumer acceptance in the US and Italy but is unrelated in China.

153

154 **3. MATERIALS AND METHODS**

155 **3.1 Data**

156 We conducted an online survey in 2019 in the three first-tier cities of China; namely, Beijing,
 157 Shanghai, and Guangzhou. Consumers in these cities generally have a higher income and higher
 158 education level than in other areas and are thus more likely to consider high-quality and novel foods
 159 (Zhang et al., 2020b). Second, these top-tier cities attract people from all over China, especially young
 160 people, who tend to be more open-minded to new food products. This means that these cities have a
 161 larger market potential for cultured meat. Furthermore, an online survey approach can obtain a good
 162 representative sample of the Chinese urban population because most of Chinese citizens have access
 163 to the Internet. The penetration rate of Internet services in towns in China is 81.3% (China Internet
 164 Development Statistics Report, 2022) and is much higher (95%) in top-tier cities, e.g., Beijing,
 165 Shanghai, and Guangzhou. The number of Internet users in China was about 1.051 billion by the end
 166 of June, 2022 (China Internet Development Statistics Report, 2022).

167

168 Figure 1 depicts the procedures of the survey. Participants were recruited by the Baidu Group²
 169 in China and screened to ensure that they were over 18 years of age and were responsible for food
 170 purchasing in the household. The questionnaire consists of three parts. The first part includes the eight
 171 CE tasks. The second is personality trait scales, for which participants are required to complete thirty
 172 items. The third is sociodemographic characteristics, including age, gender, income, education and
 173 household size, and the number of children under 18. A total of 285 observations were used in the
 174 study. Several measures were taken to ensure the best possible data quality. First, following Alesina
 175 et al. (2018), before respondents started to respond to the questionnaire, we informed them about the
 176 importance of their honest responses. Second, after background questions and before the choice tasks,
 177 we showed an “attention check” question to nudge respondents to pay extra attention to the
 178 subsequent choice experiment (CE) tasks.

179

<Insert Fig.1>

² Baidu Group is a company that provides services for recruiting participants and collecting survey data. Website: <https://mtc.baidu.com/product/qss.html>

180

181 **3.2 Experimental design**

182 To elicit consumer preference for a cultured meat product, a hypothetical CE about chicken breast
 183 purchasing behavior was administered. Chicken breast was chosen as the product of interest given
 184 that China was the world's second-biggest market for chicken products, at about 14.945 million tons
 185 in 2022 (USDA,2023). Furthermore, cultured chicken was recently approved to be sold in the market
 186 in Singapore by the company Eat Just, Inc. and in the United States for the company Good Meat and
 187 Upside Foods (Arin Baker, 2023); thus, it is possible that other countries, including China, could soon
 188 follow.

189

190 In the CE, respondents are asked to indicate their preferred chicken breast product among several
 191 of experimentally designed sets of alternatives. Each alternative profile was thereby characterized by
 192 a specific combination of attribute levels and a no-purchase option. In this study, the CE was based
 193 on chicken breast characterized by the following attributes: production technology, carbon trust label,
 194 antibiotic use, and price (Table 1). Production technology was included because the main aim of the
 195 study is to elicit consumers' WTP for cultured meat in relation to different personality traits. Two
 196 levels, namely, conventional and cultured meat, were specified. Cultured meat technology is the
 197 subject of our study, while conventional meat production is the most common method of chicken
 198 production. Carbon trust label refers to the environmental impact of food production, transportation,
 199 and use of the food products in terms of CO₂ emissions. We included a carbon trust label because
 200 consumers are increasingly interested in food products with a lower carbon footprint. Indeed, carbon
 201 trust has been found to affect Chinese consumer food choices (Chen et al., 2018; Yang et al., 2021; Li
 202 et al., 2017; Rondoni and Grasso, 2021). Two levels corresponding to 'carbon trust label' or 'no label'
 203 were specified. We also included 'antibiotics use' given that antibiotics might be used during chicken
 204 production (Chriki and Hocquette, 2020), which is a concern that could affect consumer meat choices.
 205 In addition, there was a debate about the use of antibiotics in animal production, as this might pose
 206 potential health risks for consumers (Lusk et al., 2006; Boyer et al., 2017; Grunert et al. 2018). In
 207 China, consumers are concerned about food safety and pay much attention to food safety attributes
 208 (Zhou and Jin, 2013; Zhang et al., 2021; Yuan et al., 2024). Therefore, the attribute "antibiotics use"
 209 may play a key role in consumers' food decision making. The "antibiotics use" was specified with
 210 two levels: a claim stating "no antibiotics ever" and no information reported. 'No antibiotics ever'
 211 means that antibiotics were never used during the production process. Finally, we included price
 212 because it is a significant determinant of consumer food choice, and it can be used to derive a
 213 monetary evaluation of WTP. Four price levels, i.e., 8.9 RMB, 13.9 RMB, 18.9 RMB, and 23.9RMB,
 214 were set to reflect the average market price for 500 g chicken breast. The 500g weight of chicken
 215 breast is the typical size sold in retail stores in China.

216

<insert table 1>

217

218 The attributes and attribute levels were first used to develop an orthogonal fractional design
 219 reducing the full factorial 256 ($4^2 \times 2^4$) combinations of the attributes to 24. The D-efficiency score
 220 was 99.16% for the chosen design, indicating a very minimal variance matrix (Britwum and Yiannaka,
 221 2019). To limit the response time and consumer fatigue, and to increase the response rate, we split
 222 the 24 choice sets into three blocks of eight choice sets³. Each choice set included two chicken breast
 223 options and an ‘opt-out’ option. An example of a choice task is shown in Figure 2. The ‘opt-out’
 224 option was added to each choice task to present a more realistic market scenario where respondents
 225 could voluntarily opt out of a purchase, which avoided over-inflation of the estimates (Hensher et al.,
 226 2015). To avoid ordering effects, the choice sets were presented in random order as Savage and
 227 Waldman (2008) recommended. In addition, to mitigate the potential hypothetical bias, a cheap talk
 228 script (Cummings and Taylor, 1999) was provided before the series choice tasks.

229 <insert Fig. 2>

230

231 Since cultured meat is novel for consumers, we provided them with a detailed explanation.
 232 Specifically, we explained and described all of the attributes and levels of the alternative products to
 233 consumers before the choice tasks, including the production method (i.e., cultured meat and
 234 conventional meat) as typical procedure in CE questionnaires (for example, Asioli et al., 2022; Slade,
 235 2018; Ortega et al., 2022) (see the questionnaire in appendix A).

236

237 3.3 Personality measurement

238 Upon completion of the choice tasks, consumers were asked to complete a questionnaire to collect
 239 information on their personality traits. To measure the personality traits, we used the Big Six
 240 personality scale, also called Midlife Development Inventory (MIDI) scale, which was developed by
 241 Lachman and Weaver (1997) to elicit a consumer personality profile.

242

243 The MIDI scale consists of six personality dimensions, including agency, agreeableness,
 244 openness, neuroticism, extraversion, and conscientiousness (Lachman and Weaver, 1997). Each
 245 dimension is measured by five items/adjectives that each corresponds to a series of individual
 246 characteristics (see Table 2). Each adjective is measured using a scale from 1 (not at all) to 4 (a lot)
 247 that indicates the degree to which each adjective on the scale describes the responder. Each

³The experimental design also allows conventional chicken breast with carbon trust label and cultured chicken breast with no carbon trust label, which is part of the experimental choice design. Actually, there is uncertainty if cultured meat could result in a smaller carbon footprint compared to conventional chicken breast (Lynch and Pierrehumbert, 2019). Thus, it is possible that conventional meat has a smaller carbon footprint compared to the cultured meat production.

248 personality trait was computed by calculating the mean scores of the adjectives (Lachman and Weaver,
 249 1997).

250

251 We used the MIDI scale for four main reasons. First, the MIDI scale is able to capture personality
 252 in an economical and reliable way in a short time (Lachman and Weaver, 1997; Grebitus et al., 2013;
 253 Bazzani et al., 2017; Lin, et al., 2019). Second, the MIDI scale has been used previously to elicit
 254 consumer personality traits in the context of novel foods (e.g., Grebitus et al., 2013; DeLong and
 255 Grebitus, 2018), which show consistent and robust results. Third, the MIDI scale is simple to
 256 understand and use by respondents. Lastly, compared with the Big Five personality traits scale, the
 257 MIDI scale is more comprehensive since it adds an additional dimension (i.e., agency).

258

259 <insert Table 2>

260

261 **4. ECONOMETRIC ANALYSIS**

262 To test the effect of personality traits on consumer WTP for cultured chicken, we used discrete choice
 263 models (DCMs), which are typically used to analyze choice data (Hensher et al., 2015). DCMs are
 264 based on modeling “utility”, which is the net benefit a consumer obtains from selecting a specific
 265 product in a choice situation as a function of the attributes that are embedded in the product under
 266 consideration (Hensher et al., 2015). The utility of an individual n in choosing alternative j in the choice
 267 situation t can be expressed as follows:

268
$$U_{njt} = \beta' X_{njt} + \varepsilon_{njt} \quad (1)$$

269 where X_{njt} is the observable portion of utility function, which represents the individual n utility
 270 obtained from alternative j in choice situation t ; β is the vector of taste parameters corresponding to
 271 the attributes; and ε_{njt} is the unobservable portion of the utility function, which is assumed to be
 272 independent of the vector β and x .

273

274 Within this framework, different DCMs can be derived depending on assumptions regarding the
 275 distribution of the unobserved portion of the utility and the functional form of the utility. There are
 276 different specifications of discrete models, from multinomial logit (MNL), which assumes
 277 homogeneity in individuals’ tastes, to the random parameter logit (RPL) model, which accounts for
 278 preference heterogeneity. In the MNL, the unobserved portion of the utility (i.e., error terms) is
 279 assumed to be independently and identically distributed as a Gumbel distribution (extreme value
 280 type I). This assumption also implies that individuals’ preferences are homogeneous. However,

281 individuals may actually differ in terms of taste intensities (Train, 2009), which is the case in the
 282 context of cultured meat (Van Loo et al., 2020; Ortega et al., 2022). Thus, the assumption of
 283 homogeneous preference is likely to produce biased coefficient estimates. Thus, to account for
 284 individuals' heterogeneous preference, the RPL model was employed in our study. The RPL model
 285 allows for random taste variation and consideration of the panel structure of choice data (Train, 2009).

286

287 However, the basic RPL model does not consider the systematic difference between the opt-out
 288 option and alternative options. Because the alternative options are hypothetical and vary in every
 289 choice task, the opt-out option is actually experienced by respondents and is self-repeated in all the
 290 choice tasks. As such, the unobservable utilities of the two purchase options might have a higher
 291 variance in comparison to the unobservable utility of the opt-out option, and they might be more
 292 correlated amongst themselves than with the utility of the opt-out option (Bazzani and Canavari,
 293 2017). To account for the correlation of the purchase alternative utilities in the estimation, the
 294 Random Parameter Logit–Error Component (RPL–EC) model (Scarpa and Alberini, 2005; Scarpa et
 295 al., 2007) has been employed. The RPL–EC model includes a standard RPL model with an additional
 296 error term with zero-mean, which was added to the utility function in equation (1) as follows:

$$297 \quad U_{njt} = \beta'_n X_{njt} + \eta_{it} + \varepsilon_{njt} \quad (2)$$

298 where η_{it} is the error component (EC) that is associated with alternatives that portray purchasing
 299 options in the choice tasks and is absent in the utility of the opt-out alternative (Scarpa et al., 2005).
 300 In our choice context, the RPL–EC model can be specified as follows:

$$301 \quad U_{njt} = ASC + \beta_1 Price_{njt} + \beta_{2n} Cultured_{njt} + \beta_{3n} Carbon_{njt} + \beta_{4n} Antibiotics_{njt} + \eta_{it} + \varepsilon_{njt} \quad (3)$$

302 where n represents the n th individual, t indicates the choice situation, and j refers to the alternatives.
 303 ASC is an alternative-specific constant dummy variable that assumes value 1 when the opt-out option
 304 is chosen and 0 otherwise. $Price_{njt}$ is a continuous variable expressing price for 500 g of chicken
 305 breast, which is represented by four price levels in the experiment design (i.e., 8.9 RMB, 13.9 RMB,
 306 18.9 RMB, and 23.9 RMB). $Cultured_{njt}$ is the dummy variable equal to 1 if the chicken breast is
 307 produced by cultured meat technology, and 0 otherwise. $Carbon_{njt}$ is the dummy variable equal to 1
 308 if the chicken breast has been branded with the “carbon trust” label, and 0 otherwise. $Antibiotics_{njt}$
 309 is the dummy variables equal to 1 if the chicken breast has been produced using the claim “no
 310 antibiotics ever”, and 0 otherwise. The parameters corresponding to the three non-price attributes
 311 were modeled as random parameters assumed to follow a normal distribution, and the opt-out
 312 parameter was modeled as a fixed parameter. The attribute level coefficients were each specified as
 313 random and normally distributed with 500 Halton draws.

314

315 To test how personality traits impact consumers' WTP for the three attributes, namely, cultured
 316 meat, carbon trust label, and antibiotic use, three interaction effect models were estimated. Following
 317 prior research (Bazzani et al., 2017; Lin et al., 2019; Lim et al., 2013), the effect of personality traits
 318 was accounted for by means of interaction terms between the six personality traits (i.e. agency,
 319 openness, agreeableness, neuroticism, extraversion, and conscientiousness) and the three attributes
 320 (i.e., cultured, carbon, and antibiotics) in the design. The empirical equations are specified as follows:

321 $U_{njt} = ASC + \alpha Price_{njt} + \beta_{in} X_{njt} + \gamma_i (Cultured_{njt} * Personality_n) + \eta_{it} + \varepsilon_{njt}$ (4.1)

322 $U_{njt} = ASC + \alpha Price_{njt} + \beta_{in} X_{njt} + \gamma_i (Carbon_{njt} * Personality_n) + \eta_{it} + \varepsilon_{njt}$ (4.2)

323 $U_{njt} = ASC + \alpha Price_{njt} + \beta_{in} X_{njt} + \gamma_i (Antibiotics_{njt} * Personality_n) + \eta_{it} + \varepsilon_{njt}$ (4.3)

324 where:

325 $X_{jt} = [Cultured, Carbon, Antibiotics]_{jt}$,

326 $Personality_n = [Agency, Openness, Agreeableness, Neuroticism, Extraversion, Conscientiousness]$

327 Eq. (4.1) represents the interaction between personality information and the “cultured” attribute,
 328 Eq. (4.2) represents the interaction between personality information and the “carbon” attribute, and
 329 Eq. (4.3) represents the interaction between personality information and the “antibiotics” attribute. In
 330 all three models, the total utility consists of six components. First, ASC is an alternative-specific
 331 constant dummy variable that assumes value 1 when the opt-out option is chosen, and 0 otherwise.
 332 Second is the price scalar ($Price_{njt}$) along with its fixed parameter α . Third, the 3×1 vector X_{njt}
 333 represents the chicken breast attributes (i.e., Cultured, Carbon, and Antibiotics) with dummy variables.
 334 The three attributes have the same definitions as specified in Eq. (3). The random parameter β is
 335 assumed to be normally distributed. Fourth, the component $\gamma_i (Cultured_{njt} * Personality_n)$, γ_i
 336 $(Carbon_{njt} * Personality_n)$ and $\gamma_i (Antibiotics_{njt} * Personality_n)$ captures the personality–
 337 interaction effects with the three attributes, namely, cultured (Eq. 4.1), carbon (Eq. 4.2), and
 338 antibiotics (Eq. 4.3), respectively. Specifically, the 1×6 personality vector $Personality_n$ interacts
 339 with the dummy variables $Cultured_{njt}$, $Carbon_{njt}$, and $Antibiotics_{njt}$ to capture the co-variation
 340 between each personality trait (i.e., agency, openness, agreeableness, neuroticism, extraversion, and
 341 conscientiousness) and cultured-meat preference (i.e., Cultured for eq(4.1), Carbon for eq.(4.2), and
 342 Antibiotics for eq.(4.3)). Fifth, η_{it} is the error component (EC) that is associated with alternatives that
 343 portray purchasing options in the choice tasks and is absent in the utility of the opt-out alternative
 344 (Scarpa et al., 2005). Sixth, ε_{njt} is the unobservable portion of the utility function.

345

346 **5. RESULTS**347 **5.1 Descriptive analysis**

348 The respondents of our survey are all chicken breast purchasers. The frequency of consumption of
 349 chicken breast products revealed that about 40% of respondents purchase chicken breast daily, about
 350 50% purchase it twice a week, and about 10% purchase it once a week or less frequently. Table 3
 351 reports the demographics of our sample. Generally, the demographics of our sample aligns with other
 352 studies that have targeted Chinese urban consumers (e.g., Zhang et al., 2022; Ortega et al., 2022; Lin
 353 et al., 2020; Chen et al., 2023). Approximately half of our sample was female (47.02%). The average
 354 age was 33.28 years. The majority of the sample had a monthly family income higher than 20,000
 355 RMB. Approximately 84% of the sample had a bachelor's degree or higher, which is reasonable given
 356 our use of an online survey (Yang et al., 2020).

357 <insert Table 3>

358

359 Table 4 reports the descriptive statistics of personality traits. The Cronbach's alpha parameters
 360 of each personality trait were greater than 0.50, which indicates that the MIDI scale used in our study
 361 is reliable and is internally a consistent tool in measuring personality traits (Bazzani et al., 2017).
 362 Individuals scored the lowest for Neuroticism (2.52) and the highest in Agreeableness (2.79),
 363 suggesting that consumers, on average, identified themselves more as helpful, warm and caring, and
 364 less moody, worrying, and nervous people. This finding was in line with prior studies (DeLong and
 365 Grebitus, 2018; Bazzani et al., 2017; Lin et al., 2019).

366 <insert Table 4>

367

368 **5.2 WTP estimates**

369 The results of the estimation of the RPL-EC using equation (3) for the main effects are exhibited in
 370 Table 6. We reported the coefficients of the main effects for cultured, carbon, price, antibiotics, and
 371 ASC, as well as the corresponding standard errors (SEs), standard deviations (SDs), and significances
 372 for the attributes (p values). The distributions of the EC coefficients associated with the alternatives
 373 have a significant estimate for the SDs, suggesting that utility variance is much larger for utility of
 374 the alternatives as compared with the opt-out option. We found some interesting results. On average,
 375 consumers prefer conventional chicken (coefficient: -0.15, p -value: 0.03) labeled with the claim 'no
 376 antibiotics ever' (coefficient: 0.11, p -value: 0.001), and of low price (coefficient: -0.01, p -value:
 377 0.03). In addition, the significant SDs for the attributes Cultured, Carbon, and Antibiotics indicate an
 378 interesting consumer heterogeneity preference for these three attributes.

379

380 Table 5 shows consumers' mean WTP (mWTP). Consumers mWTP for cultured chicken,
 381 carbon-labeled chicken, and chicken with the claim "no antibiotics ever" are 1.85 RMB/500 g,
 382 4.92 RMB/500 g, and 14.08 RMB/500 g, respectively. The results reveal that consumers are willing
 383 to pay more for the chicken breast labeled with the claim "no antibiotics ever" rather than for the
 384 brand "Carbon Trust" label and "production technology".

385 <insert Table 5>

386

387 **5.3 The relationship between personality traits and WTP**

388 The results of the RPL-EC using Eq. (4) for the interaction terms between the production technology
 389 (cultured) attribute and the personality traits are exhibited Table 6. We reported the coefficients of
 390 attributes and interaction terms, as well as the corresponding standard errors (SEs), standard
 391 deviations (SDs), and significances for the attributes (*p* values). We found some interesting relations
 392 between the attribute Cultured and three personality traits, namely, Agreeableness, Neuroticism, and
 393 Conscientiousness. Specifically, we found a negative relation (coefficient = -0.40, *p* value = 0.00)
 394 between Cultured and Agreeableness, which suggests that respondents with a higher tendency of
 395 being helpful and agreeable tend to prefer more conventional meat. In addition, we found a positive
 396 relation (coefficient = 0.19, *p* value = 0.50) between Cultured and Neuroticism, which indicates that
 397 more worrying and nervous individuals tend to prefer cultured meat. We then found a negative
 398 relation (coefficient = -0.35, *p* value = 0.03) between Cultured and Conscientiousness, which
 399 suggests that more organized, responsible, hardworking, and careless individuals are less likely to
 400 prefer cultured meat.

401 <insert Table 6>

402

403 The results of the RPL-EC using Eqs. (5) and (6) for the interaction terms between Carbon
 404 attribute, Antibiotics, and the personality traits are also exhibited in Table 7. We found a positive
 405 relation (coefficient = 0.27, *p* value 0.05) between Carbon and Extraversion, which suggests that
 406 respondents with a higher tendency of being outgoing and friendly tend to prefer more carbon-labeled
 407 meat. We did not find any significant interaction terms among personality traits and Antibiotics. This
 408 suggests that the personality traits did not affect consumers' preference for chicken breast with the
 409 claim "no antibiotics ever". To enhance our estimation results, we also estimated a single model
 410 including all the interaction terms (Appendix Table A1). The results are similar to the estimation
 411 results of Table 6.

412

413 Following Grebitus et al. (2013), we present figures illustrating the relationship between
 414 consumers' WTP for cultured meat and each personality trait. Individual WTP was calculated based
 415 on the coefficients of Eq. (3). Figure 3 depicts the relationship between consumers' WTP for cultured

416 meat and each corresponding personality trait. Consistent with the findings in Table 6, agreeableness
 417 and conscientiousness exhibit a significantly negative effect on WTP. The relationship between
 418 agency and WTP is slightly positive but not significant at the level of 5%, while the relationship
 419 between openness and WTP follows a similar trend. However, the relationship between agency and
 420 WTP is slightly negative but not significant.

421 <Insert Fig.3>

422

423 **6. DISCUSSION**

424 We investigated if and how personality traits affect Chinese urban consumer preferences for
 425 hypothetical cultured fresh skinless boneless chicken breast products by using a hypothetical choice
 426 experiment. Several main outcomes were identified. First, we found that, on average, consumers
 427 prefer conventional chicken labeled with the claim "no antibiotics ever" and at a low price. This
 428 finding is corroborated by Van Loo (2020) and Asioli et al. (2022). Second, we found a negative
 429 relationship between agreeableness and consumers' WTP for cultured meat. Individuals high in
 430 agreeableness are often characterized by their tendency to be cooperative, compassionate, and
 431 compliant (Lin et al., 2019). Such individuals may be more skeptical or cautious about novel or
 432 unconventional food technologies like cultured meat. Their preference for maintaining harmony and
 433 adhering to established norms might make them less open to adopting new and unfamiliar products,
 434 especially those involving significant technological intervention. This finding is corroborated by Lin
 435 et al. (2019), who found that more agreeable consumers are less likely to choose GMO foods. Third,
 436 we found a negative relationship between conscientiousness and consumers' WTP for cultured meat.
 437 Conscientious individuals are often more conservative and risk-averse, preferring stability,
 438 predictability, and adherence to traditional practices (Ufer et al., 2019). Cultured meat, as a novel and
 439 innovative food technology, may be perceived as risky or uncertain. Conscientious consumers might
 440 be less willing to deviate from traditional meat consumption patterns and therefore show a lower
 441 WTP for cultured meat. The similarity of these findings to those observed in the context of GMO
 442 foods (Lin et al., 2019) suggests a broader pattern where conscientious individuals are cautious about
 443 adopting foods produced with advanced scientific and technological interventions. Their conservative
 444 nature and preference for established norms make them less inclined to embrace novel food
 445 technologies, leading to a lower valuation of cultured meat.

446

447 Overall, our findings suggest that personality traits play a key role in affecting consumer
 448 valuation for cultured meat, which can provide valuable insights for both the cultured-meat industry
 449 and policymakers. Specifically, marketers can develop customized marketing campaigns tailored to
 450 specific personality traits, engaging consumers through personalized messaging and promotions. In
 451 the digital era, the personality-based marketing strategy has been proven to be effective (Hirsh et al.,
 452 2012). Consumer personality traits can be predicted, for example, by investigating their online
 453 experience and social profiles (Golbeck et al., 2011), which allows personality traits to be predicted

454 from social media use and online consumer behavior. Therefore, marketers can employ consumers' 455 use of social media to identify agreeableness, neuroticism, and conscientiousness of consumers and 456 to optimize their outreach efforts through tailored content and advertisements. Policy makers can 457 support educational initiatives aimed at enhancing consumer understanding of cultured meat, allocate 458 resources to promote sustainable practices within the industry, and collaborate with stakeholders to 459 establish transparent marketing guidelines. By addressing potential concerns associated with 460 agreeable and conscientious personalities, policymakers can contribute to the broader acceptance of 461 cultured meat products within diverse consumer segments.

462

463 7. CONCLUSIONS

464 Our study is the first to explore whether and how individuals' personality traits shape consumer 465 preference for cultured meat. We find that personality traits play a role in explaining heterogeneous 466 preferences for cultured meat. Our results provide useful insights that can be used by policymakers 467 and by cultured-meat producers to develop and market cultured meat.

468

469 Several limitations can be identified from this study. First, consumers may still be unfamiliar 470 with cultured meat, potentially leading to cognitive bias. This bias may result in consumers expressing 471 a lower WTP for cultured meat. Although we provided detailed information on cultured meat to 472 respondents before the choice tasks, we did not assess whether respondents had a clear understanding 473 of what cultured meat is. Perhaps with the future availability of cultured meat in the market, future 474 studies can potentially mitigate this bias by using samples of consumers with prior experience with 475 cultured meat. Second, our study relied on hypothetical purchasing scenarios, which may not fully 476 capture real-world purchasing behavior. Third, our sample size is limited and thus offers limited 477 generalizability of our findings to the Chinese urban population.

478

479 Several future research avenues can be identified from this study. First, future studies should 480 further investigate consumers' WTP by conducting non-hypothetical (real) experiments in store or 481 labs using experimental auctions (Lusk and Shogren, 2009), multiple price lists (Asioli et al., 2022), 482 or real CE combined with sensory evaluations (Asioli et al., 2017) of cultured meat when cultured 483 meat will be available and approved for consumer tasting. Second, future research should conduct 484 longitudinal studies that can provide insights into the stability and changes in consumer preferences 485 for cultured meat over time. Finally, it would also be interesting to test the robustness of our results 486 on personality traits on consumer valuations for other types of cultured meat (i.e., beef, pork, lamb), 487 using larger sample sizes and testing in other countries, given the expected increase in meat demand 488 in many countries around the world.

489 REFERENCES

490 Alesina, A., Stantcheva, S. and Teso, E. (2018). Intergenerational mobility and preferences for
491 redistribution. *American Economic Review*, 108, 521-54.

492 Asioli, D., Mignani, A., and Alfnes, F. (2021). Quick and easy ? Respondent evaluations of the Becker
493 – DeGroot – Marschak and multiple price list valuation mechanisms. 1, 215–234.

494 Asioli, D., Varela, P., Hersleth, M., Lengard, V., Veflen, N., and Tormod, N. (2017). A discussion of
495 recent methodologies for combining sensory and extrinsic product properties in consumer
496 studies. 56, 266–273.

497 Asioli, D., Bazzani, C. and Nayga, R. M. (2022). Are consumers willing to pay for in-vitro meat? An
498 investigation of naming effects. *Journal of Agricultural Economics*, 73(2), 356–375.

499 Asioli, D., Aschemann-Witzel, J. and Nayga Jr, R. M. (2020). Sustainability-Related Food Labels.
500 *Annual Review of Resource Economics*, 12, 171–185.

501 Almlund, M., Duckworth, A.L., Heckman,J., and Kautz, T(2011).Personality psychology and
502 economics. Handbook of the economics of education(pp.1-181). Elsevier.

503 Ardebili, A. T. and Rickertsen, K. (2020). Personality traits, knowledge, and consumer acceptance of
504 genetically modified plant and animal products. *Food Quality and Preference*, 80(October 2019),
505 103825.

506 Arin Baker, 2023."Lab-Grown Chicken Can Now Be Sold in the U.S. But Good Luck Finding Some
507 to Buy".<https://time.com/6238727/usda-approves-cultivated-chicken-for-sale/>

508 Bryant, C., Szejda, K., Parekh, N., Desphande, V. and Tse, B. (2019). A survey of consumer
509 perceptions of plant-based and clean meat in the USA, India, and China. *Frontiers in Sustainable
510 Food Systems*, 3, 11.

511 Bryant, C. and Barnett, J. (2020). Consumer acceptance of cultured meat: An updated review (2018-
512 2020). *Applied Sciences (Switzerland)*, 10(15).

513 Bazzani, C. and Canavari, M. (2017). Is local a matter of food miles or food traditions? *Italian Journal
514 of Food Science*, 29(3),505-517.

515 Baumert, A, Schmitt, M, Perugini, M, Johnson, W, Blum, G, Borkenau, P, Constantini, G, Denissen,
516 J, Fleeson, W, Grafton, B, Jayawickreme, E, Kruzius, E, MacLeod, C, Miller, L, Read, S,
517 Robinson, M, Roberts, B, Wood, D. and Wrzus, C. (2017). Integrating personality structure,
518 personality process, and personality development. *European Journal of Personality*, 31(5), 503-
519 528.

520 Boyer, A., Neth, J. and Nunlist, M. (2017). Consumer Chicken Consumption Survey Results. Chicken
521 Marketing Summit. Available from URL: 555
522 <https://www.wattglobalmedia.com/chickenmarketingsummit/2017-presentations>.

523 Britwum, K. and Yiannaka, A. (2019). Consumer willingness to pay for food safety interventions:
 524 The role of message framing and issue involvement. *Food Policy*, 86, 101726.

525 Bazzani, C., V. Caputo, R.M. Nayga, Jr. and M. Canavari.(2017). Revisiting Consumers' Valuation
 526 for Local Versus Organic Food Using a Nonhypothetical Choice Experiment: Does Personality
 527 Matter? *Food Quality and Preference*, 62, 144–154.

528 Chen, B., Zhou, G. and Hu, Y. (2023). Estimating consumers ' willingness to pay for plant-based
 529 meat and cultured meat in China. *Food Quality and Preference*, 111(August), 104962.

530 Chriki, S. and Hocquette, J. F. (2020). The myth of cultured meat: a review. *Frontiers in nutrition* 7,
 531 7.

532 Cummings, R. G. and Taylor, L. O. (1999). Unbiased value estimates for environmental goods: a
 533 cheap talk design for the contingent valuation method. *American Economic Review* 89, 649-665.

534 Conner, T.S., Thompson, L.M., Knight, R.L., Flett, J.A.M., Richardson, A.C., Brookie, K.L.(2017),
 535 The role of personality traits in young adult fruit and vegetable consumption. *Frontiers in
 536 psychology*, 8,119.

537 China Internet Development Statistics Report, 2022.
 538 <https://www.cnnic.net.cn/NMediaFile/2023/0908/MAIN1694151810549M3LV0UWOAV.pdf>

539 Cheng, J. T., Tracy, J. L., and Henrich, J. (2010). Pride, personality, and the evolutionary foundations
 540 of human social status. *Evolution and Human Behavior*, 31(5), 334–347.
 541 <https://doi.org/10.1016/j.evolhumbehav.2010.02.004>

542 Chen, N., Zhang, Z.H., Huang, S., Zheng, L. (2018). Chinese consumer responses to carbon labeling:
 543 evidence from experimental auctions. *Journal of Environmental Planning and Management*,
 544 61(13), 2319-2337.

545 DeLong, K. L. and Grebitus, C. (2018). Genetically modified labeling: The role of consumers' trust
 546 and personality. *Agribusiness*, 34(2), 266-282.

547 Dupont, J. and Fiebelkorn, F. (2020). Attitudes and acceptance of young people toward the
 548 consumption of insects and cultured meat in Germany. *Food Quality and Preference*, 85,
 549 103983.

550 Ferguson, E., Heckman, J.J. and Corr, P.(2011). Personality and economics: Overview and proposed
 551 framework. *Personality and Individual Differences*, 51(3), 201-209.

552 Grebitus,C. and Dumortier, J.(2016). Effects of values and personality on demand for organic produce.
 553 *Agribusiness*, 32(2), 189-202.

554 Grebitus, C., Lusk, J. L. and Nayga, R. M. (2013). Explaining differences in real and hypothetical
 555 experimental auctions and choice experiments with personality. *Journal of Economic
 556 Psychology*, 36,11–26.

557 Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., Pierrehumbert, R.T.,
 558 Scarborough, P., Springmann,M. and Jebb, S. A. (2018). Meat consumption, health, and the
 559 environment. *Science* 361, eaam5324.

560 Gómez-Luciano, C. A., de Aguiar, L. K., Vriesekoop, F. and Urbano, B. (2019). Consumers'
 561 willingness to purchase three alternatives to meat proteins in the United Kingdom, Spain, Brazil
 562 and the Dominican Republic. *Food Quality and Preference*, 78, 103732.

563 Grunert, K. G., Sonntag, W. I., Glanz-Chanos, V. and Forum, S. (2018). Consumer interest in
 564 environmental impact, safety, health and animal welfare aspects of modern pig production:
 565 Results of a cross-national choice experiment. *Meat science*, 137, 123-129.

566 Golbeck, J., Robles, C., Edmondson, M. and Turner, K. (2011). Predicting personality from twitter.
 567 Privacy, security, risk and trust (PASSAT) and 2011 IEEE third international conference on
 568 social computing (SocialCom), 2011 IEEE third international conference on (pp. 149–156).
 569 IEEE.

570 Hofstee, W.K.B.(1994). Who should own the definition of personality? *European Journal of
 571 Personality*, 8, 149-162.

572 Hensher, D.A., Rose, J.M. and Greene, W.H. (2015). Applied Choice Analysis, second edition.
 573 Cambridge University Press.

574 Hirsh, J. B., Kang, S. K. and Bodenhausen, G. V. (2012). Personalized persuasion: Tailoring
 575 persuasive appeals to recipients' personality traits. *Psychological Science*, 23(6), 578–581.

576 John, O. P., & Srivastava, S. (1999). The Big Five trait taxonomy: History, measurement, and
 577 theoretical perspectives. *Handbook of personality: Theory and Research*, 2, 102–138.

578 Keller,C. and Siegrist, M.(2015). Does personality influence eating styles and food choices? Direct
 579 and indirect effects. *Appetite*, 84, 128-138.

580 LePine, J.A. and Van Dyne, L. (2001). Voice and cooperative behavior as contrasting forms of
 581 contextual performance: evidence of differential relationships with Big Five personality
 582 characteristics and cognitive ability. *Journal of Applied Psychology*, 86 (2), 326–336.

583 Lusk, J.L. and Shogren, J.F.(2009) Experimental Auctions: Methods and Applications in Economic
 584 and Marketing Research. Cambridge University Press.
 585 <https://doi.org/10.1017/CBO9780511611261>

586 Lin, W., Ortega, D. L., Caputo, V. and Lusk, J. L. (2019). Personality traits and consumer acceptance
 587 of controversial food technology: A cross-country investigation of genetically modified animal
 588 products. *Food Quality and Preference*, 76(March), 10–19.

589 Lachman, M.E. and Weaver, S.L.(1997). The midlife development inventory(MIDI) personality
 590 scales: Scale construction and scoring. Waltham, MA: Brandeis University.

591 Lusk, J. L., Norwood, F. B. and Pruitt, J. R. (2006). Consumer demand for a ban on antibiotic drug
 592 use in pork production. *American Journal of Agricultural Economics* 88, 1015-1033.

593 LePine, J.A. and Van Dyne, L.(2001). Voice and cooperative behavior as contrasting forms of
 594 contextual performance: evidence of differential relationships with Big Five personality
 595 characteristics and cognitive ability. *Journal of Applied Psychology*, 86 (2), 326–336.

596 Louvet, E., Cambon,L., Milhabet,I. & Rohmer,O. (2019): The relationship between social status and
 597 the components of agency, *The Journal of Social Psychology*,159(1),30-45.

598 Lynch, J., & Pierrehumbert, R. (2019). Climate Impacts of Cultured Meat and Beef Cattle. *Frontiers*
 599 in Sustainable Food Systems, 3(2), 1–11.

600 Lim, K. H., Hu, W., Maynard, L. J., and Goddard, E. (2013). U.S. Consumers' Preference and
 601 Willingness to Pay for Country-of-Origin-Labeled Beef Steak and Food Safety Enhancements.
 602 *Canadian Journal of Agricultural Economics*, 61(1), 93–118.

603 Li, Q., Long, R., & Chen, H. (2017). Empirical study of the willingness of consumers to purchase
 604 low-carbon products by considering carbon labels: A case study. *Journal of Cleaner Production*,
 605 161(2017), 1237–1250.

606 Ministry of Agriculture and Rural Affairs of China, 2021. “14th Five-Year” National Agricultural
 607 and Rural Science and Technology Development Plan. <http://www.moa.gov.cn/govpublic/KJJYS/202112/P020220106615353271383.pdf>

609 McCrae, R. R. and Costa, P. T.J. (1999). A five-factor theory of personality. *Handbook of Personality:*
 610 *Theory and Research*, 2, 139-153.

611 Nezlek, J.B. and Forestell, C.A.(2020). Vegetarianism as a social identity. *Current Opinion in Food*
 612 *Science*, 33,45-51.

613 Ortega, D. L., Sun, J. and Lin, W. (2022). Identity labels as an instrument to reduce meat demand and
 614 encourage consumption of plant based and cultured meat alternatives in China. *Food Policy*,
 615 111(July), 102307.

616 OECD/FAO (2023), “OECD-FAO Agricultural Outlook”, OECD Agriculture statistics (database),
 617 <http://dx.doi.org/10.1787/agr-outl-dataen>.

618 Post, M. J., Levenberg, S., Kaplan, D. L., Genovese, N., Fu, J., Bryant, C. J. and Moutsatsou, P.
 619 (2020). Scientific, sustainability and regulatory challenges of cultured meat. *Nature Food* ,1,
 620 403-415.

621 Post, M. J. (2012). Cultured meat from stem cells: Challenges and prospects. *Meat Science* 92, 297–
 622 301.

623 Peschel, A. O., Grebitus, C., Alemu, M. H. and Hughner, R. S. (2019). Personality traits and
 624 preferences for production method labeling – A latent class approach. *Food Quality and
 625 Preference*, 74(November 2018), 163–171.

626 Pakseresht, A., Ahmadi, S., and Canavari, M. (2022). Review of factors affecting consumer
 627 acceptance of cultured meat. *Appetite*, 170, 105829.

628 Roberts, B.W.(2009).Back to the future: Personality and assessment and personality development.
 629 *Journal of Research in Personality*, 43(2), 137-145.

630 Rondoni, A., & Grasso, S. (2021). Consumers behavior towards carbon footprint labels on food: A
 631 review of the literature and discussion of industry implications. *Journal of Cleaner Production*,
 632 301, 127031.

633 Savage, S. J. and Waldman, D. M. (2008). Learning and fatigue during choice experiments: a
 634 comparison of online and mail survey modes. *Journal of Applied Econometrics*, 23, 351-371.

635 Siegrist, M. and Hartmann, C. (2020a). Perceived naturalness, disgust, trust and food neophobia as
 636 predictors of cultured meat acceptance in ten countries. *Appetite*, 155, 104814.

637 Siegrist, M. and Hartmann, C. (2020b). Consumer acceptance of novel food technologies. *Nature
 638 Food*, 1(6), 343–350. <https://doi.org/10.1038/s43016-020-0094-x>

639 Siegrist, M., Sütterlin, B. and Hartmann, C. (2018). Perceived naturalness and evoked disgust
 640 influence acceptance of cultured meat. *Meat Science*, 139 (March 2017), 213–219.
 641 <https://doi.org/10.1016/j.meatsci.2018.02.007>

642 Spinelli, S., De Toffoli, A., Dinnella, C., Laureati, M., Pagliarini, E., Bendini, A., Braghieri, A.,
 643 Gallina Toschi, T., Sinesio, F., Torri, L., Gasperi, F., Endrizzi, I., Magli, M., Borgogno, M., di
 644 Salvo, R., Favotto, S., Prescott, J. and Monteleone, E. (2018). Personality traits and gender
 645 influence liking and choice of food pungency. *Food Quality and Preference*, 66(August 2017),
 646 113–126.

647 Scarpa, R. and A. Alberini. (2005). Applications of Simulation Methods in Environmental and
 648 Resource Economics. Dordrecht, The Netherlands: Springer.

649 Scarpa, R., Campbell, D. and Hutchinson, G. (2007). Benefit Estimates for Landscape Improvements:
 650 Sequential Bayesian Design and Respondents Rationality in a Choice Experiment. *Land
 651 Economics*, 83(4), 617–634.

652 Sinke, P., Swartz, E., Sanctorum, H., van der Giesen, C., and Odegard, I. (2023). Ex-ante life cycle
 653 assessment of commercial-scale cultivated meat production in 2030. *International Journal of*
 654 *Life Cycle Assessment*, 28(3), 234–254.

655 Slade, P. (2018). If you build it, will they eat it? Consumer preferences for plant-based and cultured
 656 meat burgers. *Appetite*, 125, 428–437.

657 Tuomisto, H. L. (2019). The eco-friendly burger: Could cultured meat improve the environmental
 658 sustainability of meat products? *EMBO reports* 20, e47395.

659 Train, K.E. (2009). Discrete Choice Methods with Simulation, second edition, Cambridge University
 660 Press.

661 USDA.(2023).Poultry and Products Semi-Annual.
 662 <https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Poul>
 663 try%20and%20Products%20SemiAnnual_Beijing_China%20-%20People%27s%20Republic%20of_CH2023-0020.pdf

665 Utkarsh, Sangwan, S., and Agarwal, P. (2019). Effect of consumer self-confidence on information
 666 search and dissemination: Mediating role of subjective knowledge. *International Journal of*
 667 *Consumer Studies*, 43(1), 46–57.

668 Van Loo, E. J., Caputo, V. and Lusk, J. L. (2020). Consumer preferences for farm-raised meat, lab-
 669 grown meat, and plant-based meat alternatives: Does information or brand matter? *Food Policy*
 670 95, 101931.

671 Van Loo, E. J., Caputo, V. and Lusk, J. L. (2020). Consumer preferences for farm-raised meat, lab-
 672 grown meat, and plant-based meat alternatives: Does information or brand matter? *Food Policy*,
 673 95, 101931.

674 Wang, H. H. (2022). The perspective of meat and meat-alternative consumption in China. *Meat*
 675 *Science*, 194(September), 108982. <https://doi.org/10.1016/j.meatsci.2022.108982>

676 Weinrich, R., Strack, M. and Neugebauer, F. (2020). Consumer acceptance of cultured meat in
 677 Germany. *Meat science*, 162, 107924.

678 Yuan, R., Asioli, D., Jin, S. and Nayga, R. M. (2021). Consumers' valuation for cultured meat: A
 679 multi-city choice experiment in China. In 2021 AAEA Annual Meeting, AUG 01–03, Austin,
 680 Texas, United States. <https://doi.org/10.22004/ag.econ.313957>

681 Yuan, R., Jin, S. and Wu, W. (2024). Interactive effects of information and trust on consumer choices
 682 of organic food : Evidence from China. *Appetite*, 192(October 2023), 107115.

683 Yang, X., Chen, Q., Xu, Z., Zheng, Q., Zhao, R., Yang, H., Ruan, C., Han, F., & Chen, Q. (2021).
 684 Consumers' preferences for health-related and low-carbon attributes of rice: A choice
 685 experiment. *Journal of Cleaner Production*, 295, 126443.

686 Yang, Y., Hobbs, J. E. and Natcher, D. C. (2020). Assessing consumer willingness to pay for Arctic
687 food products. *Food Policy*, 92, 101846.

688 Zhao, H. and Seibert, S.E.(2006). The Big Five personality dimensions and entrepreneurial status: a
689 meta-analytical review. *Journal of Applied Psychology*, 91(2), 259–271.

690 Zhang, G., Zhao, X., Li, X., Du, G., Zhou, J. and Chen, J. (2020a). Challenges and possibilities for
691 bio-manufacturing cultured meat. *Trends in Food Science & Technology* 97, 443-450.

692 Zhang, M., Li, L. and Bai, J. (2020b). Consumer acceptance of cultured meat in urban areas of three
693 cities in China. *Food Control* 118, 107390.

694 Zhang, Y., Jin, S., Zhang, Y. Y. and Yu, X. (2021). How country of origin influences Chinese
695 consumers' evaluation of imported milk? *China Agricultural Economic Review*, 13(1), 40–62.
696 <https://doi.org/10.1108/CAER-06-2019-0103>

697 Zhou, J. and Jin, S.(2013) . Food Safety Management in China: A Perspective from Food Quality
698 Control System. World Scientific Publishing Co. Pte. Ltd. and Zhejiang University Press. 5 Toh
699 Tuck Link, Singapore and Hangzhou, China.

700

701

702

703

704

705

706

707

708 **Table 1. Attributes and attribute levels used in choice design.**

Attributes	Levels
Production method	Conventional chicken
	Cultured chicken

Carbon Trust label	Carbon label
No label is reported	
Antibiotics use	No antibiotics ever
No information is reported	
Price (RMB/500g)	8.9
	13.9
	18.9
	23.9

709

710 **Table 2. Big Six Personality Trait description in the MIDI scale.**

Personality Trait	Adjectives
Agency	Self-confident, forceful, assertive, outspoken, dominant
Agreeableness	Helpful, warm, caring, softhearted, sympathetic
Openness	Creative, imaginative, intelligent, curious, broadminded, sophisticated, adventurous
Neuroticism	Moody, worrying, nervous, calm (-)
Extraversion	Outgoing, friendly, lively, active, talkative
Conscientiousness	Organized, responsible, hardworking, careless (-)

711

712 **Table 3. Summary statistics for the survey respondents.**

Variable	Description(n=285)	Our sample
Gender	0 if female	47.02%
	1 if male	52.98%
Age	Years	38.28
		(6.52)
Education	≤High school	11.58%
	Associate or Bachelor Degree	84.21%
	Master's Degree or above	4.21%
Children under 18	0 if no	39.30%
	1 if yes	60.70%
Occupation	Student	0.35%
	Independent worker	11.58%
	Private-sector worker	66.32%
	Public-sector worker	18.60%
	Retired	0.35%
	Unemployed	1.40%
Household income (RMB)	Under 10000	21.05%
	10001-20000	21.40%

20001-30000	20.35%
30001-40000	29.47%
40001-50000	6.32%
Above 50000	1.40%
City (%)	
Beijing	32.98%
Guangzhou	34.39%
Shanghai	32.63%
Chicken breast purchase frequency	
Everyday	40%
Twice a week	50%
Once a week or less frequently	10%

713

714 **Table 4. Descriptive statistics of personality traits.**

Trait(Cronbach's Alpha values)	Mean	Variable	Mean	SD
Agency(0.68)	2.76	Self-confident	3.05	0.73
		Forceful	2.85	0.77
		Assertive	2.57	0.95
		Outspoken	2.84	0.97
		Dominant	2.51	0.91
Agreeableness(0.71)	2.79	Helpful	2.77	0.96

		Warm	2.82	0.95
		Caring	2.75	0.92
		Softhearted	2.76	0.93
		Sympathetic	2.84	0.94
Openness(0.62)	2.69	Creative	2.66	0.91
		Imaginative	2.73	0.92
		Intelligent	2.65	0.89
		Curious	2.75	0.91
		Broadminded	2.82	0.88
		Sophisticated	2.65	0.94
		Adventurous	2.60	0.92
Neuroticism(0.70)	2.52	Moody	2.58	0.93
		Worrying	2.54	0.95
		Nervous	2.49	0.94
		Calm (-)	2.46	0.86
Extraversion(0.65)	2.65	Outgoing	2.59	0.96
		Friendly	2.78	0.93
		Lively	2.69	0.88
		Active	2.64	0.91

			Talkative	2.57	0.89
	Conscientiousness(0.60)	2.69	Organized	2.65	0.89
			Responsible	2.83	0.91
			Hardworking	2.86	0.86
			Careless (-)	2.41	0.84

715

716 **Table 5. Results of WTP estimates.**

	Cultured	Carbon	Antibiotics
WTP	1.85	4.92	14.08
95% confidence intervals	[-5.35,9.72]	[-0.96, 16.96]	[6.94, 35.58]

717

718 **Table 6. RPL-EC estimates: main effects and interaction effects.**

Variables	Main effects	Main effects +interactions effect with culture d	Main effects +interactions effect with carbon	Main effects +interactions effect with antibiotics
-----------	--------------	--	---	--

Main effects

Cultured	M ea n	- 0.15 **	-0.15* -0.15**	-0.15**
----------	--------	-----------	----------------	---------

		(0.0 7)	(0.57)	(0.07)	(0.07)
	S D	0.53 ***	0.34** *	0.50***	0.53***
		(0.0 9)	(0.10)	(0.09)	(0.09)
Carbon	M ea n	0.05	0.06	-0.02	0.05
		(0.0 6)	(0.06)	(0.42)	(0.06)
	S D	0.33 ***	0.29**	0.28**	0.33***
		(0.1 2)	(0.13)	(0.14)	(0.12)
Antibiotics	M ea n	0.11 ***	0.11*	0.11	-0.41
		(0.0 7)	(0.06)	(0.07)	(0.46)
	S D	0.50 ***	0.50** *	0.50***	0.48***
		(0.1 1)	(0.11)	(0.11)	(0.12)
Price	Co ef.	- 0.01 *	-0.01*	-0.01*	-0.02*

		(0.0 1)	(0.01)	(0.01)	(0.01)
Opt-out	Co ef.	- 0.74 ***	- 0.73** *	-0.74***	-0.73***
Error component	Co ef.	(0.1 1)	(0.12)	(0.12)	(0.11)
Interaction effects					
Agency*Cultur ed	Co ef.		0.24		
				(0.18)	
Agreeableness* Cultured	Co ef.	- 0.40** *			
				(0.12)	
Openness*Cult ured	Co ef.		0.19		
				(0.19)	
Neuroticism*C ultured	Co ef.		0.19*		
				(0.11)	

Extraversion*Cultured	Coef.	-0.04
		(0.13)
Conscientiousness*Cultured	Coef.	-0.35**
		(0.14)
Agency*Carbon	Coef.	-0.01
		(0.16)
Agreeableness*Carbon	Coef.	-0.16
		(0.12)
Openness*Carbon	Coef.	-0.12
		(0.18)
Neuroticism*Carbon	Coef.	0.18
		(0.11)
Extraversion*Carbon	Coef.	0.27*
		(0.14)
Conscientiousness*Carbon	Coef.	-0.04

(0.15)

Agency*Antibiotics Coef. -0.10

(0.17)

Agreeableness*Antibiotics Coef. 0.23

(0.15)

Openness*Antibiotics Coef. -0.01

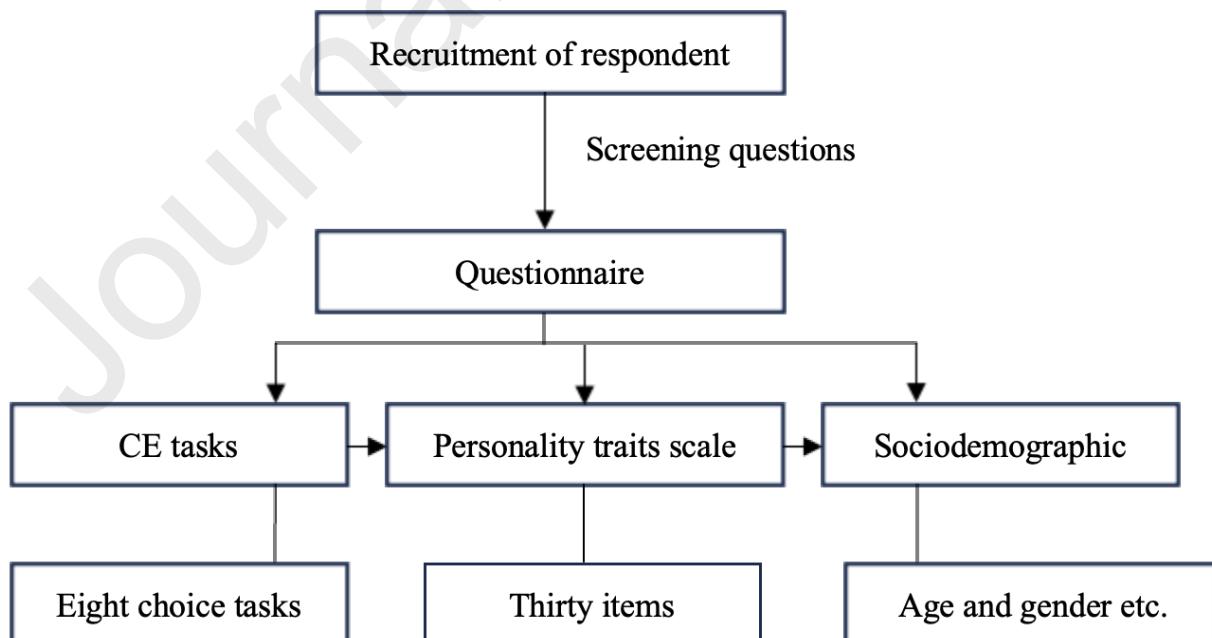
(0.20)

Neuroticism*Antibiotics Coef. -0.10

(0.12)

Extraversion*Antibiotics Coef. 0.06

(0.16)


Conscientiousness*

Co ef.				0.07
				(0.15)
Summary Statistics				
Number of observations	684 0	6840	6840	6840
Log likelihood	-239 5.96	2381.8 8	-2425.43	-2392.16
AIC/N	2.11	2.10	2.14	2.11

719 Note: *, **, and *** denote variables significant at 10%, 5%, and 1%, respectively. Standard errors
 720 are presented in parentheses.

721

722

723

724

Fig. 1 Procedures of the questionnaire

725

726

727

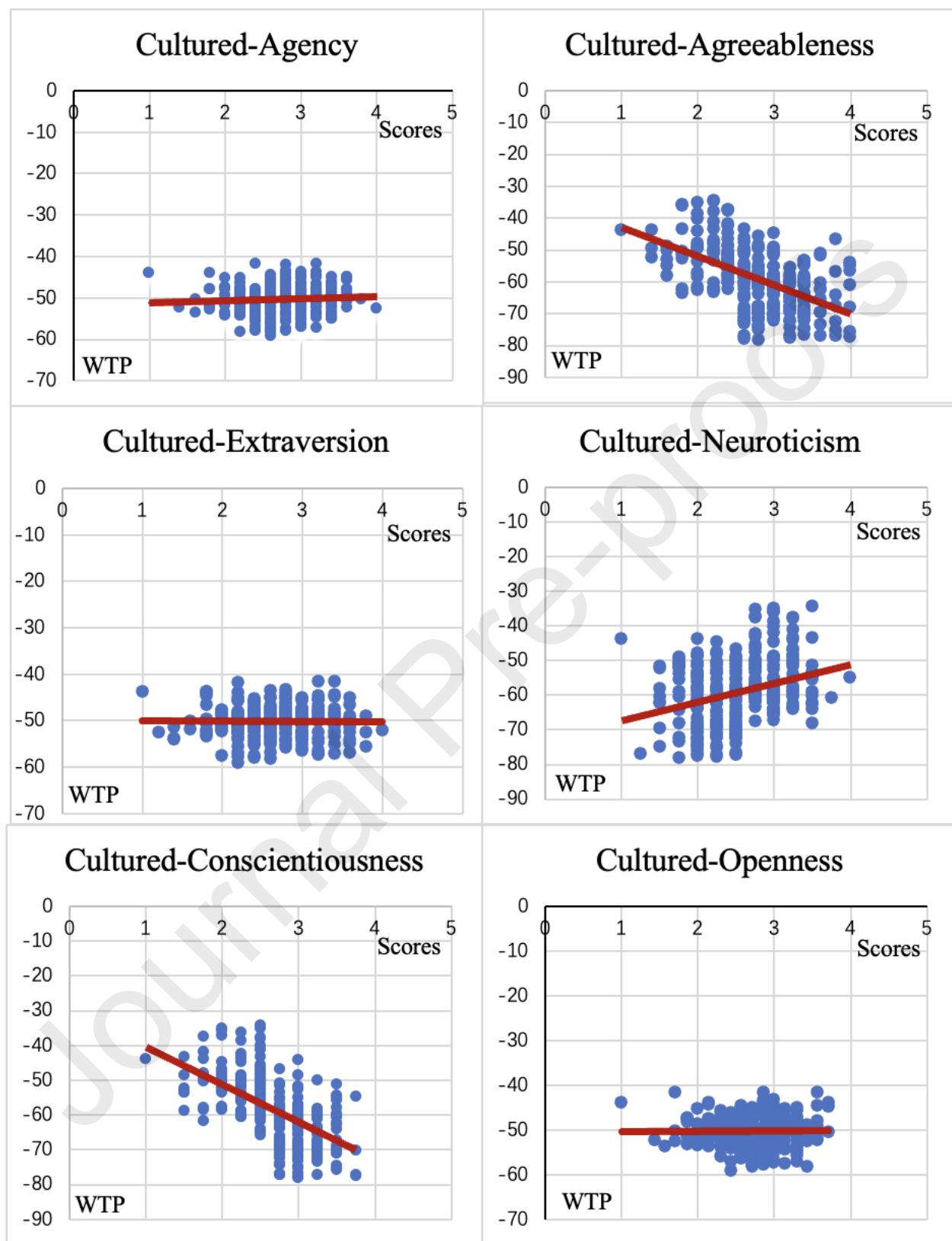
728

729

730

731

	Alternative A	Alternative B	Alternative C
Production process	Cultured meat	Cultured meat	
Antibiotics use	No information is reported	No antibiotics ever	I would not buy either option A or B
Carbon trust	With label	No label	
Price	8.90	18.90	
I would choose	A_____	B_____	C_____


732

733

Fig. 2 An example of a choice task

734

735

736

737 **Fig. 3 Effect of personality traits on consumers' WTP for cultured meat.**

738 Note: The y-axis displays WTP, and the x-axis displays the scores of personality.

739

Highlights

740 ● Personality traits influence preferences for cultured meat in China.

741 ● More agreeable personalities and more conscientious personalities have a lower preference for
742 cultured meat.

743 ● More neurotic personalities have a higher preference for cultured meat.

744 ● Personality traits can be used by cultured-meat producers and policy makers for marketing
745 purposes.

746

747

748 **CRediT authorship contribution statement**

749 **Shaosheng Jin:** Conceptualization, Methodology, Formal analysis, Investigation, Data
750 curation, Visualization, Project administration. **Qianqian Zhai:** Conceptualization, Methodology,
751 Formal analysis, Investigation, Data curation, Visualization, Project administration. **Rao Yuan:**
752 Conceptualization, Methodology, Formal analysis, Investigation, Data curation, Visualization.
753 **Daniele Asioli:** Conceptualization, Methodology, Formal analysis, Investigation, Data curation,
754 Visualization. **Rodolfo M. Nayga Jr:** Conceptualization, Methodology, Formal analysis,
755 Investigation, Data curation, Visualization.

756

757

758

759 **Declaration of Competing Interest**

760 The authors declare that they have no known competing financial interests or personal relationships
761 that could have appeared to influence the work reported in this paper.

762

763

764

Ethical Statements

765 The study was explained to consumers in the online questionnaire. They were informed that they
766 would participate in the survey using their personal smartphone, that all data will be de-identified
767 and only reported in the aggregate. All participants acknowledged an informed consent statement in
768 order to participate in the study. They were financially compensated for their participation.

769

770 **Table A1. RPL-EC estimates: interaction effects.**

Variables	Coefficients	
Main effects		
Cultured	Mean	-0.149** (0.068)
	SD	0.526*** (0.088)
Carbon	Mean	0.053 (0.060)
	SD	0.326*** (0.120)
Antibiotics	Mean	0.114*** (0.071)
	SD	0.501*** (0.112)
Price	Mean	-0.010* (0.006)

Opt-out	Mean	-0.735*** (0.114)
Error component	Mean	0.744*** (0.109)
Interaction effects		
Agency*Cultured	Mean	0.268 (0.189)
Agreeableness*Cultured	Mean	-0.388*** (0.122)
Openness*Cultured	Mean	0.245 (0.190)
Neuroticism*Cultured	Mean	0.161 (0.110)
Extraversion*Cultured	Mean	-0.125 (0.130)
Conscientiousness*Cultured	Mean	-0.369*** (0.140)
Agency*Carbon	Mean	-0.058

		(0.161)
Agreeableness*Carbon	Mean	-0.090
		(0.128)
Openness*Carbon	Mean	-0.169
		(0.187)
Neuroticism*Carbon	Mean	0.157
		(0.117)
Extraversion*Carbon	Mean	0.287**
		(0.140)
Conscientiousness*Carbon	Mean	0.026
		(0.149)
Agency*Antibiotics	Mean	-0.129
		(0.178)
Agreeableness*Antibiotics	Mean	0.267*
		(0.153)
Openness*Antibiotics	Mean	-0.028
		(0.208)
Neuroticism*Antibiotics	Mean	-0.128

(0.121)

Extraversion*Antibiotics Mean 0.050

(0.163)

Conscientiousness*Antibiotics Mean 0.149

(0.153)

Summary Statistics

Number of observations 6840

Log likelihood -2573.303

AIC/N 2.156

771 Note: *, **, and *** denote variables significant at 10%, 5%, and 1%, respectively. Standard errors
 772 are presented in parentheses. The estimation equation include all interaction terms in a single
 773 model.

774

775