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Abstract

Terrestrial plants form primarily mutualistic symbiosis with mycorrhizal fungi based on a compatible exchange of solutes
between plant and fungal partners. A key attribute of this symbiosis is the acquisition of soil nutrients by the fungus for the
benefit of the plant in exchange for a carbon supply to the fungus. The interaction can range from mutualistic to parasitic
depending on environmental and physiological contexts. This review considers current knowledge of the functionality of
ectomycorrhizal (EM) symbiosis in the mobilisation and acquisition of soil nitrogen (N) in northern hemisphere forest eco-
systems, highlighting the functional diversity of the fungi and the variation of symbiotic benefits, including the dynamics
of N transfer to the plant. It provides an overview of recent advances in understanding ‘mycorrhizal decomposition’ for N
release from organic or mineral-organic forms. Additionally, it emphasises the taxon-specific traits of EM fungi in soil N
uptake. While the effects of EM communities on tree N are likely consistent across different communities regardless of spe-
cies composition, the sink activities of various fungal taxa for tree carbon and N resources drive the dynamic continuum of
mutualistic interactions. We posit that ectomycorrhizas contribute in a species-specific but complementary manner to benefit
tree N nutrition. Therefore, alterations in diversity may impact fungal-plant resource exchange and, ultimately, the role of
ectomycorrhizas in tree N nutrition. Understanding the dynamics of EM functions along the mutualism-parasitism continuum
in forest ecosystems is essential for the effective management of ecosystem restoration and resilience amidst climate change.

Key points

e Mycorrhizal symbiosis spans a continuum from invested to appropriated benefits.
e Ectomycorrhizal fungal communities exhibit a high functional diversity.

e Tree nitrogen nutrition benefits from the diversity of ectomycorrhizal fungi.

Keywords Ectomycorrhizal functional traits - Mutualistic spectrum - Decomposition - Nitrogen cycle

Introduction

The holobiont concept, in which plants and their associ-
ated microbes are viewed not as independent entities but
as a cohesive evolutionary unit, emphasises the vital roles
that bacteria, fungi, and other microorganisms play in plant
growth, health, and adaptation to various environments
(Theis et al. 2016; Uroz et al. 2019). Terrestrial plants asso-
ciate with mycorrhizal fungi to acquire nutrients (Moreau
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et al. 2019; Sun et al. 2021). They form a symbiotic relation-
ship based on a nutritional exchange between the partners in
a quid pro quo (‘giving and taking’) manner (Almario et al.
2022). Isotope tracing experiments have long demonstrated
that there is a transfer of nutrients between partners (Fin-
lay et al. 1989; Le Tacon et al. 2015; Schreider et al. 2022;
Khokon et al. 2023; Pena et al. 2023). The mycorrhizal fun-
gus obtains carbon (C) from the plant, which, in exchange,
receives soil nutrients, mainly nitrogen (N) and phosphorus
(P) from the fungus (Smith and Read 2010; Sun et al. 2021;
Martin and van der Heijden 2024).

Mycorrhizal symbiosis is based on reciprocal invested
benefits. Both partners invest and benefit from the sym-
biosis, and the benefit obtained from interaction exceeds
the cost of the investment (Connor 1995). While diverse
dynamics ranging from mutualism to parasitism can occur
in certain contexts, such as early seedling development, high
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fertilisation conditions, or mismatched plant and fungal gen-
otypes (Johnson et al. 1997), mycorrhizal symbiosis remains
at the mutualistic end of the spectrum (Fig. 1a). It can some-
times be regarded as pseudo-reciprocity, where one partner

does not invest directly but provides a by-product benefit
to the other partner, such as when C is an excess resource
for the plant (Corréa et al. 2012), or when plants invest in
the formation of new root tips, which are also utilised by
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Fig. 1 a Benefits of mutualistic ectomycorrhizal symbiosis: recipro-
cal invested benefits occur when both partners actively invest in each
other; by-product benefits arise when one organism (the tree) inci-
dentally benefits the other (the fungus); and appropriated benefits
happen when one partner (the fungus) exploits the resources of the
other (the plant). b The contribution of ectomycorrhizal (EM) fungi
to tree nitrogen (N) nutrition in forest ecosystems: ectomycorrhizas
formed with different fungal taxa vary in their abilities to retrieve N
from diverse substrates, their mechanisms of organic matter decom-
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position and their preferences for specific N sources. The allocation
of plant carbon (C) to different ectomycorrhizas is influenced by
their C/N ratio. When soil N availability decreases, EM fungi may
enhance decomposition activities to access N that requires higher C
needs. Under severe N limitation, the mutualistic symbiosis may shift
towards appropriated N benefits. The fungus optimises its N use effi-
ciency to lower the C/N ratio, thereby securing more C from the plant
without transferring the N to the plant. Created with BioRender.com
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mycorrhizal fungi (Ruotsalainen et al. 2022). In the case
of appropriated (i.e. purloined) benefits (Connor 1995),
the fungal partner may exploit the C resources of the plant
without any direct investment (e.g. providing N). However,
despite this parasitic interaction from the perspective of N
nutrition, the fungus may also produce other benefits for
the host plant (e.g. providing P) that exceed the costs of the
appropriated benefits, maintaining a mutualistic symbiosis.

Of all vascular plant species on earth, approximately 2%
(ca. 8500 species) form EM symbiosis and most temperate
and boreal tree species, accounting for about 60% of tree
stems on earth, may associate with some of the > 20,000
fungal species to form ectomycorrhizal (EM) symbioses
(Brundrett and Tedersoo 2018; Steidinger et al. 2019). In
this symbiosis, plant and fungal cells are reprogrammed to
form a specialised root structure, the ectomycorrhiza, which
facilitates the uptake and transfer of nutrients (Hacquard
et al. 2013; Garcia et al. 2016; Nehls and Plassard 2018).
The EM fungus forms a sheath around the colonised root
tip (i.e. mantle) from which the mycelium extends bidi-
rectionally into the root apoplastic space and surrounding
soil. In the root, the fungus wraps around each cortical cell
to create a ‘Hartig net’ (named after Theodor Hartig, who
in 1842 described the net but wrongly interpreted it to be
plant tissue, Hacskaylo 2017; Sportes et al. 2021). The Har-
tig net forms the symbiotic interface, where carbohydrate
and nutrient exchange between plant and fungal cells take
place via transporters. In the soil, the extraradical myce-
lium extends over varying distances, displaying a diverse
range of morphologies depending on the fungal species.
The EM extraradical mycelium has been classified into four
main soil exploration types based on the extent, differen-
tiation, and quantity of hyphae emanating from the mantle
(Agerer 2001). The ‘contact’ exploration type features a
smooth mantle, with only a few emanating hyphae primarily
involved in nutrient exchange directly at the root interface.
The ‘short-distance’ exploration type extends hyphae a short
distance from the root surface, forming a compact network
that enhances nutrient acquisition within the root depletion
zone. The ‘medium-’ to ‘long-distance’ exploration types
have hyphae that extend further, forming extensive networks,
sometimes involving rhizomorphs that can spread consider-
ably, accessing nutrients from a larger volume of soil beyond
the root depletion zone. In natural forests, nearly all fine
absorptive roots develop into ectomycorrhizas (Pena et al.
2010, 2017), making EM roots the primary nutrient-absorb-
ing structures for these trees (Martin and van der Heijden
2024). They play a crucial role in major ecosystem func-
tions by influencing tree nutrient acquisition under nutrient-
limited conditions (Smith and Read 2010; Henriksson et al.
2021) and contributing to organic matter decomposition
(Lindahl and Tunlid 2015; Fernandez and Kennedy 2016;
Zak et al. 2019; Lindahl et al. 2021). Additionally, they aid

in soil C stabilisation through their recalcitrant mycelium
(Clemmensen et al. 2015; Fernandez and Kennedy 2018;
Maillard et al. 2023a; Hagenbo et al. 2024).

Recent large-scale comparative genomics, coupled with
gene expression studies and classical physiological assess-
ments, have revealed significant differences in functional
traits among EM taxa (Miyauchi et al. 2020; Khokon et al.
2023; Maillard et al. 2023b; Auer et al. 2024). Although
mycorrhizal relationships predominantly remain mutualistic,
Frank’s 1885 definition, which asserts that fungi provide
host plants with nutrients (Frank 2005), requires refinement.
This is necessary to account for functional variation among
individual fungal species (Clemmensen et al. 2021; Lebre-
ton et al. 2021; Lindahl et al. 2021) and differing growth
conditions (Henriksson et al. 2021). This review synthesises
recent advances in our understanding of the dynamics of EM
symbiosis in terms of resource acquisition and exchange. It
emphasises the role of EM in enhancing tree N nutrition in
the large context of varying soil N availability.

Nitrogen is an essential element whose availability regu-
lates primary productivity and organic matter decomposi-
tion in terrestrial ecosystems (LeBauer and Treseder 2008;
Vitousek et al. 2010). In Northern Hemisphere forests, the
low availability of biological N forms is a major factor
limiting plant growth (LeBauer and Treseder 2008). In the
short term, N availability is driven by the balance between
supply and demand (von Sperber et al. 2017). Under low
supply, strong plant and microbial demands result in rapid
uptake and immobilisation of any available N, aggravating
the limitation (von Sperber et al. 2017). Ectomycorrhizal
fungi work as nutrient miners and scavengers-carriers (sensu
Cao et al. 2024) and are involved in both the supply and
demand chains. In the supply chain, they are mobilising N
from organic matter as ‘mycorrhizal decomposers’(Lindahl
and Tunlid 2015; Lindahl et al. 2021; Martin and van der
Heijden 2024). In the demand chain, EM fungi acquire nutri-
ents for the use of themselves and their host trees, becoming
some of the strongest N competitors in the forest ecosystems
(Wallenda and Read 1999; Pena et al. 2013; Bodeker et al.
2016; Auer et al. 2024).

In the following sections, we summarise the key findings
on the EM fungal role in the mobilisation and acquisition
of soil N, highlighting the functional diversity of EM fungi
(Fig. 1b). Finally, we discuss the variation of mutualism
benefits, including the dynamics of N transfer to the plant.

Contribution of ectomycorrhizas to organic
N mobilisation
In most forest soils, up to 95% of N exists in organic form.

Before stabilisation in the soil matrix and if not taken up
by plants, organic N cycles between microbial biomass and
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residues, adsorption and desorption from soil mineral par-
ticles, and dissolution and precipitation from the soil solu-
tion, as described by Bingham and Cotrufo (2016). Organic
N enters the soil through plant litter, and root, animal and
microbial necromass, as well as dissolved organic N from
root exudates and plant litter leachates. The labile N com-
pounds, such as free amino acids or peptides, are rapidly
immobilised by microorganisms and plants (Neff et al. 2003;
Schimel and Bennett 2004). The remaining organic N, con-
sisting of polymeric structures, is commonly complexed
with degradation organic products or mineral particles and
must undergo depolymerisation or mineralisation to become
available to plants (Nannipieri and Paul 2009; Bingham and
Cotrufo 2016; Jilling et al. 2018). In N-poor ecosystems,
where organic N-use by plants is common, depolymerisa-
tion is the most limiting process in N accessibility (Schimel
and Bennett 2004; Nésholm et al. 2009). Saprotrophic
fungi and bacteria are recognised as efficient decomposers
of organic biopolymers in the soil (L6pez-Mondéjar et al.
2018, 2020). However, some EM basidiomycetes have the
ability to secrete extracellular enzymes and low molecular
weight (LMW) metabolites to solubilise a range of com-
pounds from simple proteins to chitin, polymerised lignin,
and mineral-protein complexes (Tibbett et al. 1999; Shah
et al. 2013, 2016; Wang et al. 2020, 2021). In contrast with
saprotrophs, which utilise soil organic matter as a source
of metabolic C, ‘mycorrhizal decomposition’ results in N
mobilisation (Lindahl and Tunlid 2015; Nicolas et al. 2019;
Clemmensen et al. 2021). EM fungi use the plant C supply
to carry out the co-metabolic decomposition of complexed
organic N, releasing N (Hobbie et al. 2013; Lindahl and Tun-
lid 2015; Nicolas et al. 2019). Shah et al. (2016) propose that
during EM evolution, the ancestral decay mechanisms used
to obtain C have been changed to obtain N. Given that EM
fungi evolved multiple times within different clades of sap-
rotrophs, there are large variations in the genetic potential to
decay soil organic matter among EM fungal lineages (Kohler
et al. 2015; Miyauchi et al. 2020; Looney et al. 2022; Wu
et al. 2022).

The genomes of many EM basidiomycetes retain a
reduced set of genes encoding enzymes involved in organic
matter decomposition, as compared to saprotrophs. These
enzymes are commonly found in decaying mechanisms of
white-rot and brown-rot saprotrophic fungi (reviewed in
Lebreton et al. 2021). The white-rot fungi mainly degrade
the exposed lignocellulose surfaces via extracellular oxida-
tive enzymes, including phenol oxidases such as laccases
and class II peroxidases (e.g. lignin peroxidases, manganese
peroxidases, or versatile peroxidases) and various hydro-
lytic carbohydrate-active enzymes (CAZymes) (Janusz et al.
2017). Brown rot fungi evolved from white-rot fungi by los-
ing many of their oxidoreductases and CAZymes as they
have developed a less energy-demanding LMW catalytic
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mechanism based on a Fenton system for generation of
hydroxyl radicals (Eastwood 2014; Goodell 2020). These
hydroxyl radicals can rapidly depolymerise and then repoly-
merise lignin in a modified form, which is available for a
delayed enzymatic attack (Goodell 2020).

Spectroscopic and genome-wide transcriptome analysis
confirmed that EM fungi representing different origins of
symbiosis within a white-rot (Agaricales), brown-rot (Bole-
tales), or mixed (Atheliales—Amylocorticales) decomposer
clades may retrieve N from soil organic matter extracts using
oxidative mechanisms (Shah et al. 2016). Organic matter
oxidation is possible as a co-metabolic process (Lindahl and
Tunlid 2015) only when C is supplied (i.e. glucose) (Rineau
et al. 2013; Shah et al. 2016; Nicolas et al. 2019). Ecto-
mycorrhizal fungi also engage in Fenton-based decomposi-
tion of organic matter, similar to brown-rot fungi (Rineau
et al. 2012; Shah et al. 2016, 2020). However, the specific
mechanisms of Fenton chemistry may vary among differ-
ent EM fungi (Shah et al. 2020). In an in vitro experiment
involving five EM fungal species from different symbiotic
origins, all species modified the organic extracts to vary-
ing extents, utilising different sets of transcripts (Shah et al.
2016). In a follow-up experiment, Nicolas et al. (2019)
demonstrated that the mechanisms of N mobilisation from
organic matter extracts differed significantly between Paxil-
lus involutus (Boletales) and Laccaria bicolor (Agaricales),
reflecting their evolutionary origins of brown-rot and litter-
decomposing fungus, respectively. Paxillus involutus used a
time-separated two-step mechanism consisting of oxidation
and hydrolysis, whereas Laccaria bicolor employed a one-
step mechanism that combined the activities of oxidative and
hydrolytic enzymes (Nicolas et al. 2019). In both fungi, the
availability of C and inorganic N in the culture media gov-
erned N mobilisation from the soil organic matter extracts.
Decomposition and liberation of organic N decreased under
C limitation and started only after the inorganic N (i.e.
ammonium) was depleted (Nicolas et al. 2019). In P. involu-
tus, oxidation was controlled by N limitation and hydrolysis
by C limitation. In L. bicolor, the one-step mechanism was
initiated by N limitation and sustained during C limitation.
Based on the transcriptional pattern, where a gene encod-
ing a sugar transporter and several plant cell wall-degrading
enzyme (PCWDE) genes were upregulated, the authors sug-
gested that L. bicolor may have the capacity to assimilate C
released during organic matter decomposition (Nicolas et al.
2019). This capability is evident, at least when the fungus
is not engaged in symbiosis (Martin et al. 2008). The role
of N availability in triggering ‘mycorrhizal decomposition’
was also observed in the field, where ammonium addition
led to the downregulation of manganese peroxidase genes
in the genus Cortinarius (Bodeker et al. 2014; Pellitier and
Zak 2021; Argiroff et al. 2022). Nevertheless, the control
exerted by C availability on ‘mycorrhizal decomposition’
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indicates that organic N mobilisation involves energetic
costs that are commonly supported by trees on the recipro-
cal investment benefit mutualism. The benefits provided by
the fungus should outweigh the cost of plant C investment
to avoid a change leading to appropriated benefits or even
parasitism (Nasholm et al. 2013; Baskaran et al. 2017; Agren
etal. 2019).

In contrast with the PCWDE gene copy number, which
is higher in the saprotrophic than EM fungal genomes,
the proportion of genes encoding for microbial cell wall
degrading enzymes (MCWDE:s) is similar between EM and
saprotrophic fungi (Miyauchi et al. 2020). Recently, Auer
et al. (2024) have shown that in situ EM fungi most strongly
expressed the genes encoding for enzymes that act on chitin,
such as GH18 (chitinases) and GH20 (b-N-acetylglucosa-
minidases). The ability of EM fungi to access N-contain-
ing polymers such as chitin or chitosan has been described
for numerous species (Maillard et al. 2023b). Some spe-
cies, such as Boletus edulis, Imleria badia, Suillus luteus,
and Hebeloma cylindrosporum, are particularly efficient
in mobilising N from chitin (Maillard et al. 2023b). This
phenomenon is particularly important as fungal mycelium
necromass is a large component of soil organic matter (Awad
et al. 2019; Hagenbo et al. 2024).

A large fraction (e.g. 45% in boreal forest soil) of soil
organic N exists as proteinaceous compounds associated
with mineral particles (Jilling et al. 2018; Kramer and
Chadwick 2018). Recent works indicate that EM fungi of
different phylogeny and ecology can mobilise N from iron
oxide mineral-associated proteins (Wang et al. 2020, 2021;

Krumina et al. 2022). They use a proteolytic mechanism
based on the formation of enzyme—substrate complexes at
the mineral surfaces that enables protein hydrolysis without
initial desorption of the proteins (Wang et al. 2020). Further-
more, reports from culture studies show that fungi assimilate
about 30 to 50% of N from ferrihydrite- or goethite-associ-
ated bovine serum albumin (Wang et al. 2021). Although
field studies are lacking, the ability of EM fungi to prolifer-
ate in deeper soil layers (Lindahl et al. 2007; McGuire et al.
2013; Clemmensen et al. 2021) where mineral-associated
organic N is abundant (Jilling et al. 2018) and their high
capacity to produce extracellular proteases (Shah et al. 2013;
Nicolés et al. 2019) suggest that retrieving N from mineral-
complexed proteins is important in N-limited forest ecosys-
tems. Table 1 presents a comprehensive summary of recent
findings on the abilities of distinct EM fungi to acquire N by
decomposing organic substrates.

The combination of fungi’s genetic potential for organic
matter degradation with their ecological strategies explains
the fungal functional traits of active EM fungi in mobilis-
ing N (Maillard et al. 2023b; Auer et al. 2024). While spe-
cies may exhibit similar genetic patterns of genes involved
in decomposition, their expression can vary depending on
fungal ecology (Barbi et al. 2016). More versatile species
that readily adapt to diverse decomposing substrates may
possess a high number of decomposition-related genes but
exhibit lower expression levels compared to more special-
ised species, which may show high expression of ‘keystone
functional genes’ (Barbi et al. 2016). For example, some
‘long-distance-exploration type’ EM fungi oxidise organic

Table 1 Ectomycorrhizal fungal capabilities in organic matter degradation for nitrogen (N) retrieval

Fungus

N source/involved mechanisms

Measurement methods

Reference

Paxillus involutus

Suillus luteus

Cortinarius sp.

Laccaria bicolor

Piloderma croceum

Hebeloma cylindrosporum

Imleria badia
Boletus edulis
Suillus luteus

Hebeloma cylindrosporum

Soil organic matter/oxidative decom-
position by Fenton chemistry

Iron mineral-associated proteins/
protein hydrolysation at the mineral
surface without initial desorption

Soil organic matter/oxidative decom-
position by Fenton chemistry

Lignin/Mn-peroxidase activity

Soil organic matter/oxidative decom-
position

Soil organic matter/oxidative decom-
position

Iron mineral-associated proteins/pro-
tein hydrolysation

Exogenous chitin/chitin hydrolysation

Infrared spectroscopy, chromatog-
raphy,

mass spectrometry

Isotopic analyses,

infrared spectroscopy

Infrared spectroscopy, chromatog-
raphy,

mass spectrometry

Analysis of Mn-peroxidase activity

Infrared spectroscopy
Infrared spectroscopy

Isotopic analyses,

infrared spectroscopy

Measurements of '°N fungal enrich-
ments, obtained by feeding the
fungus with 'SN labelled chitin

Rineau et al. (2012); Shah et al.
(2016)

Wang et al. (2020, 2021); Krumina
et al. (2022)

Shah et al. (2016)
Bodeker et al. (2014)
Shah et al. (2016)
Shah et al. (2016)
Wang et al. (2021)

Maillard et al. (2023a, b)
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matter and retrieve N more effectively than some ‘short-’
and ‘medium-distance-exploration’ types. This is despite
all of them possessing genes encoding oxidative enzymes
(Shah et al. 2016). Fungal decomposition capabilities, such
as enzyme activities (Courty et al. 2010; Talbot et al. 2015)
and accessing N from specific sources (Chen et al. 2019),
vary less among phylogenetic lineages of fungi than among
species with different ecologies (Tables 1 and 2). Addition-
ally, Op De Beeck et al. (2020) demonstrated that genetically
identical hyphal tips can exhibit differences in decomposi-
tion activity at the single-cell level within the mycelium.
Thus, the environmental conditions, particularly the chemi-
cal properties and the availability of the substrates, are major
drivers of EM fungal traits in N mobilisation (Shah et al.
2013).

Contribution of ectomycorrhizas
to inorganic N acquisition

In symbiosis, the mechanism of nutrient uptake depends
on both plant and fungal nutritional status and their recip-
rocal influence (Sa et al. 2019; Rivera Pérez et al. 2022).
Similarly to plants, EM fungi take up N from the soil in
its oxidised (NO;~) and reduced (NH,*) form or as soluble
organic N mono- and oligomers (Talbot and Treseder 2010;
Courty et al. 2015; Garcia et al. 2016). In a direct compari-
son between EM and non-mycorrhizal root tips, the uptake
of NH4+, measured as N fluxes at the EM mantle surface,
is consistently 10 to 60 times higher in the ectomycorrhiza

of various EM fungal species compared to non-mycorrhizal
root tips (Hawkins and Kranabetter 2017; Hawkins and Rob-
bins 2022). However, variation may occur in NO,;~ uptake
or when inorganic N availability is high (Hawkins and Kra-
nabetter 2017; Xie et al. 2021). Nevertheless, the N fluxes
measured in EM are generally higher than those in non-
mycorrhizal roots (Gobert and Plassard 2002). The major-
ity of EM fungi are particularly effective in accessing N
from NH4Jr (Kranabetter et al. 2015; Leberecht et al. 20164,
2016b; Hawkins and Robbins 2022; Khokon et al. 2023),
which is less mobile than NO;™ due to its adsorption onto
soil cation exchange sites (Tinker and Nye 2000). This role
is crucial in more acidic, cold, or poorly aerated soils where
NH,* dominates, as these conditions do not favour nitrifica-
tion (Marschner 2011).

In N-rich temperate forests, such as the coastal rainfor-
ests of North America, high rates of N mineralisation may
lead to elevated levels of soil inorganic N. In these ecosys-
tems, EM fungal communities are predominantly composed
of species with high NH," uptake capacity (e.g. Lactarius
hepaticus, Tomentella sublilacina, Tylospora sp., Kranabet-
ter et al. 2015). The formation of ectomycorrhiza stimulates
the expression of NO;~ transporters and NH,* transport-
ers, as well as transporters for amino acids and peptides in
both plant and fungi (Miiller et al. 2020; Sun et al. 2021).
While EM fungi possess only a limited number of high-
affinity NO;™ transporters, they are equipped with both low
and high-affinity NH,* transporters (Garcia et al. 2016). The
combination of both enables effective regulation of NH,*
uptake in response to varying soil concentrations, which

Table 2 Preferences of ectomycorrhizas (EM) for uptake of inorganic N from different sources

Fungus N source Methods Reference
preference
Beech (Fagus sylvatica)
Clavulina cristata NH,* Measurements of >N EM enrichments, obtained by feeding the Khokon et al. (2023)
Tomentella ramosissima, plants with NH,NO; labelled with either ’NH,* or *NO,~
Inosperma maculatum
Xerocomus chrysenteron
Genea hipidula
Helotiales NO;~

Tomentella stuposa
Humaria hemisphaerica
Douglas-fir (Pseudotsuga menziesii)
Lactarius rubrilacteus NH,*
Piloderma sp.
Tomentella sp.
Lactarius cf. hepaticus
Lactarius luculentus
Russula chloroides

Tomentella sublilacina

Microelectrode ion flux measures

Kranabetter et al. (2015)
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likely contributes to their adaptability in N-rich environ-
ments. In the fungus, the transcriptional profile related to
nutrient acquisition and transport differed between compart-
ments. The most upregulated genes are found in the EM
extraradical mycelium and the mantle, which also plays a
role in nutrient storage. In contrast, the most downregulated
genes, including some that are completely switched off, are
observed in the Hartig net at the plant-fungal interface. This
complete downregulation may represent an efficient strategy
to prevent the fungal reuptake of N (e.g. ammonia, amino
acids) from the apoplastic space, ensuring that N remains
available for transfer to the plant (Hacquard et al. 2013; Le
Tacon et al. 2015).

One of the main contributions of EM fungi to N acqui-
sition is their ability to extend the extraradical mycelium
beyond the nutrient depletion zone surrounding the roots.
This extension allows them to access nutrients from a larger
soil volume, compensating for the plant’s limited ability to
absorb nutrients at rates faster than their loss into the sur-
rounding soil (Pena 2016). In boreal and temperate forest
ecosystems, EM mycelium comprises one-third of microbial
biomass (Awad et al. 2019; Hagenbo et al. 2024). Extra-
radical mycelium exploration types (Agerer 2001) have long
been considered to be EM traits that explain spatial foraging
patterns related to resource spatial availability and acquisi-
tion (Hobbie and Agerer 2009; Zak et al. 2019). However, a
recent and comprehensive study by Jorgensen et al. (2023)
demonstrated that there is little support for using the external
mycelium exploration type to predict EM foraging strategy.
Instead, the study, along with findings by Anthony et al.
(2022), found that species exhibit preferences for nutritional
substrates, which can be correlated with certain degrees of
hyphal hydrophobicity and nitrophobicity. Taxa with high
extraradical biomass, classified as the ‘medium- and long-
distance-exploration’ type, are not necessarily the most
prolific. Their biomass may be sustained by a lower turno-
ver rate (Jorgensen et al. 2023). The majority of low-prolif-
erating taxa are nitrophobic and hydrophobic, commonly
associated with inorganic N-limited environments where N
acquisition from organic sources is required (Pellitier and
Zak 2021; Jorgensen et al. 2023). In contrast, in a temperate
forest, under relatively high atmospheric N inputs (beech
forest, 13.8-16.6 kg N ha™! year‘l, Khokon et al. 2023) or
in an N-rich coastal rainforest (Kranabetter et al. 2015), EM
fungal communities are dominated by neutrophilic species
with contact and medium smooth exploration types. Some
EM fungi, in beech communities, may contribute to the
uptake of NO;™, reducing NO;™~ accumulation and prevent-
ing subsequent leaching (Mrak et al. 2024). Nevertheless,
the species within these communities exhibited significant
variation in N uptake of NH, or NO;~ (Khokon et al. 2023),
corroborating previous findings of substantial variability in
fungal abilities for N acquisition. Table 2 highlights the

diversity among ectomycorrhizas in N acquisition from
various sources.

A recent metatranscriptomic study revealed that the
impact of the EM community on tree N nutrition was similar
and consistent across different fungal communities despite
being composed of different taxa. The authors have sug-
gested that functional redundancy exists among ectomy-
corrhizas (Auer et al. 2024). Evidence from other studies
also suggests that communities, assembled through envi-
ronmental filtering, are dominated by species best equipped
to utilise the most available N source in their environment
(Kranabetter et al. 2015). Moreover, endemic EM fungi are
better adapted than cosmopolitan species at exploiting avail-
able N sources, indicating a high level of specialisation in
enhancing tree access to available N (McPolin et al. 2024).
On a global scale, the composition of EM fungal commu-
nities has been shown to account for a threefold variation
in tree growth (Anthony et al. 2022). In contrast, Khokon
et al. (2023) found that the positive relationship between
EM fungal diversity and tree N acquisition does not corre-
late with any particular taxa, suggesting that specific traits
of fungal species do not solely explain root N acquisition.
This indicates that ectomycorrhizal communities contribute
to tree N nutrition in a species-specific but complementary
manner. A high EM functional diversity in abilities to access
distinct or spatially scattered N sources forms the basis for
improved N acquisition. We may consider physiological and
functional flexibility, even within a single mycelial network,
and adaptability to the edaphic environment to be within
the limits of the reciprocal invested benefits (Cairney and
Burke 1996). For example, in an EM assemblage, distinct
EM taxa activate their N uptake abilities to benefit the tree
when abiotic conditions are limiting, but not when the tree
is unstressed (Pena and Polle 2014). Sustaining high EM
fungal biodiversity is critical for tree N nutrition under cur-
rent and future climate scenarios. However, maintaining the
reciprocal investments and benefits of mutualistic interac-
tions has sensitive limits. As EM fungal community size
increases, this sensitivity may also rise, potentially leading
to pseudo-reciprocity, appropriated benefits, or parasitism.

C and N resources in the ectomycorrhizas

The tree plays an intrinsic role in EM-mediated N nutrition,
either by decoupling its N metabolism from fungal metab-
olism (Leberecht et al. 2016a; Rivera Pérez et al. 2022),
or by modulating C allocation to ectomycorrhizas. The
maintenance of diverse EM communities depends on the
tree’s C supply (Pena et al. 2010). Furthermore, EM fungi
that receive more C can colonise more root tips compared
to those receiving less carbon (Pena et al. 2023). In other
nutritional symbioses, such as the arbuscular mycorrhizal
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(Kiers et al. 2011) or legume—rhizobium (Simms et al. 2006)
symbioses, the nutrient flux between partners follows the
market exchange theory, with the plant allocating more C
to the partner that provides the most nutrients. In ectomy-
corrhizas, at the cellular scale, the fungal-acquired soil N
is spatially correlated with the plant photo-assimilated C
transferred to the fungus (Mayerhofer et al. 2021). How-
ever, there is no quantitative correlation between the two
fluxes (Valtanen et al. 2014; Hortal et al. 2017; Plett et al.
2024). Nevertheless, a strong relationship exists between the
C supply and the taxon-specific C/N ratio of ectomycorrhiza,
with the C supply decreasing as the C/N ratio increases. No
C supply occurs when C/N is high (C/N > 24, Pena et al.
2023). This indicates that the plant-fungus exchange is not
linear. The plant controls C allocation based on N content of
the ectomycorrhiza, while fungal traits for N use efficiency,
which determine N uptake and immobilisation in the fungus,
provide feedback control on plant C allocation (Pena et al.
2023). EM feedback probably varies depending on environ-
mental conditions and nutrient availability. A critical situ-
ation can arise under N-limitation when EM fungi take up
and immobilise N in their biomass without supplying it to
the trees, while continuously receiving C from them. Fungal-
supplied N is correlated to the concentration of free amino
acids in EM extraradical mycelium (Plett et al. 2024). In
boreal forests, several studies suggest that high C alloca-
tion to symbionts enables greater fungal N immobilisation,
negatively affecting soil N availability and forest N cycling
(Hasselquist et al. 2016; Hogberg et al. 2017; Henriksson
et al. 2021).

According to Pena et al. (2023), different ectomycorrhizas
form distinct plant-C sinks depending on their C/N ratio but
also represent species-specific sinks of plant-assimilated N.
In angiosperm plants, N absorbed from the soil is primar-
ily assimilated into amino acids in the leaves. These amino
acids are then redistributed to developing organs via the
phloem, serving as the primary N source for root growth
(Yoneyama et al. 2003). Internal N availability regulates
tree N uptake (Rennenberg and Dannenmann 2015) and
influences tree N-acquisition strategies, such as root pro-
liferation to exploit soil N hotspots (Chen et al. 2018). In a
recent study, using secondary ion mass spectrometry (SIMS)
imaging combined with leaf labelling of young beech with
ISNH,*, plant-derived N was found to be present in the fun-
gal tissue within ectomycorrhizas (Pena et al. 2023). The >N
enrichment in the lateral rootlets was also correlated with the
enrichment found in the attached ectomycorrhizas, which
was further correlated with their C/N ratio. Ectomycorrhizal
fungi can capture the plant-assimilated N either from the
root apoplast at the symbiotic interface or by recapturing it
after exudation. In the first scenario, EM fungal interven-
tion is less likely because the presence of fungal amino acid
transporters at the symbiotic interface could intercept the N
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influx, destabilising the symbiosis functionality (Martin &
Nehls 2009, but see Garcia et al. 2016). Nevertheless, the
second scenario is more probable, as EM fungi can uptake
amino acids from the soil (Garcia et al. 2016). Given that
the fungal mantle tightly encapsulates the EM root tip, EM
fungi are favoured over other soil microorganisms in access-
ing plant-exuded N (Canarini et al. 2019). By intercepting
the root N efflux, EM fungi reduce the supplementary N
source available for rhizosphere microorganisms (Jones
et al. 2004; Canarini et al. 2019). This functional trait of
EM fungi, either creating a distinct sink for plant-assimilated
N or recapturing the plant-exuded N, is crucial for tree N
nutrition. It provides the basis for EM-regulated N fluxes
within the root system and directly affects the plant’s prim-
ing capacity by modifying the exudate C/N stoichiometry.
This latter aspect is important, as microorganism activity is
commonly constrained by both C and N availability (Jones
et al. 2004; Drake et al. 2013).

Ectomycorrhizal fungi enhance tree N
nutrition via microbiome influence

The role of EM fungi in plant nutrition also includes an
indirect component, as they positively influence other
soil microorganisms (e.g. bacteria, archaea) involved in N
cycling, thereby enhancing plant N uptake (Frey-Klett et al.
2007; Llado et al. 2017; Uroz et al. 2019). Mycorrhizal sym-
biosis creates new niches for microorganisms by modifying
the plant’s ecophysiological traits and local soil proper-
ties (Uroz et al. 2019). Specifically, EM fungi construct a
unique compartment of the mycorrhizosphere—the imme-
diate space surrounding the external EM hyphae influenced
by root and hyphal exudates. This compartment provides
space and nutrients for a range of microbial communities
(Johansson et al. 2009; Bogar and Peay 2017; Gorka et al.
2019). For example, the mycorrhizospheres of Pinus sylves-
tris (Rinta-Kanto and Timonen 2020) and Pinus muricata
(Nguyen and Bruns 2015) are populated with Actinobacte-
ria and Planctomycetia, which can break down recalcitrant
organic substrates (e.g. chitin) to retrieve N, and Burkholde-
riales, which are involved in N fixation (Elliott et al. 2007).

A much deeper analysis of Pinus sylvestris (Marupakula
et al. 2016) or Fagus sylvatica (Dietrich et al. 2022) EM
root tips revealed that distinct EM fungi harbour distinct
communities of bacteria. Furthermore, rare fungal taxa play
a role similar to that of the most abundant taxa in driving
the assembly of new microbial communities (Dietrich et al.
2022). These findings highlight the importance of maintain-
ing a high mycorrhizal diversity. High functional diversity
is essential to foster the formation of diverse associated
microbial communities that enhance N cycling and plant N
nutrition. Further research is needed to understand how the
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functional benefits of EM fungi can remain unaffected by
environmental changes and disturbances, ensuring sustained
plant growth and soil health.

Future perspectives

Understanding the dynamics of EM functions along the
mutualism-parasitism continuum in forest ecosystems is
essential for the effective management of ecosystem res-
toration and resilience amidst climate change. Variation in
mutualistic species interactions is common in nature, par-
ticularly in mycorrhizal symbiosis, which involves a bidi-
rectional energy transfer —C from plants to fungi and N or
other nutrients from fungi to plants. This variation is often
described as context-dependent, influenced by changes in
biotic factors, such as the involvement of additional species,
and abiotic factors, such as resource availability or abiotic
stress (Chamberlain et al. 2014) (Fig. 1b).

In the biotic context, the immediate functional groups that
may influence EM symbioses through competition or coop-
eration with EM fungi include other fungi that occupy the
same spatial niche and can transfer N to plants and access
plant C resources. Tree roots host rich communities of dark
septate endophytic (DSE) fungi that live in plant tissues,
producing no symptoms or morphological modifications of
their hosts (Hardoim et al. 2015). These ascomycetes have
a strong enzymatic potential, enabling them to acquire N
from organic sources, which is then transferred to the tree.
There is a by-product mutualist interaction in which DSEs
provide N without requiring any special structural invest-
ment from the host plant (Ruotsalainen et al. 2022). Tree C,
which enters the soil as root exudates, or leaf and root lit-
ter, is a by-product benefitting the DSE fungi (Ruotsalainen
et al. 2022). This interaction is considered a transitional
phase in the evolution of mycorrhizal symbionts from sap-
rotrophic fungi (Ruotsalainen et al. 2022). Reports on the
interaction between DSE and EM fungi are currently limited
and exhibit significant variability, ranging from neutral to
competitive or facilitative interactions, largely depending
on the fungal strains involved (Reininger and Sieber 2012;
Berthelot et al. 2019). Notably, these findings are derived
from in vitro experiments (Berthelot et al. 2019) and growth
chamber studies with seedlings (Reininger and Sieber 2012),
with no data available from field studies. Future research
should prioritise field investigations to better understand the
effects of DSEs on EM symbioses in natural settings and
their implications for tree nutrition.

A special type of root endophyte involved in plant N
acquisition is the soil ascomycetes fungi, such as Beauveria
sp. (Cordycipitaceae) and Metarhizium sp. (Clavicipitaceae),
which function as both endophyte and insect pathogens and
can acquire N from soil insects and transfer it to the plant

in exchange for C (Hu and Bidochka 2021; Bamisile et al.
2023). Their role in plant N nutrition was first described
in 2012 (Behie et al. 2012). However, there are no reports
on their interaction with other root fungi or whether their
N-transfer abilities might affect the effectiveness and stabil-
ity of mycorrhizal symbioses, which also deliver N to the
plants.

Apart from fungi that reside in the same root with EM
fungi, there are also feremycorrhizal fungi, meaning ‘nearly
mycorrhizal.” These fungi exhibit traits and functions similar
to those of EM fungi but do not penetrate the roots (Kari-
man et al. 2014). Unlike EM symbiosis, no investment from
the plant is required. Thus, feremycorrhiza is a by-product
interaction that may interfere with mycorrhizas, potentially
affecting their mutualistic relationship with the host plant.

In the abiotic context, EM mutualism can be influenced
by current changes in soil nutrient levels. Historically, N
has been a limiting factor in forest ecosystems of the North-
ern Hemisphere. However, due to anthropogenic activities,
the global availability of N has increased to unprecedented
levels, disrupting the context of low N supply and tight recy-
cling (Galloway et al. 2008). Along natural fertility gradi-
ents, in boreal forests, increased N availability may have
a positive effect on mycelium growth and species richness
(Kranabetter et al. 2009a, 2009b; Hogberg et al. 2021). In
temperate N-rich forests, EM fungal communities remain
diverse, with no apparent decline in diversity observed even
under conditions of extreme native soil fertility compared
to less fertile environments (Kranabetter et al. 2015). A
recent study conducted in boreal forests found that mod-
erate N deposition (5.8 kg N ha™! year™!) had no impact
on EM fungal biomass and community composition (Jor-
gensen et al. 2024). However, more severe N deposition
(e.g. 11.1 kg N ha™! year™!, Jorgensen et al. 2024) may lead
to declines in fungal sporocarps, biomass, abundance, and
community diversity. EM fungal communities tend to shift
from nitrophobic taxa under moderate N deposition (5.8 kg
N ha~! year™") to nitrophilic taxa at higher levels (15.5 kg N
ha~! year™!, van der Linde et al. 2018). This shift includes
the loss of key functional species, particularly those with
high enzymatic capabilities for releasing N from organic
sources (reviewed by Lilleskov et al. 2019, 2024). Currently,
it remains unclear whether the effects of N deposition on
EM fungi differ between communities that are already more
nitrophilic due to adaptation to N-rich soils and those from
low-N environments. These observations related to N depo-
sition are likely driven by either direct N toxicity stress or by
alterations in EM symbiosis. This symbiosis is fundamen-
tally based on the plant’s need for limited nutrients under
an invested benefits mutualism. With no N limitation, the
symbiosis may become a by-product benefit when plant C
supply to fungi is at no expense for the plant or an appropri-
ated benefit when the C supply is costly for the plant.
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Changes in soil nutrient stoichiometry, such as P limita-
tion induced by N saturation (Sardans et al. 2016), trigger
changes from an N to a P-oriented acquisition strategy
mediated by roots and ectomycorrhizas (Meeds et al. 2021;
Zhang et al. 2023; Zhu et al. 2023). Averill et al. (2018),
using a Bayesian multiple regression framework, found
that across the USA, N deposition is linked to a decline in
EM tree species, favouring their replacement with arbus-
cular mycorrhizal tree species. This shift is commonly
explained by the fact that arbuscular mycorrhizal fungi
primarily rely on inorganic N forms and possess signifi-
cant abilities in P acquisition.

However, a recent finer-scale metanalysis in the trop-
ics showed that the distribution and abundance of EM and
arbuscular mycorrhizal trees are independent of soil nutri-
ent availability (Medina-Vega et al. 2024). The results were
supported by an empirical study of Chilian native forests
(Lusk et al. 2024). At a plant level, research involving dual
plants, capable of forming both arbuscular and EM symbi-
oses, has revealed a certain plasticity in root symbioses to
optimise nutrient acquisition under P limitation. However, a
direct switch from EM to arbuscular mycorrhizal symbiosis
was not apparent (Teste and Laliberté 2019). Under a higher
N/P ratio and reduced pressure for N acquisition, EM fungi
may benefit from the plant’s ability to allocate more energy
toward increasing organic P acquisition through EM fungi or
other mechanisms (McPolin et al. 2024), such as enhancing
the activity of enzymes involved in P acquisition (Meeds
et al. 2021).

Forests cover much of the Earth’s surface, providing
crucial ecosystem services. With anthropogenic changes in
temperature, precipitation, and N deposition, it is vital to
understand the factors influencing the EM nutrient exchange
and interactions with soil organisms affecting N supply to
plants. Changes in plant-fungal mutualism within ectomy-
corrhizal symbiosis and reduced EM functional diversity
are critical for forest productivity, soil carbon sequestra-
tion, nutrient cycling, and climate change feedback. Future
studies should identify the factors and mechanisms driving
these changes to mitigate their impacts and preserve forest
ecosystem services.
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