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Abstract 
Terrestrial plants form primarily mutualistic symbiosis with mycorrhizal fungi based on a compatible exchange of solutes 
between plant and fungal partners. A key attribute of this symbiosis is the acquisition of soil nutrients by the fungus for the 
benefit of the plant in exchange for a carbon supply to the fungus. The interaction can range from mutualistic to parasitic 
depending on environmental and physiological contexts. This review considers current knowledge of the functionality of 
ectomycorrhizal (EM) symbiosis in the mobilisation and acquisition of soil nitrogen (N) in northern hemisphere forest eco-
systems, highlighting the functional diversity of the fungi and the variation of symbiotic benefits, including the dynamics 
of N transfer to the plant. It provides an overview of recent advances in understanding ‘mycorrhizal decomposition’ for N 
release from organic or mineral-organic forms. Additionally, it emphasises the taxon-specific traits of EM fungi in soil N 
uptake. While the effects of EM communities on tree N are likely consistent across different communities regardless of spe-
cies composition, the sink activities of various fungal taxa for tree carbon and N resources drive the dynamic continuum of 
mutualistic interactions. We posit that ectomycorrhizas contribute in a species-specific but complementary manner to benefit 
tree N nutrition. Therefore, alterations in diversity may impact fungal-plant resource exchange and, ultimately, the role of 
ectomycorrhizas in tree N nutrition. Understanding the dynamics of EM functions along the mutualism-parasitism continuum 
in forest ecosystems is essential for the effective management of ecosystem restoration and resilience amidst climate change.

Key points
• Mycorrhizal symbiosis spans a continuum from invested to appropriated benefits.
• Ectomycorrhizal fungal communities exhibit a high functional diversity.
• Tree nitrogen nutrition benefits from the diversity of ectomycorrhizal fungi.

Keywords  Ectomycorrhizal functional traits · Mutualistic spectrum · Decomposition · Nitrogen cycle

Introduction

The holobiont concept, in which plants and their associ-
ated microbes are viewed not as independent entities but 
as a cohesive evolutionary unit, emphasises the vital roles 
that bacteria, fungi, and other microorganisms play in plant 
growth, health, and adaptation to various environments 
(Theis et al. 2016; Uroz et al. 2019). Terrestrial plants asso-
ciate with mycorrhizal fungi to acquire nutrients (Moreau 

et al. 2019; Sun et al. 2021). They form a symbiotic relation-
ship based on a nutritional exchange between the partners in 
a quid pro quo (‘giving and taking’) manner (Almario et al. 
2022). Isotope tracing experiments have long demonstrated 
that there is a transfer of nutrients between partners (Fin-
lay et al. 1989; Le Tacon et al. 2015; Schreider et al. 2022; 
Khokon et al. 2023; Pena et al. 2023). The mycorrhizal fun-
gus obtains carbon (C) from the plant, which, in exchange, 
receives soil nutrients, mainly nitrogen (N) and phosphorus 
(P) from the fungus (Smith and Read 2010; Sun et al. 2021; 
Martin and van der Heijden 2024).

Mycorrhizal symbiosis is based on reciprocal invested 
benefits. Both partners invest and benefit from the sym-
biosis, and the benefit obtained from interaction exceeds 
the cost of the investment (Connor 1995). While diverse 
dynamics ranging from mutualism to parasitism can occur 
in certain contexts, such as early seedling development, high 
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fertilisation conditions, or mismatched plant and fungal gen-
otypes (Johnson et al. 1997), mycorrhizal symbiosis remains 
at the mutualistic end of the spectrum (Fig. 1a). It can some-
times be regarded as pseudo-reciprocity, where one partner 

does not invest directly but provides a by-product benefit 
to the other partner, such as when C is an excess resource 
for the plant (Corrêa et al. 2012), or when plants invest in 
the formation of new root tips, which are also utilised by 

Fig. 1   a Benefits of mutualistic ectomycorrhizal symbiosis: recipro-
cal invested benefits occur when both partners actively invest in each 
other; by-product benefits arise when one organism (the tree) inci-
dentally benefits the other (the fungus); and appropriated benefits 
happen when one partner (the fungus) exploits the resources of the 
other (the plant). b The contribution of ectomycorrhizal (EM) fungi 
to tree nitrogen (N) nutrition in forest ecosystems: ectomycorrhizas 
formed with different fungal taxa vary in their abilities to retrieve N 
from diverse substrates, their mechanisms of organic matter decom-

position and their preferences for specific N sources. The allocation 
of plant carbon (C) to different ectomycorrhizas is influenced by 
their C/N ratio. When soil N availability decreases, EM fungi may 
enhance decomposition activities to access N that requires higher C 
needs. Under severe N limitation, the mutualistic symbiosis may shift 
towards appropriated N benefits. The fungus optimises its N use effi-
ciency to lower the C/N ratio, thereby securing more C from the plant 
without transferring the N to the plant. Created with BioRender.com
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mycorrhizal fungi (Ruotsalainen et al. 2022). In the case 
of appropriated (i.e. purloined) benefits (Connor 1995), 
the fungal partner may exploit the C resources of the plant 
without any direct investment (e.g. providing N). However, 
despite this parasitic interaction from the perspective of N 
nutrition, the fungus may also produce other benefits for 
the host plant (e.g. providing P) that exceed the costs of the 
appropriated benefits, maintaining a mutualistic symbiosis.

Of all vascular plant species on earth, approximately 2% 
(ca. 8500 species) form EM symbiosis and most temperate 
and boreal tree species, accounting for about 60% of tree 
stems on earth, may associate with some of the > 20,000 
fungal species to form ectomycorrhizal (EM) symbioses 
(Brundrett and Tedersoo 2018; Steidinger et al. 2019). In 
this symbiosis, plant and fungal cells are reprogrammed to 
form a specialised root structure, the ectomycorrhiza, which 
facilitates the uptake and transfer of nutrients (Hacquard 
et al. 2013; Garcia et al. 2016; Nehls and Plassard 2018). 
The EM fungus forms a sheath around the colonised root 
tip (i.e. mantle) from which the mycelium extends bidi-
rectionally into the root apoplastic space and surrounding 
soil. In the root, the fungus wraps around each cortical cell 
to create a ‘Hartig net’ (named after Theodor Hartig, who 
in 1842 described the net but wrongly interpreted it to be 
plant tissue, Hacskaylo 2017; Sportes et al. 2021). The Har-
tig net forms the symbiotic interface, where carbohydrate 
and nutrient exchange between plant and fungal cells take 
place via transporters. In the soil, the extraradical myce-
lium extends over varying distances, displaying a diverse 
range of morphologies depending on the fungal species. 
The EM extraradical mycelium has been classified into four 
main soil exploration types based on the extent, differen-
tiation, and quantity of hyphae emanating from the mantle 
(Agerer 2001). The ‘contact’ exploration type features a 
smooth mantle, with only a few emanating hyphae primarily 
involved in nutrient exchange directly at the root interface. 
The ‘short-distance’ exploration type extends hyphae a short 
distance from the root surface, forming a compact network 
that enhances nutrient acquisition within the root depletion 
zone. The ‘medium-’ to ‘long-distance’ exploration types 
have hyphae that extend further, forming extensive networks, 
sometimes involving rhizomorphs that can spread consider-
ably, accessing nutrients from a larger volume of soil beyond 
the root depletion zone. In natural forests, nearly all fine 
absorptive roots develop into ectomycorrhizas (Pena et al. 
2010, 2017), making EM roots the primary nutrient-absorb-
ing structures for these trees (Martin and van der Heijden 
2024). They play a crucial role in major ecosystem func-
tions by influencing tree nutrient acquisition under nutrient-
limited conditions (Smith and Read 2010; Henriksson et al. 
2021) and contributing to organic matter decomposition 
(Lindahl and Tunlid 2015; Fernandez and Kennedy 2016; 
Zak et al. 2019; Lindahl et al. 2021). Additionally, they aid 

in soil C stabilisation through their recalcitrant mycelium 
(Clemmensen et al. 2015; Fernandez and Kennedy 2018; 
Maillard et al. 2023a; Hagenbo et al. 2024).

Recent large-scale comparative genomics, coupled with 
gene expression studies and classical physiological assess-
ments, have revealed significant differences in functional 
traits among EM taxa (Miyauchi et al. 2020; Khokon et al. 
2023; Maillard et al. 2023b; Auer et al. 2024). Although 
mycorrhizal relationships predominantly remain mutualistic, 
Frank’s 1885 definition, which asserts that fungi provide 
host plants with nutrients (Frank 2005), requires refinement. 
This is necessary to account for functional variation among 
individual fungal species (Clemmensen et al. 2021; Lebre-
ton et al. 2021; Lindahl et al. 2021) and differing growth 
conditions (Henriksson et al. 2021). This review synthesises 
recent advances in our understanding of the dynamics of EM 
symbiosis in terms of resource acquisition and exchange. It 
emphasises the role of EM in enhancing tree N nutrition in 
the large context of varying soil N availability.

Nitrogen is an essential element whose availability regu-
lates primary productivity and organic matter decomposi-
tion in terrestrial ecosystems (LeBauer and Treseder 2008; 
Vitousek et al. 2010). In Northern Hemisphere forests, the 
low availability of biological N forms is a major factor 
limiting plant growth (LeBauer and Treseder 2008). In the 
short term, N availability is driven by the balance between 
supply and demand (von Sperber et al. 2017). Under low 
supply, strong plant and microbial demands result in rapid 
uptake and immobilisation of any available N, aggravating 
the limitation (von Sperber et al. 2017). Ectomycorrhizal 
fungi work as nutrient miners and scavengers-carriers (sensu 
Cao et al. 2024) and are involved in both the supply and 
demand chains. In the supply chain, they are mobilising N 
from organic matter as ‘mycorrhizal decomposers’(Lindahl 
and Tunlid 2015; Lindahl et al. 2021; Martin and van der 
Heijden 2024). In the demand chain, EM fungi acquire nutri-
ents for the use of themselves and their host trees, becoming 
some of the strongest N competitors in the forest ecosystems 
(Wallenda and Read 1999; Pena et al. 2013; Bödeker et al. 
2016; Auer et al. 2024).

In the following sections, we summarise the key findings 
on the EM fungal role in the mobilisation and acquisition 
of soil N, highlighting the functional diversity of EM fungi 
(Fig. 1b). Finally, we discuss the variation of mutualism 
benefits, including the dynamics of N transfer to the plant.

Contribution of ectomycorrhizas to organic 
N mobilisation

In most forest soils, up to 95% of N exists in organic form. 
Before stabilisation in the soil matrix and if not taken up 
by plants, organic N cycles between microbial biomass and 
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residues, adsorption and desorption from soil mineral par-
ticles, and dissolution and precipitation from the soil solu-
tion, as described by Bingham and Cotrufo (2016). Organic 
N enters the soil through plant litter, and root, animal and 
microbial necromass, as well as dissolved organic N from 
root exudates and plant litter leachates. The labile N com-
pounds, such as free amino acids or peptides, are rapidly 
immobilised by microorganisms and plants (Neff et al. 2003; 
Schimel and Bennett 2004). The remaining organic N, con-
sisting of polymeric structures, is commonly complexed 
with degradation organic products or mineral particles and 
must undergo depolymerisation or mineralisation to become 
available to plants (Nannipieri and Paul 2009; Bingham and 
Cotrufo 2016; Jilling et al. 2018). In N-poor ecosystems, 
where organic N-use by plants is common, depolymerisa-
tion is the most limiting process in N accessibility (Schimel 
and Bennett 2004; Näsholm et  al. 2009). Saprotrophic 
fungi and bacteria are recognised as efficient decomposers 
of organic biopolymers in the soil (López-Mondéjar et al. 
2018, 2020). However, some EM basidiomycetes have the 
ability to secrete extracellular enzymes and low molecular 
weight (LMW) metabolites to solubilise a range of com-
pounds from simple proteins to chitin, polymerised lignin, 
and mineral-protein complexes (Tibbett et al. 1999; Shah 
et al. 2013, 2016; Wang et al. 2020, 2021). In contrast with 
saprotrophs, which utilise soil organic matter as a source 
of metabolic C, ‘mycorrhizal decomposition’ results in N 
mobilisation (Lindahl and Tunlid 2015; Nicolás et al. 2019; 
Clemmensen et al. 2021). EM fungi use the plant C supply 
to carry out the co-metabolic decomposition of complexed 
organic N, releasing N (Hobbie et al. 2013; Lindahl and Tun-
lid 2015; Nicolás et al. 2019). Shah et al. (2016) propose that 
during EM evolution, the ancestral decay mechanisms used 
to obtain C have been changed to obtain N. Given that EM 
fungi evolved multiple times within different clades of sap-
rotrophs, there are large variations in the genetic potential to 
decay soil organic matter among EM fungal lineages (Kohler 
et al. 2015; Miyauchi et al. 2020; Looney et al. 2022; Wu 
et al. 2022).

The genomes of many EM basidiomycetes retain a 
reduced set of genes encoding enzymes involved in organic 
matter decomposition, as compared to saprotrophs. These 
enzymes are commonly found in decaying mechanisms of 
white-rot and brown-rot saprotrophic fungi (reviewed in 
Lebreton et al. 2021). The white-rot fungi mainly degrade 
the exposed lignocellulose surfaces via extracellular oxida-
tive enzymes, including phenol oxidases such as laccases 
and class II peroxidases (e.g. lignin peroxidases, manganese 
peroxidases, or versatile peroxidases) and various hydro-
lytic carbohydrate-active enzymes (CAZymes) (Janusz et al. 
2017). Brown rot fungi evolved from white-rot fungi by los-
ing many of their oxidoreductases and CAZymes as they 
have developed a less energy-demanding LMW catalytic 

mechanism based on a Fenton system for generation of 
hydroxyl radicals (Eastwood 2014; Goodell 2020). These 
hydroxyl radicals can rapidly depolymerise and then repoly-
merise lignin in a modified form, which is available for a 
delayed enzymatic attack (Goodell 2020).

Spectroscopic and genome-wide transcriptome analysis 
confirmed that EM fungi representing different origins of 
symbiosis within a white-rot (Agaricales), brown-rot (Bole-
tales), or mixed (Atheliales–Amylocorticales) decomposer 
clades may retrieve N from soil organic matter extracts using 
oxidative mechanisms (Shah et al. 2016). Organic matter 
oxidation is possible as a co-metabolic process (Lindahl and 
Tunlid 2015) only when C is supplied (i.e. glucose) (Rineau 
et al. 2013; Shah et al. 2016; Nicolás et al. 2019). Ecto-
mycorrhizal fungi also engage in Fenton-based decomposi-
tion of organic matter, similar to brown-rot fungi (Rineau 
et al. 2012; Shah et al. 2016, 2020). However, the specific 
mechanisms of Fenton chemistry may vary among differ-
ent EM fungi (Shah et al. 2020). In an in vitro experiment 
involving five EM fungal species from different symbiotic 
origins, all species modified the organic extracts to vary-
ing extents, utilising different sets of transcripts (Shah et al. 
2016). In a follow-up experiment, Nicolás et al. (2019) 
demonstrated that the mechanisms of N mobilisation from 
organic matter extracts differed significantly between Paxil-
lus involutus (Boletales) and Laccaria bicolor (Agaricales), 
reflecting their evolutionary origins of brown-rot and litter-
decomposing fungus, respectively. Paxillus involutus used a 
time-separated two-step mechanism consisting of oxidation 
and hydrolysis, whereas Laccaria bicolor employed a one-
step mechanism that combined the activities of oxidative and 
hydrolytic enzymes (Nicolás et al. 2019). In both fungi, the 
availability of C and inorganic N in the culture media gov-
erned N mobilisation from the soil organic matter extracts. 
Decomposition and liberation of organic N decreased under 
C limitation and started only after the inorganic N (i.e. 
ammonium) was depleted (Nicolás et al. 2019). In P. involu-
tus, oxidation was controlled by N limitation and hydrolysis 
by C limitation. In L. bicolor, the one-step mechanism was 
initiated by N limitation and sustained during C limitation. 
Based on the transcriptional pattern, where a gene encod-
ing a sugar transporter and several plant cell wall-degrading 
enzyme (PCWDE) genes were upregulated, the authors sug-
gested that L. bicolor may have the capacity to assimilate C 
released during organic matter decomposition (Nicolás et al. 
2019). This capability is evident, at least when the fungus 
is not engaged in symbiosis (Martin et al. 2008). The role 
of N availability in triggering ‘mycorrhizal decomposition’ 
was also observed in the field, where ammonium addition 
led to the downregulation of manganese peroxidase genes 
in the genus Cortinarius (Bödeker et al. 2014; Pellitier and 
Zak 2021; Argiroff et al. 2022). Nevertheless, the control 
exerted by C availability on ‘mycorrhizal decomposition’ 
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indicates that organic N mobilisation involves energetic 
costs that are commonly supported by trees on the recipro-
cal investment benefit mutualism. The benefits provided by 
the fungus should outweigh the cost of plant C investment 
to avoid a change leading to appropriated benefits or even 
parasitism (Näsholm et al. 2013; Baskaran et al. 2017; Ågren 
et al. 2019).

In contrast with the PCWDE gene copy number, which 
is higher in the saprotrophic than EM fungal genomes, 
the proportion of genes encoding for microbial cell wall 
degrading enzymes (MCWDEs) is similar between EM and 
saprotrophic fungi (Miyauchi et al. 2020). Recently, Auer 
et al. (2024) have shown that in situ EM fungi most strongly 
expressed the genes encoding for enzymes that act on chitin, 
such as GH18 (chitinases) and GH20 (b-N-acetylglucosa-
minidases). The ability of EM fungi to access N-contain-
ing polymers such as chitin or chitosan has been described 
for numerous species (Maillard et al. 2023b). Some spe-
cies, such as Boletus edulis, Imleria badia, Suillus luteus, 
and Hebeloma cylindrosporum, are particularly efficient 
in mobilising N from chitin (Maillard et al. 2023b). This 
phenomenon is particularly important as fungal mycelium 
necromass is a large component of soil organic matter (Awad 
et al. 2019; Hagenbo et al. 2024).

A large fraction (e.g. 45% in boreal forest soil) of soil 
organic N exists as proteinaceous compounds associated 
with mineral particles (Jilling et  al. 2018; Kramer and 
Chadwick 2018). Recent works indicate that EM fungi of 
different phylogeny and ecology can mobilise N from iron 
oxide mineral-associated proteins (Wang et al. 2020, 2021; 

Krumina et al. 2022). They use a proteolytic mechanism 
based on the formation of enzyme–substrate complexes at 
the mineral surfaces that enables protein hydrolysis without 
initial desorption of the proteins (Wang et al. 2020). Further-
more, reports from culture studies show that fungi assimilate 
about 30 to 50% of N from ferrihydrite- or goethite-associ-
ated bovine serum albumin (Wang et al. 2021). Although 
field studies are lacking, the ability of EM fungi to prolifer-
ate in deeper soil layers (Lindahl et al. 2007; McGuire et al. 
2013; Clemmensen et al. 2021) where mineral-associated 
organic N is abundant (Jilling et al. 2018) and their high 
capacity to produce extracellular proteases (Shah et al. 2013; 
Nicolás et al. 2019) suggest that retrieving N from mineral-
complexed proteins is important in N-limited forest ecosys-
tems. Table 1 presents a comprehensive summary of recent 
findings on the abilities of distinct EM fungi to acquire N by 
decomposing organic substrates.

The combination of fungi’s genetic potential for organic 
matter degradation with their ecological strategies explains 
the fungal functional traits of active EM fungi in mobilis-
ing N (Maillard et al. 2023b; Auer et al. 2024). While spe-
cies may exhibit similar genetic patterns of genes involved 
in decomposition, their expression can vary depending on 
fungal ecology (Barbi et al. 2016). More versatile species 
that readily adapt to diverse decomposing substrates may 
possess a high number of decomposition-related genes but 
exhibit lower expression levels compared to more special-
ised species, which may show high expression of ‘keystone 
functional genes’ (Barbi et al. 2016). For example, some 
‘long-distance-exploration type’ EM fungi oxidise organic 

Table 1   Ectomycorrhizal fungal capabilities in organic matter degradation for nitrogen (N) retrieval

Fungus N source/involved mechanisms Measurement methods Reference

Paxillus involutus Soil organic matter/oxidative decom-
position by Fenton chemistry

Infrared spectroscopy, chromatog-
raphy,

mass spectrometry

Rineau et al. (2012); Shah et al. 
(2016)

Iron mineral-associated proteins/
protein hydrolysation at the mineral 
surface without initial desorption

Isotopic analyses,
infrared spectroscopy

Wang et al. (2020, 2021); Krumina 
et al. (2022)

Suillus luteus Soil organic matter/oxidative decom-
position by Fenton chemistry

Infrared spectroscopy, chromatog-
raphy,

mass spectrometry

Shah et al. (2016)

Cortinarius sp. Lignin/Mn-peroxidase activity Analysis of Mn-peroxidase activity Bödeker et al. (2014)
Laccaria bicolor Soil organic matter/oxidative decom-

position
Infrared spectroscopy Shah et al. (2016)

Piloderma croceum Soil organic matter/oxidative decom-
position

Infrared spectroscopy Shah et al. (2016)

Hebeloma cylindrosporum Iron mineral-associated proteins/pro-
tein hydrolysation

Isotopic analyses,
infrared spectroscopy

Wang et al. (2021)

Imleria badia Exogenous chitin/chitin hydrolysation Measurements of 15N fungal enrich-
ments, obtained by feeding the 
fungus with 15N labelled chitin

Maillard et al. (2023a, b)
Boletus edulis
Suillus luteus
Hebeloma cylindrosporum
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matter and retrieve N more effectively than some ‘short-’ 
and ‘medium-distance-exploration’ types. This is despite 
all of them possessing genes encoding oxidative enzymes 
(Shah et al. 2016). Fungal decomposition capabilities, such 
as enzyme activities (Courty et al. 2010; Talbot et al. 2015) 
and accessing N from specific sources (Chen et al. 2019), 
vary less among phylogenetic lineages of fungi than among 
species with different ecologies (Tables 1 and 2). Addition-
ally, Op De Beeck et al. (2020) demonstrated that genetically 
identical hyphal tips can exhibit differences in decomposi-
tion activity at the single-cell level within the mycelium. 
Thus, the environmental conditions, particularly the chemi-
cal properties and the availability of the substrates, are major 
drivers of EM fungal traits in N mobilisation (Shah et al. 
2013).

Contribution of ectomycorrhizas 
to inorganic N acquisition

In symbiosis, the mechanism of nutrient uptake depends 
on both plant and fungal nutritional status and their recip-
rocal influence (Sa et al. 2019; Rivera Pérez et al. 2022). 
Similarly to plants, EM fungi take up N from the soil in 
its oxidised (NO3

−) and reduced (NH4
+) form or as soluble 

organic N mono- and oligomers (Talbot and Treseder 2010; 
Courty et al. 2015; Garcia et al. 2016). In a direct compari-
son between EM and non-mycorrhizal root tips, the uptake 
of NH4

+, measured as N fluxes at the EM mantle surface, 
is consistently 10 to 60 times higher in the ectomycorrhiza 

of various EM fungal species compared to non-mycorrhizal 
root tips (Hawkins and Kranabetter 2017; Hawkins and Rob-
bins 2022). However, variation may occur in NO3

− uptake 
or when inorganic N availability is high (Hawkins and Kra-
nabetter 2017; Xie et al. 2021). Nevertheless, the N fluxes 
measured in EM are generally higher than those in non-
mycorrhizal roots (Gobert and Plassard 2002). The major-
ity of EM fungi are particularly effective in accessing N 
from NH4

+ (Kranabetter et al. 2015; Leberecht et al. 2016a, 
2016b; Hawkins and Robbins 2022; Khokon et al. 2023), 
which is less mobile than NO3

− due to its adsorption onto 
soil cation exchange sites (Tinker and Nye 2000). This role 
is crucial in more acidic, cold, or poorly aerated soils where 
NH4

+ dominates, as these conditions do not favour nitrifica-
tion (Marschner 2011).

In N-rich temperate forests, such as the coastal rainfor-
ests of North America, high rates of N mineralisation may 
lead to elevated levels of soil inorganic N. In these ecosys-
tems, EM fungal communities are predominantly composed 
of species with high NH4

+ uptake capacity (e.g. Lactarius 
hepaticus, Tomentella sublilacina, Tylospora sp., Kranabet-
ter et al. 2015). The formation of ectomycorrhiza stimulates 
the expression of NO3

− transporters and NH4
+ transport-

ers, as well as transporters for amino acids and peptides in 
both plant and fungi (Müller et al. 2020; Sun et al. 2021). 
While EM fungi possess only a limited number of high-
affinity NO3

− transporters, they are equipped with both low 
and high-affinity NH4

+ transporters (Garcia et al. 2016). The 
combination of both enables effective regulation of NH4

+ 
uptake in response to varying soil concentrations, which 

Table 2   Preferences of ectomycorrhizas (EM) for uptake of inorganic N from different sources

Fungus N source 
preference

Methods Reference

Beech (Fagus sylvatica)
  Clavulina cristata NH4

+ Measurements of 15N EM enrichments, obtained by feeding the 
plants with NH4NO3 labelled with either 15NH4

+ or 15NO3
−

Khokon et al. (2023)
  Tomentella ramosissima,
  Inosperma maculatum
  Xerocomus chrysenteron
  Genea hipidula
  Helotiales NO3

−

  Tomentella stuposa
  Humaria hemisphaerica

Douglas-fir (Pseudotsuga menziesii)
  Lactarius rubrilacteus NH4

+ Microelectrode ion flux measures Kranabetter et al. (2015)
  Piloderma sp.
  Tomentella sp.
  Lactarius cf. hepaticus
  Lactarius luculentus
  Russula chloroides
  Tomentella sublilacina
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likely contributes to their adaptability in N-rich environ-
ments. In the fungus, the transcriptional profile related to 
nutrient acquisition and transport differed between compart-
ments. The most upregulated genes are found in the EM 
extraradical mycelium and the mantle, which also plays a 
role in nutrient storage. In contrast, the most downregulated 
genes, including some that are completely switched off, are 
observed in the Hartig net at the plant-fungal interface. This 
complete downregulation may represent an efficient strategy 
to prevent the fungal reuptake of N (e.g. ammonia, amino 
acids) from the apoplastic space, ensuring that N remains 
available for transfer to the plant (Hacquard et al. 2013; Le 
Tacon et al. 2015).

One of the main contributions of EM fungi to N acqui-
sition is their ability to extend the extraradical mycelium 
beyond the nutrient depletion zone surrounding the roots. 
This extension allows them to access nutrients from a larger 
soil volume, compensating for the plant’s limited ability to 
absorb nutrients at rates faster than their loss into the sur-
rounding soil (Pena 2016). In boreal and temperate forest 
ecosystems, EM mycelium comprises one-third of microbial 
biomass (Awad et al. 2019; Hagenbo et al. 2024). Extra-
radical mycelium exploration types (Agerer 2001) have long 
been considered to be EM traits that explain spatial foraging 
patterns related to resource spatial availability and acquisi-
tion (Hobbie and Agerer 2009; Zak et al. 2019). However, a 
recent and comprehensive study by Jörgensen et al. (2023) 
demonstrated that there is little support for using the external 
mycelium exploration type to predict EM foraging strategy. 
Instead, the study, along with findings by Anthony et al. 
(2022), found that species exhibit preferences for nutritional 
substrates, which can be correlated with certain degrees of 
hyphal hydrophobicity and nitrophobicity. Taxa with high 
extraradical biomass, classified as the ‘medium- and long-
distance-exploration’ type, are not necessarily the most 
prolific. Their biomass may be sustained by a lower turno-
ver rate (Jörgensen et al. 2023). The majority of low-prolif-
erating taxa are nitrophobic and hydrophobic, commonly 
associated with inorganic N-limited environments where N 
acquisition from organic sources is required (Pellitier and 
Zak 2021; Jörgensen et al. 2023). In contrast, in a temperate 
forest, under relatively high atmospheric N inputs (beech 
forest, 13.8–16.6 kg N ha−1 year−1, Khokon et al. 2023) or 
in an N-rich coastal rainforest (Kranabetter et al. 2015), EM 
fungal communities are dominated by neutrophilic species 
with contact and medium smooth exploration types. Some 
EM fungi, in beech communities, may contribute to the 
uptake of NO3

−, reducing NO3
− accumulation and prevent-

ing subsequent leaching (Mrak et al. 2024). Nevertheless, 
the species within these communities exhibited significant 
variation in N uptake of NH4

+ or NO3
− (Khokon et al. 2023), 

corroborating previous findings of substantial variability in 
fungal abilities for N acquisition. Table 2 highlights the 

diversity among ectomycorrhizas in N acquisition from 
various sources.

A recent metatranscriptomic study revealed that the 
impact of the EM community on tree N nutrition was similar 
and consistent across different fungal communities despite 
being composed of different taxa. The authors have sug-
gested that functional redundancy exists among ectomy-
corrhizas (Auer et al. 2024). Evidence from other studies 
also suggests that communities, assembled through envi-
ronmental filtering, are dominated by species best equipped 
to utilise the most available N source in their environment 
(Kranabetter et al. 2015). Moreover, endemic EM fungi are 
better adapted than cosmopolitan species at exploiting avail-
able N sources, indicating a high level of specialisation in 
enhancing tree access to available N (McPolin et al. 2024). 
On a global scale, the composition of EM fungal commu-
nities has been shown to account for a threefold variation 
in tree growth (Anthony et al. 2022). In contrast, Khokon 
et al. (2023) found that the positive relationship between 
EM fungal diversity and tree N acquisition does not corre-
late with any particular taxa, suggesting that specific traits 
of fungal species do not solely explain root N acquisition. 
This indicates that ectomycorrhizal communities contribute 
to tree N nutrition in a species-specific but complementary 
manner. A high EM functional diversity in abilities to access 
distinct or spatially scattered N sources forms the basis for 
improved N acquisition. We may consider physiological and 
functional flexibility, even within a single mycelial network, 
and adaptability to the edaphic environment to be within 
the limits of the reciprocal invested benefits (Cairney and 
Burke 1996). For example, in an EM assemblage, distinct 
EM taxa activate their N uptake abilities to benefit the tree 
when abiotic conditions are limiting, but not when the tree 
is unstressed (Pena and Polle 2014). Sustaining high EM 
fungal biodiversity is critical for tree N nutrition under cur-
rent and future climate scenarios. However, maintaining the 
reciprocal investments and benefits of mutualistic interac-
tions has sensitive limits. As EM fungal community size 
increases, this sensitivity may also rise, potentially leading 
to pseudo-reciprocity, appropriated benefits, or parasitism.

C and N resources in the ectomycorrhizas

The tree plays an intrinsic role in EM-mediated N nutrition, 
either by decoupling its N metabolism from fungal metab-
olism (Leberecht et al. 2016a; Rivera Pérez et al. 2022), 
or by modulating C allocation to ectomycorrhizas. The 
maintenance of diverse EM communities depends on the 
tree’s C supply (Pena et al. 2010). Furthermore, EM fungi 
that receive more C can colonise more root tips compared 
to those receiving less carbon (Pena et al. 2023). In other 
nutritional symbioses, such as the arbuscular mycorrhizal 
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(Kiers et al. 2011) or legume–rhizobium (Simms et al. 2006) 
symbioses, the nutrient flux between partners follows the 
market exchange theory, with the plant allocating more C 
to the partner that provides the most nutrients. In ectomy-
corrhizas, at the cellular scale, the fungal-acquired soil N 
is spatially correlated with the plant photo-assimilated C 
transferred to the fungus (Mayerhofer et al. 2021). How-
ever, there is no quantitative correlation between the two 
fluxes (Valtanen et al. 2014; Hortal et al. 2017; Plett et al. 
2024). Nevertheless, a strong relationship exists between the 
C supply and the taxon-specific C/N ratio of ectomycorrhiza, 
with the C supply decreasing as the C/N ratio increases. No 
C supply occurs when C/N is high (C/N > 24, Pena et al. 
2023). This indicates that the plant-fungus exchange is not 
linear. The plant controls C allocation based on N content of 
the ectomycorrhiza, while fungal traits for N use efficiency, 
which determine N uptake and immobilisation in the fungus, 
provide feedback control on plant C allocation (Pena et al. 
2023). EM feedback probably varies depending on environ-
mental conditions and nutrient availability. A critical situ-
ation can arise under N-limitation when EM fungi take up 
and immobilise N in their biomass without supplying it to 
the trees, while continuously receiving C from them. Fungal-
supplied N is correlated to the concentration of free amino 
acids in EM extraradical mycelium (Plett et al. 2024). In 
boreal forests, several studies suggest that high C alloca-
tion to symbionts enables greater fungal N immobilisation, 
negatively affecting soil N availability and forest N cycling 
(Hasselquist et al. 2016; Högberg et al. 2017; Henriksson 
et al. 2021).

According to Pena et al. (2023), different ectomycorrhizas 
form distinct plant-C sinks depending on their C/N ratio but 
also represent species-specific sinks of plant-assimilated N. 
In angiosperm plants, N absorbed from the soil is primar-
ily assimilated into amino acids in the leaves. These amino 
acids are then redistributed to developing organs via the 
phloem, serving as the primary N source for root growth 
(Yoneyama et al. 2003). Internal N availability regulates 
tree N uptake (Rennenberg and Dannenmann 2015) and 
influences tree N-acquisition strategies, such as root pro-
liferation to exploit soil N hotspots (Chen et al. 2018). In a 
recent study, using secondary ion mass spectrometry (SIMS) 
imaging combined with leaf labelling of young beech with 
15NH4

+, plant-derived N was found to be present in the fun-
gal tissue within ectomycorrhizas (Pena et al. 2023). The 15N 
enrichment in the lateral rootlets was also correlated with the 
enrichment found in the attached ectomycorrhizas, which 
was further correlated with their C/N ratio. Ectomycorrhizal 
fungi can capture the plant-assimilated N either from the 
root apoplast at the symbiotic interface or by recapturing it 
after exudation. In the first scenario, EM fungal interven-
tion is less likely because the presence of fungal amino acid 
transporters at the symbiotic interface could intercept the N 

influx, destabilising the symbiosis functionality (Martin & 
Nehls 2009, but see Garcia et al. 2016). Nevertheless, the 
second scenario is more probable, as EM fungi can uptake 
amino acids from the soil (Garcia et al. 2016). Given that 
the fungal mantle tightly encapsulates the EM root tip, EM 
fungi are favoured over other soil microorganisms in access-
ing plant-exuded N (Canarini et al. 2019). By intercepting 
the root N efflux, EM fungi reduce the supplementary N 
source available for rhizosphere microorganisms (Jones 
et al. 2004; Canarini et al. 2019). This functional trait of 
EM fungi, either creating a distinct sink for plant-assimilated 
N or recapturing the plant-exuded N, is crucial for tree N 
nutrition. It provides the basis for EM-regulated N fluxes 
within the root system and directly affects the plant’s prim-
ing capacity by modifying the exudate C/N stoichiometry. 
This latter aspect is important, as microorganism activity is 
commonly constrained by both C and N availability (Jones 
et al. 2004; Drake et al. 2013).

Ectomycorrhizal fungi enhance tree N 
nutrition via microbiome influence

The role of EM fungi in plant nutrition also includes an 
indirect component, as they positively influence other 
soil microorganisms (e.g. bacteria, archaea) involved in N 
cycling, thereby enhancing plant N uptake (Frey-Klett et al. 
2007; Lladó et al. 2017; Uroz et al. 2019). Mycorrhizal sym-
biosis creates new niches for microorganisms by modifying 
the plant’s ecophysiological traits and local soil proper-
ties (Uroz et al. 2019). Specifically, EM fungi construct a 
unique compartment of the mycorrhizosphere—the imme-
diate space surrounding the external EM hyphae influenced 
by root and hyphal exudates. This compartment provides 
space and nutrients for a range of microbial communities 
(Johansson et al. 2009; Bogar and Peay 2017; Gorka et al. 
2019). For example, the mycorrhizospheres of Pinus sylves-
tris (Rinta-Kanto and Timonen 2020) and Pinus muricata 
(Nguyen and Bruns 2015) are populated with Actinobacte-
ria and Planctomycetia, which can break down recalcitrant 
organic substrates (e.g. chitin) to retrieve N, and Burkholde-
riales, which are involved in N fixation (Elliott et al. 2007).

A much deeper analysis of Pinus sylvestris (Marupakula 
et al. 2016) or Fagus sylvatica (Dietrich et al. 2022) EM 
root tips revealed that distinct EM fungi harbour distinct 
communities of bacteria. Furthermore, rare fungal taxa play 
a role similar to that of the most abundant taxa in driving 
the assembly of new microbial communities (Dietrich et al. 
2022). These findings highlight the importance of maintain-
ing a high mycorrhizal diversity. High functional diversity 
is essential to foster the formation of diverse associated 
microbial communities that enhance N cycling and plant N 
nutrition. Further research is needed to understand how the 
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functional benefits of EM fungi can remain unaffected by 
environmental changes and disturbances, ensuring sustained 
plant growth and soil health.

Future perspectives

Understanding the dynamics of EM functions along the 
mutualism-parasitism continuum in forest ecosystems is 
essential for the effective management of ecosystem res-
toration and resilience amidst climate change. Variation in 
mutualistic species interactions is common in nature, par-
ticularly in mycorrhizal symbiosis, which involves a bidi-
rectional energy transfer –C from plants to fungi and N or 
other nutrients from fungi to plants. This variation is often 
described as context-dependent, influenced by changes in 
biotic factors, such as the involvement of additional species, 
and abiotic factors, such as resource availability or abiotic 
stress (Chamberlain et al. 2014) (Fig. 1b).

In the biotic context, the immediate functional groups that 
may influence EM symbioses through competition or coop-
eration with EM fungi include other fungi that occupy the 
same spatial niche and can transfer N to plants and access 
plant C resources. Tree roots host rich communities of dark 
septate endophytic (DSE) fungi that live in plant tissues, 
producing no symptoms or morphological modifications of 
their hosts (Hardoim et al. 2015). These ascomycetes have 
a strong enzymatic potential, enabling them to acquire N 
from organic sources, which is then transferred to the tree. 
There is a by-product mutualist interaction in which DSEs 
provide N without requiring any special structural invest-
ment from the host plant (Ruotsalainen et al. 2022). Tree C, 
which enters the soil as root exudates, or leaf and root lit-
ter, is a by-product benefitting the DSE fungi (Ruotsalainen 
et al. 2022). This interaction is considered a transitional 
phase in the evolution of mycorrhizal symbionts from sap-
rotrophic fungi (Ruotsalainen et al. 2022). Reports on the 
interaction between DSE and EM fungi are currently limited 
and exhibit significant variability, ranging from neutral to 
competitive or facilitative interactions, largely depending 
on the fungal strains involved (Reininger and Sieber 2012; 
Berthelot et al. 2019). Notably, these findings are derived 
from in vitro experiments (Berthelot et al. 2019) and growth 
chamber studies with seedlings (Reininger and Sieber 2012), 
with no data available from field studies. Future research 
should prioritise field investigations to better understand the 
effects of DSEs on EM symbioses in natural settings and 
their implications for tree nutrition.

A special type of root endophyte involved in plant N 
acquisition is the soil ascomycetes fungi, such as Beauveria 
sp. (Cordycipitaceae) and Metarhizium sp. (Clavicipitaceae), 
which function as both endophyte and insect pathogens and 
can acquire N from soil insects and transfer it to the plant 

in exchange for C (Hu and Bidochka 2021; Bamisile et al. 
2023). Their role in plant N nutrition was first described 
in 2012 (Behie et al. 2012). However, there are no reports 
on their interaction with other root fungi or whether their 
N-transfer abilities might affect the effectiveness and stabil-
ity of mycorrhizal symbioses, which also deliver N to the 
plants.

Apart from fungi that reside in the same root with EM 
fungi, there are also feremycorrhizal fungi, meaning ‘nearly 
mycorrhizal.’ These fungi exhibit traits and functions similar 
to those of EM fungi but do not penetrate the roots (Kari-
man et al. 2014). Unlike EM symbiosis, no investment from 
the plant is required. Thus, feremycorrhiza is a by-product 
interaction that may interfere with mycorrhizas, potentially 
affecting their mutualistic relationship with the host plant.

In the abiotic context, EM mutualism can be influenced 
by current changes in soil nutrient levels. Historically, N 
has been a limiting factor in forest ecosystems of the North-
ern Hemisphere. However, due to anthropogenic activities, 
the global availability of N has increased to unprecedented 
levels, disrupting the context of low N supply and tight recy-
cling (Galloway et al. 2008). Along natural fertility gradi-
ents, in boreal forests, increased N availability may have 
a positive effect on mycelium growth and species richness 
(Kranabetter et al. 2009a, 2009b; Högberg et al. 2021). In 
temperate N-rich forests, EM fungal communities remain 
diverse, with no apparent decline in diversity observed even 
under conditions of extreme native soil fertility compared 
to less fertile environments (Kranabetter et al. 2015). A 
recent study conducted in boreal forests found that mod-
erate N deposition (5.8 kg N ha−1 year−1) had no impact 
on EM fungal biomass and community composition (Jör-
gensen et al. 2024). However, more severe N deposition 
(e.g. 11.1 kg N ha−1 year−1, Jörgensen et al. 2024) may lead 
to declines in fungal sporocarps, biomass, abundance, and 
community diversity. EM fungal communities tend to shift 
from nitrophobic taxa under moderate N deposition (5.8 kg 
N ha−1 year−1) to nitrophilic taxa at higher levels (15.5 kg N 
ha−1 year−1, van der Linde et al. 2018). This shift includes 
the loss of key functional species, particularly those with 
high enzymatic capabilities for releasing N from organic 
sources (reviewed by Lilleskov et al. 2019, 2024). Currently, 
it remains unclear whether the effects of N deposition on 
EM fungi differ between communities that are already more 
nitrophilic due to adaptation to N-rich soils and those from 
low-N environments. These observations related to N depo-
sition are likely driven by either direct N toxicity stress or by 
alterations in EM symbiosis. This symbiosis is fundamen-
tally based on the plant’s need for limited nutrients under 
an invested benefits mutualism. With no N limitation, the 
symbiosis may become a by-product benefit when plant C 
supply to fungi is at no expense for the plant or an appropri-
ated benefit when the C supply is costly for the plant.
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Changes in soil nutrient stoichiometry, such as P limita-
tion induced by N saturation (Sardans et al. 2016), trigger 
changes from an N to a P-oriented acquisition strategy 
mediated by roots and ectomycorrhizas (Meeds et al. 2021; 
Zhang et al. 2023; Zhu et al. 2023). Averill et al. (2018), 
using a Bayesian multiple regression framework, found 
that across the USA, N deposition is linked to a decline in 
EM tree species, favouring their replacement with arbus-
cular mycorrhizal tree species. This shift is commonly 
explained by the fact that arbuscular mycorrhizal fungi 
primarily rely on inorganic N forms and possess signifi-
cant abilities in P acquisition.

However, a recent finer-scale metanalysis in the trop-
ics showed that the distribution and abundance of EM and 
arbuscular mycorrhizal trees are independent of soil nutri-
ent availability (Medina-Vega et al. 2024). The results were 
supported by an empirical study of Chilian native forests 
(Lusk et al. 2024). At a plant level, research involving dual 
plants, capable of forming both arbuscular and EM symbi-
oses, has revealed a certain plasticity in root symbioses to 
optimise nutrient acquisition under P limitation. However, a 
direct switch from EM to arbuscular mycorrhizal symbiosis 
was not apparent (Teste and Laliberté 2019). Under a higher 
N/P ratio and reduced pressure for N acquisition, EM fungi 
may benefit from the plant’s ability to allocate more energy 
toward increasing organic P acquisition through EM fungi or 
other mechanisms (McPolin et al. 2024), such as enhancing 
the activity of enzymes involved in P acquisition (Meeds 
et al. 2021).

Forests cover much of the Earth’s surface, providing 
crucial ecosystem services. With anthropogenic changes in 
temperature, precipitation, and N deposition, it is vital to 
understand the factors influencing the EM nutrient exchange 
and interactions with soil organisms affecting N supply to 
plants. Changes in plant-fungal mutualism within ectomy-
corrhizal symbiosis and reduced EM functional diversity 
are critical for forest productivity, soil carbon sequestra-
tion, nutrient cycling, and climate change feedback. Future 
studies should identify the factors and mechanisms driving 
these changes to mitigate their impacts and preserve forest 
ecosystem services.
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