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Abstract

Soil enzyme assays are often used as indicators of potential biological functions. The objective of this study was to
understand enzyme activity across a range of soil pH. Soils (0—15 cm) were collected from a heathland restoration project
(established 1999) on the Isle of Purbeck, UK with treatments of elemental sulphur or ferrous sulphate compared to a
control, acid grassland and heathland. Enzyme assays were conducted using fluorescent substrates for B-1,4-glucosidase,
B-N-acetylglucosaminidase (NAG) and phosphatase with a range of buffer pH from 3.0 to 12.0. Differences in soil pH
were still evident with the control (pH 5.3) and ferrous sulphate (pH 5.2) significantly higher than elemental sulphur (pH
4.5), acid grassland (pH 4.3) and heathland (pH 4.0). The optimum buffer pH for enzyme assays varied from pH 3-4.5 for
B-glucosidase, pH 45 for NAG and pH 4-6 for phosphatase. Comparisons using a standard MUB pH resulted in different
conclusions compared to optimum pH. For example, B-glucosidase activity at pH 5 for the control was significantly higher
than elemental sulphur, acid grassland, and heathland. However, there were no differences when the pH optimums were
considered. Comparisons of phosphatase activity at MUB pH 6.5 resulted in higher activity in the control plots compared
to the heathland, despite the heathland soils showing the highest activity at optimum buffer pH. By examining the rela-
tionships between soil pH, enzyme activity, and assay conditions, this study highlights the importance of optimizing pH
in enzyme assays when comparing diverse soil types.
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1 Introduction mechanisms to thrive in these conditions. For example,

heathlands develop on acidic and nutrient-poor soils (Roem

The availability of essential nutrients in soil is intricately
linked to its pH level. Low pH conditions often corre-
spond to diminished nutrient availability, thereby influenc-
ing plant growth and ecosystem dynamics, but both plants
and microbes have developed physical and biochemical
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and Berendse 2000) with ericaceous dwarf shrubs adapted
to these conditions and often dominating the landscape
(Diaz et al. 2011). Since the 1950s there has been a dra-
matic decline in lowland heaths in Western Europe, partially
as a result of conversion to agricultural land (Clarke 1997;
Green et al. 2007; Fagindez 2013; Ombashi and Levschal
2022). However, heathlands provide a unique habitat and
there have been attempts to convert improved agricultural
land back into heathlands. A major component of heathland
restoration is manipulating the soil chemistry to reduce the
pH and nutrient availability from an improved agricultural
soil through acidification (Diaz et al. 2011). Although the
effects of acidification treatments on soil chemistry and
plant communities have been documented (Owen et al.
1999; Owen and Marrs 2000; Green et al. 2007; Diaz et al.
2011; Tibbett et al. 2019; Duddigan et al. 2020, 2024), the
long-term effects on soil biology and functions is less well
known. Previous studies have demonstrated effects of soil
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pH on both soil biological communities and plant communi-
ties (Dodd et al. 1994; Schuster and Diekmann 2003; Rousk
et al. 2009; Griffiths et al. 2011; Tibbett et al. 2019). A
decrease in soil and plant biodiversity may lead to a loss in
functional capabilities in the soil (Wagg et al. 2014), thereby
impacting enzyme production and stabilization in soils.

Enzymes play a vital role in biochemical processes in
soil systems, where potential enzyme activity is commonly
used as an indicator of soil functions. Enzymes are proteins
that break down organic compounds by hydrolysis or oxida-
tive processes (Dick and Kandeler 2005; Burns et al. 2013),
with multiple forms of enzymes with the same function
referred to as isoenzymes. In soils, enzymes may originate
from bacteria, fungi or plants and can be present as intra-
or extracellular enzymes or stabilized within the soil matrix
(Burns 1982; Burns et al. 2013). Enzyme activities are sen-
sitive to changes in soil conditions and have been used to
demonstrate effects on parameters such as nutrient cycling
(Nyiraneza et al. 2018), soil quality (Dick 1994; Garcia-
Ruiz et al. 2009; Giacometti et al. 2014), microbial function
(Sowerby et al. 2005), soil pollution (Trasar-Cepeda et al.
2000; Lee et al. 2020) and restoration (Raiesi and Salek-
Gilani 2018). In a liming study conducted by Acosta-Mar-
tinez and Tabatabai (2000), it was observed that among 14
enzymes involved in C, N, P and S cycles in soils across a
variety of soil pH levels, all enzymes exhibited a significant
positive correlation with soil pH seven years after treatment
application, with the exception of acid phosphatase.

Potential enzyme activity for B-D-glucosidase, chitooli-
gosaccharides (N-acetyl-B-D-glucosaminide; NAG) and
phosphomonesterase (acid and alkaline phosphatases) can
be used as indicators of C, N and P cycling in soils, however
many enzymes play a role in these biogeochemistry cycles
but were beyond the scope of this study. B-glucosidase (EC
3.2.1.21) is responsible for the hydrolysis of lignocellulose,
the final and rate- limiting step in breaking down cellulose
into glucose (Alef and Nannipieri 1995). Studies have found
positive relationships between B-glucosidase and total C and
microbial C across a range of soil types (Turner et al. 2002b).
N-acetyl-B-D-glucosaminide (EC 3.2.1.30) is important in
both the N and C cycles since it catalyzes the hydrolysis
of chitin into amino sugars (Ekenler and Tabatabai 2004).
Acid (EC 3.1.3.2) and alkaline (EC 3.1.3.1) phosphatases
are non-specific phosphohydrolases that breakdown simple
organic monoesters thereby releasing orthophosphate (Nan-
nipieri et al. 2011). They are often categorized according to
the assay pH, with acid phosphatases conducted at MUB pH
4.0 or 6.5 and alkaline phosphatases at pH 8.0, 10.0 or 12.0.
Production of phosphatases by roots, nodules, bacteria and
fungi have been well documented (Penheiter et al. 1997,
Tarafdar and Claassen 1998; Tibbett et al. 1998b; George et
al. 2006; Nannipieri et al. 2011; Fraser et al. 2017).
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Since the first report of soil enzyme activity published
by Woods (1899), there have been numerous caveats asso-
ciated with commonly used protocols in soil enzymology
research, including not optimizing conditions for individual
soils and enzymes (e.g. pH, concentrations, etc.; German et
al. 2011; Margenot et al. 2018; Nannipieri et al. 2018; Mar-
genot et al. 2023). Potential enzyme activities are assessed
through an assay with a specific buffer pH, maintaining a
constant temperature over a designated period, and utiliz-
ing artificial substrates that may not represent the diversity
of substrates in soil to measure color or fluorescent inten-
sity (Tibbett 2002). Traditionally a benchtop colorimetric
assay utilising p-nitrophenol was used to determine poten-
tial activity (Tabatabai 1994; Tibbett et al. 1998a, 2000).
However, Pancholy and Lynd (1972) developed a method
using a florigenic substrate for lipase activity. This method
was later modified to include additional enzyme assays in
a microplate method using methylumbelliferyl (MUF) sub-
strates (Freeman et al. 1995), with the advantage of higher
throughput and less waste products but the disadvantage of
using a smaller quantity of soil. Dick et al. (2018) demon-
strated a strong correlation between traditional colorimetric
and fluorescence microplate methods, particularly for phos-
phomonoesterase and B-glucosidase (#=0.93 and r=0.81,
respectively) when evaluating the same soils across five
labs, resulting in similar rankings for management treat-
ments. The study suggests that the fluorometric microplate
method is an viable alternative to the bench-scale colori-
metric method, provided that the pH is optimized for each
soil and each enzyme used in the assays (Dick et al. 2018).
Considering that different isoenzymes may be substrate spe-
cific, this is an important consideration since enzyme activ-
ity is a function of the presence of both the enzyme and the
substrate.

The pH of the buffer solution in enzyme assays can sig-
nificantly affect the reaction (Frankenberger and Johanson
1982; German et al. 2011), with optimum pH values varying
widely for different enzymes and soil types (Turner 2010;
Puissant et al. 2019). Despite established protocols empha-
sizing the importance of pH optimization in enzyme assays
(Burns 1982; Tabatabai 1994; Parham and Deng 2000;
Turner 2010; German et al. 2011; Puissant et al. 2019),
some studies use standard pH values (e.g. pH 6.5 for phos-
phatase or pH 5.0 for high-throughput analysis of multiple
enzymes (Bell et al. 2013), or fail to report assay conditions
altogether. Optimizing conditions for each fluorescent or
colorimetric substrate is crucial because optimum enzyme
activity can occur at different pHs for different isoenzymes
(Turner 2010). This consideration is especially important
when comparing diverse soil samples where both the sub-
strate availability and the enzyme activity can influence
nutrient cycling.
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Fig. 1 Soil pH for control, ferrous sulphate and elemental sulphur
treatments (n=10) and reference (n=4; acid grassland, heathland)
plots established in 1999. Enzyme assays were conducted on three
plots closest to the mean for each. Treatments with same letters rep-
resent no significant effect at P <0.05 as determined by Tukey’s test

The goal of the current study was to understand how
potential hydrolytic enzyme activity varies across a range
of soil pH and assess how the interpretation of functions for
select C-, N- and P-degrading enzymes change when assay
buffers are optimized for pH. Here, we focus on enzymes
responsible for hydrolysis of cellulose (B-1,4-glucosidase),
chitooligosaccharides  (B-1,4-N-Acetyl-glucosaminidase),
and simple phosphomonoesters (phosphatases). We hypoth-
esized that there would be lower enzyme activity in soils
with a low pH due to reduced biological functions. We also
investigated if the changes in the artificially acidified soil
was reflected in altered pH optimum to determine if this
effect diminished overtime as the soil environment adapted.
In 2017, we collected soil samples from a long-term heath-
land restoration experiment where acidification treatments
were applied to improved agricultural land, with native
heathland and acid grassland reference sites. Although the
heathland restoration in this study was not successful in the
acidified plots, the experiment allows a unique opportunity
to study the effects of soil pH range on soil enzymes activi-
ties in a relatively small geographic area.

2 Materials and Methods
2.1 Experimental Design and Soil Sample Collection

Soil samples were collected from a heathland restoration
field trial that was initiated in 1999 near Wareham, Dorset,
UK (2°4’W, 50°39°N). Plots for the experimental treat-
ments (50 m x 50 m) were arranged with 10 reps across
two contiguous farms, where the area had been converted
from heathland to improved grasslands in the 1950s. The
predominant soil type in this area is Endogleyic Albic Car-
bic Podzols, with some Arenic Mollic Gleysols also present
(FAO soil classification system). The experimental acidifi-
cation treatments included ten replicate (50x50 m) plots
of: (1) control with no amendments, (2) powdered ferrous
sulphate (Dried Copperas™ [EA West, Grimsby, UK], Fe!!
SOy, 21% Fe, 11% S), and (3) pelletised elemental sulphur
(Brimestone 90™, 90% S). Four reference plots were estab-
lished on adjacent fields for both acid grassland and native
heathland (50 m x 50 m). For this study, three of the ten
replicates were used for each treatment that had a soil pH
value closest to the mean soil pH (Fig. 1), as well as three
plots from the reference heathland and acid grassland plots.
For more details on the experimental setup please see Green
et al. (2007).

Plant communities assessed in 2014 did not differ sig-
nificantly for the control, ferrous sulphate and elemental
sulphur treatments for composition of grasses (mean 60%)
(Tibbett et al. 2019). Control and ferrous sulphate treatments
had 25% legumes while they only comprised of 7% in the
elemental sulphur, with heather and shrubs present in the
elemental sulphur plots only (representing < 2%). The cover
allocated to forbs was 23% in the elemental sulphur plots.
The heathland reference plots were dominated by Calluna
vulgaris, while the acid grassland plots were dominated by
grasses.

Soil samples were collected in June 2017 using a gauge
auger (d=2.5 cm, 0—15 cm), with 25 cores taken following
a ‘W’ shape across the plot and combined into one com-
posite sample. After mixing thoroughly, a subsample was
placed in a cooler and frozen within 4 h of sampling for
enzyme analysis. A subsample was used to determine gravi-
metric water content and the remainder sieved (<2 mm) and
air-dried for chemical analysis.

2.2 Soil Chemical Analysis

Soil pH was measured in soil slurry (2.5:1 H,O to soil
ratio) after shaking for 15 min at 120 rpm (Rowell 1994).
Extractable soil nutrients (P, AI’*, Ca’*, Cu®*, Fe**, K™,
Mg**, Mn?*, S) were determined using a Mehlich3 proto-
col (Mehlich 1984) and analysed by inductively coupled
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plasma optical emission spectrometer (Perkin Elmer 7300
Dual View). Soil was ground to 0.2 mm prior to analysis of
total C and N by ignition (Thermo Scientific Flash 2000 CN
Analyser, Thermo Fisher Scientific, Massachusetts, USA).

2.3 Soil Enzyme Assays

Potential soil enzyme activities were analysed on frozen soil
samples using a range of pH buffers, as described by Turner
(2010), except that 1 mM NaN; was not added to the assay.
The 4-methylumbelliferone (MUB) fluorescent substrates
4-MUB-B-D-glucoside, 4-MUB-N-acetyl-B-D-glucosa-
minide and 4-MUB phosphate (Sigma-Aldrich, UK) were
used for the B-glucosidase, NAG, and phosphatase assays,
respectively. Modified universal buffer solutions were
adjusted with 0.1 M HCI or 0.1 M NaOH to pH 3.0, 4.0,
4.5,5.0,5.5,6.0,6.5,7.0, 8.0, 9.0, 10.0, and 12.0. For each
enzyme, the soil sample was split onto two 96 well plates
as pH 3.0-6.0 and pH 6.5-12.0 with six technical replicates
included for each buffer pH. As well as the soil blank and one
sample as the substrate blank (with the substrate added after
the incubation period). Each plate also included a standard
curve for each soil at each pH to account for ‘quenching’.
Briefly, 2 g of frozen soil were brought to room tempera-
ture and homogenized in 200 mL of DI H,0O. Samples were
blended for 1 min on high using a hand blender followed
by 10 min on a stir plate. Homogenized soil suspensions
were added to 96 well (0.4 mL) black clear bottom plates
with a multichannel pipette (50 uL soil homogenate, 50 uL
buffer solution, 100 uL of substrate). Final substrate con-
centrations in the assays were 200 um for phosphatase and
100 um for NAG and B-glucosidase). Plates were incubated
at 37 °C with gentle shaking at 100 RPM for 1 h. Plates were

removed and 50 uL of 0.5 M NaOH were added to the wells
and substrate added to the soil and substrate blanks. Plates
were read 1 min after addition of NaOH at 360 nm and 460
excitation on a SpectraMax Ix3 (Molecular Devices, Cali-
fornia) using the auto-gain function since each plate con-
tained the standard curve.

2.4 Statistical Analysis

Statistical analysis was completed using Genstat (18th
Edition, VSN International LTD, UK). All variables were
tested for homogeneity of variance using Bartlett’s test and
for normality using the Shapiro-Wilk test and transformed
when required. The significance of the effect of treatment
was tested with one-way analysis of variance (ANOVA).
Significant differences among treatments were determined
using Tukey’s post-hoc test (P <0.05). Pearson correlation
coefficients were calculated for optimal enzyme activity and
soil parameters with the significance represented by a two-
sided test of correlations different from zero in Genstat.

3 Results
3.1 Soil Chemical Properties

Differences in the soil chemical properties were still appar-
ent 17 years after the field study was initiated and acidi-
fication treatments were applied (Table 1). The elemental
sulphur plots had significantly lower soil pH than the con-
trol and ferrous sulphate, while the native heathland plots
were lower than all others at pH 4.0. Total C in the control
plots were lower at 33.31 g C kg™! compared to 46.28 g C

Table 1 Chemical properties for soil (0—15 cm) collected from control, ferrous sulphate, elemental sulphur, acid grassland and heathland plots

Treatment Control Ferrous sulphate Elemental sulphur Acid grassland Heathland
pHiumo 53+0.11a 5.2+0.15a 4.5+0.04b 4.3+0.06bc 4.0+0.01c
gke™!
Total C 33.31+0.24b 36.69+2.62ab 35.29+2.19ab 37.25+1.89ab 44.48+3.47a
Total N 1.75+0.09a 1.84+0.15a 1.59+0.11a 1.64+0.12a 1.44+0.35a
mg kg™!
P 16.63+1.66a 15.89+0.77a 18.53+3.87a 11.87+3.87ab 4.92+0.53b
APt 81.01 + 19.50bc 76.24 + 18.32¢ 131.0 £ 5.43ab 109.7 + 3.44bc 175.5 £ 5.07a
Ca’t 826.5 + 74.19a 823.9 + 53.90a 503.8 + 105.7b 431.7 + 49.60b 217.7 + 38.84b
Cu*t 5.53 +0.42¢c 5.44 + 1.30c 8.61 + 1.52bc 39.00 + 8.85a 26.75 + 4.49ab
Fe** 192.9 + 16.71ab 2443 + 33.76a 157.8 + 16.71ab 269.7 +29.94a 112.00 + 1.48b
K* 25.98 +2.30b 34.81 £ 2.19ab 33.43 + 6.64ab 44.27+2.42a 38.21 + 2.49ab
Mg>* 74.92 + 7.42a 80.27+11.80a 45.57+7.42b 63.75 + 2.65ab 87.08 £11.80a
Mn2* 5.03+1.25a 4.93+0.48a 3.22+0.48ab 1.33+£0.15b 0.64+0.11b
S 6.07 +0.64ab 5.97+0.72ab 5.52+1.24ab 8.00+0.34a 4.11+0.53b

Mean values (n=3) are presented +standard error. Means with same letters within a soil property represent no significant effect at P <0.05 as
determined by Tukey’s test

"Mehlich3 extractable nutrients

@ Springer



Journal of Soil Science and Plant Nutrition

kg~ ! in the native heathland plots. There were no significant
differences in soil N but the highest values were found in
the ferrous sulphate (1.84 g N kg™') and control (1.75 g N
kg™ plots.

Available P, as represented by Mehlich3 extraction,
showed the highest concentrations in the elemental sul-
phur (18.53 mg P kg™'), control (16.63 mg P kg™!) and fer-
rous sulphate (15.89 mg P kg™ ") plots, while the heathland
soils had significantly lower available P at 4.92 mg P kg™!
(Table 1). Mehlich3 extractable Ca’* was also significantly
higher in the control and ferrous sulphate treatments, cor-
responding with higher pH in these treatments. The AI**
content was significantly higher in soil from the heathland
compared to control and ferrous sulphate plots.

Despite the addition of ferrous sulphate as Fe'' SO,, there
was no significant difference in Fe’* concentrations in the
ferrous sulphate soil compared to the control and elemental
sulphur treatment at the time of sampling (Table 1). How-
ever, the ferrous sulphate (244.3 mg kg™!) and the acid
grassland (269.7 mg kg~ ") values were significantly higher
with more than double the Fe** concentration compared to
the heathland (112 mg kg™!). The use of ferrous sulphate
and elemental sulphur as acidification agents did not lead
to any significant effect on S compared to the control at 17
years following application but the acid grassland did have
higher S than the heathland.

3.2 Soil Enzymes across MUB pH

The potential enzyme activities for B-glucosidase, NAG,
and phosphatase varied widely for the treatments depending
on the pH of the MUB used in the assays (Fig. 2). For the
B-glucosidase assays, the highest activity for the elemen-
tal sulphur, acid grassland and heathland treatments was
at MUB pH 3.0 or less and decreased as the pH became
less acidic. However, it is possible that the optimum activ-
ity could occur in assays below pH 3.0 but we were unable
to maintain a consistent pH below this value. For all others
assays for B-glucosidase, NAG and phosphatase the poten-
tial activity increased above assay pH 3.0 and leveled off by
pH 12.0.

The post hoc Tukey tests for the data presented in Fig. 2
showed that potential B-glucosidase activity differed sig-
nificantly at MUB pH 3.0, 4.5, 5.0, 5.5, 6.0, 6.5 and 8.0
(Table 2). However, the acid grassland and heathland soil
had significantly higher -glucosidase activity at MUB pH
3.0, followed by no difference at 4.0, and then a change
to the control and ferrous sulphate treatments having sig-
nificantly higher activity (Fig. 2; Table 2). Although peak
enzyme activity may have occurred at MUB pH < 3.0, we
could not acquire a stable analysis below these values and
used the MUB pH 3.0 for the comparisons. The potential

enzyme activities in the heathland plots were consistently
lower than the control for B-glucosidase assays with MUB
pH4.5t06.5.

There were no differences among treatments for potential
NAG activity for MUB pH 4.0-7.0 and 9.0-12.0 (Table 2).
At MUB pH 3.0, the soil from elemental sulphur plots
showed significantly lower activity than the heathland soils,
despite the heathland having a lower soil pH. At MUB pH
8.0 and 9.0, NAG activity for the control and ferrous sul-
phate treatments were significantly higher than the elemen-
tal sulphur treatment.

As with the p-glucosidase activity, the treatment
effect varied with the pH conditions for the phosphatase
assay. However, we were unable to determine optimum
B-glucosidase values for the elemental sulphur, acid grass-
land and heathlands since the highest values were at MUB
pH 3.0. At MUB pH 3.0-4.5, the heathland soil showed
significantly higher potential phosphatase activity than the
control, ferrous sulphate and elemental sulphur treatments
(Table 2; Fig. 2). At pH MUB 5.0 to 6.0 there were no dif-
ferences, followed but the opposite trend where the control
plots were significantly higher than soils from the heathland.

3.3 Relationship between Soil pH and Optimal
Enzyme Activity

The results of statistical tests depended on whether we com-
pared the results at (1) the standard protocol MUB pH or
(2) the optimum pH based on the individual treatments that
varied in soil pH from 4.0 to 5.3 (Fig. 2; Table 2). Poten-
tial B-glucosidase activity at MUB pH 5.0 was significantly
higher in the control (P=0.01) than the soils with pH 4.5
(elemental sulphur), 4.3 (acid grassland) and 4.0 (heath-
land). However, when the pH optimums were considered,
the heathland and acid grassland soils were nominally
higher but these differences were not significant (Table 3).
All of the MUB pH optimums for B-glucosidase were below
the pH 5.0 recommend in the high-throughput enzyme assay
protocol, with two of the treatment optimums at pH 4.5 and
the other three at 3.0 (Table 3).

For the phosphatase assays there was no difference in
phosphatase activity at MUB pH 5.0 but at pH 6.5, which is
often used for phosphatase assays, the control showed sig-
nificantly higher activity compared to the heathland plots
(P=0.02; Table 2). In contrast to these results, at MUB pH
4.0 (often used for acid phosphatase assays), the heathland
was significantly higher than the control, ferrous sulphate
and elemental sulphur plots (P <0.001). These results cor-
responded with the MUB pH optimum comparisons where
the heathland was significantly higher at MUB pH 3.0 (86.1
pumol MU~ 'g=hr™ 1), compared to the control plot at MUB
pH 6.0 (41.0 umol MU~ 'g~'hr™!; P=0.04; Table 3). The
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Fig. 2 Potential enzyme activity for (a) B-glucosidase, (b) N-acetyl-
B-D-glucosaminidase (NAG) and (c¢) phosphatase activities at a range
of MUB pH for soil samples from control, ferrous sulphate, elemental

standardized MUB pH 5.0 value may be most applicable
for NAG where the optimum buffer pHs were 4.0-5.0 and
the statistical differences were consistent across this range
(Tables 2 and 3). Optimum pH for enzyme assays varied
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sulphur, acid grassland and heathland samples with standard error bars
(n=3). Blue arrows indicate buffer pH optimum

from MUB pH 3.0-4.5 for B-glucosidase, 4.0-5.0 for NAG
and 4.0-6.0 for phosphatase.

The regression analysis between the optimal enzyme
activity and soil pH for each sample demonstrates a negative
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Table 2 Tukey HSD test for soil enzymes at different buffer pH

Treatment Modified universal buffer pH
3.0 4.0 4.5 5.0 5.5 6.0 6.5 7.0 8.0 9.0 10.0 12.0
B-glucosidase
Control b a a a a a a a a a a
Ferrous sulphate b a a ab a a ab a ab a a a
Elemental sulphur ab a b c b b b a be a a a
Acid grassland a a b bc b ab b a be a a a
Heathland a a b c b b b a c a a a
N-acetyl--D-glucosaminide
Control ab a a a a a a a a a a a
Ferrous sulphate ab a a a a a a a a a a a
Elemental sulphur b a a a a a a a b a a
Acid grassland ab a a a a a a a ab ab a a
Heathland a a a a a a a a ab ab a a
Phosphatase
Control b b b a a a a a a a a a
Ferrous sulphate b b b a a a ab a ab a a a
Elemental sulphur b b b a a a ab ab b a a a
Acid grassland ab ab ab a a a ab ab ab a a a
Heathland a a a a a a b b b a a a

The same letter within a column represent no significant difference at P <0.05

Table 3 Treatments ranked in order of decreasing soil pH with corresponding enzyme activity at optimum MUB pH for -glucosidase, N-acetyl-f-
D-glucosaminide (NAG) and phosphatase for soils collected from control, ferrous sulphate, acid grassland, elemental sulphur and heathland plots

Treatment Soil pH B-glucosidase (umol MUB pH NAG (pmol MUB pH Phosphatase MUB pH

MU' g T hr ) optimum MU 'g 'hr )  optimum (umlol MU 'g™! optimum
hr)

Control 5.3 28.0a 4.5 159 a 4.5 41.0 ab 6.0

Ferrous sulphate 5.2 273 a 4.5 14.1a 4.5 39.2 ab 5.5

Elemental sulphur 4.5 232a 3.0 85a 4.0 2540 4.5

Acid grassland 43 48.4 a 3.0 120a 4.5 47.6 ab 5.0

Heathland 4.0 47.1a 3.0 12.6a 4.0 86.1 a 4.0

Means (n=3) with same letter within a column represent no significant effect at P <0.05 as determined by Tukey’s test

relationship for B-glucosidase and phosphatase (Fig. 3),
although these relationships were not significant (P=0.13
and P=0.24, respectively). The optimum NAG activity
with soil pH showed an insignificant slightly positive rela-
tionship (R?=0.03, P=0.58).

3.4 Optimal Enzyme Activity and Soil Properties

All soil chemical properties except Al and Mn had a neg-
ative relationship with optimal B-glucosidase activity,
although only the negative correlation with S was signifi-
cant (P=0.05; Table 4). The results from the NAG assays
showed mostly positive correlations, where the relationship
with soil available P was significant at P=0.03. The rela-
tionship among phosphatase and soil properties demon-
strated a negative relationship for pH, total C, total N, Cu,
Fe, Mg and S, with significant correlations for Cu and S at
P=0.04 and P=0.02, respectively.

4 Discussion
4.1 Soil Chemical Properties

The application of acidification treatments in an attempt to
restore improved agricultural land to heathland has long-
lasting effects on the soil chemistry. Our results demonstrate
that after 17 years the pH of soil in the elemental sulphur
treated plots was still lower than the control and ferrous sul-
phate treated plots, in association with higher Ca** and Mg+
values. The pH units did increase from pH 3.0 in the upper
soil profile of the elemental sulphur plots in the year follow-
ing application (Green et al. 2007), compared to pH 4.5 in
2017. Soil pH reductions are widely associated with a loss
of base cations. As seen in the control and elemental sulphur
plots, the higher soil pH was associated with an increase in
plant available P, as well as extractable Ca>*. Soils with low
pH can result in Al saturation (Goulding 2016) and a pH of
<5 can result in toxic levels of Al in soil solution and affect
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Fig. 3 Relationship between soil pH and potential enzyme activity for (a) B-glucosidase, (b) N-acetyl-p-D-glucosaminidase (NAG) and (c) phos-
phatase in soils across a pH range. Grey lines represent 95% confidence limits

Table 4 Pearson correlation coefficients for optimal enzyme activity of B-glucosidase, N-acetyl-B-D-glucosaminide (NAG), and phosphatase and
soil properties

B-glucosidase NAG Phosphatase

Coefficient P value Coefficient P value Coefficient P value
pHino -0.41 0.13 0.16 0.58 -0.32 0.24
Total C -0.34 0.22 -0.27 0.33 -0.30 0.29
Total N -0.37 0.17 0.04 0.90 -0.28 0.31
P* -0.04 0.90 0.56 0.03 0.09 0.75
Al 0.17 0.55 0.11 0.70 0.03 0.91
Ca -0.12 0.68 0.03 0.91 0.10 0.73
Cu -0.44 0.10 -0.39 0.15 -0.54 0.04
Fe -0.15 0.60 -0.07 0.81 -0.27 0.34
K -0.17 0.55 0.09 0.75 0.21 0.46
Mg -0.38 0.17 -0.36 0.19 -0.11 0.70
Mn 0.06 0.84 0.16 0.57 0.22 0.42
S -0.52 0.05 0.13 0.65 -0.58 0.02

* Mehlich3 extractable nutrients

plant and organism survival and growth (Singh et al. 2017).
When comparing soils across the pH range, we report more
than double the concentration of extracted AI** in heathland
plots compared to the control and ferrous sulphate plots. The
addition of elemental sulphur also increased the extractable
AP compared to the ferrous sulphate plots. Although we
did not assess possible negative effects on the biotic com-
munities in this study, it is possible that plants that thrive in
low pH soil have evolved with mechanisms to combat toxic
effects, such as root excreted chelating agents or restricting
A" uptake to the root epidermis and outer cortex (Silva et
al. 2000; Kochian et al. 2004; Vardar and Unal 2007; Singh
etal. 2017).

Despite the sustained effect on soil pH, there was not a
long-lasting effect of ferrous sulphate or elemental sulphur
on extractable Fe** or S. It is possible that a large portion
of the elemental sulphur was oxidized through chemical and
biochemical processes after 17 years. Nor and Tabatabai
(1977) reported that as much as 75% of elemental sulphur
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had been oxidized in field soils during a 70-day incubation
at 30°C. In addition, the S concentrations reported in our
study are potentially bioavailable S from Mehlich3 extrac-
tions rather than total S.

4.2 Relationship between Enzyme Activity and Soil
Properties

Contrary to our initial hypothesis, we observed the highest
potential enzyme activity for B-glucosidase and phosphatase
in the acid grassland and heathland plots, corresponding
with the lowest soil pH values (4.3 and 4.0, respectively).
There was a negative relationship between soil pH and
B-glucosidase and phosphatase activity, but these correla-
tions were not significant when the assays were conducted
at the optimum pH. Since the soils were collected 17 years
after the acidification treatments were applied, it’s possible
that the soil biology has adapted the modified envimilar
findings were reported by Turner et al. (2002b), who found
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no relationship between soil pH and B-glucosidase (buffer
pH 6.0) in 29 grassland soils across England and Wales
with a range of pH (4.7-6.8). In contrast, Giacometti et al.
(2014) reported a significant positive correlation between
B-glucosidase activity and pH, but a significant negative
with phosphomonoesterases in a long-term study comparing
organic compared to mineral N fertilizer applications. Brock-
ettet al. (2012) also found a positive correlation between pH
and B-glucosidase, cellobiohydrolase, beta-1,4-xylosidase,
and NAG at seven forest sites across western Canada when
all enzymes assays were conducted at buffer pH 5.0 (Brock-
ett et al. 2012). In a global study encompassing 1154 data
points across various ecosystems, Sinsabaugh et al. (2008)
found a positive association between B-glucosidase, NAG
and phosphatase with soil pH (4.1-8.7). Notably, the assays
were conducted at pH 5.0 for acid soils and at pH 8.0. for the
alkaline soils. It would be interesting to determine if trends
remained the same when optimized for buffer pH across
such a diverse set of soil samples. The mean optimum pH
values reported in our study were 3.6 for B-glucosidase, 4.5
for NAG and 5.0 for phosphatase. These values are similar
to those reported by Turner (2010), with optimum pH means
3.9 for B-glucosidase, 4.2 for NAG, and 4.5 for acid phos-
phomonoesterase for seven tropical rainforest soils. The
optimum pH values are lower than the buffer pH used in the
studies mentioned above.

Soil properties, environmental conditions, vegetative
composition and soil biodiversity can all have an effect on
potential enzyme activity. Soil pH has been demonstrated
to have a strong relationship with bacterial communities
(Rousk et al. 2010; Griffiths et al. 2011), with Lauber et al.
(2009) suggesting that soil pH can be a predictor of bacterial
community structure at continental scale. While Rousk et
al. (2010) found bacterial relative abundance and diversity
to be positively correlated with pH, there was only a weak
relationship with fungal diversity. In another study, Rousk
et al. (2009) did not see a significant correlation in bacte-
rial or fungal PLFAs across a pH gradient but there was a
shift in the fungal: bacterial PLFA ratio to be more fungal
dominated at low pH. They concluded that neutral or alka-
line conditions favour bacterial growth while lower soil pH
favours fungal growth. Excluding values for soils below pH
4.5, the authors also found a significant correlation between
respiration and soil pH, indicating and increase in micro-
bial activity at higher pH (Rousk et al. 2009). Although we
did not assess changes to the soil biological communities in
this study, samples collected from the same site in 2014 and
2016 revealed changes in the soil biota in plots where acidi-
fication treatments were applied (Tibbett et al. 2019; Dud-
digan et al. 2020). There was a reduction in nematode and
rotifer abundance and earthworm biomass in those plots,
while in areas where heather was able to re-establish there

was lower arbuscular mycorrhizal colonization of grasses,
but an increase in the ericoid mycorrhizas where heather
was present (Tibbett et al. 2019).

Despite accumulating evidence supporting the role of soil
biodiversity in influencing the productivity and stability of
ecosystems, establishing a direct link between diversity and
function remains a challenging task. Assuming decreased
diversity or a community shift at low pH, this may be asso-
ciated with a diminished functional capacity of the soil.
However, as demonstrated in our study, the conclusions
are highly dependent on the chosen methodology. The use
of molecular techniques has allowed some insight into the
relationship between soil properties, microbes and potential
enzyme activity. For example, Nicol et al. (2008) demon-
strated distinct communities of ammonia oxidizing bacteria
and archaea structure in acid and neutral conditions, with
different contributions among the communities to ammonia
oxidations using AmoA gene copy and transcript analy-
sis. Puissant et al. (2019) assessed differences in bacterial
and fungal communities and the pH optimum of enzymes
involved in C-, N-, and P- cycling using soil from long-
term study that was maintained at pH 5 or pH 7 for more
than 100 years. They found a strong impact of buffer pH on
enzyme activity that was specific to the individual enzyme,
irrespective of the soil pH. The pH optimum did tend to shift
towards the pH of the soil (i.e. 5 or 7), a trend that was also
apparent in our study. Although it is not possible to verify
the origin of the enzymes in typical assays, using metage-
nomics Puissant et al. (2019) did demonstrated a shift in
bacteria harbouring -glucosidase genes with an increase in
Acidobacteria in the soil with pH 5, while the pH 7 soils
demonstrated an increase in Actinobacteria abundance. Our
current results suggest a potential pH adaptation of micro-
bial communities and hence a cache of soil enzymes better
suited to native and experimentally adjusted soil pH. The
dominance of -glucosidase gene harbouring Acidobacteria
sequences in the soil maintained at pH 5 demonstrates the
adaptation of biological communities to function at a range
of soil pH. Synthesis of both NAG and phosphatases have
been demonstrated to be at least partially regulated by N
and P availability in soils (Wanner 1996; Fraser et al. 2015;
Zhang et al. 2016; Fujita et al. 2018). For example, the phos-
phate (Pho) regulon present in some bacteria controls phos-
phatase production and is regulated by phosphate-starvation
(Wanner 1996).

In addition to microbial responses to soil pH, plant com-
munities have also evolved with adaptive mechanisms to
thrive in a range of soil conditions. Heathlands are charac-
terised by low soil pH, low available nutrients and the pres-
ence of heather species. At our site, the heathland plots were
dominated by C. valgaris where there was low available P,
which may have contributed to the increased phosphatase

@ Springer



Journal of Soil Science and Plant Nutrition

activity driven by plant excreted enzymes or differences
in the biological community not measured here. A recent
study by Duddigan et al. (2024) at these same sites reported
higher carbon stocks in the native heathland compared to
the restored, which may impact both substrate availability
and microbial processes. Plants in acidic environments have
evolved to survive and even thrive under these conditions
(Diaz et al. 2006; Kleijn et al. 2008; De Graaf et al. 2009).
Increased acid phosphatase activity has been demonstrated
in association with C. vulgaris and mycorrhizal endophytes
(Pearson and Read 1975). This has also been reported in
field studies where phosphomonoesterase activity (assayed
at MUB pH 6.0 with pNPP as a substrate) exhibited the high-
est activity across the growing season in a blanket peat soil
dominated by C. vulgaris, compared to an acid grassland soil
and a calcareous grassland soil (Turner et al. 2002a). It was
noted that the blanket peat phosphatase values were high in
comparison to reports of other soils but they did not find a
significant correlation between soil pH and phosphomono-
esterase activity (Turner et al. 2002a). Besides the plant and
biological communities themselves, potential enzyme activ-
ity in heathland systems may be primed by N depositions,
in addition to limited available P in the system. Pilkington
et al. (2005) also found that N deposition influenced N and P
cycling in an upland Calluna moor. Through a combination
of field and lab incubations, the authors demonstrated that N
additions stimulated phosphomonoesterase activity both in
the soil and on the root surface of Calluna seedlings.

5 Conclusion

Our study demonstrates how using a standardized MUB pH
(e.g. 5.0 or 6.5) underestimated function as represented by
potential enzyme activity in the low pH soil, thereby high-
lighting the importance of optimizing pH when conducting
enzymes assays. The MUB pH optimum varied among the
treatments, as well as the individual enzymes, where the
pH optimums were 4-4.5 for NAG and 4.0-6.0 for phos-
phatase, and highest at 3.0—4.5 for B-glucosidase (although
the optimum could not be determined). The acid grassland
and heathland plots resulted in the highest potential enzyme
activities for B-glucosidase and phosphatase, despite having
the lowest soil pH. This highlights that ecosystems adapted
to low nutrient levels with no inputs may be particularly
dependent on hydrolytic and oxidative enzymes. Caution
must be taken to ensure that results are not a limitation of
laboratory methodology when reporting reduced functional
capacities across diverse soils.
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