

A cross-continental animal science perspective on milk fat research: what has happened and where are we heading?

Article

Accepted Version

Vargas-Bello-Pérez, E. ORCID: <https://orcid.org/0000-0001-7105-5752>, Gonzalez-Ronquillo, M., Ghavipanje, N., Zhang, N., Gómez-Cortés, P., Leskinen, H., Pacheco, D., Ashiqul Islam, M., Kholif, A. E., Mele, M., Loor, J. J. and Kliem, K. E. ORCID: <https://orcid.org/0000-0002-0058-8225> (2024) A cross-continental animal science perspective on milk fat research: what has happened and where are we heading? *Journal of Dairy Research*, 91 (4). pp. 445-453. ISSN 1469-7629 doi: [10.1017/S002202992500007X](https://doi.org/10.1017/S002202992500007X) Available at <https://centaur.reading.ac.uk/117836/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1017/S002202992500007X>

Publisher: Cambridge University Press

the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 **A cross-continental animal science perspective on milk fat research: what has happened and where**
2 **are we heading?**

3 **Einar Vargas-Bello-Pérez^{1,2*}, Manuel Gonzalez-Ronquillo³, Navid Ghavipanje⁴, Naifeng Zhang⁵,**
4 **Pilar Gómez-Cortés⁶, Heidi Leskinen⁷, David Pacheco⁸, Mohammad Ashiqul Islam⁹, Ahmed E.**
5 **Kholif¹⁰, Marcello Mele¹¹, Juan J. Loor¹², Kirsty Kliem^{2,*}**

6 ¹ Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico R. Aldama Km 1,
7 31031 Chihuahua, México.

8 ² Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading,
9 P.O. Box 237, Earley Gate, Reading RG6 6EU, UK.

10 ³ Departamento de Nutrición Animal, Facultad de Medicina Veterinaria y Zootecnia, Instituto Literario 100
11 Ote, Universidad Autonoma del Estado de Mexico, Toluca 50000, Mexico

12 ⁴ Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand 97175-331, Iran.

13 ⁵ Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed
14 Research of Chinese Academy of Agricultural Sciences, Beijing, 100081, China

15 ⁶ Departamento de Bioactividad y Análisis de Alimentos, Instituto de Investigación en Ciencias de la
16 Alimentación (CIAL, CSIC-UAM), 28049 Madrid, Spain

17 ⁷ Animal Nutrition, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen,
18 Finland

19 ⁸ Animal Science Group, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New
20 Zealand

21 ⁹ Department of Dairy Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh.

22 ¹⁰ Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt

23 ¹¹ Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto,
24 80, Pisa 56124, Italy

25 ¹² Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional
26 Sciences, University of Illinois, Urbana, IL 61801, USA

27 **Short title: Milk Fat Research: A Cross-Continental Review**

28 ***Correspondence:**

29 e.vargasbelloperez@reading.ac.uk and k.e.kliem@reading.ac.uk

30

31 **Summary**

32 Milk is a fundamental food matrix that is widely consumed. Milk fat is important for producing dairy
33 products such as butter, cream, cheese, and whole milk powder. Aside from flavour, it has been linked to
34 human health and its chemistry can be modulated by various means towards more healthy fatty acid
35 profile. Industry and stakeholders have different interests in milk fat, based on specific policies which
36 reflect the type of research and funding initiatives currently performed in different countries. This position
37 paper summarizes the current state-of-the-art with regards to milk fat research, industry, and stakeholder
38 initiatives, and then highlights new developments based on information gathered from North America
39 (United States and Mexico), Europe (United Kingdom, Spain, Italy, and Finland), Africa (Egypt), Asia
40 (China and Bangladesh), and Oceania (New Zealand). South America is an important contributor to the
41 dairy industry but will not be considered and thus this paper must be considered cross-continental rather
42 than global. This manuscript intends to show a wide 'picture' of milk fat from different angles in different
43 parts of the globe.

44 **Keywords:** Bovine, consumer perception, dairy science, milk fat, conjugated linoleic acid, industry.

45

46 **Introduction**

47 Milk and dairy products are a nutritionally important food matrix that is widely consumed in many
48 countries. Milk fat serves as a crucial component to produce standard commodities such as butter, cream,
49 cheese, and whole milk powder (Mohan et al., 2021). Besides its contribution to flavour, fat also plays a
50 role in the technological properties and visual attributes of milk and is associated with the desirable
51 consumer attributes of cream (McCarthy et al., 2017).

52 From an animal research perspective, some milestones in milk fat research need to be noted. Modifying
53 dietary lipids in ruminant diets has emerged as the most practical, fast, and effective means to change milk
54 fatty acid (FA) profile which started with the aim of increasing milk fat percent by feeding oilseeds to
55 cattle (Wood, 1874). Investigations into effects of dietary fats on dairy cattle were initiated at Cornell
56 University from 1929 until 1943, yielding valuable insights into the role of fats in dairy cow rations
57 (Palmquist and Jenkins, 2017). Subsequently, Reiser (1951) first described the rumen biohydrogenation
58 process, explaining how dietary polyunsaturated fatty acids (PUFA) are transformed into various end-
59 products and by-products, including saturated fatty acids (SFA) and trans fatty acids (TFA) (Bionaz et al.,
60 2020). Notably, the accidental discovery of conjugated linoleic acid (CLA) in 1978 by Michael W. Pariza
61 at the University of Wisconsin while studying mutagens in grilled beef (Pariza et al., 1979) marked a
62 significant turning point in this field and led to extensive research on CLA, particularly rumenic acid (*cis*-
63 9, *trans*-11 CLA), which is almost exclusively found in ruminant derived products, and in some
64 experimental models it has demonstrated to have anti-cancer (i.e., Ko et al., 2020) and anti-inflammatory
65 (i.e., Zheng et al., 2020) properties (Bionaz et al., 2020).

66 The varying interests of industry and stakeholders in milk fat are mirrored in the policies and research
67 initiatives undertaken in different countries. Therefore, this position paper assimilates knowledge from six
68 regions: North America (United States and Mexico), Europe (United Kingdom, Spain, Italy, and Finland),
69 Africa (Egypt), Asia (China and Bangladesh), and Oceania (New Zealand). This manuscript discusses milk
70 fat research and how it plays a critical role in shaping the future of dairy food technology. The following
71 sections delve into intercontinental research endeavours in the field of milk fat emanating from our
72 research network, fostering a richer understanding of the intricate relationships between milk fat, policy,
73 and research (Figure 1).

74 This manuscript is a cross-continental narrative research as it involves collaborations between researchers
75 or institutions located in different continents. The manuscript accounts for diverse perspectives where there
76 is access to varied data of global impact but has challenges, such as language barriers, differences in
77 research practices and regulations, and varying cultural norms. Therefore, the variety of discussed
78 information will not be the same for each of the countries. This research reflection does not include South
79 America, and this will warrant further attention as it has made great contributions to the global dairy
80 industry.

81 All coauthors from this research reflection have worked with milk fat at some point in their careers, and
82 we think the topic has lost attention at least from some parts of the world.

84 **Milk Consumption and milk fat from a consumer perspective**

85 *North America*

86 In the US, per capita consumption of fluid milk shows a long-running downward trend (declining by
87 around one half between 1970 and 2019, attributable to shifts in dietary patterns; USDA, 2023). Whilst the
88 introduction of plant-based drinks has contributed to this trend, they are not the primary driver, which is
89 probably related to consumer perception. Also, over the past two decades, US dairy has shifted to decrease
90 in milk fat content and an increase in low-fat cheese production. In 2000, the average milk fat content was
91 2.01%, decreasing to 1.83% in 2012. However, a subsequent renewed interest of consumers in milk fat led
92 industry to reach an average milk fat content of 2.10% in 2019 (USDA, 2023). The overall consumption of
93 all types of cheese experienced an upsurge with a swifter growth for low-fat types. The current production
94 of American-type cheeses (Cheddar, Colby, Monterey, and Jack) is 44% higher than 2000 levels (USDA,
95 2023). Nowadays, consumers are becoming much more nutrition-conscious in their beverage choices, so
96 the competition from non-milk beverages increases and a segment of consumers look for milk-based
97 products that are low fat and have high protein and calcium contents and reduced calorie content (Barbano,
98 2017). However, drinking milk is generally recommended over non-dairy beverages due to positive health
99 effects. For example, a recent meta-analysis suggested that dairy product consumption may have inverse
100 associations with type 2 diabetes risk, mainly due to the anti-diabetogenic effects of dairy fat (Parodi,
101 2016). The current “Dietary Guidelines for Americans, 2020-2025” recommend daily consuming 2-3 cup-
102 equivalents of dairy products, but it is estimated that only about 10% of the US population meets this
103 guideline.

104 Mexico has followed a similar trend as the US, with consumption of dairy products and fluid milk
105 decreasing in the past years, and non-dairy products taking important market positions as consumers are
106 more aware of their alleged benefits. In addition, Mexican consumers desire one-stop shopping, driving the
107 growth of hypermarkets and supermarkets. However, inflation in the overall market and lower purchasing
108 power are creating high sensitivity to prices and causing consumers to cut back and seek promotional
109 deals. Opportunities in the region will be at both ends of the spectrum, from premium dairy items (such as
110 flavored milk and added-value drinking yogurts) to core staple products (like powdered milk and yogurt)
111 representing key categories.

112 *Europe*

113 Consumer knowledge, perception and purchasing behaviour of dairy products vary from country to
114 country. A recent study on consumer perceptions of milk fat in several countries (Denmark, the UK, and
115 the US) reported that awareness of milk saturated fat was higher among respondents from the UK (53%)
116 than from Denmark (44%) and the US (38%; Vargas-Bello-Pérez et al., 2020). **Milk fat was perceived as**
117 **healthy in all 3 countries and whole and semi-skim milk were less consumed in Denmark (20 and 36%,**
118 **respectively) compared with the UK (50 and 49%, respectively) and the US (47 and 50%, respectively).**

119 In the UK, the consumption of liquid milk between 1970 and 2000 has shifted, with a decline in whole
120 milk consumption and a rise in semi-skimmed and skimmed milk consumption (Kliem & Givens, 2011;
121 DEFRA 2022). This trend has been mirrored in other countries such as France, Denmark, Italy and
122 Germany (Kliem & Givens, 2011). The cause of the decline in whole milk consumption (and consumption
123 of other dairy products) can be partially attributed to the surge in popularity of plant-based milk
124 alternatives, as well as increased consumer awareness of sources of saturated fat in their diet following
125 publication of the UK Food Standards Agency's report on "Saturated Fat and Energy Intake" (Food
126 Standards Agency, 2008). **It is important to note that it is too early to establish the real relevance plant-
127 based milk alternatives versus milk, even though their popularity seems to be grown.**

128 In Spain, cow milk dominates the market while goat milk consumption is growing due to its perceived
129 health benefits. However, semi-skimmed cow milk is preferred by Spanish consumers, followed by
130 skimmed and whole milk (Collantes, 2021). Notably, overall liquid milk consumption has decreased by
131 7% since 2008. Meanwhile, lactose-free milk is gaining popularity, while demand for milk enriched with
132 calcium, vitamin D or omega-3 FA is declining. Concerns around dairy farm profitability and
133 sustainability, animal welfare, and rural depopulation have led to promotional efforts by industry
134 organizations (e.g. InLac; Interprofessional Dairy Organization, and FeNIL; National Federation of Dairy
135 Industries), and research has focused on promoting the benefits of dairy fat intake (López & Lainez, 2022).
136 Plant-based drink consumption has increased significantly, however there is still a lot of misinformation
137 regarding nutritional facts (Iglesias & Andrés, 2022).

138 In Finland, the numbers of dairy production factories as well as milk producers have decreased markedly
139 in 20 years. Also, milk consumption has dropped in this country from 227.6 kg per capita in 1970 to 99.2
140 kg per capita in 2021, with a shift towards skimmed and semi-skimmed milk (NRIF, 2022). The
141 consumption of butter has decreased since 1962, while the consumption of cheese has increased. Also,
142 yogurt consumption has risen while sour milk consumption has fallen (NRIF, 2022). There has been a
143 long-standing debate surrounding dietary saturated fats and their impact on cardiovascular diseases
144 (CVDs) (Puska & Jaini, 2020) and finally The National Nutrition Council of Finland supported policies
145 promoting low-SFA dairy products (Jallinoja et al., 2016). Recently a study, which investigated Finnish
146 consumers' willingness to pay with 320 participants, showed that Finnish consumers prefer low-price
147 butter derived from milk produced by cows fed with regular feed that carries the 'Carbon Trust' label, and
148 it is labeled with the claim 'Reduced saturated fat', which were aspects related health and environmental-
149 friendly, respectively (Asioli et al., 2023). In addition, one-third of these participants were willing to pay a
150 premium price for the new type of butter (butter derived from milk produced by cows fed with rapeseed
151 feed) (Asioli et al., 2023). Notably, Finnish consumers increasingly favor plant-derived beverage and
152 vegetable products over dairy products (Jallinoja et al., 2016).

153 *Examples from Africa and Asia*

154 In Egypt, milk fat content determines the price of milk, with a basic milk price assigned to 3% fat content
155 (Soliman and Mashhour, 2011). Historically, whole milk consumption has exceeded that of low-fat or de-

156 fatted (skim) milk in Egypt. However, a gradual increase in the demand for fat-reduced milk has been
157 observed in recent years, followed by a renewed upsurge in the preference for whole milk (Soliman and
158 Mashhour, 2011). Egyptian consumers perceive dairy products as a source of health benefits, however
159 rising prices have altered preferences. Yogurts, sour milk, soft and hard cheeses, liquid milk, and butter are
160 the most consumed dairy products. Margarine has become more popular as butter prices rise (EU, 2019).
161 Recently, consumers have become increasingly interested in the FA composition of milk, particularly CLA
162 and omega-3 FAs, however, high costs hinder the market's growth. The low-income consumers still
163 prioritize affordability, which may include products with high TFAs (El-Hossainy et al., 2021). Plant-
164 based and non-dairy beverage products are increasing in the Egyptian markets, however, the shift towards
165 these products is still weak and needs more emphasis on their nutritive value (El-Hossainy et al., 2021).
166 In China, dairy production reached 30.55 million tons in 2023, with liquid milk making up over 90%.
167 Demand for dairy products is still increasing with per capita consumption reaching 14.4 kg in 2021, a
168 10.6% annual increase (Song, et al., 2022). China's dairy market offers various products, including liquid
169 milk, milk powder, condensed milk, and cheese. Liquid milk (with over 13 subcategories) dominates the
170 market and growing consumer demand reached a per capita consumption of 14.4 kg in 2021. Higher-
171 income consumers prioritize nutrition, taste, price, sales channels, and packaging when purchasing dairy
172 products (Yang et al., 2021). Despite the growth, China's dairy consumption falls behind developed
173 countries. At present, lipid-optimized products attract consumers, especially those labeled "grass feed" or
174 "grazing".

175 In Bangladesh, milk processors use a payment system based on milk fat percentage (Karmaker et al.,
176 2020). The Bangladesh Standards and Testing Institution (BSTI) sets minimum legal requirements for milk
177 fat in the market (Hossain et al., 2022). Research on milk and dairy products in Bangladesh primarily
178 focuses on total fat content. The consumption of liquid milk has greatly been challenged by different soft
179 and energy drinks. The purchasing capacity of the individuals is another concern, especially the allocation
180 of family budget for dairy items are not sufficient. Also, adulteration, including watering milk, skimming
181 milk, and adding low-cost animal and/or vegetable fat and/or oil to milk (or synthetic milk), is a customer
182 concern (Hossain et al. 2022).

183 *Oceania*

184 Dairy production in New Zealand has historically oriented towards export markets (Aziz et al., 2019).
185 Approximately 95% of the milk produced in New Zealand is earmarked for export, accounting for around
186 a third of the volume traded. Notably, New Zealanders are among the highest per capita consumers of milk
187 (~110 kg milk p.a.) and butter (~6 kg p.a.) (NZPC, 2020). So, New Zealand's dairy industry conducts
188 research on milk fat to meet consumer demands and preferences abroad in export-oriented countries (Aziz
189 et al., 2019; Galtry, 2013), focusing on the impact of pasture feeding on its quality. Grazed pasture is the
190 primary feed source for cows resulting in a series of studies focused on understanding the seasonal
191 variability of milk fat composition. Feeding grain can alter the flavor profile of the milk, and studies have
192 identified specific compounds responsible for "grassy" notes associated with pasture feeding (Aziz et al.,

193 2019). Studies have identified compounds responsible for distinct flavors and aromas, enabling the
194 optimization of milk and dairy products for international markets sold (Bendall, 2001; Wales & Kolver,
195 2017).

196 *Studies covering consumer perception of milk fat*

197 Consumer perception of milk fat has been extensively studied to understand its impact on purchasing
198 decisions and dietary preferences (Martínez-Padilla et al., 2023; Vargas-Bello-Pérez et al., 2020). Studies
199 consistently show that milk fat content significantly influences the taste and flavor perception of dairy
200 products. Higher fat content often correlates with a richer, creamier taste, which many consumers find
201 more satisfying and enjoyable (Waldron et al., 2020). Milk fat contributes to the smoothness and mouth-
202 coating texture of dairy products like milk, yogurt, and ice cream. Consumers often associate higher fat
203 content with a more indulgent and pleasant mouth feel (Waldron et al., 2020). Consumer attitudes towards
204 milk fat have evolved with changing dietary guidelines and health trends. While some consumers prioritize
205 low-fat or skim milk due to perceived health benefits (lower calorie and fat content), others view whole
206 milk and full-fat dairy products as more natural and less processed (Vargas-Bello-Pérez et al., 2020).

207 There is ongoing debate and varying consumer beliefs regarding the nutritional benefits of different milk
208 fat levels. Some consumers prefer higher fat content for its perceived satiety and nutritional value (fat-
209 soluble vitamins and essential fatty acids), while others opt for lower fat content for weight management or
210 cardiovascular health reasons (McCarthy et al., 2017). Milk fat content influences culinary practices and
211 recipes. Chefs and home cooks often choose specific fat levels for cooking, baking, and preparing dishes
212 based on desired texture, flavor extraction, and cooking techniques (Marcus, 2013). Consumer perception
213 of milk fat is also shaped by labeling and marketing strategies. Clear labeling indicating fat content (e.g.,
214 whole milk, 2% milk, skim milk) helps consumers make informed choices based on their preferences and
215 dietary goals (Hoque et al., 2018). Consumer perception of milk fat can vary significantly across regions
216 and cultures. Some cultures traditionally favor higher-fat dairy products for their culinary heritage and
217 cultural preferences (Vargas-Bello-Pérez et al., 2022). Over time, there have been shifts in consumer
218 preferences towards reduced-fat or fat-free dairy products driven by health consciousness and dietary
219 trends. However, there remains a steady consumer demand for whole milk and full-fat dairy products
220 based on taste, texture, and perceived nutritional benefits (Kumari et al., 2022).

221 Integrating these studies provides a comprehensive understanding of how consumer perception of milk fat
222 influences purchasing decisions, dietary choices, and overall satisfaction with dairy products. This
223 knowledge is valuable for dairy industry stakeholders in product development, marketing strategies, and
224 meeting consumer preferences effectively. The authors of this reflection believe that consumer knowledge,
225 perception, and purchasing behavior vary across countries and regions, influenced by factors such as
226 cultural background, income level, and nutritional awareness. We note that in developed countries
227 (especially in North America and Europe) there is a shift in consumer preferences towards low-fat milk,
228 skim milk, and plant-based drink options. This trend is driven by concerns about saturated fat intake and
229 animal welfare beside the window dressing of non-dairy beverages. On the other hand, in developing

230 countries (especially Africa and some parts of Asia) where affordability is a priority, dairy products remain
231 popular. We also stress the need for dairy industries to address emerging trends and consumer concerns,
232 such as sustainability, animal welfare, and nutritional value, to maintain their competitive edge in the
233 market.

234 **Milk fat from an industrial perspective**

235 Milk fat plays a crucial role in the dairy industry for several reasons (Waldron et al., 2020). Milk fat
236 contributes significantly to the flavor and texture of dairy products, and it provides richness and enhances
237 the overall sensory experience of dairy products. Milk fat is important for processing flexibility allowing
238 the manufacture of different products based on fat percentages and contributes to the texture, meltability,
239 and overall performance (Chandan, 2015) during processing and storage. Also, milk fat content influences
240 the economic value of milk as higher-fat milk commands a premium price in the market, which is
241 beneficial for dairy farmers and processors (Wiley, 2007). The following paragraphs will explain specific
242 details about the dairy industry from different geographical regions.

243 *North America*

244 Milk fat has become valuable in the US dairy market, making up more than 50% of the price paid to milk
245 producers (Santos & De Vries, 2019). Following a consumer shift towards healthier, sustainable, and
246 ethically sourced products, the industry has developed novel technologies such as lactose-reduced and
247 lactose-free milk variants. More recently, a novel approach combining partial lactose removal through
248 ultrafiltration with enzymatic hydrolysis of the remaining lactose has yielded a lower-calorie, lactose-
249 reduced fluid milk product (Barbano, 2017). In Mexico, milk is segmented according to fat content (whole,
250 semi-skimmed, and skimmed milk) but few efforts have been made to introduce more novel milk types. In
251 North America, the North American Free Trade Agreement (NAFTA) regulates the production of dairy
252 products that can be exported or imported (Kondaridze and Luckstead, 2023). However, each country such
253 as the United States, Mexico, and Canada has an economic system and a consumer culture that allows the
254 production of certain variants in the dairy supply in the market of these countries.

255 *Europe*

256 In the UK, the launch of the “Saturated Fat and Energy Intake” program in 2008, led to growing industry
257 interest in improving the FA profile of milk and dairy products by dietary alteration (Dairy4future, 2021).
258 One product arising from research following this was whole milk containing less SFA, but it is no longer
259 commercially available. There have been other efforts by the UK industry to meet consumer demand in
260 terms of milk fat composition. Two products with enhanced long-chain omega-3 PUFA contents (achieved
261 by either fortifying fresh milk with fish oil emulsion or adding fish oil to dairy cow diets) were launched in
262 2005, but again these are no longer commercially available, perhaps partially due to the higher production
263 costs for these products.

264 The dairy industry in Spain has absorbed all the increase in domestic milk production, so that in the last
265 decade the volume of milk processed has increased by 1.3 million tons. More than half of this increase
266 went to cheese production and the rest to yogurts, desserts, and industrial products, compared to
267 stabilization in packaged liquid milk. Changes in the business structure have occurred, thanks to the
268 growth of medium-sized dairy industries that are committed to more sustainable production systems and
269 good animal welfare practices (López & Lainez, 2022).

270 The Italian dairy industry, specifically the fluid milk sector, has undergone considerable changes over the
271 past few decades. However, 60%-80% of national milk yield is used for cheese making with high added
272 value. The pursuit of liberalization is not a novel phenomenon within the EU, and the 2003 Reform,
273 largely prompted farm-gate competitiveness, and created a more market-driven industry, leading to intense
274 competition and profit redistribution along the supply chain (Cassandro, 2003).

275 Currently, Finnish dairy market offers fat-modified products, especially butter-vegetable oil mixtures,
276 using different vegetable oils such as rapeseed, olive, and linseed. Carbon-neutral and animal welfare-
277 friendly practices are increasingly important, with dairy companies paying more for farmers committed to
278 animal welfare. Dairy companies market their products as free-range (loose housing, year-round access to
279 outdoors and grazing during summertime), increased animal health, soy-free, and GMO-free feeding, and
280 organic labeling. Finnish dairy companies have expanded into plant-based drinks and other plant-based
281 dairy-like products. In addition, in recent years high-protein and sugar-reduced dairy products have
282 become more important in the market.

283 **Although in the European Union, there are certain common laws for the member countries, the dairy
284 industry in each country works based on what their economic system allows them as well as the culture of
285 dairy consumption that exists in each country.**

286 *Examples from Africa and Asia*

287 The dairy industry is a key component of Egypt's food system. The government highly supports the dairy
288 industry via legalization and financial support (Soliman & Mashhour, 2011). In addition to government
289 support, the Chamber of Food Industries, operating under the auspices of the Federation of Egyptian
290 Industries, acts as a prominent entity advocating for the interests of the dairy industry. Furthermore,
291 research institutions and universities collaborate closely with the industry, offering consultancy services
292 and addressing challenges faced by this sector.

293 In China, the dairy industry is increasingly emphasizing the development of functional dairy products and
294 catering to diverse age groups. Functional dairy products are made by precisely adding functional
295 ingredients to raw milk. Examples include high-end products with deep-sea fish oil and phospholipids (for
296 improving bone- and cardiovascular- health in older adults) and with algal oil DHA, vitamin A, and
297 vitamin D to promote healthy growth and development in children. Ongoing research and development
298 efforts continue to drive innovation in this area towards “zero sugar”, high fiber, probiotics, and special
299 contributions + organic milk powder addressing lactose intolerance (Wang et al., 2021).

300 Milk production in Bangladesh falls short of meeting demand, leading funding agencies to support
301 initiatives that boost output. However, funding is limited, and the industry doesn't invest enough in
302 research addressing challenges and the scenario needs to be changed. In addition, the use of non-dairy
303 beverages (i.e. soy milk and coconut milk) to replace/be used along with milk has yet to reach the industry
304 (Hossain et al., 2022). Dairy farmers receive higher payments for more fat. Adulteration and fat losses
305 during the handling and processing of milk are major concerns.

306 The cases of Africa (Clay and Yurco, 2020) and Asia (Zolin et al., 2021) each deserve a thorough review,
307 however in these regions of the world it is necessary to consider geopolitical situations and agronomic
308 conditions that can greatly limit or promote the development of the dairy industry.

309 *Oceania*

310 In recent years, the New Zealand dairy industry has focused on the development of premium products for
311 consumers in Asian countries, particularly in China, with the narrative of naturalness in pastoral
312 production (Galty, 2013). New Zealand milk sector is incorporated into infant formula, and the research in
313 milk fat has focused on the role of some milk fat components, namely phospholipids (sphingomyelin,
314 gangliosides, ceramides, and milk fat globule proteins) as key for the neural development of infants (Aziz
315 et al., 2019; Galty, 2013). Dairy ingredients such as SureStartTM have been developed for use in pediatric
316 formulas to support cognitive function. These ingredients seek to increase the concentration of
317 phospholipids in infant formula to levels comparable to those found in human breast milk.

318 The dairy industry has been adapting to cope with changing consumer preferences, with a focus on
319 developing lower-calorie, lower-fat, and more sustainable products. These adaptations have gained
320 momentum in some countries resulting in dairy products that are well-received by the consumer. In North
321 America, innovative products such as lactose-reduced and lactose-free milk variants have emerged, while
322 in Europe, fat-modified and FA-improved products have been developed. All these advancements have
323 prioritized environmentally friendly and animal welfare-friendly practices. However, in countries where
324 the primary focus of industry is maximizing production without concern for environmental impact and
325 health benefits, it is unrealistic to expect swift changes and conform to worldwide trends owing to various
326 cultural, economical, and political issues.

327 **Milk fat from an academic perspective**

328 *North America*

329 The success of current and future initiatives aimed at promoting the consumption of dairy products will, in
330 part, rely on the public's perception of their potential health benefits. Recent research has shifted its focus
331 from modifying milk FA profiles to investigating the effects of other milk fat components on human
332 health, particularly bovine milk fat globule membranes (MFGM). Several reviews have emphasized
333 critical aspects of MFGM, including its role in brain-immune-gut axis development in early life; fat
334 digestion during infancy, and milk fat droplet size regulation and implications for digestion (Yao et al.,

335 2023). In addition to advancing our understanding of milk fat synthesis mechanisms, there is a need to
336 bridge the gap between animal science and dairy food science to develop practical applications for human
337 nutrition. In Mexico, for the past 15 years research on milk FA has been divided into humans (Escalante-
338 Araiza et al., 2021), animals (especially ruminants; Vargas-Bello-Pérez et al., 2020), and dairy products
339 (Ochoa-Flores et al., 2021). Funding bodies have been interested in supporting research initiatives focused
340 on milk fat or any other milk bioactive compound but today most research funding (National Council of
341 Humanities, Sciences, and Technologies; CONAHCYT) supports those projects with the social
342 application.

343 *Europe*

344 Within the UK, The Scientific Advisory Committee on Nutrition (SACN) recommends limiting SFA to
345 10% of total energy intake and TFA to 2%. However, adult's intake of SFA remains higher than the SACN
346 recommendation (SACN, 2019). The impact of modified FA dairy products on human health was recently
347 determined via a randomized controlled trial at the University of Reading ("Replacement of SFAs in dairy
348 on Total cholesterol, RESET), during which SFAs in milk, cheese, and butter were replaced with cis-
349 monounsaturated fatty acids (cis-MUFAs) by changing the dairy cow diet. The study reported improved
350 blood lipid profiles, vascular function, and reduced cardiovascular disease (CVD) risk markers
351 (Vasilipoulou et al., 2020). Also, there is still enduring research on the n-3 PUFA content of milk fat,
352 especially for organic milk. However, it should be remembered that even the n-3 PUFA content of organic
353 milk is still very low compared with other sources of dietary n-3 PUFA, and it is still debatable whether
354 this would be nutritionally meaningful if all consumers switched from conventionally- to organically-
355 produced milk. It should also be considered that the majority of n-3 PUFA in milk is in the form of α -
356 linolenic acid (ALNA), rather than the biologically active longer chain n-3 PUFA EPA and DHA.

357 Numerous large-scale nutritional studies conducted in Spain, specifically the Predimed and Predimed Plus,
358 have investigated the relationship between dairy product consumption and cognitive function within the
359 context of the Mediterranean diet and the results showed no clear prospective associations between
360 consumption of most consumed dairy products and cognition (Ni et al., 2022). Also, along these lines,
361 recent research aimed at incorporating MFGM into different dairy products is providing promising results
362 in the prevention of age-associated cognitive decline (Calvo et al., 2023).

363 Italy is a leader in research on the FA profile of small ruminant dairy products ranging from FA
364 characterization of cheeses to the use of FA as biomarkers for production seasons (Formaggioni et al.,
365 2020). In contrast, research on milk fat modification in Finland has been limited and mostly focused on
366 mitigating enteric methane emissions and modulating milk fat depression in early lactation (Jallinoja et al.,
367 2016).

368 *Examples from Africa and Asia*

369 Enhancing and optimizing milk fat and its FA profile has garnered significant attention in Egyptian
370 research institutions and universities. Notably, there has been a greater focus on augmenting fat and

371 healthy FA content in comparison to other milk constituents, such as protein. This may be attributed to the
372 possibility of affecting milk fat content/composition through many strategies including animal nutrition
373 and genetic improvement (Soliman & Mashhour, 2011).

374 In China, precision nutrition is a common issue faced by researchers in the field of dairy farming, such as
375 the dietary addition of 5% rumen-protected polyunsaturated fatty acids (sesame oil) increased the content
376 of UFA, MUFA, and CLA in milk (Xu et al., 2022). Whereas the research in the milk processing field
377 focuses on optimizing milk fat quality, including altering inherent lipid components, and adding
378 exogenous lipids (Song et al., 2022). In terms of basic scientific research on milk fat, the National Natural
379 Science Foundation of China (NSFC) has largely funded the research exploring the mechanism of
380 nutritional regulation of milk fat synthesis, milk fat depression syndrome, and infant milk fat digestion.
381 Today, Bangladesh is very active in characterizing FA from different dairy products such as cheese, butter,
382 ghee, doi, and rasomalai from buffalo (Asif et al., 2021). This is perhaps one of the leading countries in
383 using these ruminants focused on dairy production.

384 *Oceania*

385 There is a great trend for searching the effects of milk phospholipids on cognitive development in infants,
386 as well as exploring their potential to address brain function decline in adulthood. Other research interests
387 include the development of 'nutrient bundles' based on milk phospholipids and enriched with other
388 nutrients such as vitamins to deliver benefits on cognition, mood, and sight (da Silva et al., 2021; Yao et
389 al., 2023). Furthermore, research has also been conducted to characterize the composition of MFGM
390 ingredients (Brink et al. 2020), providing a deeper understanding of the complex chemical entities present
391 in milk phospholipids, informing animals and clinical trials.

392 *Author Insights*

393 Modifying milk fat composition has shown promise in improving blood lipid profiles, and vascular
394 function and reducing cardiovascular disease risk markers. Research on milk fat modification has primarily
395 focused on enhancing the nutritional value of dairy products for human health, rather than addressing
396 environmental concerns. There is a need for more research on the practical applications of milk fat
397 modification in human nutrition, as well as bridging the gap between animal science and dairy food
398 science.

399 *Implications for the dairy industry*

400 As a result of this review, it is clear that milk fat has been and continues to be important for the dairy
401 industry, not only for the development of different dairy products but also as a factor that promotes
402 economic gains for both farmers and different actors in the chain of dairy production. The dairy industry
403 has been very receptive to the needs and demands of consumers and this is reflected in the development of
404 products that are even made with alternative inputs to milk (for example non-dairy drinks made from
405 oilseed seeds).

406 Perhaps for the industry, the scientific development related to the improvement of fatty acids in milk fat is
407 not a priority, but the total amount of milk fat is since it is important for the processing and manufacturing
408 of different products. The dairy industry is likely to continue searching for alternatives to dairy fat that
409 may have similar sensory and processing characteristics. However, along with this, the dairy industry will
410 have to do a lot of work around water and pollution management (i.e., Shine et al., 2020). Society, as well
411 as governments, have more demands and the dairy industry is no exception in its responsibility in the face
412 of global warming. Therefore, in the immediate future, the carbon footprint and chemical elements will be
413 a big issue that the industry will have to take care of.

414 **Prospective opportunities for the future**

415 Currently, the intensity of scientific research into milk fat (and strategies to change it) is perhaps not as
416 high as it once was, due to different phenomena which vary depending on geographical location. As
417 highlighted earlier in this opinion paper, support for research on milk fat depends on the market, consumer
418 expectations/awareness, and productive priorities, and until now this has focused on the development of
419 milk enriched in bio-functional FA. Recently, non-dairy products have taken more market positions in
420 many countries, but their prices as well as the long-term effects of their consumption seem to prevent their
421 macro spread.

422 Regarding current and near-future research interests related to milk fat, efforts appear to be shifting away
423 from trying to manipulate the concentration of individuals/groups of FAs within milk fat. Instead, there is a
424 growing body of evidence suggesting that despite the typical FA profile of milk fat, higher dairy intake has
425 a neutral or protective effect on cardiometabolic health risk factors, compared with lower intakes (Poppitt,
426 2020), possibly due to other beneficial components of milk. Recent research suggests that different dairy
427 products may differentially affect these risk factors, leading to the concept of a “matrix effect”, which has
428 been supported by both animal and human (Mohan et al., 2021) studies. The matrix effect is primarily
429 attributed to hard cheeses vs other dairy products, where the physico-chemical properties of the cheese are
430 believed to limit lipid absorption in the gastrointestinal tract. Several mechanisms have been suggested to
431 explain this phenomenon, including the formation of calcium soaps of FAs in the small intestine leading to
432 increased fecal fat excretion (Yao et al., 2023; Brink et al., 2020). Elucidation of the underlying
433 mechanism remains a continued research interest for both researchers and industry professionals with
434 potentially far-reaching implications for milk production, dairy processing, and human health outcomes.
435 Other near-future priorities may involve investigating the role of additional bioactive lipid structures
436 present in milk. Milk fat is compartmentalized into milk fat globules, consisting of a predominantly
437 triglyceride (TAG) core surrounded by a triple-layer milk fat globule membrane rich in phospholipids,
438 including sphingolipids. These lipids have been reported to inhibit fat absorption, neutralize bacterial
439 endotoxins, and have anti-inflammatory and anti-pathogen action in rodent models (Yao et al., 2023).
440 Following milk processing and the disruption of the milk fat globule, these lipids tend to be enriched in
441 aqueous fractions such as buttermilk, serum, and whey (da Silva et al., 2021). The fascination with
442 augmenting and isolating milk phospholipids endures, underpinned by the diverse health benefits

443 correlated with these MFGM constituents. Further research is necessary to elucidate the impacts of
444 temperature, shear, and pressure on the structural chemistry and stability of milk fat under diverse
445 processing conditions. Moreover, modulating milk FA profiles via dietary manipulations, genetic
446 selection, and regulation of gene expression present opportunities. This research reflection did not consider
447 Sout America, and further attention must be given to this region as it plays a significant role in the dairy
448 industry, both as a producer and exporter of dairy products. While countries in this region may not always
449 be top-of-mind when discussing dairy, their impact on international markets cannot be overlooked. Here
450 are some key points highlighting South America's influence on the global dairy industry. South American
451 countries, particularly Argentina, Brazil, and Uruguay, are major producers of dairy products, including
452 milk, cheese, and butter. These countries have sizable dairy industries with modern production facilities
453 and large-scale dairy farms, favorable climate conditions for dairy farming, and competitive production
454 costs, allowing them to supply dairy products to various regions around the world. South American dairy
455 exports play a crucial role in the worldwide dairy trade dynamics. They contribute to meeting the demand
456 for dairy products in regions where production may be limited or seasonal, thus helping stabilize
457 international dairy prices and supply.

458 **References**

459 **Asif AH M, Deb GK, Habib MR, Harun-ur-Rashid M, Sarker MAH, Shahjadee UF, Islam MA**
460 (2021) Variations in fatty acid and amino acid profiles of doi and rasomalai made from
461 buffalo milk. *Journal of Advanced Veterinary and Animal Research*, 8(3), 511.

462 **Asioli D, Zhou X, Halmemies-Beauchet-Filleau A, Vanhatalo A, Givens DI, Rondoni A,**
463 **Turpeinen AM (2023)** Consumers' valuation for low-carbon emission and low-saturated
464 fat butter. *Food Quality and Preference*, 108, 104859.

465 **Aziz F, Samsudin S, Nambiar N, Aziz U, Li E, Zhong RY (2019)** Industry 4.0 in New Zealand dairy
466 industry. *International Journal of Agile Systems and Management*, 12(2), 180-197.

467 **Barbano DM (2017)** A 100-Year Review: The production of fluid (market) milk. *Journal of dairy*
468 *science*, 100(12), 9894-9902.

469 **Bendall JG (2001)** Aroma compounds of fresh milk from New Zealand cows fed different diets.
470 *Journal of Agricultural and Food Chemistry*, 49(10), 4825-4832.

471 **Bionaz M, Vargas-Bello-Pérez E, Busato S (2020)** Advances in fatty acids nutrition in dairy cows:
472 From gut to cells and effects on performance. *Journal of Animal Science and*
473 *Biotechnology*, 11, 1-36.

474 **Brink LR, Herren AW, McMillen S, Fraser K, Agnew M, Roy N, Lönnnerdal B (2020)** Omics
475 analysis reveals variations among commercial sources of bovine milk fat globule
476 membrane. *Journal of dairy science*, 103(4), 3002-3016.

477 **Calvo MV, Kohen VL, Díaz-Mardomingo C, García-Herranz S, Baliyan S, Tomé-Carneiro J,**
478 **Colmenarejo, G., Visioli, F., Venero, C., & Fontecha, J. (2023)**. Milk fat globule

479 membrane-enriched milk improves episodic memory: A randomized, parallel, double-blind,
480 placebo-controlled trial in older adults. *Journal of Functional Foods*. 111, 105849111.

481 **Cassandro M (2003)** Status of milk production and market in Italy. *Agriculturae Conspectus*
482 *Scientificus*, 68(2), 65-69.

483 **Chandan RC (2015)** Dairy Processing and Quality Assurance: An Overview. In *Dairy Processing and*
484 *Quality Assurance* (eds R.C. Chandan, A. Kilara and N.P. Shah).

485 **Cheng N, Barbano DM, Drake M (2019)** Effects of milk fat, casein, and serum protein
486 concentrations on sensory properties of milk-based beverages. *Journal of dairy science*,
487 102(10), 8670-8690.

488 **Clay N, Yurco K (2020)** Political ecology of milk: Contested futures of a lively food. *Geography*
489 *Compass*, 14(8), e12497.

490 **Collantes F (2021)** The “milk battle” and everything after: the consumption of dairy products
491 in spain since the 1950s.

492 **da Silva RC, Colleran HL, Ibrahim SA (2021)** Milk fat globule membrane in infant nutrition: a
493 dairy industry perspective. *Journal of Dairy Research*, 88(1), 105-116.

494 **Dairy4future (2021)** Case study - Production of naturally spreadable butter from grazing dairy cows–
495 Northern Ireland. [https://dairy4future.eu/wp-content/uploads/2021/06/Northern-](https://dairy4future.eu/wp-content/uploads/2021/06/Northern-Ireland_Spreadable-butter.pdf)
496 [Ireland_Spreadable-butter.pdf](https://dairy4future.eu/wp-content/uploads/2021/06/Northern-Ireland_Spreadable-butter.pdf). Accessed 27th September 2022.

497 **DEFRA (2022)** Family Food UK Household Purchases. <https://www.gov.uk/government/statistical-data-sets/family-food-datasets>. Accessed 21st September, 2022.

499 **EFSA Panel on Dietetic Products, Nutrition and Allergies (2010)** Scientific Opinion on the
500 substantiation of health claims related to conjugated linoleic acid (CLA) isomers and
501 contribution to the maintenance or achievement of a normal body weight (ID 686, 726,
502 1516, 1518, 2892, 3165), increase in lean body mass (ID 498, 731), increase in insulin
503 sensitivity (ID 1517), protection of DNA, proteins and lipids from oxidative damage (ID
504 564, 1937), and contribution to immune defences by stimulation of production of protective
505 antibodies in response to vaccination (ID 687, 1519) pursuant to Article 13(1) of
506 Regulation (EC) No 1924/2006. *EFSA Journal*, 8(10):1794.

507 **El-Hossainy Ayah M, Ahmed SM, Kheder IE, Nour Sohair F, El-Sawy NM (2021)** Formulation
508 and Evaluation of Some Novel Food Products Containing Plant (Vegan) Milks. *Alexandria*
509 *Journal of Food Science & Technology*, 18(2).

510 **Escalante-Araiza F, Gutiérrez-Salmeán G (2021)** Traditional Mexican foods as functional agents in
511 the treatment of cardiometabolic risk factors. *Critical Reviews in Food Science and*
512 *Nutrition*, 61(8), 1353-1364.

513 **EU (2019)** The Food and Beverage Market Entry Handbook Egypt: A Practical Guide to the Market in
514 Egypt for European Agri-Food Products and Products with Geographical Indications.
515 Publications Office.

516 **Food Standards Agency (2008)** Food Standards Agency annual report.
517 <https://www.gov.uk/government/publications/food-standards-agency-annual-report-2007-to-2008>.

519 **Formaggioni P, Malacarne M, Franceschi P, Zucchelli V, Faccia M, Battelli G, Summer A (2020)**
520 Characterisation of Formaggella della Valle di Scalve cheese produced from cows reared in
521 valley floor stall or in mountain pasture: Fatty acids profile and sensory properties. *Foods*,
522 9(4), 383.

523 **Galtry JA (2013)** Improving the New Zealand dairy industry's contribution to local and global
524 wellbeing: the case of infant formula exports. *The New Zealand Medical Journal (Online)*,
525 126(1386).

526 **Hanuš O, Samková E, Křížová L, Hasoňová L, Kala R (2018)** Role of fatty acids in milk fat and the
527 influence of selected factors on their variability—a review. *Molecules*, 23(7), 1636.

528 **Hoque MZ, Xie J, Nazneen S (2018)** Effect of labelled information and sensory attributes on
529 consumers' intention to purchase milk. *South Asian Journal of Business Studies*, 7(3), 265-
530 286.

531 **Hossain S, Jahan M, Khatun F (2022)** Current status of dairy products in Bangladesh: A review on
532 supply and utilization. *Int. J. Bus. Manag. Soc. Res*, 11, 609-618.

533 **Jallinoja P, Jauho M, Mäkelä J (2016)** Newspaper debates on milk fats and vegetable oils in
534 Finland, 1978–2013: An analysis of conflicts over risks, expertise, evidence and pleasure.
535 *Appetite*, 105, 274-282.

536 **Karmaker A, Das PC, Iqbal A (2020)** Quality assessment of different commercial and local milk
537 available in the local markets of selected area of Bangladesh. *Journal of advanced
538 veterinary and animal research*, 7(1), 26.

539 **Keys A, Mienotti A, Karvonen MJ, Aravanis C, Blackburn H, Buzina R, Toshima H (1986)** The
540 diet and 15-year death rate in the seven countries study. *American journal of epidemiology*,
541 124(6), 903-915.

542 **Kliem KE, Givens DI (2011)** Dairy products in the food chain: their impact on health. *Annual Review
543 of Food Science and Technology*, 2, 21-36.

544 **Ko DS, Kim SH, Park JY, Lee G, Kim HJ, Kim G, Kim JH (2020)** Milk fat globule-EGF factor 8
545 contributes to progression of hepatocellular carcinoma. *Cancers*, 12(2), 403.

546 **Kondaridze M, Luckstead J (2023)** Determinants of dairy-product trade: Do subsidies
547 matter? *Journal of Agricultural Economics*, 74, 857–873.

548 **Kumari A, Solanki H, Sudhakaran VA (2020)** Novel milk and milk products: Consumer
549 perceptions. *Dairy Processing: Advanced Research to Applications*, 283-299.

550 **López Iglesias E, Lainéz Andrés M (2022)** El sector lácteo en España. ISBN-13: 978-84-95531-67-4.

551 **Marcus JB (2013)** *Culinary nutrition: the science and practice of healthy cooking*. Academic Press.

552 **Martínez-Padilla E, Faber I, Petersen IL, Vargas-Bello-Pérez E (2023)** Perceptions toward plant-
553 based milk alternatives among young adult consumers and non-consumers in Denmark: An
554 Exploratory Study. *Foods*, 12(2), 385.

555 **McCarthy KS, Lopetcharat K, Drake MA (2017)** Milk fat threshold determination and the effect of
556 milk fat content on consumer preference for fluid milk. *Journal of dairy science*, 100(3),
557 1702-1711.

558 **Mohan MS, O'Callaghan TF, Kelly P, Hogan SA (2021)** Milk fat: opportunities, challenges and
559 innovation. *Critical Reviews in Food Science and Nutrition*, 61(14), 2411-2443.

560 **Natural Resources Institute Finland, NRIF (2022)** Consumption of food commodities per capita
561 1950- (kg/year). Helsinki: Natural Resources Institute Finland [referred: 21.10.2022].

562 **Ni J, Nishi SK, Babio N, Martínez-González MA, Corella D, Castañer O, PREDIMED-Plus investigators (2022)** Dairy Product Consumption and Changes
563 in Cognitive Performance: Two-Year Analysis of the PREDIMED-Plus Cohort.
564 *Molecular nutrition & food research*, 66(14), 2101058.

565 **NZPC, New Zealand Productivity Commission (2020)**. The dairy sector in New Zealand.

566 **Ochoa-Flores AA, Hernández-Becerra JA, Velázquez-Martínez JR, Piña-Gutiérrez JM, Hernández-Castellano LE, Toro-Mujica P, Vargas-Bello-Pérez E (2021)** Chemical and
567 fatty acid composition of Manchego type and Panela cheeses manufactured from either hair
568 sheep milk or cow milk. *Journal of Dairy Science*, 104(7), 7457-7465.

569 **Palmquist DL, Jenkins TC (2017)** A 100-Year Review: Fat feeding of dairy cows. *Journal of dairy*
570 *science*, 100(12), 10061-10077.

571 **Pariza MW, Ashoor SH, Chu FS, Lund DB (1979)** Effects of temperature and time on mutagen
572 formation in pan-fried hamburger. *Cancer Letters*, 7(2-3), 63-69.

573 **Parodi PW (2016)** Cooperative action of bioactive components in milk fat with PPARs may explain
574 its anti-diabetogenic properties. *Medical hypotheses*, 89, 1-7.

575 **Pintus S, Murru E, Carta G, Cordeddu L, Batetta B, Accossu S, Banni S (2013)** Sheep cheese
576 naturally enriched in α -linolenic, conjugated linoleic and vaccenic acids improves the lipid
577 profile and reduces anandamide in the plasma of hypercholesterolaemic subjects. *British*
578 *Journal of Nutrition*, 109(8), 1453-1462.

579 **Poppitt SD (2020)** Cow's milk and dairy consumption: is there now consensus for cardiometabolic
580 health?. *Frontiers in Nutrition*, 7, 277.

581 **Puska P, Jaini P (2020)** The North Karelia Project: Prevention of cardiovascular disease in Finland
582 through population-based lifestyle interventions. *American journal of lifestyle medicine*,
583 14(5), 495-499.

584 **Reiser R, Gibson B, Carr MJ, Lamp BG (1951)** The syntheses and interconversions of
585 polyunsaturated fatty acids by the laying hen. *The Journal of Nutrition*, 44(1), 159-175.

588 **SACN (2019)** The Scientific Advisory Committee on Nutrition. Saturated fats and health (2019).
589 [Internet]. Available from: <https://www.gov.uk/government/publications/saturated-fats-and-health-sacn-report>. Accessed 21st September 2022.

591 **Santos JEP, De Vries A (2019)** The Value of Milk Fat: AN350, 1/2019. *EDIS, 2019(1)*.

592 **Shine P, Murphy MD, Upton J (2020)** A global review of monitoring, modeling, and analyses of
593 water demand in dairy farming. *Sustainability, 12(17)*, 7201.

594 **Soliman I, Mashhour A (2011)** Dairy marketing system performance in Egypt.

595 **Song X, Yang L, Wang Q, Sun X (2022)** Research Progress of Milk Fat Quality and Its Optimization
596 through Dietary Measures [J]. *Chinese journal of animal nutrition* 34, 5535-5542.

597 **USDA, Economic Research Service (2023)** <https://www.ers.usda.gov/data-products/dairy-data/dairy-data/>

599 **Vargas-Bello-Pérez E, Faber I, Osorio JS, Stergiadis S (2020)** Consumer knowledge and
600 perceptions of milk fat in Denmark, the United Kingdom, and the United States. *Journal of
601 dairy science* 103(5), 4151-4163.

602 **Vargas-Bello-Pérez E, Tajonar K, Foggi G, Mele M, Simitzis P, Mavrommatis A, Toro-Mujica P
603 (2022)** Consumer attitudes toward dairy products from sheep and goats: A cross-continental
604 perspective. *Journal of Dairy Science, 105(11)*, 8718-8733.

605 **Vasilopoulou D, Markey O, Kliem KE, Fagan CC, Grandison AS, Humphries DJ, Lovegrove JA
606 (2020)** Reformulation initiative for partial replacement of saturated with unsaturated fats in
607 dairy foods attenuates the increase in LDL cholesterol and improves flow-mediated
608 dilatation compared with conventional dairy: the randomized, controlled REplacement of
609 SaturatEd fat in dairy on Total cholesterol (RESET) study. *The American Journal of
610 Clinical Nutrition* 111(4), 739-748.

611 **Waldron DS, Hoffmann W, Buchheim W, McMahon DJ, Goff HD, Crowley SV, Siong P (2020)**
612 Role of milk fat in dairy products. In *Advanced Dairy Chemistry, Volume 2: Lipids* (pp.
613 245-305). Cham: Springer International Publishing.

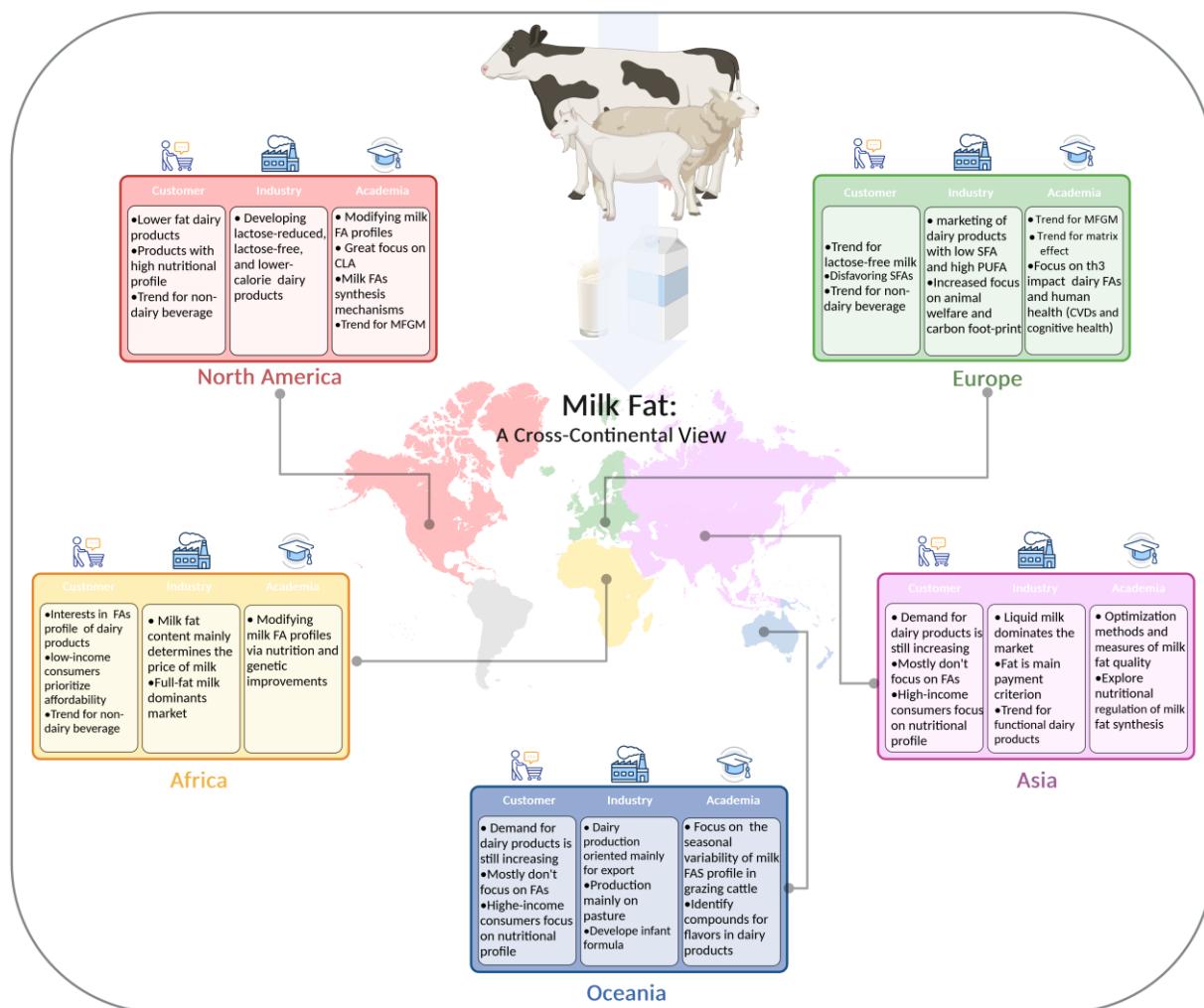
614 **Wales WJ, Kolver ES (2017)** Challenges of feeding dairy cows in Australia and New Zealand.
615 *Animal Production Science* 57(7), 1366-1383.

616 **Wang D, Wang Q, Wang H, Gao J, Sun J (2021)** Research progress on genetic polymorphism of
617 Milk β - casein and A2 type dairy products [J]. *Chinese Dairy Cattle* (03), 40-43.

618 **Wood AH (1894)** *Effect of Food on Milk: Feeding with Fats* (No. 20). Agricultural Experiment
619 Station, University of New Hampshire.

620 **Xu P, Yang ZL, Cao MY, Duan ZL, Ma XQ, Wang MM, Guo G (2022)** Effects of adding different
621 types and levels of rumen-protected fat on performance and fatty acid composition of milk
622 in Holstein dairy cows. *Chinese Journal of Animal Nutrition*. 2022, 34(3): 1580-1591.

623 **Yang Z, Wang J, Ma G, Cheng G (2021)** The demand for dairy products is strong and the market
624 for low-temperature fresh milk is booming under the epidemic situation [J]. *China Dairy*
625 (07), 13-17.


626 **Yao D, Ranadheera CS, Shen C, Wei W, Cheong LZ (2023)** Milk fat globule membrane:
627 composition, production and its potential as encapsulant for bioactives and probiotics,
628 *Critical Reviews in Food Science and Nutrition*, 1-16.

629 **Zheng N, Gao Y, Zhu W, Meng D, Walker WA (2020)** Short chain fatty acids produced by
630 colonizing intestinal commensal bacterial interaction with expressed breast milk are anti-
631 inflammatory in human immature enterocytes. *PLoS one*, 15(2), e0229283.

632 **Zolin MB, Cavapozzi D, Mazzarolo M (2021)** Food security and trade policies: evidence from the
633 milk sector case study. *British Food Journal*, 123(13), 59-72.

634

635

636

637

Figure 1. Milk Fat: a cross-continental view (Created with BioRender.com).

Figure 2. Milk Fat: prospective opportunities for future (Created with BioRender.com).