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ABSTRACT
BACKGROUND: Autism and attention-deficit/hyperactivity disorder (ADHD) are heterogeneous neurodevelopmental
conditions with complex underlying neurobiology that is still poorly understood. Despite overlapping presentation and
sex-biased prevalence, autism and ADHD are rarely studied together and sex differences are often overlooked.
Population modeling, often referred to as normative modeling, provides a unified framework for studying age-
specific and sex-specific divergences in brain development.
METHODS: Here, we used population modeling and a large, multisite neuroimaging dataset (N = 4255 after quality
control) to characterize cortical anatomy associated with autism and ADHD, benchmarked against models of average
brain development based on a sample of more than 75,000 individuals. We also examined sex and age differences
and relationship with autistic traits and explored the co-occurrence of autism and ADHD.
RESULTS: We observed robust neuroanatomical signatures of both autism and ADHD. Overall, autistic individuals
showed greater cortical thickness and volume that was localized to the superior temporal cortex, whereas individuals
with ADHD showed more global increases in cortical thickness but lower cortical volume and surface area across
much of the cortex. The co-occurring autism1ADHD group showed a unique pattern of widespread increases in
cortical thickness and certain decreases in surface area. We also found that sex modulated the neuroanatomy of
autism but not ADHD, and there was an age-by-diagnosis interaction for ADHD only.
CONCLUSIONS: These results indicate distinct cortical differences in autism and ADHD that are differentially affected
by age and sex as well as potentially unique patterns related to their co-occurrence.

https://doi.org/10.1016/j.biopsych.2024.07.024
Neurodevelopmental conditions such as autism and attention-
deficit/hyperactivity disorder (ADHD) are the products of
altered neurodevelopmental trajectories (1), but their specific
neurobiological underpinnings remain poorly understood. Both
display significant variability in trajectory, associated traits, and
neurobiology (2–8), which can hamper efforts to better un-
derstand these conditions. Sex and gender modulations of
presentation, prevalence, and neuroanatomy (9–15) and clin-
ical and etiological overlap (16–19) add complexity. Impor-
tantly, most studies have been based on male-dominant
samples and may not be representative (15).

One of the most commonly reported findings is increased
total brain volume in young autistic children (20–22), although
evidence suggests that this may only hold true for a subset of
autistic children (23–25) and for boys (26,27). Increased cortical
SEE COMMENTARY
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thickness (CT) has often been associated with autism (28–31),
although reductions have been reported (32,33), as well as
alterations in cortical surface area (SA) and volume (34–36).
Alterations, including both increases and decreases, have
been reported in the superior temporal gyrus (STG), inferior
and prefrontal cortex, sensory and motor regions (29–38),
cerebellum, and subcortex (39–42) and seem to be moderated
by age, sex, and co-occurring conditions or traits (31,43–48).
Complementary work has suggested multiple subgroups with
distinct patterns of neuroanatomical alterations and clinical
characteristics (40,48–50). Sex differences in particular have
been reported on multiple cortical measures and associations
(31,44,51–57).

Recent meta-analyses have highlighted a similar lack of
convergent findings in ADHD (58,59). Reduced total brain
ON PAGE 422
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volume, gray matter volume (GMV), and cortical SA have been
reported consistently (59–65). However, while earlier studies
reported decreases in CT (66–70), more recent, larger studies
have found no or very minimal differences (60–64,71–73).
Cortical alterations have most commonly been reported in
prefrontal and orbitofrontal, parietal, anterior cingulate, and
occipital cortices (59,71). Volumetric reductions of subcortical
structures and the cerebellum have also been reported
(59,65,74), in particular the basal ganglia (75,76), likely related
to atypicality in the frontostriatal network (77–79). Again, dif-
ferences are highly dependent on age, sex, and co-occurring
conditions (66,69,80–82).

The few studies that have examined structural and functional
differences in autism and ADHD together have reported that
they are largely distinct, with some overlapping, alterations
(83–92). A recent review (93) highlighted the challenges of
comparing these groups, including limited sample sizes, het-
erogeneity, often arbitrary clinical distinctions, and overlap in
presentation. Even fewer studies have specifically examined the
co-occurrence of autism and ADHD, with both similarities and
differences being observed compared with individuals with only
one diagnosis (47,88,94) and evidence that an ADHD diagnosis
modulates the effect of autism on neuroanatomy (90).

While this variability in the literature is likely due in part to
differences in methodology and sample size, another signifi-
cant contributor is the heterogeneity within and overlap be-
tween the conditions. To identify average patterns of
alterations, large datasets are needed along with techniques to
harmonize multisite data. Critically, these alterations must be
contextualized in light of typical brain development given the
neurodevelopmental nature of autism and ADHD (95–97).

Population modeling, often referred to as normative modeling,
has proven effective for characterizing age-dependent variation
in brain development (98,99) and has recently been employed in
studying autism and ADHD (48,54,89,100). Population modeling
provides a framework for studying diverse conditions in refer-
ence to a common baseline, which allows us to better quantify
individual differences and address heterogeneity and multisite
datasets. Population modeling also provides a potential route
toward clinical and translational applications of neuroimaging
(101). Similar to the use of pediatric growth charts, by charac-
terizing typical brain development, we can identify individually
specific alterations from these trajectories that may be associ-
ated with neurodevelopmental conditions even before associ-
ated traits manifest clinically.

Here, we leveraged models of average brain development
previously characterized by our group (98) to quantify alterations
related to autism and ADHD. To our knowledge, this is the first
study to use population modeling to investigate gray matter
alterations related to these conditions in comparison to a
common reference sample. We examined sources of variability
related to sex, age, and measures of autistic and ADHD traits.
Finally, we examined whether a subset of individuals with co-
occurring autism and ADHD presented with distinct alterations.

METHODS AND MATERIALS

Sample and Datasets

T1-weighted scans were combined from 49 sites across 7
datasets, including the ABIDE (Autism Brain Imaging Data
518 Biological Psychiatry March 1, 2025; 97:517–530 www.sobp.org/j
Exchange) (102,103), the POND (Province of Ontario Neuro-
developmental) Network, the HBN (Healthy Brain Network) at
the Child Mind Institute (104), the ADHD200 Consortium, the
Multimodal Developmental Neurogenetics of Females with
ASD dataset from the National Institute of Mental Health Data
Archive, the UK MRC-AIMS (Medical Research Council Autism
Imaging Multi-centre Study), and the University of California
San Diego Biomarkers of Autism study. The final dataset after
quality control (QC) included 4255 individuals (1869 typically
developing control participants [687 female, 1182 male], 987
individuals with ADHD [270 female, 717 male], and 1399
autistic individuals [288 female, 1111 male], ages 2–64 years
[mean 14.0, median 12.4]) (Figure 1). For details of each
dataset, demographics before and after QC, and group dif-
ferences, see Supplemental Methods Section 1. It is important
to note the distinction between biological sex and gender
identity, both of which may influence presentation (12). Here,
we refer to sex assigned at birth, but we acknowledge the
overlap with and influence of gender socialization and the lack
of data available to examine gender identity effects. Individuals
with magnetic resonance imaging data and a primary diag-
nosis of autism or ADHD or no diagnosis were included. In-
dividuals were initially included in the group of their primary
diagnosis. A subset of individuals with documented co-
occurring autism and ADHD were examined in further
analyses.

Ethical approval and informed consent were obtained for
each primary study. The Cambridge Psychology Research
Ethics Committee (PRE.2020.104) deemed that secondary
analysis of deidentified data did not require ethical oversight.

Data Processing

FreeSurfer and Cortical Parcellations. T1 images from
each dataset were processed using FreeSurfer, version 6.0.1
(105). Regional estimates of each cortical measure were
extracted based on the Desikan-Killiany atlas (106). For
computational efficiency and because BrainChart models for
separate hemispheres were not available at the time of anal-
ysis, measures were averaged across hemispheres for each
parcellation.

Quality Control. All scans underwent manual QC of raw
image and FreeSurfer surface reconstructions using our FSQC
tool (107), which allows for the evaluation of both surface
reconstruction and raw scan quality, including motion artifacts
(108). A cutoff of 2.5 was used for FSQC (107). Because even
small variations in quality can bias downstream analyses
(108,109), we also included the FreeSurfer-derived Euler
number (110) as a covariate in all analyses.

Generation of Centile Scores Using Generalized Ad-
ditive Models of Location Scale and Shape. Our pre-
vious work (98) generated reference models using generalized
additive models of location scale and shape to map neuro-
anatomical developmental trajectories across the life span,
using a sample of 75,241 TD individuals, for total GMV,
subcortical GMV (sGMV), white matter volume (WMV), ven-
tricular volume, total SA, mean CT, regional CT, regional
cortical volume (CV), and regional SA, while accounting for
ournal
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Figure 1. Study demographics and methods overview. (A) Box and violin plots representing the age distribution of each study by diagnostic group and sex.
(B) Methods overview. Global cortical and subcortical gray matter volume (sGMV), white matter volume (WMV), and ventricular cerebrospinal fluid (CSF)
volume and regional cortical thickness (CT), volume (Vol), and surface area (SA) based on the Desikan-Killiany (DK) parcellations were estimated for each
participant. Sex-specific life span developmental trajectories for each neuroanatomical measure were estimated using generalized additive models of location
scale and shape (GAMLSS) for a sample of 75,241 typically developing (TD) individuals, accounting for site- and scanner-specific variables (98). Out-of-sample
estimates for the study sample used here were generated based on these reference models, resulting in a (per)centile score for each measure of each
participant, indicating where they fall within the sample range (0–1). ABIDE, Autism Brain Imaging Data Exchange; ADHD, attention-deficit/hyperactivity
disorder; CMI HBN, Child Mind Institute–Healthy Brain Network; POND, Province of Ontario Neurodevelopmental; UCSD, University of California San
Diego; UK-AIMS, UK Medical Research Council Autism Imaging Multi-centre Study.
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effects of age, sex, and site/scanner. Models for subcortical
structures and the cerebellum were not available at the time of
analysis. Out-of-sample centile scores for our study sample
were generated based on these reference models using
Brent’s maximum likelihood estimation [Supplemental
Methods Section 2 (98)]. Centile scores quantify variation in
brain development and range from 0 to 1, with 0.5 representing
the average of the reference sample.

ComBat and Accounting for Site Variability. General-
ized additive models of location scale and shape has been
shown to adequately account for batch effects related to
differences between site- and scanner-specific variables
(98). However, we previously (98) noted the relatively lower
stability of the out-of-sample models for n , 100. Due to the
smaller sample sizes of some sites in our dataset and higher
variability in the clinical samples, we first harmonized our
data using ComBat (111), consistent with previous work
(112). ComBat was applied to the entire dataset across all
global and regional measures, with each site treated as a
batch and with covariates of age, sex, and diagnosis to
preserve related biological variation. ComBat-harmonized data
were used as inputs to the out-of-sample maximum likelihood
estimation to generate centile scores. We also conducted
sensitivity analyses on non–ComBat-harmonized centiles and
compared in-sample and out-of-sample centiles (Supplemental
Methods Sections 2 and 3).
Biological P
Statistical Analysis

Group Differences and Sex Modulation Effects.
Separate multiple linear regressions were used to examine
diagnostic group differences in centile scores for all global
volumes and regional measures. Sex-by-diagnosis in-
teractions were examined, and given previous evidence of sex-
specific neurobiological correlates in autism and ADHD
(31,40,52,66,82,113–115), a priori sex-stratified analyses were
also used to examine diagnostic differences in males and fe-
males separately and to compare sex-specific profiles of case-
control differences. We assessed the similarity of sex-specific
effect size maps by calculating Spearman correlations and
using spin permutation testing to assess significance
(Supplemental Methods Section 4).

All analyses included Euler number as a covariate, as well as
age, to account for potential systematic age deviations in
clinical groups. Multiple comparisons were controlled for using
the false discovery rate correction (116), separately for each
analysis and cortical measure. Cohen’s d effect sizes were
calculated using the “t_to_d” function in the “effectsize”
package in R (117).

We also examined the amount of regional overlap in par-
ticipants in each group with the greatest divergences from the
average centile score [as in (118)]. Other sensitivity analyses
included controlling for global brain measures, using different
QC methods, analysis of equal sex-matched subsamples, and
examining differences in the level of multimodality of the
sychiatry March 1, 2025; 97:517–530 www.sobp.org/journal 519
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distributions between groups, potentially suggesting the exis-
tence of subgroups and investigating dimensional associations
between cortical measures and autistic and ADHD traits
(Supplemental Methods Sections 5–9).

Age Modulation Effects. An age-by-diagnosis interaction
was conducted for global and regional measures to assess
age-dependent diagnostic differences. Due to the narrower
age range of the ADHD sample (5–21 years), for ADHD, we only
included typically developing individuals in the same age
range, supported by a sensitivity analysis with the full sample
(Supplemental Methods Section 11).

Co-occurring Autism and ADHD. We conducted an
exploratory analysis to examine whether individuals with co-
occurring autism and ADHD had unique neuroanatomical
profiles. We compared a subgroup of 203 individuals with
recorded clinical diagnoses of both conditions (autism1ADHD)
to the control group and examined interactions with sex and
sex-specific effects. We also compared the correlation [using
spin tests (119)] and overlap of brain maps between each pair
of diagnostic groups (Supplemental Methods Section 10.2).
Data on secondary diagnosis were not available for all datasets
and can be unreliable. While secondary diagnoses at some
sites were confirmed by clinician consensus [e.g., Healthy
Brain Network (104)], they were community based at other
sites. There are likely individuals missed in this analysis; thus,
this analysis was exploratory, and we attempted to replicate it
in a subset of autistic individuals who also met the clinical
cutoff criteria on a measure of ADHD traits (n = 118) (see
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Figure 2. Case-control differences in global and regional centile scores of st
showing group differences in global neuroanatomical measures. Raincloud plots
significantly larger ventricles than typically developing (TD) individuals, but no di
deficit/hyperactivity disorder (ADHD) had significantly lower cortical gray, white, a
control participants but greater mean cortical thickness (CT) centiles. (B) Regiona
regions (passing 5% false discovery rate [FDR] applied to each analysis and cortic
(autism or ADHD . control group), and blue represents negative effect sizes (au
greater cortical volume (CV) and CT in the superior temporal gyrus, whereas indi
and increases in CT. *pFDR , .05.
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Supplemental Methods Section 10.2 for sensitivity analyses
and demographics).

RESULTS

Differences in Global Brain Measures

Impacted global brain features were largely distinct in autism
and ADHD. Autistic individuals had significantly greater ven-
tricular volume centiles than control participants (Figure 2).
Individuals with ADHD had significantly lower total cortical and
subcortical GMV, total WMV, and total cortical SA centile
scores overall but greater mean CT centiles than control
participants.

For autism, we observed trend-level significant interactions
for total sGMV and ventricular volume (neither survived false
discovery rate correction); autistic males had greater sGMV
and ventricular volume than male control participants, but fe-
males showed no difference. There were no significant
diagnosis-by-sex interactions for ADHD. There was a trend
toward a significant interaction between autism diagnosis and
age for total WMV, sGMV, and SA and for sGMV for ADHD, but
none survived false discovery rate correction (Table 1).

Regional Differences

Main Effects. Significant group differences in regional
centiles were much less widespread in autism than in ADHD
(Figure 2). In autistic individuals, CT and CV, but not SA,
centiles were increased in the STG (d = 0.13 to 0.15) only.
Individuals with ADHD had significantly lower CV and SA
centiles across most cortical regions (d = 20.07 to 20.18) but
SA

CV

CT

Autism main effect

SA

CV

CT

ADHD main effect

−0.2 −0.1  0 0.1 0.2
ohen's d

Significance Non significant Significant

ructural magnetic resonance imaging metrics. (A) Box and raincloud plots
show the density distribution of centiles per group. Autistic individuals had
fferences were observed on any other measures. Individuals with attention-
nd subcortical gray matter volume and total surface area (SA) centiles than
l group differences. Brain maps show Cohen’s d effect sizes, with significant
al measure separately) outlined in black. Red represents positive effect sizes
tism or ADHD , control group). Overall, autistic individuals had significantly
viduals with ADHD had significant and widespread decreases in CV and SA
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Table 1. Analysis of Global Brain Measures for Autism and
ADHD Main Effects and Interaction Effects

Autism ADHD

p
Value

q
Value

Cohen’s
d

p
Value

q
Value

Cohen’s
d

Main Effects

GMV .329 .395 0.030 ,.0001a ,.0001a 20.139

WMV .216 .395 20.038 ,.0001a ,.0001a 20.156

sGMV .044 .131 0.062 ,.0001a ,.0001a 20.132

Ventricles ,.0001a ,.0001a 0.150 .412 .412 0.025

Total SA .283 .395 20.033 ,.0001a ,.0001a 20.178

Mean CT .558 .558 0.018 .004b .005b 0.089

Interaction Effects

GMV .057 .113 20.059 .376 .818 0.027

WMV .228 .274 20.037 .514 .818 0.020

sGMV .009b .054 20.080 .961 .961 0.002

Ventricles .020c .060 20.072 .874 .961 20.005

Total SA .096 .144 20.051 .200 .818 0.039

Mean CT .927 .927 20.003 .546 .818 20.019

q Values are false discovery rate–corrected p values.
ADHD, attention-deficit/hyperactivity disorder; CT, cortical thickness; SA,

surface area; sGMV, subcortical gray matter volume; WMV, white matter volume.
ap , .001.
bp , .01.
cp , .05.
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higher CT centiles (d = 0.09 to 0.10). Effect sizes were relatively
small. Results using in-sample and non-ComBat harmonized
data were highly similar. Autistic individuals showed the
highest degree of both negative and positive extreme centiles
(Supplemental Results Sections 1 and 2). Controlling for global
measures drastically altered effects for ADHD but not for
autism, highlighting that the ADHD results were driven largely
by global effects, but results were more localized for autism.
Increases in CT were particularly attenuated, and decreases in
CV and SA disappeared, with some increases being observed
instead. Different QC methods had very little impact
(Supplemental Results Section 4).

Interaction With Sex and Sex-Stratified Results.
A sex-by-diagnosis interaction was observed for autism, but
not ADHD, and sex-specific maps were far more similar for
ADHD. For autism, there was a significant interaction for CV in
the STG, insula, and temporal pole (Figure 3A). Importantly, the
significant diagnostic main effect on STG CV must be inter-
preted in light of this interaction effect and seems to apply to
autistic males only.

Compared with same-sex control participants, autistic
males had significantly greater STG CV and CT centiles (d =
0.15 to 0.18), whereas autistic females had significantly lower
cortical SA centiles in the fusiform gyrus (d = 20.18). Sub-
threshold effect size maps showed similar spatial patterning in
males and females for CT (rho = 0.5, pspin = .024), but they were
quite different for CV (rho = 0.24, pspin = .13) and SA
(rho = 20.06, pspin = .40) (Figure 3B; Supplemental Results
Section 5). Males with ADHD had significantly lower CV and
SA (d =20.08 to20.20) and higher CT centiles (d = 0.10 to 0.11)
across much of the cortex than male control participants. Un-
surprisingly, given the lack of a significant interaction, females
Biological P
with ADHD had very similar patterns of cortical alterations,
although with fewer significant regions (CV and SA: d = 20.13
to 20.22; CT: d = 0.18). Male and female ADHD subthreshold
effect size maps were visually similar, with high spatial overlap
for all measures (rho = 0.34–0.59; pspin = .0005–.029).

Effect sizes and directions remained largely consistent in
the sex-matched subsample analyses (Supplemental Results
Section 6). Multimodal distributions of centiles were observed
across most of the cortex for the autistic group but not for the
ADHD and the control group (Supplemental Results Section 7).
Dimensional analyses of autistic and ADHD traits revealed
limited significant but weak associations between some clinical
and cortical measures (Supplemental Results Section 8).

Interactions With Age. Limited age-by-diagnosis in-
teractions were observed for autism and ADHD. A significant
age-by-diagnosis interaction for autism was observed only in
the superior frontal gyrus for CT centiles. There was a small
positive significant correlation between age and CT centile for
the autism group only (partial r = 0.11).

For ADHD, there was a significant interaction for CT centiles
primarily in frontal and parietal regions, whereas there was a
significant positive correlation with age in the ADHD group
(partial r = 0.07 to 0.14) but minimal or no correlation in the
control group. In the insula, there was a significant negative
correlation in the ADHD group only (r = 20.14 to 20.15)
(Figure 4). The ADHD analysis in the whole control sample
yielded largely similar results (Supplemental Results Section 9).

Co-occurring Autism and ADHD. The autism1ADHD
group showed a distinct pattern of alterations, with some
overlap, compared with individuals with only one diagnosis
(Figure 5), with widespread significant increases in CT centiles
compared with control participants (d = 0.10 to 0.24) and
decreased SA centiles in frontal and parietal regions (d =20.11
to20.14). There was no significant interaction with sex. Effects
for males resembled those observed in the whole group, but
there were no significant differences in females (Figure 5A).
Spin tests and overlap analysis revealed the greatest similarity
between the autism1ADHD and ADHD-only groups, with
minimal overlap between the autism and ADHD-only groups
(Figure 5B; Supplemental Results Section 10.2). CT and SA
both showed widespread homology in effect size direction
across all groups, although with little overlap of significance,
whereas CV primarily showed overlap between autism1ADHD
and ADHD only. The STG overlapped in significance between
autism and ADHD, but in opposite directions.

Most results were no longer significant after controlling for
global measures. The replication analysis based on the ADHD
trait cutoff yielded similar results, although with slightly fewer
significant regions, and, notably, the male and female
autism1ADHD effect sizes were more similar between sexes
(Supplemental Results Section 10).

DISCUSSION

Using an aggregated dataset and existing models of brain
development, we observed largely distinct, robust neuroana-
tomical signatures of autism and ADHD, with some overlap.
Both conditions presented with greater CT, localized to the
sychiatry March 1, 2025; 97:517–530 www.sobp.org/journal 521

http://www.sobp.org/journal


Sex by diagnosis interaction: Autism
*

Male Female

0.00

0.25

0.50

0.75

1.00

S
up

er
io

r 
Te

m
po

ra
l G

yr
us

 V
ol

um
e

*
Female

0.00

0.25

0.50

0.75

1.00
In

su
la

 V
ol

um
e

Diagnosis TD Autism

Sex by diagnosis interaction: ADHD

SA

CV

CT

Autism main effect: Males

SA

CV

CT

Autism main effect: Females

SA

CV

CT

ADHD main effect: Males

SA

CV

CT

ADHD main effect: Females

−0.2−0.10.0 0.1 0.2
Cohen's d

Significance Non significant Significant

A

B

CT

CV

SA

CT

CV

SA

Figure 3. The effect of interactions between sex and diagnostic group on centile scores of regional magnetic resonance imaging metrics. (A) Brain maps
showing effect sizes and significance of interaction per brain region, and box and violin plots showing comparison of values separately by group for 2 sig-
nificant regions. (B) Sex-stratified regional association with diagnosis. All maps show Cohen’s d effect sizes, with significant regions (passing 5% false
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STG in autism but widespread in ADHD. In contrast, while
autistic individuals also showed STG increases in CV, ADHD was
associated with globally decreased CV and SA. This work con-
firms and extends previous large-scale and consortium efforts to
characterize these conditions (31,54,74,85,90,120), by also
identifying sex-specific alterations in autism and distinct alter-
ations in individuals with co-occurring diagnoses in this large,
carefully and manually QCed sample. Finally, we found evidence
for age-specific effects that were overlapping but more wide-
spread in ADHD and limited significant associations between
neuroanatomy and measures of autistic and ADHD traits.

Previous population modeling studies on a single diagnostic
cohort have mainly observed divergence from typical brain
522 Biological Psychiatry March 1, 2025; 97:517–530 www.sobp.org/j
development in individualized patterns (45,54,121) or multiple
subgroups with distinct patterns of divergence and clinical
profiles (48,50) rather than group differences. We note that our
sample size is considerably larger than that of previous
studies, so while we also observed individualized patterns of
centile scores, we may have had more power to detect
average group differences that are consistent across datasets.
However, it will be interesting to see in future work whether a
population modeling approach is more adept at detecting
data-driven subtypes and better parsing the complexities of
the underlying neuroanatomy.

We did not observe the greater total GMV or SA in
autistic individuals that have been reported previously
ournal
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(20–22,35,122,123), although we did not explicitly test the early
age range that was the focus of most of these studies. How-
ever, we did replicate findings of enlarged ventricular volume
related to autism (120,122–127), and our findings of signifi-
cantly greater localized regional CT and CV are at least partially
consistent with the results of recent large-sample studies
(30,31,120,128). Increases in the STG, which is known to be
involved in cognitive functions often affected in autistic in-
dividuals, have been commonly reported in autism
(25,31,54,128–142). We confirmed previous reports of global
GMV, WMV, and SA reductions in ADHD, as well as wide-
spread regional CV and SA decreases (59–63,65), which seem
to be largely a global effect. We also confirmed recent reports
of greater CT, which contradict some earlier studies of ADHD
(60–64,72,73). It will also be important in future work to extend
these investigations to the subcortex and cerebellum
(74,143–145).

It is interesting to note the divergent direction of diagnostic
effects and cortical measures in autism and ADHD. CT, CV,
and SA are related to distinct neurodevelopmental processes
and genetic underpinnings (25,146–154), with CV and SA being
more closely related than to CT (155). Thus, these different
measures could point to distinct underlying neurobiological
mechanisms or processes related to the emergence of each
condition.

The overall main effect of autism seemed to be driven by
males, who comprise the majority of the sample, with distinct
alterations observed for females. Critically, this suggests that
inferences drawn from mixed-sex samples may not be appli-
cable to autistic females, although this was not true for ADHD
[as was also observed in (156)]. Autistic females differed from
neurotypical females only in fusiform gyrus SA, a region in
which alterations in asymmetry in autistic females have also
been reported (157). In contrast, we did not observe evidence
Biological P
for sex modulation in ADHD. An unanswered question for
future research is to what extent sex effects on the cortical
measures and clinical presentations are due to underlying
differences in sex-related biology (e.g., the so-called female
protective effect and neuro-endocrine-immune theories) rather
than to gender-related socialization, identity, or diagnostic bias
effects (158). For example, in the autism1ADHD analysis
based on Strengths and Weaknesses of ADHD Symptoms and
Normal Behavior Rating Scale ADHD cutoffs (rather than
diagnosis), the male and female effect size maps are more
similar. It is possible that this analysis was less affected by sex
biases in clinical diagnosis, leading to higher similarity between
the sexes.

Significant associations between neuroanatomical alter-
ations and autistic traits have also often been reported previ-
ously (45,54,159), in contrast to the lack of significant
association observed here with the Autism Diagnostic Obser-
vation Schedule calibrated severity score despite the large
sample size. A significant caveat here is that due to the
multisite nature of the data, these analyses were conducted
only on a subset of participants, which may partially explain the
lack of robust associations in the current study.

The absence of an age-by-diagnosis interaction across
global measures and most cortical regions in autism offers
limited support for the hypothesis of early brain overgrowth
and normalization with age (122,160). However, longitudinal
data are needed to properly investigate these relationships.
The regional age interaction for ADHD suggests that the nature
of these deviations in ADHD is not static across development,
at least in some cortical measures.

Finally, the autism1ADHD group seemed to be a somewhat
distinct subgroup, resembling ADHD more than autism, but
with some overlapping features. It may be that these differ-
ences in the autism1ADHD group represent a synthesized
sychiatry March 1, 2025; 97:517–530 www.sobp.org/journal 523
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phenotype, but we caution against a simplified interpretation.
Previous studies have not identified significant differences in
CT between an autism1ADHD group and control group;
however, the sample sizes have been small (161,162). Notably,
secondary diagnoses were not available for all datasets, and
even when available, some are likely missed based on known
rates of co-occurrence (19,163). For this exploratory analysis,
524 Biological Psychiatry March 1, 2025; 97:517–530 www.sobp.org/j
we focused on individuals who had clearly documented sec-
ondary diagnoses. Future research could be improved if co-
occurring diagnoses and dimensional clinical data were re-
ported consistently across studies. However, these preliminary
findings provide an interesting direction for future research.

Our results should be interpreted in light of some limitations.
First, as is increasingly common, the data come from multiple
ournal
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sources, with different scanners, protocols, recruitment pro-
cedures, and demographic characteristics. We have attempted
to address this variability as rigorously as possible: all data
were analyzed consistently in house, and data were harmo-
nized in a 2-step process. While it is impossible to fully elimi-
nate site effects, we believe that the size of this dataset and, in
particular, the large female sample and availability of both
autism and ADHD data, mitigate these issues. However, we
note that the effect sizes observed in most analyses were very
small and thus may have limited clinical or practical signifi-
cance. Additionally, out-of-sample centiles were generated for
our dataset, despite some of these being included in the
original BrainCharts models, to properly account for site dif-
ferences. Sensitivity analyses demonstrate the stability of the
models; however, we caution that doing so in smaller sites
could lead to overestimation of effects. Second, due to the
availability of the models, cortical measures were averaged
across hemispheres. Both autism and ADHD have been
associated with atypical asymmetry (157,164,165); thus, these
results should be interpreted in light of the potential limitation
that they are based on a symmetrical (unihemispheric average)
model of the cerebral hemispheres. Third, the lack of consis-
tent phenotypic and diagnostic information led to limited data
in the analyses of clinical measures and co-occurring di-
agnoses. Partially for this reason, we also did not investigate
relationships with IQ, although we note that controlling for IQ
may also remove biological variation or confound results (166).
Fourth, despite its large size, the representativeness of the
sample is still suboptimal. There is still a large imbalance in the
number of diagnosed males and females, a substantial lack of
participants with lower IQ and/or high support needs, and
insufficient diversity across racial-ethnic groups. Finally, the
lack of longitudinal data limits our ability to draw conclusions
about developmental trajectories over time and should be a
priority of future studies.

Conclusions

This study identified distinct profiles of neuroanatomical
divergence associated with autism and ADHD that were
differentially modulated by age and sex. These observations
offer valuable insights into associated developmental pro-
cesses and could potentially serve as indicators of biomarkers.
We also identified potential differential impacts of co-occurring
diagnoses of autism and ADHD, but we note that data on
secondary diagnosis are not always reliable. Future work
should further investigate individual variability and the exis-
tence of subgroups within and across diagnoses.
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