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Abstract

Computational protein modelling has increased in public profile following the success of
AlphaFold2 at CASP14 in 2020. This led many to proclaim the protein folding problem
essentially solved, meaning in silico methods could now fill the sequence-structure gap which

had grown since the advent of next generation sequencing techniques.

However, proteins which prove problematic to experimental methods like X-ray crystallography
and NMR are often multimeric in nature, like trans-membrane proteins or receptor binding
interactions and, as the 2020 success was limited to tertiary structures, significant obstacles
in quaternary structure elucidation remained. Contemporaneous analysis of assembly
modelling showed that atomic contact prediction was a particular weakness and, as model
refinement focusses on correcting small errors in atomic positioning, we proposed that a novel
refinement method could be realised if full model coordinate files could be successfully
submitted and recycled through the AF2 neural network. We present data in this thesis
demonstrating that this is possible and that it significantly improved the quality of models

including the official AF2 competition models from CASP14.

Model quality assessment programs for quaternary structures had been largely absent with
modellers relying on various proprietary accuracy estimates and docking scores.
ModFOLDdock was conceived to independently evaluate multimeric model quality from any
modelling software. Here we show how ModFOLDdock was improved by neural network
training using three conceptual target scores and regression analysis leading to a significant
increase in predictive performance. Further optimisation of our three unique combinations of
distance-based quality measures resulted in the definition of three ModFOLDdock variants, all
of which were subsequently highly placed in the CASP15 EMA competition, ranking 2" for
global score, 1%t for interface score and 2" for interface residue score. Evidence is also
presented showing that ModFOLDdock outperforms the AlphaFold2 quality measures pIDDT

and pTM at quality-ranking quaternary structure models.
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1.0 An overview of the problem and the broad aim of the thesis

The discipline of computational protein modelling has evolved to address the problems
associated with protein structure determination by experimental means. Many of these
problems have been overcome with sophisticated practical approaches including X-ray
crystallography, cryogenic electron microscopy (Cryo-EM) and nuclear magnetic resonance
(NMR) techniques. However, the complexity and technical demands of these processes has
made experimental structure determination an expensive and time-consuming process
(Nealon et al., 2017). As such, experimental techniques have not kept pace with the rate of
identification of new protein sequences, which followed the completion of the Human Genome
project in 2003, nor with the subsequent rise of techniques like two-dimensional gel
electrophoresis (2-DE) and mass spectroscopy (MS) which have underpinned an expansion
of protein expression mapping (Al-Amrani et al., 2021). These kinds of proteomics advances
have led to a significant sequence-structure gap resulting in an approximate 0.06% structure
representation (Varadi et al., 2022) within the Protein Data Bank (PDB) of the roughly 200
million amino acid sequences deposited in the UniProtKB database (The-UniProt-Consortium,
2021). Further to this, the rate of protein-protein interaction (PPI) identification has been
increased by techniques like the yeast two-hybrid process. On the other hand, experimental
structural determination methods have been described as showing less success with
quaternary structure determination (Lensink et al., 2017). This can be due to harsh preparation
procedures like purification and dehydration which may distort or destroy associations between
individual protein chains. Multimeric proteins, exhibiting some form of transient or obligate
quaternary structure, therefore, represent a particular challenge in terms of closing the

sequence-structure gap.

This study was conceived in 2018 with the aim of developing two unpublished, emergent
computational pipelines; MultiFOLD for multimeric protein modelling and ModFOLDdock for
multimeric protein model quality assessment (MQA). It was the intention that these two pieces
of software would combine into a symbiotic pair with ModFOLDdock quality assessment driving
continued improvements in MultiFOLD modelling. The ultimate intention was to create a
publicly available webserver providing a one-stop multimer modelling and quality assessment
tool, underpinned by accepted benchmarking results, which could be used to advance the

quality of protein quaternary structure modelling and biomolecular research in general.

1.1 The essentials of protein structure and folding
1.1.1 Amino acid structure
a-amino acids are relatively simple organic molecules, all of which share a backbone or main

chain consisting of a nitrogen and two carbon atoms (N-C-C). At one end the nitrogen forms
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an amine (NH2) group with a carboxyl (COOH) group formed by the carbon at the other end.
The central a-carbon is attached to a single hydrogen and one other group, often referred to
as the R (residue) group or sidechain, which is different for each of the 20 naturally occurring
amino acids. This structure is shown in Figure 1.1 for two example amino acids and is important
for two reasons; firstly, the amine and carboxyl groups from different amino acids are able to
form a (peptide) bond between them, meaning that amino acids can be polymerised into long
polypeptide chains. Secondly, the different R-groups confer different chemical and physical
properties to each amino acid resulting in amino acid categorisation as aromatic, hydrophilic,
hydrophobic, bulky, charged, polar or neutral. One other feature of polypeptides is that there
is rotation around the o-bonds within and between the amino acids, these are known as torsion
angles and are called phi (®) (N to Ca), psi (W) (Ca to Carboxyl) and omega (Q) (peptide
bond).

Figure 1.1 The structure of two a-amino acids showing main and sidechains. A. Glycine with a
hydrogen sidechain and showing ®@, ¥ and Q angles (adapted from
https://commons.wikimedia.org/wiki/File:Glycine-neutral-Ipttt-conformer-3D-bs-17.png), B. Tyrosine
with a bulky aromatic sidechain. (adapted from https://commons.wikimedia.org/wiki/File:Tyrosine-from-
xtal-3D-bs-17.png).

1.1.2 Protein structure (primary to quaternary) and torsion angles

As organised polypeptides, proteins are essentially chains of amino acids joined together by
peptide bonds and the order in which the amino acids occur is referred to as a protein’s primary
structure - also simply called its sequence. The metaphor of beads on a string is sometimes
used to visualise this arrangement and primary structure is classified as covalent bonding
between main chain atoms. The sequence or primary structure, exemplified for three amino
acids in Figure 1.2, is important because the properties of the relative amino acid sidechains

will influence the final 3-D structure of the protein.

A simple example of a chemical property influence would be that amino acids with hydrophobic
sidechains tend to favour the water-free core of a protein. A simple illustration of a physical
property influence would be that sidechain size will dictate the ranges of phi (¢) and psi (g)
torsion angles possible for any amino acid, meaning that Glycine, for example, is usually found

at sharp turns in polypeptide chains. In this way primary structure is thought to govern
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Figure 1.2 A section of primary structure showing the peptide bond. R = sidechains, the carboxyl
carbon is now a carbonyl group and the amine group is now an amide (image adapted from EMBL-EBI
online training: https://www.ebi.ac.uk/training/online/courses/biomacromolecular-
structures/proteins/levels-of-protein-structure-primary/).

spontaneous higher-level protein folding through sidechain interaction, a concept often termed
Levinthal’s paradox (Zwanzig et al., 1992). Levinthal argued that the short time it takes for a
protein to fold evidences a folding pathway or mechanism governing the formation of the
correct fold combination. A task that a random approach could theoretically take eternity to

achieve.

Higher levels of protein structure are termed secondary, tertiary and quaternary structure.
Secondary structures are stabilised by hydrogen bonding between main chain carbonyl groups
(coloured red in Figure 1.2) and amide groups (coloured blue). This mostly results in one of
two structures, the alpha helix or the beta sheet (although other structures are possible). These
structures are determined by the torsion angles adopted by the constituent amino acids. In a-
helices each amino acid hydrogen bonds with another four places further along the chain with
typical torsion angles of -60° (phi) and -50° (psi) (Sailbil, 2010). In contrast, B-sheets form when
torsion angles of -140° (phi) and +130° (psi) allow polypeptide chains to run alongside one

another. Both structures are shown in Figure 1.3A.

Tertiary structures, shown in Figure 1.3B, are also stabilised by hydrogen bonding, but this
time between amino acid sidechains which have been spatially rearranged following
hydrophobic collapse of the structure, rather than main chain atoms. Side chains exert a certain
influence over secondary structure via permitted torsion angles but will govern tertiary structure
to a much greater extent through their level of hydrophobicity. Tertiary structure is characterised
as secondary structure elements folding over each other via bends and twists using
unstructured “loop” regions and is heavily influenced by the percentage and positioning of
amino acids with sidechains of different properties. The result of the folding is to align linearly
distant amino acids to form recognisable motifs some of which will be part of functional

domains or active sites, in the case of enzymes.
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A B
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Figure 1.3 A. Secondary structures showing an a-helix and B-sheet made up of B-strands, and
B. Tertiary structure showing folding of the secondary structure elements. (image adapted from
EMBL-EBI online training: https://www.ebi.ac.uk/training/online/courses/biomacromolecular-
structures/proteins/levels-of-protein-structure-primary/levels-of-protein-structure-secondary/)

The final level of protein structure is quaternary structure, a concept first proposed by Bernal
et al. in 1958 and is the result of two or more individual protein chains binding together either
permanently (obligate proteins) or in a transient association (non-obligate). This level
introduces some additional structural complexity by having one (or more) interchain interfaces.
Also to consider is the stoichiometry of the structure, i.e., the number of sub-units involved
(dimer, trimer or higher association), and the symmetry (the orientation that each sub-unit takes
relative to the others). Additionally, it is possible that some conformational changes may take
place within the individual protein chains upon binding. This particular phenomenon is shown
in Figure 1.4 where the unstructured regions in the monomers shown in image B

spontaneously form a-helices upon association to form the interface, shown in image A.

Figure 1.4. The quaternary structure of a simple homodimer. A. a-helices correctly form the
interface. B. An early MultiFOLD model showing that the loop regions of the TBM tertiary model have
not been altered to form the correct a-helix interface. Image taken from (Nealon et al., 2017).

1.1.3 Protein folding

After the cellular processes of transcription and translation, a polypeptide chain rapidly folds
into a predetermined structure that minimises the molecule’s free energy (Anfinsen and
Scheraga, 1975). Only at this stage can the polypeptide chain truly be referred to as a func-
tional protein and its final three-dimensional conformation will depend on a number of factors
that are a direct consequence of its primary structure. While this discussion ignores chaperone

proteins and post-translational modifications (PTMs) such as phosphorylation, glycosylation
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and methylation it is important to note that these can influence the stability and function of the
protein (Zhong et al., 2023). However, many proteins can achieve their native conformation
without chaperones or PTMs, relying on main chain hydrogen bonding to stabilise their sec-
ondary structure (influenced by the preferred ® and W angles of individual amino acids) and
the intra molecular forces resulting from hydrophobic collapse which are a direct consequence
of side chain properties. These forces can be broadly characterised as Van der Waals interac-
tions for larger, non-polar side chains; electrostatic interactions between charged side chains;
permanent diploe interactions between polar side chains and possibly disulfide bridges (S-S
covalent bonds) which are a consequence of Cysteine thiol (S-H) group bonding. All of these
interactions are important in stabilising the protein but it is thought that the main thermody-
namic driver for protein folding is, in fact, the interaction between the polypeptide chain and
the water surrounding it, often referred to simply as the hydrophobic effect (Li et al., 2021).
Folding has the effect of increasing the entropy of the whole system due to the release of water
molecules, which tend to become ordered around hydrophobic regions and as AG = AH - TAS,
the greater the entropy (S), the lower the free energy (G) if enthalpy (H) is constant or very
small. Li et al. estimated that the change in enthalpy for main chain atoms forming H-bonds is
approximately +2.7Kcal/mol while the entropy released due to the hydrophobic effect may
lower the Gibbs fee energy to -23Kcal/mol (measured for Leu-Leu interactions), thus exempli-
fying the entropic compensation that hydrophobic collapse is assumed to provide to drive spon-
taneous folding. In this example only main chain interactions were considered and this is be-
cause the formation of secondary structure regions (B-turns, in particular) is thought to be the
initial step in protein folding with one turn (sometimes called a foldon) influencing the formation
of others in a chain-reaction style process (Englander and Mayne, 2014). Thereatfter, further
hydrophobic entropy gains are achieved as the protein folds into its final three-dimensional
tertiary structure and buries hydrophobic side chains at its core. This hypothesis satisfies both
Levinthal’s paradox, that the degrees of rotational freedom are too great to allow folding without
a pre-defined pathway and Anfinsen’s assertion that folding must result in the lowest free en-

ergy conformation and be somehow encoded in the primary structure of the protein.

Unfortunately, while the fundamental principles that determine the final folded structure of pro-
teins are better understood, the exact pathway and intermediate steps involved in protein fold-
ing remain elusive. Despite recent advances in artificial intelligence (Al) such as AlphaFold2
(AF2), which have improved the ability to predict final structures, understanding the dynamic
folding process and its determining factors remains unsolved. Solving the folding problem is
important as the function of a protein is generally considered a direct result of its three-dimen-
sional shape which brings distant parts of the polypeptide chain together. These are then able

to form structural motifs such as the p-turn which underpins the formation of the B-sheet or the
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helix-turn-helix which has a role in DNA interaction and which themselves often form part of a
functional domain of the protein. Being able to predict a protein’s domain and the exact atomic
coordinates within that domain from its primary structure would allow an understanding of the
substrate or ligand with which the protein interacts as well as interactions with other proteins.
Exact functions and modes of action could then be determined via accurate three-dimensional
models which would allow insights into diseases associated with improper protein interactions
and aggregation as well as therapeutic drug design where detailed knowledge of binding or

active sites allows targeting of molecular pathways involved in disease.

1.2 Protein structure in healthcare and disease mechanisms

It has been estimated that free proteins may interact with up to 10 others to form low-affinity
complexes (Chen and Skolnick, 2008), many of which are involved in cell catalysis, signalling
or regulatory pathways (Sowmya et al., 2015). An understanding of protein quaternary
structure and protein-protein interactions (PPI) would therefore represent an important asset
in structure-based drug design, and accurate protein models could be particularly useful in
developing new therapeutics targeting cell signalling pathways, for example, which often
involve a cascade of protein binding interactions. Some notable current treatments that rely on

PPls are those for cancer treatment, HIV, Alzheimer’s, and Parkinson’s disease.

For cancer treatment it may be possible to further exploit therapeutic approaches like the
design of ligands to disrupt abnormal PPIs which would otherwise result in malignancy, similar
to the Bcl-2 inhibitors for apoptosis regulation (D'Aguanno and Del Bufalo, 2020) and
monoclonal antibody (mAbs) treatment to bind to specific target proteins in the same way as
Trastuzumab targets the HER2 receptor limiting breast cancer cell proliferation (Gajria and
Chandarlapaty, 2011). In HIV (HAART) treatment, enzyme inhibitors that target the active site
of the HIV-1 protease have been effective in blocking the enzyme binding interactions with its
substrates thus preventing viral replication (Lv et al., 2015). Research into new treatments for
Alzheimer's has recently employed PPI networks to identify potential repurposing of known

drugs Raloxifene and gentian violet (Soleimani Zakeri et al., 2021).

1.2.1 Parkinson’s and the LRRK2 protein

Parkinson's disease (PD), a neurodegenerative disorder resulting from the loss of
dopaminergic neurons in the substantia nigra, is a particularly interesting example where
mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified as a genetic
risk factor. The product of this gene, the RoCo (Roc and CoR domain) protein LRRK2, has
been suggested as the vector for Parkinson’s development. Human LRRK2 shares a
homologue with the anaerobic phototrophic bacterium Chlorobium tepidum, called Ct.RoCo,

which has been structurally solved and is shown in Figure 1.5. It is known that the Ct.RoCo

7
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protein is involved in a GDP-mediated dimerisation cycle in which the monomer is GTP-bound
while the dimer is GDP-bound (Deyaert et al., 2019).

Figure 1.5 The PDB structure 6hlu showing the C. tepidum LRRK2 protein Ct.RoCo, coloured
by domain. The Leucine rich repeat (LRR) is shown in red, the linker section in pink, the RoC section
in blue, a second linker in green, the N-COR section in yellow and the C-COR section in orange.

The LRRK2 protein is an example of a broader class known as the RoCo proteins which
contain three key domains, the leucine rich repeat (LRR), the Ras-like GTPase (Roc) and the
C-terminal of Roc (CoR). Conformational changes in the LRR and CoR domains are thought
to regulate the dimerisation cycle. As a large, multi-domain protein involved in PPI and potential
conformational changes, the LRRK2 protein represents a classic problem for experimental and
computational protein modellers alike. As a result, the McGuffin group was contacted in 2020
by a research partnership from the Parkinson's Disease Consortium (UKPDC), the Department
of Molecular Neuroscience, UCL and The Royal Veterinary College to model the human
LRRK2 protein to allow assessment of its structural similarity to Ct.RoCo and thus whether the
same GTP/GDP binding was likely. Although we were able to produce a reasonable quality
model of the structure, the technology at the time did not allow the atomic level accuracy that
this work required. More recently, advances have been made in producing experimental
models of this protein, particularly using Cryo-EM and ET (electron tomography, described
further in section 1.3.3) technology, however these have led to either high resolution images
of single domains or low resolution images of the full length structure bound to microtubules
(Zhang and Kortholt, 2023). The N-terminal domain remains unresolved as does the
identification of the domains involved in membrane binding and the dynamic conformational
changes involved in dimerisation and phosphorylation and, importantly how these are affected
by the PD mutations. The same study describes how AlphaFold2 structures have contributed
to the structural knowledgebase but also highlights some disagreements between the
predicted and observed structures, which are yet to be resolved. The continued struggle to
produce a full-length, atomic resolution model of LRRK2 for disease understanding and
potential drug development exemplifies the need to improve the quality of protein quaternary

structure modelling.
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1.3 Experimental methods of protein structure determination

1.3.1 X-ray crystallography

X-ray crystallography has traditionally been considered the gold standard for biomolecular
structural determination due to its ability to produce images at atomic resolution. Briefly, the
method involves the crystallisation of the target protein followed by X-ray diffraction and finally
mathematical calculations to produce the electron density map and the final molecular
structure. Despite its standing as a cornerstone of structural bioinformatics, the technique is

not without its challenges and limitations.

In order to produce the required well-ordered crystals, sufficient quantities of the protein must
first be expressed by a suitable cellular host and then purified. Thereafter, the sample is
subjected to dehydrating and crystallising conditions, which can in themselves prove
challenging for some proteins due to size, solubility and flexibility issues. Obtaining suitably
high-quality crystals can, therefore, require extensive optimisation of conditions which can be
time-consuming and resource intensive, although advances such as microcrystal electron
diffraction (MicroED) (Mu et al., 2021) and automated crystallization screening (Shaw Stewart
and Mueller-Dieckmann, 2014) have significantly improved efficiency and success rates by

allowing the use of smaller crystals and faster identification of optimal conditions.

Figure 1.6 The famous Photo 51 showing the X-ray diffraction pattern of DNA (Image taken from
https://en.wikipedia.org/wiki/File:Photo_51_x-ray_diffraction_image.jpg).

The X-ray process involves collecting diffraction patterns resulting from the interaction between
the electrons in the sample and the X-ray wave as explained by Bragg’s law (Thomas, 2012).
However, despite the complexity of this process, the result is merely a pattern of light and dark
spots, as shown by Frankin’s famous crystallographic Photo 51 of DNA (Figure 1.6). These
patterns require mathematical interpretation. Diffraction patterns similar to those shown in
Figure 1.6 correspond to the arrangement of atoms within the crystal lattice and the spot
intensities contain information about the spatial distribution of electrons. Mathematical
techniques such as a Fourier transform or molecular replacement (where a known model of a
homologous structure provides starting point values) can be used to construct an electron

density map from the diffraction pattern, which is then interpreted into atomic coordinates. In
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addition to the potential difficulties mentioned above with the crystallisation process, X-ray
crystallography only produces a single snapshot of one conformation of a protein, which may
not represent its biological form. Additionally, proteins are not static entities; they exhibit
flexibility and undergo conformational changes related to their function and these will not be
captured by crystallography. Lastly, as alluded to in Section 1.0, crystallography conditions are
extreme and larger proteins, particularly multimeric structures can become damaged during
the process. Membrane proteins, due to their size and hydrophobic transmembrane section

represent a particular crystallisation challenge.

1.3.2 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) is a spectroscopic technique originally used for small
organic molecule structure determination, but which has been adapted for larger molecules
such as nucleic acids and proteins. The core concept is that all nucleons exhibit a phenomenon
known as spin, meaning that a nucleus comprising odd numbers of nucleons will itself exhibit
an overall spin moment. Nuclear spin is measurable in Hydrogen atoms as they have only one
proton and so proton NMR (also known as 'H NMR) is a useful technique to investigate organic
molecules due to their high Hydrogen atom content. Other NMR techniques are also possible

using isotopes of carbon (*C NMR) and sometimes nitrogen (°N NMR).

Structure determination for small organic molecules, where the identity of the molecule is
unknown, centres on two key concepts, that of carbon environments in *C NMR and spin (or
J) coupling for '"H NMR. The former allows the user to identify the number of carbon atoms in
a molecule, whereas the latter allows the assessment of the number of hydrogens on each
carbon by interpretation of peak splitting within the trace. Along with the chemical shift which
helps to identify different organic functional groups, the identity of molecules can be
determined. For proteins, the identity of the molecule is not in question as it is described
entirely by the primary structure. The important aspect is the spatial arrangement of the amino
acids within the protein. For this a slightly different spin characteristic is used, one called the
Nuclear Overhauser Effect (NOE). The NOE is essentially the transfer of spin, called cross-
relaxation, between atoms that are in close proximity, usually defined as < 6A (Hu et al., 2021).
In this way local spatial relationships can by determined via either a 2-D tracing technique
known as NOESY or a slightly more complicated rotational version called ROESY. Spin-
coupling can, however, play a role in refinement of the structure suggested by the NOE. This
technique, called residual dipolar coupling (RDC), essentially involves comparisons of peak
splitting patterns for identical molecules measured under different anisotropic (orientation)
conditions. NMR requires less harsh conditions than crystallography and is therefore more

suitable for structure determination in environments resembling physiological conditions. It is
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also more sensitive to alternative protein conformations and protein dynamics meaning that
investigations into PPIs are possible. NMR has also been used successfully to characterise
membrane proteins (Opella and Marassi, 2017) and the number of NMR structures deposited
in the PDB has risen year-on-year since 1991, currently totalling 14,189 (result of a search on
02/03/2024). However, NMR can encounter resolution limitations with larger proteins and
complexes in excess of 80kDa due to spectral overlap (Hu et al., 2021) and requires relatively
high sample concentrations and stability of its target protein (Benjin and Ling, 2020). Another
limiting factor has traditionally been the length of time required for specialist data interpretation,
taking months in some cases to convert measurements into structures (Klukowski et al., 2022),

particularly for proteins with multiple conformations or significant dynamics.

1.3.3 Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) has recently emerged as a potentially revolutionary
technique allowing structural determination of large proteins, complexes and membrane
proteins at near-atomic resolution without the need for crystallisation. This immediately
resolves many issues surrounding X-ray crystallography, making Cryo-EM suitable for studying
challenging targets and those with multiple dynamic conformations under near native
conditions (Murata and Wolf, 2018). A recent and notable example of this was its use to model
the multimeric SARS-CoV spike protein trimer (Alsaadi and Jones, 2019). The basic technique
centres around flash-freezing a solution of the target protein in vitreous ice prior to examination
by electron bombardment, but there have been low resolution issues surrounding the
structures produced for many years (Callaway, 2020). Consequently, the number of structures
resolved by EM techniques in the PDB has been slow to develop, standing at just a single
structure in 1991 and climbing to 320 by 2010 following Richard Henderson’s resolution review
in 1995 (Henderson, 1995). However, following the work of Dubochet, Frank, and Henderson
in 2017, 2020 saw a breakthrough in Cryo-EM techniques, allowing true atomic-level resolution
(below 3A (Ashmore et al., 2021)) to be obtained for the first time (Yip et al., 2020;Nakane T,
2020) with structures reaching a maximum resolution of 1.2A. Accordingly, the number of
structures in the PDB has risen to 19,106 (03/03/24) with 4582 deposited in 2023 alone.
However, Cryo-EM is not without its challenges; problems may yet be encountered with
unstable, aggregated or low homogeneity samples, buffer contamination or freezing issues, all
of which can reduce contrast and resolution. Sample preparation therefore continues to be
time intensive, requiring a high level of expertise coupled with high-quality instrumentation,

especially for small (<500kDa) or flexible proteins (Benjin and Ling, 2020).

Despite this, recent advances have led to the development of new techniques like time-

resolved cryo-electron microscopy (TR-EM) and Cryo-electron tomography (Cryo-ET). These
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two innovative methods enable visualisation of biological molecules in dynamic states and in
cellular conditions. With TR-EM, conformational changes can be captured by freezing and
immobilising molecules at different time points during their dynamic transition. This could
reveal further details of PPIs or even the mechanism of protein folding itself. Cryo-ET allows
investigation into whole cells and, through tilted imaging, can show the 3-D location of large
biomolecules within the cell. Additionally, recent work following CASP15 suggested that
mechanisms for both validating Cryo-EM structures using AF2-style distance predictions
(Sanchez Rodriguez et al., 2022) as well as resolving poorly modelled loop regions by

refinement can be realised using predicted computational structures (Mulvaney et al., 2023).

1.4 Computational solutions to protein structure prediction

Although the discipline of protein modelling began experimentally with Kendrew’s 1957 model
of myoglobin interpreted from X-ray analysis, it wasn’t long before computational methods
were developed, initially in the form of probabilistic secondary structure prediction by the
Chou—Fasman method in the early 1970s (Chou and Fasman, 1974). The Chou-Fasman
method was based on amino acid frequencies determined by X-ray crystallography
demonstrating that, from the earliest days, computational methods have relied on experimental
data to make predictions. Thus, as the availability of experimental data increased, the potential
for complementary computational methods also rose, with the single most significant source
of data being the Protein Data Bank (PDB), established in 1971 at the Brookhaven National
Laboratory, which dovetailed with the development of the first sequence alignment algorithm
by Needleman and Wunsch (Needleman and Wunsch, 1970). The first successful homology
model, meaning the construction of a model of a protein with an unresolved structure entirely
by comparison with evolutionarily related homologues, is generally considered to be Greer’s
1980 structure of the haptoglobin heavy chain (Greer, 1980). From that point, using the
increasing number of experimental structures in the PDB, which hit 25,000 in around 2003 and
currently stands at 217,157 (PDB search on 13/3/24), as well as the growing availability of
sequence databases (UniProtKB held 190 million in 2021, (The-UniProt-Consortium, 2021))
and increasing computational power, homology or comparative modelling has become a useful
method of protein structure determination. Additionally, it has been estimated that at least 70%
of known protein sequences have at least one domain related to another protein (Fiser, 2010)
meaning that, as more structures are determined experimentally, many more structures

become available for homology modelling.

1.4.1 A summary of tertiary structure comparative modelling
The terms comparative modelling (CM), homology modelling (HM) and template-based
modelling (TBM) have become almost interchangeable, although strictly speaking homology

modelling describes the process of using structural templates with an established evolutionary
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relationship to the target sequence. Regardless of terminology differences, the method has
been a popular technique driving computational tertiary structure modelling. Rangwala and
Kapris (Rangwala and Karypis, 2011) defined the process in terms of five distinct stages;
selection of templates, alignment of sequences, model building, quality evaluation and

refinement.

Identification of suitable templates is often the most important part of the TBM process and
can be achieved by sequence alignment tools such as PSI-BLAST (Altschul et al., 1997) using
the NCBI database (Sayers et al., 2022) to produce paired alignments between two
sequences. Often attempting a global alignment of the whole target sequence using the
Needleman and Wunsch algorithm or similar, results in few or poor matches owing to the
potential for protein domains to swap places over time. Therefore alignment routines often use
local sequence alignment techniques, first devised by Smith and Waterman (Smith and
Waterman, 1981b), where sequences are considered in segments and then cross-aligned to
allow a search of the whole sequence for matches. Again, due to the nature of protein
evolution, even successful alignments encounter missing sequence sections (deletions),
additional sections (insertions) or substitutions where amino acids have been replaced with
others. It can then become difficult to directly compare sequence alignments and a BLOSUM
matrix (Henikoff and Henikoff, 1992) is often used to contextualise each alignment by scoring
conserved amino acids well and penalising missing sections or those where replacements
have occurred, particularly in ordered secondary structure regions. Some programs also use
a secondary structure consensus predictor like PSIPRED (Jones, 1999) at this point to
increase confidence in the final template selection. Despite some structural diversion with
increasing evolutionary distance, protein structure has remained surprisingly stable (Chothia and
Lesk, 1986) and, in general, sequence identities above 30% have been successful in
establishing similar structures via evolutionary relationships (Buenavista et al., 2012), although
this threshold is somewhat length-dependent and may depend on the absolute number of
shared residues. For sequences with very low identities, a technique known as fold recognition
or threading can be employed. In this approach, the query sequence is used to generate a
position-specific scoring matrix (PSSM), which captures evolutionary information by scoring
each position based on a multiple sequence alignment. The PSSM is then used to search the
PDB for compatible structures by aligning the sequence to known structural templates, thus

predicting the fold of the query sequence (Bowie et al., 1991).

Once templates are identified it is usual to perform a second alignment, often a multiple
sequence alignment (MSA) is used to align the target protein sequence with one or more

template structures. The goal is to identify structurally conserved regions between the target

13



Chapter 1

and templates to guide the construction of the model. From this it is possible for modelling
software to construct an initial model, most commonly by spatial restraints as used by the
popular modelling software MODELLER (Eswar et al., 2006). During this process inter residue
distances, and a host of stereochemical constraints including bond lengths and dihedral angles
are used to construct complementary structures guided by the template and then select the
best structure on the basis of minimum violation of the constraints. Unfortunately, this is rarely
sufficient to build the complete model unless very close and high-quality templates are
available. The parts missing tend to consist of the unstructured loop regions which occur
between areas of organised secondary structure which, in the main, make up the fold and
domains of the protein. Loop modelling can be achieved either by Ab initio modelling entirely
guided by physics-based rules (often represented by the CHARMM (Brooks et al., 1983) force
field) to predict the shape from first principles (e.g., ModLoop (Fiser and Sali, 2003) or Rosetta
(Simons et al., 1997)) or by using a loop-fragment database (e.g., ArchPRED) (Barozet et al.,
2021). It is worth mentioning here that unstructured loops also present a problem for
experimental methods, with estimations that up to 69% of structures in the PDB have missing
fragments, rising to 80% for very high resolution structures (Djinovic-Carugo and Carugo,
2015). This can be due to inherent flexibility, making loops difficult to resolve accurately by
crystallography or NMR. Flexibility can lead to incoherent X-ray scattering and a subsequently
weak contribution to the electron density map or a weak NOE signal in NMR, resulting in an

ensemble of differing conformations (Kwan et al., 2011).

Despite the sophistication of modelling software, it is not uncommon for models to contain both
local and global errors like unrealistic contacts or hydrogen bonds, steric clashes, incorrect
bond lengths or unfavourable dihedral angles (Bhattacharya and Cheng, 2013). Despite this it
can be challenging to improve models and attempts can result in the deterioration of model
quality, particularly for TBM models (Adiyaman, 2021). Refinement is the process of improving
a model by making small changes to the 3D structure with the aim that the new model will be
closer to the native protein than the original. Refinement programs can be broadly split into
two types; stand-alone stereochemical force fields like AMBER (Cornell et al., 1996) which can
be used to directly optimise for bond-length and geometry and full molecular dynamics (MD)
simulations (of which the full AMBER package is also an example). MD programs can be
further sub-divided into manual programs which tend to perform computationally intensive
simulations and are available to download and run locally, requiring some technical familiarity
with the software. Alternatively, automated server-style programs are available via public
webpages which tend to be quicker and less computationally intensive, using methods like

side-chain optimisation and less stringent energy minimisation functions (Feig, 2017).
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To briefly explain molecular dynamics simulations. These simulate the motion of atoms over
time when the model is programmatically solvated in water with an ionic component designed
to mimic physiological conditions. The stereochemical force fields (AMBER or CHARMM) are
again used to govern the potential energy of the system and so dictate the atomic positions.
The simulation traditionally consists of two stages; equilibration - where the protein is allowed
to adjust to the environment via energy minimization to fix clashes and achieve a stable starting
point, and the main simulation - which may include a perturbation step, thereafter allowing the
model to settle into a thermodynamically favourable state over a short period of time. The goal
is to allow the model to explore different conformations and interactions arriving at the
thermodynamically most favourable. After the simulation, the programs perform two further
functions; the first is sampling, meaning to create a range of refined models, the second is
scoring, using an energy function such as DFIRE (Zhang et al., 2004) or a stereochemical

checker like MolProbity (Williams et al., 2018), to identify any improvements.

1.4.2 CASP competitions and the success of different modelling strategies

The Critical Assessment of techniques for protein Structure Prediction (CASP) experiment is
a biennial blind structure prediction competition created by John Moult and colleagues in 1994
(Moult, 2005). Its aim is to objectively assess the prediction capability of modelling groups
worldwide and to create a forum for shared practice. Organisers source unpublished
experimental structures and invite predictor groups to model the structures, the native
structures are revealed some months later along with scores for each submitted model (Moult
et al., 2011). The experiments have attracted increasing participation over the years; CASP1
consisted of 35 invited predictor groups (Moult et al., 1995) whereas CASP8 (2008), for

example, received predictions from 253 groups across 24 countries.

In the earlier years, many predictor groups favoured ab initio modelling using physics-based
methods including free energy calculations, electrostatic interactions, hydrogen bonding and
solvation energy scoring functions to empirically solve the folding problem (Moult, 2005). By
CASP10 (2012) the number of solved structures in the PDB had reached 87,000, representing
1393 unique folds and researchers had changed their focus to comparative modelling to exploit
the available templates. The rise of TBM methods allowed the creation of ever greater numbers
of models for each target, potentially at the expense of the understanding of folding mechanics,
but also creating an increasing requirement for model quality assessment (MQA) and ranking
programs. Consequently, two future challenges highlighted in the CASP9 report (Moult et al.,
2011) were the improvement in accuracy of regions not easily derived from a template and
improvements in methods for selecting the best model from those generated by TBM

programs.
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By 2016, these challenges had started to be met and CASP12 and 13 models showed an
increase in accuracy (Kryshtafovych et al., 2018) which was attributed partly to the increased
number and quality of templates available in the PDB, but also to improved model selection by
MQA programs (Croll et al., 2019), highlighting the importance of quality assessment in driving
modelling advances. The next significant increase in model quality was seen at CASP14
(2020) with the participation of Google DeepMind’s AlphaFold2 (AF2) (Jumper et al., 2021b)
deep learning software. The increased levels of accuracy and methods by which they were

attained are covered later in Section 1.5.

Quaternary structure modelling, known as assembly modelling, was included as an assessed
category from 2016 (CASP12) and, in 2022 (CASP15), the estimation of model accuracy
(EMA) category was modified to focus on scoring quaternary structure models. This, again,
demonstrated the value that CASP organisers placed on quality estimates in advancing protein

modelling quality.

1.4.3 Docking and the docking problem

As described in Section 1.2, correctly predicting protein assembly binding orientations using
docking methods may provide a knowledge base for medical development. One route could
be via drug development, particularly those designed to disrupt protein-protein binding
interactions but a second, equally important route, could be via the generation of antigen-
antibody complexes for the treatment of autoimmune conditions or vaccine development, the

latter exemplified by work supporting the recent Covid vaccines (Bansal et al., 2021).

Docking and screening routines, in which an initial phase of protein docking is followed by
scoring each docking pose, were popular methods in early CASP experiments (Vasker, 2014).
This was due to a number of factors, firstly that docking programs had been developed for
protein-ligand docking studies (Sousa et al., 2013) and these were easily repurposed for
protein quaternary structure modelling and, secondly, that TBM approaches had experienced
limited success due to a lack of multimeric structures of sufficient quality to use as templates
(Lensink et al., 2016).

The docking problem is one where, using only the 3D atomic coordinates the native positional
and rotational orientations between two protein molecules must be identified (Vasker, 2014).
This must be achieved without significant overlap of atomic space (clashes) nor by leaving
gaps between the chains. Shape complementarity could rely on flexibility so it would be useful
if docking algorithms allowed flexible chain binding. However, this has for the most part,
remained too computationally expensive (Marze et al.,, 2018) and grid-based rigid-body

docking methods became the core technology, representing a less complicated but affordable
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compromise (Garzon et al., 2009), although soft docking approaches permit a certain steric

overlap to represent flexibility (Bonvin, 2006).

Solving this problem requires the sampling of many thousands or even millions of potential
poses to account for the many translational and rotational orientations possible between the
two proteins, often referred to as receptor and ligand regardless of size difference. To facilitate
this within the capabilities of most servers, a fast Fourier transform (FFT) algorithm was used
(Katchalski-Katzir et al.,, 1992). This involved representing proteins as 3D projections
consisting of nodes and edges where each point is defined by a range of scores. These include
definitions of surface (1), internal (-1) or external (0) space as well as a number of amino acid
properties like hydrophobicity, side-chain size and electrostatic interactions, for example.
These values are then discretised as a matrix where they can be converted by a Fourier
transform into a frequency-space representation (Yin and Yau, 2017). It is then much simpler
to compare frequencies to find potential matches than it would have been to compare all of the
individual scores, on the assumption that areas with complementary properties are likely to
represent binding sites. Promising poses which show high surface to surface definition (rather
than surface to internal or external atomic space) can then be scored on a shape-
complementarity or energy basis. A list of high-scoring poses and scores can then be output

by the program.

1.4.4 Quaternary structure prediction at CASP

Assuming it is possible to replicate a high percentage of docking poses via the FFT method,
the success of docking methods is then governed by the ability to select the native-like poses
from the decoys. Docking success therefore becomes a function of MQA accuracy, a reason

for the pressing need to develop reliable quaternary structure MQA methods.

In an early joint CASP/CAPRI experiment run as part of CASP11 (2014), despite the difficulties
with reliable scoring and selection techniques, docking was considered a superior method to
early multimeric TBM attempts, mainly due to the relatively low numbers and quality of
available templates in the PDB and specialist databases like PISA (Krissinel and Henrick,
2007), (Lensink et al., 2016).

At CASP13 (2018), participating groups in the assembly competition employed a mix of
docking and TBM strategies (Kryshtafovych et al., 2019), but the success remained somewhat
varied, leading the authors to conclude that, although good models were seen when closely
related templates existed for the whole assembly structure, the approach of building separate
monomers and then docking them via rigid body methods was essentially flawed. This opinion

was somewhat reinforced by the CASP13 official results (Duarte and Guzenko, 2018) which
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showed that assembly modelling had only a 31% success rate (measured by all aspects of
assessor total score >0.5) which could further be broken down into global relatedness
(measured by TM-score >0.5) of 80% but interface similarity (measured by interface contact
score (ICS) >0.5) of only 34%. Despite the development of hybrid techniques employing both
TBM and docking methods, exemplified by software like GALAXY (Lee et al., 2017) and data-
driven approaches like HADDOCK (Vangone et al., 2017) as well as the availability of interface
fragment libraries like Swiss-Model (Waterhouse et al., 2018) and ProtCID (Xu and Dunbrack,
2020), CASP14 assembly modelling resulted in only marginal improvements in accuracy, with
the percentage of TM-scores >0.5 rising to 86% and those for ICS rising to 38% (Karaca,
2020).

It was clear that the formation of correct interfaces was a problem for quaternary structure
prediction. The Venclovas group, who had achieved first and second place in CASP13 and 14
assembly modelling respectively, further demonstrated this problem by breaking down their
CASP14 modelling results by method and comparing them by QS-score, which is particularly
sensitive to interface orientation. They found that for free docking 80% of models scored 0.3
or lower, for hybrid docking this reduced to 55%, further reducing down to only 9% for TBM
modelling (Dapkunas et al., 2021). Although this analysis used a very limited number of models
and docking methods were only employed where good templates could not be found, it
nevertheless exemplified the difficulty in locating good multimeric templates as well as the

continued problems with docking model interfaces.

1.4.5 Refinement and a gap in quaternary prediction methods

The status of multimer or quaternary structure modelling at that point in time was the motivation
for the title of this project, that is to say that the data pointed to the need for a reliable multimeric
MQA method to improve the selection of native structures from long lists of decoy models and
also that errors in multimeric models appeared to centre around the interface contacts, an area
potentially sensitive to the resolution of clashes by refinement. At the time, there were limited
options for multimer refinement and of the two methods explored, SymmRef (Mashiach-
Farkash et al., 2011) and GalaxyRefineComplex (Heo et al., 2016), the latter was chosen due
to the former’s specialisation for symmetrical structures which possibly limited its use.
GalaxyRefineComplex is a side-chain repacking algorithm from the Seok lab in which models
are relaxed using molecular dynamics (MD) simulations. It was the initial intention to improve
multimer models by this method and incorporate a similar approach into our fledgling
MultiFOLD pipeline. In the end, due to rapid advances in computational methods, a different

method of refinement and model improvement was eventually developed for MultiFOLD.
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1.5 Advances in computational methods

1.5.1 The importance of multiple sequence alignments (MSA)

The concept of a multiple sequence alignment (MSA) has been known to the protein modelling
community since the early days of computational biology research in the mid to late 20"
century, with seminal contributions by pioneers such as Margaret O. Dayhoff (Strasser, 2010)
and advancements in alignment algorithms by researchers like Smith and Waterman (Smith
and Waterman, 1981a). The ability of an MSA to reveal patterns not seen in simple pairwise
alignments has made them useful in fold recognition or threading approaches, where amino
acid probability profiles are created to identify similar folds in different templates or secondary
structure similarities (Jones, 1999). Consequently a number of algorithms like Divide and
Conquer (DCA) (Tonges et al., 1996), MUSCLE (Edgar, 2004) and Kalign (Lassmann and
Sonnhammer, 2005) were developed with Clustal Omega (Sievers and Higgins, 2014)

becoming a popular choice a little later.

COLOR SCHEME LEGEND
clustal? v ARNI QEGHILKMFPSTWYVBXZ
' ‘ ENENENEENEE B
3 sequences
ala
- TIWFPHFDL STHGS AQV GH G
TYFPHFDVSHGSARQYV G H G
SPIP13786|HBAZ_CAPH TYFPHFIDLHSGSAOQL A HG

Figure 1.7 A multiple sequence alignment (MSA). An example the output for the test amino acid
sequence supplied on the Clustalw webpage (https://www.ebi.ac.uk/jdispatcher/msa/clustalo).

However, it wasn’t until later that deep alignments were used specifically to establish
evolutionary relationships (de Juan et al,, 2013). The theory is essentially that conserved residues
can be used to highlight evolutionarily stable regions of the protein and that where sequentially
distant amino acid residues are shown to co-mutate, the likelihood is that there is a relationship
between them, based on a contact formed upon folding. By charting these co-evolutionary
mutations, it is possible to construct a contact map which can be used to guide (template) Free
Modelling (FM) predictions (Li et al., 2019), that is, modelling using energy functions and
conformational mapping rather than that relying on the availability of similar structures in the
PDB. However, creating deep MSAs can be computationally expensive, and interpreting the
coevolution data via a Potts model requires sufficient depth meaning that early methods like
PSICOV (Jones et al., 2012) and GREMLIN (Kamisetty et al., 2013) could fail for shallow
alignments. To solve this, an element of machine learning was added which was able to
distinguish between conservative (little structural effect) and non-conservative (significant
effect) mutations (Lupo et al., 2022) using fewer sequences by training on prior data. Another

of the pioneering methods linking MSA information with supervised machine learning for
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accuracy gains was MetaPSICQV (Jones et al., 2015). The use of deep learning methods for
contact prediction pushed the accuracy of contacts maps even further, a concept which was
later adapted by DeepMind with well documented success in their first version of AlphaFold
(Senior et al., 2019).

1.5.2 Machine learning

The key concepts of machine learning, the technology underpinning Artificial Intelligence (Al),
are that collections of data points are defined by distinct unitary parameters such as time,
volume or temperature, for example. At its most basic, machine learning is simply a case of
defining these parameters as either inputs or outputs and setting a computer the task of
predicting the latter from the former. Machine learning is routinely categorised into three main
types: supervised, unsupervised and reinforcement learning. Briefly, supervised learning uses
labelled data and the algorithm is asked to find the best way to associate the input parameters
with the true labels which form the output parameter. True labels are often supplied via
experimental processes, and in the case of MQA, these would be the observed quality scores
of the model that are generated by comparison with the native structure. In unsupervised
learning, the algorithm will be supplied with unlabelled data where the emphasis is on learning
how to cluster like data together, reduce the range of data to focus on important patterns or to
detect anomalous values (Parasa et al., 2021). Reinforcement learning, on the other hand, is
more focussed on decision-making in a reward-penalty paradigm with the aim of maximising
reward over penalty. Reinforcement learning is commonly associated with gaming-style

algorithms.

Of the three types, supervised learning is most often used in protein modelling scenarios as it
is suited to either classification or regression tasks (Greener et al., 2022). Classification tasks
are used if the true labels are mutually exclusive, like identifying protein sequences that
represent the distinct secondary structure conformations helix, sheet or strand, perhaps.
Regression tasks are more suited to data that are continuous in nature, like quality assessment
scores. Sometimes it is appropriate to convert continuous data into categorical data to add a
classification task to the regression task, this is usually done to allow the user to collect a single
score enabling direct comparisons between different scenarios. A common example of this is
creating binary data used to construct contingency tables from which a true positive rate (TPR)
value can be calculated or, additionally, receiver operator curves (ROC) from which an area
under the curve (AUC) value can be calculated. When using supervised learning with
continuous data, analysed as a regression task, a simple multi-layer perceptron (MLP) is the

recommended machine learning architecture (Greener et al., 2022).
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1.5.3 Support vector machines (SVMs)

Support Vector Machines (SVMs) are explained here as they are mentioned in Chapter 3 as a
machine learning class that had an initial impact on protein MQA. They are supervised
learning-based algorithms which are particularly suited to classification tasks. They work by
classifying data into two classes based on a specified feature. In order to visualise the concept,
it is useful to consider a number of points plotted on an axis with a line drawn to separate the
two distinct classes, as depicted in Figure 1.8A. In this case, the further the points are from the
dividing line the more confident we can be that they truly belong to their respective class. The
margin is a conceptual area between the dividing line and the first true point in each class, the
boundaries of which are described by the two support vectors and which is the focus of the
SVM. As more data is added to the model it is conceivable that anomalies will encroach into
the margin and some will be misclassified on the wrong side of the dividing line. An SVM wiill
then attempt to redraw the dividing line as a plane of separation by replotting the data from
one dimension to two dimensions (or higher if required) thus finding a new separating line to
minimise misclassification. This is essentially support vector regression using a hyperplane to
optimally separate the data. The power of SVMs can be used to decide where a data point fits
into a pattern, for example, whether a model agrees with the native structure or not. Powerful
computers can be used to apply hyperplanes to higher level distributions to make decisions

for thousands or millions of data points.

1.5.4 Neural network (NN) architecture and training

An artificial neural network (ANN, often abbreviated simply to NN) works on the principle of
programmed nodes and connectors with the whole arrangement often referred to as a model,
(a term avoided whenever possible in this document to minimise confusion with a protein 3D
model, instead we refer to the learned NN model as the “weights”, see below). Nodes
(representing artificial neurons) are arranged in layers and are interconnected by a series of
connectors (representing artificial synapses). A simple representation of this architecture can
be found in Figure 1.8B, along with the SVM diagram. The output from one node represents
the input to one in the next layer, this output is a number and is usually referred to as a weight.
During supervised training, a NN learns by adjusting the weights between nodes in individual
layers to minimise the difference between the final predicted value and the true label. This
difference is often termed the loss function which is usually measured by mean squared error
for regression tasks. NNs always have an input layer for the initial input values and an output
layer for the output prediction but vary by the number of hidden layers that separate them.
Additionally, NN architecture may vary by the number of nodes within each hidden layer. Deep
neural networks (DNN) such as the DeepMind network behind AlphaFold consisting of many

hidden layers and requiring considerable computational power.
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The simplest form of NN is a feed-forward network which only transmits the signal forward,
from input to output layer without feedback to previous layers. This is essentially a multi-layer
perceptron (MLP) and uses a concept called backpropagation to calculate the loss function
and thus automatically adjust the weights. In order to ensure this is done appropriately, the
first step in training is to set the network hyperparameters. If using a package like the Stuttgart
Neural Network Simulator (SNNS), many of the more complicated parameters are controlled
automatically. However, it is still necessary to set the number of neurons in each layer, the
number of layers, the learning rate (which defines the step size for the weight updates that
occur with each iteration), the maximum difference between prediction and true label consid-
ered an error (Max Diff) and the maximum number of iterations that the optimisation algorithm
allows during training (Max It). This can be accomplished by calculating the maximum perfor-
mance from a number of test runs with varied hyperparameter settings. The point of this is to
avoid overfitting and underfitting. Overfitting is where the MLP is essentially too powerful for
the data presented to it and will proceed to learn the dataset rather than the relationships
within, leading to perfect performance on the training data but poor performance on testing
data. Underfitting is the opposite, where the MLP fails to learn the relationships and performs
poorly on all data. This is explained more comprehensively in Chapter 3 (3.3.5).

The next step is the training of the MLP itself. To avoid overfitting, one commonly used strategy
is called N-fold cross-validation. In this technique, data are split into training and testing
datasets so that the data used for predicting (testing dataset) are separate from the training
dataset. In this way the true labels for the testing dataset are never seen by the MLP. N-part
cross-validation results in the dataset being split into N parts, the MPL will train on N -1 parts
and predict on the remaining part of the dataset. Often, N versions of the MLP are created so

that every part of the dataset is equally used for both training and testing.
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Figure 1.8 Representations of two types of machine learning (ML). A. A representation of an SVM
showing the hyperplane and two support vectors. B. The architecture of a simple feed forward MLP
with one input, one hidden and one output layer.
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1.5.5 AlphaFold2 (AF2) and new levels of accuracy in CASP14

At CASP14 (2020) Google DeepMind submitted tertiary structure models using their new
method AlphaFold2 (AF2), which represented a significant improvement in tertiary structure
model quality. In fact, the high accuracy they achieved in the FM (no templates available) and
FM-TBM (limited templates available) classes (Kryshtafovych et al., 2019) has been described
as “atomic level” (Yang et al., 2023) with median GDT_TS (see Appendix 1 for the definition)
scores of 87.0 and 92.4 respectively (Jumper et al., 2021a) (scores >75 are considered to have
mostly correct atomic coordinates (Kryshtafovych et al., 2019)). These were impressive figures
when contextualised against the previous experiment (CASP13 in 2018) where the FM

average GDT_TS score for the highest scoring group was 61.4 (Senior et al., 2019).

AlphaFold2 achieved this impressive jump in performance with the unique union of two key
ideas. The first was a deep multiple sequence alignment (MSA) which was made accessible
by clustering, where similar sequences are clustered together and a single representative of
each cluster is submitted for consideration. This technique reduced the computational
resources required to detect evolutionary relationships between amino acids and also added.
AF2 also constructed detailed pair representations in the form of residue pair relationships like
type, position and distance measures. This information was combined with that from the MSA
and used to create a “distogram” (Li, 2022) from which the basis for a residue contact map of
the target protein could be formed. The second was a deep neural network (DNN), or more
correctly, a pair of DNNs (Jumper et al., 2021b) running on Google DeepMind’s powerful
servers. The attention-based transformer (Evoformer) was used to interpret the MSA and
distogram information (Lupo et al., 2022) into contacts and then a graph representation of a
starting model, with information then passed to the Structure Module to construct a final real-
world structure from the starting model by applying protein modelling constraints such as
torsion angles and side-chain preferences as which were obtained using a set of residue
triangulation calculations . DeepMind also programmed a feedback or recycle pathway into the
algorithm, allowing AlphaFold2 to repeatedly pass information about the newly forming model
created by the Structure Module back to Evoformer for further evaluation. This clever idea
allowed a shuttling of information backwards and forwards between the modules allowing the
DNNs to reinterpret results and adjust structures accordingly. This resulted in high-accuracy
modelling being achievable for FM structures for the first time, a term previously only
associated with TBM modelling when closely related homologs were available as templates.
Moreover, these models required CASP assessors to develop a new high-accuracy score
(DipDiff) to assess whether differences in GDT scores were due to model or native structure

deficiencies, the models were also shown to be accurate enough for use in molecular

23



Chapter 1

replacement techniques (Pereira et al., 2021). However, one crucial question is whether

AlphaFold2 would ever be able to predict novel structures, considering its reliance on MSA's.

1.5.6 AF2-Multimer

When DeepMind released AF2 as a Jupyter notebook on Google’s Co-laboratory platform
(Colab) in July 2021, following their GitHub code release a few days earlier, there were a
number of attempts by developers to adapt the technology to model multimeric proteins.
Developers were encouraged by realistic-looking interfaces in CASP14 AF2 models of
monomeric structures, which were known to form quaternary interactions (Egbert et al., 2021).
Two popular techniques were to either add an amino acid linker (usually Glycine due to its
potential flexibility) between dimer chains to simulate a dual domain tertiary structure (Ghani
et al., 2022) or to add a 32 amino acid long gap between the individual chains. The latter
technique exploited some programming within the AF2 code which allowed a maximum 32
residue gap between relative amino acid positions meaning that an offset greater than this
forced AF2 to treat the amino acid indexes as separate chains (Mirdita et al., 2022). Some
success was seen with both of these techniques (Gao et al., 2022) before a new version of
AF2 called AlphaFold-Multimer (AFM) was released in late 2021. In the paper describing the
release of this updated method (Evans et al., 2022), it was confirmed that this version had
been retrained on multimeric data and that superior performance had been achieved over the
AF2 linker method. The results showed that 67% of heteromeric models in a 4433-model test
dataset were scored as acceptable, with a DockQ score (Basu and Wallner, 2016a) of 0.23 or
greater, 23% of which achieved higher accuracy defined as DockQ scores reaching the 0.8
threshold (see Section 3.1.3 for a full description of DockQ). The results were similar for
homomeric targets with 69% of models 20.23 of which 31% were 20.8. Although there were
no comparisons for the AF2 linker method using this dataset, comparative performance using
a template-restricted dataset of 17 heterodimers was included. AFM achieved good models
(DockQ =0.49) for 14 models, 6 of which met the =0.8 high-quality threshold compared to 9
(20.49) and 4 =0.8 for the AF2 linker method. While AFM achieved better results than the linker
method it was not clear if this was consistent throughout both heteromer and homomer
populations. What was clear from these results was that AlphaFold Multimer was not able to
replicate the outstanding quality that AF2 had achieved for tertiary structures at CASP14 which
may, to some extent, reflect the lower total number and variety of complexes available to make
up datasets for training quaternary structure methods. Consequently, some structural models
in existing datasets were originally generated by protein docking methods whose quality is

lower than state of the art tertiary structure predictors (Chen et al., 2023).
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1.5.7 Other MSA-NN methods, RoseTTAFold and ColabFold

RoseTTAFold (RF) (Baek et al., 2021) is a tertiary structure prediction method from the Baker
laboratory which was inspired by the AF2 success at CASP14 and represented an evolution
of their trRosetta method which used a neural network to predict inter-residue geometries and
use them as modelling restraints in their popular Rosetta algorithm (hence “tr” for transform
restrained) (Yang et al., 2020). RF went a step further than trRosetta, using a three-track neural
network to assess sequence data (1-D), a 2-D distance matrix and also the 3-D atomic
coordinates. The method achieved similar but slightly lower performance to AF2 (Baek et al.,
2021) but was able to run on a modest server, although this could incur a time penalty. This
method treats the MSA differently by using distinct aspects to represent different parts of the
protein structure, rather like the 3D-shotgun method which focussed on different structural
aspects at the scoring stage (Fischer, 2003). The consequence of this was that RF was able
to model both mono and multimeric proteins, as whole MSAs did not necessarily need to
equate to each single chain entity, thus, not only was multimeric modelling possible, an element
of flexible backbone modelling was introduced in which chains are built in a complementary
fashion rather than via single chain construction and docking, which is essentially the AFM
way. For the initial iteration of RF there was a small quality gap between its models and AF2
models, however RF2 was redesigned to include a number of AF2 features and closed the
quality gap to almost zero, with RF2 actually out-performing AFM on CASP14 target structures
(Baek et al.,, 2023). This study also suggested that RF2 was now outperforming AF2 on

computing time, particularly noticeable for longer structures.

ColabFold (Mirdita et al., 2022) is a reimplementation of the AF2 and RF algorithms which also
runs on the Google Colab platform. It was developed by a consortium from Harvard university
with the intention of making MSA-NN based modelling technology readily available to the wider
community. The major difference between ColabFold and AF2 is that the former reduces large-
scale database searches and therefore saves computing memory and runtimes by replacing
JackHMMER (Johnson et al., 2010) and HHblits (Remmert et al., 2012) used by AF2 with the
fast homology search algorithm MMseqgs2 (Steinegger and Soding, 2017). This resulted in an
estimated 40-60-fold faster search speed thus optimising MSA construction time. Rather than
using the extensive databases used by AF2 (Uniref90 (Suzek et al., 2015), Uniclust30 (Mirdita
et al., 2017), MGnify (Mitchell et al., 2020) and BFD (Jumper et al., 2021b)), MMSeqs2
searches the sequence identity-clustered UniRef30 (30% identity) database, the results of
which are used to search a merged and clustered version of the BFD/MGnify databases which
is also filtered to keep the 10 most diverse sequences in each cluster. The result is a user-
friendly community resource described as achieving very similar results to the full AF2

installation in most cases (Mirdita et al., 2022).
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1.5.8 The potential downsides of MSA-NN modelling

The depth of an MSA is important, it's widely held that less than 30 hits leads to reduced
accuracy (Jumper et al., 2021b), although the quality of the alignments will also be a factor.
This becomes important when proteins with no previously solved homologues or those
underrepresented in the various databases are modelled. Training for all Al systems centres
on the structures in the PDB, it is known that experimental structures represent only snapshots
of many potential protein conformations and also are a product of their experimental
preparation methods (like crystallisation), which may not represent cellular conditions. These
issues introduce a margin of error into PDB structures, which is likely to be repeated by
predictive Al methods. Larger assemblies tend to cause particular problems with either amino
acid number exceeding system limits or multiple chains extending GPU memory use beyond
capacity. This was seen during CASP15, where many of the larger complexes (>2000-3000
total residues) required additional human input (Ozden et al., 2023). Lastly, the NN modelling
processes that the methods use do not appear to be shedding any light on folding pathways
or the underlying mechanism linking primary structure to tertiary or quaternary structure
(Outeiral et al., 2022).

1.6 Model quality assessment (MQA) — the philosophy and intention

The increase in accuracy attained by AlphaFold at CASP14 was only quantifiable due to the
existence of model quality assessment programs. In this case model quality was assessed
absolutely, that is by reference to experimentally determined structures which were deemed
of sufficient resolution (<2A (Kryshtafovych and Fidelis, 2009)) to act as a proxy for the native
conformation. Scores obtained by this method are referred to as observed quality scores and
are deemed to be accurate in describing the model in terms of its similarity to the native struc-
ture. However, there are still two potential sources of error, even with observed scores. Firstly,
is the question of how accurate the experimental structure is, in terms of resolution but also in
terms of how representative the crystalline (or other) image is of the native biological confor-
mation. As the saying attributed to George Box goes, “All models are wrong, some are prom-
ising” and there may be known flexibility in the native protein, which would render any snapshot
as unrepresentative or conformational anomalies in the experimental structure that are attribut-
able to crystal packing artefacts, for example. Secondly, is the question of what the MQA pro-
gram actually measures and whether it is sufficient for the model to be proclaimed accurate.
The former point is one of philosophy concerning the acceptance of experimental structures
as the ground truth and will be difficult to resolve until developing experimental technologies
like TR-EM and Cryo-ET allow true native conformations to be sampled or indeed developing
computational methods like RoseTTAFold diffusion (Watson et al., 2023) or hybrid AF2-NMR

methods (Ma et al., 2023) allow modelling which is independent of crystal structures. Advances
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on this scale would represent a further step change in protein modelling accuracy and appear,
as yet some way distant. However, the latter point relating to which aspect of the model to
measure has been one that the protein modelling community has been striving to resolve since

MQA methods were conceived.

The intention of observed MQA is many fold; to allow the objective assessment of models for
purposes of ranking to find the most representative model from a decoy group; to allow fair
comparisons between models from different sources; to benchmark the accuracy of modelling
techniques in general and to allow an objective assessment of the usefulness of models or
local parts of models for applied research as briefly described in Section 1.2. From the earliest
CASP competitions, observed MQA has been effected using a variety of quality measures with
the aim of providing a balanced overview of quality. These measures were mostly based on
the superposition scores root mean square deviation (RMSD) and the Global Distance Test
(GDT) with the template modelling score (TM-score) (Zhang and Skolnick, 2005) as well as
the superposition free local distance difference test (IDDT) (Mariani et al., 2013) being intro-
duced later. The exact definition of different scores is important and detailed descriptions of
these and other scores are included in Chapter 3, Section 3.1.2 and also in Appendix 1. In an
attempt to give a balanced assessment of model quality, CASP assessors have routinely used
an assessor’s formula to combine individual scores, for example, the CASP11 assessors for-
mula combined two GDT-based scores with IDDT, SG (sphere grinder score, (Kryshtafovych
et al., 2014)) and a weighted contribution of the stereochemical-based score MolProbity (Chen
et al., 2010) to give a final ranking score for submitted models. In order to visualise how differ-
ent scores differently represent the models, one superposition score (TM-score) and one su-

perposition-free score (IDDT) are described below.

The TM-score is based on the TM-align (Zhang and Skolnick, 2005) algorithm, which is a
pairwise alignment of Ca atoms in the protein chain backbone. It works via a number of iterative
alignments, starting with a secondary structure alignment based on the dictionary of secondary
structure of proteins DSSP (Kabsch and Sander, 1983) distance definitions, followed by a
gapless and then a gapped threading algorithm to complete the initial alignment. The structure
is then subject to a number of rotational and scoring rounds until no further improvement in
alignment score is achieved. The TM-score is calculated as the distance between residue pairs
normalised by a factored chain length value which means that the score is not length
dependent. The local Distance Difference Test (IDDT) is designed to be super-position-
independent and is calculated as the fraction of contacts between atoms of different residues
present in the model that are also present in the reference structure. For example, if a contact

exists between atoms of residue A and B in the reference structure and is also evident in the
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model (regardless of any difference in the actual orientation) the contact is said to be
conserved as shown in Figure 1.9B where the greyed structure represents an alternative
formation in which the contact is still present. The global IDDT score is a mean of all residue-

level scores.

Figure 1.9 Two contrasting methods of scoring. A. The superposition alignment by TM-align on which
TM-score is based, where scoring relies on the closeness of the alignment. B. The superposition-free
distance score IDDT showing that the lower domain will score equally whether it occupies the coloured
position (lower left) or the greyed position (lower right) with respect to the upper domain. (TM-align
image adapted from the example page at https://seq2fun.dcmb.med.umich.edu//TM-align/example/,
IDDT image adapted from (Mariani et al., 2013)).

For a protein with well modelled domains but incorrect inter-domain orientation, for example,
scoring by TM-score may heavily penalise the model on the basis of misalignment, whereas
the IDDT score could remain consistent regardless of differences in the orientations of the
domains. The best score would depend on whether the overall shape or the local domain was
considered more important. Again see, Chapter 3, Section 3.1.2 for details of the score

calculations.

The Critical Assessment of PRedicted Interactions (CAPRI) group (Janin et al., 2003), a similar
competition to CASP but focussed on PPl and protein quaternary structure, uses a similar
approach of multiple quality indicators but limits them to three scores called Fnat, LRMS and
iRMS. Fnat is defined as the fraction of native interface contacts observed in the model, LRMS
is the root mean square deviation (RMSD) of the chain denoted the ligand (smaller chain of a
complex) after superposition of the larger chain and iRMS is the RMSD between interface
residues seen in the native structure compared to the model (again this definition is included
in Chapter 3, Section 3.1.2).

In this way the protein modelling community has used the observed scores from successive

CASP and CAPRI competitions, as well as the on-going server competition CAMEO (Contin-
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uous Automated Model EvaluatiOn) (Haas et al., 2018) to benchmark the quality of their mod-
els, assess new modelling technology and drive the improvement in modelling that has taken

place since 1994.

1.6.1 Predicting model quality and MQAPs

Rating and benchmarking the quality of models against experimental structures is a valuable
exercise, but if computational modelling is to truly fill the sequence-structure gap and create
reliable models of proteins with no experimentally solved homologues, MQAPs must be able
to predict a model’s accuracy equally reliably without a reference structure. This is the problem
that the CASP blind estimation of model accuracy (EMA) competition has been attempting to
address since 2006 (CASP7) (Kwon et al., 2021).

There is an important difference between MQAPs and quality assessment scores; MQAPs are
programs developed to predict model quality using one or many individual quality assessment
scores. MQAPs can be categorised in a number of ways; one popular method is by the number
of models they require in order to formulate an accurate score. Thus, MQAPSs can be separated
into single-model and consensus or clustering methods. Single-model methods use molecular
scoring functions which they apply to each model individually, making them suitable for scoring
one or only a few models. Some use physiochemical features, often referred to simply as
physics-based methods such as Ramachandran torsion angle constraints, bond lengths, envi-
ronment compatibility (hydrophobicity or solvent accessibility) or structural features (such as
secondary structure compatibility), to determine a model’s conformity to expected values. Oth-
ers, such as VoroMQA (Olechnovic and Venclovas, 2014) rely on a single structural feature,
in this case the distance between Voronoi cells defined using van der Waals radii. Consensus
or clustering methods tend to focus on pairwise distance comparisons and often employ a mix
of proprietary and established quality scores from which a consensus is calculated. The algo-
rithms usually measure distances between residue pairs and compare them on an all against
all basis. The results are then clustered by distance similarities and the best models are scored
on the basis that recurrent patterns are likely to be more like native proteins than random
occurrences (Kryshtafovych and Fidelis, 2009). Although these methods have been described
as performing better than single-model methods (Pages et al., 2019), their efficacy relies on
the model population size and quality, with accuracy decreasing with fewer or less diverse
models. Notable proponents of this method have been Pcons (Lundstrém et al., 2001) and
ModFOLD (McGuffin et al., 2021) and, despite their success, one long-standing problem has
been finding the optimal weighting and combination of quality measures to create a repre-
sentative consensus score (Kryshtafovych and Fidelis, 2009). Two adaptations of the cluster-

ing category are the quasi single-model and hybrid methods. Quasi single-model methods are
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designed to retain the accuracy of clustering methods while allowing both multiple and single-
model inputs. They do this by creating their own set of reference models to act as a set of
comparators (McGuffin et al., 2013) and work well as long as the decoy set are diverse enough
to allow differentiation. Hybrid methods are consensus methods combining a range of individ-
ual approaches such as clustering, single-model, traditional stereochemical measurements or
ML, with the aim of creating a consensus score which is more accurate than any of the indi-

vidual contributing scores (Chen and Siu, 2020).

One alternative method of MQAP classification is whether local (residue level) scores are out-
put in addition to the global score relating to the whole model (Chen and Siu, 2020). This
distinction became increasingly relevant with the rise of modelling by contact prediction meth-
ods from around 2010. These methods were shown to have plateaued at only 20% precision
(FM modelling) up to CASP11 (2014), but increased to 40% in CASP12 and again to 70% by
CASP13 (Kryshtafovych et al., 2019). The authors attributed the initial increase in success to
better interpretation of transitivity (linking two proteins not previously considered homologous
via a shared intermediate (Bolten et al., 2001)) shown by the MSA, while the second increase
was attributed to the rise of ML techniques, particularly deep neural networks (DNN). This, shift
in focus was largely responsible for the increase in popularity of observed quality assessment
by IDDT, which is sensitive to distances in the local environment. As single-model predictive
MQA methods were considered to estimate IDDT more reliably than clustering methods (Kwon
et al., 2021), an increase in single-model methods was also seen at this time, demonstrating
how different scores and methods vary with prevailing modelling technology. Latterly, with the
advent of AF2, the IDDT score and TM-score have both seen renewed popularity to comple-
ment AF2’s predicted quality measures, pIDDT and pTM.

1.6.2 MQA for multimeric proteins

An important and continuing problem for accurate multimer modelling remains reliable MQA to
rank and select the highest quality predicted models (Kinch et al., 2021). This statement refers
to the lack of reliable independent predictive quaternary structure MQAPs prior to CASP15,
with the possible exception of the ProQDock program (Basu and Wallner, 2016b) and Voro-
MQA, the latter designed for tertiary structures but able to assess multimers (a more compre-
hensive history of early multimeric MQA is given in Chapter 3, Section 3.1.1). In 2020, however,
there was a gradual change in focus from tertiary structure to quaternary structure MQA, fol-
lowing the success of AF2 at CASP14 prompting some groups to declare that the tertiary struc-
ture prediction problem was essentially solved (Kwon et al., 2021). At this time, and continuing
the trend favouring single-model methods, Han et al offered a classification of MQAPSs as either

physical energy, statistical potential or machine learning (ML) based (Han et al., 2021). In

30



Chapter 1

Han’s definition, traditional distance-based and physical energy methods were essentially con-
signed to the past along with Boltzmann statistical-potential methods, which had suffered is-
sues with defining a hypothetical reference state to compare observed frequencies (Rykunov
and Fiser, 2010)). In place of these and other multi-model methods Han et al. argued in favour
of graph-based neural network (GNN) technology. Indeed single-model GNN based methods
featured highly at CASP15 where both VorolF-GNN (Olechnovic and Venclovas, 2023), an
updated version of the Voronoi tessellation program VoroMQA and GuijunLab-RocketX (Liu et
al., 2023), using the latest version of DeepUMQA (Guo et al., 2022) an Ultrafast Shape Recog-
nition-based system, both used the technology to predict local residue contacts well (Studer et
al., 2023). Two other notable deep learning methods used deep neural networks to understand
PPI interfaces rather than GNNs. These were DeepRank (Renaud et al., 2021) and MULTI-
COM_ga (Cheng et al., 2023) and, whereas DeepRank did not feature at CASP15, MULTI-
COM_ga used a hybrid pairwise similarity method linked to interface deep learning to rank first

in the CASP15 global score category.

As mentioned in Section 1.5.6, the structural models in many existing datasets used for training
quaternary structure methods were generated by protein docking methods whose quality is
lower than state of the art tertiary structure predictors, for example (Chen et al., 2023) and
training deep learning MQA methods on these datasets could lead to lower accuracy on with
higher quality structures. The McGuffin group were consequently somewhat circumspect about
the wisdom of relying on deep learning exclusively, favouring the view that it is not possible to
describe the quality of a protein or protein complex model by a single measure (Kwon et al.,
2021). Therefore, the ModFOLDdock methods were designed to increase prediction accuracy
by using a combination of individual established and bespoke algorithms. This approach fo-
cussed on the all-important weighting of a calculated consensus score from a range of single-
model and clustering methods as well as an element of deep-learning input (Edmunds et al.,
2023). The relative success of this approach at CASP15, compared to the other methods de-

scribed in this section is covered in detail in Chapter 4.

1.7 Original hypothesis and project objectives

This project has evolved over the five or so years since its beginning in late 2018, however the
fundamental philosophy, aims and principles underpinning it remain largely unaltered. The
philosophy has been that the whole is greater than the sum of its parts, meaning that optimal
combinations of methodologies of proven quality are likely to be significantly better than any
single method. The overall aim has always been to create easy-to-use pipelines for modelling
and quality assessment, bringing together state-of-the-art technologies in publicly available

servers, which provide better performance than any single constituent method. The principles
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governing this aim have been to survey and critically analyse the available technology and to

use blind competition benchmarking to objectively assess performance progress.

In 2018 a gap in the protein multimer modelling landscape was identified - there were few
publicly available multimer or quaternary structure modelling methods, which didn’t require the
installation of specialist docking software. There were even fewer independent multimer model
quality assessment programs (see Chapter 3 for fuller account of the multimer modelling
landscape). Therefore, in accordance with the above, the specific aims of the project became:
1. To investigate methods for the improvement of MultiFOLD, an unpublished multimer
modelling pipeline to include, but not limited to, the concept of refinement to reduce atomic

overlap and clashes and thus improve interface quality.

2. To analyse the performance of and optimise ModFOLDdock MQA scoring routines in order

to close the gap between predicted and observed score accuracy.

It was reasoned that observed scores could be used to continually assess improvements in
both MultiFOLD model quality and ModFOLDdock predicted score accuracy between blind

benchmarking experiments.

The radical improvement in modelling accuracy achieved by AlphaFold2 at CASP14 in 2020
represented a new benchmark for state-of-art tertiary structure modelling. It was not clear,
however, whether this accuracy level could be reproduced for multimeric proteins. Although
the fundamental aims of the project did not change, new tools such as ColabFold were now
available with which to achieve them, although the baseline for modelling accuracy and
predicted quality assessment had now increased substantially. During the long process of
experimental modelling that ensued it was noticed that multimer modelling using AFM was less
accurate than that achieved for tertiary modelling with AF2. In addition, it was noticed that the
AFM accuracy self-estimates (ASEs) were similarly inaccurate in some cases (see Chapter 5
for both). To address these continued accuracy gaps the aims of the project were extended
and now became:

1. To investigate methods to improve MultiFOLD to include the concept of refinement to
produce a measurable improvement over baseline modelling using AFM alone.

2. To optimise ModFOLDdock MQA scoring routines in order to close the gap between
predicted and observed score accuracy and also beyond the accuracy of AFM pIDDT and pTM

Scores.
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CHAPTER 2

MultiFOLD: Improvement of protein tertiary and quaternary structure modelling

using the AlphaFold2 recycling process
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Work presented in this chapter has been published in the following paper:

Improvement of protein tertiary and quaternary structure predictions using the ReFOLD
refinement method and the AlphaFold2 recycling process. Adiyaman R., Edmunds N S.,
Genc A G., Alharbi S M A., & McGuffin L J. Bioinformatics Advances, Volume 3, Issue 1, 2023.

Individual author contributions are as follows.

Adiyaman R: ReFOLD4 refinement.

Edmunds N S: AlphaFold2 recycling proof of concept work using tertiary structures.
Genc AG: Extension of AlphaFold2 recycling to quaternary structures.

Alharbi S M A: Rendering of images in PyMOL.

McGuffin L J: Overview and guidance from conception to publication.

Cited as (Adiyaman et al., 2023) in the text.
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2.1 Background and historical context

This chapter describes the development of MultiFOLD from a hybrid-docking pipeline to an Al-
based tool incorporating scoring of multiple alternative models followed by a recycling-
refinement routine designed to improve model quality beyond levels attainable by AlphaFold2

alone.

As recently as early 2020, template-based modelling (TBM) and rigid grid-based docking
methods remained the mainstay of multimer modelling pipelines. These had been in existence
since at least 2004 (Pierce et al., 2014) and much of the intervening research had been
concerned with the use of so-called data-driven approaches. TBM methods had shifted focus
from early methods which considered lower resolution techniques like SAXs or cryo-EM to
provide clues to the overall shape and structure of target multimeric proteins (van Dijk et al.,
2005) towards interface prediction methods (Xue et al., 2015). These included use of fragment
libraries such as Swiss-Model (Waterhouse et al., 2018) and interface libraries like ProtCID
(Xu and Dunbrack, 2020) intended to improve TBM accuracy and guide interface identification
for docking routines. At this time the MultiFOLD pipeline was described as a hybrid-docking
modelling tool incorporating both TBM and docking technology (McGuffin et al., 2020),
although it was necessary to run each process individually and manually collate results to form

a single model population.

2.1.1 The early MultiFOLD pipeline used for CASP13 (2018)

The McGuffin group’s method for the creation, scoring and ranking of quaternary structure
models can be simplified into four phases; template identification, tertiary structure modelling,
oligomeric modelling and quality assessment (McGuffin et al., 2018). In order to maximise the
number of tertiary models feeding into the oligomeric pipeline, a dual input approach was used
by pooling CASP server models with our own IntFOLD (McGuffin et al., 2019) tertiary structure
models. The CASP13 MultiFOLD modelling pipeline is summarised in Figure 2.1.

IntFOLD TBM Oligomeric
templates R
modelling \
Assembly MQA with Sl e
models ModFOLDdock  —P>, models
Stage 1 &/or Docking based /

Stage 2 modelling
models

Figure 2.1. An overview of the MultiFOLD CASP13 oligomeric modelling process. This shows how
the templates identified by IntFOLD, and both the IntFOLD and CASP server tertiary models (highlighted
in green), fed into the TBM and docking pipelines.

Stage 1 models were created from sequence via a two-step process using the IntFOLD server

and this was followed by model ranking and selection rounds. In the initial step, tertiary
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templates were identified using six individual fold-recognition programs and the 8 threading
programs in the LOMETS package (Wu and Zhang, 2007) before being quality assessed with
ModFOLDclust2 (McGuffin and Roche, 2010). In the second step, an initial model was built
from the two top-ranked templates which was iteratively compared to models built using all
other templates. The best model was then selected on amino acid coverage and the process
was performed twice more with a second ModFOLDclust2 scoring round. Stage 2 models
underwent an additional refinement and re-ranking step in which I-TASSER (Yang and Zhang,
2015) and HHpred (Soding et al., 2005) were used to build three separate models each. These
were added to the group of models and fed into a loop of molecular dynamics based refinement
by ReFOLD (Shuid et al., 2017) and ranking by ModFOLD7_rank. The final top ranked tertiary
model (or models for heteromers), along with the list of IntFOLD templates was then input into

the oligomeric modelling process.

Generate multimeric

Templates fold templates with Perform docking
found? IntFOLD modelling

TBM route Docking \
Templates filtered by data
from PISA Build models using FRODOCK,

MEGADOCK, PatchDock and
ZDOCK for dimers (M-ZDOCK and
No Multi-LzerD for multimers).

/

Visually inspect and pool

Super-position templates onto Model scoring and ranking models from docking programs.

PISA assemblies with TM-align using ModFOLDdock MQA
program.

Multimer
stable?

Final inspection and model selection

Figure 2.2. A flowchart showing the oligomeric TBM and docking routes within the CASP13
MultiFOLD pipeline. Decision points in the Docking and TBM pipelines are represented by rectangles
in Figure 2.1. Docking was always performed but TBM may not have always produced suitable
templates.

As shown in Figure 2.2, the PDBe PISA database (Krissinel, 2010) was referenced to validate
the templates for the TBM process. For each template verified as stable, quaternary structure
models were built by alignment using TM-align (Zhang and Skolnick, 2005) using the top
tertiary structures identified earlier in the process. In the complementary docking process, the
same tertiary structures were submitted to a range of established docking programs,
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increasing the number and variety of oligomeric models available. These were, ZDOCK (Pierce
et al., 2014), MEGADOCK (Masahito Ohue et al., 2014), FRODOCK (Garzon et al., 2009),
PatchDock (Schneidman-Duhovny et al., 2005) and LZerD (Venkatraman et al., 2009) for
dimers and M-ZDOCK and Multi-LZerD for multimers. The top docking models (determined
upon visual inspection) and the TBM models were then pooled into one population which was
then scored and ranked using an earlier version of ModFOLDdock. Top ranked models were
visually inspected in PyMOL (Schrédinger, 2018) for obvious clashes or alignment errors prior

to submission.

2.1.2 Overall performance at CASP13

Since 2014 (CASP11) the competition has included a quaternary structure or assembly
category. CASP13 included 42 assembly targets comprising 30 homomers (18 dimers, 9
trimers, 1 tetramer, 1 hexamer and 1 octamer) along with 12 heteromers. CASP13 ran from
April to August 2018 and native structures and scores were revealed during the conference in
December 2018 (https://predictioncenter.org/caspl13/index.cqi).

CASP group rankings are based on a calculated overall Z-Score which is a combination of Z-
scores for four CASP measures; F1 (interface contact score, ICS), Jaccard (interface patch
score, IPS), IDDT-oligo and GDT_TS (definitions of scores can be found in Appendix 1). Z-
scores are based on the standard deviation (SD) from the mean and in a model population the
Z-score is calculated as:
Z = x-u
(o}

Where Z is the standardised Z-score, x is the observed value (in this case the model score), i
is the mean value (mean score for the sample of models being considered) and o represents
the standard deviation (SD) for the sample. Therefore, the Z-score is a measure of distance
from the mean in SD units where 0 represents the mean value while 2 would represent a model
in the outer 5% of the distribution (assuming the rule for normal distribution where 1 SD
accounts for 68% and 2 SD, 95% of results).

CASP reduce Z-score bias by first, only including Z-scores > 0.0. A higher Z-score therefore
always means a better than average model. Secondly, rankings are calculated for both
summed and averaged Z-scores as not all groups submit models for all targets. Whereas a
summed Z-score potentially favours groups submitting models for more targets, average Z-
score may disadvantage groups who attempt a greater number of difficult targets. The final
rankings are given in terms of summed Z-score. Figure 2.3, below, displays summed Z-score

results calculated for CASP13 assembly modelling.
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The McGuffin group submitted models for homomeric complexes only and Table 2.1 shows
that the group was ranked between 12" and 16" depending on Z-score calculation, the only
exception occurring for Hard targets where the group was ranked 6™ by Average Z-score,
although it must be noted that models were submitted for only 4 out of the 13 hard targets.
Overall, the group was placed 14" by summed Z-score as shown in the final ranking plot in
Figure 2.3. See Appendix 2 for definitions of CASP difficulty categories and a list of individual
targets and scores for models submitted at CASP13.

Table 2.1. McGuffin group multimeric modelling Z-scores by CASP13 target difficulty. Highlighted

scores show the best ranking achieved by the McGuffin group per difficulty rating. “Max. score” is the
maximum score attained by any group in the competition.

Target Difficulty Measure Score | Rank | Max score

Sum Z-score (>0.0) 1.25 14 10.77

Easy
Average Z-score (>0.0) | 0.12 | 16 0.89
Sum Z-score (>0.0) 2.93 11 12.95

Medium

Average Z-score (>0.0)| 0.20 | 15 1.05
Sum Z-score (>0.0) 1.85 | 12 12.23

Hard
Average Z-score (>0.0) | 0.47 6 0.96
Sum Z-score (>0.0) | 6.03 | 14 35.97

All

Average Z-score (>0.0) | 0.20 | 16 0.86
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Figure 2.3. CASP13 final group rankings by summed Z-score for assembly modelling. The
McGuffin group is G460 and the horizontal arrow shows the Z-score achieved in comparison to other
groups. (Image taken from https://predictioncenter.org/casp13/ zscores_multimer.cgi). Group identities
above McGuffin are (from 15t): 366:Venclovas, 068:Seok, 086:Baker, 344:Kiharalab, 329:D-Haven,
192:Elofsson, 163:Bates-BMM, 135:SBROD, 470:Seok-assembly(S), 196:Grudinin, 432:Seok-native-
assembly(S), 004:YA SARA, 208:KIAS-Gdansk. (S=server group)
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2.1.3 Analysis of CASP13 performance

Closer analysis revealed that the performance of both MultiFOLD modelling and
ModFOLDdock model selection were variable. Figure 2.4 shows ModFOLDdock predicted and
observed scores side by side for each target. Consensus6 scores are an unweighted mean of
all six ModFOLDdock predicted scores, observed scores are an unweighted mean of five

observed scores (see Section 3.1.3) calculated with reference to native structures.

Consensus6 and Observed mean score per Target
Consensus6 and Observed mean score scatter

Blue=Consensus6, Black=Observed mean
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Figure 2.4. MultiFOLD CASP13 multimeric modelling performance as determined by predicted
ModFOLDdock “Consensus6” score versus an observed mean score calculated retrospectively
with reference to native structures. Left. A bar plot of ModFOLDdock Consensus6 (coloured light
blue) versus mean observed scores (coloured black). Right. The same data as a scatter plot.
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The first observation from both plots in Figure 2.4 is that the predicted and observed scores
were generally below 0.5, suggesting a potential for improvement in many models. Any
suggestion, however, that the predicted scores were good measures of the observed scores
is dispelled by the magnitude differences between the bars representing the two scores in the
left-hand bar plot as well as the clustering of most of the scores above the equivalence line in
the right-hand scatter plot. Table 2.2 shows a more formal comparison of the results using a
Wilcoxon signed rank test. This provides good evidence that the predicted scores were
significantly greater than the equivalent observed scores.

Table 2.2. Wilcoxon signed rank test values for ModFOLDdock predicted versus calculated

observed scores for MultiFOLD CASP13 multimer models. Significance is calculated at the 95%
confidence level meaning P-values <0.05 are considered significant.

Scores compared Independence and distribution symmetry | p-value
Predicted and observed Paired; 2-sided test 4.37x10%
Predicted and observed Paired; 1-sided test, predicted > observed | 2.18x10%°
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There are two notable examples which also serve to highlight the differences between
predicted and observed scores. The model for T1016 was underpredicted with a consensus
score of 0.458 but achieved a mean observed score of 0.667. CASP official scores of 76.73,
0.689 and 0.693 for GDT_TS, IDDT and QS-score respectively all agreed that the model was

underpredicted.

Figure 2.5. A comparative illustration of two models for CASP13 target T1016. A. The under-
predicted MultiFOLD model. B. The equivalent CASP13 native structure. Models coloured by chain.

The model for T0O995, by contrast, was scored highly at the prediction stage (0.733) but turned
out to suffer problems with global orientation and interface accuracy. These were confirmed
by an observed score of 0.225 and low CASP scores of 10.40 for GDT TS and 0.018 for QS-

score.

A

Figure 2.6. A comparative illustration of models for the CASP13 homomeric target T0995
(categorised as A8). A. The MultiFOLD model. B. The CASP native structure showing 8 monomers as
part of the cyclic homo-18-mer Cyanide dihydratase from Bacillus pumilus C1 variant (PDB 8C5I).

2.1.4 Overview of CASP13 performance

Figure 2.4, along with the above two examples shown in Figures 2.5 and 2.6, highlight
inconsistencies in ModFOLDdock predicted scoring leading to inaccurate model ranking. This
resulted in variable discernment between good and poorer models making it difficult to select

the best model from the range of decoys. In addition to the models highlighted, there were also
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a number of cases where a significantly better model (defined as having an observed score
>0.1 compared with the submitted model) existed in the decoy population but it was not

selected.

In terms of modelling, the results also show that MultiFOLD models tend to be rated more
highly with the position independent IDDT score with an average of 0.501 (see Appendix 3 for
supporting data) than with the interface implicit QS-score with an average of only 0.053. This
suggests that the tertiary structure models constructed by IntFOLD and fed into MultiFOLD
were of generally good quality, but that the TBM and docking oligomeric modelling procedures
were either failing to orientate these correctly in the multimeric model or failing to produce a
sufficiently accurate interface. Both of these problems are typical of rigid-body systems where
monomer construction and docking or alignment are performed in separate steps. Further

examples of CASP13 models compared to their native structure can be found in Appendix 4.

2.1.5 An exploratory investigation into quaternary structure refinement

One method for eliminating minor errors in protein models is to use refinement techniques (see
Introduction 1.4.1). Although refinement can have a variable effect on tertiary structure
improvement, sometimes leading to a degradation in quality (Fan and Mark, 2004;Terashi and
Kihara, 2018), there have been some positive results, particularly seen with FM models
(Adiyaman and McGuffin, 2019), and it was considered that, despite a lack of documented
support for quaternary structure model refinement at the time, there were likely to be some

advantages to this approach.

GalaxyRefineComplex (GRC) (Heo et al., 2016) is a molecular dynamics-based side-chain
repacking algorithm that was one of only a few refinement programs designed specifically for
protein complexes. In their description of the software the authors explain that many docking
programs employ relatively low-resolution scoring functions to perform their orientation
analysis in order to conserve computational power. This potentially leaves room for
improvement in interface and chain orientation and in their paper, Heo et al. found that
GalaxyRefineComplex compared favourably with established refinement programs such as
RosettaDock and SymmRef in improving a ZDOCK benchmark set. The effect of

GalaxyRefineComplex on our CASP13 models was investigated.

Sixteen CASP13 homodimers were selected for this exploratory study (T0965, T0966, T0970,
T0973, T0976, TO983, T0984, T0O997, T1000, T1001, T1003, T1006, T1010, T1016 and T1018)
as it was estimated that refinement of these should prove less CPU intensive than higher order
structures. For TBM models, three models per target were selected by observed score: the
highest-scoring model, a mid-scoring model and the lowest-scoring model making a total of 48

individual models. In addition, the 100 docking models created for target T0976 were
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investigated. These comprised 25 models each from the FRODOCK, MEGADOCK,
PatchDock and ZDOCK programs. Again, to conserve processing power a test sample of 36
models was created by calculating the minimum, 25%, 50%, 75% and maximum quartiles
using observed scores and then selecting models with scores within 10% of the minimum and
maximum value and +/- 5% either side of each of the quartile values. A total of 36 docking
models was selected. A working hypothesis was that refined models would show an overall
improvement (measured by calculated mean observed score) compared to baseline models.
A secondary consideration was whether improvement varied by model construction method
(TBM or docking (FM)). To test this, the mean observed scores for the unrefined and refined
population were compared using a paired Wilcoxon signed rank test (analysis was carried out

in R version 3.6.3).

Table 2.3. Results of a paired Wilcoxon signed rank test on GRC refined versus original models
using calculated observed scores. TBM models numbers 48 across 16 CASP13 targets and docking
models numbered 100 for target T0976. Again the 95% confidence level was used and P-values <0.05
are considered significant.

Model models compared Independence and distribution symmetry p-value
TBM. Refined versus original models Paired; 2-sided test 0.328
Docking. Refined versus original models Paired; 2-sided test 2.91x10*
Docking. Refined versus original models Paired; 1-sided test; refined > unrefined 1.45x10!

For TBM models the p-value of 0.328 obtained was above the accepted 95% confidence
significance cut-off of 0.05 and therefore the null hypothesis must be accepted: TBM models
were not significantly improved by refinement with GalaxyRefineComplex. However, for
docking models the p-values obtained of 2.91x10*! for a two sided test followed by that for a
one sided test (refined scores are greater than unrefined scores) of 1.45x10! meant that this
time the null hypothesis can be rejected, and it can be concluded that TO976 docking models
show a significant improvement upon refinement with GalaxyRefineComplex. Notwithstanding
the difference in model populations, a possible explanation for this difference is that TBM
models are based on templates of known proteins, and as such their atomic coordinates are
less likely to result in clashes or disallowed torsion angles, leaving less room for improvement
by physics-based refinement procedures. TBM models may therefore respond variably to
refinement depending on the closeness of fit between the template and the native protein. This
agrees with later findings (Adiyaman, 2021) showing that TBM models are often more difficult
to successfully refine than FM models. In contrast, rigid body docking algorithms arrange
individual chains without reference to a template. It is possible that, as Heo, Lee and Seok
predicted, the low-resolution scoring functions employed in this process present an opportunity
for refinement routines to improve docking models to a greater degree. Indeed, considering

the absolute changes in best and median scores across the range of high, mid and low starting
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model quality shown in Table 2.4, evidence exists for low-scoring models showing a greater

margin of improvement.

Table 2.4. Differential improvement of the 100 T0976 docking models refined with GRC as
measured by change in best and median observed score. Models were grouped by the quality of
the unrefined starting model measured by mean observed score.

Starting model quality High (>0.7) Medium (0.7-0.3) Low (<0.3)
Mean improvement in best score 0.03 0.29 0.21
Mean improvement in median score 0.06 0.04 0.12

Although this prospective study on its own, did not present strong enough evidence for
successful quaternary structure refinement, the concept of the positive effect of refinement on
FM and lower scoring models was influential in the design of the subsequent investigation into
the AlphaFold2 custom template recycle pipeline explained in section 2.1.7.

2.1.6 Comparative analysis of CASP14 (2020) assembly modelling

CASP14 is arguably the most significant of the CASP experiments to-date due to the
introduction of the AlphaFold2 software and its impact in increasing the accuracy of tertiary
structure modelling. However, before this is considered, it is worth briefly describing the
assembly modelling that took place. The competition was disrupted due to Covid-19 with all
meetings taking place online and a truncated population of assembly targets (22, down from
42 in the previous round). Appendix 5 provides a full list and categorisation of all the assembly

models submitted by the McGuffin group.

The methodology used to create, score and select McGuffin models for CASP14 was similar
to that described for CASP13. There were, however, a number of minor differences; the
MultiFOLD program code was reinstalled on the group server which involved a number of
updates to underlying programs; FRODOCK (from v1.05 to v3.12), MEGADOCK (from v4.0.2
to v4.1.1) and a replacement version of Multi-LZerD. Secondly an additional scoring step using
the Voronoi tessellation program VoroMQA (Olechnovic and Venclovas, 2017) was introduced
alongside the older version of ModFOLDdock. The VoroMQA score was combined with the
ModFOLDdock Concensus6 score to create a hybrid unweighted mean of both scores which
was used as the primary ranking value. Assembly modelling results are summarised in Table

2.5 and CASP13 equivalent values are supplied in grey for comparison.
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Table 2.5. McGuffin group CASP14 assembly modelling Z-scores by Target difficulty. CASP 13
scores in grey for comparison.

Target Difficulty Measure Score Rank Max score
CASP14 Sum Z-score 0.25 17 1.67
Easy (CASP13 for comparison) 1.25 14 10.77
(Z-score >0.0) CASP14 Average Z-score 0.13 17 0.84
(CASP13 for comparison) 0.12 16 0.89
Medium CASP14 Sum Z-score 2.19 17 21.16
(Z-SCOFe >00) (CASP13 for comparison) 2.93 11 12.95
CASP14 Average Z-score 0.37 9 1.11
(CASP13 for comparison) 0.20 15 1.05
Difficult CASP14 Sum Z-score 1.39 17 8.44
(Z-score >0.0) (CASP13 for comparison) 1.85 12 12.23
CASP14 Average Z-score 0.28 15 1.17
(CASP13 for comparison) 0.47 6 0.96
All CASP14 Sum Z-score 3.85 19 31.27
(Z-score >0.0) (CASP13 for comparison) 6.03 14 35.97
CASP14 Average Z-score 0.30 16 1.17
(CASP13 for comparison) 0.20 16 0.86

As can be seen the McGuffin group (220) ranked 19" by summed Z-score (see Appendix 5 for
a bar plot of full CASP rankings) across all difficulty categories and 16™ by average Z-score
with a value of 0.3 (max for any group was 1.17). This compared with 14" and 16" respectively
achieved in CASP13. Although the CASP14 rankings were lower it must be stated that the
McGuffin group submitted models for only 13 homomeric targets (and was therefore naturally
penalised by the summed Z-score value) and that the CASP14 targets were rated as more
difficult due to their generally higher oligomeric state, including two large icosahedral structures
and the classification of four structures in a new extreme category (Karaca, 2020). Competing
groups scored an average of 0.86 for TM-score but only 0.38 for ICS (F1) score, showing that

CASP14 assembly structures continued to present challenging interfaces for modellers.

In the CASP13 analysis, successful modelling was defined as having any model for a target
scored as acceptable quality, i.e., QS-score > 0.1 and this was based on a slightly more

stringent definition by the Venclovas group (Dapkunas et al., 2019) in their CASP13 analysis.
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While in CASP13 this applied to 3/30 (10%) of the McGuffin group’s models, in CASP14 it
applied to 3/13 models, a higher rate of 23%.

2.1.7 Tertiary structure model quality improvement using AlphaFold2 custom template
recycling

At CASP14 DeepMind’s AlphaFold group submitted tertiary structure models which were
widely accepted as a significant advancement in predicted model quality. They achieved high
accuracy in both FM and FM-TBM classes with median GDT_TS scores of 87.0 and 92.4
respectively. Measured on a 0-100 scale, GDT_TS scores above 50 are considered correct in
overall topology with scores over 75 considered to have mostly correct atomic coordinates
(Kryshtafovych et al., 2019). These are clearly impressive values especially when
contextualised against CASP13 where the average tertiary GDT_TS score for the best
performing FM group (A7D) was 61.4 (Senior et al., 2019).

The AlphaFold group achieved these improvements using a machine learning model
(AlphaFold2) based on two key factors; a multiple sequence alignment (MSA), used to highlight
potential evolutionary relationships between amino acids, and a deep neural network (DNN)
used to interpret them. While both of these concepts are familiar to the protein modelling
community, AlphaFold2’s success appeared to be their unique combination in the construction
of an accurate residue distance map. This is then used to construct a detailed contact map
which can be interpreted by further neural network (NN) input into a starting model to which
the emerging structure can be compared. A schematic of AlphaFold2 is shown in Figure 2.7
below. However, there was a third interesting process within the AlphaFold2 model; the
existence of a recycle route intended to allow repeated iterations of the partially completed
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Figure 2.7. A schematic of AlphaFold2 architecture. Taken from (Jumper et al., 2021). This shows
how MSA, and pair representation data is processed and iterated via a recycling feedback loop.

proto model through the DNNs until no further improvement was detectable. One early-

identified adaptation of this was to input electron density maps to enhance experimental
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modelling accuracy (Terwilliger, 2022). Inspired by this, an alternative idea was proposed; that

the recycle function actually represented a ready-made refinement loop.

ColabFold (Mirdita et al., 2022) is a free open-source tool combining the AlphaFold2 algorithm
with the fast alignment package MMseqgs2 and hosted on Google Colaboratory. Neither early
AlphaFold2 or ColabFold versions supplied a way of manually controlling the selection of
templates feeding into the system. However, after an initial experimental version developed
for use with Phenix software (Terwilliger, 2022), this function was added as a “custom
template” input function to the main ColabFold software as shown in Figure 2.8. Thus, it
became possible to add alternative models as “templates” straight into the recycle loop and its

potential as a full model refinement tool became available for investigation.
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Figure 2.8. “Custom template” inputs into the AlphaFold2 architecture. Custom templates may
now be manually added in addition to a template search. They are incorporated into the recycling loop
shown in Figure 2.7. Image adapted from (Jumper et al., 2021).
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2.2 Objectives

The main hypothesis for this study was based on the supposition that full tertiary structure
models of proteins could be successfully refined via the custom template option included in
ColabFold by recycling through the NN architecture. The primary outcome was that repeated
recycling would show improvement in these models beyond their starting quality with support
for this viewpoint coming from the ColabFold team’s own paper (Roney and Ovchinnikov,
2022), which postulated that the AlphaFold2 neural network had learned a potential protein
folding energy function. Our primary hypothesis was:

HO: Custom template recycling through ColabFold results in models no different in quality to
the baseline models input as templates. H1: Custom template recycling results in models of

higher quality than the baseline models which were input as templates.

There were also three secondary considerations. The first of these was particularly relevant as

it has been shown that the accuracy of AlphaFold2 predictions decreases markedly when it is

not able to construct an MSA (Lin et al., 2023;Roney and Ovchinnikov, 2022). If model

improvement was seen from recycling in single sequence mode it would suggest that AF2 is

using internal factors to effect those improvements. For this reason, a hypothesis was also

constructed for the first of the secondary considerations.

1. Would similar improvement be seen for recycling in both single sequence and MSA
modes?

HO: Recycling in single sequence mode produces models no different in quality compared to

the baseline models used as templates. H1: Recycling in single sequence mode produces

improvement in models similar to that seen for MSA mode.

2. Would improvement be seen in the official DeepMind AF2 competition models?

3. Would improvement be linear with recycle number and can an optimal number of recycles

be determined?

If the primary outcome was proven, then the custom recycling strategy could be adopted as a
key component to our CASP15 modelling pipeline, which would potentially confer an

advantage over other state-of-the-art modelling software.
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2.3 Materials and Methods

The goal of the project, of which this study formed the foundation part, was to improve upon
the performance of AF2-Multimer quaternary structure modelling through custom template
recycling. This study represented the initial proof of concept phase using tertiary structures

which, it was reasoned, represented a simpler basis for testing and scoring.

To test the hypotheses, the study was designed around free modelling (FM) CASP14 tertiary
structure targets to eliminate any confounding effects associated with TBM models. These
were quality-assessed against their CASP reference structures to build a bank of baseline
observed scores. The models were then submitted to ColabFold as custom templates for
recycling through the algorithm. The resulting top-ranked models could then be rescored
against the same reference models and the scores then directly compared to the baseline to
assess any improvement in model quality. If successful, the study could be extended to

quaternary structure models.

Two sets of CASP14 tertiary structure models were selected and the AlphaFold2 NN weights
trained on pre-CASP14 data were used to recycle them. The selection of this particular dataset
was important as the AlphaFold2 neural network was trained on models populating the PDB
prior to CASP14 (2020), using more recent datasets risked introducing a bias into the modelling
as AlphaFold2 could potentially have already encountered the structures. At the time, this
represented the most suitable set of 3D models and great care was taken to ensure that the
pre-CASP14 neural network weights were selected when using ColabFold as this guaranteed

training had taken place on data predating these models.

The first set of models chosen were DeepMind’s AlphaFold group (group 427) official CASP14
submissions, the rationale being that AF2 is essentially an FM modelling tool and according to
the findings in section 2.1.5 it should be possible to refine these. Secondly, at the time these
represented the best independently verified models available and so a technique able to
improve these should be able to improve any other models available. The second set of models
were selected from the five groups ranking immediately below group 427 in the CASP14 official
rankings. These were viewed as lower-quality starting models which, again according to the
findings in section 2.1.5, may allow greater potential for improvement by refinement. The
argument that this procedure amounted to simple remodelling was controlled for in two ways;
firstly by using the official AlphaFold group’s CASP14 models with the AlphaFold2 model
trained on pre-CASP14 data - the rationale being that any improvement in model quality must
be due to recycling refinement, as the same software should not be able to improve upon its
original model unless a different internal process is invoked. Secondly, by running parallel MSA

and single sequence recycling (with all other parameters matched) any influence of an updated
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MSA should be negated. Consistent improvement under these conditions would suggest that
AlphaFold2 is refining the model supplied rather than ignoring the template and remodelling
from scratch. Also, as a further control measure to ensure we were testing for the recycling

effect only and no other refinement stages, the Amber relaxation option was not enabled.

2.3.1 Refinement of 16 CASP14 AlphaFold2 models

CASP14 rank 1 AlphaFold2 tertiary structure models were downloaded from the CASP Data
Archive (https://predictioncenter.org/download_area/) along with their official results tables.
Previous research has suggested that protein models created using template-based modelling
(TBM) have a lower tendency for improvement compared to those created from free modelling
(FM) methods (Adiyaman, 2021). Therefore, to maximise refinement potential, the 16 models
submitted by the AlphaFold group in the CASP FM-only class were selected, matching those
targets used in the ReFOLD4 analysis which was included a section A of the research paper
(Adiyaman et al., 2023).

Two structural alignment scoring methods - the TM-score (Template Modelling score) and the
IDDT score (local Distance Difference Test) were used to provide performance metrics for
model benchmarking. These scores, generated by downloadable versions of the TM-score
(Zhang and Skolnick, 2004) and IDDT (Mariani et al., 2013) methods, describe the backbone
(TM-score) and local environment (IDDT) similarities of two protein models. Initially, the
downloaded model and the experimentally determined native structure were compared to
collect baseline TM and IDDT scores. Each AlphaFold2 model was then converted from pdb
to mmCif format using https://mmcif.pdbj.org/converter which makes use of the RSCB PDB

MAXIT suite of programs.

To eliminate ColabFold runtime errors the following workarounds were necessary. The
template model name and job name needed to match with a maximum of 4 characters. The
jobname was therefore always set as the numeric part of the CASP target, e.g. 10**. A chain
identifier was required in column 22 of the PDB file prior to mmCif conversion. Also, to satisfy
the AF2 algorithm’s requirement for a creation date, the following information was added to the
bottom of each template mmCif file:

“oop_

_pdbx_audit_revision_history.ordinal

_pdbx_audit_revision_history.data_content_type

_pdbx_audit_revision_history.major_revision

_pdbx_audit_revision_history.minor_revision

_pdbx_audit_revision_history.revision_date

1 'Structure model' 1 0 2020-06-17

2 'Structure model' 1 1 2021-01-20”
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The converted mmCif model files were then submitted to the Google Colaboratory version of
ColabFold (release 3, v1.3.0 [4-Mar-2022]) as custom templates along with their respective
amino acid sequences. Each model was submitted eight separate times using the following
recycle and MSA combinations; MSA: 1, 3, 6 and 12 recycles; Single sequence: 1, 3, 6 and 12
recycles. The following ColabFold settings were used.

- Google Colab version: AlphaFold2 using MMsegs2.

- Template_mode: custom

- msa_mode: MMseqs2 (UniRef+Environmental) OR single_sequence
- pair_mode: unpaired+paired

- model-type: auto!

- num_recycles: 1,3, 6, 12

The five models created by default for each individual ColabFold run were collected along with
their predicted pTM and pIDDT scores. Rank 1 models were then rescored with TM-score and
IDDT programs in the same way as described for baseline scoring. In this way TM-score and
IDDT scores obtained at baseline and for each recycle combination, along with the ColabFold-
generated predicted scores (pTM and pIDDT), could be directly compared.

2.3.2 Refinement of 47 CASP14 non-AlphaFold2 models

To explore the capacity for improvement of lower-scoring models, the same CASP14 targets
were selected from groups making up the next five best-ranked groups beneath the AlphaFold
group in the CASP14 rankings. These were (by rank): Baker (Gp.473, Av Sum Z-score=90.8),
Baker-experimental (Gp.403, Av Sum Z-score=88.9), Feig-R2 (Gp.480, Av Sum Z-
score=72.5), Zhang (Gp.129, Av Sum Z-score=67.9) and tFold_human (Gp.009, Av Sum Z-
score=61.2). By comparison, AlphaFold2 (Gp.427) had an Av sum Z-score of 244. All groups
had a total Domain count of 92 so the comparison of Sum Z-scores is valid. In addition, only
models with a CASP TM-score of = 0.45 were used, as those below this threshold cannot be
guaranteed to have the same fundamental fold as the reference models (Xu and Zhang, 2010),

so a total of 47 non-AlphaFold2 models were processed.

Models, scores and reference structures for these targets were downloaded from the CASP14
website and scored with the TM-score and IDDT algorithms in the same way as previously
described in 2.3.1. ColabFold recycling using MSA was submitted to the same Google
Colaboratory version of ColabFold (release 3, v1.3.0 [4-Mar-2022]) as used in 2.3.1, recycling
using single sequence submissions (no MSA) was carried out using the same release (v1.3.0)

of LocalColabFold (Mirdita et al., 2022), which was installed on our own local server to avoid

! GitHub - DeepMind/AlphaFold: Open source code for AlphaFold2. (“selecting Auto from the model type

monomer_ptm: This is the original CASP14 model fine-tuned with the pTM head, providing a pairwise confidence
measure. It is slightly less accurate than the normal monomer model.”)
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Google Colab GPU restrictions adversely affecting our available modelling time. The
equivalent LocalColabFold settings used were:

--num-recycle (1, 3, 6, 12) --msa-mode single_sequence --model-type auto --rank plddt

--pair-mode unpaired+paired --templates --custom-template-path

LocalColabFold was therefore run with the following command format:

colabfold_batch --num-recycle 12 --msa-mode single_sequence --model-type auto --rank plddt --pair-
mode unpaired+paired --templates --custom-template-path <path to mmCif files> <full path of fasta file>

<full path of output directory>

Again, the five resulting models and their predicted scores for each ColabFold run were
collected and rank 1 models were rescored with the TM-score and IDDT programs. The
workflow for the methodology is summarised in Figure 2.9 allowing baseline and recycle TM-
score and IDDT to be directly compared. Statistical analysis for all models was performed using

R-studio version 1.3.1093.
. Recycle models
Original r—— L 5 Recycled
models ColabFold. models

CASP14
AlphaFold
models

Score models with
IDDT and TM-
score for Baseline
scores.

Score rank 1
models with IDDT
and TM-score for

Recycle scores.

Compare Baseline NG
and Recycle
scores.

Figure 2.9. A workflow summary for the custom template recycling experiment. This shows how
AF2 and other groups’ models were recycled through ColabFold and assessed by comparison to
baseline IDDT and TM-scores.

2.3.3 Treatment of quaternary structures

The processes described above were repeated for multimeric CASP14 targets by a co-
researcher as part of the published collaborative study (Adiyaman et al., 2023). This part used
models from ten targets (H1045, H1065, H1072, T1032, T1054, T1070, T1073, T1078, T1083,
T1084) for the top 5 performing groups in the CASP14 assembly category. These were Baker-
experimental (Baek et al., 2021), Venclovas (Dapkunas et al., 2021), Takeda-Shitaka, Seok
(Park et al., 2021) and DATE. DeepMind did not submit multimeric models for CASP14 and so
models were generated using AF2-Multimer (AFM) for the same targets to allow for common
subset analysis. Baseline models were scored and refined using similar parameters described
for monomers and observed scores were generated using MM-Align (Mukherjee and Zhang,
2009) for TM-score and OpenStructure (Biasini et al., 2013) for IDDT-oligo and, additionally,
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QS-score (Bertoni et al., 2017). A short summary of key results for quaternary structure models
will be included in the relevant results sections.
2.3.4. Study design.

This study can be categorised as having two factors; the type of recycling and the modelling
software used to create the initial models. Both factors have two levels. For recycling these

are either MSA or single sequence; for modelling they are either AF2 or non-AF2 models.

Table 2.6. The recycle experiment study design in terms of factors, level and treatment groups.

Factor 1 — recycling

Levels MSA Single sequence
MSA modelling, Single sequence modelling,
AF2 |
Factor 2 — models AF2 models AF2 models
modelling . . -
Non-AF2 MSA modelling, Single sequence modelling,
models non-AF2 models | non-AF2 models

Therefore, there are four treatment groups as shown in Table 2.6.
2.4 Results and Discussion.

2.4.1 Primary hypothesis. Repeated recycling shows improvement of models beyond
their initial quality.

Both global TM-scores and IDDT scores were collected during the investigation, however, the
analysis concentrated on the improvement in IDDT scores. The rationale being that, unlike TM-
score, which is primarily associated with backbone configuration, IDDT is more likely to detect

small changes in the local atomic arrangement which typically result from refinement.

Table 2.7 shows the significance values (p-values) obtained from the comparison between
baseline and recycled IDDT scores for the 16 CASP14 AlphaFold2 (AF2) and 47 non-
AlphaFold2 (non-AF2) tertiary models. P-values were calculated at the 95% confidence level
using a 1-tailed Wilcoxon signed-rank test for non-parametric data between observed baseline
IDDT scores (template model) and recycled IDDT scores (rank 1 output model). These have
been calculated between baseline and each recycle and also between consecutive recycles.
A p-value of <0.05 shows a significant difference between any two model populations,
suggesting an improvement in quality for that number of recycles. Table 2.8a shows equivalent
data for TM-scores calculated by the same method. It is worth restating here the primary
hypotheses being tested:

HO. Custom template recycling through ColabFold results in models no different in quality to
the baseline model input as templates. H1. Custom template recycling results in models of

higher quality than the baseline models input as templates.
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In Table 2.7, rows 1 and 2 indicate a significant improvement in quality for the AF2 models
compared to baseline for recycle 1, 3, 6 and 12 as indicated by values in bold. Although
significant improvement after 1 recycle is limited to models recycled in single sequence mode

Table 2.7. Calculated p-values for observed IDDT scores between baseline and recycled CASP14
AF2 and non-AF2 monomer models. P-values <0.05 are in bold.

Recycle | Basetol | 1to3 Base to 3 3to6 Base to 6 6to 12 Base to 12
Models | model | recycle recycles recycles recycles recycles recycles recycles.
AF2 MSA 0.187 0.756 0.005 0.043 0.007 0.351 0.013

SS 0.011 0.954 0.018 0.124 0.059 0.637 0.038
Non- MSA 1.23x10° | 1.21x10% | 7.10x10!® 0.015 7.10x10°%5 0.473 1.23x10°
AF2 SS 1.70x10° | 4.91x10° 1.50x10° 0.175 1.50x10°° 0.587 1.40x10°°

Key: Base = Baseline, SS=Single sequence. MSA=Multiple Sequence Alignment. The 1-tailed Wilcoxon signed-rank test P-
values were calculated at the 95% confidence level using IDDT scores across 16 AlphaFold2 CASP14 top-ranked models (upper
two rows) and 47 non-AlphaFold models from CASP14 targets (lower 2 rows).

Table 2.8a. Calculated p-values for observed TM-scores between baseline and recycled for
CASP14 AF2 and non-AF2 monomer models. P-values <0.05 are in bold.

Recycle | Baseto 1 1to3 Base to 3 3to6 Baseto6 | 6to 12 Base to 12
Models | model | recycle recycles recycles recycles recycles recycles recycles.
AF2 MSA 0.679 0.801 0.796 0.106 0.958 0.363 0.776

SS 0.717 0.909 0.860 0.033 0.897 0.782 0.698
Non- MSA 1.42x10%* | 6.31x10° | 4.36x1012 0.898 8.05x10° 0.240 2.40x1012
AF2 SS 5.13x107 | 7.61x10° | 3.35x107 0.033 1.98x10”’ 0.660 1.62x107’

Key: Base = Baseline, SS=Single sequence. MSA=Multiple Sequence Alignment. The 1-tailed Wilcoxon signed-rank test P-
values were calculated at the 95% confidence level using TM-scores across 16 AlphaFold2 CASP14 top-ranked models (upper
two rows) and 47 non-AlphaFold2 models from CASP14 targets (lower 2 rows).

and improvement after 6 recycles is limited to MSA mode, improvement after both 3 and 12
recycles is seen for both recycling modes. Similarly, rows 3 and 4 show that significant
improvement in non-AF2 model quality compared to baseline occurred for both modes after alll
recycles. From 6 to 12 recycles there was no further significant improvement for either method.
From these results the null hypothesis can be rejected for improvement in IDDT from baseline
and it can be stated that recycling produces significantly higher quality models than baseline
in the majority of cases (14 out of the 16 recycle phases across the two groups studied) in

agreement with the alternative hypothesis.

Table 2.8a shows similar data for TM-score improvement. There are significant increases
between baseline and 1 recycle and from 1 to 3 recycles for non-AF2 models, however there
is no further significant improvement between 3 to 6 or 6 to 12 recycles. For the AF2 models
there is no significant improvement in TM-score except for the one isolated result of 0.033
which occurred between 3 to 6 recycles in single sequence mode. From these results, with
respect to TM-score, the null hypothesis must be accepted for AF2 models, but the alternative
hypothesis may be accepted for non-AF2 models. This supports the rationale above that the
superposition dependent TM-score based on the backbone is not sufficiently sensitive to

relatively small changes in local atomic arrangement.
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The data for quaternary structures shown in Table 2.8b also showed significant improvement
upon recycling and, again, the improvement was greater for non-AFM than AFM models with
a pattern that was not linear with recycle number. Specifically, non-AFM models showed
significant improvement as measured by oligo-IDDT, TM-score and QS-score for baseline to
all recycles for both MSA and single sequence recycling (with the exception of single sequence
recycling measured by oligo-IDDT where significant improvement was only seen between 1 to
3 and 6 to 12 recycles). For AFM models, the best improvement was seen for TM-scores which
showed significant improvement from baseline to 1 and 6 recycles for MSA recycling and for
baseline to all recycles for single sequence recycling. For oligo-IDDT significant improvement
was seen for MSA recycling (baseline to 16 and 12 recycles) but not to the same extent for
single sequence recycling. Significant improvement by QS-score was seen in one isolated
case (1 to 3 recycles) for AFM models. Despite this, absolute rates in terms of the percentage
of models improved were calculated as 80% (MSA) and 30% (SS) for AFM models and 94%
(MSA) and 64% (SS) for non-AFM models as measured by oligo-IDDT, 70% (MSA) and 80%
(SS) for AFM models and 98% (MSA) and 82% (SS) for non-AFM models as measured by
TM-score and 50% (MSA) and 30% (SS) for AFM models and 86% (MSA) and 60% (SS) for
non-AFM models as measured by QS-score (Adiyaman et al., 2023).

Table 2.8b Calculated P-values for observed oligo-IDDT (A), TM-score (B) and QS-score (C), for

recycled AFM and non-AFM CASP14 multimer models. P-values <0.05 are in bold.
A

Recycle | Baseline 1 recycle Baseline 3 recycles | Baseline 6 recycles | Baseline
Models | type to to3 to3 to6 to6 to 12 to 12

1 recycle recycles recycles recycles recycles recycles recycles
AFM MSA 1.11x10? 5.20x10?! | 1.79x10%? 7.68x102 | 4.16x107 1.11x10? 5.15x102
SS 9.97x10?! 4.16x102 | 9.37x10* 6.18x102 | 9.37x10* 9.74x10! 9.37x10?
non- MSA | 3.75x103 | 4.27x10° | 1.40x10° | 6.92x103 | 1.02x10° | 9.56x10" | 4.93x107
AFM SS 8.49x101! 1.48x102 | 5.12x10* 1.61x10t | 4.20x10? 1.01x10? 3.29x10?

B

AFM MSA 3.33x102 | 2.70x10? | 6.31x102 | 6.31x10?% | 2.08x10% | 8.21x10?! | 1.54x10%
SS 5.15x102 | 1.79x10" | 2.08x102 | 6.20x10?! | 1.25x102 | 6.20x10! | 2.08x1072
non- MSA 2.07x10° | 2.72x10" | 1.45x10° | 9.43x10! | 2.93x10° | 9.86x10! | 6.89x107°
AFM SS 3.34x103% | 3.97x103 | 5.52x10° | 7.46x10! | 1.37x10? | 3.75x10! | 2.95x10*

C

AFM MSA 4.16x10" | 5.72x10' | 1.98x10-1 | 4.27x10 | 5.00x10! | 5.00x10! 5.00x10?
SS 7.99x101 | 5.02x102 | 5.00x10-1 | 1.86x10 | 3.42x10* | 8.62x10* 3.38x101

non- MSA 1.58x107 | 2.27x10! | 2.58x107 | 1.58x10* | 1.10x107 | 2.33x107? 6.80x10°8

AFM SS 3.49x102% | 1.12x102% | 4.18x10-3 | 3.08x10" | 2.55x103 | 2.41x10* 4.09x10°3
*SS=Single sequence. P-values were calculated at the 95% confidence level. The 1-tailed Wilcoxon signed-rank test P-values
were calculated using oligo-IDDT scores (A), TM-scores (B) and QS-scores (C) for AFM models of 10 CASP14 targets (generated
with ColabFold) and the same 10 targets for models submitted by the 5 top-ranking groups in CASP14 (non-AFM). Supporting
raw data is available in Appendix 6.
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2.4.2 Secondary hypothesis. Is similar improvement seen for recycling in both single
sequence and MSA modes?

To further investigate the differential improvement between MSA and single sequence
recycling the two methods were directly compared using a 1-tailed Wilcoxon signed-rank test
to test whether IDDT scores for MSA recycling were significantly higher than those obtained
for single sequence recycling. In addition, a 1-tailed Ansari-Bradley test was used to
investigate any significant differences in quartiles which may be occurring in the data but that
remain hidden when using tests comparing mean values. Again, it is worth restating the
hypotheses being tested: HO. Recycling in single sequence mode results in models no different
in quality compared to the baseline models used as templates. H1. Recycling in single
sequence mode results in improvement in models similar to that seen for MSA mode. Table
2.9, below, shows p-values obtained for the 16 CASP14 AlphaFold2 tertiary structure models.
Equivalent data for the 47 non-AlphaFold2 tertiary models is presented in Table 2.10.

Table 2.9. CASP14 AF2 model comparisons between mean IDDT scores (top) and scale
parameters (bottom). Single-sequence and MSA recycling across 1, 3, 6 and 12 recycles.

P-value Recycle 1 Recycle 3 Recycle 6 Recycle 12
Test (SS v MSA) (SSv MSA) (SS v MSA) (SS v MSA)
Wilcox signed rank 0.097 0.052 0.111 0.129
Ansari test 0.397 0.500 0.425 0.544

Key: SS=Single sequence. MSA=Multiple Sequence Alignment. The 1-tailed Wilcoxon signed-rank test (top row) and Ansari
test (bottom row) P-values were calculated at the 95% confidence level (those <0.05 are in bold) using IDDT scores for the 16

AlphaFold2 CASP14 top-ranked models from CASP14 targets.

Table 2.10. CASP14 non-AF2 model comparisons between mean IDDT scores (top) and scale

parameters (bottom). Single-sequence and MSA recycling across 1, 3, 6 and 12 recycles.

P-value Recycle 1 Recycle 3 Recycle 6 Recycle 12
Test (SS v MSA) (SS v MSA) (SS v MSA) (SS v MSA)
Wilcox signed rank 1.42x10% 5.34x10° 2.94x1012 7.80x10°
Ansari test 0.014 0.015 0.019 0.012

Key: SS=Single sequence. MSA=Multiple Sequence Alignment. The 1-tailed Wilcoxon signed-rank test (top row) and Ansari
test (bottom row) P-values were calculated at the 95% confidence level (those <0.05 are in bold) using IDDT scores for the 47
non-AlphaFold2 CASP14 top-ranked models from CASP14 targets.

From Tables 2.9 and 2.10 it can be seen that there is no significant difference in model quality
between MSA and single sequence recycling methods for the AF2 models according to both
the Wilcoxon and Ansari tests. However, there is a significant difference, detected by both
tests, at every recycle for non-AF2 models. However, it is unknown whether an equivalent MSA
was used to produce the non-AF2 models, and so it is possible that this difference simply
highlights the power of the MSA in producing better contact and distance maps on which to

base models.

Figure 2.10 shows a graphical representation of the relative improvements in IDDT score for

all models on which the values in Table 2.9 and 2.10 were based. As expected from the values
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in the table, MSA recycling (left plot) shows an increase in quality for non-AF2 models to a
much greater extent than that for single sequence. Nevertheless, according to the values in
Table 2.7 models produced by single sequence recycling were still significantly improved. In
this case the null hypothesis should be rejected as single sequence recycling clearly results in
model improvement which is significant for both model populations. However, it is also true
that the alternative hypothesis can be applied only to the AF2 models but not the non-AF2
models as the improvement for single sequence recycling could not reasonably be said to be
similar to that for MSA recycling for this model population. Therefore, a different interpretation
maybe required; that single sequence recycling can be viewed as representing refinement due
to AlphaFold2’s learned protein folding function and the difference between the improvement

seen between AF2 and non-AF2 models is the effect of additionally using a multiple sequence

alignment.
Observed IDDT values at baseline and after recycling (MSA) Observed IDDT values at baseline and after recycling (Single seq)
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Figure 2.10. Scatter plots to show comparisons in observed IDDT scores between baseline and
all recycles for all monomeric models. Left. MSA recycling. Right. Single sequence recycling.

During discussions for this section and 2.4.1, the secondary consideration of whether
improvement would be seen in official DeepMind AF2 competition models has also been
answered. The fact that this improvement was seen for both MSA and single sequence
recycling using the AF2 model with pre-CASP14 weights, meaning that no new information
was presented to the algorithm, is further indication that improvement is occurring via some
sort of learned function within the AF2 neural network. One contextual point to note is that
DeepMind entered CASP14 as a manual group meaning that changes may have been made
to models which were not due entirely to the AF2 software and that this part of the experiment
could have been carried out with models generated by ColabFold. Nevertheless, it remains
that the CASP14 AF2 models represented the best independently benchmarked models

available to us at the time.
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In addition, quaternary structure model improvement was also seen for single sequence
recycling as well as MSA recycling, and this improvement was also apparent for AFM models.
As measured by IDDT-oligo score, 30% of AFM models were improved from baseline after
single sequence recycling, compared to 80% using MSA recycling, but the percentage
improvement was higher for non-AFM models where 64% improved with single sequence
recycling compared to 94% for MSA. Similar levels of improvement were seen for TM-score
(up to 80% of AFM models and 98% non-AFM models) and QS-score (up to 50% of AFM
models and 86% non-AFM models) (Adiyaman et al., 2023).

2.4.3 Is improvement linear with recycle number and can an optimal number of recycles
be determined?

Finally, the secondary considerations of linearity and identification of an optimal recycle
number need to be addressed. Table 2.7 shows that improvement in model quality doesn't
follow a linear trend; higher recycle numbers do not consistently yield more significant
improvements. For AF2 models, only two consecutive recycles (baseline to 1 recycle and 1 to
3 recycles) show a significant increase in IDDT for single sequence modelling and three
(baseline to 1 recycle, 1 to 3 recycles and 3 to 6 recycles) for MSA modelling. Similarly, any
improvement in score for non-AF2 models after 6 recycles (3 for single sequence) also
becomes non-significant.

Change from baseline IDDT across recycles Change from baseline IDDT across recycles
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Figure 2.11. Plots to show the change from baseline in cumulative observed IDDT scores (all
recycles) per modelling group. Left. MSA recycling. Right. Single sequence recycling. Data for all
monomer models for AF2 and non-AF2 groups.

Identification of the recycle number producing the most improvement is not immediately
obvious from the data in the tables. Therefore, it may be worth looking at the cumulative IDDT
change from baseline for all individual groups to get a better representation of the trends as
shown below in Figure 2.11. For the MSA recycling data (Figure 2.11, left plot), two groups,
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Zhang and Feig, showed a slight increase in cumulative score from recycle 3 to 6 and a further
increase from recycle 6 to 12, which also included a marginal increase for the Baker group. All
other groups showed no further improvement after 3 recycles. For the single sequence
recycling data, the Feig, tFOLD and Baker-experimental groups all showed improvement after
3 recycles with the Zhang group showing further improvement only at 12 recycles. The AF2
and Baker groups showed no further improvement after 3 recycles. Interestingly a number of
groups showed a slight decrease in model quality after 3 recycles, specifically AF2, Baker-
experimental and tFOLD for MSA recycling and AF2 for single sequence (with a dip from Zhang
group at 6 recycles). A decrease in quality for some models is not uncommon with refinement
procedures (Adiyaman and McGuffin, 2019) and in light of this, to avoid the risk of a decrease
in quality during recycling, it would be prudent to suggest 3 recycles as the optimum number

for tertiary structures.

2.4.4 Improvement of non-AF2 models beyond AF2 quality.

An important and unexpected effect seen when recycling non-AF2 models was the
improvement of some models beyond the quality of the equivalent DeepMind AF2 competition
models as measured by IDDT score. This was surprising as the full power of the DeepMind
neural network and MSA search facility would have been used to create these original models
whereas the quicker MMSegs search method was used with the ColabFold method, producing
a slightly different MSA, which would not necessarily be expected to out-perform the former.
This enhanced improvement may, again, be indicative of a process other than simple
correction of modelling inaccuracies using the information available in an MSA. Two examples

of this are shown in Figure 2.12 and 2.13 below.

Figure 2.12. Images of CASP14 target T1074. Left. The Baker group’s predicted model (blue, IDDT
0.491, TM-score 0.576) superposed with the native structure (purple). Centre. The refined model in red
(IDDT 0.906, TM-score 0.959). Right. The refined model superposed with the native structure and
showing a very close alignment.

Figure 2.12 shows the improvement seen in the Baker group’s model for the CASP14 target
T1074. The left-hand image shows the model (coloured blue) in superposition with the native

structure, revealing a misaligned lower beta sheet and resulting in a TM-score of 0.576 and an
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IDDT score of 0.491. The recycled model, centre (coloured red) and right in superposition with
the native structure, shows that this misalignment has been corrected and the TM-score has
improved to 0.959 with a similarly improved IDDT score of 0.906. For comparison the
competition AF2 model scored a TM-score of 0.930 and an IDDT score of 0.848.

Figure 2.13. Images of CASP14 target T1049. Far left. The Zhang group’s predicted model (blue,
IDDT 0.552, TM-score 0.674) superposed with the native structure (purple). Centre left. The refined
model inred (IDDT 0.872, TM-score 0.940). Centre right. The refined model superposed with the native
structure and showing a closer alignment. Right. An enlargement showing a superposition of all three
models and highlighting a newly formed (-strand (circled), absent in predicted model.

Similarly Figure 2.13 shows the improvements seen to the Zhang group’s model for T1049.
Again, the original model is coloured blue and, in the superposition with the native structure on
the left, shows a number of positional inconsistencies in the beta strands as well as the loop
sections. These have been corrected in the recycled (red) model and led to improvement in
scores from 0.674 to 0.940 for the TM-score and from 0.552 to 0.872 for IDDT. The right-hand
graphic shows an enlarged section of a superposition of all three models (predicted, recycled
and native) highlighting the correct inclusion of a small beta section in the recycled model
(circled in black) which was not present in the predicted model. For comparison the equivalent
AF2 model scored 0.930 and 0.848 for TM-score and IDDT respectively, which was, again,

lower than this recycled model.

Similar levels of improvement were seen for quaternary structures, although for these models
it could not be claimed that recycling had improved DeepMind official competition models as
the AFM models used in the study were specifically created for this project using ColabFold
(DeepMind did not submit any predictions for multimeric targets). Nevertheless, a good
example of AFM model improvement is shown in Figure 2.14 panel A in which the interface
orientation of the AFM model is corrected via recycling, resulting in improvement in the IDDT-
oligo, TM-score and QS-score. Further to this, Figure 2.14 panel B shows a Venclovas group
model for H1045 which improved to match the scores achieved by the equivalent AFM model

for TM-score, and slightly beyond that achieved by AFM for IDDT-oligo and QS-score.
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A
baseline IDDT = 0.72 refined IDDT = 0.88
baseline TM-score = 0.60 refined TM-score = 0.97
baseline QS score = 0.02 refined QS score = 0.84 <«
«©
B g

7

baseline IDDT = 0.54 refined IDDT = 0.88
baseline TM-score = 0.72 refined TM-score = 0.95
baseline QS score = 0.84 refined QS score = 0.98

Figure 2.14. A. Images of the AFM model for CASP14 multimeric target T1078. Left. The AFM
predicted model with IDDT-oligo, TM-score and QS-score values. Right. The refined model with
equivalent scores. B. Images of the Venclovas group model for CASP14 target H1045. Left. The
original predicted model, again with IDDT-oligo, TM-score and QS-score values. Right. The refined
model and equivalent scores. The scores for the equivalent AFM model were: IDDT-oligo 0.87, TM-
score 0.95 and QS-score 0.97. Images coloured by pIDDT and adapted from (Adiyaman et al., 2023).

2.5 Conclusions

The conclusion for the primary outcome is that recycling full tertiary structure protein models
via the ColabFold custom template option is possible, and that it significantly improves full
model structures beyond their starting quality. Conversely, significant improvements were not
seen in a parallel study using more conventional molecular dynamics refinement techniques
(Adiyaman et al., 2023).

Findings for the three secondary considerations can be summarised as following:

Improvement for both MSA and single sequence modes.

Firstly, recycling using both MSA and single sequence modes leads to significant improvement
in model quality compared to the baseline, as measured by IDDT score. It has been
demonstrated that although a greater improvement in model quality occurs when the
AlphaFold2 algorithm is able to perform a multiple sequence alignment (MSA) during recycling,
a significant improvement in model quality is still apparent when only the amino acid sequence

is supplied (single sequence modelling).
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Improvement in official DeepMind AF2 competition models.

It has been shown that improvement occurs not only with non-AF2 models with a median
baseline IDDT score of 0.580 but also with the official DeepMind AlphaFold2 models with a
much higher median baseline IDDT of 0.751. Also, there is no significant difference in IDDT
scores between MSA and single sequence recycled AF2 model populations. As it has been
previously documented that AF2 performance considerably decreases when using sequence-
only modelling (Roney and Ovchinnikov, 2022), this strongly suggests that model improvement
is being achieved via template refinement rather than remodelling despite any slight
differences in MSA construction. Indeed, as the AF2 models were originally built by the same
software it should not be possible to improve them by remodelling if no further information is
available to the algorithm. In seeming contradiction to this, there is a significant difference
between MSA and single sequence recycling for the non-AF2 models. However, this is likely
due to differences in the original modelling software used, i.e. that AF2 is finding
inconsistencies between the models and its own algorithm, which it is able to better correct

using the additional information provided by a new or different MSA.

Pattern of improvement and optimal recycle number.

Thirdly, that improvement in model quality is non-linear. The lack of significant improvement in
consecutive recycles (evidenced in Table 2.7 and 2.8) shows that a higher recycle number
does not equate to more significant improvement. Therefore, committing tertiary structures to
more than 3 recycles is unlikely to further improve the model and may represent an
unnecessary processing overhead along with the risk of decreasing the quality of high scoring

models.

In summary, it can be concluded that recycling through the AF2 DNN, via the use of custom
templates, will lead to an improvement in tertiary and quaternary structure model quality in the
vast majority of cases, even for models with a very high level of initial accuracy. Using the MSA
mode as a recycling option will likely lead to a certain amount of remodelling if the template is
not an AF2 model and that single sequence mode therefore probably better represents “pure

refinement”.

In explanation, it may be that the AF2 algorithm is using the template as an enhanced starting
model in place of its usual contact matrix thus allowing modelling to start at a point deeper in
the folding funnel of the energy landscape. Alternatively, it may be that the AF2 DNN has, to
some degree, learnt a protein folding function (an algorithmic ability to recognise correct or
incorrect folds) which can be exploited to improve models without any additional information
simply by repeated iteration of the model through the network regardless of the quality of the

initial model. A similar alternative may be related to the recently published work on diffusion
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de-novo protein design (Watson et al., 2023). Here model coordinates are deliberately
obscured with a noise function prior to denoising using a specially trained version of
RoseTTAFold (RFdiffusion) and one of the training strategies (self-conditioning) was cited as
being ‘inspired by AF2 recycling”. It's possible that some of the lower quality models acted as
crude “noisy” structures in that they provided a rough starting point and that, through
successive iterations, AF2 was able to reduce the initial 'noise' and progressively improve the
structure. While the folding funnel concept focuses on the energy landscape and convergence

towards the native state, diffusion suggests iterative refinement of an initially crude structure.

The results above were important because they inspired the following MultiFOLD pipeline,
shown below in Figure 2.15, which was used for the CASP15 competition and also underlies
the version available publicly on the IntFOLD website. Here a dual modelling process is used
including two versions of the AlphaFold2 model. LocalColabFold 1.0.0 features the AF2 model
used in the AF2 Advanced version which is the model trained on tertiary structures but which
was used extensively, following CASP14, to model multimeric structures (Bryant et al., 2022)
before AF2-Multimer was released. During the process AMBER relaxation is used in 50% of
models and ranking is performed by ModFOLDdockR, see Chapter 4 for details of the
development of this version. Of the 20 models created by the dual pathway, the top 5 are then

recycled as custom templates in a refinement stage before being pooled with the remaining

population ready for final quality assessment and ranking.

Figure 2.15. The updated MultiFOLD pipeline developed for CASP15. This configuration was
inspired by the recycling results described in this chapter.
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CHAPTER 3

Development of new global and local quality estimates for quaternary structure
models using artificial Neural Network (NN) comparisons with CASP quality

scores.
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3.1 Background and historical context

Protein modelling software has historically produced large numbers of models, some of which
may be native-like, while others (decoys) may be structurally different. Modelling confidence
scores are designed to objectively differentiate between these two model groups (Elofsson et
al., 2018) and can be categorised into two broad types. Accuracy self-estimate (ASE) scores
usually refer to the modelling confidence scores output by the modelling software while the
term estimates of model accuracy (EMA) is usually applied to confidence scores calculated by
separate, independent, software. The term model quality assessment (MQA) can be
considered an umbrella term covering both ASEs and EMA, however the terms EMA and MQA

are often used interchangeably in the published literature.

Modelling pipelines often provide proprietary ASE scores, and this clearly presents a problem
when attempting to meaningfully evaluate models from different sources by ASE score
comparison alone. This was demonstrated during CASP15 where groups were required to
standardise their ASE scores into predicted IDDT scores (pIDDT) for the competition; some
were more successful than others and the accuracy varied depending on the target protein
(Gabriel Studer et al., 2023). Outside of the competition arena where ASE scores may remain
proprietary in nature, model quality assessment via independent EMA methods remains a

critical stage in selecting the most representative model from multiple modelling sources.

3.1.1 A brief history of MQA

Conceptually, model quality assessment appears a relatively straight forward problem but it
has been shown to be challenging to reliably determine whether two protein structures are
similar enough for one to be representative of the other (Xiao Chen et al., 2021). This has led

to a high degree of variation in the approaches used.

Traditionally, MQA has been divided into single-model and clustering methods. In general,
single-model methods employ a number of physical checks to assess each model’s structural
integrity. These range from residue environment compatibility, e.g. hydrophobicity and solvent
accessibility to structural features, such as secondary structure compatibility and assessment
of backbone torsion angles (McGuffin, 2010). Users are then presented with scores showing
how well each model conforms to hypothetical 3D norms. One problem with these plausibility
checks is that a model may score well because it conforms to pre-programmed ideals, whereas
another, which could be closer to the native structure, may score badly due to minor structural
defects (Edmunds and McGuffin, 2021). In an aim to reduce these errors, consensus and
clustering approaches were developed. Single-model consensus approaches operate as
described above but include a number of diverse scoring algorithms which can then be

combined to create a single consensus score. In reality, most consensus approaches perform
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a clustering routine (McGuffin and Roche, 2010) where models are clustered on the basis of
their conformational similarities determined by distance-based pairwise measurements. Here
the distances between any two amino acids in one structure are directly compared to the
distances between equivalent residues in all other models across the population. Models
representative of large clusters are proposed to have a higher likelihood of resembling the
native structure than remote models as correct conformations should occur repeatedly while
errors are deemed to occur randomly. The obvious drawbacks with clustering are that accuracy
will likely diminish with a decreasing model population and that all-against-all comparisons
become computationally restrictive for very large populations. As a compromise, quasi-single-
model methods attempt to exploit the best of both worlds by creating a population of reference
models which are then used to perform one-against-all comparisons with the target structure.
These comparisons are less computationally expensive and quasi-single-model approaches
such as the ModFOLD suite of programs (McGuffin, 2008) performed well in CASP tertiary
structure EMA competitions (Chen and Siu, 2020) which have been running since CASP7 in
2006.

Latterly, approaches centring on the assessment of contact profile similarity, for example CAD-
score, VoroMQA (Olechnovic and Venclovas, 2017) and CDA-score (Maghrabi and McGuffin,
2017), and those employing machine learning (ML) techniques have been developed. While
early support vector machine (SVM) algorithms such as ProQ2 and 3 (Uziela et al., 2016) were
successful, deep learning techniques using neural networks (NN), such as ProQ3D (Uziela et
al., 2017), were able to flourish by using training datasets from a model pool which had
significantly increased in quality following CASP13 (2018) (Chen and Siu, 2020). Finally, hybrid
consensus programs such as ModFOLD7 and 8 (McGuffin et al., 2021), and MULTICOM
(Cheng et al., 2023) combined single and multi-model techniques, contact information and

trained neural networks to further improve performance.

The systems described above were initially developed for tertiary structure MQA and, in 2018
when this project was conceived, quaternary structure MQA was less well developed. At this
time the modelling landscape was dominated by numerous docking programs scattered across
a number of websites, for example FRODOCK (Garzon et al., 2009) was accessed from the
InterEvDock webserver (Vavrusa M et al., 2016) and PatchDock (Duhovny et al., 2002) from
the SymmDock (Schneidman-Duhovny et al., 2005) site, which required the user to supply fully
modelled monomers as well as constraints and other technical data in some cases. The many
programs without interactive webservers often additionally required the download and
installation of stand-alone docking software. Estimations of model accuracy were mostly via
docking or reranking scores like ZDOCK’s ZRANK score (Pierce and Weng, 2007), although

there were two early attempts at objective ASE in the form of Swiss-model's QSQE score
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(Bertoni et al., 2017) and HADDOCK’s own accuracy score (Vangone et al., 2017). However,
independent predicted MQA programs were largely absent with the exception of ProQDock
(Basu and Wallner, 2016b), available as a download from 2016. Significant barriers to
accessible and accurate predicted model quality assessment for quaternary structures

therefore existed at this time.

This chapter will focus on an analysis of our multimer MQA software performance over recent
CASP experiments identifying both limitations in early versions and the identification of areas
for development. The intention is to document our research and development leading up to the
world-class performance of ModFOLDdock in the CASP15 EMA competition (2022), which is
fully documented in Chapter 4.

3.1.2 Scores for calculating the observed model quality by comparison with native
structures

Descriptions of commonly used scores for determining the observed quality of 3D models are
given in Appendix 1, but the main features of RMSD, GDT_TS, TM-score, IDDT and QS-score
will be repeated here for convenience as these scores are often referred to in this chapter. The
descriptions include a three-point classification of protein model evaluation methods
(Olechnovic et al.,, 2019) which categorises them as; either superposition-based or
superposition-free; global or local in similarity and all atom or atom subset (e.g. Ca or Cj3

atoms) in coverage.

Root Mean Square Deviation (RMSD) (Arun et al., 1987) (superposition-based, global, Ca
atoms only) calculates the sum of the squares of the distances between Ca atoms of the model
and native structure. This value is then divided by the total number of residues and the square
root calculated to give a normalised deviation. Scores closer to 0 are better. The main
drawbacks with RMSD stem from each Ca atom being treated equally. A small area of
deviation within the model, often a loop or terminal section, can quite heavily penalise an
otherwise representative model, also the interpretation of both an acceptable deviation
distance (e.g. 5A) as well as the length of the superposition alignment may vary for chains of
different length. For example, a lower RMSD score calculated over a 50% alignment may not

be better than a higher score calculated over 75%.

Global Distance Test, Total Score (GDT_TS) (Zemla, 2003) (superposition-based, global, Ca
atoms only) represents the percentage of residues in the largest superimposable substructure
falling within a predefined distance compared to the native structure. CASP uses the mean of
four distances (1, 2, 4 and 8A) to calculate the overall score on a 0-100 scale. It can be
summarised as GDT TS (Mp, Mr) = (P1 + P2 + P4 + P8)/4 where Mp and Mr represent the
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predicted and reference models respectively, and P1, P2, P4, and P8 represent the percentage

of Ca atoms which can be superposed at each distance cut-off.

The oligo version of the GDT score is very similar and uses the above distances to construct
a rotational matrix (Kabsch, 1976) which can be manipulated to find the minimum super-
position RMSD before calculating the final score. The GDT attempts to improve upon RMSD
by using the mean of all four cut-off distances to limit the effect of a small humber of large
errors however, it still suffers from length-dependent bias (Zhang and Skolnick, 2004) as a
substructure alignment of only 60% within 8A might be considered poor for a short protein of
50 residues but be more favourably viewed for one of 500 residues. This is also an issue for
the MaxSub score (Siew et al., 2000) which calculates a similar alignment substructure

agreement but uses only one cut-off distance (often 3.54).

The global score which is widely accepted to have solved the length dependence problem is
TM-score (Zhang and Skolnick, 2004) which not only normalises by the whole length of the
native structure (Ln), but also calculates a length dependent distance cut-off (do=1.24
VLN — 15 — 1.8) meaning that TM-scores for chains of different lengths can be directly
compared (N.B. the TM-score for multimers is calculated using the MM-align package). Using
di as the distance between corresponding residues in the target and reference protein and with

do and Ly as defined above, the TM-score calculation can be summarised as follows.

]

TM-score = max[l/LN Z %diz
1+(m)

The local Distance Difference Test (IDDT) (superposition-free, local, all atom) is a 0-1 score
expressing the fraction of contacts shared or conserved between a model and its native
structure regardless of orientation. IDDT-oligo is the multimer equivalent which uses the QS-
score (see below) chain mapping routine to identify intra and inter-chain contacts prior to
calculating the test score. The score penalises both deficiency of atoms and incorrect
stoichiometry in the model structure and, while this is a good measure of, for example, domain
or individual chain similarity, it gives little impression of the orientation of one domain to the
next or one chain to another (for the oligo version). In some ways this could be considered an
advantage given the multi-conformational nature of some proteins, but it can also be argued

that it elicits limited information about the interface quality.

Quaternary Structure (QS-score) (Bertoni et al., 2017) (superposition-based, local interface,
CB atoms). A score representing the fraction of shared interface contacts within 12A between
model and reference structure once a mapping algorithm has identified multimer symmetry

and equivalent chains. A 0-1 score where 0 represents different quaternary structures and 1
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suggests very similar models. Higher scores therefore represent correct stoichiometry,

symmetry, and a high fraction of conserved interface contacts.

3.1.3 Scores used in the CASP13 version of ModFOLDdock

Analyses in this chapter is concerned with ModFOLDdock score optimisation and the
contributing scores are described below. ModFOLDdock can compute both predicted and
observed scores, the latter being calculated compared to a known reference structure. There
are six predicted scores (1 single model and 5 clustering scores); consisting of two DockQ
scores; ProQDock and DockQJury, 1A-score (ModFOLDIA), two QS-scores; QSscoreJury and
QSscoreOfficialJury and an IDDT score (IDDTOfficialJury). ProQDock is the only single model

score, all scores have a 0-1 range.

The DockQ (Basu and Wallner, 2016a) routine creates a score based on the CAPRI (Critical
Assessment of Prediction of Interactions) quality measures Fnat, LRMS and iRMS. Fnat is
defined as the fraction of native interface contacts observed in the model, LRMS is the root
mean square deviation (RMSD) of the chain denoted the ligand (smaller chain of a complex)
after superposition of the larger chain and iRMS is the RMSD between interface residues seen
in the native structure compared to the model. A 0 to 1 score, the range of DockQ scores
matches the following CAPRI quality classes: < 0.23 (Incorrect), 0.23 — 0.49 (Acceptable), 0.49
— 0.8 (Medium) and > 0.8 (High). ModFOLDdock calculates two DockQ scores; ProQDock
(Basu and Wallner, 2016b) (single-model method) and a clustering-style DockQJury method.

IA-score (ModFOLDIA). A proprietary score created by the McGuffin group. To calculate this
score, interface residues are identified (defined as <5A between non-Hydrogen atoms in
different chains) and the minimum contact distance (Dmin) for each contacting residue is
measured. Equivalent residues in all other models are then identified and the mean Dmin is
then calculated across the sample. Si and Mean Si are then calculated as follows:

Si= 1/(1+(Dmin /20)?) and Mean Si = 1/(1+(Mean Dmin /20)?).

The 1A score for each interface residue (i) is then the absolute difference of Si from the mean
Si,i.e. IA=1-|Si-MeanSii |

The global predicted ModFOLDIA score for a model is the sum of the residue scores
normalised by the maximum mean number of interface residues across all models for the same

target. Scores of <1 represent variation from the mean.

QSscoredury (QSJ) and QSscoreOfficialJury (QSOJ) (see QS-score definition above and
in Appendix 1). The difference between the two QS-scores is that QSJ uses in-house code to

calculate the fraction of correctly modelled interface contacts normalised by the total predicted
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contacts, whereas QSOJ employs OpenStructure (Biasini et al., 2013) to calculate QS-scores

using the “ost compare-structures” action.

IDDTOfficialJury (again, see the IDDT definition above and in Appendix 1)

Scores suffixed ‘Jury’ are calculated by the 3D Jury method. The rationale being that the
average of many low-energy conformations is closer to the native structure than the absolute
lowest-scoring model. In terms of scores, this translates as pairwise comparisons between
models on an all-against-all basis followed by the calculation of the mean scores. During the
calculation, models are assigned a MaxSub score to calculate similarity by counting the
numbers of pairs of Ca atoms that remain within 3.5A after optimal super positioning.
Structures are considered dissimilar if the Ca atom count is less than 40. The final 3D-Jury
score is the sum of similarity scores across model pairs divided by the number of model pairs

(+1). Models representative of the mean value of the largest cluster are therefore selected.

There are also five comparative ModFOLDdock observed scores, which require a reference or
native structure for score calculation. All scores are calculated as described above (without
clustering) or in Section 3.1.2 and are calculated on a 1-versus-all basis rather than the all-
verses-all used for predicted scores. The scores are IA-score, DockQ, QSscore_Calc,
QsscoreOfficial and IDDTOfficial.

3.1.4 Multimer MQA lacked accuracy at CASP13 and 14

CASP13 took place in 2018 and included a quaternary or assembly modelling category which
comprised 42 multimeric targets. The McGuffin group modelling methodology and subsequent
performance is covered in detail in Chapter 2 along with some of the issues and shortcomings,
which were revealed and targeted for improvement. This chapter will focus exclusively on the

issues surrounding model quality assessment of the 30 models submitted.

Selected scores for all homomeric targets modelled by our group are shown in Table 3.1.
Additionally, images of the structures along with a table of scores showing models with the
largest discrepancies between submitted and observed scores can be found in Appendix 4.
The CASP scores presented in Table 3.1 were chosen to represent the quality of the models
by both global relatedness and interface similarity to the native structure. GDT and IDDT are
the two scores contributing to the global element of the overall Z-score calculation on which
CASP13 group rankings were based (see Section 2.1.2) and QS-score represents a single
overall score encompassing both global stoichiometry and interface geometry accuracy (Haas
et al., 2018). These are presented along with the ModFOLDdock predicted Consensus6 score
(an unweighted mean of all constituent predicted scores) and the retrospectively calculated

Observed mean score.
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Table 3.1. Quality assessment scores (predicted and observed) for McGuffin CASP13 assembly
models. Rows labelled Submitted represent scores for the group’s top model submitted to CASP
whereas those labelled Best were identified retrospectively by mean observed score. Most of the models
labelled as Best were not selected for CASP submission and therefore have no accompanying CASP
scores. Best model scores are not given for either T0996 as it was a manually created single model or
for T1016 where the submitted model was also the best model.

Predicted Observed CASP scores

Target Model C6 score | mean score GDT_TS RMSD IDDT QS-score

T0960 Submitted 0.356 0.156 6.55 71.86 0.285 0.000
Best 0.343 0.328

T0961 Submitted 0.370 0.441 23.70 31.07 0.689 0.000
Best 0.338 0.841

T0963 Submitted 0.317 0.144 6.83 77.57 0.331 0.000
Best 0.243 0.291

T0965 Submitted 0.369 0.436 32.75 15.19 0.582 0.200
Best 0.322 0.487

T0966 Submitted 0.331 0.161 30.66 33.58 0.597 0.000
Best 0.202 0.29

T0970 Submitted 0.379 0.207 20.71 14.31 0.351 0.000
Best 0.295 0.301

T0973 Submitted 0.364 0.172 26.76 20.21 0.340 0.016
Best 0.260 0.293

T0976 Submitted 0.378 0.166 27.05 25.88 0.570 0.001
Best 0.259 0.569

T0977 Submitted 0.446 0.191 14.40 42.55 0.477 0.002
Best 0.179 0.468

T0979 Submitted 0.367 0.256 14.17 47.54 0.314 0.000
Best 0.260 0.452

T0981 Submitted 0.510 0.148 6.51 59.09 0.318 0.001
Best 0.156 0.371

T0983 Submitted 0.399 0.287 45.04 21.14 0.751 0.000
Best 0.370 0.834

T0984 Submitted 0.399 0.326 45.38 5.53 0.634 0.477
Best 0.372 0.604

T0989 Submitted 0.462 0.125 8.88 34.53 0.250 0.014
Best 0.350 0.197

T0991 Submitted 0.375 0.114 11.04 23.45 0.231 0.001
Best 0.277 0.199

T0995 Submitted 0.733 0.225 10.40 33.28 0.590 0.018
Best 0.606 0.268

T0996 Submitted NA NA 3.84 59.72 0.492 0.006

T0997 Submitted 0.321 0.179 31.10 15.38 0.494 0.000
Best 0.273 0.261

T0998 Submitted 0.341 0.08 8.21 29.04 0.165 0.000
Best 0.273 0.188

T0999 Submitted 0.242 0.198 12.80 39.41 0.691 0.005
Best 0.173 0.274

T1000 Submitted 0.284 0.158 23.86 23.47 0.568 0.000
Best 0.263 0.313

T1001 Submitted 0.384 0.169 39.03 9.17 0.669 0.036
Best 0.291 0.263

T1003 Submitted 0.331 0.228 42.58 27.02 0.643 0.000
Best 0.217 0.470
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T1004 Submitted 0.378 0.246 16.56 53.19 0.527 0.003
Best 0.272 0.366

T1006 Submitted 0.406 0.319 49.66 14.46 0.639 0.000
Best 0.361 0.865

T1009 Submitted 0.285 0.270 32.39 16.37 0.575 0.004
Best 0.253 0.409

T1010 Submitted 0.358 0.260 26.14 10.38 0.357 0.072
Best 0.285 0.382

T1016 Submitted 0.458 0.667 76.73 2.50 0.686 0.693

T1018 Submitted 0.354 0.212 39.89 14.62 0.637 0.000
Best 0.264 0.381

T1020 Submitted 0.462 0.381 23.62 22.71 0.567 0.019
Best 0.306 0.621

The data in Table 3.1 show that the best available model was selected for submission on only
one occasion (T1016). In all but two other cases (T0961 and T0965), the submitted models
were overpredicted compared to their observed scores with a mean overprediction value of
0.146 (this difference was shown to be statistically significant using a Wilcoxon signed rank
test in Chapter 2 (Table 2.2, P-value of 2.18x10). Calculating the score difference across all
best available models, on the other hand, shows a mean underprediction of -0.128. Just as
importantly, the observed scores for the best available models are on average 0.18 higher than
that for the models selected for submission, with a maximum difference as high as 0.546 for
target T1006, showing that models closer to the native structure were clearly available in the
decoy population and should have been selected. This data, which was collected for an initial
exploratory study into ModFOLDdock performance, is represented graphically in both Figure
3.1, showing comparisons between ModFOLDdock predicted scores and the CASP scores
listed in Table 3.1, and in Figure 3.2, showing the improved correlations obtained between

equivalent ModFOLDdock observed scores and the same CASP scores.
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Figure 3.1. Correlation of ModFOLDdock Consensus6 score with observed scores for McGuffin
group CASP13 assembly models. Top left. With observed mean score. Top right. With CASP13 GDT
TS score. Bottom left. With CASP13 IDDT-oligo. Bottom right. With CASP13 QS-Score.

Figure 3.1 clearly shows that the ModFOLDdock predicted Consensus6 score does not
correlate well with either our own observed mean score or the CASP scores shown,
demonstrating that the unweighted ModFOLDdock Consensus6 score used in CASP13 was
not a good model quality differentiation tool. Figure 3.2 shows much a stronger positive
correlation between GDT and ModFOLDdock mean observed score, despite some spread in
the scatter. Correlations with IDDT and QS-score are weaker, but still improved from their
predicted counterparts. As ModFOLDdock uses the same contributing scores for both
predicted and observed calculations, these differences suggest that there is potentially hidden
predictive power within the ModFOLDdock score blend which could be improved with

optimisation.
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Figure 3.2. Correlation of mean observed score with CASP13 observed scores for McGuffin
group CASP13 assembly models. Left. With GDT TS score. Middle. With IDDT score. Right. With
QS-Score.

CASP13 analysis was not performed until the latter part of 2019 and so it had not been possible
for a full optimisation programme to be implemented prior to the start of CASP14 which took
place during the first half of 2020. In an effort to reduce the disparity between predicted and
observed performance the McGuffin MQA pipeline was updated to include the Voronoi
tessellation program VoroMQA (Olechnovic and Venclovas, 2014) alongside ModFOLDdock
scores. The VoroMQA score was combined with the ModFOLDdock Consensus6 score to
create a hybrid unweighted mean of both scores which was used as the primary ranking score
for CASP14 (see Appendix 7 for a short analysis of VoroMQA versus ProQDock on which this
decision was based). CASP14 organisers had also updated their assessor Z-score calculation,
replacing GDT TS with TM-score as the score representing global quality alongside IDDT-
oligo. Figures 3.3 and 3.4 reflect these changes in metrics and show plots equivalent to those
in Figures 3.1 and 3.2 for McGuffin group CASP14 assembly models. Models were submitted
for 14 out of 22 CASP14 targets.
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The plots in Figures 3.3 show similar trends for the CASP14 data to those seen for CASP13.
ModFOLDdock predicted scores again correlated poorly with our own calculated observed
score as well as CASP TM-score, IDDT-oligo and QS-score. Additionally, and again similarly
to the CASP13 data, Figure 3.4 shows better correlations between the ModFOLDdock

calculated observed score and the official CASP measures.

The conclusions drawn from the results were that the correlations obtained for observed scores
suggested that ModFOLDdock components represented a set of promising metrics when
compared to observed global superposition scores, but that there was a large accuracy gap
between the observed and predicted scores. We aimed to reduce this accuracy gap via a
program of optimisation of the predicted score combination. This can be a challenging process
as it is unclear which aspect of model quality best represents overall accuracy, hence the
multiple scores quoted by CASP and CAPRI, for example. Therefore, in order to achieve

reliable optimisation, it was vital that a suitable single or very few target scores be identified.

3.1.5 ldentifying a target score for optimisation is not immediately obvious.

Following the success of the first four CASP experiments which focussed mainly on tertiary
structure prediction, CAPRI (Critical Assessment or PRediction of Interactions) was set up in
2001 (Lensink et al., 2018) as an additional experiment looking specifically at the prediction of
protein interactions. Like CASP, CAPRI is a blind prediction competition using unpublished
experimental structures which are supplied to participating groups. The expertise that CAPRI
have accrued with quaternary structure models has led to the development of their own method
for evaluating model quality compared to native structures, which relies on three related
measures: Fnat, IRMS and iRMS. Fnat is the fraction of interfacial contacts expressed in the
reference structure that are maintained or conserved in the model with a contact defined as
any non-Hydrogen atom from either chain within 5A. IRMS is a score representing the
backbone RMSD of the (smaller) chain, deemed the ligand, within the complex upon
superposition of the longer chain, deemed the receptor and iRMS is a score representing the
RMSD of interfacial residues as measured by CB atoms with a distance cut-off of 10A
(sometimes 8A) between the superposed native and predicted structures (Basu and Wallner,

2016a). These are used to define four quality classes as follows:

Incorrect: Fnat < 0.1 or both IRMS > 10 and iRMS > 4.0
Acceptable:  Fnat between 0.1 and 0.3 and either LRMS < 10.0 or iRMS < 4.0 or
Fnat =2 0.3 and both LRMS > 5.0 and iRMS > 2.0

e Medium: Fnat between 0.3 and 0.5 and either LRMS 5.0 or iRMS 2.0 or
Fnat =2 0.5 and both LRMS > 1.0 and iRMS > 1.0
e High: Fnat =2 0.5 and either LRMS < 1.0 or iRMS £ 1.0
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There are some problems, however, with using the CAPRI scoring routine as a target score
for optimisation: firstly, that the quality classifications do not easily equate to a single numerical
scale but, also, that the calculations for each class rely on knowledge of both the predicted
and native structure. Nevertheless, Basu and Wallner (Basu and Wallner, 2016a) were able to
adapt the routine into a combined numerical predictor called DockQ (described in Section
3.1.3) which has proved to be a popular score due to its documented correlation with the
CAPRI quality classifiers and has been chosen as a comparator score for a number of
published studies (Johansson-Akhe and Wallner, 2022, Pozzati et al., 2022). DockQ was
therefore initially considered as a potential target score.

In 2014 CASP held the first of two joint CASP/CAPRI experiments. This represented CASP
round 11 and CAPRI round 30 and led to a vital sharing of information and technologies
between the two groups. A second joint experiment was held two years later in CASP12/
CAPRI-37 and this set the precedent for the inclusion of a blinded complex modelling category
in all future CASP competitions. CASP organisers have routinely ranked participant groups
based on combined calculated Z-scores across a number of measures. For example, in
CASP12 group rankings for TBM domains were determined using the combined Z-scores of
the following scores: GDT_HA + (SG+IDDT+CAD)/3 + ASE (see Appendix 1 for score
definitions). In a similar vein, CASP assessors’ formula for assembly structures has been
developed around the combined Z-scores of four methods and, like the CAPRI assessment,
they comprise a mix of local interface and global similarity scores. The four individual scores
are ICS (Interface Contact Score), often referred to as F1, IPS (Interface Patch Score), often
referred to as Jaccard, IDDT-oligo (local Distance Difference Test for oligomers) and GDT_TS
(up to CASP13) replaced by TM-score (CASP14 and above). See Appendix 1 for ICS and IPS

definitions and calculation formulae.

Sum Z-scores for overall group rankings were calculated as an unweighted mean of:
Z-score(F1) + Z-score(Jaccard) + Z-score(IDDT-oligo.) + Z-score(GDT_TS) in CASP13 and
Z-score(F1) + Z-score(Jaccard) + Z-score(IDDT-oligo.) + Z-score(TM-score) in CASP14.

If a Z-score can be considered as simply a statistically normalised version of the raw score, it
follows that the higher the value of the raw score the higher the value of the equivalent Z-score
and therefore the higher the contribution of that Z-score to a groups’ ranking position.
Considering this relationship between raw Z-score and successful modelling, the magnitude
of these four numerical scores was considered an important indicator of model quality. Just as
importantly, though, is that these scores can be used separately or in combination to assess

different aspects of model quality. These scores represented alternative target scores to
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DockQ and to test whether combinations of these scores did indeed offer greater potential
flexibility, three artificial scores were defined as:

e Local score: a calculated unweighted mean of F1 and Jaccard,

e Global score: a calculated unweighted mean of IDDT-oligo and GDT_TS/TM-score

» Total score: a calculated unweighted mean of all four scores.
Matrices of Pearson correlation coefficients were then produced to compare these scores with
ModFOLDdock observed scores, which conveniently also included a DockQ score, using two
datasets of CASP13 and 14 data (see 3.3 below for a description of the dataset).
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Figure 3.5. Pearson correlation matrices of CASP assessor scores with each ModFOLDdock
observed score using CASP13 and 14 assembly models from all CASP groups. Left. CASP13
data. Right. CASP14 data.

From both matrices in Figure 3.5 it can be seen that DockQ has a strong correlation with
QSscore_Official (0.90 for CASP13 and 0.92 for CASP14 data). However, the calculated Local
score has a similarly strong linear relationship with both QS-scores (0.89/0.96 for CASP13 and
0.81/0.90 for CASP14 data), in addition the calculated Global score has a strong correlation
with IDDT_Official (0.9 CASP13 and 0.86 CASP14), which is not seen for DockQ. As a result,
it was considered that using the in-house calculated CASP scores would indeed offer a greater
flexibility in assessing aspects of both local and global model quality whereas DockQ might
offer a more limited assessment. Also, the complexity of the input values for DockQ score gives
it a high variability of contributing factors, that is to say that when optimising to DockQ there
could be uncertainty whether improvements in agreement represented those in global
superposition, chain orientation or interface contacts (all of which contribute to the overall
DockQ score). Using separate target scores might give a clearer signal about the individual
conformational contribution to improvement and so calculated Local, Global and Total scores

were selected as target scores for ModFOLDdock optimisation.
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3.2 Objectives

The objective of this investigation was to identify the maximum level of agreement between
the ModFOLDdock predicted scores and the three scores defined above (Local, Global and
Total) with emphasis on the Local and Global scores. The primary outcome was that optimally
combined ModFOLDdock scores would show improved agreement with the target scores

beyond their consensus baseline level. This is described by the following two hypotheses:

1. HO: There is no relationship between ModFOLDdock predicted scores and the
combined CASP local quality measures ICS and IPS. H1. Individual ModFOLDdock
predicted scores can be combined to form strong positive correlations with combined

CASP local quality measures.

2. HO: There is no relationship between ModFOLDdock predicted scores and the
combined CASP global quality measures IDDT-oligo and either GDT TS (for CASP13
data) or TM-score (for CASP14 data). H1. Individual ModFOLDdock predicted scores
can be combined to form strong positive correlations with combined CASP global

quality measures.

The primary outcomes will be measured by Pearson correlation coefficient, ROC plot and
associated AUC value with an additional Wilcoxon signed rank test performed on observed
scores as a confirmatory measure. All of these should show improvement over consensus

baseline values.
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3.3 Materials and Methods

To investigate the hypotheses, a dataset was created containing all CASP13 and 14 assembly
models. CASP scores for all modelling groups were taken from the CASP raw data tables

available at https://predictioncenter.org/caspl3/results.cqi?view=targets&trtype=multimer and

https://predictioncenter.org/caspl4/results.cqi?view=targets&trtype=multimer. The dataset

comprised all homomeric models of varying stoichiometries and difficulty ratings along with
CASP assessor scores and, in total, comprised 3282 models over 44 CASP targets (T0960 —
T1087). Models were rescored with ModFOLDdock on a per target basis and both predicted
and observed scores were applied. Due to the high number of models, the rescoring process
required a substantial time investment and it was decided to exclude all heteromeric targets
from the dataset due to the high CPU demands experienced when predicting the scores of

those with higher order stoichiometry.

3.3.1 Objective data processing using an RSNNS Neural Network (NN)

An objective method of investigation, and one that offered potential for revealing hidden
relationships within the ModFOLDdock score population, was the creation and supervised
training of a neural network. The R Stuttgart Neural Network Simulator library (RSNNS),
(Bergmeir and Benitez, 2012) was used to create a neural network with the architecture of a
simple feed-forward multi-layer perceptron (MLP) with one hidden layer, an example of which
is depicted in Figure 3.6. This was chosen due to the flexibility of the program described in the
above article and personal familiarity with R programming. The ROCR library was used to
create Receiver Operator Characteristic (ROC) plots and corresponding Area Under the Curve
(AUC) metrics to measure performance of the classification by True Positive Rate (TPR) over
all thresholds of False Positive Rate (FPR).

Inputs (scores) Output

Figure 3.6. A schematic of a single hidden layer MLP NN with six inputs similar to that
programmed in this study.

The main pitfalls with neural networks are accidental over- and underfitting. Overfitting results

when a powerful network learns the whole training dataset rather than the trends within the
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data. This is often revealed when the predicted and true-label data are plotted and
characterised by a very close fit between the distributions of the two variables with a high
variability in the regression line matching the distribution. Underfitting results from poor
learning and is often characterised by a poor fit to the data distribution and low variability
(inappropriate straight line) in a regression plot. These problems can often be limited by using
a recognised supervised learning technique coupled with hyperparameter optimisation.

3.3.2 Ensuring fair score distribution - three-fold cross validation.

Supervised training, when a target training value (referred to as a true label) is supplied, was
undertaken using the 3-fold cross validation method. This approach attempts to control for
problems that may be encountered when using a dataset that is simply split to form a single
training and testing set. The most notable issue with this simple approach is that the data may
not follow a random distribution in each set, meaning that one set could have more data in the
correct or incorrect class or that the numerical magnitude is substantially uneven between the
sets. These differences may lead to the NN performing well on the training dataset but poorly
on the testing dataset (underfitting). Cross validation allows every data point in the whole
dataset to be included fairly in both training and testing stages (an example R program is

included in Appendix 14).

To set up the cross-validation, CASP scores were first used to calculate the Local, Global and
Total target scores as described at the end of Section 3.1.5. Three subset arrays were then
defined containing models for different targets; subsetl contained 15 targets, subset2, 15
targets and subset3, 14 targets. Targets were assigned using a random generator and resulted

in the following subset populations.

subsetl (T0999 T1038 T0977 T0997 T1083 T1054 T0989 T1016 T1048 T1003 T1087 T0984
T0983 T1020 T0966)

subset2 (T0963 T0995 T1001 T1018 T0976 T0998 T0965 T1061 T1062 T1010 T1070 T1078
T1000 T1080 T1084)

subset3 (T0970 T1006 T0961 T1032 T0973 T1034 T0960 TO979 T1004 T0981 TO996 T0991
T1009 T0985)

Test and training datasets were then created from these subset arrays for each of the CASP
Global, Local, and Total scores. During programming, the Global score was tested first and so
the process will be described for this score only but it was then repeated in exactly the same

way for the Local and Total scores.

e Training_set1 comprised data from subset 2 and 3 but no data from subset 1.
e Training_set2 comprised data from subset 1 and 3 but no data from subset 2.

e Training_set3 comprised data from subset 1 and 2 but no data from subset 3.
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This organisation is represented in Figure 3.7.

Training set 1 > subset 1 subset 2 subset 3 - score 1
Training set 2 > subset 1 subset 2 subset 3 - score 2
Training set 3 2> subset 1 subset 2 subset 3 - score 3

Testing set 1 Testing set 2 Testing set 3

Figure 3.7 The model populations used for supervised MLP training. Those selected are in grey
and those omitted are in white for each training and testing dataset.

Adopting this strategy ensured there was no overlap of targets in individual training and testing
datasets (the full list of targets in each can be found in Appendix 8). The data within each
training and testing dataset was programmatically shuffled into a random order preventing any
bias in score distribution. For each master dataset, two further datasets were then created
which contained only input (ModFOLDdock scores) or output (Global score) scores. A binary
cut-off was created to allow the calculation of true and false predictions, which were used to
populate the confusion matrices and determine the TPR and FPR for the ROC calculations.
To do this the predicted scores were compared to the target Global scores to calculate a
difference. The difference value was then used to ensure scores were correctly rounded to
one decimal place. Finally, the scores were converted to binary values using 0.5 as the cut-off

value, i.e. score > 0.5=1 and score < 0.5=0.

SUBSET 1 SUBSET 2 SUBSET 3

MLP1 prediction MLP1 training (Training set 1)
(Testing set 1)

MLP2 training MLP2 prediction (Training set 2)
(Testing set 2)

MLP3 training (Training set 3) MLP3 prediction
(Testing set 3)

Figure 3.8. A diagram showing the training and testing subsets used in 3-fold cross validation
for MLP 1, 2 and 3.

The neural networks, henceforth referred to as MLPs, were then created to predict on each
testing set after supervised learning using each corresponding training set. Three separate
MLPs were defined with different network weights, one for each training and testing set
combination, i.e. MLP1 was trained on training set 1 and tested on testing dataset 1, MLP2
was trained on training set 2 and tested on testing set 2 and MLP3 was trained on training set

3 and tested on testing set 3 as shown in Figure 3.8.
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Initially the setup was performed using default hyperparameters (row 1 of Table 3.2 below,
values in red) to obtain starting point weights. Before the full cross validation was run,
hyperparameter optimisation was required to find the values giving the best performance
(described in full in Section 3.3.4). Once this was complete, predictions from each of the three
MLPs could be run using optimised hyperparameter settings. As defined in the Objectives
section, Pearson correlation coefficients, ROC plots and AUC calculations were used as the
primary outcome measures for improvement over baseline data. Additional data analysis was
also conducted using the LM-style measures adjusted R-squared, residual standard error and
maximum standardised residual values (the latter as a measure of the residual size in standard
deviation units). These metrics were used to provide additional insight into the relationships
within the regression models. All comparison values were calculated with reference to

calculated CASP Local, Global or Total scores.

3.3.3 Creating baseline and observed values for comparisons.

Baseline values for Pearson correlations, ROC plots and AUC values were manually
calculated using two different predictor values versus each of the three target scores. To do
this, testing sets 1, 2 and 3 inputs were combined with testing sets 1, 2 and 3 outputs minus
the NN training and MLP prediction stage. These baseline values could then be directly
compared to post-training values to quantify any improvement. The two baseline predictor
values were:

1. The ModFOLDdock Consensus6 predicted score.

2. The optimal combination of one or more individual ModFOLDdock predicted scores.
A third set of values representing the optimal combination of one or more individual
ModFOLDdock observed scores was also created. These scores would act as the theoretical

maximum agreement that the predicted scores could reach.

3.3.4 Fine-tuning the RSNNS MLPs — Hyperparameter optimisation.

During setup with default hyperparameter values it was noticed that the lowest values for both
individual score correlations and all score predictions was consistently achieved with
comparisons to calculated Local score. This, then, appeared to be the most difficult score to
predict (which seems reasonable due to the nature of predicting interfacial contacts). The Local

score program was therefore used for initial hyperparameter testing.

The four hyperparameters included in test variations were learning rate, maximum difference
considered an error (Max, error), maximum iterations (Max It.) and number of hidden neurones
(Size). Ten different variations of hyperparameters were created and the results were

assessed by Pearson correlation coefficient and ROC AUC for each of the three MLPs.
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Table 3.2. RSNNS MLP hyperparameter testing variations and performance results for local
scores. Data was collected using the combined MLP 1, 2 and 3 training datasets.

Hyperparameter 1 2 3 4 5 6 7 8 9 10
Learning rate 0.01 | 0.05 | 0.01 0.1 0.01 { 0.01 | 0.01 | 0.01 | 0.01 | 0.01
Max Diff. 0.01 | 0.01 | 0.05 0.1 001 { 0.01 | 0.01 | 0.01 | 0.01 | 0.02
Max It. 100 | 100 | 100 | 100 | 200 | 100 | 100 | 100 | 200 | 500
Size 4 4 4 4 4 54 | 542 | 42 | 42 4
Performance 1 2 3 4 5 6 7 8 9 10
MLP1 correlation 091 | 091 | 091 | 091 | 0.92 | 0.91 0.9 0.9 091 | 0.91
MLP2 correlation 083 | 0.83 | 0.84 | 0.84 | 0.84 | 0.83 | 0.82 | 0.83 | 0.83 | 0.83
MLP3 correlation 093 | 093 | 093 | 093 | 094 | 093 | 0.93 | 093 | 0.93 | 0.93
All correlation 087 | 0.87 | 0.87 | 0.88 | 0.89 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87
MLP1 ROC AUC 0.988 | 0.989 | 0.988 | 0.988 | 0.989 | 0.989 | 0.988 | 0.989 | 0.989 | 0.989
MLP2 ROC AUC 0.943 | 0.94 | 0943 | 0.94 [ 0.941 | 0.939 | 0.94 | 0.94 | 0.942 | 0.94
MLP3 ROC AUC 0.989 | 0.989 | 0.99 | 0.99 | 0.99 | 0.99 |0.989 | 0.99 | 0.989 | 0.989
All ROC AUC 0.97 | 0.972|0.973 | 0.972 | 0.973 | 0.972 | 0.972 | 0.973 | 0.973 | 0.972

Variation 5 (shaded grey) resulted in the overall best performance indicators (as calculated by
a mean score across all performance values) and so hyperparameters were set to: learning
rate = 0.01, Maximum Diff. = 0.01, Maximum It. = 200 and hidden nodes (Size) = 4 for the
cross-validation process. This process was performed twice more for Global and Total target
scores and very similar results were obtained. The Global target score program showed the
best performance with the same hyperparameter settings listed above whereas the Total score

program performed better with a Maximum It. of 100.

3.3.5 lterative and regression errors — checking for over and underfitting.

Plots were created for iterative error with loss measured by the sum of squares error (SSE)
across iterations. For these graphs the training loss is represented by the black line and the
estimated validation loss, i.e. that which would be encountered on unseen data, is represented
by the red line. For both, a smooth downward curve is desirable; a curve which remains high,
particularly for the validation loss may represent underfitting, whereas an upward trend in either
line may represent overfitting. The iterative error and regression error plots for MLP1, 2 and 3

are shown below.
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Figure 3.9 Iterative and regression error plots for the three RSNNS MLPs. Top. Iterative error for
MLP1 (left), MLP2 (middle) and MLP3 (right). Bottom. Regression error for the same MLPs. Data was
collected using the combined MLP 1, 2 and 3 training datasets.

The iterative error plots in the top row of Figure 3.9 show that the MLPs have been well trained
on each respective training dataset as shown by the smooth downward curve. All three plots
show little further improvement and plateau after approximately 20 iterations which is indicative
of each model reaching a point where further training iterations do not significantly improve its
fit to the training data. This assumption is supported by the validation error line for MLPs 1 and
3 which show decreases with no sustained increase. MLP2, however, does show evidence of
underfitting with a larger difference between the training and validation data. To assess
whether this was problematic, the regression error and supporting statistics for this MLP were
checked. From the lower three graphs in Figure 3.9 it can be seen that MLP2 actually has the
lowest deviation between ideal (black) and test (red) regression lines but that the data from
training set 2 has the widest scatter with more outliers. A look at the accompanying regression
statistics for this model reveals coefficients with an estimated intercept of 0.015582 and an
estimate for the training set of 0.760812. This shows that when true values are 0, estimated
predicted values would be 0.015582 and that each 1-unit change in the true value would lead
to a 0.760812 change in predicted value. Additionally, an R-squared value of 0.6898 indicates
a relatively good fit, explaining about 68.98% of the variance in the dependent variable. An F-
statistic, which measures the ratio of variance explained by regression to that explained by

residuals, of 2591 with a p-value of 2x107'¢ is highly significant, supporting the overall
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significance of the MLP scores. In conclusion, MLP2 shows some deviation from ideals but

predictions remain significant compared to actual values.

3.4 Results and Discussion.

3.4.1 The baseline values.

3.4.1.1 Results for the Consensus6 predicted score.

The following regression plots, ROC plots and AUC values shown in Figure 3.10 were
produced using the combined training and testing datasets defined above but with no neural
network training or prediction. These show the baseline relationships between the unweighted
Consensus6 score with each of the calculated Local, Global and Total target scores.
Comparisons of the primary outcome measures Pearson corelation and ROC AUC as well as
additional LM-style regression metrics are presented in Table 3.3.

Table 3.3. Comparisons of two primary outcome measures (Pearson coefficient and ROC AUC -
in bold) and LM-style regression metrics for baseline ModFOLDdock Consensus6 scores.

Comparison values are calculated with reference to calculated CASP Local, Global and Total target
scores using the combined training datasets but with no MLP prediction.

Regression statistic Local Global Total
Pearson coefficient 0.80 0.765 0.835
Adjusted R-squared 0.64 0.58 0.69
Max. std. residual 454 3.15 3.58
Residual standard error 0.13 0.12 0.104
Statistical comparisons Local Global Total
ROC AUC 0.966 0.875 0.948
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Figure 3.10 Scatter plots and ROC plots for ModFOLDdock Consensus6 score versus all target
scores for the combined training and testing datasets. Top. Local score. Middle. Global score.
Bottom. Total score. ROC plot right-hand axis shows AUC values, coloured blue to red for low to high
values respectively. Values on the plotted line represent the thresholds used to calculate the AUC.
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The results appear to show promising levels of agreement between the unweighted consensus
score and the three selected target scores as measured by Pearson correlation coefficient.
However, a closer look at the accompanying standardised residual values and the statistical
data in Table 3.3 reveals that the spread of the data is relatively high with all three distributions
having maximum standardised residuals greater than 3.0 (values greater than 3.0 are
generally considered as representing outliers (Lin et al., 2017)) as well as R-squared values
ranging from 0.58 to 0.69 showing that between 31-42% of the variation in the plots cannot be

accounted for by the relationship between the scores.
3.4.1.2 The optimal combination of individual ModFOLDdock predicted scores.

Table 3.4 shows the same regression and statistical comparisons as Table 3.3 but this time
for the optimal agreement between target scores and either any single or any combination of
the ModFOLDdock predicted scores. Table 3.4 and the graphical data in Figure 3.11 below
show that optimal agreement was seen between QSscoreOfficialJury and the Local target
score, the unweighted mean of IDDTOfficialJury and QSscoreOfficialJury and the Global target
score and the unweighted mean of IDDTOfficialJury, QSscoreOfficialJury and DockQJury and
the Total target score.

Table 3.4. Comparisons of the two primary outcome measures (Pearson coefficient and ROC
AUC - in bold) and LM-style regression metrics for baseline ModFOLDdock optimal score
combinations. Comparison values are calculated with reference to CASP Local, Global and Total target
scores using the combined training datasets but with no MLP prediction.

Regression statistic Local Global Total
Pearson coefficient 0.89 0.88 0.90
Adjusted R-squared 0.78 0.77 0.80
Max. std. residual 5.13 412 4.85
Residual standard error 0.100 0.088 0.083
Statistical comparisons Local Global Total
ROC AUC 0.976 0.931 0.971
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Figure 3.11 Scatter plots and ROC plots for optimal combinations of ModFOLDdock
predicted scores versus all target scores for the combined training and testing datasets. Top.
Local score. Middle. Global score. Bottom. Total score. ROC plot right-hand (y2) axis shows AUC
values, coloured blue to red for low to high values respectively. Values on the plotted line represent
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Comparing this set of results to those in Table 3.3 and Figure 3.10 for the Consensus6
baseline, it can be seen that better agreements between the target scores and either single or
combinations of the ModFOLDdock predicted scores are achievable. This is true for the
Pearson correlation coefficients, ROC AUC values and R-squared values. However, the
maximum standardised residual values have increased compared with those for Consensus6

scores suggesting that outliers may be fewer but possibly more extreme in value.

3.4.1.3 Results for optimal combination of individual observed scores.

Figure 3.12 shows the Pearson correlation coefficients obtained between the target scores and
optimal combinations of observed scores similar to those in Figure 3.11. Table 3.5 summarises
the baseline and observed correlation and ROC AUC primary outcome measures from
sections 3.4.1.1 and 3.4.1.2 for easy comparison. Values obtained for observed scores should,

in theory, represent the maximum agreement obtainable between target and predicted scores.

CASP combined local score vs Mean of MFD QS scores CASP combined Global score vs MFD IDDT_Official CASP combined Total score vs MFD QS_Off QS_Calc IDDT Mean

08
08

06
06
06

04

04
MFD IDDT_Official
04

Mean of MFD QS scores
MFD QS_0+QS_C+IDDT Mean

02
02

Cor(Pearson) = 0.96 S1® . csmma = Cor(Pearson) = 0.89

00
0.0

Cor(Pearson) = 0.96

00 02 04 06 08 00 02 04 06 08 00 02 04 06 08

CASP local score CASP Global score CASP Total score

Figure 3.12 Scatter plots for optimal combinations of observed scores versus all target scores
for the combined datasets. Left. Local score. Middle. Global score. Right. Total score.

Table 3.5 A comparison of Pearson correlation and ROC AUC primary outcome measures
between ModFOLDdock baseline (Consensus6 and optimally combined) and observed scores
and all three target scores.

Target Correlation | ROC
score ModFOLDdock predicted baseline score coefficient AUC
Local Consensus6 0.80 0.966
Global | Consensus6 0.77 0.875
Total Consensus6 0.84 0.948
Optimally combined predicted baseline score
Local QSscoreOfficialJury 0.89 0.977
Global | (IDDTOfficialJury + QSscoreOfficialJury) /2 0.88 0.931
Total (IDDTOfficialdury + QSscoreOfficialJury + DockQJury) /3 0.90 0.971
Optimally combined observed scores
Local (QSscoreOfficial + QSscore_Calc) /2 0.96 0.995
Global | IDDTOfficial 0.89 0.934
Total (QSscoreOfficial + QSscore_Calc + IDDTOfficial) /3 0.96 0.988
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The improvement in Pearson correlation and ROC AUC values between the Consesnsus6
scores and those for manually created optimal combinations is summarised in Table 3.5 along
with further improvements seen for the observed score combinations. This data suggests that
improved agreements are possible with optimal combination of the ModFOLDdock scores and
that there remains room for improvement up to a ceiling shown by the observed score
combinations. It is therefore reasonable to postulate that a neural network may be able to
improve optimal combinations beyond that possible manually. The key outcomes of a
successful neural network training and prediction process are therefore a further increase in
the Pearson correlation, ROC AUC and R-squared values, with a simultaneous reduction in

the magnitude of the residual standard error and maximum standardised residual values.
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3.4.2 Three-fold cross validation results
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Figure 3.13 Scatter plots (left) and ROC plots for cross-validation of NN predictions of Local
target score. Top. Results for MLP1. Middle. Results for MLP2. Bottom. Results for MLP3. ROC plot
right-hand (y2) axis shows AUC values, coloured blue to red for low to high values respectively. Values
on the plotted line represent the thresholds used to calculate the AUC.

The plots in Figure 3.13, for Local target score, show that the two primary outcome measures,
Pearson coefficient and ROC AUC values, have increased beyond those achieved for both
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Consensus6 and optimal baseline values for MLP1 and 3. However, for MLP2, while the
Pearson coefficient has increased beyond the Consensus6 baseline value of 0.80 it has not
exceeded the optimal baseline value of 0.89. The AUC has also reduced from baseline of
0.966 to 0.941.
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Figure 3.14 Scatter plots (left) and ROC plots (right) for cross-validation of NN predictions for
Global target scores. Top. Results for MLP1. Middle. Results for MLP2. Bottom. Results for MLP3.
ROC plot right-hand (y2) axis shows AUC values, coloured blue to red for low to high values respectively.
Values on the plotted line represent the thresholds used to calculate the AUC.

92



Chapter 3

Again, Figure 3.14 shows that the Pearson coefficient and ROC AUC score primary outcome
measures for MLP1 and 3 have increased beyond baseline values for Global scores but, again
the MLP2 Pearson coefficient has not exceeded the optimal combination baseline and the
AUC value remains below both baseline values.
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Figure 3.15 Scatter plots (left) and ROC plots (right) for cross-validation of NN predictions for
Total target scores. Top. Results for MLP1. Middle. Results for MLP2. Bottom. Results for MLP3.
ROC plot right-hand (y2) axis shows AUC values, coloured blue to red for low to high values respectively.
Values on the plotted line represent the thresholds used to calculate the AUC.
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Similarly, Figure 3.15 shows that MLP1 and 3 have again improved from baseline for Total
score but MLP2 shows no improvement in either Pearson coefficient or ROC AUC value.
These results suggest that the NN is training successfully on training sets 1 and 3 and
predicting accurately on their respective testing sets. However, either training or testing set 2
appears to contain some data that is inhibiting successful training. Although all effort was made
to ensure a random distribution of models across datasets, a closer inspection of the model
populations reveals that models for targets T1061 (T5 phage tail subcomplex), T1070
(Escherichia virus CBA120) and T1080 (Bdellovibrio bacteriovorus), all of which were rated
“Difficult” by CASP and mentioned as being poorly modelled by the majority of groups in the
CASP14 Assembly Assessment (Karaca, 2020), are included together in testing set 2. It is
possible that MLP2 has not had sufficient training on similarly poorly modelled structures in

training set 2 to make accurate predictions for these structures in testing set 2.

3.4.3 Combining NN predictions to produce a final prediction result.
To create the following plots the results from MLPs 1, 2 and 3 (trained on set 1, 2 or 3) were
combined to predict the final scores. As before, the predictions were compared by Pearson

correlation coefficient and ROC AUC values.
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Figure 3.16 Scatter plots (left) and ROC plots (right) for predictions from the combined MLPs for
each target score. Top. Local score. Middle. Global score. Bottom. Total score. ROC plot right-hand
(y2) axis shows AUC values, coloured blue to red for low to high values respectively. Values on the
plotted line represent the thresholds used to calculate the AUC.
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To allow at-a-glance comparisons across all baseline, cross-validation and final prediction
stages, the Pearson correlation coefficient and ROC AUC primary outcome measures from
Figure 3.16 are collated with those from baseline and cross validation training in Table 3.6

Table 3.6. A comparison of primary outcome measures Pearson coefficient and ROC AUC values

for the three combined RSNNS MLPs for all 3 target scores. C6 = Consensus6 baseline,
Max=optimal combinations baseline.

Correlation Baseline Cross-validation Final
score Measure C6 Max. MLP 1 MLP 2 MLP 3 Prediction
Local Pearson r 0.80 0.89 0.91 0.83 0.93 0.87
ROC AUC 0.966 0.977 0.989 0.941 0.989 0.969
Global Pearson r 0.77 0.88 0.92 0.81 0.94 0.88
ROC AUC 0.875 0.931 0.947 0.869 0.970 0.927
Total Pearson r 0.84 0.9 0.94 0.84 0.95 0.90
ROC AUC 0.948 0.971 0.989 0.924 0.991 0.971

Table 3.6 shows that the effect of NN training for all three target scores has resulted in an
increase in the primary outcome measures of Pearson coefficient and ROC AUC compared to
their Consensus6 baseline values. In comparison to the optimal combinations baseline, the
data are slightly less clear. NN predictions have equalled the baseline Pearson coefficient
value for the Global score (0.88) and both Pearson coefficient (0.90) and ROC AUC (0.971)
values for the Total score. For Local score both Pearson coefficient and ROC AUC fell slightly
short of the values achieved with the optimal combination baseline, as did ROC AUC for Global
score.

Table 3.7. A comparison of the LM-style regression measures for the three combined RSNNS
MLPs for all 3 target scores. C6 = Consensus6 baseline, Max=optimal combinations baseline.

Correlation Baseline Final
score Measure C6 Max. Prediction

Adjusted R-squared 0.64 0.78 0.756

Local Max. standardised residual 454 5.13 4.87

Residual standard error 0.13 0.100 0.107

Adjusted R-squared 0.58 0.77 0.781

Global Max. standardised residual 3.15 4.12 4.30

Residual standard error 0.12 0.088 0.087

Adjusted R-squared 0.69 0.80 0.804

Total Max. standardised residual 3.58 4.85 4.35

Residual standard error 0.104 0.083 0.084

Table 3.7 shows the LM-style regression statistics for Consensus6 and optimal combination
baselines as well as those for the final NN prediction. All R-squared values show an increase
from the Consensus6 baseline suggesting a better fit to the regression line by the post-training

values. R-squared values also increase over the optimal combination baseline values for
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Global and Total scores. The maximum standardised residual values, however, have not
returned to their Consensus6 baseline low and remain above the 3.0 outlier cut-off for all
scores. The residual standard error scores have decreased from the Consensus6 baseline
showing that the overall standard deviation of the regression residuals has reduced over this

baseline but they are not noticeably reduced compared to the optimal combination baseline.

In summary, when measured against the primary outcomes, the results showed that the
Pearson correlation coefficient and ROC AUC values had improved over the Consensus6
baseline values but were either slightly below or equal to those obtained for the optimal
combination baseline. For the LM-style regression measures, the R-squared values improved
beyond both baselines in two out of the three cases, and a simultaneous reduction in the
magnitude of the residual standard error was seen in comparison with the Consensus6

baseline. Maximum standardised residual values, in general, did not decrease from baseline.

3.4.3.1 Results of a Wilcoxon signed rank test for significance.

There are some conflicting results in both the primary outcome measures of Pearson
correlation coefficient and ROC AUC as well as the LM-style regression scores. To resolve
these and determine more objectively whether there was significant improvement after neural
network training, a Wilcoxon signed rank test for significance was performed between both
sets of baseline scores and the final NN predictions. To do this, the top scoring model for each
CASP target was determined for each of the Consensus6 and optimal combination baselines
as well as the NN predicted scores. The observed scores associated with each of these top-
ranked models were then compared using the Wilcoxon test. In this way a more objective
measure of performance can be made by utilising observed scores which always have a higher
degree of accuracy. The non-parametric Wilcoxon signed-rank test was chosen as scores
were not normally distributed and a paired version was used, as each method predicts over
the same target model set. The test was one-tailed to assess an increase in MPL predictions
over both baselines. Top scoring models were sampled for each of the Local, Global and Total

scores and the results are presented in Table 3.8.
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Table 3.8. A comparison of observed scores for models ranked top (1) for each scoring method
using a paired Wilcoxon signed rank test. Models were ranked by Local, Global and Total predicted
scores and the equivalent associated observed scores were sampled for the test. P-values were
calculated at the 95% confidence and significant values of <0.05 are in bold.

Score Comparison P-value
Local Consensus6 baseline versus final prediction 0.0146
Optimal combination baseline versus final prediction 0.7532
Global Consensus6 baseline versus final prediction 8.14x10°
Optimal combination baseline versus final prediction 0.2781
Total Consensus6 baseline versus final prediction 2.36x10%
Optimal combination baseline versus final prediction 0.6025

The results in Table 3.8 show more definitively that neural network (NN) training was able to
significantly improve the prediction of all three scores when compared to the Consensus6
baseline. However, the process was not able to significantly improve upon the predictions for
the optimally combined baseline scores. This was not to say that no improvement was detected
- for each predicted score the sum of observed scores was always highest for the MLP
prediction - just that the improvement was only significant compared to the Consensus6

baseline.

3.5 Conclusions

3.5.1 There is agreement between NN predictions and CASP assessor scores.

This study has established that there are promising levels of agreement between
ModFOLDdock predicted model quality scores and the CASP official observed scores which
had not been seen before. The results suggest that by referencing the CASP Z-score
calculations intended to assign overall group rankings, three useful target scores representing
the Local, Global and Total quality of the protein models could be determined. Furthermore,
results from Pearson correlation coefficients and R-squared values along with ROC AUC
values confirmed that predictions can be improved by using weighted combinations of the
scores. The same measures also confirm that similar improvement in all three predicted scores
can be achieved by using the target scores to train a simple multi-layer perceptron (MLP) prior
to prediction. Lastly, it has been shown that, according to a Wilcoxon signed rank test, MLP

training significantly improves all three scores over the original Consensus6 score.

It must also be noted that improvement over the optimal combination baseline was not
consistently seen in Pearson correlation coefficient or ROC AUC values. Furthermore, one
would have hoped to see a consistent improvement in the LM-style measures showing a better
fit to the regression line for NN predictions, i.e. an increase in R-squared values (showing that
a higher percentage of variance in one variable is explained by the other) and a decrease in

both residual standard error and maximum standardised residual showing that the size of the
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residuals is decreasing. Unfortunately, this was only seen in comparison to the Consensus6

baseline.

3.5.2 The lack of improvement beyond optimal combinations can be explained.

It may be possible that the failure of the MLP training to significantly improve predictions over
the optimally combined baseline was the product of the relatively small size of the dataset
(while there are over 3000 models in the dataset, these models represent only 44 distinct
targets) coupled with two further limitations inherent in the data. The first of these limitations is
to do with the design of ModFOLDdock itself. Namely that there are relatively few (six) inputs
from contributing scores which may produce a narrow bandwidth of data for the MLP to
interpret. That is to say that there may not be enough variation within the six scores for an
anomalous result in one single score to be sufficiently outweighed by the others. The second
issue is to do with the reliability of the scores within the dataset. While Global and Total scores
appear to have been well predicted by the MLP, Local score prediction has been less
successful. A look at the mean values reveals that the mean Local score was only 0.21
compared with 0.45 for Global score. This tendency for generally lower values throughout the
dataset resulted in a more limited range of model quality for the MLP to interpret. The disparity
in range between Local score (which is calculated from IPS and ICS score) and global score
(calculated from TM-score and IDDT) is described in the official CASP14 assembly modelling
review (Karaca, 2020) which described a low modelling success rate of 38% as measured by
ICS compared to 86% as measured by TM-score (success was defined as scores >0.4). This
was cited as evidence that the interface area was consistently less accurately modelled than
the global fold in CASP14 models. This may explain the decreased performance of the MLP

for Local score prediction.

It is also likely that increasing both the size of the training dataset and the number of data
points supplied to the NN would enhance accuracy. Both of these changes would also likely
allow the size of the NN to be increased without fear of overfitting which would result in a

deeper NN architecture.

3.5.3 The data support the hypotheses.

Notwithstanding these issues, the results obtained do support both hypotheses outlined in the
objectives, i.e. that individual ModFOLDdock scores can indeed be combined to form strong
positive correlations with combined CASP Local and Global quality measures. Further to this,
the increase in agreement achieved between MLP predicted and target score for all scores is
statistically significant compared to the original Consensus6 score. These results are important
as they reveal that the simple consensus approach used up until this point was masking potent

information hidden within the ModFOLDdock constituent scores. As such ModFOLDdock now
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represents a MQAP with potential to reliably distinguish between native-like and decoy models

of protein multimeric complexes.

Post CASP15 (2022) the ModFOLDdock MQAP was made publicly available via the IntFOLD
website (https://www.reading.ac.uk/bioinf/ModFOLDdock/).
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CHAPTER 4

Independent performance benchmarking of MultiFOLD and ModFOLDdock
using CASP15 data
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4.1 Background

If CASP14 was notable for the unprecedented increase in tertiary structure prediction accuracy
achieved by AlphaFold, CASP15 was also notable for a definite shift in emphasis toward
multimeric or quaternary structure modelling. This was demonstrated, not only by an increase
in the number of assembly targets, up to 41 from only 22 in CASP14 (37 of which were shared
CAPRI targets), but also by the inclusion of an estimation of model accuracy (EMA) category
for quaternary structures for the first time. For the EMA competition, specific score definition
and submission formats called QMODE1 and QMODE?2 were required and the work described
in this chapter builds upon the three hew ModFOLDdock consensus scores (localscore,
globalscore and totalscore) identified in Chapter 3. Part one of the results describes the
correlations and ranking agreements achieved during the QMODE2 calibration process and
part two documents the successful ModFOLDdock performance using data from the CASP15
assessors’ official analysis. Also considered in a post-CASP analysis is the effect of enhanced
ModFOLDdock accuracy on MultiFOLD modelling performance as well as comparisons to

previous CASP competitions.

4.1.1 ModFOLDdock updates

In Section 3.1.4 the inclusion of a VoroMQA score into the CASP14 ModFOLDdock pipeline
and its use in calculating an extended consensus score was explained. However, VoroMQA
had not formally replaced ProQDock as a single-model component method within the program
code itself. With the ModFOLDdock updates that were undertaken to meet CASP15
requirements, this change was now also included. A second addition was made to the
ModFOLDdock code base, and this was prompted by the positive results seen at CASP14 for
the ModFOLDS tertiary MQA server (McGuffin et al., 2021) and which were, in part, due to an
increased contribution of the Contact Distance Agreement (CDA) score (Maghrabi and
McGuffin, 2017). It was realised that it would be possible to create a multimeric version of the
CDA score by direct sampling of the AlphaFold2 contact map created during the modelling
process (see section 4.3.1 for the methodology) and so work was undertaken to add a
multimeric CDA score as a seventh ModFOLDdock constituent score. Due to these updates
and the additional EMA requirements, a second round of finer-grained ModFOLDdock
optimisation was now required in addition to that already described in Chapter 3. This round is
henceforth referred to as the “QMODE2 calibration”.

4.1.2 The QMODE specifications

The new EMA category was solely concerned with multimeric (assembly) models and required
submissions of scores within 48 hours of the release of each model population. Competing
groups were required to submit scores for all models (often in the region of 300) as they were

released, on a target-by-target basis, in either of two formats: QMODE1 or QMODE?2. Both
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QMODE formats required a global score (SCORE), in a 0-1 range, as an estimate of the overall
accuracy of the whole modelled complex. This score was mandatory. A second score
(QSCORE), also with a 0-1 range, and intended to reflect the overall accuracy of the model
interface, was specified for both QMODE formats, but its inclusion was optional. QMODE2
additionally required a series of individual residue-level confidence scores (again with a range
of 0-1). These were to be applied to all amino acid residues located on different chains where
the CB to CB (Ca for Glycine) distance was measured as <8A. These were intended to reflect
the likelihood of the identified interface residues in the model matching the interface residues
of the native structure. Figure 4.1 below shows an example of the required QMODE?2 format
and all ModFOLDdock variants were programmed to submit all three scores for QMODE2. The
QMODE format description is available from:

https://predictioncenter.org/casp15/index.cgi?page=format#QA.

QMODE2. Residue-based Interface Assessment

PFRMAT QA

TARGET T0999

AUTHOR 1234-5678-9000

REMARK Reliability of residues being in Interfaces

METHOD Description of methods used

MODEL 1

QMODE 2

T1 031TSOOO_10A1 :0.9 A3:0.9A17:0.7 A19:0.7 B45:0.7 B49:0.4
B50:0.4 B53:0.8

T1031TS999 10 0.7 X A15:0.5 A17:0.9 A44:0.7 A46:0.7 B4:0.3 B9:0.4
END

Figure 4.1. QMODE2 scoring requirements for the CASP15 EMA competition.
Ringed in red: the global score (SCORE); ringed in blue: the overall interface score (QSCORE) and
ringed in green: the residue-level confidence scores. Image taken from (Edmunds et al., 2023).

4.1.3 TS format updates for modelling

The only change in the modelling format was that the B-factor column, which is used as a
residue accuracy measure, now needed to be populated with a predicted IDDT-like score
(pIDDT) with a range of 0-100 instead of a displacement estimate in Angstréms. This meant
that higher scores would now signify a closer predicted agreement with the native structure

rather than a more distant one.
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4.2 Objectives

The previous chapter described how the CASP14 “Global” and “Local” scores used for Z-score
calculations took the form of unweighted means of IDDT-oligo plus TM-score and F1 or
interface contact score (ICS) plus Jaccard coefficient or interface patch score (IPS)
respectively. In the context of the CASP15 EMA scores, the CASP14 “Global” score could be
considered broadly comparable to the CASP15 “SCORE” and the CASP14 “Local” score to
the CASP15 “QSCORE”. It was reasoned then, that considering the demonstrated
relationships of predicted localscore and globalscore to their observed Local and Global score
counterparts, comparable projected ModFOLDdock score combinations might be used to
generate the SCORE and QSCORE for the QMODE?2 files. As a result, three main objectives
and one secondary consideration were established for the QMODE2 calibration.

The first objective was to identify the new maximum agreements which could be obtained
between ModFOLDdock predicted scores, which now included the CDA and Voronota-JS
derived VoroMQA scores as components, and the observed Global and Local scores as
proxies for SCORE and QSCORE respectively.

The second objective was to optimally combine predicted scores into an individual residue

confidence score.

The third objective was to modify the output of MultiFOLD and ModFOLDdock to report
similarity or "pIDDT" scores, scaled to 0-100, in the B-factor to conform with TS format
requirements and to update all contact identification to 8A to conform with EMA requirements,

respectively.

The secondary consideration was to explore the relationship between the combinations of
predicted scores optimised for either correlation or ranking, i.e., are these the same or different

optimal combinations of scores?
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4.3 Materials and Methods
4.3.1 Justifying a closer focus on interface contacts within ModFOLDdock

In section 4.1 the CDA score’s promising contribution to ModFOLD8 performance was
mentioned. There were, however, three further reasons for introducing an adaptation of this
score as well as an updated version of the VoroMQA score into ModFOLDdock. Firstly, the
poor ICS scores seen in CASP14 (Karaca, 2020) represent an obvious area for improvement
and it was likely that a greater emphasis on interface contacts would be required to achieve
modelling success in CASP15. Secondly, the CASP15 EMA criteria specifically required a
residue-level confidence score for each amino acid calculated to be within the model interface.
Scores which were directly based on interface or contact identification would therefore likely
make valuable contributions to this score. Lastly, it was considered important to maintain some
single-model methods in the MQA pipeline as they often have superior performance compared
to clustering methods in cases when there are few variations between models or when only

few models are considered (Elofsson et al., 2018).

4.3.2 The multimer CDA score calculation

This is an adaptation of the tertiary structure Contact Distance Agreement score (Maghrabi
and McGuffin, 2017) which compares contact probabilities from contact prediction software
such as DeepMetaPSICOV (Kandathil et al., 2019) to the Euclidean distance (measured in
Angstroms) of equivalent atom pairs within a model. The CDA score is determined for any

residue in the model having a CB-Cp within 8A and is calculated as:

(2p)ic

where p is the predicted contact probability and c is the number of residue-residue contacts in
the model where p has a value. The quaternary structure version operates using a similar
concept except that the contact probability values are instead supplied by the AlphaFold2
contact map which is conveniently generated during LocalColabFold (v1.0.0) modelling. The
same logic is used for the multimeric calculation, and the CDA score for any residue with C[3-
CB < 8A will again be (3 p)/c where p is the LocalColabFold contact map probability and ¢ is

the number of residue-residue contacts in the model where p has a value.

4.3.3 The Voronota-js-VoroMQA score calculation

This was calculated using the Voronota-JS JavaScript expansion of the core Voronota
software (Olechnovic and Venclovas, 2014) called voronota-js-voromqga. As part of this release
version, it was still possible to continue to calculate the overall VoroMQA score from the core
software (now referred to as the Voro-light score) as well as an updated set of scores known
as Voro-dark scores. Key among these were two scores referred to as “global” and “interface

energy” in the Venclovas group’s description of their modelling and quality assessment
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process for CASP13 (Olechnovic and Venclovas, 2017). These scores, along with an “interface
atoms” score, are produced by the -inter-chain qualifier and are output as the full_dark_score
and sel_energy scores which equate to the global and interface energy scores respectively.
The Venclovas team used these to create a tournament scoring scenario, the format of which
was to compare two models (A & B) to create a win, lose or draw result as follows: If A scores
higher than B in all 3 scores, A wins; if any of the 3 scores disagree a draw is declared; if A
scores lower than B in all 3 scores, A loses. The -tour-sort qualifier runs this function on an all-

against-all basis and assigns a final rank to each model.

The Venclovas group have been consistently highly placed in CASP competitions and so it
was considered a worthwhile time investment to re-score the full CASP13 and 14 dataset used
in Chapter 3 with full Voro-Dark scores using the -interchain option as described above, as
well as invoking the tournament scoring function for each individual target. Although the time-
consuming tournament scoring did not produce rankings well correlated with the observed
scores (maximum Pearson coefficient 0.22), promising correlations were seen between the
Voro full_dark_score and CASP IDDT-oligo score (Pearson coefficients of 0.77 and 0.71, with
the CASP13 and CASP14 data, respectively). From this evidence it was concluded that, while
it was not worthwhile formally recreating tournament scoring as part of our QA pipeline, the
underlying Voronota-JS full_dark score likely contained important, if slightly orthogonal,
information about model interface quality. It was therefore decided that the full_dark score
using the -interchain --output-dark-scores command switches, representing the Voronoi
tessellation score for interface atoms, would represent a useful additional interface-focussed

Score.

4.3.4 A CASP14 dataset and manual comparisons were the best choices for the
QMODEZ2 calibration

There is a general consensus of opinion that models from the latest CASP experiment
represent the most up-to-date modelling techniques and state-of-the-art technology
(Kryshtafovych et al., 2019) and it is therefore preferable to use these data whenever possible.
This viewpoint prompted a decision about the makeup of the dataset used for QMODE2
calibration. On one hand was the undeniable validity of the above statement, which would
favour using a CASP14 only dataset. On the other, was documented analysis showing that, in
general, interfaces had not been well modelled in CASP14 (as explained in Chapter 3, section
3.5.2), shown by a clear difference in mean ICS scores of 20.89 for CASP13 models compared
to 6.58 for CASP14 models. In mitigation of this and in favour of CASP14 data are the three
following points: firstly, the mean IPS scores were much more similar (0.31 versus 0.23)
meaning that the identification of the interface patch was roughly equivalent over the two

experiments but contact identification appeared to be lacking for CASP14 models. Secondly,
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CASP14 had a much lower percentage of easy targets (6.9%) compared to 28.5% in CASP13,
meaning that templates for the full assembly, including the interface, were less common for
the later experiment. Lastly, CASP14 modelling still showed a shift towards higher scores in
general compared to CASP13 (Karaca, 2020). One last but important point to consider was
the likely CPU-load and time investment required to rescore all models with the updated
version of ModFOLDdock. To re-score a combined CASP13/14 dataset with more than 3000
models was considered too time intensive in light of the available window until the start of
CASP15. Based on these considerations a CASP14 dataset was selected for QMODE2
optimisation. The dataset comprised all models (2060) submitted by all groups for 17 CASP14
targets T1032, T1034, T1038, T1048, T1054, T1062, T1070, T1078, T1080, T1083, T1084,
T1087, H1036, H1045, H1047, H1065 and H1072. This set of targets represented the
population for which native structures were available from the CASP prediction centre website
at the time and for which ModFOLDdock predicted scores could be generated within a 24-hour

timeframe.

The manual comparison method used for this optimisation, mentioned in the section title and
described in detail below, was also adopted in consideration of the time constraints. An ideal
scenario would have seen the optimisation achieved by a further round of neural network

training with an improved MLP design (see Chapter 6 for improvement details).

e er et Summarise per target
correlations correlation il
and rankings matrices gets.

Summary Summary
Table 4.1 Table 4.2

2. Initial 3 scores
for SCORE and
QSCORE

3. Confirm or
amend scores for
SCORE and QSCORE

Figure 4.2. A work flowchart of the QMODE2 manual ModFOLDdock optimisation process. Stage
1 processes are coloured yellow, stage 2 are coloured green and stage 3 are coloured blue. Decision
points 2 and 3 are coloured white.
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Instead, the comparisons were performed on an iterative basis with each comparison stage
informing decisions about the format of the next. As an objective MLP was not used, this
exploratory method helped to reduce any bias resulting from the strong pre-existing
relationships described in Chapter 3, notwithstanding their importance empirically or as a basis
for this work. The workflow described in the following sections is summarised in the Figure 4.2
flowchart for ease of interpretation. At each stage, comparisons were considered separately,

either for correlation with observed scores or agreement with observed score ranking.

4.3.5 Per target correlation comparisons (stage 1)

For each target, Pearson correlation coefficients were calculated between all ModFOLDdock
predicted scores and the following observed scores: both observed QS-scores in the
ModFOLDdock pipeline (QSscore_Calc and QSscore_Official) and the CASP observed scores
QS-glob, F1 (ICS), IDDT-oligo, Jaccard coefficient (IPS) and TM-score as well as the Local,
Global and Total calculated target scores. The selection of these scores was justified as
follows. The QS-score was a contributing component to all three ModFOLDdock score
combinations which produced maximal baseline correlations and ROC AUC values with Local,
Global and Total scores in Chapter 3. Therefore, all available QS-scores were included. The
CASP scores ICS, IDDT-oligo, IPS and TM-score were chosen as they are the assessor scores
for Z-score rankings which were used to calculate the target Local, Global and Total scores for
the MLP training in Chapter 3. Results are presented as Pearson correlation matrices for

individual targets in Figure 4.3 (heteromer targets) and Figures 4.4A and B (homomer targets).

4.3.6 Per target top-rank comparisons (stage 1)

Each model quality score (IDDT, QS-score etc.) assesses quality according to an individual
calculation and therefore each of the ModFOLDdock component scores may select a different
top-ranked model from a model pool. In cases where observed scores are available, one way
to estimate the true quality of the top-ranked models is to use the sum of the observed scores
for each model as a quality metric. On a per target basis, then, models were ranked in turn by
each ModFOLDdock component score and the full set of associated observed scores (IAscore,
DockQ, QSscore_Calc, QSscore_Official, IDDTOfficial, QSglob, F1, IDDT-oligo, Jaccard, TM-
score, Local, Global and Total) were summed to produce the quality metric (obs_sum). The
full results table is included in Appendix 9 and data from 4.3.5 and 4.3.6 were fed into stage 2

tables 4.1 and 4.2 respectively.

4.3.7 Cross target comparisons (stage 2)

To determine the overall relative strength of agreement between predicted and observed
scores, the data from stage 1 processes were used to create two cross-target listings. Data

from the stage 1 correlation matrices (4.3.5) was averaged across all targets to produce mean
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cross-target correlation values. These were intended to display the average cross-target
performance of each predicted score versus the key observed scores ICS, IPS, TM-score,
IDDT-oligo, Local and Global scores in order to identify those scores likely to positively
contribute to SCORE and QSCORE. Results are presented in Table 4.1 where the best
average coefficients or those = 0.5 are highlighted as potential contributing scores. Data from
the stage 1 cumulative top rank scores (4.3.6) was summed across all targets to identify
predicted scores with consistent high-ranking performance. Results are shown in Table 4.2.
Highlighted data from Tables 4.1 and 4.2 were used to inform the initial score combination

decisions as shown in Figure 4.2 decision box 2.

4.3.8 Final comparisons calculated against QMODE score proxies (stage 3)

For stage 3 comparisons, the target observed scores were limited to the Global and Local
calculated scores. These were intended to act as proxies for the QMODE-defined SCORE
(global fold) and QSCORE (global interface) scores respectively. For correlation data, all
possible combinations of ModFOLDdock component scores were calculated and the mean
correlation values were then compared with the two target scores. This meant that scores A to
G, representing the seven component scores, were considered individually and in every
combination and Peason, Spearman and Kendall correlation coefficients were calculated for
each of these combinations against the two target scores. Table 4.3 shows the key results
from this process. The cumulative top-rank data was treated similarly, with all possible
combinations of ModFOLDdock component scores calculated but this time using the
cumulative observed scores from each of the two target scores to estimate the quality in terms

of global fold and global interface for each top-ranked model. Table 4.4 shows the key results.

The number of combinations considered for the stage 3 processes was defined as follows. For
7 scores there are a total of 7! =5040 permutations. However, as the order of the score

combinations is unimportant the unique combinations are reduced according to the formula:

C(n k)= #n'—k)' Each term can be calculated and then summed, thus:
7! 7!
c(r.1)= 1!x(7-1)! =7 (7.2 21%(7-2)! -
7! 7!
C(7,3)= m =35 C(7,4)= m =35
7! 7! 7!
O sy = A 0= exz=6) ' = =~ 1

Adding them up: 7+21+35+35+21+7+1=127 unique combinations. Full results tables can be
found in Appendix 10.
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4.4 Results and Discussion

The results are presented in two parts. Part 1 describes the results obtained from the QMODE2
calibration processes just described. Part 2 uses the official independent assessment data
from CASP15 to show benchmarking comparisons of ModFOLDdock and MultiFOLD
performance against other state-of-the-art MQA and modelling software.

4.4.1 Part 1. Results for QMODE2 calibration

Decision point 2. Results from the correlation experiments are shown in Figures 4.3, 4.4A and

4.4B and summarised in Table 4.1. These suggested that the component scores most likely to
contribute positively to the global fold score (SCORE, labelled as Global in Table 4.1) were
IDDTOfficialJury and VoroMQA with Pearson correlation coefficients of 0.79 and 0.59
respectively. The next highest coefficient was for QSscoreOfficialJury with a value of 0.47
which is only slightly below the 0.5 threshold defined for a moderate correlation. These
component scores are highlighted in bold in Table 4.1 and confirm the results from the MLP
training and prediction process in Chapter 3 which also selected IDDTOfficialJury and
QSscoreOfficialdury as global score contributors. These latest results showed that the newly

added Voronoi-JS VoroMQA score should be also considered for inclusion.

Similarly, scores likely to contribute positively to the global interface score (QSCORE, labelled
as Local in Table 4.1) were QSscoreOfficialJury, DockQJury and QSscoredury, with
coefficients of 0.58, 0.46 and 0.42 respectively (also in bold in Table 4.1). These results
partially confirmed those seen in Chapter 3 where the highest correlation coefficient was
achieved by QSscoreOfficialJury alone. However, these results suggested that DockQJury and

QSscoredury should also be considered at this stage.

Results from the top-rank calculations shown in Table 4.2 showed that the most likely scores
contributing to ranking by global fold score (SCORE) were QSscoreOfficialJury, VoroMQA
and IDDTOfficialJury, which were in agreement with the correlation results. However, results
for the global interface score (QSCORE) agreed with only two of the three scores suggested
by the correlation results. DockQJury and QSscoreOfficialJury were again selected but

VoroMQA was preferred to QSscoreJury.

At this stage it was clear that the ranking results in Table 4.2 were the result of different score
combinations than the correlation results in Table 4.1. In line with the secondary consideration
defined in the objectives, it was decided that ranking and correlation results should be
considered separately. Thus, the main decision point 2 outcome was that two versions of
ModFOLDdock would be considered separately: ModFOLDdock for best correlation with

observed scores and ModFOLDdockR for best agreement with observed score ranking.
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Figure 4.4A. Pearson correlation matrices for CASP14 homomer targets. From top left to right; T1032, T1034, T1038, T1048, T1054 and T1062.
ModFOLDdock component scores versus single and calculated observed scores.
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Figure 4.4B. Pearson correlation matrices for CASP14 homomer targets. From top left to right; T1070, T1078, T1080, T1083, T1084 and T1087.
ModFOLDdock component scores versus single and calculated observed scores. Again, blank cells equate to uncalculated scores.

114



Chapter 4

Table 4.1. Mean correlations for ModFOLDdock component scores (top row) versus key observed scores (left column). Created from individual per
target Pearson coefficients. Values in bold are the highest component score values achieved for observed Global and Local observed scores (also highlighted).

ST1

Score ModFOLDIA | DockQJury | QSscorelury QSscoreOfficiallury IDDTOfficiallury | VoroMQA | CDA score
QSscore_Calc 0.52375 0.4025 0.410625 0.51125 0.253125 0.1975 0.041875
QSscore_Official 0.293125 0.443125 0.366875 0.553125 0.226875 0.19938 -0.05313
QSglob 0.28875 0.44125 0.37375 0.580625 0.244375 0.21063 -0.04625
F1(ICS) 0.275625 0.438125 0.32375 0.538125 0.21125 0.20563 -0.06938
IDDT-oligo 0.253125 0.24125 0.2825 0.376875 0.93 0.68563 0.498125
Jaccard (IPS) 0.42125 0.4225 0.43875 0.5475 0.268125 0.25375 0.01125
TM-score 0.321875 0.363125 0.411875 0.481875 0.544375 0.40813 0.223125
Local 0.38125 0.46625 0.424375 0.585625 0.269375 0.2525 -0.01313
Global 0.3225 0.33 0.3875 0.47375 0.799375 0.595 0.395
Total 0.386875 0.41875 0.446875 0.565625 0.6325 0.50313 0.2425

Table 4.2. Cumulative observed scores (top row) for models top-ranked by ModFOLDdock component scores (left column). Scores are rounded to 2
decimal places (1 for F1) for display purposes. Table is ordered by decreasing sum of all scores (obs_sum) with the top three highlighted.

Score IAscore DockQ QSscore_ | QSscore_ IDDT_ QS F1 IDDT Jaccard | TM- Local | Global Total | obs_sum
Calc Official Official Glob oligo Coeff. score
QSscoreOfficiallury 11.35 3.36 9.05 5.57 8.28 5.57 431.8 | 8.71 6.51 8.84 5.41 | 8.77 7.09 | 520.32
DockQJury 10.30 3.58 7.76 5.34 7.20 4.81 427.6 | 7.46 5.82 8.28 5.05 | 7.87 6.46 | 507.52
VoroMQA 10.31 2.74 7.43 4.39 8.03 4.08 381.9 | 8.55 5.92 8.23 4.87 | 8.39 6.63 | 461.46
IDDTOfficiallury 9.51 2.52 7.17 4.01 9.44 3.96 314.3 | 9.44 4.96 8.18 4,05 | 8.81 6.43 | 392.77
ModFOLDIA 11.90 1.99 8.38 3.38 7.67 3.22 274.0 | 7.98 5.79 7.63 427 |7.81 6.04 | 350.05
QSscorelury 5.80 1.40 4.67 2.99 7.74 2.99 222.2 | 7.70 4.18 7.87 3.20 | 7.79 5.49 | 284.02
CDA score 7.65 0.99 5.27 1.23 7.02 1.23 90.9 7.02 3.54 6.70 2.22 | 6.86 4.45 | 145.15

Scores are created from individual per target top-rank tables where the observed scores are collected for each of the top-ranked models for each component
score, these are then summed across all targets to give rankings per observed score and an overall (summed) ranking (obs_sum).
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Decision point 3. Tables 4.3 and 4.4 show truncated versions of the final all-against-all

comparison tables described in stage 3 (again see Appendix 10 for the full version). Pearson,
Spearman and Kendall correlation coefficients were calculated for the relationships, but in
cases where individual coefficient scores disagreed, it was considered important to assess the
data in terms of a linear relationship, taking into account proportionality of increase as well as
direction and also treating outliers more strictly. It was therefore decided that the Pearson r
value would be given preference over the Spearman rho or Kendall tau values when making
final decisions on combinations (see Appendix 11 for the relevant coefficient formulae).

Table 4.3. Selected rows showing correlations between the observed global interface and Global
fold scores and all combinations of the 7 component scores. A=ModFOLDIA, B=DockQJury, C=
QSscoreJury, D=QSscoreOfficialJury, E=IDDTOfficialJury, F=voronota-js-voromqga, G=CDA-score. Top

scores in each column in bold. Combinations used for ModFOLDdock scores are highlighted in green.
Adapted from (Edmunds et al., 2023).

C Interface (QSCORE) Fold (SCORE)

omponent

combination Pearson Spearman |Kendall Pearson Spearman Kendall
B+E 0.6221383 0.4662672 |(0.3370294 0.897708 0.8895329 |0.7178826
D+E 0.7678932 0.6149145 10.451429 0.8886437 [0.8864162 |0.7204588
B+D 0.9005487 0.8246907 |0.6435966 0.6419381 [0.5309702 (0.3781203
D 0.8904282 0.8440979 |0.6601409 0.6263819 (0.5468863 [0.389032

Table 4.4. Selected cumulative observed global interface and Global fold scores of top ranked
models for every combination of the 7 component scores. (A-G are as described for table 4.3). Top
scores in each column are shown in bold. ModFOLDdockR score combinations are highlighted in green.
Adapted from (Edmunds et al., 2023).

Component combination Interface (QSCORE) | Fold (SCORE)
C+E+F 4.962 9.145
B+D+F 5.6105 8.479

From the ModFOLDdock global fold (SCORE) results in Table 4.3, it was clear that the
combination of DockQJury (B) and IDDTOfficialdury (E) was optimal, having the highest
correlation value in two out of the three correlation coefficients. The global interface (QSCORE)
results were not so clear showing a disagreement between the Pearson and both the
Spearman and Kendall coefficients. Nevertheless, the convention of prioritising the Pearson
linear relationship was adhered to and the DockQJury (B) and QSscoreOfficialJury (D)

combination was selected.

The results for maximum ranking scores in Table 4.4 were easier to interpret as there was only
one top score for each category. For the final stage 3 decision, the following score

combinations were selected:
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ModFOLDdock: - SCORE: mean of DockQJury + IDDTOfficialJury.
QSCORE: mean of DockQJury and QSscoreOfficialJury
ModFOLDdockR: - SCORE: mean of QSscoreJury + IDDTOfficialJury + VoroMQA.
QSCORE: mean of DockQJury + QSscoreOfficialJury + VoroMQA.

As a final validation exercise, the new methods for ModFOLDdock and ModFOLDdockR were
benchmarked against all component scores, with the results presented visually as bar plots in
Figure 4.5. The comparative performance showed that for both the correlations in A and B and
the top-rank observed totals in C and D, the combinations identified in Tables 4.3 and 4.4 out-

performed all individual component scores.

A Pearson correlations between observed global interface scores and each method B Pearson correlation between observed global fold scores and each method
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Figure 4.5. Bar plots showing benchmarking results for ModFOLDdock and ModFOLDdockR
methods (in green) against all component scores (in blue). A. Pearson coefficients between
calculated observed Local score and ModFOLDdock QSCORE calculated from B+D (in green) and
component scores (in blue). B. Pearson correlations between calculated observed Global score and
ModFOLDdock SCORE calculated from B+E (in green) and component scores (in blue). C. Cumulative
observed Local score for top-ranked models identified by ModFOLDdockR calculated QSCORE (in
green) and component scores (in blue). D. Cumulative observed Global score for top-ranked models
identified by ModFOLDdockR calculated SCORE (in green) and component scores (in blue). The error
bars show +/- the standard error in the observed scores of the top ranked models for each method.
Reproduced from (Edmunds et al., 2023).

In terms of the local residue confidence scores required for QMODEZ2, the most appropriate
component scores to consider were ModFOLDIA, VoroMQA and CDA, each of which had been
designed specifically to consider interface residues and output both global and per-residue
scores as default. Unlike the two global scores (SCORE and QSCORE), a full testing

programme was not undertaken for the per residue scores prior to CASP15. The main reason
for this was the lack of a precedent for such scores and uncertainty over the exact method of
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assessment that CASP may use to differentiate between representative and non-
representative scores. Instead, the following basic logic was used to assign residue-level
confidence scores. ModFOLDIA is the McGuffin group’s own score designed for protein
quaternary structure assessment in CASP12 with interface residue level scores, and so it was
appropriate that this should form the residue-level score for the ModFOLDdock variant. Indeed
ModFOLDIA was the only entry in the CASP12 Interface Accuracy (IA) assessment

(https://predictioncenter.org/caspl2/index.cgi?page=format), so this previous abandoned

format represents the only precedent. As ModFOLDdockR was designed for ranking and the
VoroMQA score had featured in both ranking scores (see Table 4.4) and considering its
success in the Venclovas team model selection method mentioned in Section 4.3.1, it was
decided that the ranking residue-level score should be a mean of both ModFOLDIA and
VoroMQA local scores. Lastly, the other interface residue level score available was the CDA

score, which was included in the ModFOLDdockS variant (see below).

The last stage of the QMODE2 optimisation stemmed from the uncertainty over the size and
complexity of the models which would make up the CASP15 EMA competition. As very large
models could lead to memory and CPU issues during all-against-all calculations, a quasi-
single-model variant of ModFOLDdock was developed which utilised the MultiFOLD pipeline

to construct 30 reference models against which comparison calculations were performed.

In summary, the ModFOLDdock global scores were optimised for positive linear Pearson
correlation with observed scores, calculated using elements of the CASP14 assessors'
formulae. The ModFOLDdockR global scores were optimised by rank, meaning that the
predicted top-ranked model should always have the highest observed score. Finally,
ModFOLDdockS used a quasi-single model approach were each model was compared to 30
reference models built using the MultiFOLD modelling pipeline. The scores contributing to the
global fold score (SCORE), the overall interface accuracy score (QSCORE) and the individual
residue-level confidence scores for all three variants are shown in Table 4.5 and in the
organogram in Figure 4.6.

Table 4.5. Individual ModFOLDdock component scores contributing to each CASP15 QMODE2
score for each ModFOLDdock variant. Reproduced from (Edmunds et al., 2023).

Variant Fold Interface Residue

ModFOLDdock DockQJury, DockQJury, ModFOLDIA
IDDTOfficiallury QSscoreOfficiallury

ModFOLDdockR QSscorelury, DockQJury, voronota-js-voromqa,
IDDTOfficiallury, QSscoreOfficiallury, ModFOLDIA
voronota-js-voromga voronota-js-voromga

ModFOLDdockS DockQJury, DockQJury, CDA, voronota-js-
IDDTOfficiallury QSscoreOfficiallury voromaa, ModFOLDIA
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Figure 4.6. A flowchart showing the constituent component methods and their contributions to
the consensus and residue confidence scores for the three ModFOLDdock variants.

A. ModFOLDdock, B. ModFOLDdockR, C. ModFOLDdockS. Green coloured boxes indicate the scores
that contribute directly to the overall global fold (SCORE), overall interface (QSCORE) and individual

residue confidence scores. Reproduced from (Edmunds et al., 2023).
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4.4.2 Part 2. CASP15 official rankings and results
4.4.2.1 ModFOLDdock achieved peak performance across EMA categories

All three ModFOLDdock variants were successful in submitting predictions across all CASP
targets for all three scores in the QMODE?2 category. This is shown by the three bar charts in
Figure 4.7 which display a 100% prediction rate for ModFOLDdock variants alongside the rates
achieved by other EMA software. Only those meeting the 80% threshold were considered
successful EMA predictors and included in further CASP analysis. In the local residue
confidence score category (right-hand plot in Figure 4.7), ModFOLDdock variants were notable
as the only methods to continue to achieve a 100% prediction rate, showing a reliability and

consistency across the full range of targets, not achieved by any other method.

The bar plots in Figure 4.8 display the official CASP15 rankings of EMA software meeting the
80% threshold using official assessor quality measures. These plots show that assessors
placed at least one of the ModFOLDdock variants first or second within each of the three EMA
categories (disregarding the placing of the CASP assembly consensus (AC) method). For ease
of interpretation, the ranks achieved by all ModFOLDdock variants for each QMODE2 score
shown in Figure 4.8, are summarised in Table 4.6.

For reference, the assembly consensus benchmark score (AC) is an all-against-all predicted
accuracy score (S) calculated for each residue (i) in each model (x). It is the average per-
residue score (f) calculated using all models (y) in the target population (N) as reference. For
SCORE, f is the oligo-GDT TS score and for QSCORE, f is the QS-score (calculated using
the QS-align tool25).

1
S6) = =gy Q. FEEbY)

yl=x

Table 4.6. A summary of ModFOLDdock variant rankings in CASP15 QMODE2 EMA categories.
Numbers with an asterix signify rankings with the assembly consensus (AC) disregarded (to convert
these to the actual ranks shown in Figure 4.8 add 1 to the score shown in the table).

Variant Rank /23 Rank /18 Rank /13
(SCORE) (QSCORE) (residue)
ModFOLDdock 2 2* 6
ModFOLDdockR 4% 1* 2
ModFOLDdockS 12* 5* 3

This independently verified performance (SCORE rank 2, QSCORE rank 1 and Local residue
rank 2) showed that the ModFOLDdock methods were among the top few EMA programs at

CASP15 (arguably the best overall if ranks are averaged over the three categories, which
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would be legitimate as each variant is available to users from the ModFOLDdock server
webpage). On this basis the McGuffin group was invited to present the ModFOLDdock method
at the CASP15 conference and also to publish the work described in this chapter in the Proteins

2023 special edition, as listed on the chapter title page.

4.4.2.2 ModFOLDdock local per-residue scores showed unique qualities

The local residue scores in the right-hand bar plot in Figure 4.8 were calculated using a
combination of per-residue IDDT, CAD, PatchQS and PatchDockQ scores (definitions of the
patch scores and the local residue Z-score calculations can be found in Appendix 12). Of the
four scores, IDDT and CAD were used to assess accuracy in terms of relative neighbourhood
atom positions, while PatchQS and PatchDockQ were primarily used to assess inter-chain
positioning (Studer, Tauriello and Schwede, 2023), meaning that these latter two scores were
important in correctly identifying native-like patches of interface residues. Figure 4.8 shows
that GuijinLab-RocketX out-performed the ModFOLDdockR and S variants (second and third
places respectively) according to the calculated summed per-residue score with
ModFOLDdock ranked in only sixth place. However, a closer look at the contributing scores
shown in the Figure 4.8 plot shows that almost all of the ModFOLDdock score is composed of
the two patch scores suggesting a particular sensitivity to interface patch identification. Indeed,
when the emphasis of the analysis was changed to focus on the recognition of native interface
residues by averaged ROC AUC scores, the ModFOLDdock variant moved from sixth to first
place. The results of this aspect of the CASP analysis are presented in Figure 4.9 showing the
recalculated ranks with ModFOLDdock at the top.

Further to this, a final piece of CASP analysis focussed specifically on the antibody-antigen
binding interactions described by heteromers H1166, H1167 and H1168. Results for this
analysis are shown in Figure 4.10 and, again, showed that ModFOLDdock variants performed
well in the overall ranking derived from all four IDDT, CAD, PatchQS and PatchDockQ scores
(shown in panel A), where they were once again second only to GuijinLab-RocketX. Again,
and in line with the reranking described above, when the ROC AUC scores were considered
in isolation, all ModFOLDdock variants were shown to out-perform all other methods (panel
B).

The ModFOLDdock methods, therefore, seem particularly well suited to the task of identifying
patches of native-like interface residues and it appears that this ability becomes enhanced
when applied to antibody-antigen interactions. This could be a unique property of the
ModFOLDdock method.
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Figure 4.7. CASP15 EMA software meeting the 80% threshold. Left. For global fold SCORE. Middle. For global interface QSCORE. Right. For local residue

confidence scores. AC is the assembly consensus baseline (described in Section 4.4.2.1). Reproduced from (Studer et al., 2023).
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GDTTS). Middle. Similar Z-score rankings for global interface QSCORE, RSqscore=RS(QS-score)+RS(DockQ-wave). Right. Local interface accuracy based
on Z-scores where RSLocal=RS(IDDT)+RS(CAD)+RS(PatchQS)+RS(PatchDockQ). AC is the assembly consensus baseline. For SCORE and QSCORE, P=
Pearson r, S=Spearman rho, R=ROC AUC and L=Loss. DockQ-wave is the DockQ weighted average used to score higher-order complexes. Reproduced from
(Studer et al., 2023).
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Figure 4.9. CASP15 EMA local interface residue identification ranking calculated by averaged

ROC AUC scores. Showing identification of model interface residues matching those in the native

structure. Reproduced from (Studer et al., 2023).
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Figure 4.10. CASP15 EMA antibody/antigen local score evaluation. A. A similar analysis to Figure
4.8 (right hand graph for local) but for the antibody-antigen targets H1166, H1167 and H1168 only. B.
Identification of interface residues similar to Figure 4.9 but, again, only for the three antibody/antigen
targets. Reproduced from (Studer et al., 2023).

4.4.2.3 Multimer modelling analysis.

A brief analysis of modelling performance is included here as a comparison with the analysis
described in Chapter 2 (and briefly in Chapter 3) for CASP13 and 14 modelling. It is also
pertinent to ModFOLDdock performance due to the inclusion of the method within the CASP15
modelling pipeline as described in Figure 2.15 (Chapter 2). Table 4.7 shows selected CASP15
modelling group rankings by sum Z-score (which continues to be calculated as Z-score(ICS)
+ Z-score(IPS) + Z-score(IDDT-oligo) + Z-score(TM-score)).

As can be seen from Table 4.7, both the McGuffin (manual) and MultiFOLD (server) groups
(both of which used the MultiFOLD/ModFOLDdock pipeline) were placed above the naive
NBIS-AF2-Multimer group, which acted as the AlphaFold2-Multimer modelling baseline, as
well as the ColabFold group (which used the same base software), in all categories with the
exception of TBM/FM for MultiFOLD. This is reflected in the CASP15 official assembly results
(Burcu Ozden et al.,, 2023) and supports the two hypotheses from Chapter 2 that the
MultiFOLD pipeline, in general, added value to the baseline modelling capabilities of
AlphaFold2-Multimer.
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Table 4.7. CASP15 assembly group rankings (Sum Z-score >0.0, for rank1 models) by category.
Groups selected are unmodified AFM/ColabFold users or those with the highest prediction accuracy
(Yang) or top TBM method (PEZY). Model total is given in column headings, Z-scores in brackets. AF2
baseline (NBIS-AF2-Multimer) is shaded. Data is for multimers, sorted by overall rank and taken from
the CASP results page (https://predictioncenter.org/caspl5/).

Category TBM TBM/FM FM Overall
Group Rank /82 Rank /85 Rank /68 Rank /87
Yang (439) 7(7.35) 5(14.25) 11 (2.56) 5(24.17)
McGuffin (manual) | 15 (6.01) 10 (11.01) 8 (2.86) 9 (19.89)
PEZY Foldings (278) | 4 (7.73) 27 (7.96) 16 (2.24) 13 (17.94)
MultiFOLD (server) | 12 (6.22) 37 (5.71) 3(3.29) 23 (15.23)
ColabFold (446) 30 (4.73) 33 (6.15) 18(1.87) | 29(12.79)
NBIS-AF2-Multimer | 20 (5.37) 32 (6.24) 38 (0.64) | 30(12.27)
Maximum Z-score 11.63 21.28 4.93 35.29

Across the modelling categories, it can be seen that both the McGuffin and MultiFOLD groups
fared roughly equally for TBM models (Z-scores of 6.01 and 6.22 respectively), whereas
human processing appeared to have a large positive effect on TBM/FM models (Z-score of
11.01 compared to 5.71 for the server models). However, this effect was reversed for FM
models where the MultiFOLD server was more accurate (Z-score of 3.29 compared to 2.86 for
the McGuffin group). As the base models would have been very similar, this suggests that the
objective model selection process carried out by the server version was superior to human

interpretation for FM models.

Results for the same categories were also available for the groups’ best-scoring models rather

than models designated model 1. The data for groups’ best models is shown in Table 4.8.

Table 4.8. Selected CASP15 assembly group rankings (Sum Z-score >0.0, for models rated best)
by category. Equivalent to the data shown in Table 4.7 but for groups’ best-rated models. Data is,
again, for multimers, sorted by overall rank and taken from the CASP results page
(https://predictioncenter.org/caspl5/).

Category TBM TBM/FM FM Overall
Group Rank /82 Rank /85 Rank /68 Rank /87
PEZY Foldings (278) 1(17.20) 17 (10.97) 20 (2.63) 4 (30.07)
Yang (439) 6 (8.90) 5(16.92) 14 (3.88) 6 (28.60)
McGuffin (manual) 18 (6.25) 10 (12.79) 15 (3.69) 13 (22.73)
ColabFold (446) 17 (6.57) 20 (10.60) 23 (2.44) 19 (18.38)
MultiFOLD (server) 21 (6.00) 37 (7.33) 10 (4.11) 26 (17.42)
NBIS-AF2-Multimer 24 (5.94) 33 (8.64) 48 (1.04) 30 (14.89)
Maximum Z-score 17.20 28.41 6.49 41.80

An interesting trend was noticed on comparison of the data across the two tables. Both the
McGuffin and MultiFOLD groups were ranked higher for rank 1 models than for their best
models, except in the TBM/FM category where there was no difference in rank. This is best
illustrated by the MultiFOLD comparative ranks; 12/21 (TBM), 37/37 (TBM/FM), 3/10 (FM) and

23/26 (overall) with rank 1 model ranks shown in bold. This effect could be observed for the
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NBIS-AF2-Multimer group and Yang group (included as the group having the highest
prediction accuracy (Studer et al., 2023) and also as a AF2-Multimer user) but arguably not as
strongly as for MultiFOLD. Notably, ColabFold, which was rated highest for self-evaluation

metrics in the same CASP publication by Studer et al., did not show this effect.

Group 278 (PEZY Foldings) was included in the tables as it was the top modelling group in the
TBM category when the best model is selected. This group exemplified the expected trend in
rank performance across the two tables, that at least some ranks would improve when a
group’s best models are considered. This is because the chances of detecting a good model
increases with a widened model population, i.e. groups will not always select the best model
as their rank 1 model. Rather than being penalised by limiting assessment to rank 1 models,
the McGuffin and particularly the MultiFOLD group benefitted from this. It follows that the rate
of identification of the best model as the rank 1 model must have been better than average for
McGuffin and MultiFOLD groups. It is possible that this is an effect of the AlphaFold2-Multimer
ranking methods (pIDDT and pTM) due to data from the NBIS-AF2-Multimer group but, if this
were the cause, is it curious that the effect was not also seen for the ColabFold group. It is
possible, therefore, that one strength of the MultiFOLD modelling pipeline was the selection of
the best model by ModFOLDdock variants. If correct, this would represent significant progress
in addressing the issues described in previous chapters surrounding CASP13 and 14 model

selection.

4.4.2.4 Comparative analysis across CASP competitions.

This section attempts to mirror the analysis caried out for CASP13 and 14 modelling in Chapter
3 by listing ModFOLDdockR predicted scores (this variant was used as it was the primary
ranking tool in the MultiFOLD pipeline) alongside CASP assessor scores and an observed
ModFOLDdock score as an additional a measure of predicted score accuracy. The column
titted “Difference between rank 1 and this model” was calculated as an absolute difference
between the calculated observed score for the “best” model and the predicted rank 1 model;
this demonstrates the high performance of model ranking and selection.

Table 4.9. A summary of group 462 (MultiFOLD) CASP15 multimer models rated as “best models”
in the CASP results tables. CASP Global and Local scores have been artificially calculated to give
comparisons with ModFOLDdockR predicted scores. The difference is calculated as an absolute

difference between Total score for the model scored “best” by CASP and the rank 1 model from the
MultiFOLD pipeline (a score of 0.0 denotes the best model was selected as rank 1).

MFDR Predicted CASP calculated Difference between
Target | Stoichiometry Global Local Global Local rank 1 and this model
H1106 A1B1 0.7073 0.5700 0.831 0.663 0.005
H1111 A9B9C9 0.4857 0.4191 0.077 0.0395 0.0
H1114 A4B8CS8 0.6020 0.4664 0.2285 0.178 NA
H1129 Al1B1 0.6008 0.1978 0.65 0.0315 0.0
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H1134 AlB1 0.6893 0.5769 0.9295 0.797 0.286
H1135 A9B3 0.7166 0.3899 0.59 0.347 0.0
H1137 Al-11 0.6638 0.5112 0.6475 0.735 0.0
H1140 AlB1 0.6438 0.2373 0.681 0.2485 0.0
H1141 Al1B1 0.6996 0.4355 0.7395 0.1655 0.054
H1142 Al1B1 0.6815 0.2876 0.6985 0.07 0.005
H1143 Al1B1 0.7691 0.5741 0.9045 0.776 0.008
H1144 Al1B1 0.7057 0.4187 0.7545 0.3255 0.028
H1151 Al1B1 0.7668 0.6466 0.8985 0.8065 0.0003
H1157 Al1B1 0.7929 0.6413 0.756 0.7 0.0004
H1166 Al1B1C1 0.8066 0.5322 0.7795 0.5845 0.0
H1167 Al1B1C1 0.8106 0.5527 0.772 0.6185 0.0
H1168 Al1B1C1 0.8317 0.7195 0.901 0.828 0.0037
H1171 A6B1 0.4235 0.2972 0.66 0.6085 0.0001
H1172 A6B2 0.4337 0.2847 0.8395 0.5345 0.006
H1185 Al1B1C1D1 0.8186 0.7384 0.8825 0.664 NA
T1109 A2 0.8502 0.7849 0.8705 0.4765 0.0
T1110 A2 0.8653 0.8295 0.955 0.931 0.004
T1113 A2 0.8133 0.7309 0.9105 0.886 0.005
T1115 Al6 0.4882 0.2907 0.064 0.0385 0.0
T1121 A2 0.8183 0.6560 0.6565 0.3425 0.006
T1123 A2 0.3052 0.1794 0.203 0.02 0.002
T1124 A2 0.8345 0.7252 0.9155 0.865 0.0
T1127 A2 0.8506 0.8335 0.932 0.8865 0.001
T1132 A6 0.7771 0.4746 0.9645 0.879 0.0
T1153 A2 0.7833 0.6394 0.8945 0.748 0.019
T1160 A2 0.8341 0.7794 0.3945 0.336 0.0
T1161 A2 0.7572 0.6363 0.5615 0.563 0.01
T1170 A6 0.6788 0.2878 0.8665 0.6335 0.002
T1173 A3 0.6393 0.3666 0.4065 0.4265 0.017
T1174 A3 0.7355 0.4521 0.6725 0.724 0.0
T1176 A8 0.5245 0.2210 0.298 0.015 0.01
T1178 A2 0.1749 0 0.4325 0 0.0007
T1179 A2 0.3732 0.1820 0.188 0.0595 0.009
T1181 A3 0.8269 0.5660 0.805 0.5125 0.03
T1187 A2 0.6035 0.2767 0.8985 0.855 0.0
T1192 Al10 0.6966 0.3120 0.7655 0.553 NA

Chapter 3 scores for CASP13 modelling (Table 3.1) showed that the best model was selected
as the rank 1 only once (1/30 or 3.3%). This number has increased to 14/42 (or 33.3%) for
CASP15 modelling (shown as a difference of 0.0) — a tenfold increase. Further to this, the
difference in observed scores between best and rank 1 models reduced from an average of
0.18 and a maximum of 0.546 for CASP13 data to an average only 0.013 and a maximum of
0.286 for CASP15 data. However, it must be pointed out that a maximum difference of this
magnitude was only seen for one target with the next highest value of 0.054, an order of
magnitude lower. The scatter plots in Figure 4.11 include Pearson correlation coefficients
between ModFOLDdockR predicted and calculated CASP Local, Global, and Total scores for
the models in Table 4.9. For comparison with Chapter 3, Figure 3.1, TM-score, QS-score and

IDDT-oligo correlations are also included in Figure 4.12. The plots in both figures, although
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comparative rather than exact duplicates, show an increase in accuracy in CASP15 compared
to CASP13 modelling. Specifically, the correlation coefficients between ModFOLDdock
predicted scores and CASP assessor scores, shown in Figure 4.12, have increased from
-0.07, 0.1 and 0.16 seen in Figure 3.1, for GDT TS, IDDT-oligo and QS-score respectively, to
0.63, 0.64 and 0.61 for the equivalent TM-score, IDDT-oligo and QS-score respectively.

A CASP15 predicted versus CASP local scores (assembly models) B CASP15 predicted versus CASP Global scores (assembly models) C CASP15 predicted versus CASP Total scores (assembly models)
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Figure 4.11. Pearson correlations for ModFOLDdockR predicted scores and equivalents
calculated from CASP15 scores for group 462 (MultiFOLD) multimer models. A. ModFOLDdockR
calculated Local score versus a Local score calculated from CASP15 ICS and IPS scores. B.
ModFOLDdockR calculated Global score versus a Global score calculated from CASP15 TM-score and
IDDT-oligo score. C. ModFOLDdockR calculated Total score versus an equivalent score calculated from
all 4 CASP15 scores.
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Figure 4.12. Pearson correlations between ModFOLDdockR predicted scores and individual
CASP15 scores for group 462 (MultiFOLD) multimer models. A. ModFOLDdockR calculated Global
score versus CASP15 IDDT-oligo score. B. ModFOLDdockR calculated Global score versus CASP15
TM-score. C. ModFOLDdockR calculated Local score versus CASP15 QS-score.

Figure 4.13A shows similar plots for the ModFOLDdockR variant but extending the data to
include models from all CASP15 groups. In these plots homomer targets T1160 and T1161
and heteromer targets H1171 and H1172 have been excluded. These form two pairings of the
five alternative ensemble structures (T1109-T1110, T1158 series, T1160-T1161, H1171-
T1172 and T1195-T1197) which were added to the CASP15 experiment as specific modelling
challenges. T1160 and T1161 represent two different conformations of very similar sequences
resulting from the effect of five mutations and different crystallisation conditions, whereas
H1171 and H1172 are two alternative functional conformations of the Holiday junction complex

(Kryshtafovych et al., 2023). When included, these targets produced clear outliers affecting the
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correlations, although the T1109-T1110 pair appeared to be well scored (native structures for

T1195-T1197 were not available at the time of analysis).
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Figure 4.13A. Scatter plots with Pearson correlations for ModFOLDdockR predicted scores and
equivalents calculated from CASP15 scores for all group models. A. ModFOLDdockR calculated
Local score versus a Local score calculated from CASP15 ICS and IPS scores. B. ModFOLDdockR
calculated Global score versus a Global score calculated from CASP15 TM-score and IDDT-oligo score.
C. ModFOLDdockR calculated Total score versus an equivalent score calculated from all 4 CASP15
scores. D. ModFOLDdockR calculated Global score versus CASP15 IDDT-oligo score. E.
ModFOLDdockR calculated Global score versus CASP15 TM-score. F. ModFOLDdockR calculated
Local score versus CASP15 QS-score.

However, upon removal, strong Pearson correlation coefficients of 0.81 and 0.72 with
calculated Local and Global observed scores respectively were revealed, increased from 0.66
and 0.65 obtained with the group 462 (MultiFOLD) models alone. Slightly better coefficients of
0.81 and 0.76 for the same scores are also shown for the ModFOLDdock variant in Figure
4.13B, with increases likely due to this variant’s development for correlation with observed

Scores.
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Figure 4.13B. Scatter plots with Pearson correlations for ModFOLDdock predicted scores and
equivalents calculated from CASP15 scores (all groups’ models). A. ModFOLDdock calculated
Local score versus a Local score calculated from CASP15 ICS and IPS scores. B. ModFOLDdock
calculated Global score versus a Global score calculated from CASP15 TM-score and IDDT-oligo score.
C. ModFOLDdock calculated Total score versus an equivalent score calculated from all 4 CASP15
scores. D. ModFOLDdock calculated Global score versus CASP15 IDDT-oligo score. E. ModFOLDdock
calculated Global score versus CASP15 TM-score. F. ModFOLDdock calculated Local score versus
CASP15 QS-score.

ModFOLDdockS scores are added for comparison in Figure 4.13C and show slightly weaker
correlations, likely due to the modelling challenges of some larger targets which would impact

on the quality and variety of decoy structures used for the clustering algorithms.
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Figure 4.13C. Scatter plots with Pearson correlations for ModFOLDdockS predicted scores and
equivalents calculated from CASP15 scores (all groups’ models). A. ModFOLDdockS calculated
Local score versus a Local score calculated from CASP15 ICS and IPS scores. B. ModFOLDdockS
calculated Global score versus a Global score calculated from CASP15 TM-score and IDDT-oligo score.
C. ModFOLDdockS calculated Total score versus an equivalent score calculated from all 4 CASP15
scores. D. ModFOLDdockS calculated Global score versus CASP15 IDDT-oligo score. E.
ModFOLDdockS calculated Global score versus CASP15 TM-score. F. ModFOLDdockS calculated
Local score versus CASP15 QS-score.

Finally Figure 4.14 shows similar data to that in Figures 4.13A and B but differentiated into
separate homomer and heteromer plots. This shows that all ModFOLDdock variants maintain
comparative performance across protein targets with differing stoichiometry and symmetry.

Targets T1160, T1161, H1171 and H1172 were again omitted as explained previously.

130



Chapter 4

ModFOLDdock ModFOLDdockR ModFOLDdockS

Oligo IDDT
Oliga IDDT
°
8
Oligo IDDT

1.00 1.00

075

0.50 0.50

Oligo IDDT
Oligo IDDT
Oligo IDDT

0.25 | L ‘.‘ 0.25

0.00 0.00
0.0 0.2 04 06 0.8 0.0 0.2 0.4 06 08

Fold score Fold score Fold score

Figure 4.14. Scatter plots with Pearson R value between predicted Global (fold) score and
observed IDDT-oligo for all ModFOLDdock variants for CASP15 models from all groups. Top.
Plots for homomeric targets for ModFOLDdock (left), ModFOLDdockR (middle) and ModFOLDdockS
(right). Bottom. The plots between the same variables in the same left to right variant order for all
heteromeric targets. Image taken from (Edmunds et al., 2023).

4.5 Conclusions

This chapter described the QMODE2 optimisation process of the hybrid consensus MQA
programs ModFOLDdock, ModFOLDdockR and ModFOLDdockS. For ModFOLDdock,
component quality scores were combined to achieve optimal correlations with observed target
scores. For ModFOLDdockR, the quality scores were combined for optimal ranking, meaning
that the models with the highest observed scores were ranked top. ModFOLDdockS was
additionally developed to address the limitations of clustering-based systems by employing a
quasi-single model approach using MultiFOLD reference models. In all cases the target
observed scores used for optimisation were those identified in Chapter 3. The data in this
chapter resulted from blind independent benchmarking of the ModFOLDdock MQA method

and showed that its performance was competitive with the best methods available in 2022.

The official results from the CASP15 competition suggest that the three ModFOLDdock
variants could reasonably be described as having performed better than any other single
method in the new multimer EMA category. Specifically, being alone in achieving a 100%
prediction rate across all three EMA categories as well as achieving best rankings of 2" place
in the SCORE category (ModFOLDdock), 1% place in the QSCORE category
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(ModFOLDdockR) and 2" place in the local interface residue category (ModFOLDdockR).
Additionally, all three ModFOLDdock variants showed superior interface patch identification
abilities as measured by the PatchQS and PatchDockQ scores, which was stronger still for
antibody-antigen binding interactions. Later analysis also showed an increase in correlations
between ModFOLDdock variants’ predicted scores and CASP observed scores from a
maximum of 0.16 seen in CASP13 to a maximum of 0.64 when using MultiFOLD group data
with a further increase to a maximum of 0.81 when all CASP15 data was considered. This
represents at least a 4-fold increase in accuracy as measured by Pearson correlation and this

was maintained across homo and heteromer model populations.

In terms of multimer modelling, MultiFOLD out-performed both the NBIS-AF2-Multimer and the
ColabFold groups which represent the baseline modelling performance using the AF2-
Multimer and ColabFold software respectively. This success appeared, at least in part, to be
due to the ability of ModFOLDdockR to rank the best model at the top of a decoy population
resulting in MultiFOLD’s competition ranking being higher for rank 1 models than for the CASP-
selected best models. Later analysis showed that the observed best model was correctly
identified as the rank 1 model in 33% of cases, a 10-fold increase in the same metric seen in
CASP13 and that the average difference or loss between predicted and observed scores
reduced from 0.18 seen at CASP13 to 0.013, as measured by an average of global fold and

global interface score.
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CHAPTER 5
Benchmarking of AlphaFold2 accuracy self-estimates as empirical quality
measures and model ranking indicators and their comparison with

independent model quality assessment programs.
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Work presented in this chapter is currently available in bioRXiv preprint format:

Benchmarking of AlphaFold2 accuracy self-estimates as empirical quality measures and

model ranking indicators and their comparison with independent model quality assessment
programs.

Nicholas S. Edmunds, Ahmet G. Genc, Liam J. McGuffin
bioRxiv 2023.12.15.571846

The same work is currently accepted for publication in the Oxford University Press (OUP)
Bioinformatics journal, subject to successful review.
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5.1 Background
Since the success of AlphaFold2 (Jumper et al., 2021) at CASP14 in 2020 many articles have

detailed the methodology by which AF2 achieved its level of accuracy, most notably by the
DeepMind group itself (Evans et al., 2022) as well a group led by Jeffrey Skolnick (Skolnick et
al., 2021) and the group who pioneered the development of the ColabFold adaptation of the
software (Mirdita et al., 2022). It is usual for protein modelling software to provide accuracy
self-estimate scores to accompany their models (Varadi et al., 2022) and while competition
modellers are concerned with correlation agreements and statistical measures of significance
across large datasets, the accuracy and usefulness of a single predicted score for one or only
a few models may be more important to the general biologist. AlphaFold2’s state-of-the-art
predicted models are increasingly relied upon and so it is vital that their accuracy is
independently verified. In straightforward tertiary structure modelling AlphaFold2’s predicted
IDDT score (pIDDT) has been considered a useful indicator of quality (Takei and Ishida, 2022),
but it is unclear whether this reliability transfers to quaternary structure modelling and whether

there are any occasions when the accuracy of these scores should be questioned.

5.1.1 AlphaFold2 predictions of model accuracy (pIDDT, PAE and pTM)

pIDDT is based on the local distance difference test (IDDT) (Mariani et al., 2013) which
compares distances between individual atoms to estimate confidence in the arrangement of
amino acid residues in the local environment (for a full description see Appendix 1). It is useful
for assessing the local accuracy of domains, for example, as it will not penalise incorrect
relative orientations of domains within a model of a multi-domain protein if there is a good
match between the inter-atomic distance matrices. AF2 provides local pIDDT per-residue
scores in the B-factor column of a model’s coordinates file and a global per-model score which

is output in the modelling log file.

The pIDDT score itself is derived from the IDDT-Ca score (Tunyasuvunakool et al., 2021) which
considers only the backbone Ca atoms in the distance calculation rather than the full all-atom
IDDT score. It has a range of 0-100 (but IDDT values are also sometimes quoted as decimals
in the 0-1 range), with high scores indicating higher confidence (Jumper et al., 2021). In
general, pIDDT values = 90 equate to high confidence, those between 90 and 70 as confident,
from 70 to 50 as low confidence and <50 as very low confidence with a tendency for disorder
(Varadi et al., 2022). These confidence levels mean that pIDDT scores are somewhat different
to regular all-atom IDDT scores. Pfam (Stroe, 2021), for example, considers IDDT scores of
20.6 as representing reasonable models, 0.7 as good quality models and those above 0.8 as

great models.
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PAE represents the Predicted Aligned Error for residue backbone atoms, measured in
Angstréms and calculated for each residue. Values are designed to measure the confidence
in the predicted super-position of any two residues within the model and the native structure
and it can be used to compare the residue confidence scores within a domain to those between
domains. Lower scores represent low predicted error and therefore higher confidence, and
higher scores (capped at 31.75) (Varadi et al., 2022) represent higher predicted error and
therefore lower confidence. PAE is output as a colour-coded image mapping the areas of high

and low confidence and also as machine-readable Json-formatted individual residue scores.

pTM is based on the topological similarity score TM-score (Zhang and Skolnick, 2004) and is
calculated from the PAE matrix (Wallner, 2023). In later AlphaFold2 versions this is also output
in the modelling log file and has a range of 0-1. No published confidence boundaries could be
found for pTM but, traditionally, a TM-score of 1.0 would suggest a perfect match between a
model and its native structure, a score greater than 0.5 is mostly interpreted as representing
the same globular fold and scores below 0.17 are associated with unrelated proteins (Zhang
and Skolnick, 2004). However, Jumper et al. (2021) described a relationship between pTM and
TM-score as TM-score = 0.98 x pTM + 0.07 and so it may be appropriate to artificially construct

pTM confidence boundaries using this relationship, if desired.

This study will concentrate on pIDDT and pTM only for three simple reasons; PAE is not
automatically normalised into an overall value meaning pIDDT and pTM are the most often
quoted AlphaFold2 confidence metrics; AF2 models are ranked by pIDDT and AF2-Multimer
models are ranked by pTM (Evans et al., 2022) (see footnote! for Evans’ description and
ColabFold versions to which it applies), and that these scores are familiar and directly

measurable against their observed counterparts, IDDT and TM-score.

5.1.2 Documented descriptions of AlphaFold2 predicted scores

One of the strengths of the AF2 algorithm has been described as its ability to recognise low
accuracy local areas (Shao et al., 2022) or indeed whole models and apply confidence scores
appropriately. As stated above, linear relationships have been described (Jumper et al., 2021)
for IDDT-Ca as 0.997 x pIDDT - 1.17 and TM-score as 0.98 x pTM + 0.07. While these
relationships acknowledge a tendency for some over-prediction with pIDDT, the suggestion is
that both scores are consistently applied across the scoring range. However, at CASP15

(2022), despite pIDDT and pTM scores from AF2 successfully contributing to many groups

1 a weighted combination of pTM and interface ipTM, calculated as (0.8 x ipTM + 0.2 x pTM). ColabFold
v1.5.0 (Jan-2022 onwards) used the weighted ipTM-pTM score to rank multimers when using the

AlphaFold2_mmseqs2, AlphaFold2_batch and colabfold_batch variants.
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model-selection algorithms, it was noticed that there was a variability in these scores,
particularly for multimer models of very similar quality. One group (Wallner, 2023) reported that
up to one-third of models with a ranking confidence of pTM > 0.8 actually had the wrong domain
orientation and our own experiences during CASP15 modelling revealed an increase in pIDDT
as high as 40 points during model refinement, which would suggest an overprediction of model

quality improvement.

5.1.3 Wider uses of AlphaFold2 rely on accurate predicted quality
Since the CASP14 success detailed above, AlphaFold2 has been used in a DeepMind-EMBL

collaboration to create the AlphaFold Protein Structure Database htips://alphafold.ebi.ac.uk

(Tunyasuvunakool et al., 2021). This is aimed at creating a community resource allowing easy
access to protein structures which remain unsolved by traditional experimental methods. With
the growing profile of in-silico modelling against the backdrop of a growing community
investment in artificial intelligence (Al), databases such as this are likely to increase in
popularity along with a greater reliance on computational modelling software. Although, for
now, the database is limited to tertiary structures, it might, nevertheless, be prudent to examine
whether AlphaFold2’s confidence metrics can be relied upon to rate and rank models

accurately across the whole quality range.

Further to this, at least three published works describe using the AlphaFold derivative
ColabFold to input models as custom templates. One group (Terwilliger et al., 2022) input
electron density maps during model generation from experimental data, another (Adiyaman et
al., 2023) described a procedure for model improvement using custom template recycling as
a refinement strategy, and a third (Roney and Ovchinnikov, 2022) described a method for using
AlphaFold2 as a quality assessment tool. The latter study suggested that AlphaFold2 has the
ability to quality-rank sidechain-masked custom templates with state-of-the-art accuracy and
that the results provide evidence for a neural network-learned protein folding energy function

which AlphaFold2 is able to apply without external co-evolutionary data.

It is clear, then, that significant reliance is being placed on pIDDT and pTM scores and this
study aims to assess the performance of these scores in both monomer and multimer model
populations in comparison to their observed IDDT and TM-score counterparts. Within the
model populations, models will be generated both with and without custom template recycling
to evaluate whether there is a variation in predictive performance with this single variable. In
addition pIDDT and pTM will be compared to quality scores generated by the independent
quality assessment programs ModFOLD9 (tertiary structures) and ModFOLDdock (quaternary
structures) (McGuffin et al., 2023).
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5.2 Objectives

Using blind modelling and assessment data from CASP15, the relationship between
AlphaFold2 predicted scores and their observed counterparts, the IDDT score (including IDDT-
Ca and oligo-IDDT) and the TM-score, will be examined. First, the analysis will attempt to
objectively assess the scores’ accuracy at describing tertiary and quaternary structures in
terms of both global model quality and ranking agreement with observed scores. Second, blind
prediction scores used for the CASP15 EMA competition will then be used to examine the
comparative performance between ModFOLDdock and AF2-Multimer scores for quaternary
structures. Similarly, ModFOLD9 predictions, which were also blind and run in house prior to
the release of the CASP15 experimental structures, will be used to examine the performance
between AlphaFold2 and ModFOLDS9 scores for tertiary structures. Finally, the effect of using
custom template recycling is examined in terms of the accuracy of the AlphaFold2 and AF2-

Multimer scores. For this part, a CASP 14 dataset similar to that described in Chapter 2 is used.

The study is designed around four primary and one secondary consideration. The following

four hypotheses address the primary considerations.

1. Allowing for the published modest overestimation in pIDDT, are AF2 predicted scores
higher than the equivalent observed scores?
HO. There is no increase in magnitude between the AF2 predicted and equivalent observed
scores. H1. The magnitude of the AF2 predicted scores is higher than the equivalent
observed scores.

2. Is AlphaFold2 model ranking reliable compared to ranking by observed scores, as
measured by association between model rank categories?
HO. There is no association between the AFZ2 predicted and observed score ranking
categories. H1. There is an association between the AF2 predicted and observed score
ranking categories.

3. Can model ranking accuracy be improved by independent MQA programs?
HO. There is no difference between the independent QA and AF2 rankings as measured
by the association between model rank categories. H1. Independent QA and observed
score model rank are more closely associated than AF2 and observed score model ranks.

4. |s the accuracy of predicted scores affected by custom template recycling?
HO. There is no difference between AF2 reqular modelling and custom template modelling
predicted scores, when compared to equivalent observed scores. H1. AF2 predicted
scores following custom template modelling show greater variation than scores from
regular modelling, when compared to equivalent observed scores.

Secondary consideration. Do the results support the notion by Roney and Ovchinnikov that

AlphaFold2 can be successfully repurposed as a general model quality assessment tool?
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5.3 Materials and Methods

5.3.1 Selection of models to test the hypotheses

Four individual datasets were used for this study.

Population A (CASP15 monomers) comprised the McGuffin group’s tertiary structure
submissions for CASP15. Population B (CASP15 multimers) was composed of both the
McGuffin group’s (MultiFOLD, group 462) and the ColabFold group’s (group 446) multimer
submissions for CASP15. Group 446 submissions are publicly available from

https://casp15.colabfold.com/). Population C (recycled monomers) is a superset of the AF2

and non-AF2 models used in the custom-template recycling experiment described in Chapter
2. The original model population was fixed at 16 CASP14 targets to form a common subset
with the ReFOLD4 molecular dynamics analysis which used only the FM targets submitted by
the AlphaFold group. The emphasis of this experiment has shifted from measuring model
improvement to measuring model quality overprediction and so it was felt that the inclusion of
four additional FM/TBM targets, for which scores had already been collected, was justified to
increase the model population without significantly altering the difficulty of the models. This
increased the total target number to 20. Population D (recycled multimers) is the same

multimer population used in the custom-template recycling experiment also in Chapter 2.

5.3.2 The Population A dataset — CASP15 monomers

This consisted of all McGuffin group’s blind model submissions for CASP15 regular tertiary
structure targets for which ModFOLD9 scores and a reference native structure were available.
The dataset comprised a total of 26 targets: T1104, T1112, T1120, T1122, T1125, T1130,
T1131, T1133, T1139, T1145, T1146, T1147, T1150, T1154, T1155, T1158, T1159, T1162,
T1163, T1175, T1177, T1180, T1182, T1183, T1188 & T1194.

Our group’s modelling algorithm used two separate rounds as shown in Chapter 2, Figure 2.15.
Round 1 used regular modelling only, with no refinement process, whereas round 2 included
refinement by custom template recycling. Models were therefore split into two sub-populations;
Population A1 represented the round 1 models (regular modelling) and these were created
with a default of 12 recycles and both with and without AMBER relaxation, resulting in 20
models per target (5 unrelaxed AF2, 5 relaxed AF2, 5 unrelaxed AFM and 5 relaxed AFM). For
a small minority of large targets memory constraints meant relaxation was not always possible
resulting in fewer models. Population A2 represented the round 2 models (denoted by the
addition of R to the model's name, e.g., AFMR) which were subject to custom template
recycling and resulted in 10 models per target. Again, 5 of these underwent AMBER relaxation
while the other 5 remained unrelaxed. In this way a maximum of 30 models were created per
target. Predicted pIDDT and pTM scores were harvested directly from the server for both sub

populations and predicted ModFOLD9 scores were collected from the original cached datasets
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used during CASP15. Observed IDDT and TM-scores were generated using the downloadable
versions of TM-score (Zhang and Skolnick, 2004) and IDDT score (Mariani et al., 2013) to
compare models for each target with the CASP observed structures. A total of 735 models

were analysed; consisting of 490 round 1 and 245 round 2 models.

5.3.3 The Population B dataset — CASP15 multimers

This model population comprised all blind multimer (assembly) CASP15 model submissions
for both the MultiFOLD (462) and ColabFold (446) group servers. These two sets of models
were chosen because they were created using the same base ColabFold software (although
exact versions may differ slightly) but differed by the use of custom template recycling in the
MultiFOLD pipeline. The rationale was that the ColabFold models could be used to asses AF2-
Multimer score overprediction when only regular modelling was used and, that by comparing
the ColabFold and MultiFOLD populations, the effect of the additional custom template

recycling on predicted scores could be assessed.

The ColabFold group multimers are named Population B1. For these, custom template
recycling and AMBER relaxation were not used and 12 recycles was used as default
(Ovchinnikov et al., 2022). The predicted scores, pIDDT, pTM (and iPTM where available) were

harvested directly from the server website (see 5.3.1 for the URL).

The MultiFOLD group models are named Population B2. The same pathway as outlined in
5.3.2 above, including custom template recycling, was used to create these models. Only the
final 5 models submitted to CASP were used for analysis and again predicted scores were

collected directly from the server.

For comparisons with observed scores, the official CASP15 assessor oligo-IDDT and TM-
scores were downloaded from the CASP15 prediction centre results webpage
(https://predictioncenter.org/casp15/results.cqi?view=targets&tr type=multimer). As the
ModFOLDdock server participated in the CASP15 EMA experiment, predicted ModFOLDdock

and ModFOLDdockR scores were also readily available for both sub populations of models.

Scores for rank 1 to 5 models were collected for all multimer models for which data were
available, resulting in 395 individual models across the following 41 targets (the ColabFold
group submitted no models for three targets making a total of 38); H1106, H1111, H1114,
H1129, H1134, H1135, H1137 (MultiFOLD only), H1140, H1141, H1142, H1143, H1144,
H1151, H1157, H1166, H1167, H1168, H1171, H1172, H1185, T1109, T1110, T1113, T1115
(MultiFOLD only), T1121, T1123, T1124, T1127, T1132, T1153, T1160, T1161, T1170, T1173,
T1174, T1176, T1178, T1179, T1181, T1187 and T1192 (MultiFOLD only). In total the

Population B dataset consisted of 395 multimer scores.
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5.3.4 The Population C dataset — recycled monomers

This dataset consisted of the custom template recycled AlphaFold2 and non-AlphaFold2
tertiary models used in Chapter 2, with the addition of four extra targets as explained in section
5.3.1 above. There were minor processing differences when creating the recycled AF2 and

non-AF2 models which are explained below.

The AlphaFold2 Rank 1 models were downloaded from the CASP14 website for the following
20 CASP14 FM targets: T1027, T1029, T1031, T1033, T1037, T1039, T1040, T1041, T1042,
T1043, T1047s1, T1047s2, T1055, T1058, T1064, T1074, T1090, T1093, T1094, T1096.
Again, as described in section 5.3.2, observed quality assessment scores were generated
using the downloadable versions of TM-score and IDDT score. To affect the recycling, model
PDB files were converted to mmCIF format using the RSCB PDB MAXIT suite of programs
(https://mmcif.pdbj.org/converter). These were then submitted to the Google Colaboratory
hosted ColabFold (release 3, v1.3.0 [4-Mar-2022]) as custom templates along with their
respective amino acid sequences. ColabFold was run twice per model (both MSA and single-
sequence modes), and, within each mode, the model was submitted four times for 1, 3, 6 and
12 recycles. ColabFold settings used were: Template_mode: custom; msa_mode: MMseqs2
(UniRef+Environmental) OR single sequence; pair_mode: unpaired+paired; model-type: auto;
num_recycles: 1, 3, 6, 12 (selecting “auto” from the model type defaulted to the original pre-
CASP14 AF2 model). Amber relaxation was not enabled. Models created for each ColabFold
run were collected along with their predicted pTM and pIDDT scores and then rescored with
TM-score and IDDT as described above. The process, illustrated below in Figure 5.1, created

800 individual scores from 8 sets of scores per model across 5 models per target for 20 targets.

Figure 5.1 An illustration of input and output models during ColabFold custom template
recycling. Each model (template) was input into ColabFold eight times using different recycling modes
(MSA and single sequence) and produced five new models by default each time.

The same logic was employed for non-AF2 CASP14 models. These were selected from the
same 20 FM targets for the next five best-ranked groups beneath AlphaFold2 at CASP14.
These were Baker (473), Baker-experimental (403), Feig-R2 (480), Zhang (129) and
tFold_human (009). To ensure consistency in terms of globular fold similarity, only models with

a TM-score 20.45 were selected and this resulted in a total of 47 individual models.

The full list of models used is:
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T1029TS009_1-D1, T1031TS009_1-D1, T1033TS009_1-D1, T1037TS009_1-D1,
T1041TS009_1-D1, T1042TS009_1-D1, T1043TS009_1-D1, T1049TS009_1-D1,
T1090TS009_1-D1, T1031TS129_1-D1, T1037TS129_1-D1, T1040TS129_1-D1,
T1041TS129_1-D1, T1042T7S129_1-D1, T1049TS129_1-D1, T1074TS129_1-D1,
T1090TS129_1-D1, T1096TS129 1, T1027TS403_1-D1, T1031TS403_1-D1,
T1033TS403_1-D1, T1037TS403_1-D1, T1039TS403_1-D1, T1041TS403_1-D1,
T1042TS403_1-D1, T1043TS403_1-D1, T1049TS403_1-D1, T1090TS403_1-D1,
T1096TS403_1, T1031TS473_1-D1, T1033TS473_1-D1, T1037TS473_1-D1,
T1039TS473_1-D1, T1041TS473_1-D1, T1042TS473_1-D1, T1043TS473_1-D1,
T1049TS473_1-D1, T1074TS473_1-D1, T1090TS473_1-D1, T1031TS480_1-D1,
T1037TS480_1-D1, T1041TS480_1-D1, T1042TS480_1-D1, T1049TS480_1-D1,
T1074TS480_1-D1, T1090TS480_1-D1, T1096TS480_1.

Models were downloaded from the CASP14 website, scored with TM-score and IDDT and
recycled as templates with the MSA option in the same way as described for AF2 models.
Single sequence recycling was carried out using release v1.3.0 of LocalColabFold (Mirdita et
al., 2022) installed on our own server to overcome the Google Colaboratory GPU restrictions
in the time available. The equivalent LocalColabFold settings were used: msa-mode:
single_sequence; model-type: auto; rank: plddt; pair-mode: unpaired+paired; templates: --
custom-template-path. The resulting rank 1-5 models were collected along with their pIDDT
and pTM scores and rescored against the native structure to produce a set of observed IDDT
and TM-scores. This again resulted in eight sets of five models per input model creating a total

of 1880 individual model scores.

5.3.5 The Population D dataset — recycled multimer models

This dataset consisted of the custom template recycled multimer models used in Chapter 2.
As the AlphaFold2 group did not submit multimer (assembly) models at CASP14, models for
this dataset were selected from the CASP14 top five ranked groups. According to official
results tables, these were Baker, Venclovas, Takeda-Shitaka, Seok and DATE. Some of the
multimer targets were too large to recycle through AF2-Multimer (training was limited to models
up to 1536 residues and the algorithm can experience memory issues with models of more
than a few thousand residues (Bryant et al., 2022)) and therefore the targets used in this set
were limited by size to: H1045, H1065, H1072, T1032, T1054, T1070, T1073, T1078, T1083,
T1084. Again, top-ranked models were used as the custom templates and were subjected to
recycling (1, 3, 6 and 12) using ColabFold (MSA and SS modes) in the same way as described
for the monomer structures above. The resulting 50 rank 1-5 models were then collected along
with their pIDDT and pTM scores. Observed scores were obtained by assessing each model

against their relevant native structures using the OpenStructure and MM-Align (Mukherjee and
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Zhang, 2009) programs to obtain observed oligo-IDDT and TM-scores respectively. Using the
same calculation as above, this resulted in eight sets of scores for each of the five models per
individual group-target combination, a total of 2000 individual scores. The processing of
Population D described above was conducted by Ahmet Gurkan Genc and kindly shared with
me as part of the joint experiment on recycling described in Chapter 2. An overall total of 5,810

model scores were collected across the whole study.

Table 5.1. A summary of the different model populations used in the study.

Model population | Type and modelling software Stoichiometry and type of modelling
Population Al CASP15, MultiFOLD round 1 Monomer, regular modelling.
Population A2 CASP15, MultiFOLD round 2 Monomer, custom recycling included.
Population B1 CASP15, ColabFold Multimer, regular modelling.
Population B2 CASP15, MultiFOLD Multimer, custom recycling included.
Population C CASP14, AF2 and non-AF2 Monomer, custom recycling included.
Population D CASP14, top 5 groups. Multimer, custom recycling included.

5.3.6 Handling of Multimer pTM scores and the procedure for model ranking

Multimer models created by AlphaFold2 variants are, by default, ranked by pTM rather than
pIDDT. As stated in the introduction there is a slight difference in the calculation of the pTM-
based ranking between versions of ColabFold. In AF2-Multimer and in later versions of
ColabFold (v1.5.0) ranking is calculated based on a ratio of 0.8 * ipTM + 0.2 * pTM (Evans et
al., 2022), whereas in earlier versions, ranking is calculated on pTM score alone. As some
multimer models in this population were created with ColabFold v1.3 and some with v1.5 there
was potentially heterogeneous ranking across the model population, and it was necessary to
allow for this when comparing ranks. To this end, multimer models were routinely re-ranked by
pTM score before comparison with observed rankings. The procedure for deriving model ranks
in R consisted of ranking each individual set of 5 related models, i.e., models output from a
single run of AlphaFold2 modelling, using the statement rank <score>, ties.method ="random”
where <score> can be replaced with any of the predicted or observed scores as necessary.
This was applied to observed score ranking but also to ranking by pTM for the reasons
explained above. In this way any differences in the way the AlphaFold2 algorithm originally

ranked the data were negated and the ranks were assigned uniformly across all populations.

Multi-factor contingency tables to display ranking comparisons were created in R using the
caret package with the confusionMatrix() command and four further statistical measures were
used to assess relatedness. Sensitivity, specificity, precision, and accuracy were calculated
forindividual rank classes (1, 2, 3, 4 and 5) and, to construct meaningful comparisons between
the contingency tables, macro-averaged versions of these statistics were calculated as mean

values across all categories for each table. Individual metrics were calculated as follows:
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Sensitivity = TP / (TP + FN),
Specificity = TN / (TN + FP),
Precision = TP / (TP + FP) and
Accuracy = (TP + TN) /(TP + FN + TN + FN).
(TP=true positive, TN=true negatives, FP=false positive and FN=false negatives, see Appendix 13 for a

more comprehensive description of these metrics)

As ranking data is categorical, it is possible to assess the association between the predicted
model ranks and observed model ranks using the Chi-squared and Fisher’s exact tests, where
P-values <0.05 would suggest relatedness between distributions. Fisher’s exact test is often
used for smaller sample sizes (single contingency table cells of less than 5) or where
independence of observations cannot be guaranteed and, while the concept of independence
holds for the assignment of ranks based on predicted and observed scores, some tables do
have low figures in individual cells. As regards multi-contingency tables (larger than 2x2), no
clear distinction between the two tests could be found other than Chi-squared may run into
problems with very sparse data and Fisher's can become computationally intensive for large
tables. It was decided that both tests would be run as a check for each other, i.e., agreement
between the two tests would confer confidence in the result. A Monte Carlo resampling method
(simulate.p.value) with default simulations of 2000 was used for the Fisher’s exact test to allow
a more robust estimate of the p-value and prevent any computational overheads which can
occur when this test is applied to larger contingency tables. This procedure generates 2000
random datasets and computes the test statistic for each one. The sample test statistic is then
compared to the distribution of simulated test statistics to estimate the p-value whilst avoiding
exhaustive calculations (Crawley, 2015). Analysis was performed using R version 3.6.3

running in R-studio.
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5.4 Results and Discussion

Results will be considered in relation to the four hypotheses in the objectives.

5.4.1 Hypothesis 1. Are AF2 predicted scores higher than the equivalent observed
scores?

In this study hypothesis four deals specifically with the effects of custom template recycling on
predicted score reliability. Therefore, in order to focus on one independent variable at a time,
the simpler question of whether predicted scores are good quality indicators must be answered
using only models which have not undergone custom template recycling. For monomers, this
is population A1 (round 1 models) and for multimers this is population B1 (ColabFold

multimers). Population A1 will be considered first.

5.4.1.1. Part 1. Monomer data; Population A1, (round 1)
Monomers are ranked by default by pIDDT scores and so monomer results will focus on
pIDDT/IDDT similarity.
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Figure 5.2. Plots of pIDDT versus observed IDDT for round 1 monomers in population A1.
Left. A scatter plot. Middle. A density plot. Right. A boxplot for the same population. For all plots pIDDT
has been rescaled to fit the 0-1 IDDT range.
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Figure 5.3. Plots of pIDDT versus observed IDDT-Ca for round 1 monomers population A1.
Left. A scatter plot. Middle. A density plot. Right. A boxplot for the same population. Again, pIDDT has
been rescaled to the 0-1 range.

The plots in Figure 5.2 show that pIDDT scores are slightly elevated compared to the all-atom

IDDT scores. However, when pIDDT scores are considered with reference to IDDT-Ca scores
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(Jumper et al., 2021; Tunyasuvunakool et al., 2021) in Figure 5.3, there is no evidence of pIDDT
over-prediction, in-fact the boxplot in Figure 5.3 shows a slightly lower median score for pIDDT.
It should also be possible to check whether the pIDDT values in this sample are in line with the
published linear relationship described in section 5.1.2 (IDDT-Ca=0.997xpIDDT- 1.17). If the
median pIDDT value of 0.91 from the Figure 5.3 boxplot is considered as a convenient
example, the median IDDT-Ca score can be calculated from pIDDT in three simple steps:

1. Convert pIDDT back to its 0-100 range: 0.91 x 100 =91.0

2. Calculate IDDT-Ca from the relationship: 0.997 x 91 - 1.17 = 89.56

3. Convert IDDT-Ca back to the 0-1 range: 89.56/100 = 0.8956 or 0.90 to 2.d.p.
From Figure 5.3 it can be seen that the actual IDDT-Ca is 0.92, meaning that rather than being

overpredicted, pIDDT has in fact been slightly underpredicted for this sample of models.

To formally test this data against hypothesis 1, a Wilcoxon signed rank test for non-parametric
paired data was carried out to test significance. The following results were obtained (a Shapiro
test for normality gave p-values of <0.05 for all three (pIDDT, IDDT and IDDT-Ca) scores,
showing the distributions to be non-normal in all cases).

Table 5.2. Calculated p-values from a Wilcoxon signed rank test for population A1, round 1
monomers. P-values <0.05 are in bold.

Scores compared Independence and distribution symmetry | p-value

pIDDT versus IDDT Paired; 2-sided test. 2.2x10°%6
pIDDT versus IDDT Paired; 1-sided (pIDDT > IDDT) 2.2x10%6
pIDDT versus IDDT-Ca Paired; 2-sided test. 9.69x10¢
pIDDT versus IDDT-Ca Paired, 1-sided (pIDDT < IDDT-Cal) 4.81x10°

Wilcoxon signed-rank test P-values were calculated at the 95% confidence level using pIDDT and IDDT or IDDT-Ca scores.

From the results in Table 5.2, it can be concluded that, for this sample of monomers, there is
a significant difference between predicted and observed IDDT scores as shown by the P-
values of 2.2x107'® and 9.69x10° for the 2-sided Wilcoxon tests for all atom IDDT and IDDT-
Ca respectively. However, there is disagreement between the two scores, with row 2 of the
table showing that according to a 1-sided test, pIDDT values are greater than those for all atom
IDDT (p-value of 2.2x107'¢) while row 4 shows the opposite, that IDDT-Ca values are actually
significantly higher than pIDDT values (p-value of 4.81x10). Considering the published works
cited earlier confirming that pIDDT is based on IDDT-Ca it would be more appropriate to accept
the null hypothesis in this case. Therefore, for monomers constructed from regular straight-
forward AF2 modelling and assessed by IDDT-Ca: There is no increase in magnitude between

the AF2 predicted and equivalent observed scores.

5.4.1.2 Part 2. Multimer data; Population B1 (ColabFold multimers).
For multimers pTM is the default ranking metric, however pIDDT was used in early versions of

ColabFold and so both scores are considered here.
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Figure 5.4. Plots of pTM score versus observed TM-score for Population B1 (ColabFold
multimers). Left. A scatter plot. Middle. A density plot. Right. A boxplot.
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Figure 5.5. Plots of pIDDT score versus observed CASP oligo-IDDT for Population B1 (ColabFold
multimers). Left. A scatter plot. Middle. A density plot. Right. A boxplot. pIDDT has been rescaled to
0-1.

Both the scatter and density plots in Figure 5.4 appear to show an under-estimation of pTM
score for higher quality multimer models but a relatively large overestimation for some lower-
quality models. For Figure 5.5, pIDDT appears to be over-estimated across the quality range
which may be accounted for by the use of an all-atom observed oligo-IDDT score. However,
as with pTM scores, there is a more pronounced overestimation for some models in the lower
quality range. The Shapiro test for normality (all scores were non-normal) and Wilcoxon signed
rank test for significance were executed in the same way as described for monomer data.

Table 5.3. Calculated p-values from a Wilcoxon signed rank test for population B1, ColabFold
multimers. P-values <0.05 are in bold.

Scores compared Independence and distribution symmetry | p-value
pIDDT versus oligo-IDDT Paired; 1-sided test, pIDDT > oligo-IDDT 2.2x101¢
pTM versus TM-score Paired, 2-sided 0.038
pTM versus TM-score Paired; 1-sided test, pTM> TM-score 0.980
pTM versus TM-score Paired; 1-sided test, pTM< TM-score 0.0192

Wilcoxon signed-rank test P-values were calculated at the 95% confidence level using pIDDT and oligo-IDDT or pTM and TM-
scores.
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Table 5.3 shows that there is a significant difference between predicted pIDDT and observed
oligo-IDDT scores and that pIDDT values are significantly higher than oligo-IDDT as shown by
the p-value of 2.2x107"°. For hypothesis 1, with respect to IDDT, the alternative hypothesis can
therefore be accepted for ColabFold multimers, i.e., The magnitude of the AF2 predicted

scores is higher than the equivalent observed scores.

The data are not so clear for TM scores. There is a significant difference between pTM and
TM-score but rather than pTM being the greater of the two (p-value of 0.980), TM-score may
in fact be greater than pTM (p-value of 0.019). To reveal more information about the
relationship between pTM and TM-score, a further investigation into the variation in the two

scores is described in Figure 5.6 below.
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Figure 5.6. Two plots showing the difference between predicted and observed scores for
population B1 (ColabFold multimers). The line at 0.0 represents the observed score; predicted scores
are represented as points. Left. pTM versus TM-score. Right. pIDDT (rescaled to 0-1) versus oligo-
IDDT score. Numbers on the x-axis are the models in the population, ordered from low to high observed
score.

The relationships suggested in Figure 5.5 and Table 5.3 are more clearly shown by the two
plots in Figure 5.6. Both plots show that an overestimation of predicted scores is more likely
for lower quality models with a maximum difference of +0.65 for pTM and +0.74 for pIDDT.
Again, a tendency for underestimation of pTM in higher quality models is apparent with a
maximum difference of -0.32. This explains the Wilcoxon test results for pTM; there is both
over and under-estimation occurring which is quality-related and which, to some extent, cancel
each other out. While there is an allusion to minor pTM underprediction in the mathematical
relationships described in section 5.1.2 (Jumper et al., 2021), no documentation relating to an
overprediction for lower quality models could be found. A similar pattern of underestimation is

not seen for pIDDT.
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For hypothesis 1, with respect to TM-score, the null hypothesis must be accepted for ColabFold
multimers, i.e., There is no increase in magnitude between the AF2 predicted and equivalent
observed scores. However, a caveat must be added to this last statement, that, for this
population (intended to represent regular multimer modelling), while a significant increase in
predicted TM-score could not be detected in the overall population, overprediction was

observed in models of lower observed quality.

5.4.2 Hypothesis 2. Is AlphaFold2 model ranking reliable compared to ranking by
observed scores, as measured by association between model rank categories?

Again, to answer this question fairly, models which have not undergone custom template
recycling must be used. Therefore, this analysis will use the same data as used in 5.4.1 -
Population A1 (round 1 models) and Population B1 (ColabFold multimers). Ranking values

and statistics were calculated as described in section 5.3.6.
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Figure 5.7. Contingency tables showing the rank agreement between observed IDDT and pIDDT
values for Population A1 (round 1 monomers). Left. For all-atom observed IDDT scores. Right. For
observed IDDT-Ca scores. Accompanying table of calculated statistics below.

Table 5.4. Summary statistics, including four macro-averaged test characteristics, Fisher’s exact
test and Chi-squared test for population A1 (round 1 monomers) ranking agreement between
predicted and observed ranks.

Test IDDT result IDDT-Ca result
Macro-Sensitivity (TPR) 0.3204 0.3428
Macro-Specificity 0.8301 0.8357
Macro-Precision 0.3204 0.3428
Macro-Accuracy 0.7281 0.7371

Fisher's Exact (p-value) <0.001 <0.001
Chi-squared (X2; p-value) 128.27; 2.2x10%® | 167.35;2.2x10°%

P-values were calculated at the 95% confidence level meaning those <0.05 are considered significant.
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Figure 5.8. Contingency tables showing rank agreement for Multimers in Population B1
(ColabFold multimers). Left. Observed TM-scores versus pTM. Right. Observed oligo-IDDT versus
pIDDT scores. Accompanying table of calculated statistics below.

Table 5.5. Summary statistics, including four macro-averaged test characteristics, Fisher’s exact
test and Chi-squared test for population B1 (ColabFold multimers) ranking agreement between
predicted and observed ranks.

Test pTM result pIDDT result
Macro-Sensitivity (TPR) 0.3052 0.2842
Macro-Specificity 0.8263 0.8210
Macro-Precision 0.3052 0.2842
Macro-Accuracy 0.7221 0.7136

Fisher's Exact (p-value) <0.001 <0.001
Chi-squared (X2, p-value) 40.26; 0.0007 | 51.31; 1.41x10°

P-values were calculated at the 95% confidence level meaning those <0.05 are considered significant.

The contingency tables in Figure 5.7 show strong agreement for monomer data between
observed IDDT-derived ranks and pIDDT predicted ranks with a slightly stronger agreement
when IDDT-Ca is used as the observed measure. The level of agreement for rank 1 and rank
5 data shown in the contingency tables is supported by mean true positive rates (TPR) of
32.04% and 34.28% for IDDT and IDDT-Ca respectively. In addition, the Fisher’s exact tests
return p-values well below the significance level of 0.05 and the Chi-squared tests return values
of 128.27 (IDDT) and 167.35 (IDDT- Ca) with very small p-values. These data provide robust
evidence that this distribution was unlikely to occur by chance and that there is a significant

positive relationship between the predicted and observed scores.

For the multimer population represented by Figure 5.8, the agreement looks appreciably less
certain for both pTM and pIDDT scores. The summary statistics show a reduction in mean TPR
to 30.5% for pTM and 28.4% for pIDDT. Both Fisher's exact and Chi-squared p-values,

however, remain significant suggesting a relationship between the two rank sets, although it is
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notable that the magnitude of the x? statistic has decreased for both pTM and pIDDT

suggesting a weaker association between predicted and observed ranks.

For hypothesis 2, these results suggest that there is significant association between the
distribution of predicted and observed ranks for both monomer and multimer model populations
created via regular modelling and the alternative hypothesis can be accepted, i.e., There is an
association between the AF2 predicted and observed score ranking categories. Similarly, to
section 5.4.1, though, a qualifying statement may be appropriate here to add that the
association appears more robust for tertiary structure ranking by pIDDT than for multimer

ranking by either pIDDT or pTM.

5.4.3 Hypothesis 3. Can model ranking accuracy be improved by independent MQA?
The individual rank-agreement and TPR values described above for monomer and multimer
models need to be contextualised by comparison to another leading QA method. This section
presents identical analysis for ranking based on predicted scores from the independent QA
programs ModFOLD9 (monomer data) and ModFOLDdock (multimer data).
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Figure 5.9. Contingency tables showing the rank agreement between observed IDDT and
ModFOLD9 values for Population A1 (round 1 monomers). Left. Using all-atom IDDT scores. Right.
Using observed IDDT-Ca scores. Accompanying table of calculated statistics below.

Table 5.6. Summary statistics for population A1 (round 1 monomers) ranking agreement between
predicted ModFOLD9 and IDDT observed ranks.

Test IDDT result IDDT-Ca result
Macro-Sensitivity (TPR) 0.2551 0.2693
Macro-Specificity 0.8137 0.8173
Macro-Precision 0.2551 0.2693
Macro-Accuracy 0.7020 0.7077

Fisher's Exact (p-value) <0.001 <0.001
Chi-squared (X2; p-value) 61.93; 2.5x107 63.67; 1.24x10”7

P-values were calculated at the 95% confidence level meaning those <0.05 are considered significant.
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Visual comparison of the data in Figure 5.9 to those in Figure 5.7 shows that ModFOLD9 has
been unable to improve upon the ranking agreement between pIDDT and IDDT scores for
monomers. TPR is reduced from 34.2% to 26.9% (IDDT-Ca) and all other macro-averaged
statistics are lower than previously reported. Although the Fisher’s exact and Chi-squared tests
continue to return significant p-values, the x2 values, in agreement the TPR scores, have

reduced suggesting a weaker overall association between the ranks.

Therefore, the closeness of the relationship has not been improved by ModFOLD9 and for
hypothesis 3, in respect to ModFOLD9, the null hypotheses must be accepted, i.e., There is
no difference between the independent QA and AF2 rankings as measured by the association

between model rank categories.
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Figure 5.10. Contingency tables showing rank agreement for Population B1 (ColabFold
multimers). Left. Between observed TM-scores and ModFOLDdock score. Right. Between observed
oligo-IDDT and ModFOLDdock score. Accompanying table of calculated statistics below.

Table 5.7. Summary statistics for population B1 (ColabFold multimers) ranking agreement
between predicted ModFOLDdock and observed oligo-IDDT ranks.

Test TM-score Result | IDDT result
Macro-Sensitivity (TPR) 0.3421 0.4315
Macro-Specificity 0.8355 0.8578
Macro-Precision 0.3421 0.4315
Macro-Accuracy 0.7368 0.7726

Fisher's Exact (p-value) <0.001 <0.001
X-squared (X%; p-value) 38.42;0.0013 78.94; 2.57x10°%0

P-values were calculated at the 95% confidence level meaning those <0.05 are considered significant.
In contrast, a visual comparison of the data in Figure 5.10 with those from Figure 5.8 suggests
ranking agreement for multimers is stronger for ModFOLDdock scores, particularly for IDDT
rank agreement. This is supported by the data in Table 5.7 where the TPR has increased from

30.5% in Table 5.5 to 34.2% in Table 5.7 for TM-score and more appreciably from 28.4% to
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43.1% for oligo-IDDT score. The Chi squared values have remained similar for TM-score
across the two tables, however Table 5.7 shows an increase in the x2 statistic from 51.31 to
78.94 for oligo-IDDT ranking. This increase, along with the increased TPR values, is strongly

suggestive of a closer positive association between ModFOLDdock and oligo-IDDT ranking.

For hypothesis 3, then, with respect to multimer ranking by TM-score, there is insufficient
evidence to reject the null hypothesis. There is no difference between the independent QA and
AF2 rankings as measured by the association between model rank categories.

However, with respect to multimer ranking by oligo-IDDT, considering the increases in scores
described above, there may be sufficient evidence to accept the alternative hypothesis, i.e.,
Independent QA and observed score model rank are more closely associated than AF2 and

observed score model ranks.

5.4.4 Hypothesis 4. Is the accuracy of predicted scores affected by custom template
recycling?

To answer this question data is presented from the four model populations which underwent
custom template recycling. For monomers this is Population A2 (CASP15 round 2 monomers)
and Population C (recycled monomers), for multimers it is Population B2 (CASP15 MultiFOLD
group multimers) and Population D (recycled multimers). It would be logical to start with the
data for populations A2 and B2 because these two groups can be directly compared to their
unrecycled counterparts, i.e. Population A2, the CASP15 round 2 monomers (recycled) can
be directly compared with the Population A1 CASP15 round 1 monomers (unrecycled) which
were discussed in section 5.4.1.1 and Population B2, the MultiFOLD group multimers
(recycled) can be directly compared to the Population B1 ColabFold group multimers
(unrecycled) which were discussed in section 5.4.1.2. Populations C and D have no direct

comparisons and so will be discussed last to provide support of the population A and B data.

5.4.4.1 Population A2 (CASP15 round 2 monomers)

CASP15 R2 monomers observed IDDT vs pIDDT Round 2 IDDT and pIDDT density plot Round 2 IDDT and pIDDT Box plot
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Figure 5.11. Plots for pIDDT versus observed IDDT for Population A2 (CASP15 round 2
monomers). Left. A scatter plot. Middle. A density plot. Right. A boxplot. For all plots pIDDT has been
rescaled to fit the 0-1 IDDT range.
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CASP15 R2 monomers observed IDDT-Ca vs pIDDT Round 2 IDDT-Ca and plDDT density plot Round 2 IDDT-Ca and pIDDT Box plot
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Figure 5.12. Plots for pIDDT versus observed IDDT-Ca for Population A2 (CASP15 round 2
monomers). Left. A scatter plot. Middle. A density plot. Right. A boxplot. For all plots pIDDT has been
rescaled to fit the 0-1 IDDT range.
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Figure 5.13. Equivalent plots of ModFOLD9 score versus observed IDDT for Population A2
(CASP15 round 2 monomers). Left. A scatter plot. Middle. A density plot. Right. A boxplot. For all
plots pIDDT has been rescaled to fit the 0-1 IDDT range.

Comparing the data from Figure 5.11 directly with that for the round 1 monomers presented in
Figure 5.2 (section 5.4.1.1), it is apparent that there is a wider spread of data in the scatter plot
in Figure 5.11 with an increase in pIDDT scores, which are reflected in the density plot and the
boxplot. Figure 5.12, for IDDT-Ca scores, shows a similar spread in the scatter plot but
accompanied by a less noticeable difference between the pIDDT and IDDT-Ca distributions in
the density and boxplot. Wilcoxon signed rank tests for significance in Table 5.8 (below),
however, reveal that the difference between the pIDDT and IDDT-Ca score is significant as is

the difference between the round 2 monomer pIDDT scores and their round 1 counterparts.

Table 5.8. Calculated p-values from Wilcoxon signed tests for population A2, round 2 monomers.
P-values <0.05 are in bold.

Row | Scores compared Independence and distribution symmetry | p-value
1 R2 pIDDT versus IDDT-Ca Paired; 2-sided test 0.0001
2 R2 pIDDT versus IDDT-Ca Paired; 1-sided test, pIDDT > IDDT-Ca 5.83x10°®
3 R2 pIDDT versus R1 pIDDT Unpaired; 2-sided 1.293x10°
4 | R2 pIDDT versus R1 pIDDT Unpaired; 1-sided, R2 > R1 6.465x10°1°
5 R2 IDDT-Ca versus R1 IDDT-Ca | Unpaired; 2-sided 0.1255

Wilcoxon test P-values were calculated at the 95% confidence level using and those <0.05 are considered significant.

154



Chapter 5

Table 5.8, row 1, shows that according to a paired 2-sided Wilcoxon test there is a significant
difference between pIDDT and IDDT-Ca observed scores for round 2 monomers and, further
to this, the results of a paired 1-sided test in row 2 show that that pIDDT scores are significantly
higher. These findings agree with the scatter plots in Figures 5.11 and 5.12 showing over-
prediction in mid-quality models which was not present in the round 1 data. Notably, the over-
prediction is also absent from the equivalent round 2 ModFOLDS9 scatter plot shown in Figure
5.13. This is good evidence that overprediction of pIDDT occurs in monomer models with

custom template recycling.

To further test this, a 2-sided Wilcoxon test was used to directly compare round 1 and round 2
monomer pIDDT scores (row 3) and this showed a significant difference between the two
scores, evidenced by a p-value of 1.293x10°. Further, it was established that the round 2
monomer scores were significantly higher than those for round 1, evidenced by a p-value of
6.465x107'° from the 1-sided test in row 4. Importantly, there was no such difference between
the equivalent round 1 and 2 monomer observed IDDT-Ca scores as shown by the p-value of
0.1255 (row 5 of the table) meaning that round 1 and 2 monomer models were not significantly

different in quality.

It is therefore reasonable to conclude that these prediction errors have been introduced by
custom template recycling and, for hypothesis 4 in respect to monomer models, the alternative
hypothesis can be accepted, i.e., AF2 predicted scores following custom template modelling
show greater variation than scores from regular modelling, when compared to equivalent

observed scores.
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5.4.4.2 Population B2 (CASP15 MultiFOLD multimers)

A

MultiFOLD Observed TM-score vs pTM

Observed TM-score density plot (CASP15)
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Figure 5.14. Plots for Population B2 (MultiFOLD multimers). Scatter plots (left), density plots
(middle) and box plots (right) for; A. pTM versus observed TM-score. B. pIDDT versus observed
CASP oligo-IDDT. C. Comparison plots for ModFOLDdock score versus TM-score. D. Comparison plots
for ModFOLDdock versus oligo-IDDT. pIDDT figures are rescaled to 0-1.
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The plots in Figure 5.14, panels A and B, can be directly compared to Figures 5.4 and 5.5 for
ColabFold multimers in section 5.4.1.2. Considering the plots in panel A for TM-scores, the
spread of points in the scatter plot is noticeably greater than that shown in Figure 5.4. Further,
although the mean observed TM-score in the boxplots reduces from 0.745 (Figure 5.4) to 0.68
across the two populations, the equivalent mean pTM rises from 0.72 to 0.76. Secondly,
considering panel B for IDDT scores in a similar way, the scatter plot again shows an increase
in the spread of data compared to its equivalent in Figure 5.5 and there is also a marked shift
to the right in pIDDT when comparing the density plots, and a corresponding increase in mean
pIDDT score shown in the boxplot. These changes suggest a similar overprediction to that
seen for monomers is also occurring for multimers which have been subject to custom template
recycling. For comparison, the scatter plots in panels C and D showing ModFOLDdock scores
versus both observed TM-score (C) and oligo-IDDT scores (D) for the same population, show
little evidence of sustained overprediction. If anything, ModFOLDdock appears to suffer from

a tendency for under-prediction of these models.
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Figure 5.15. Plots to show variation between predicted and observed scores for Population B2
(MultiFOLD multimers). Left. pTM versus TM-score. Right. pIDDT versus oligo-IDDT. Plots are
equivalent to those in Figure 5.6 for ColabFold multimers. pIDDT figures are rescaled to 0-1.

The relationships suggested in Figure 5.14, panels A and B, are more clearly shown by the
two variation plots in Figure 5.15. In agreement with Figure 5.6, both plots show overprediction
of scores for lower quality models with maximum and minimum differences of +0.657 and
-0.325 respectively for pTM score and a maximum difference of +0.828 for pIDDT score.
Although the maximum and minimum deviation in the data for pTM score are almost identical
to those from Figure 5.6, the maximum deviation in pIDDT scores has increased from 0.747 to

0.828. Also, upon visual comparison of the two pairs of plots it is clear that the number of
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models in the over-predicted regions in Figure 5.15 has increased over those in Figure 5.6
despite a similar number of models overall (205 and 190 respectively). Wilcoxon signed rank
tests were again used to quantify these differences in terms of significance and the results are
presented in Table 5.9 below.

Table 5.9. Wilcoxon tests for Population B2 MultiFOLD multimers and Population B1 ColabFold
multimers. P-values <0.05 are in bold.

Row | Scores compared Independence and distribution symmetry | p-value
1 | MultiFOLD pIDDT versus oligo-IDDT Paired; 1-sided test, pIDDT > oligo-IDDT 2.20x10°'¢
2 MultiFOLD pTM versus TM-score Paired; 1-sided test, pTM > TM-score 1.46x10°
3 MultiFOLD versus ColabFold pIDDT Unpaired; 1-sided, MultiFOLD > ColabFold 7.193x10®
4 MultiFOLD versus ColabFold oligo-IDDT | Unpaired; 2-sided. 0.283
5 MultiFOLD versus ColabFold pTM Unpaired; 1-sided; MultiFOLD > ColabFold 0.014
6 MultiFOLD versus ColabFold TM-score | Unpaired; 2-sided. 0.252

Wilcoxon test P-values were calculated at the 95% confidence level using and those <0.05 are considered significant.

Table 5.9, rows 1 and 2 confirm that both predicted pIDDT and pTM scores are significantly
greater than their observed counterparts (oligo-IDDT and TM-score) for MultiFOLD multimers
as evidenced by p-values of 2.20x10-'® for pIDDT versus oligo-IDDT and 1.46x10° for pTM
versus TM-score. Furthermore, there is confirmation that the pIDDT (row 3) and pTM (row 5)
scores are significantly greater than the equivalent predicted scores for ColabFold multimers
but, importantly, there is no significant difference between the equivalent two sets of observed
scores (row 4 for oligo-IDDT and row 6 for TM-score). This again shows that, for a similar set
of models based on the same CASP targets, both sets of observed scores are similar but both
predicted pTM and pIDDT scores are significantly different and are higher in both cases for the

group subject to custom template recycling.

Therefore, with respect to multimers, the alternative hypothesis must again be accepted, i.e.,
AF2 predicted scores following custom template modelling show greater variation than scores

from regular modelling, when compared to equivalent observed scores.
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5.4.4.3 Population C (recycled monomers).

Observed Ca-IDDT vs pIDDT (All)
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Figure 5.16. Plots for pIDDT versus observed IDDT-Ca for population C (recycled monomers).
Left. A scatter plot showing the spread of data. Right. A boxplot comparing the distribution of IDDT-Caq,
IDDT and pIDDT scores for the same population. IDDT and IDDT-Ca have been rescaled to the 0-100
range. Arrow (in red) on the scatter plot shows the potential degree of variation in predicted scores for

models with similar observed scores.
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Figure 5.17. Plots for pTM versus observed TM-score for population C (recycled monomers).
Left. A scatter plot showing the spread of data. Right. A boxplot for both scores from the same
population. Arrow (in red) on the scatter plot shows the potential degree of variation in predicted scores

for models with similar observed scores.

Finally, the purely recycled models (population C and D) are considered. The scatter plots in

Figures 5.16 and 5.17 show Pearson correlation coefficients of 0.87 and 0.89 respectively

between predicted and observed scores. Although these correlations appear very respectable,

both plots show a pronounced spread in the data with a high proportion of outliers. The red
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bars on each scatter plot show the potential degree of variation in predicted scores for models
with similar observed scores. For an observed score of approximately 0.5, predicted pIDDT
scores range from approximately 0.5 to 0.9 (Figure 5.16) and pTM scores range from
approximately 0.3 to 0.9 (Figure 5.17). These results strongly support the hypothesis that using
custom template recycling appears to produce a much higher degree of variability both pIDDT
and pTM scores.

5.4.4.4 Population D (recycled multimers).
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Figure 5.18. Plots for Population D (Recycled multimers). Scatter plots (left), density plots
(middle) and box plots (right). A. pTM versus observed TM-score. B. pIDDT versus observed CASP
oligo-IDDT. pIDDT values are rescaled to 0-1.

Figure 5.18 shows a similar spread of data to that seen in Figures 5.16 and 5.17. Panel A
again shows a tendency for multimer pTM over and under-prediction meaning a high variation
in predicted pTM score for models with similar observed scores. In panel B, all three plots
demonstrate a high tendency for pIDDT over-prediction and again, this is more pronounced for

mid to lower quality models.

As both population C and D were subject to up to 12 recycles and were entirely created via
custom template recycling, these results support the hypotheses drawn above for population
A and B, that using custom template recycling produces a higher degree of variability in
AlphaFold2 predicted scores for both monomer and multimer models and that this effect is

more pronounced for multimers.
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5.5 Conclusions

Throughout, data in this chapter has been orientated toward answering four primary questions
concerning the accuracy of the often-quoted AlphaFold2 predicted scores pIDDT and pTM,
both as empirical descriptors of model quality and as reliable ranking scores. Further to this,
there remains the more challenging secondary consideration of whether the AlphaFold2 neural
network has learnt a useful energy function which can be applied to extend its use to general

model quality assessment.

pIDDT is a reliable indicator of tertiary structure (monomer) model quality and ranking.
From the data presented in section 5.4.1.1, pIDDT was shown to be a reliable indicator of
tertiary structure model quality when straightforward regular modelling was used and showed
impressive Pearson correlation coefficients with both observed IDDT and IDDT-Ca scores
which the independent QA method, ModFOLD9, was unable to improve upon. pIDDT
prediction accuracy appeared to be maintained across the scoring range and any over-

prediction may be potentially explained by the published linear relationship with IDDT-Ca.

Ranking of the same tertiary model population also showed an agreement between pIDDT and
IDDT-Ca assigned ranks, which ModFOLD9 was, again, unable to improve. For straightforward
regular tertiary modelling and it can be concluded that pIDDT appears to be a reliable quality

descriptor and ranking tool for tertiary structure models.

Both pTM and pIDDT show variability as indicators of multimer model quality and
ranking.

The reliability, however, was not maintained for all multimers. As shown by the plots in section
5.4.1.2, both pTM and pIDDT showed variability for models of similar quality with pTM showing
a tendency for underestimation for higher quality models and both scores showing
overestimation for some lower quality models. The overestimation was more pronounced for
pIDDT.

This variability also affected ranking accuracy, with both pTM and pIDDT showing a lower
association with observed score ranking than was seen for monomers. Of the two scores the
association was less strong for pIDDT-assigned ranks. ModFOLDdock, which did not show
over-prediction to the same degree, was able to improve upon the rank agreement of pIDDT
although there was insufficient evidence to draw the same conclusion for pTM. Nevertheless,
there remains some unreliability in the ability of pTM and pIDDT to differentiate between some
high and low quality multimer models created by regular modelling and ModFOLDdock scores

represent a more reliable method for ranking multimer models.
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Greater variability of AF2 predicted scores is seen if custom template recycling is used.
Finally, convincing evidence is presented in section 5.4.4 that using the custom template option
to recycle models through the AlphaFold2 algorithm results in a much greater variability in
predicted scores for both tertiary structures and multimers and that the variability is more
extreme for multimer models. This provides cautionary evidence that the use of AF2 and AF2-
Multimer outside of their intended end-to-end operation could result in mis-scoring and mis-

ranking of models.

Independent MQA is essential but AF2 is an unlikely MQA program in its current form.
In light of these results, while recycling custom templates through AlphaFold2 improves model
quality (Adiyaman et al., 2023) the accuracy of the accompanying predicted scores will be
severely affected in some cases. For this reason, it is considered unlikely that AlphaFold2
would be a useful tool for accurate quality assessment (QA) of whole models as the only way

to achieve this would be via the custom template route.

Further to this, where the custom template option is used for tertiary structure modelling, it is
essential that an independent QA program such as ModFOLDS9 is used to ensure accuracy in
predicted scoring and model ranking. For any multimer modelling, whether straightforward or
via custom template recycling, an independent QA program such as ModFOLDdock should
also be used for the same reasons. MQA programs not only offer an alternative opinion on

quality but also enable models from different software to be objectively compared.
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CHAPTER 6

Synthesis, conclusion and next directions
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6.1 Synopsis of studies

This thesis describes a body of work completed over a 5 year period (2018-23) with two main
aims; one, to identify methods for the improvement of predicted protein quaternary structure
modelling over that achievable by docking technology; two, to develop a method for accurate
and independent quaternary structure predictive model quality assessment, a technology that
was largely missing from the modelling toolkit at the time. A tacit third aim was the symbiosis

of these two developments to drive improvement in quaternary structure model quality.

6.1.1 Analysis of MultiFOLD performance and incorporating AF2 recycling

An extensive analysis of quaternary structure modelling performance at CASP13 was carried
out as a baseline for development. In this analysis, and based on a similar analysis by the
Venclovas group (Dapkunas et al., 2019) successful modelling was defined as models having
a QS-score > 0.1. It was found that, even with this fairly low threshold, the early hybrid
docking/TBM version of the MultiFOLD pipeline achieved only 10% success rate (3/30

models).

Following the success of AF2 at CASP14 and the subsequent code release by the DeepMind
group leading to the development of ColabFold, we were able to explore the possibility of
model refinement and improvement via the custom template recycling option with the intention

that this could provide a unique advantage in an updated version of MultiFOLD.

It was established that this novel use of recycling using full structural coordinate files was
possible, and that it significantly improved models beyond their starting quality as measured
by comparison with their native structures using the IDDT score. This improvement was not
seen in a parallel MD refinement study (Adiyaman et al., 2023). Further to this it was shown
that a significant improvement in model quality was achievable without the need for an MSA
and that official DeepMind AlphaFold2 models were also slightly but significantly improved by
this process. Success in this initial study underpinned the application of this technique to
quaternary structure modelling where similar improvements were seen, including

improvements measured by QS-score, suggesting improvements to multimer interfaces.

Documented evidence (Roney and Ovchinnikov, 2022) showed that AF2 performance
decreases considerably without an MSA, meaning that the improvements we obtained provide
some evidence for either a learnt protein folding function in the AF2 DNN or that template
information can be used to avoid local minima within the folding funnel energy landscape.
Benchmarking at CASP15 resulted in MultiFOLD outperforming both the naive NBIS-AF2-
Multimer and the ColabFold groups (Burcu Ozden et al., 2023) showing that the unique
combination of AF2 features with a blend of existing and proprietary EMA scores added value

beyond the baseline modelling capabilities of AlphaFold2-Multimer.
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6.1.2 Developing new quality estimates and optimisation of artificial Neural Network
(NN) correlations for CASP15

The main aim of this part of the study was the development of an independent, publicly
available model quality assessment program (MQAP) to predict the quality of quaternary
structure models. Although many MQAP options existed for tertiary structures, very few
resources existed for the quality comparison of multimer models built using different modelling
software. If the life sciences community was to accept multimeric models, a reliable method
for predicting model quality was vital. To achieve this, the first part of the study was dedicated
to finding a route for the improvement of the unpublished MQAP ModFOLDdock, which had
been used during the CASP13 assembly modelling competition but which had shown
inaccuracies compared with observed scores of up to 0.546 (0-1 scale) and had a success

rate in selecting the best model from a decoy set of 1/30 or 3.3%.

Initial regression analysis was performed with observed scores and this found that there was
useful information contained within the six ModFOLDdock predicted scores which had been
previously masked by the calculation of an overall consensus score. A novel use of the CASP
assessor scores as Local, Global and Total target scores revealed improved correlations.
These scores were then used as target scores to train a simple MLP by supervised learning
using three-part cross-validation. The resulting unigue combination of the six distance-based
scores was designed to differentiate between models on the basis of global fold, interface

quality and overall similarity.

When ModFOLDdock was optimised for CASP15 it was found that the Local and Global scores
defined previously fitted the definitions of the QMODE2 SCORE (global fold) and QSCORE
(global interface) categories specified for the new assembly EMA competition. During further
optimisation three variants of ModFOLDdock were defined to produce quality scores according
to user requirements, these were; ModFOLDdock — optimised for correlation with observed
scores and likely to provide a good estimate of empirical quality; ModFOLDdockR — optimised
for ranking, more likely to differentiate between decoy models for top model selection, and
ModFOLDdockS — designed as a quasi-single model method to allow reliable quality

assessment of a single or only few models.

ModFOLDdock variants achieved a 100% prediction rate (i.e., they generated scores for all
targets) in all three CASP15 EMA categories and were ranked in 2" place for (global) SCORE
(ModFOLDdock), 1% place for (global interface) QSCORE (ModFOLDdockR) and 2™ place for
local interface residue score (ModFOLDdockR). Additionally, ModFOLDdock variants rated
highly when identifying the interface patch in antibody-antigen interactions. Overall,

ModFOLDdock variants improved the Pearson correlation between predicted and CASP
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observed scores from 0.16 seen in CASP13 to a maximum of 0.81 when all CASP15 data was
considered. Further to this, the increase in modelling success described in 6.1.1 was partially
attributable to model selection by ModFOLDdockR and provides good evidence of model

guality assessment improving modelling quality.

6.1.3 Comparison of AF2 accuracy estimates with ModFOLDdock MQA scores

As the life sciences community becomes more used to AlphaFold modelling, there is likely to
be more reliance on the AF2 predicted quality measures, which have shown great reliability
for tertiary structure models. It had yet to be established if this reliability extends to quaternary

structure modelling.

In this part of the study, the AlphaFold2 predicted quality measures, pIDDT and pTM were
investigated as reliable descriptors of both model quality and as ranking measurements for
both tertiary and quaternary structure models. Their performance was compared to both

ModFOLD?9 for tertiary structures and ModFOLDdock for quaternary structures.

To the best of our knowledge, this work showed for the first time the pattern of over and under
estimation of these scores for quaternary structures, as applied by AF2-Multimer. It also shows
that the variation is exacerbated by the use of custom template recycling, suggesting that that
AFM quality scores may be a product of MSA strength and when the custom template option
is used, the accuracy is somewhat overwritten. It was demonstrated that ModFOLDdock, as
an independent MQA method, did not show the same pattern of variation with changing
modelling conditions and statistical analysis suggested that ModFOLDdock represented a

more accurate ranking tool than either pIDDT or pTM for multimeric models.

6.2 Conclusions

6.2.1 Quaternary structure modelling

The recycling experiment showed that significant improvements, as measured by native-
dependent quality scores, can be made to both tertiary and quaternary structure models at a
low computational cost by this process. In some cases, non-AF2 tertiary structure models were
improved beyond the quality of the equivalent AF2 model, and quaternary structure model
improvement was evident from increases in both TM-score and QS-score. Furthermore,
improvement was significant in the absence of an MSA, even for some high quality models
and, considering documented evidence for a decrease in AF2 modelling quality without an
MSA (Roney and Ovchinnikov, 2022), these improvements are suggestive of a learned
function within the AF2 neural network. Recycling was subsequently included in the MultiFOLD
pipeline and blind benchmarking at CASP15 showed that MultiFOLD out-performed the
baseline NBIS-AF2-Multimer and the ColabFold group in assembly modelling.
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A parallel study using the same dataset as the recycling experiment showed that the molecular
dynamics refinement program ReFOLD4 (Adiyaman et al., 2023), improved the geometry-
based MolProbity scores (Chen et al., 2010) rather than native-dependent scores. This means
that creating models via MultiFOLD, which includes recycling, followed by further refinement
with ReFOLD4 could improve both the backbone and atomic positioning within 3D models with
a low computational overhead, considering ReFOLD4’s targeted constraint approach which
will not attempt to refine residues with high pIDDT scores. This could be important in moving
closer to models accurate enough for medical or drug interaction studies, indeed Section 6.2.4
includes references to some studies where MultiFOLD has been chosen specifically for these

advantages.

6.2.2 Quaternary model quality assessment

The identification of novel target scores for the combination of ModFOLDdock predicted quality
measures and the comparison of these to CASP assessor scores led to prediction accuracy
increases of 8.75%, 14% and 7% for Local, Global and Total scores respectively. The
relationships defined by this process and confirmed by supervised NN training were then used
in defining and optimising three ModFOLDdock variants for the CASP15 EMA competition as

well as for an additional ranking tool within the MultiFOLD pipeline.

ModFOLDdock variants were highly placed in all three EMA categories making ModFOLDdock
arguably the most successful EMA method at CASP15. ModFOLDdockR additionally
demonstrated its ranking ability within the MultiFOLD modelling pipeline by identifying the best
model from a decoy population 33% of the time, a 10-fold increase from CASP13 performance.
Additionally, ModFOLDdock variants showed especially good interface patch identification for
antibody-antigen binding interactions which may be an important aspect to advertise to the
biological modelling community. Finally, it was demonstrated that ModFOLDdock was able to
outperform pIDDT and pTM as a ranking tool for AFM models as it did not show variability or

a tendency for overprediction in the same way as the AFM quality measures.

These achievements show that correctly optimised distance-based scoring algorithms can
compete with machine learning (ML) systems which can suffer from accuracy issues when
there is a lack of high-quality models for training datasets. Until multimer modelling reaches
the levels of quality associated with AF2 tertiary models, traditional quality measures could
play an important role in driving the development of quaternary structure modelling in the short
to medium term. The final point on ModFOLDdock versus pIDDT and pTM scores provides
evidence that adapting AF2 and AFM for use outside of their end-to-end operation could result

in model mis-scoring and mis-ranking.
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6.2.3 Continued benchmarking of MultiFOLD

The CASP15 success achieved in 2022 has been further validated by encouraging results for
the MultiFOLD server in the ongoing CAMEO BETA modelling of structures and complexes
community project (Haas et al., 2019). The data presented in Figure 6.1 show that MultiFOLD
(Server 1) outperforms the other three currently registered servers as measured by both IDDT-
oligo and QS-score. The values plotted are cumulative scores normalised to the 0-1 range to
compensate for the different number of targets modelled by each server. Servers 1 and 76
modelled 127 targets, Server 4, 80 targets and Server 2 only 40 targets, therefore normalised
values were created by calculating cumulative Server 1 scores for sets of targets matching

each other server. The normalised score is then calculated as

Score
Server 1 score

Further analysis (Genc, 2024) has shown that the MultiFOLD server maintains its performance
advantage over the other servers and, in all except the homomer category, the advantage is
significant at the 95% confidence level. This slight performance dip for homomers is due to the
difficulty with stoichiometry determination which is unclear from the single sequence provided
for homomers versus the three which would be provided for a trimer, for example. Homomer
stoichiometry must therefore be inferred from templates which can be problematic for

previously uncharacterised proteins.

A Normalised cumulative IDDT-oligo score for CAMEO servers B Normalised cumulative QS-score for CAMEO servers
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Figure 6.1 Relative performance of MultiFOLD (Server 1) and the other servers competing in
CAMEO BETA modelling. Data is for combined heteromer and homomer models. A. IDDT-oligo scores
normalised as described above for matching target populations modelled by each server (common
subsets). B. Similarly normalised data for QS-scores. Data was collected between January 2023 and
March 2024 and kindly provided by Ahmet G Genc (Genc, 2024). Server identities are hidden to all
except CAMEO organisers.
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6.2.4 Impact of the MultiFOLD and ModFOLDdock servers
A number of groups have published papers citing both MultiFOLD and ModFOLDdock as

integral parts of their research. Brief descriptions of four example studies are given below.

1. Diverse genetic contexts of HicA toxin domains propose a role in anti-phage defense,
(Gerdes, 2024). In this study dimers of the PaV-LD phage class 1 HicAB and the
Campylobacter class 2 HicAB were modelled using MultiFOLD and quality assessed using
ModFOLDdock. This was a bioinformatics examination of the role of the HicA domain in the
toxin—antitoxin (TA) system as an anti-phage defence mechanism. The elucidation of the
interaction was described as advancing the understanding of the TA system functionality within

the microbial world.

2. Disabling spidroin N-terminal homologs' reverse reaction unveils why its intermolecular
disulfide bonds have not evolved for 380 million years, (Mi et al., 2023). This study cited
MultiFOLD’s independently validated improved performance over AlphaFold2 and used the

server to predict the NT and CT self-assembly spidroin domains.

3. Are the integrin binding motifs within SARS CoV-2 spike protein and MHC class Il alleles
playing the key role in COVID-19? (Gerencer and McGuffin, 2023). This study used MultiFOLD
models to predict the visibility of the integrin-binding ECD (Glu-Cys-Asp) and LDI (Leu-Asp-

lle) motifs on the S (spike) protein.

4. In Silico Evaluation, Phylogenetic Analysis, and Structural Modeling of the Class Il
Hydrophobin Family from Different Fungal Phytopathogens, (Bougellah and Farag, 2023). This
study used MultiFOLD as well as AF2 and trRosetta to model HFBII structures and found that
“MultiFOLD showed a higher modelling precision than the other [Alphafold2 and trRossetta]
tools, by pTM and pIDDT”. This was verified by observed TM-scores of 7.1 (MultiFOLD), 0.69
(AF2) and 0.62 (trRosetta) when compared to the experimental HFBII structure (PDB: 4A0G).

Of these, the HicAB (1) and the SARS-CoV-2 binding motifs (3) study exemplify how
understanding protein binding and complex formation can be integral to the furtherance of
biomedical research. The HicA proteins are small bacterial proteins with a domain responsible
for their toxic activity. Production of HicA is often increased at times of bacterial stress,
inhibiting cellular function and leading to dormancy. This is thought to be a potential route for
antibiotic resistance allowing the bacteria to lie dormant until levels of antibiotic are reduced.
The HicB proteins bind to the HicA domain and prevent its exposure. Understanding the
dimerisation could lead to the development of drug-induced HicA binding, preventing

dormancy and therefore reducing resistance.

169



Chapter 6

Both the ECD and LDI motifs lie within the SARS-CoV-2 receptor binding domain (RBD) and
have been implicated in integrin (ECD) and angiotensin-converting enzyme 2 (ACEZ2) binding
(LDI). Studying the interactions of these domains may enhance understanding of the ability of
the SARS-CoV-2 virus to infect a diverse range of cells causing the severe viral loads which
were seen in some cases during the pandemic. The ECD is of particular interest as integrin
can be activated via cytokinin release (Liu et al., 2022) leading to enhanced integrin-mediated
cell entry following initial ACE2-mediated entry. A vaccine developed specifically against this

domain may limit the ability of Covid to cause serious disease.

The publications resulting from the work in this thesis have been useful to the general
community. According to a Google Scholar search on 11/4/24, Prediction of protein structures,
functions and interactions using the IntFOLD7, MultiFOLD and ModFOLDdock servers
(McGuffin et al., 2023) has received 21 citations; Estimation of model accuracy in CASP15
using the ModFOLDdock server (Edmunds et al., 2023) has received 10 citations and
Improvement of protein tertiary and quaternary structure predictions using the ReFOLD
refinement method and the AlphaFold2 recycling process (Adiyaman et al., 2023) has received

7 citations.

6.3 Future directions

6.3.1 Short term developments

The first and most pressing task is the development of version 2 of ModFOLDdock to further
improve performance and maintain competitiveness at CASP16. To achieve this, a modified
version of the neural network which was proposed in Chapter 3 will be integrated into the
source code with the function of optimising an enhanced set of component scores into a
consensus score. At the time of writing this is currently in the pretraining test stage for the
residue-level confidence score, a representation of which is shown in Figure 6.2. As suggested
in Chapter 3, one way to increase the predictive power of a neural network while avoiding the
overfitting problem is to increase the number of inputs available for consideration. The logic
adopted for ModFOLDdock version 2 is to firstly identify interface residues as those within 8A
of a residue, in the hypothetical example below this is residue “Al1”. The five closest
neighbouring residues are then calculated by the shortest Euclidean distance from the target
residue. In Figure 6.2 this is A10 and Al15 on the same chain and B11, B6 and B25 on the
complementary chain, as shown by the yellow and cyan graphic on top the left. The values (0O-
1) for eight quality scores for each of the residues identified by the measures above are then
used as input to the neural network, making a total of 48 input scores per residue. From these
an optimal consensus score describing the modelling accuracy of each interface residue is
calculated. The structural image top right shows a target residue (yellow) in the middle of an

interface, the bottom right image shows a target residue (again in yellow) on the edge of an
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interface, in cases where edge residues have less than five contacting residues (within 8A)

one or more of the scores will be set to 0 for padding.

A1, A0, BE, B25, A15, B11

W DOTdury —(FFFFTT
511::: CADJu W*@@@@@@
PatchQSJury (7T
PatchDockQJury—{ T CT]
ModFOLDIA (T IIICT)

CDA — (I
VoroMQA —r@@@@@@
VorolF {01 00]

Figure 6.2 The proposed format for the version 2 ModFOLDdock MLP used to calculate optimal
residue level confidence scores. Each residue, identified in the left-hand circular graphic and the
right-hand structural image, is scored on the basis of eight different scoring methods for itself and the
closest five residues, as measured by Euclidean distance.

The CASP15 results, documented in Chapter 4, highlighted that ModFOLDdock had a
particular affinity for interface patch identification, which was particularly strong for antibody-
antigen binding interactions. Understanding what characterises a protein segment as a
potential antibody interaction patch could be important in the design of vaccines or
autoimmune treatment (Guarra and Colombo, 2023). This affinity could be specifically explored
and developed by extended testing on antibody-antigen targets to determine the power of

patch detection.

The use of DNNs in MQA programs has been shown to increase performance over previous
version of the program, for example VorolF out-performed VoroMQA in testing (Olechnovic
and Venclovas, 2023). The idea underpinning the Bonvin group’s DeepRank was to use the
flexible programming language PyTorch to create a trainable NN which could be used out of
the box or retrained to the users’ specifications. The aim was to predict the quality of protein
multimers on the basis of the similarity of their interfaces with experimentally derived proteins.
In 2021, when this was investigated for possible integration into the ModFOLDdock pipeline,
there appeared to be difficulties with interpretation of the output of the program, however
continued development and a greater time period to fully investigate the flexibility of the NN
may make this a viable direction. This is possibly preferable to suggestions to adapt the AF2
NN for this purpose (Roney and Ovchinnikov, 2022) as evidence from Chapter 5 suggests a

perturbation in quality score reliability when AF2 is used in this way.
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Also of value would be further investigation into the score profile of the two AF2 model accuracy
measures pIDDT and pTM. It was established in Chapter 5 that there is score overprediction
for some low and medium quality models, a situation which becomes more significant if custom
templates are used during modelling. It has been proposed that the AF2 NN has learned a
protein folding function, but this is clearly incomplete or inaccurate in some aspects — as AF2
continues to rely on MSA data to build accurate models. Understanding exactly which models
are prone to overprediction and which conditions exacerbate overprediction may help to
uncover some of the inaccuracies in this proposed folding function, presenting an opportunity

for targeted improvement.

6.3.2 Longer term developments

For MultiFOLD modelling there are two potential directions to improve model quality. These
were highlighted in the analysis of the AFsample method (Wallner, 2023) during CASP15
which suggested that where the evolutionary signal from an MSA is weak, improvements to
model quality can be made by either augmenting the MSA or performing neural network
dropout to increase the diversity of models sampled. There is evidence for and against adding
a custom, paired MSA to AlphaFold2. Work on AF2 PPI prediction (Bryant et al., 2022) found
that this significantly improved model quality while similar work on AlphaFastPPI (Yin et al.,
2022) suggested that pairing was not important. Despite this disagreement, as MultiFOLD runs
both AF2 and AFM in tandem, it would likely be worthwhile investigating the effect of a paired
MSA on the AF2 arm of the pipeline as well as the effect of MSAs constructed on structural

similarity (rather than sequence) on the AFM arm.

The Wallner group were able to program a dropout rate into the AF2 neural network for their
AF2sample pipeline, meaning that some of the weights in the network were randomly set to
zero. During training, this is often employed to prevent overfitting and allows the network to
learn different solutions to the same problem by sampling a greater diversity of models.
According to the CASP15 results page, AF2sample was officially ranked in third place for
multimeric modelling and so this approach has proven efficacy and it would be a viable

research method for inclusion into the MultiFOLD pipeline.
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Figure 6.3 Two proposed structures for CASP15 target H1111. A. The McGuffin model as a cyclic
nonomer of ABC trimers. B. The same target as a cyclic nonomer of AB chains with a chain C
transmembrane tail. C. The CASP nonomer reference structure. Structures are coloured by chain.

One frustrating problem which arose during both CASP14 and CASP15 modelling, and which
applies equally to MQA, is that of stoichiometry or symmetry. For homomers, it is not always
obvious whether individual chains form a dimer or higher association and for heteromers, if the
stoichiometry is known, it is not always clear how the different chains repeat and fit together.
While the former problem is addressed by the new stoichiometry prediction protein language
model QUEEN (QUaternary state prediction using dEEp learning) (Avraham et al., 2023) with
some encouraging results, a good example of the latter problem is the heteromeric CASP15
target H1111 with a A9B9C9 stoichiometry, shown in Figure 6.3. It was not clear whether this
would result in a circular structure of all three chains in one plane (a polo style shape),
represented by panel A or whether two chains formed the circular pore with the third forming
a trans-membrane tail section, represented by panel B. The CASP native structure, in panel
C, shows that the former idea was closer to the truth. In addition, and as described in the
ReFOLD4 refinement work (Adiyaman et al., 2023), research is increasingly considering a
protein conformational landscape as a more important concept than a single correct or

incorrect model, a concept first proposed by Alexei Kurakin (Kurakin, 2009).

To address these issues of arrangement and flexibility, a pragmatic approach would be to
continue with small percentage gains in modelling, producing an ever-improving population of
guaternary structure models. These in-turn will act as an improved quality training dataset for
ML approaches to both modelling and MQA, leading to gradual improvement in ML learning
and the development of a true fold and dock approach. The neural network dropout approach
described above may have a role in addressing the flexibility issue specifically. If dropout
produces an increased variety of models for a neural network to sample, it may be that these
intermediates actually represent different but valid conformations of the model. Instead of
allowing the network to simply assess these during the creation of a single final model, it may

be useful to output these alongside the final model as a representation of the conformational
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landscape of the protein. This may lead to deeper understanding of the flexibility inherent in

certain structures as well as creating an increased diversity of models for subsequent training

datasets.
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Appendix 1

Definitions of key quality scoring routines used in this study.

GDT_TS. Global Distance Score (Total Score) is a common CASP score and represents the
number of model residues which fall into a predefined distance constraint when compared to
the native structure. The score is expressed as a percentage and so the higher the score, the
greater the percentage of residues found within this distance. Higher scores are better with
100 representing the perfect fit. CASP uses the mean sum of four constraint distances (1, 2, 4
and 8A), i.e. GDT_TS = (GDT_P1 + GDT_P2 + GDT_P4 + GDT_P8)/4.

RMSD. Root Mean Square Deviation. This considers the distance in 3-D space (X,y,z) between
two sets of coordinates (the model (r) and native structure (r’)) for C-alpha atoms. The squares
of each distance (rx —r'x, ry - r'y, rz - r'z etc.) are summed and divided by the total number of

residues considered. RMSD is the square root of this value (closer to O the better).

Ill b 7 2 ’ > ’ 4
RMSD = =3 (1X =10 +(ry = r'y)* +(rz - r'2)’
i=1

\;
TM-Score. Template Modelling Score which is traditionally used to assess the similarity
between the tertiary structures of two proteins. A 0-1 score with >0.5 considered to generally
represent the same globular fold. It is essentially the reciprocals of target sequence length
multiplied by the sum of the distance of each aligned residue divided by the modified cubed
root of the aligned length (d0).

L;llignml 1

target i 1+ d; 2
dl){ Lmrget ]

TM-score = max

IDDT. Local Distance Difference Test expressed as a score between 0 and 1. The score is
designed to be super-position-independent and expresses the fraction of contacts shared
between a model and native structure regardless of any difference in the actual orientation.
IDDT is calculated for all pairs of atoms present in the native structure within an inclusion radius
(often 5-15A) and IDDT scores are calculated as the fraction of preserved contacts where a
preserved contact is determined as being within 0.5A, 1A, 2A and 4A. Total IDDT score is an
average of the fraction of contacts preserved over the four distances. If one of the atoms in a
pair is missing the distance is considered non-conserved. A score of O represents no
conserved contacts and 1 represents a perfect match. In reality these extremes are rarely

seen, and scores tend to be in the range 0.25 - 0.6.
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QS-score. Quaternary Structure score. It expresses the fraction of shared interface contacts
within 12A. A 0-1 score with O representing a radically different quaternary structures and 1

suggesting very similar models. QS-score is Calculated as follows:

Identify equivalent chains by sequence alignment. Calculate symmetry of the complex and
create symmetry groups from chains which can reproduce the full structure. Use superposition
to map the chains of two identical symmetry groups from different models. For each symmetry
group, consider all possible pairings using one symmetry group as a base to superpose
complexes, the lowest global RMSD considered the correct mapping. ldentify “mapped”
residues as those equivalent by sequence alignment between models. Identify contacts as C
atoms (Ca for Glycine) of residues from different chains within 12A. Identify “shared” residues
as those mapped and that form a contact in both models. Non-shared residues are those that
either form contacts but are not “mapped” or that are “mapped” but form contacts only in one
model. Dapkunas, Olechnovi¢ and Venclovas (Dapkunas et al., 2019) ,in an analysis of their
CASP13 performance, defined categories as; high >0.7; medium 0.3 to <0.7; low >0.1 t0 0.3;

and incorrectas <0.1.

Jaccard or Interface Patch Similarity (IPS). A 0-1 score calculated using the number of
interface residue contacts that are present in both the model (A) and the target (B) divided by
the interface residues in the target (B) but not in the model (A) + those in the model (A) but
not in the target (B). Often written as J(A, B) = |ANB| / |AuB]| (Lafita et al., 2018).

F1 or Interface Contact Similarity (ICS). A 0-1 score equivalent to the F1 score divided by
100. It can be calculated as the combination of precision (P) and recall (R) of contact
predictions where contacts are defined as non-Hydrogen atoms from residues on different
chains within 5A of each other. Distances below 3A are treated as clashes. ICS is calculated
as:

P(M,T) x R(IM,T)

P(M,T)+R(M,T)

ICS or F1(P,R) = 2 x

where M is the model contact set and T is the target contact set (Lafita et al., 2018).

Definitions of precision and recall are covered in Section 5.1, but briefly, Precision is TP/TP+FP
and Recall (sensitivity) is TP/TP+FN. An F1 score can be calculated as the harmonic mean of
Precision and Recall (i.e. the reciprocal of reciprocal values, e.g. 2/(1/prec + 1/recall)). Recall
is calculated using the number of correct interface residues in the model divided by the number
of all native interface residues in the target (x100) and Precision is a similar score to recall but
this time calculated by the number of correct interface residues in the model divided by the

sum of the correct and incorrect interface residues in the model.
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GDT HA is the Global Distance Test, High Accuracy score. This is calculated by the same
method as GDT TS but uses stricter distance cut-offs: (0.5A + 1A + 2A + 4A)/4

SG score is the Sphere Grinder score (https://predictioncenter.org/caspl2/doc/help.html).

The Sphere Grinder score is calculated using two parameters: a sphere of fixed radius and
two RMSD cutoff values of 2A and 4A. For each residue, the RMSD is calculated between the
model and the target using only the atoms falling inside a sphere of 6A which centres around
the Ca atom. The global Sphere Grinder Score (SG) is then calculated as the percentage of
residues with RMSD under each of the 2A and 4A cutoff values.

CAD score is the Contact Area Difference score (Olechnovic et al., 2013) For this score, the
contact area for each pair of residues with a nonzero contact in the target structure is calculated
along with the equivalent residue contact area in the model. For every residue pair the contact
area difference is then the absolute difference of contact areas between residues in the target
and in model. Additional residues in the model not present in the target are excluded and

residues missing from the model have their contact areas set to zero.
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Appendix 2

Data from the CASP13 competition.

Table $2.1 Definitions of CASP multimer target difficulty categories.

Category |Description

Easy A template exists for sub-unit and assembly.
Medium | A partial template exists for sub-unit or assembly.
Difficult No template exist for either sub-unit or assembly.

Appendices

Table S2.2 List of individual targets and scores for CASP13 assembly models submitted by the McGuffin
group along with ModFOLDdock and CASP scores. (Target colour key: Hard, Med, Easy)

ModFOLDdock scores CASP scores

Observed IDDT | QS
Target | Type Submitted model name Consensus6| Mean |GDT_TS|RMSD | (olig) | (best)
T0960 |trimer | T0960-zdock.2.pdb 0.356 0.156 6.55 |71.86 |0.285 | 0.000
T0961 |tetramer| T0961_Refinel_assemblyl_4y9j.ent 0.370 0.441 23.70 |31.07 | 0.689 | 0.000
T0963 |trimer |T0963-zdock.5.pdb 0.317 0.144 6.83 | 77.57|0.331 | 0.000
T0965 |dimer T0965_Refold8_assemblyl_4zrm.ent 0.369 0.436 32.75 |15.19 | 0.582 | 0.200
T0966 |dimer T0966_Refold9_assemblyl_5t09.ent 0.331 0.161 30.66 |33.58 |0.597 | 0.000
T0970 |dimer T0970-zdock-complex.7.pdb 0.379 0.207 20.71 |14.31|0.351 | 0.000
T0973 |dimer T0970-2dock-complex.15.pdb 0.364 0.172 26.76 |20.21|0.340|0.016
T0976 |dimer Frodock-T0976_25.pdb 0.378 0.166 27.05 | 25.88 | 0.570 | 0.001
T0977 |trimer T0977-2dock-complex.4.pdb 0.446 0.191 14.40 | 42.55|0.477 | 0.002
T0979 |trimer T0979-mzdock-complex.1.pdb 0.367 0.256 14.17 | 47.54 | 0.314 | 0.000
T0981 |trimer 2dock-T0981-complex.5.pdb 0.510 0.148 6.51 |59.09|0.318 | 0.001
T0983 |dimer T0983-patchdock-output.txt.15.pdb 0.399 0.287 45.04 |21.14 |0.751 | 0.000
T0984 |dimer patchdock-T0984-output.txt.5.pdb 0.399 0.326 45.38 | 5.53 |0.634|0.477
T0985* | dimer 2dock-T0985-complex.3.pdb 0.359 0.269 34.37 | 9.02 | 0.416 | 0.150
T0989 |trimer megadock-TO989-ABC_11.pdb 0.462 0.125 8.88 |34.53|0.250 | 0.014
T0991 |dimer megadock-T0991_23.pdb 0.375 0.114 11.04 |23.45|0.231|0.001
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T0995 |octamer 2dock-T0995-ABCDEFGH-4.pdb 0.733 0.225 10.40 |33.28 1 0.590 | 0.018
T0996 |hexamer Manually constructed from dimer NA NA 3.84 |59.72|0.492 | 0.006
T0997 |dimer Frodock-T0997_6.pdb 0.321 0.179 31.10 | 15.38 | 0.494 | 0.000
T0998 | dimer 2dock-T0998-14.pdb 0.341 0.08 8.21 |29.04|0.165 | 0.000
T0999 |dimer Frodock-T0999_3.pdb 0.242 0.198 12.80 |39.41|0.691 | 0.005
T1000 |dimer megadock-T1000_22.pdb 0.284 0.158 23.86 | 23.47|0.568 | 0.000
T1001 |dimer megadock-T1001_6.pdb 0.384 0.169 39.03 | 9.17 | 0.669 | 0.036
T1003 |dimer 2dock-T1003-AB-2.pdb 0.331 0.228 42.58 |27.02|0.643 | 0.000
T1004 |trimer mzdock-T1004-ABC.7.pdb 0.378 0.246 16.56 |53.19|0.527 | 0.003
T1006 |dimer Frodock-T1006-AB_11.pdb 0.406 0.319 49.66 |14.46|0.639 | 0.000
T1009 |dimer 2dock-T1009-AB-22.pdb 0.285 0.270 32.39 |16.37 | 0.575 | 0.004
T1010 |dimer Frodock-T1010-AB_3.pdb 0.358 0.260 26.14 |10.38 | 0.357 | 0.072
T1016 |dimer T1016_Refold8_assemblyl_4ij5.ent 0.458 0.667 76.73 | 2.50 | 0.689 | 0.693
T1018 |dimer Frodock-T1018-AB_1.pdb 0.354 0.212 39.89 | 14.62 | 0.637 | 0.000
T1020 |timer 2dock-T1020-ABC-5.pdb 0.462 0.381 23.62 |22.71|0.567 | 0.019

* Originally released as A1 although has A2 structure — excluded from any analyses.
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Appendix 3

Individual CASP13 target performance by IDDT and QS scores.

Figure S3.1 (below) shows CASP13 oligo-IDDT and QS-scores for submitted structures. Nine
models (T0961, T0982, T0984, T0999, T1001, T1003, T1006, T1016 and T1018) scored above

0.6 for IDDT. Less impressive is the spread of QS-score which considers the interface and

therefore implicitly the relative orientations of the monomers.
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Figure S3.1 Individual CASP13 target performance by IDDT and QS scores. Left, a bar graph to
show comparative score magnitude, right a scatter graph of the same data showing that MultiFOLD
CASP13 models rated more highly with IDDT than QS-score.
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Appendix 4

Model images from the CASP13 competition

- W ‘? ﬁ’ _; - ?w’{:/‘
;:‘%{I\/ \;A .‘;‘_}Q?!k‘-\cl/&"',

Figure S4.1 McGuffin group submitted, best and native CASP13 assembly structures. A. T0960,
B. T0965, C. T0966, D. T0970, E. TO977. For each row, the submitted model is on the left, the CASP
reference structure is central and the best McGuffin group model by mean observed score is on the
right.
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Figure S4.2 McGuffin group submitted, best and native CASP13 assembly structures. F. T0979,
G. T0983, H. T0984, I. T0989, J. T0991. For each row, the submitted model is on the left, the CASP
reference structure is central and the best McGuffin group model by mean observed score is on the
right.
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Figure S4.3 McGuffin group submitted, best and native CASP13 assembly structures. K. T0997,
L. T0998, M. T1010, N. T1016, O. T1018, P. T1020. For each row, the submitted model is on the left,
the CASP reference structure is central and the best McGuffin group model by mean observed score is
on the right. For T1016, the submitted model was also the best model.
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Table S4.1 McGuffin group submitted CASP13 assembly structures. For each row, the predicted
score is the ModFOLDdock Consensus6 score and the observed score is an observed mean score. For
T1016, the submitted model was also the best model.

Target Submitted model Best model
Predicted score Observed score Predicted score Observed score

T0O960 0.356 0.156 0.343 0.328
T0965 0.369 0.436 0.322 0.487
T0966 0.331 0.161 0.202 0.259
T0970 0.379 0.207 0.295 0.301
T0977 0.446 0.191 0.179 0.468
T0979 0.367 0.256 0.260 0.452
T0983 0.399 0.287 0.370 0.834
T0984 0.399 0.326 0.372 0.604
T0989 0.462 0.125 0.350 0.197
T0991 0.375 0.114 0.277 0.199
T0997 0.321 0.179 0.273 0.261
T0998 0.341 0.08 0.273 0.188
T1010 0.358 0.260 0.285 0.382
T1016 0.458 0.667

T1018 0.354 0.212 0.264 0.381
T1020 0.462 0.381 0.306 0.621
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Data from the CASP14 competition.
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(191 is Group 220. (Image from https://predictioncenter.org/caspl4/zscores _multimer.cgi).
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Figure S5.1 CASP14 final group rankings for assembly structures by summed Z-score. McGuffin

Table S5.1 Full list of McGuffin group CASP14 assembly models. ModFOLDdock predicted scores,
a calculated observed score and CASP official scores are also listed.

T ModFOLDdock scores CASP official scores
arget
iffi Global Local
(Difficult Calculated
Med predicted | Calculated i
(Consensus6) | Observed ™ I[i.DT Ilgls JIPS
Easy) Type Submitted model name score. Mean score | (oligo) | (F1) | (Jacc)
Dimer .
T1032 (A2) Yang_FM_TS3_pdblgxj.pdb 0.524 0.380 |0.644 | 0.429 | 26.0 | 0.28
T1034 | retramer Complex1.pdb (intertwined 0.352 0338 |0.268| 0607 | 0.0 | 0.06
(D2) monomer)
T1038 ('?A'g‘)er Model01.pdb 0.08 008 |0216| 0130 | 0.0 | 0.12
Tetramer
T1048 | S | T1048_ReFOLD._ pdbSk7b.pdb 0.275 0232 0519|0127 | 1.3 | 0.20
Ti052 | [rimer 0.356 0452 |0.691 | 0556 | 332 | 0.45
(C3) | T1052_ReFOLD_pdb6f7d.pdb : : : : : :
T1054 (DC"Z“)” Complexs.pdb 0.336 0.239 |0.495 | 0.531 | 0.0 | 0.19
Ti061 | [imer 0.487 0206 |0473| 0240 | 0.7 | 0.16
(C3)  |T1061_ReFOLD_10_pdb3cdd.pdb : : : : : :
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Part of H1060 T5 bacteriophage

T1062 Trimer tail. Cancelled. 0.383 0.282 - - - -
1700_TR1062_pdb3cop.pdb

T1070 Tc“3mer Complex4.pdb (intertwined 0.488 0199 |0.177 0395 | 0.0 | 0.04
(€3) monomer)

T1073 | Tetramer Cancelled - - - - - -
Dimer

T1078 (A2) Decoy3.pdb 0.480 0.390 |0.519| 0556 | 0.0 | 0.39
Trimer - .

T1080 c3 Complex3.pdb (intertwined 0.543 0.204 0.218 | 0.181 3.3 0.15
(€3) monomer)
Dimer

T1083 (C2) Decoy9.pdb 0.436 0.465 |0.603| 0.578 | 30.6 | 0.44
Dimer

T1084 (C2) Decoy1.pdb 0.314 0.392 |0.700| 0.491 | 0.0 | 0.50
Dimer

T1087 (C2) Complex9.pdb 0.353 0.197 |0.420| 0.326 | 0.0 | 0.25

200




Appendices

Appendix 6

Data for recycling models.

Table S6.1 Raw oligo-IDDT, TM-score and QS-score values for non-AF2 multimeric templates and recycled models. Values for baseline and MSA
recycling up to 6 recycles.

Model Base Base Base QS | RIMIDDT | RIMTM R1IM QS R3M IDDT | RSAMTM | R3M QS R6M IDDT | R6M TM | R6M QS
IDDT Tmscore
H1045TS403_1 | 0.6941 0.8705 0.55 0.8348 0.91572 0.97 0.8411 0.91612 | 0.97 0.8406 0.91485 | 0.97
H1065TS403_1 | 0.6964 0.79217 0.54 0.8489 0.96635 0.8 0.8995 0.96694 | 0.92 0.904 0.96781 | 0.91
H1072TS403_1 | 0.3793 0.39764 0.04 0.7326 0.90913 0.74 0.7153 0.65021 | 0.6 0.71 0.65284 | 0.6
T1032TS403_1 | 0.5428 0.69464 0.54 0.548 0.71818 0.64 0.5477 0.71465 | 0.64 0.6385 0.71047 | 0.65
T1054TS403_1 | 0.6073 0.4408 0 0.6058 0.52535 0 0.6179 0.51768 | 0O 0.6065 0.50974 | 0
T1070TS403_1 | 0.4009 0.35172 0.04 0.3508 0.3485 0.05 0.4022 0.34343 | 0.04 0.4034 0.24387 | 0.04
T1073TS403_1 | 0.5496 0.36837 0 0.3769 0.43095 0 0.549 0.31806 | O 0.5548 0.36847 | 0
T1078TS403_1 | 0.4989 0.5622 0.03 0.5485 0.79588 0.38 0.7814 0.90926 | 0.41 0.7865 0.91857 | 0.42
T1083TS403_1 | 0.6092 0.66167 0.38 0.7143 0.83212 0.74 0.6865 0.84397 | 0.79 0.7117 0.84599 | 0.77
T1084TS403_1 | 0.8318 0.917 0.89 0.8367 0.91925 0.9 0.8664 0.91632 | 0.91 0.8652 0.91512 | 0.91
H1045TS029_1 | 0.5402 0.72313 0.84 0.8803 0.95618 0.98 0.8723 0.94974 | 0.97 0.8802 0.95326 | 0.98
H1065TS029_1 | 0.6243 0.61334 0.1 0.9038 0.97124 0.91 0.9082 0.97181 | 0.92 0.9242 0.98032 | 0.92
H1072TS029_1 | 0.4639 0.54438 0.27 0.7726 0.89189 0.8 0.7581 0.86708 | 0.75 0.7986 0.86773 | 0.75
T1032TS029_1 | 0.4168 0.62816 0.49 0.6819 0.68005 0.78 0.6933 0.70035 | 0.81 0.6956 0.69974 | 0.82
T1054TS029 1 | 0.5231 0.34135 0.05 0.5323 0.31614 0.05 0.586 0.46527 | O 0.6881 0.46935 | 0
T1070TS029_1 | 0.4061 0.40359 0.17 0.0307 0.43896 0 0.1387 0.43547 | 0O 0.3773 0.57464 | 0.08
T1073TS029_1 | 0.5097 0.30683 0 0.1387 0.37109 0 0.4726 0.38088 | O 0.4952 0.32283 | 0
T1078TS029_1 | 0.5525 0.5011 0.16 0.7092 0.92204 0.78 0.9106 0.97969 | 0.87 0.8927 0.9788 0.82
T1083TS029_1 | 0.4843 0.63454 0.36 0.7831 0.88441 0.88 0.7844 0.88121 | 0.86 0.7388 0.81028 | 0.75
T1084TS029 1 | 0.7564 0.89285 0.86 0.8538 0.91678 0.92 0.8688 0.91706 | 0.91 0.8657 0.91591 | 0.91
H1045TS055_1 | 0.7309 0.86583 0.9 0.8573 0.94246 0.97 0.8633 0.94865 | 0.97 0.8693 0.94736 | 0.97
H1065TS055_1 | 0.5651 0.46602 0 0.8802 0.96372 0.91 0.8861 0.96441 | 0.86 0.9036 0.96838 | 0.91
H1072TS055_1 | 0.4558 0.52742 0.26 0.7715 0.75995 0.82 0.7876 0.87109 | 0.83 0.772 0.78825 | 0.81
T1032TS055_1 | 0.521 0.6318 0.41 0.6607 0.70659 0.8 0.6765 0.70192 | 0.73 0.6712 0.69893 | 0.73
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T1054TS055_1 | 0.5277 0.47971 0.02 0.5993 0.45661 0 0.5945 0.4637 0 0.6702 0.4623 0

T1070TS055_1 | 0.3082 0.39635 0.11 0.0433 0.4698 0 0.1257 0.45214 | 0.03 0.1363 0.4689 0.04
T1073TS055_1 | 0.5624 0.37717 0.01 0.116 0.34005 0 0.0897 0.40542 | O 0.343 0.37925 | O

T1078TS055_1 | 0.5535 0.50414 0 0.6595 0.84231 0.23 0.6929 0.60142 | 0.03 0.7239 0.57459 | 0.06
T1083TS055_1 | 0.5196 0.46014 0.03 0.4958 0.54648 0.14 0.4564 051314 | O 0.4755 0.50738 | O

T1084TS055_1 | 0.4965 0.628 0.08 0.8376 0.90441 0.91 0.8276 0.89667 | 0.9 0.8417 0.89508 | 0.91
H1045TS193_1 | 0.644 0.73828 0.7 0.8364 0.93322 0.97 0.8415 0.93789 | 0.97 0.8542 0.94305 | 0.97
H1065TS193_1 | 0.5917 0.49039 0 0.8803 0.96799 0.92 0.9067 0.97095 | 0.92 0.912 0.97238 | 0.92
H1072TS193_1 | 0.3669 0.41473 0 0.7469 0.91312 0.76 0.7838 0.91805 | 0.84 0.7826 0.92704 | 0.83
T1032TS193_1 | 0.5245 0.67494 0.32 0.5731 0.70659 0.71 0.6769 0.70668 | 0.82 0.6884 0.70504 | 0.82
T1054TS193_1 | 0.5808 0.4326 0 0.396 0.4494 0 0.6301 0.46481 | O 0.5134 0.46279 | O

T1070TS193_1 | 0.3493 0.20958 0.08 0.2219 0.45695 0.03 0.3996 0.60863 | 0.14 0.4164 0.59298 | 0.15
T10737TS193_1 | 0.577 0.264 0 0.3073 0.3604 0 0.4706 0.32679 | O 0.4833 0.33302 | O

T1078TS193_1 | 0.5525 0.52102 0.03 0.7608 0.89011 0.41 0.7898 0.91225 | 0.48 0.7857 0.89763 | 0.46
T1083TS193_1 | 0.5077 0.68924 0.37 0.6348 0.82861 0.65 0.6393 0.81673 | 0.69 0.6759 0.78969 | 0.71
T1084TS193_1 | 0.5926 0.83961 0.26 0.8194 0.91798 0.87 0.8307 0.90978 | 0.87 0.8317 0.90766 | 0.87
H1045TS288_1 | 0.6941 0.89242 0.55 0.8607 0.94987 0.98 0.8741 0.95031 | 0.97 0.8715 0.94876 | 0.97
H1065TS288_1 | 0.5922 0.54885 0.08 0.8679 0.95833 0.91 0.9009 0.96687 | 0.91 0.9036 0.96805 | 0.91
H1072TS288_1 | 0.1569 0.35328 0.01 0.8312 0.7735 0.84 0.8329 0.7667 0.8 0.7714 0.7646 0.79
T10327S288_1 | 0.4333 0.62798 0.38 0.6672 0.67896 0.79 0.6908 0.6917 0.8 0.6931 0.69671 | 0.81
T10547S288_1 | 0.4423 0.37302 0 0.5719 0.52735 0 0.4375 04791 | O 0.5818 0.46331 | O

T10707S288_1 | 0.3645 0.46944 0.1 0.0527 0.46773 0 0.0383 0.46671 | O 0.2113 0.4758 0.13
T10737S288_1 | 0.6012 0.28678 0 0.1389 0.38875 0 0.442 0.44164 | O 0.2923 0.42993 | O

T1078TS288_1 | 0.5488 0.5262 0.14 0.7619 0.91001 0.37 0.7882 0.90636 | 0.47 0.7851 0.89773 | 0.46
T1083TS288_1 | 0.4159 0.39931 0 0.6654 0.83358 0.71 0.7379 0.8411 0.74 0.7232 0.83325 | 0.76
T1084T7S288_1 | 0.4961 0.60716 0 0.9162 0.7732 0.84 0.9108 0.8217 0.87 0.9084 0.8138 0.89
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Table S6.2 Raw oligo-IDDT, TM-score and QS-score values for non-AF2 multimeric templates and recycled models. Values for single sequence recycling

from 1 to 6 recycles and MSA recycling for 12 recycles.

Model R12M R12M TM R12M R1S R1STM R35QS | R3SIDDT | R3STM R1SQS | R6SIDDT | R6STM R6S QS
IDDT Qs IDDT
H1045TS403_1 0.8394 0.91424 0.97 0.7583 0.87639( 0.88 0.7704 0.88566| 0.88 0.7704 0.89318( 0.88
H1065TS403_1 0.893 0.95498 0.9 0.7451 0.86745| 0.61 0.7674 0.90588| 0.68 0.7516 0.9282| 0.6
H1072TS403_1 0.6996 0.65885 0.6 0.476 0.41265| 0.2 0.4481 0.41551] 0.17 0.4706 0.45148( 0.24
T1032TS403_1 0.639 0.70573 0.69 0.4789 0.3871]| 0 0.4766 0.38763( 0 0.5031 0.38598( 0
T1054TS403_1 0.6173 0.44815 0 0.6039 0.54798| 0 0.5962 0.56297( 0 0.574 0.56699( 0
T1070TS403_1 0.4034 0.2439 0.04 0.0888 0.29817| 0 0.0837 0.30546( 0 0.0043 0.29691( 0
T1073TS403_1 0.5536 0.36797 0 0.0717 0.36162( 0 0.0123 0.38273( 0 0.0189 0.3786| 0
T1078TS403_1 0.789 0.9003 0.45 0.4854 0.6527( 0.08 0.514 0.6042| 0.05 0.5169 0.62909( 0.08
T1083TS403_1 0.6864 0.84445 0.77 0.6148 0.81168| 0.64 0.6915 0.81831( 0.78 0.7219 0.82512( 0.78
T1084TS403_1 0.865 0.91401 0.91 0.8235 0.9172| 0.9 0.8518 0.91599| 0.91 0.8563 0.91489( 0.91
H1045TS029_1 0.8624 0.94753 0.96 0.5484 0.64799| 0.33 0.6003 0.77669| 0.81 0.489 0.76988( 0.67
H1065TS029_1 0.9142 0.97721 0.92 0.6427 0.84457| 0.31 0.7001 0.87| 0.51 0.6591 0.8674| 0.36
H1072TS029_1 0.7794 0.89112 0.82 0.4822 0.40123( 0.24 0.4954 0.41017] 0.25 0.493 0.40702( 0.27
T1032T7S029_1 0.6946 0.70124 0.82 0.3401 0.41985( 0 0.1423 0.42742( 0 0.0071 0.47176( 0
T1054T7S029_1 0.6425 0.46563 0 0.3669 0.34013| 0.04 0.3592 0.35223( 0.04 0.3566 0.34413( 0.04
T1070TS029_1 0.3721 0.53891 0.05 0.029 0.37798| 0 0.1281 0.34773| O 0.1223 0.3379| 0
T1073T7S029_1 0.5689 0.3067 0 0.1081 0.35169( 0 0.1453 0.38384( 0 0.1347 0.38853( 0
T1078TS029_1 0.891 0.97861 0.83 0.5279 0.76103| 0.31 0.5821 0.76482| 0.35 0.7277 0.7576| 0.34
T1083TS029_1 0.7404 0.80122 0.74 0.5478 0.53528( 0.33 0.5206 0.53174| 0.33 0.6914 0.79302( 0.74
T1084TS029_1 0.8682 0.91559 0.91 0.7723 0.88271( 0.84 0.8512 0.91348]| 0.91 0.848 0.91499( 0.93
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H1045TS055_1 0.8698 0.94592 0.97 0.7694 0.90183| 0.9 0.8051 0.90341| 0.96 0.8054 0.90536( 0.96
H1065TS055_1 0.903 0.96607 0.91 0.5997 0.74899( 0.44 0.6449 0.78525| 0.47 0.6412 0.78592( 0.48
H1072TS055_1 0.7706 0.78414 0.82 0.4273 0.62623| 0.23 0.7204 0.86813| 0.74 0.7247 0.84546( 0.76
T1032TS055_1 0.6698 0.69709 0.72 0.494 0.37884| 0 0.4227 0.37165( O 0.5105 0.37817( 0
T1054TS055_1 0.6356 0.46229 0 0.472 0.5202( 0.01 0.5171 0.51574( 0.01 0.54 0.52285( 0.01
T1070TS055_1 0.2424 0.4737 0.14 0.0609 0.25857| 0 0.0607 0.25334( 0 0.05 0.25729( 0
T1073TS055_1 0.2358 0.32047 0 0.0946 0.49086( 0 0.0876 0.36534( 0 0.1153 0.40977( 0
T1078TS055_1 0.7158 0.56991 0.02 0.5523 0.846| 0.24 0.5417 0.84281( 0.13 0.576 0.76093( 0.2
T1083TS055_1 0.4627 0.50962 0 0.5442 0.56705| 0.33 0.522 0.53965( 0.3 0.5211 0.54316( 0.32
T1084TS055_1 0.837 0.89466 0.91 0.8277 0.91436| 0.9 0.8247 0.90588| 0.9 0.8283 0.90297( 0.9
H1045TS193_1 0.8336 0.93511 0.96 0.6704 0.81332( 0.76 0.6576 0.82093| 0.67 0.6646 0.82424( 0.67
H1065TS193_1 0.9011 0.96569 0.91 0.7534 0.89832| 0.69 0.7763 0.91781( 0.7 0.7683 0.91117( 0.69
H1072TS193_1 0.7833 0.93163 0.83 0.4916 0.40838| 0.25 0.4884 0.40688| 0.26 0.7311 0.91764( 0.77
T1032T7S193_1 0.692 0.7063 0.82 0.4953 0.68727| 0.23 0.4947 0.67843| 0.33 0.4816 0.67847( 0.32
T1054T7S193_1 0.6462 0.45169 0 0.4724 0.43312| 0 0.4642 0.43973| 0 0.4869 0.44032( O
T1070TS193_1 0.437 0.58796 0.19 0.1562 0.34389| 0 0.0329 0.35657( 0 0.0247 0.33723( 0
T1073TS193_1 0.4945 0.32866 0 0.073 0.35206( O 0.0726 0.38864( 0 0.0712 0.36999( 0
T1078TS193_1 0.7828 0.89139 0.46 0.5209 0.53855( 0.05 0.5242 0.55523] 0.07 0.5248 0.54367( 0.06
T1083TS193_1 0.681 0.83552 0.73 0.6211 0.78945| 0.65 0.6241 0.7965| 0.66 0.6443 0.80441( 0.65
T1084TS193_1 0.8294 0.90684 0.87 0.8011 0.91514( 0.86 0.8282 0.91594| 0.87 0.8195 0.91123( 0.87
H1045TS288_1 0.8718 0.9463 0.97 0.7079 0.87398| 0.79 0.746 0.88394| 0.86 0.7449 0.88577( 0.86
H1065TS288_1 0.9128 0.97535 0.91 0.6588 0.83271( 0.48 0.7016 0.84097| 0.55 0.6975 0.8443| 0.49
H1072TS288_1 0.7555 0.7713 0.82 0.1626 0.31025| 0.09 0.2681 0.37219( 0.23 0.382 0.3448] 0.11
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T1032T7S288_1 0.6936 0.69949 0.82 0.4256 0.72135( 0.24 0.3926 0.72378] 0.2 0.3806 0.71892( 0.16
T1054T7S288_1 0.5554 0.46384 0 0.4876 0.67178| 0.03 0.4986 0.66589| 0.02 0.4949 0.65563| 0.03
T1070T7S288_1 0.3229 0.55227 0.15 0.0264 0.29077| 0 0.0164 0.285( 0 0.0336 0.25303( 0

T10737S288_1 0.255 0.41348 0 0.0379 0.40448| 0 0.0615 0.42795( 0 0.0794 0.39785( 0

T1078TS288_1 0.7863 0.89944 0.46 0.554 0.83157| 0.33 0.5756 0.79542| 0.24 0.6191 0.77877| 0.28
T1083TS288_1 0.7051 0.82316 0.7 0.3505 0.43179| 0 0.5192 0.5407| 0.29 0.5186 0.53282( 0.33
T1084T7S288_1 0.90696 0.8185 0.89 0.783 0.9149 | 0.81 0.8037 0.91367 | 0.81 0.801 0.91192 | 0.81

Table S6.3 Raw oligo-IDDT, TM-score and QS-score values for non-AF2 multimeric templates and recycled models. Values for single sequence recycling

for 12 recycles.

Model R12S IDDT | R12S R12S QS | Model R12S IDDT | R12STM | R12SQS | Model R12S IDDT | R12STM R125 QS
™
H1045TS403_1 0.774 0.89081 | 0.78 T1078T7S029_1 0.726 0.75277 | 0.29 T1054T7S193_1 0.4676 0.43913 0
H1065TS403_1 0.7816 0.93318 | 0.67 T1083T7S029_1 0.6994 0.79688 | 0.73 T1070T7S193_1 0.0331 0.31707 0
H1072T7S403_1 0.4658 0.44995 | 0.24 T1084T7S029_1 0.8498 0.91575 | 0.93 T10737S193_1 0.0936 0.37456 0
T1032T7S403_1 0.5104 0.38489 | 0 H1045TS055_1 0.8049 0.90574 | 0.96 T1078TS193_1 0.5207 0.55806 0.06
T1054T7S403_1 0.5687 0.57783 | 0 H1065TS055_1 0.6666 0.78877 | 0.59 T1083T7S193_1 0.6277 0.81837 0.63
T1070TS403_1 0.0837 0.28378 | 0 H1072TS055_1 0.7245 0.85944 | 0.76 T1084T7S193_1 0.8214 0.9116 0.87
T1073TS403_1 0.008 0.3491 0 T1032TS055_1 0.5127 0.37748 | O H1045TS288_1 0.7572 0.88694 0.96
T1078TS403_1 0.5105 0.63449 | 0.09 T1054TS055_1 0.5683 0.51446 | 0.01 H1065TS5288_1 0.6977 0.84587 0.49
T1083TS403_1 0.7188 0.82794 | 0.81 T1070TS055_1 0.0494 0.24598 | O H1072TS5288_1 0.3814 0.36069 0.11
T1084T7S403_1 0.8571 0.91484 | 0.91 T1073TS055_1 0.0982 0.33388 | 0 T1032T7S288_1 0.38 0.71991 0.14
H1045TS029_1 0.5571 0.77194 | 0.43 T1078TS055_1 0.5936 0.75993 | 0.17 T1054T7S288_1 0.4829 0.66127 0.03
H1065TS029_1 0.7202 0.85967 | 0.5 T1083TS055_1 0.5217 0.54049 | 0.32 T1070T7S288_1 0.109 0.2726 0
H1072T7S029_1 0.4954 0.39909 | 0.25 T1084TS055_1 0.8302 0.90327 | 0.9 T1073T7S288_1 0.0871 0.38828 0
T1032T7S029_1 0.0083 0.47871 | O H1045T5193_1 0.6608 0.82552 | 0.6 T1078T7S288_1 0.6903 0.74729 0.34
T1054T7S029_1 0.3677 0.34346 | 0.04 H1065T5193_1 0.8132 0.94236 | 0.8 T1083T7S288_1 0.5352 0.52642 0.36
T10707S029_1 0.1203 0.31612 | O H107275193_1 0.7627 0.92985 | 0.82 T1084T7S5288_1 0.8006 0.91217 0.81
T1073TS029_1 0.0826 0.39551 | O T1032TS193_1 0.4876 0.67988 | 0.32
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Table S6.4 Raw oligo-IDDT, TM-score and QS-score values for AF2 generated multimeric templates and recycled models. Values for all recycles.

ode rou ase_ ase_Tm Base_ 3 3 X a 3 X 2 2 X 2 _TM- R12_

Model G B IDDT B Tm B S R1 IDDT R1._ TM R1_QS R3 IDDT R3 TM R3 QS R6 _IDDT R6_TM|R6_QS R12 IDDT R12_TM- R12_QS

H1045 |AF2M-MSA 0.8742 0.94927 0.97 0.8815 |0.94909 | 097 | 08806 |094912| 097 | 08797 | 0.9486 | 0.97 08804 | 094779 | 0.97

H1065 |AE2M-MSA 09114 0.97252 0.92 09153 |097046| 091 | 09159 |097184| 091 | 0916 |0.97196| 0.2 09161 | 09721 | 092

H1072 | AF2M-MSA 0.7616 0.78298 0.79 07617 |0.80674| 082 | 07534 |0.77881| 078 | 07542 |0.78988| 0.78 07548 | 078678 | 0.78

T1032 | AE2M-MSA 0.6903 0.69637 0.82 06719 | 07038 | 082 | 06714 |070364| 082 | 06708 |0.70611| 0.82 06709 | 070384 | 0.82

T1054 |AF2M-MSA 0.5338 0.46892 0 06729 (046242 0 0.6663 |0.46288| 0 06709 [0.46291| o 0.672 0.46312 0

11070 |AF2M-MSA 0.5618 0.54822 0.09 05794 |054973| 01 | 05823 |054936| 011 | 07577 |0.54926| 0.12 05794 | 054927 | 0.11

T1073 | AE2M-MSA 0.5986 030144 0 00899 |0.30779| o 02908 |0.30818| o 05978 |0.36487| o0 05869 | 027121 0

71078 |AF2M-MSA 0.7149 0.59815 0.02 08734 |096779| 084 | 08778 |097032| 083 | 08781 |0.97006| 0.4 08797 | 097156 | 0.84

11083 |AE2M-MSA 0.8241 0.90093 0.89 0.8436 |090928| 088 | 0843 |090799| 088 | 08437 |0.90834| 0.8 08429 | 090764 | 0.88

71084 |AF2M-MSA 0.5843 0.6453 0.06 05059 | 08423 | 003 | 05061 |0.84365| 008 | 02059 | 0852 | 001 05885 | 085356 | 0.02
AF2M-

H1045 |SingleSeq 0.2428 0.28591 0.07 01315 |0.27903| o 02133 |0.26856| 0 02199 |027281| o 02178 | 0.24783 0
AF2M- 0.49303 0.48146 0.48756 0.48924 0.48944

H1065 |SingleSeq 0.3764 : 0.02 03483 |o. 002 | 03504 |oO. 002 | 03504 |oO. 0.02 0.3448 : 0.01

1072 g;é'?géeq 0.2373 0.33465 0.17 04529 |039146| 024 | 072908 |088703| 075 | 07404 |0.88638| 0.76 07168 | o.ssso7 | %74
AFZM- 0.16496 0.26459 0.26805 0.26749 0.26338

T1032 |SingleSeq 0.2065 : 0 0.1709 |o. 0 0071 |o. 0 0.0708 |o. 0 0.0684 : 0
AFZM- 0.25325 0.31607 0.32831 0.28748 0.28768

T1054 |SingleSeq 0.2815 : 0.01 0.088 |o. 0 0.1841 |o. 0 02588 |o. 0.03 0.2487 : 0.03
AF2M-

T1070 |SingleSeq 0.222 0.1463 0 00357 | 02046 | 0 0.0586 |0.19999 | 0 00561 | 01956 | 0 0.0566 | 0.20109 0
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AFZM- 0.4184 0.2514 0 0.0019 |0.41818 0 0.0002 | 0.32082 0 0.0006 | 0.33985 0 0.0005 0.35228 0
T1073 |[SingleSeq

AFZM- 0.2119 0.38906 0.03 0.0726 | 0.40806 0 0.41676 0.1526 |0.41072| 0.01 0.1503 0.39622 0.02
T1078 |[SingleSeq

AFZM- 0.5246 0.52756 0.31 0.4608 0.46824 0 0.526 0.5295 0.53289 0.31 0.5304 0.53116 0.31
T1083 (SingleSeq

AF2M- 0.824 0.90504 0.86 0.825 |0.91626| 0.9 0.91644 0.8425 | 09131 | 0.91 0.8441 0.91369 0.91
T1084 |SingleSeq
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Appendix 7
A short analysis of ProQDock versus VoroMQA as a single model method.

The Voronoi tessellation-based model quality assessment program VoroMQA produces a
single score between 0-1 with the following rating categories: <0.3 poor, 0.3 — 0.399 variable
and >0.4 good with 5.5 likely to represent a native structure. The following is an investigation
into the potential for VoroMQA to replace ProQDock as a single model prediction tool to

improve the ModFOLDdock predicted consensus score.

There are two reasons for selecting VoroMQA and both centre around the fact that ProQDock
and VoroMQA are single model scores. Firstly, this means they are easily comparable across
different runs of the program without requiring recreation of the same model population every
time (as is necessary with a clustering score) and, secondly, that in cases where only a few
models exist and clustering routines understandably drop in accuracy accordingly, it is vital
that a single model approach be retained as its accuracy should be maintained. VoroMQA
would therefore represent a like-for-like replacement for ProQDock in this sense. The reason
for the replacement of ProQDock is that, despite being a 0-1 score, there are occasions where
the scores have ranged either greater than 1.0 or less than 0.0. Anecdotally it has also been
noticed that ProQDock scores tend to be more extreme than others within ModFOLDdock and

therefore may be disproportionally influencing the final Consensus score.

ProQdock vs Consensusé (both predicted) LDDTOfficialJury vs Consensus6 (both predicted)
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Figure S7.1. Scatter plots of an unweighted ModFOLDdock predicted consensus score versus a
predicted ProQDock score (left) and a predicted IDDT score (right) for three randomly selected targets
(T0965, T0966 and T1016).

To illustrate this point the left hand graph in Figure S7.1 shows how the predicted ProQDock
values for three randomly selected targets correlate well with the predicted consensus score

and appear to outweigh the contribution of IDDT score (right), for example. To further
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investigate the ProQDock influence a range of partial consensus scores were calculated and
compared to the full Consensus6 score (the mean of all six ModFOLDdock scores) and a
calculated Consensus5 score (omitting ProQDock). These were:

Consensusb — all ModFOLDdock scores, omitting only ProQDock;

Consensus4 - omitting both ProQDock and DockQJury;

Consensus3a - ModFOLDIA, QSscoreOfficialdury and LDDT score only;

Consensus3b - ModFOLDIA, QSscoredury and LDDT score only;

ConsensusZ2a - QSscoredury and LDDT score only;

Consensus2b — ModFOLDIA score and LDDT score only.

Table S7.1 shows the Pearson and Spearman correlation coefficients calculated between
partial consensus scores and the full consensus6 score. Table S7.2 shows similar data

calculated with respect to the consensus5 score.

Table S7.1 Pearson and Spearman-rank correlation coefficients calculated between the consensus6
score and all other consensus scores for the three chosen targets.

Score (x). Score (y). Pearson correlation Spearman correlation
Consensus6 |Consensus5 0.874 0.693
Consensus6 |Consensus4 0.864 0.669
Consensus6 |Consensus3a 0.868 0.661
Consensus6 [Consensus3b 0.853 0.660
Consensus6é |Consensus2a 0.678 0.604
Consensus6 [Consensus2b 0.854 0.654

Table S7.2 Pearson and Spearman-rank correlations calculated with respect to the consensus5 score
(ProQDock removed) using the same targets as Table S7.1.

Score (x). Score (y). Pearson correlation Spearman correlation
Consensus5 |Consensus4 0.998 0.983
Consensus5 |Consensus3a 0.994 0.953
Consensus5 |Consensus3b 0.996 0.972
Consensus5 |Consensus2a 0.888 0.898
Consensus5 |Consensus2b 0.989 0.936

Tables S7.1 and S7.2 show that both Pearson and Spearman coefficients improve when
ProQDock is removed, suggesting that a better agreement between all other individual

predicted scores exists, giving an initial rationale for further investigation.

To assess the relative agreement between predicted scores, ProQDock and VoroMQA can be
compared to a calculated mean observed score as this is likely to represent true model quality
more accuracy. For this analysis a total of 96 models across the 16 CASP13 targets listed in

Figures 4.1, 4.2 and 4.3 were used.
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Mean observed score vs ProQDock score
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Figure S7.2 Scatter plots between calculated observed mean and VoroMQA score (left) and calculated
observed mean and ProQDock score (right). Values shown are Pearson coefficients.
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Figure S7.3 Scatter plots between observed mean score versus the consensus6 score calculated with
VoroMQA score (left) and the consensus6 score calculated with ProQDock score (right). Values shown
are Pearson coefficients.

Table S7.3 Pearson correlations coefficients between individual observed scores and predicted
VoroMQA score and ProQDock scores.

Score VoroMQA correlation
Mean 0.37
IA score 0.21
DockQ 0.34
QS Score | 0.16
QS Official | 0.35
IDDT 0.61

ProQDock correlation

0.20
0.04
0.27
0.11
0.20
0.26
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Range of VoroMQA vs ProQDock scores
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Figure S7.4 A box plot of predicted VoroMQA scores (left) and ProQDock scores (right) for
CASP13 multimers. The minimum ProQDock score is -0.487 and the maximum score is 1.388, which
are both outside of the 0-1 range.

Figure S7.2 shows no discernible difference between the correlations achieved with VoroMQA
and ProQDock against the mean observed score. Similarly, the data in Figure S7.3 show that
there is no clear difference between a consensus score calculated with VoroMQA and one
calculated with ProQDock when plotted against the observed mean score. However, the data
in Table 7.3 show that the VoroMQA score is more closely correlated with individual observed
scores than is ProQDock. Additionally, Figure S7.4 shows that ProQDock produces a score
with a much larger range (-0.487 to +1.388) than VoroMQA (0.299 to 0.573), meaning that the
ProQDock contribution to the consensus score is likely to be both greater and more variable

than other scores.

In conclusion, although VoroMQA score has not been clearly demonstrated to be a more
accurate single-model score than ProQDock with this dataset, the lower variability in range
suggests that it is likely to be a more reliable contributor to a consensus score. Additionally,
VoroMQA score correlates slightly better with individual observed scores and is at least an
order of magnitude quicker at calculating the score than ProQDock. From this initial data, the
best conclusion that can be drawn is that VoroMQA is unlikely to lead to a decrease in accuracy
of the calculated consensus score. A larger study with increased numbers and variability in

models may produce more informative data.
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Appendix 8
Full list of targets in each neural network training and testing dataset.

Training_setl is T0960 T0961 T0963 T0965 TO970 TO973 TO976 TO979 TO981 TO983 TO984
T0985 T0995 T0996 T0998 T1000 T1001 T1004 T1006 T1010 T1018 T1032 T1034 T1061
T1062 T1070 T1078 T1080 T1084. Testing_setl is T0966 TO977 TO989 T0O991 TO997 TO999
T1003 T1009 T1016 T1020 T1038 T1048 T1054 T1083 T1087.

Training_set2 is T0960 T0961 T0966 T0970 TO973 TO977 TO981 TO985 T0989 TO991 TO996
T0997 T0999 T1000 T1003 T1004 T1006 T1009 T1010 T1016 T1020 T1032 T1034 T1038
T1048 T1054 T1080 T1083 T1087. Testing_set2 is T0963 TO965 T0976 TO979 TO983 T0984
T0995 T0998 T1001 T1018 T1061 T1062 T1070 T1078 T1084.

Training_set3 is T0963 T0965 T0966 T0976 TO977 TO979 TO983 T0984 T0989 TO991 T0O995
T0997 T0998 T0999 T1001 T1003 T1009 T1016 T1018 T1020 T1038 T1048 T1054 T1061
T1062 T1070 T1078 T1083 T1084 T1087. Testing_set3 is TO960 T0961 T0O970 TO973 TO981
T0985 T0996 T1000 T1004 T1006 T1010 T1032 T1034 T1080,
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Per-target top-rank comparisons by summed observed score.

Appendices

Table S9.1 Per-target top-rank comparisons by summed observed scores. Used to create Chapter 4, Table 4.2. Cumulative observed scores for models
top-ranked by ModFOLDdock component scores.

Model method predicted score| IAscore | DockQ |[QSscore Calc|QSscore Official|IDDT Official|QS-glob| F1 |oligo-IDDT|Jaccard Coeff.[TM-score| local |Global| Total |Obssum
H1036TS403_4 |QSscoreOfficiallury| 0.436142 |0.888154|0.315667| 0.804396 0.711567 0.755689 | 0.712 |68.3] 0.756 0.7 0.712 |0.6915| 0.734 |0.71275|76.79372
H1036TS403_4 | IDDTOfficiallury 0.585221 |0.888154(0.315667| 0.804396 0.711567 0.755689 | 0.712 |68.3| 0.756 0.7 0.712 |0.6915| 0.734 |0.71275|76.79372
H1036TS191_3 consensus 0.544371 |0.375422| 0.001 0.285714 0.702524 0.750596 | 0.703 [68.9] 0.751 0.72 0.702 |0.7045|0.7265| 0.7155 |76.03776
H1036TS336_2 VoroMQA 0.674968 |0.377688|0.001833| 0.278119 0.635775 0.737535 | 0.642 |68.2] 0.737 0.7 0.702 | 0.691 |0.7195|0.70525| 75.1277
H1036TS018_4 QSscorelury 0.590578  |0.326421|0.000917| 0.259341 0.659856 0.689083 | 0.66 |61.5| 0.689 0.65 0.701 ]0.6325| 0.695 |0.66375|68.12687
H1036TS221_1 ModFOLDIA 0.936138 |0.376363|0.000917| 0.274424 0.595587 0.599698 | 0.541 |53.5| 0.582 0.64 0.634 |0.5875| 0.608 |0.59775|59.53724
H1036TS221_2 DockQJury 0.195891 0.39396 [0.000917| 0.285088 0.590039 0.601442 | 0.51 ([53.2| 0.579 0.64 0.638 | 0.586 |0.6085|0.59725| 59.2302
H10457S288_3 ModFOLDIA 0.827475 |0.935895| 0.551 0.8 0.906336 0.733067 | 0.818 |71.5| 0.706 0.69 0.835 |0.7025|0.7705| 0.7365 | 80.6848
H1045TS288_2 DockQJury 0.259323  |0.918805| 0.695 0.847826 0.929725 0.738588 | 0.624 |78.4] 0.713 0.78 0.889 |0.782|0.801 | 0.7915 |87.91044
H1045TS177_3 QSscorelury 0.547336  |0.483834| 0.143 0.465116 0.510624 0.645535 | 0.511 |29.3] 0.646 0.45 0.676 |0.3715| 0.661 |0.51625|35.37986
H1045TS298_4 |QSscoreOfficiallury| 0.368645 0.94704 | 0.622 0.911111 0.904321 0.719356 | 0.904 (80.4| 0.719 0.87 0.869 | 0.837|0.794 | 0.8155 [90.31233
H10457S217_5| IDDTOfficiallury 0.683542 |0.070839| 0.005 0 0 0.773455 0 0 0.773 0 0.482 0 [0.6275|0.31375|3.045544
H1045TS288_2 VoroMQA 0.668059 [0.918805| 0.695 0.847826 0.929725 0.738588 | 0.624 |78.4] 0.713 0.78 0.889 |0.782|0.801 | 0.7915 |87.91044
H1045TS477_4 CDAscore 0.882939 |0.874816| 0.554 0.744186 0.8871 0.68006 | 0.887 |68.7| 0.68 0.65 0.869 |0.6685|0.7745| 0.7215 |77.69066
H1045TS298_3 consensus 0.582653 [0.967714| 0.58 0.886364 0.906374 0.717168 | 0.906 |76.1| 0.717 0.81 0.862 |0.7855|0.7895| 0.7875 |85.81512
H1047TS062_3 ModFOLDIA 0.605809 0.00287 | 0.003 0.007622 0 0.161766 0 0 0.606 0.01 0.155 | 0.005 |0.3805|0.19275|1.524508
H1047TS323_1 DockQJury 0.03125 0.005518| 0.005 0.028286 0 0.155111 0 0 0.59 0.04 0.328 | 0.02 | 0.459 | 0.2395 [1.870416
H1047T7S217_3 QSscorelury 0.235788 |0.030685| 0.002 0 0 0.651188 0 0 0.65 0 0.152 0 [0.401]0.2005 |2.087373
H1047TS323_1 |QSscoreOfficiallury| 0.035118 |0.005518| 0.005 0.028286 0 0.155111 0 0 0.59 0.04 0.328 | 0.02 | 0.459 | 0.2395 |1.870416
H1047TS298_3 | IDDTOfficiallury 0.478137 |0.082832| 0.004 0.012048 0 0.648291 0 0 0.648 0.01 0.373 | 0.005 |0.5105(0.25775|2.551421
H1047TS029_5 VoroMQA 0.627563 |0.000124| 0.003 0.002292 0 0.030649 0 0 0.611 0 0.372 0 [0.4915|0.24575|1.756315
H1047TS018_3 CDAscore 0.813968 |0.217757| 0.007 0.019608 0 0.615743 0 0 0.616 0.01 0.351 | 0.005 |0.4835|0.24425|2.569858
H1047TS323_1 consensus 0.380102  |0.005518| 0.005 0.028286 0 0.155111 0 0 0.59 0.04 0.328 | 0.02 | 0.459 | 0.2395 [1.870416
H1065TS029_1 ModFOLDIA 0.867387 |0.817291| 0.046 0.666667 0.103135 0.624287 | 0.103 |4.1| 0.624 0.57 0.611 |0.3055|0.6175| 0.4615 |9.649879
H1065TS192_1 DockQJury 0.043515 ]0.852361| 0.497 0.75 0.71669 0.692479 | 0.632 (47.7| 0.672 0.65 0.867 |0.5635|0.7695| 0.6665 |56.02903
H1065TS403_1 QSscorelury 0.45057 0.429595| 0.328 0.433333 0.540531 0.696362 | 0.541 [39.7| 0.696 0.43 0.792 |0.4135| 0.744 |0.57875|46.32307
H1065TS403_1 |QSscoreOfficiallury|  0.093168 |0.429595| 0.328 0.433333 0.540531 0.696362 | 0.541 [39.7| 0.696 0.43 0.792 |0.4135| 0.744 |0.57875|46.32307
H1065TS375_2 | IDDTOfficiallury 0.577558 |0.801337| 0.399 0.65 0.618291 0.686356 | 0.562 |40.7| 0.679 0.56 0.8 |0.4835|0.7395| 0.6115 [48.29048
H1065TS193_2 VoroMQA 0.685827 |0.836294| 0.08 0.433333 0.008418 0.632559 | 0.008 | 0 0.633 0.3 0.584 | 0.15 |0.6085|0.37925|4.653354
H1065TS018_1 CDAscore 0.909294 0.52779 | 0.041 0.416667 0.125663 0.607921 | 0.126 | 7.6| 0.608 0.35 0.536 |0.213|0.572 | 0.3925 [12.11654
H1065TS375_2 consensus 0.491271 |0.801337| 0.399 0.65 0.618291 0.686356 | 0.562 |40.7| 0.679 0.56 0.8 |0.4835|0.7395| 0.6115 (48.29048
H1072TS029_4 ModFOLDIA 0.96409 0.840724|0.025833| 0.663158 0.012158 0.393542 | 0.012 |4.2| 0.394 0.21 0.325 | 0.126 |0.3595|0.24275|7.804665
H1072TS055_3 DockQJury 0.052395 |0.880054|0.009667| 0.631579 0.288027 0.481315 | 0.288 (22.1| 0.481 0.31 0.408 |0.2655|0.4445| 0.355 [26.94264
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H1072TS451_5 QSscorelury 0.656695 |0.368273| 0.0125 | 0.321053 0.008352 0.350496 | 0.008 | 1.7 0.35 0.11 0.291 |0.0635|0.3205| 0.192 |4.095673
H1072TS055_3 |QSscoreOfficiallury|  0.099584  |0.880054|0.009667| 0.631579 0.288027 0.481315 | 0.288 [22.1] 0.481 0.31 0.408 |0.2655|0.4445| 0.355 |26.94264
H1072T7S336_2 | IDDTOfficiallury 0.40573 0.887155| 0.0345 | 0.788945 0.270489 0.490034 | 0.27 | 20 0.49 0.36 0.391 | 0.28 |0.4405|0.36025|25.06287
H1072TS403_5 VoroMQA 0.631099 |0.179369|0.002667| 0.364407 0.015288 0.257962 | 0.015 | 2 0.258 0.24 0.348 | 0.13 | 0.303 | 0.2165 |4.330192
H1072TS451_5 CDAscore 0.979508 |0.368273| 0.0125 | 0.321053 0.008352 0.350496 | 0.008 | 1.7 0.35 0.11 0.291 |0.0635|0.3205| 0.192 |4.095673
H1072T7S029_1 consensus 0.509477 |0.852835|0.011667| 0.689474 0.273271 0.471468 | 0.273 [21.5| 0.464 0.36 0.377 |0.2875|0.4205| 0.354 |26.33471
T10327S018_20 ModFOLDIA 0.877046  |0.733537| 0.266 0.576923 0.448143 0.468454 | 0.448 [39.6| 0.468 0.48 0.606 |0.438|0.537 | 0.4875 |45.55756
T1032T75029_10 DockQJury 0.140868 10.866015| 0.319 0.662651 0.490257 0.416794 | 0.49 (475 0.417 0.51 0.624 |0.4925|0.5205| 0.5065 |53.81522
T1032TS403_40 QSscorelury 0.607873 10.625015| 0.289 0.512195 0.595944 0.548577 | 0.596 [39.5| 0.549 0.46 0.676 |0.4275|0.6125| 0.52 |45.91173
T1032TS055_50|QSscoreOfficiallury|  0.346661  |0.869346| 0.311 0.695122 0.617453 0.459678 | 0.617 [49.8| 0.458 0.58 0.663 | 0.539 |0.5605|0.54975|56.71985
T1032TS403_10| IDDTOfficiallury 0.527605 |0.807074| 0.29 0.573171 0.537606 0.542758 | 0.538 [37.6] 0.543 0.46 0.688 |0.418 |0.6155|0.51675|44.12986
T1032T5193_10 VoroMQA 0.629243 10.185468| 0.389 0.30198 0.323403 0.524503 | 0.323 (34.1] 0.525 0.27 0.668 |0.3055|0.5965| 0.451 |38.96335
T1032TS062_20 CDAscore 0.874542  10.239736| 0.064 0.207317 0 0.456007 0 0 0.447 0.12 0.424 | 0.06 |0.4355|0.24775|2.701311
T1032TS055_20 consensus 0.508739 10.734103| 0.239 0.55914 0.396982 0.523653 | 0.397 (30.2| 0.524 0.42 0.626 |0.361|0.575| 0.468 |36.02388
T1034T75298_40 ModFOLDIA 0.877023 |0.781745| 0.014 0.365714 0 0.628997 0 0 0.629 0.15 0.255 |0.075|0.442 | 0.2585 |3.599956
T1034T7S278_30 DockQJury 0.062049 |0.266635|0.005333| 0.173913 0.002725 0.271955 | 0.003 | O 0.272 0.08 0.251 | 0.04 |0.2615|0.15075|1.778811
T1034T75278_10 QSscorelury 0.420891 0.18021 [0.004333| 0.118012 0.002134 0.282398 | 0.002 | O 0.282 0.07 0.252 |0.035|0.267 | 0.151 |1.646088
T1034TS336_40|QSscoreOfficiallury|  0.062853  |0.856235| 0.0405 | 0.440994 0.038755 0.576263 | 0.039 | 5.5 0.57 0.16 0.289 |0.1075|0.4295| 0.2685 |9.316246
T1034TS403_40| IDDTOfficiallury 0.566801 |0.602784| 0.007 0.130435 0 0.63489 0 0 0.635 0.03 0.229 |0.015|0.432 | 0.2235 |2.939609
T1034TS403_50 VoroMQA 0.722309  |0.539521|0.005667| 0.136646 0 0.62443 0 0 0.624 0.01 0.229 |0.005 [0.4265|0.21575|2.816514
T1034T75298_10 CDAscore 0.873061 |0.496648|0.006333| 0.006211 0 0.608733 0 0 0.609 0 0.235 0 0.422 | 0.211 |2.594926
T1034T75298_40 consensus 0.474863 10.781745| 0.014 0.365714 0 0.628997 0 0 0.629 0.15 0.255 |0.075|0.442 | 0.2585 |3.599956
T1038TS288_20 ModFOLDIA 0.753016 |0.691331| 0.043 0.34375 0.059225 0.350848 | 0.059 [5.1| 0.351 0.24 0.165 |0.1455| 0.258 |0.20175|8.008405
T1038TS055_30 DockQJury 0.017068 |0.564309| 0.015 0.081633 0 0.345438 0 0 0.345 0.04 0.244 | 0.02 [0.2945|0.15725] 2.10713
T1038TS173_20 QSscorelury 0.272994 10.154355| 0.017 0 0 0.352876 0 0 0.353 0 0.244 0 ]0.2985|0.14925| 1.56898
T1038TS055_30|QSscoreOfficiallury|  0.072302  |0.564309| 0.015 0.081633 0 0.345438 0 0 0.345 0.04 0.244 | 0.02 |0.2945|0.15725| 2.10713
T1038TS173_20| IDDTOfficiallury 0.415824 |0.154355| 0.017 0 0 0.352876 0 0 0.353 0 0.244 0 ]0.2985|0.14925| 1.56898
T1038TS029_20 VoroMQA 0.619228 10.456601| 0.008 0 0 0.21605 0 0 0.216 0 0.175 0 ]0.1955|0.09775|1.364901
T1038TS491_40 CDAscore 0.727472  |0.228225| 0.005 0 0 0.142094 0 0 0.142 0 0.139 0 ]0.1405|0.07025| 0.86707
T103875029_10 consensus 0.370974 10.670027| 0.015 0.196721 0.005929 0.347871 | 0.006 [1.4| 0.348 0.12 0.248 |0.067 | 0.298 | 0.1825 |3.905047
T1048T5491 4o ModFOLDIA 0.916972  |0.696915| 0.0365 | 0.656863 0.037263 0.277298 | 0.037 {4.1| 0.277 0.25 0.411 |0.1455| 0.344 |0.24475|7.514089
T1048T5029_30 DockQJury 0.126001  |0.951356|0.142333| 0.722222 0.111374 0.340394 | 0.114 |11.5| 0.325 0.25 0.371 |0.1825| 0.348 |0.26525|15.62343
T1048TS403_50 QSscorelury 0.684588 10.915932| 0.213 0.849162 0.310906 0.465348 | 0.311 [24.2| 0.465 0.61 0.729 |0.426|0.597 | 0.5115 |30.60385
T1048TS336_1o|QSscoreOfficiallury|  0.183577  |0.586138|0.125333| 0.577586 0.086821 0.378914 | 0.087 [9.2| 0.379 0.18 0.416 |0.136|0.3975|0.26675|12.81704
T1048TS336_10| IDDTOfficiallury 0.449982 |0.586138|0.125333| 0.577586 0.086821 0.378914 | 0.087 [9.2| 0.379 0.18 0.416 |0.136|0.3975|0.26675|12.81704
T1048T5029_30 VoroMQA 0.60206 0.951356|0.142333| 0.722222 0.111374 0.340394 | 0.114 |11.5] 0.325 0.25 0.371 |0.1825| 0.348 |0.26525|15.62343
T1048TS491 40 CDAscore 0.928728 |0.696915| 0.0365 | 0.656863 0.037263 0.277298 | 0.037 (41| 0.277 0.25 0.411 |0.1455| 0.344 |0.24475|7.514089
T1048TS336_10 consensus 0.496773 |0.586138|0.125333| 0.577586 0.086821 0.378914 | 0.087 [9.2| 0.379 0.18 0.416 |0.136|0.3975|0.26675|12.81704
T10547S071_1o ModFOLDIA 0.800832 |0.634481| 0.03 0.261364 0.019021 0.478512 | 0.019 [2.2| 0.479 0.18 0.306 |0.101 |0.3925|0.24675|5.347627
T1054TS477_20 DockQJury 0.016371 0.50209 | 0.016 0.25 0.017895 0.238881 | 0.018 [1.1| 0.239 0.17 0.225 [0.0905| 0.232 |0.16125|3.260616
T1054TS071_40 QSscorelury 0.286667 |0.299806| 0.01 0.045455 0.00134 0.459168 | 0.001 | O 0.459 0.03 0.261 |0.015| 0.36 | 0.1875|2.129268
T1054TS155_30|QSscoreOfficiallury|  0.060389  |0.428122| 0.018 0.170455 0.03022 0.34375 0.03 [1.3]| 0.344 0.13 0.28 |0.0715| 0.312 |0.19175|3.649795
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T1054TS193_50| IDDTOfficiallury 0.517932 0.44815 | 0.013 0.159091 0 0.591884 0 0 0.592 0.12 0.443 | 0.06 |0.5175|0.28875|3.233375
T105475029_1o0 VoroMQA 0.683178 |0.838984| 0.03 0.386364 0.045859 0.523084 | 0.046 [1.9| 0.523 0.25 0.34 |0.1345|0.4315| 0.283 [5.732291
T1054T75343_50 CDAscore 0.896283 10.431243| 0.019 0.068182 0 0.552377 0 0 0.552 0.04 0.425 | 0.02 |0.4885|0.25425|2.850552
T1054TS403_10 consensus 0.428236  |0.585018| 0.013 0.022727 0 0.607308 0 0 0.607 0.01 0.44 | 0.005 |0.5235|0.26425(3.077803
T1062TS451 20 ModFOLDIA 0.966394 |0.796361| 0.06 0.692308 0.088247 0.366607 | 0.088 [12.5| 0.367 0.26 0.309 |0.1925| 0.338 |0.26525|16.32327
T1062TS375_50 DockQJury 0.05188 0.867152|0.093333| 0.769231 0.09625 0.379098 | 0.057 [10.7| 0.298 0.27 0.306 |0.1885| 0.302 |0.24525|14.57181
T106275029_50 QSscorelury 0.806536 |0.114141| 0.038 0.115385 0.065213 0.155578 | 0.065 [ 6.8| 0.156 0.07 0.19 |0.069|0.173 | 0.121 [8.132317
T1062T5403_1o|QSscoreOfficiallury|  0.236498  |0.872957|0.083333| 0.807692 0.097339 0.382572 | 0.097 [9.4| 0.383 0.26 0.308 |0.177 |0.3455|0.26125|13.47564
T1062TS062_50| |IDDTOfficiallury 0.477273 10.865886| 0.096 0.730769 0.078981 0.376321 | 0.079 [11.9] 0.376 0.25 0.317 |0.1845|0.3465| 0.2655 |15.86646
T1062T75029_30 VoroMQA 0.698997 10.833768| 0.152 0.730769 0.535384 0.419598 | 0.535 |43.3] 0.42 0.55 0.478 |0.4915| 0.449 |0.47025|49.36527
T1062T5288_40 CDAscore 0.901135 |0.376197|0.033333| 0.333333 0.03688 0.360429 | 0.037 | O 0.36 0.16 0.309 | 0.08 |0.3345|0.20725|2.627923
T1062T5451_20 consensus 0.543647 |0.796361| 0.06 0.692308 0.088247 0.366607 | 0.088 [12.5| 0.367 0.26 0.309 |0.1925| 0.338 |0.26525|16.32327
T1070TS360_20 ModFOLDIA 0.763751  |0.472349|0.007667| 0.128415 0.002273 0.251581 | 0.002 | O 0.251 0.03 0.243 |0.015|0.247 | 0.131 |1.781285
T1070TS155_40 DockQJury 0.034772  10.207268| 0.032 0.150273 0.055088 0.104761 | 0.055 [1.8| 0.105 0.06 0.204 |0.039 |0.1545|0.09675| 3.06364
T1070TS155_20 QSscorelury 0.348167  |0.232155|0.058333| 0.112022 0.061075 0.182231 | 0.061 | 2 0.182 0.07 0.29 | 0.045 | 0.236 | 0.1405 [3.670316
T1070TS173_40|QSscoreOfficiallury|  0.086956  |0.516053|0.023667| 0.352459 0.103594 0.210385 | 0.104 | 2.5 0.21 0.17 0.287 |0.0975|0.2485| 0.173 |4.996159
T1070TS062_20| IDDTOfficiallury 0.399771 |0.140748|0.006667| 0.098361 0 0.405659 0 0 0.406 0.02 0.163 | 0.01 |0.2845|0.14725|1.682184
T1070TS193_10 VoroMQA 0.664489 |0.750588|0.007667| 0.401639 0.082869 0.349272 | 0.083 |5.8| 0.349 0.18 0.177 [0.119]0.263 | 0.191 |8.754036
T1070TS099_30 CDAscore 0.820657  |0.096606(0.007333| 0.027322 0 0.423508 0 0 0.424 0.01 0.181 | 0.005 |0.3025|0.15375|1.631019
T1070T7S221_1o0 consensus 0.405337 |0.418661|0.016667| 0.237705 0.104024 0.435398 | 0.104 {3.1| 0.435 0.12 0.32  |0.0755|0.3775| 0.2265 [5.970954
T1078TS343_20 ModFOLDIA 0.884971 10.879712| 0.029 0.549296 0.003849 0.542363 | 0.004 | O 0.503 0.38 0.509 | 0.19 | 0.506 | 0.348 | 4.44422
T1078TS155_40 DockQJury 0.028052 0.69152 | 0.042 0.366197 0.105355 0.400917 | 0.105 | 1.3 0.4 0.26 0.424 |0.1365| 0.412 |0.27425| 4.91774
T1078TS341_20 QSscorelury 0.492857 10.275209| 0.021 0.225352 0 0.455837 0 0 0.448 0.21 0.458 |0.105|0.453 | 0.279 |2.930398
T1078TS029_10|QSscoreOfficiallury|  0.083671  |0.542543| 0.078 0.514563 0.161571 0.552705 | 0.162 | 6 0.552 0.44 0.496 | 0.25 | 0.524| 0.387 |10.66038
T1078TS451_20| |IDDTOfficiallury 0.495588 10.650297| 0.024 0.408451 0.000326 0.555001 0 0 0.555 0.3 0.491 | 0.15 | 0.523 | 0.3365 |3.993575
T107875029_40 VoroMQA 0.709846  10.681954| 0.145 0.422535 0.16387 0.558115 | 0.15 [12.4| 0.537 0.33 0.629 |0.227|0.583 | 0.405 |17.23247
T1078TS099_10 CDAscore 0.862483 10.389903| 0.029 0.366197 0 0.54563 0 0 0.545 0.3 0.529 | 0.15 | 0.537|0.3435| 3.73523
T1078TS029_20 consensus 0.472829 10.735909| 0.057 0.43662 0.061399 0.54002 | 0.061 | 1.1 0.54 0.28 0.486 |0.1455| 0.513 |0.32925|5.285698
T1083TS343_50 ModFOLDIA 0.916158 |0.708569| 0.079 0.448718 0.028797 0.505065 | 0.016 | 1 0.46 0.33 0.453 | 0.17 |0.4565|0.31325| 4.9689
T1083T7S029_40 DockQJury 0.067 0.660058| 0.531 0.628205 0.638186 0.552899 | 0.638 | 57 | 0.553 0.6 0.697 |0.585|0.625| 0.605 |64.31335
T1083TS062_40 QSscorelury 0.593162 ]0.363217| 0.018 0.320513 0 0.503681 0 0 0.504 0.3 0.533 | 0.15 |0.5185|0.33425|3.545161
T1083TS403_20|QSscoreOfficiallury|  0.155181  |0.854141| 0.232 0.761905 0.46968 0.617292 | 0.47 |[15.1] 0.617 0.65 0.59 |0.4005|0.6035| 0.502 [21.86802
T1083TS403_50| IDDTOfficiallury 0.566593 |0.897379| 0.149 0.679487 0.371674 0.605726 | 0.372 {9.4| 0.606 0.52 0.53 | 0.307 | 0.568 | 0.4375 [15.44377
T1083TS403_30 VoroMQA 0.592349 |0.767266| 0.228 0.755319 0.323609 0.60834 | 0.324 |18.3] 0.608 0.7 0.566 |0.4415| 0.587 |0.51425|24.72328
T1083TS491 1o CDAscore 0.94229 0.308305| 0.015 0.205128 0 0.274788 0 0 0.275 0.18 0.369 | 0.09 | 0.322 | 0.206 |2.245221
T1083TS071_20 consensus 0.509299 ]0.752382| 0.296 0.653846 0.549226 0.587014 | 0.549 [31.9] 0.586 0.58 0.655 |0.4495|0.6205| 0.535 |38.71347
T1084TS055_20 ModFOLDIA 0.946689 10.975269| 0.462 0.690909 0.685708 0.648825 | 0.686 (45.4| 0.649 0.53 0.79 | 0.492 |0.7195|0.60575|53.33496
T10847S029_10 DockQJury 0.164807 |0.748833| 0.751 0.680556 0.875724 0.765828 | 0.857 [63.3| 0.756 0.63 0.893 |0.6315|0.8245| 0.728 |72.44194
T1084T75288_1o0 QSscorelury 0.620482 0.35643 | 0.058 0.290909 0 0.502626 0 0 0.496 0.27 0.596 |0.135]0.546 | 0.3405 |3.591465
T1084T5298_50|QSscoreOfficiallury|  0.239461 0.86197 | 0.604 0.781818 0.8707 0.754856 | 0.871 [77.7| 0.755 0.72 0.896 |0.7485|0.8255| 0.787 |87.17634
T1084TS403_10| IDDTOfficiallury 0.606947 0.84711 | 0.635 0.822581 0.892888 0.831829 | 0.893 | 81 0.832 0.77 0.917 | 0.79 |0.8745|0.83225|90.93816
T1084TS403_20 VoroMQA 0.650103  0.825112| 0.507 0.745455 0.854123 0.758857 | 0.854 | 73 0.759 0.68 0.884 |0.705 |0.8215|0.76325| 82.1573
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T1084TS071_50 CDAscore 0.938053 [0.837262| 0.089 0.654545 0.028895 0.496844 | 0.029 | O 0.497 0.54 0.677 | 0.27 | 0.587 | 0.4285 |5.135046
T1084T5298_50 consensus 0.560929 0.86197 | 0.604 0.781818 0.8707 0.754856 | 0.871 |77.7| 0.755 0.72 0.896 |0.7485|0.8255| 0.787 |87.17634
T1087TS177_40 ModFOLDIA 0.926989 10.637445| 0.293 0.542169 0.325078 0.479538 | 0.325 [24.4] 0.48 0.49 0.541 |0.367 |0.5105|0.43875|29.82948
T1087TS177_10 DockQJury 0.06075 0.658947| 0.406 0.518072 0.405164 0.526152 | 0.405 [31.5| 0.526 0.45 0.649 |0.3825|0.5875| 0.485 |37.49933
T1087TS173_20 QSscorelury 0.558957 [0.141323| 0.073 0.13253 0.071864 0.477447 | 0.072 |5.4| 0.456 0.13 0.487 |0.092 [0.4715|0.28175|8.286413
T1087TS177_1o|QSscoreOfficiallury|  0.127095 |0.658947| 0.406 0.518072 0.405164 0.526152 | 0.405 |31.5] 0.526 0.45 0.649 |0.3825|0.5875| 0.485 |37.49933
T1087TS403_10| IDDTOfficiallury 0.513801 |0.780363| 0.393 0.735294 0.444684 0.629435 | 0.445 |36.2] 0.629 0.68 0.786 |0.521 |0.7075|0.61425|43.56553
T1087T5029_20 VoroMQA 0.636739  |0.790714| 0.322 0.566265 0.320614 0.505094 | 0.321 (30.4] 0.505 0.45 0.598 |0.377|0.5515|0.46425|36.17144
T1087TS066_30 CDAscore 0.922755 ]0.639529| 0.029 0.530121 0.03695 0.475315 | 0.037 [2.4| 0.475 0.47 0.465 |0.247| 0.47 | 0.3585 |6.633415
T1087TS193_1o consensus 0.498275 [0.647962| 0.093 0.530121 0.293467 0.525697 | 0.293 |21.2| 0.526 0.47 0.536 |0.341|0.531 | 0.436 |26.42325
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Appendix 10

Full versions of final all-against-all comparison tables described in stage 3.

Table S10.1 Data for Chapter 4, Table 4.3. Correlations between the observed global interface and fold
scores and every combination of the 7 component scores, based on the CASP14 multimer data:
A=ModFOLDIA, B=DockQJury, C=QSscoreJury, D=QSscoreOfficialdJury, E=IDDTOfficialJury,
F=voronota-js-voromga, G=CDA-score. The top scores in each column are shown in bold. The

combinations used for the ModFOLDdock fold and interface scores are highlighted in green.

Method Interface Fold

combination Pearson Spearman |Kendall Pearson Spearman |Kendall
B+E 0.6221383  (0.4662672 |0.3370294 10.897708 |0.8895329 |0.7178826
D+E 0.7678932  |0.6149145 |0.451429  |0.8886437 |0.8864162 |0.7204588
B+D+E+F 0.7370915 |0.5618972 |0.4084465 (0.8755656 [0.8648914 |0.6910571
D+E+F 0.6796071 |0.5390013 |0.3894662 (0.8748695 [0.8658919 |[0.6912109
B+D+E 0.8155852  |0.6325805 |0.4671395 (0.8738063 (0.8812126 |0.7138623
B+E+F 0.5398861 |0.4028433 |0.2887446 (0.8507348 [0.8403956 |(0.6561161
E 0.4398352  |0.3730243 |0.2678815 (0.8503973 [0.8587005 |0.6726669
E+F 0.4053162  |0.3287048 |0.2352872 |0.8024292 |0.8084877 |0.6153324
B+C+D+E+F 0.7941014  |0.7417475 |0.552793  |0.7869698 |0.7413835 |0.564248
C+D+E+F 0.7561131  |0.7344757 |0.5432355 |0.7773438 |0.740087 |0.5629397
A+B+D+E+F 0.7440054 |0.7063684 |0.5241025 (0.7740935 (0.7298914 |0.5474411
B+C+E+F 0.6886405 |0.682026 |0.4928813 (0.77257 0.7296966 [0.5545109
B+D+F 0.82149 0.6114097 (0.4479444 ]0.7606479 |0.7381083 [0.5590382
D+F 0.7698032 |0.5881448 |0.4268164 (0.7599284 |(0.7393382 |0.5587745
A+D+E+F 0.7021574  |0.6944457 |0.511267  (0.7595768 |0.7250281 |0.5418011
B+C+D+E 0.8339838 |0.7859983 |0.592779  [0.7462676 |0.696275 |0.520593
C+E+F 0.6134071 |0.6547062 |0.4648403 |0.7417553 |0.7143769 |0.538481
A+B+E+F 0.6275222  |0.629427 ]0.4553829 (0.7412427 |0.7066384 |0.5248789
A+B+D+E 0.7705623  |0.7432268 |0.5556862 (0.7353772 |0.6776837 |0.4981892
C+D+E 0.7973255 |0.779981 |0.5836362 (0.7337487 |0.6933543 |0.5177601
B+C+E 0.7368397  |0.7398483 |0.5406193 [0.7320624 |0.6813849 |0.5099464
A+D+E 0.7265591  |0.7328193 |0.5432948 (0.7169642 (0.671624 |0.4915085
B+F 0.5660863  |0.3635316 |0.2592923 (0.7137864 |0.6852296 |0.5128599
B+D+E+F+G 0.404772 0.3780916 (0.2710916 |0.7101008 |0.7061886 [0.553011
A+B+C+D+E+F 0.7635909  |0.7739465 |0.581026  (0.7083849 (0.6634288 |0.4891847
A+E+F 0.5560334  |0.5970161 |0.4261682 (0.7073137 |0.6875881 |0.5044643
A+B+E 0.6486699 |0.6680471 |0.4850158 (0.6952704 |(0.6487127 |0.4725049
B+C+D+E+F+G 0.5244234  |0.5830563 |0.412383  (0.693544 |0.6456508 |0.4798443
A+C+D+E+F 0.7308335 |0.7665216 |0.5709852 [0.6924358 |0.6571411 |0.4831878
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A+B+D+E+F+G 0.5098543 0.5772571 [0.4069296 ]0.6923436 [0.6586154 (0.4819218
C+E 0.651986 0.7111715 [0.5072599 (0.6921837 |0.6585876 |0.4896367
A+B+C+E+F 0.6820997 0.7336256 (0.5382033 (0.6785479 |0.6422252 |0.4708995
D+E+F+G 0.322943 0.336453 (0.2426468 [0.6655271 |0.6797333 |0.5371782
A+B+C+D+E 0.7767018 0.7949579 |0.6008529 10.6636642 (0.6161361 |0.4468922
A+B+C+D+E+F+G 0.5752266 0.6696365 (0.4772083 |0.6628724 (0.61441 0.4467918
A+D+E+F+G 0.4534166 0.5418677 (0.3798655 [0.6615978 |0.6340081 |0.4614429
C+D+E+F+G 0.4632582 0.5481547 (0.3875863 [0.6606479 |0.6218252 |0.4615751
B+D+E+G 0.3875972 0.3909207 [0.2861465 ]0.657835 [0.6568015 [0.5137236
A+E 0.5664097 0.6327542 (0.4510429 ]0.6517214 |0.623084 (0.4474086
A+B+D+F 0.7623274 0.7355312 |0.5461741 ]0.6514716 (0.5946109 |0.4284181
A+C+E+F 0.6316307 0.7140192 (0.5164196 [0.650924 ]0.6241992 |0.4542625
A+B+D+E+G 0.5031556 0.5929763 (0.4203144 (0.6474392 |0.6030616 |0.4331001
B+C+D+E+G 0.5184236 0.5958047 [0.4257621 |0.6438089 (0.5959577 ]0.4371545
A+C+D+E 0.7419265 0.78715 0.5899385 10.6436479 |0.6069291 (0.4387054
B+D 0.9005487 0.8246907 (0.6435966 (0.6419381 |0.5309702 |0.3781203
A+C+D+E+F+G 0.5309632 0.6464253 (0.4565751 [0.6379261 |0.5954371 |0.4301802
B+C+D+F 0.8175272 0.7770315 |0.5889212 10.637794 (0.5740778 ]0.4180225
D 0.8904282 0.8440979 10.6601409 |0.6263819 (0.5468863 |0.389032
A+B+C+E 0.692102 0.7551501 |0.5565514 ]0.6252666 (0.5871694 ]0.4235903
A+D+F 0.7117394 0.7213149 (0.5301804 (0.622492 |0.5825022 |0.4172562
A+B+C+D+E+G 0.5709968 0.6804326 (0.4864792 (0.6196486 |0.5683172 |0.406208
A+B+E+F+G 0.3599946 0.4367296 |0.3031905 ]0.6129679 (0.5757836 |0.417113
A+D+E+G 0.4407902 0.5547524 10.3917973 |0.6112724 (0.5745229 |0.4106077
C+D+F 0.7728359 0.7688163 [0.5767856 [0.6092083 |0.5646974 |0.4102714
B+C+E+F+G 0.3607219 0.4482979 (0.3162082 (0.6082477 |0.5674795 |0.4255933
C+D+E+G 0.4501244 0.5582474 (0.4005675 (0.6043174 |0.5679783 |0.4172322
A+B+C+E+F+G 0.4609644 0.5808734 (0.4031719 (0.6038874 ]0.5565473 |0.3965046
D+E+G 0.2933906 0.3537209 |0.2610584 10.6029764 (0.6337003 |0.5030273
B 0.8191334 0.6607223 (0.508491 0.6028232 ]0.4526431 |0.3333887
A+B+D+F+G 0.4890414 0.5849852 (0.4139539 (0.5929576 |0.5377722 |0.3810692
A+C+E 0.6362988 0.7327199 [0.5304996 |0.5909937 [0.5620175 [0.402464
A+C+D+E+G 0.5230199 0.6551545 [0.4642964 10.5908642 (0.5464175 |0.3876725
B+D+F+G 0.354711 0.3933636 |0.2905136 ]0.590493 [0.5839326 |0.4563542
A+B+C+D+F 0.7620261 0.790109 (0.5947494 (0.5876953 |0.5479381 |0.3910265
B+E+F+G 0.1851618 0.2087258 (0.1507441 (0.5831396 |0.6225731 |0.4928905
A+B+F 0.618582 0.6458525 (0.4640224 (0.5803044 |0.5419518 |0.3857262
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B+C+D+F+G 0.5012339 0.5883603 (0.4232738 ]0.5783218 [0.5269261 (0.3826374
F 0.2763438 0.1935796 (0.1387928 [0.5760358 |0.5914943 |0.4220089
B+C+F 0.693108 0.7096416 [0.5203948 (0.5736845 |0.5263652 |0.383877
A+C+E+F+G 0.4048945 0.5446632 [0.3756973 [0.5690548 |0.5268085 |0.3730967
A+E+F+G 0.2891742 0.391625 |0.271775 0.5683542 |0.5419194 (0.3920983
A+B+C+D+F+G 0.5594844 0.674622 ]0.482897 0.5664158 |0.5174481 (0.3660899
A+B+D 0.768613 0.7525183 [0.558776 0.5610124 ]0.4917038 |0.3451411
A+C+D+F 0.7226791 0.7797477 (0.5814859 (0.5604365 |0.5346216 |0.380508
C+E+F+G 0.2814387 0.4114624 |0.2892574 10.5582347 (0.5390696 |0.4061662
A+B+E+G 0.3378762 0.4456156 |0.3136935 |0.5549658 (0.511629 ]0.3660532
A+B+C+E+G 0.4475483 0.5869245 (0.410364 0.5516895 |0.5016167 (0.3515447
A+D+F+G 0.4182374 0.5407973 (0.3815873 [0.5494807 |0.5019142 |0.3543656
B+C+E+G 0.3358963 0.4615773 (0.3322916 (0.5424231 |0.5047689 |0.379338
A+C+D+F+G 0.5065592 0.6472278 |0.4586581 ]0.5327191 (0.491706 |0.3455039
C+D+F+G 0.4227912 0.5436172 [0.3943254 ]0.5296769 [0.4914799 (0.359338
A+B+C+F 0.6645752 0.741465 (0.5427793 [0.5288693 |0.5045896 |0.3578339
B+C+D 0.8269361 0.8091608 [0.6240246 [0.5266822 |0.4474464 |0.3143817
D+F+G 0.2409491 0.3563423 (0.2642462 ]0.5200666 [0.5632211 (0.4457454
A+D 0.7113254 0.7359118 [0.5398023 ]0.5183876 [0.472099 [0.3289444
A+F 0.5191631 0.5945452 (0.416958 0.5173752 |0.4959425 (0.3466355
E+F+G 0.08656197 [0.1623278 (0.1190342 (0.516321 |0.5948857 |0.4702613
A+B+D+G 0.4680578 0.5842217 (0.4176302 (0.5161636 |0.4451738 |0.3088823
A+C+E+G 0.3863691 0.5462825 |0.3798923 ]0.5119406 (0.4660067 |0.3253892
A+B+C+D 0.7580323 0.7981737 {0.6005767 ]0.5110592 [0.4718043 (0.3301004
B+E+G 0.1361889 0.2239605 [0.1650852 [0.5046949 |0.5940821 |0.4727034
A+E+G 0.2593274 0.3971522 (0.2793416 (0.5032234 |0.4725844 ]0.338792
A+B+C+D+G 0.5443057 0.6752321 (0.4848112 (0.5008184 |0.4516605 |0.3133573
C+F 0.5830781 0.6636917 (0.4721933 ]0.5005905 [0.4783326 (0.347197
B+C+D+G 0.4768018 0.5843225 |0.4297474 10.4884084 (0.4384612 |0.3118733
A+B+C+F+G 0.4226695 0.5722815 (0.4006841 (0.4856252 |0.4384016 |0.3041032
A+C+F 0.600404 0.7118308 (0.5111797 (0.4840006 |0.4705569 |0.331071
C+E+G 0.2468374 0.4239733 (0.303394 0.483393 |0.4721439 (0.3579832
A+B+F+G 0.3005459 0.423398 [0.2983356 (0.4808792 |0.4279865 |0.3033854
C+D 0.776152 0.8001199 (0.6106079 ]0.4783409 [0.430884 (0.301257
B+D+G 0.3094441 0.4280989 (0.3231873 (0.4782347 |0.476807 ]0.362241
A+C+D 0.7141838 0.7852169 (0.5846252 (0.4757161 |0.4529065 |0.3157709
A+D+G 0.3891704 0.5360537 (0.3833224 (0.4642765 |0.4031501 |0.2789366
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A+C+D+G 0.4865639 0.6439374 [0.4579553 10.46168 0.4198982 10.2893849
A+B 0.6071178 0.6558811 (0.4686983 (0.4534903 |0.4125144 |0.285917
B+C+F+G 0.2905314 0.4458545 (0.3235596 (0.4523077 |0.4241992 |0.318057
A+C+F+G 0.3548218 0.5249093 (0.3653983 (0.439687 (0.3948 0.2728716
A+B+C 0.650793 0.7447487 |0.5436193 ]0.4311374 (0.4121513 |0.2869405
C+D+G 0.3883645 0.5329598 |0.3977753 0.429081 [0.3939667 |0.2836269
E+G 0.02468937 [0.1761515 [0.1302842 (0.4251367 |0.5724286 |0.4517576
A+F+G 0.2113104 0.3688911 (0.2583106 (0.4196708 |0.3812478 |0.2700233
A+B+C+G 0.3957246 0.5623156 [0.3984426 |0.4068951 [0.3560086 (0.2435724
B+C 0.6909383 0.7484381 |0.5628754 10.4061099 (0.3721297 |0.2628535
B+F+G 0.05367426 |0.1978878 |0.1437184 (0.3952618 |0.5245636 |0.4094789
D+G 0.1774821 0.4080011 (0.306333 0.3898023 |0.4662864 |0.3551107
A+B+G 0.2594555 0.4228055 (0.3027759 [0.3843279 [0.32582 0.2272073
C+F+G 0.1884297 0.405049 [0.2890516 ]0.3814986 [0.385034 (0.291479
A+C 0.5777453 0.7109297 |0.5076395 ]0.3745237 (0.3699924 |0.2545747
A 0.4867195 0.5868364 (0.4057687 [0.3654596 |0.3366946 |0.2293649
A+C+G 0.3220312 0.5120821 (0.3609473 [0.3550122 |0.307833 |0.2099138
B+C+G 0.241169 0.4606827 (0.3420289 |0.3371482 [0.3392478 [0.250484
A+G 0.1615911 0.3670324 |0.2590266 0.3145923 (0.2748015 |0.1898057
F+G -0.07501003 |0.1258351 |0.0909146 (0.2987003 |0.4859893 [0.3728236
C 0.5505007 0.6904874 (0.5030818 [0.2886947 |0.2966009 |0.2073917
C+G 0.128631 0.4234011 (0.3054489 (0.2560357 |0.2986689 |0.2202136
B+G -0.03138041 |0.2517043 |0.181093 0.2454451 |0.4397153 (0.3312597
G -0.1693019 |0.1327867 |0.09281258 (0.1382419 |0.3581771 |0.2661346

Table S$10.2 Data used for Chapter 4, Table 4.4. Cumulative observed global interface and fold
scores of the top ranked models for every combination of the 7 component scores based on the CASP14
multimer  data: A=ModFOLDIA, B=DockQJury, @ C=QSscoredury, D=QSscoreOfficialdury,
E=IDDTOfficialdury, F=voronota-js-voromga, G=CDA-score. The top scores in each column are shown
in bold. The ModFOLDdockR fold and interface score combinations are highlighted in green.

Method combination Interface Fold
C+E+F 4.962 9.145
B+D+G 5.2505 9.097
E+F 5.04 9.091
B+E+F 5.4545 9.0885
D+E+F 5.117 9.064
B+E+F+G 5.136 9.0625
C+D+E+G 5.006 9.0485
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B+E 5.167 9.01
D+E 5.3215 9.003
B+C+D+E+G 5.196 8.9935
B+C+D+E 5.2155 8.985
A+B+C+D+E+F+G 5.0855 8.956
B+D+E 5.345 8.948
B+C+D+G 5.126 8.9285
B+D+E+F 5.1455 8.913
D+E+G 4.8725 8.9055
A+C+F 5.286 8.883
D+E+F+G 4.6635 8.8575
C+D+E 4.919 8.856
C+D+G 4.6205 8.8535
B+D+E+G 4912 8.812
A+B+D+E+F+G 4.944 8.8085
E 4.0515 8.805
B+D+E+F+G 4.657 8.802
A+B+D+E+F 5.0655 8.797
A+B+C+D+F+G 5.2595 8.785
A+B+C+D+E+G 4.931 8.7825
A+C+D+E+G 4.931 8.7825
B+C+E+F 4.7155 8.7825
A+B+C+E 5.3425 8.7795
D 5.414 8.7745
A+B+C+D+E+F 5.408 8.7745
C+D+E+F 4.6355 8.774
D+G 4.6135 8.7625
A+C+D+E+F+G 4.9075 8.7585
A+B+D+F 5.3465 8.7565
A+B+D+F+G 4.905 8.7535
A+B+C+E+F 4.8465 8.7495
A+B+C+E+G 4.757 8.7145
A+B+C+E+F+G 4.7275 8.7075
B+D+F+G 4.8505 8.707
B+C+D+E+F 4.943 8.704
A+B+F+G 4.6465 8.6965
C+E+F+G 4.3265 8.6965
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A+C+D+E 5.114 8.68
B+E+G 4.3635 8.6705
A+D+E+F 4.7285 8.67
B+C+E+G 4.339 8.67
E+F+G 4.349 8.6685
A+B+C+F+G 4.4715 8.6675
A+B+C+D+F 5.335 8.666
A+D+E+F+G 4.6845 8.6655
A+C+D+E+F 4.7645 8.6605
A+B+E+F+G 4.646 8.6535
A+B+E+F 4.5695 8.6525
A+C+F+G 4.7275 8.648
A+B+C+F 5.057 8.6475
A+D+F 5.207 8.6465
C+D+F+G 4.5735 8.646
A+B+C+D+E 5.1365 8.644
B+C+D+F+G 4.796 8.6435
A+C+E+F 4.6035 8.6425
C+D+E+F+G 4.5855 8.6385
B+C+D+F 5.4965 8.638
C+D+F 5.185 8.638
B+C+D+E+F+G 4.808 8.636
A+B+D+G 5.238 8.6305
A+D+E+G 4.7865 8.6305
A+B+D+E+G 4.776 8.6185
A+F+G 4.4245 8.615
A+C+E 4.87 8.6145
B+F+G 4.852 8.602
A+C+E+F+G 4.558 8.5985
C+E 4.2275 8.596
A+D+F+G 4.7225 8.5825
A+C+D 5.2855 8.5745
C+F+G 3.9805 8.574
B+C+E+F+G 4.559 8.572
A+D+E 4.9065 8.57
B+C+F+G 4.549 8.5665
D+F 5.4435 8.564
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D+F+G 4.687 8.563
C+E+G 4.036 8.555
A+C+D+F+G 4.9095 8.5535
A+D+G 5.1505 8.5475
B+D 5.412 8.547
B+C+F 5.3875 8.5365
A+C 5.247 8.5345
B+C+G 4.3575 8.5335
A+B+E+G 4.365 8.5065
A+B+D+E 4.8725 8.493
A+B+C+D+G 5.4715 8.488
A+B+E 4.6945 8.4835
A+C+D+G 5.283 8.483
B+D+F 5.6105 8.479
A+C+E+G 4.394 8.4625
B+C+E 4.4885 8.4585
A+D 5.206 8.448
A+B+C+D 5.478 8.4325
A+C+D+F 4.8075 8.42
A+C+G 4.776 8.418
B+C+D 5.2495 8.4175
A+B+G 4.775 8.4065
A+E 4.6635 8.405
C+F 4.6335 8.403
F 4.8695 8.3865
A+B+F 4.592 8.3765
A+B+C 5.026 8.367
A+B+D 5.286 8.3585
A+F 4.522 8.3505
A+E+G 4.146 8.3485
A+E+F+G 4.2285 8.3415
A+B+C+G 5.02 8.3305
C+G 3.3645 8.315
C+D 4.6965 8.3065
B+F 5.449 8.2965
A+G 4.562 8.2915
A+E+F 4.0765 8.207
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E+G 2.579 8.166
F+G 3.4355 8.112
A+B 4.8615 8.089
B+G 3.818 8.055
B+C 4.4975 7.964
B 5.048 7.8685
A 4.265 7.808
C 3.201 7.788
G 2.2295 7.0715
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Appendix 11

Definitions of Pearson, Spearman and Kendall correlation coefficients.

The Pearson correlation coefficient r is a normalised version of covariance, where the output

is always between -1 and 1. The formula, for two variables X and Y is:

_cov(X)Y)
"~ oXoY

where o is the standard deviation (SD) of each variable.

In explanation, variance (0?) is a measure of how much a set of data points differ from their
mean. It is calculated as the average of the squared differences between each data point and
the mean, i.e. sum of (x-X)?/n. Covariance measures the degree to which two variables change

together, i.e. sum of (x- X)(y-y)/n. Standard deviation (the square root of variance) is V(x- X)?/n.

Spearman, p (rho), and Kendall, 1 (tau), rank correlation coefficients are both non-parametric
measure using the rank variable of the data. Spearman assesses how well the relationship

between two variables can be described using a monotonic function using the formula:

6 (sum di?)

=1-
P nn? —1)

Where di is the difference between the ranks of corresponding pairs of observations and n is
the number of observations. Spearman correlation coefficient can be calculated by assigning
ranks to the values for each variable, calculating the differences between ranks for variable
pairs and then squaring the differences. Finally these values are summed. Kendall measures
the similarity of the orderings of the data when ranked by each of the variables and can be

described as:

C-D
n(n-1)/2

where C is the number of concordant pairs (where the ranks agree), D is the number of
discordant pairs and n is the number of observations. Kendall is calculated by counting the
number of concordant and discordant pairs of observations and then using these counts to

compute the correlation coefficient.

The choice between Pearson, Spearman, or Kendall correlation coefficients may alluded to in
Chapter 4 can depend upon the perceived importance of: Linear Relationship: Pearson
correlation coefficient is specifically designed to measure the strength and direction of a linear

relationship between two variables. Proportionality of Increase: Pearson correlation coefficient
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considers the proportionality of increase or decrease in the variables. It reflects the degree to
which a change in one variable is associated with a proportional change in the other variable.
Outlier Treatment: Pearson correlation is sensitive to outliers, meaning that extreme values

can significantly affect the correlation coefficient.
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Appendix 12

Definitions of CASP15 PatchQS and PatchDockQ scores and the local Z-score

calculation.

PatchQS and PatchDockQ are two reference scores created specifically for the CASP15 EMA
competition and based on the QS-score and DockQ methods (Studer et al., 2023). They are
designed to assess the quality of interchain interactions and sample each model interface
residue. For an interface residue r in chain A of the model two interface patches are defined
for C3 atoms as;

Patch one = (chain A and 8A <>r) and (12A <> chain != A). Meaning that patch one consists
of all residues in chain A within 8A of residue r that are also within 12A of any other chain.
Patch two: (chain != A and 8A <>r min) and (12A <> A). Patch two uses r min as a reference
point. It consists of all residues of any chain within 8A of r min that are also within 12A to chain
A, where r min is defined as the closest residue to r in any chain which is not chain A (I= A).

(<> means within that distance)

1. ROC AUC values.
Firstly the whole dataset of observed scores is sampled to calculate the 75" quartile value.

This is then used as the threshold value against which the binary variable is calculated. A ROC
AUC value is then calculated (in R this can be calculated using the pROC package). AUC
values less than 0.5 are considered worse than a random selection and so the minimum AUC
value was set to 0.5. These values were calculated using the IDDT, CAD, PatchQS and

PatchDockQ as the target (observed) value.

2. Pearson r values.

This is a straight-forward Pearson correlation value, again calculated using the IDDT, CAD,
PatchQS and PatchDockQ as the target (observed) value.

3. Spearman rho values.

As above, these are straight forward Spearman correlation values calculated using the IDDT,
CAD, PatchQS and PatchDockQ as the target (observed) value.

4. Calculation of Z scores.

Z-scores are calculated (e.g. using the scale(value) operator in R) for each score above. So a
Z-score value will be calculated for:

ROC_AUC_IDDT ROC_AUC_CAD ROC_AUC_PatchQS ROC_AUC_PatchDockQ
Pearson_IDDT Pearson_CAD Pearson_PatchQS Pearson_PatchDockQ
Spearman_IDDT Spearman_CAD Spearman_PatchQS Spearman_PatchDockQ
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5. Summation of like scores.

Overall scores are calculated as follows, where <score> is each of IDDT, CAD, PatchQS and
PatchDockQ:

Z <score>=Z ROC_AUC_<score> + 0.5Z Pearson_<score> + 0.5Z_Spearman_<score>

6. Final Z score.
A final Z-score is calculated as a simple addition of Z IDDT + Z CAD + Z PatchQS +
Z_Patch_DockQ.
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Appendix 13
Definitions of Sensitivity, Specificity, Precision and Accuracy.

Each metric is best explained with reference to one class only, in this case rank 1 models.
Sensitivity (recall or TPR) = TP / (TP + FN). Meaning: of all the
cases where models were ranked 1 by observed score, how
many were also ranked 1 by predicted score. The True redicted
intersection of the blue and pink circles represents the true rank 1 rank 1
positives (TP) and the rest of the blue circle represents the

false negatives (FN). TPR is therefore the number of models in

the intersect divided by the total number of models in the blue circle.

Summary: Percent or fraction of True Positives.

Specificity = TN/ (TN + FP). Meaning: of all the models that are

not ranked 1 by observed score, how many were also not True Predicted
ranked 1 by predicted score. In the example, true negative other other
(TN) is represented by the intersect between yellow and green rank rank

circles and false positives (FP) are represented by the portion
of the pink which does not intersect with the blue circle above.

Summary: Percent or fraction of True Negatives.

Precision = TP/ (TP + FP). Meaning: of all the cases that were predicted as rank 1 how many actually
were rank 1. In the example diagrams, this is again the intersect of the pink and blue circles but this time
divided by the total number of models in the pink circle. Summary: Percent or fraction of positives that

were truly positives.

Accuracy = (TP + TN) / (TP + TN + FP + FN). Meaning: of all models in the population, how many
were correctly predicted. In the example diagrams this would be both intersections added together
divided by this number plus the portion of the pink circle which does not intersect with the blue and the
portion of the blue circle which does not intersect with the pink. Summary: Percent or fraction correctly

classified.
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Appendix 14

Example R script (Global score) for MLP three-fold cross validation.

library (RSNNS)
library(data.table)
library (ROCR)
library (ggplot2)

# Name: Glob RSNNS 3fold X Val.R Version: 1.4 Date: 29-Sep-21 Author: Nick Edmunds
# Revision history (add details of any revisions since Date above):

# 1-Oct-21 (NE): added summary stats for each baseline graph.

# 1-Oct-21 (NE): added model-checking statistics to check fit of 1lm to each
baseline graph and to each prediction model.

# 1-Oct-21 (NE): removed consensus6 from testing and training setsl,2 and 3 and
created a separate baseline testl,2 and 3.

# 6-Oct-21 (NE): created a binary variable in testing all outputs dataset and added
ROC plots and AUC calcs for individual scores.

# 13-Oct-21 (NE): Added baseline correlation, ROC/AUC plots for Observed scores.

# 15-Oct-21 (NE): Added testing all setsS$Global predictions <- predictions to add
predictions to a permanent dataset created in loc program.

# Function:

# A 3-Fold cross validation for the NN prediction of Global Score from all 6
ModFOLDdock predicted scores.

# Defines 3 training sets containing models from different CASP13 and 14 targets.
Training sets are balanced to include roughly

# the same number of targets from ech CASP competition and also by number of easy,
medium and difficult rated targets.

# Creates correlation plots for each individual (of the 6) ModFOLDdock scores
against a calculated CASP Global score plus the

# same for a mean consensus 6 score - these act as baseline correlations for
comparison.

# Thereafter, each training set is predicted separately, the model saved and then
reloaded and simple correlations, regression

# errors, iterative errors as well as confusion matrices and ROC plots with AUC
calculations are output.

# Edit this to direct graph output to the desired directory>>

#

setwd ('/home/nick/Post confirmation projects/New Scoring/All CASP models/NN_work/Hy
perparam_testing graphs/6 10 21 Glob and Tot output')

# Define 3 subset arrays containing different Target ids (sub_setl=15, subset2=15,
sub_set3=14 targets).

sub_setl <- c("T101le", "T1003", "T1020", "TO0977", "TO999", "TO0997", "T1083",
"T1048", "T1087", "TO0966", "TO0991", "T1009", "T1038™, "T1054", "T0989")

sub_set2 <- c("T0995", "T0979", "TO984", "T0983", "TO963", "T1018", "TO976",
"To998", "TO0965", "Tl062", "T1078", "T1084", "T1001", "T1061"™, "T1070")

sub _set3 <- c("T1006", "TO0961", "T1032", "TO973", "TO970", "T1034", "T0960",
"ri004", "TO981", "TO9%6", "TO985", "T1000", "T1080", "T1010")

# Define training datasets so that training setl contains NO rows from sub_setl,
training set2 contains NO rows from sub set2 and training set3 contains NO rows
from sub set3.

# So training setl will only have rows from sub set2 and sub_set3

training setl <- subset (CASP_combined, Target!="T1016" & Target!="T1003" &
Target!="T1020" & Target!="T0977" & Target!="T0999" & Target!="T0997" &
Target!="T1083" & Target!="T1048" & Target!="T1087" & Target!="T0966" &
Target!="T0991" & Target!="T1009" & Target!="T1038" & Target!="T1054" ¢&
Target!="T0989")
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# training set2 will only have rows from sub setl and sub set3

training set2 <- subset (CASP combined, Target!="T0995" & Target!="T0979" &
Target!="T0984" & Target!="T0983" & Target!="T0963" & Target!="T1018" &
Target!="T0976" & Target!="T0998" & Target!="T0965" & Target!="T1062" &
Target!="T1078" & Target!="T1084" & Target!="T1001" & Target!="T1061" &
Target!="T1070")

# training set3 will only have rows from sub setl and sub set2

training set3 <- subset (CASP combined, Target!="T1006" & Target!="T0961" &
Target!="T1032" & Target!="T0973" & Target!="T0970" & Target!="T1034" &
Target!="T0960" & Target!="T1004" & Target!="T0981" & Target!="T0996" &
Target!="T0985" & Target!="T1000" & Target!="T1080" & Target!="T1010")

# Define testing datasets so that testing setl contains ONLY rows for sub setl,
testing set2 contains ONLY rows for sub set2 and training set3 contains ONLY rows
for sub set3.

testing setl <- subset (CASP combined,

Target=="T1016" | Target=="T1003" | Target=="T1020" | Target=="T0977" |Target=="T0999" | Tar
get=="T0997" | Target=="T1083" | Target=="T1048" | Target=="T1087" |Target=="T0966" | Target
=="T0991" |Target=="T1009" |Target=="T1038" |Target=="T1054" | Target=="T0989")

testing set2 <- subset (CASP combined,

Target=="T0995" | Target=="T0979" | Target=="T0984" | Target=="T0983" | Target=="T0963" | Tar
get=="T1018" | Target=="T0976" | Target=="T0998" | Target=="T0965" | Target=="T1062" | Target
=="T1078" | Target=="T1084" |Target=="T1001"|Target=="T1061" | Target=="T1070")

testing set3 <- subset (CASP_combined,

Target=="T1006" | Target=="T0961" | Target=="T1032" |Target=="T0973" |Target=="T0970" | Tar
get=="T1034" |Target=="T0960" | Target=="T1004" | Target=="T0981" |Target=="T0996" | Target
=="T0985" |Target=="T1000" | Target=="T1080" | Target=="T1010")

# Shuffle training setl (data from sub set2 and sub set3) into a random order and
split into inputs and output datasets

training setl shuffle <- training setl[sample(l:nrow(training setl),
length(l:nrow(training setl))),l:ncol(training setl)]

training setl inputs <- training setl shuffle[c(28,29,30,31,32,33)] # just the 6
MFD scores as inputs

training setl output <- training setl shuffle[c(42)] # just Global score as the
output

# Same for testing setl (data from sub_setl) minus the random order
baseline setl inputs<- testing setl[c(28,29,30,31,32,33,34)] # MFD scores incl.

consensus6 for baseline correlation calculations.

testing setl inputs <- testing setl([c(28,29,30,31,32,33)] # just the 6 MFD scores
as inputs

testing setl output <- testing setl([c(42)] # just Global score as the output input

# Shuffle training set2 (data from sub_setl and sub_setl) into a random order and
split into inputs and output datasets

training set2 shuffle <- training set2[sample(l:nrow(training set2),
length(l:nrow(training set2))),1l:ncol (training set2)]

training set2 inputs <- training set2 shuffle[c(28,29,30,31,32,33)] # just the 6
MFD scores as inputs

training set2 output <- training set2 shuffle[c(42)] # just Global score as the
output

# Same for testing set2 (data from sub_set2) minus the random order
baseline set2 inputs<- testing set2[c(28,29,30,31,32,33,34)] # MFD scores incl.
consensus6 for baseline correlation calculations.

testing set2 inputs <- testing set2[c(28,29,30,31,32,33)] # just the 6 MFD scores
as inputs

testing set2 output <- testing set2[c(42)] # just Global score as the output input
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# Shuffle training set3 (data from sub setl and sub _setl) into a random order and
split into inputs and output datasets

training set3 shuffle <- training set3[sample(l:nrow(training set3),
length(l:nrow(training set3))),l:ncol (training set3)]

training set3 inputs <- training set3 shufflelc(28,29,30,31,32,33)] # just 6 MFD
scores input

training set3 output <- training set3 shuffle[c(42)] #just Global score as output
# Same for testing set3 (data from sub set3) minus the random order
baseline set3 inputs<- testing set3[c(28,29,30,31,32,33,34)] # MFD scores incl.
consensus6 for baseline correlation calculations.

testing set3 inputs <- testing set3([c(28,29,30,31,32,33)] # just 6 MFD scores input
testing set3 output <- testing set3[c(42)] # just Global score as the input

# HHHHFHFFEFEFSA AR FREFASFSE Create the models for the predictions ########HF#FFFFEH
# Add the general working directory so that all the models get saved to a single
directory
setwd (' /home/nick/Post confirmation projects/New Scoring/All CASP models/NN work/")
# The model for training on training setl and predicting on testing setl (learning
rate 0.01, max difference 0.01)
modelGl <- mlp(training setl inputs, training setl output, size = 4,
learnFuncParams = c(0.01, 0.01), maxit = 200, inputsTest =
testing setl inputs, targetsTest = testing setl output,
learnFunc = "BackpropMomentum", 1inOut=TRUE)
save (modelG1l, file="modelGl_setl.RData")
rm (modelG1l)
load ("modelGl setl.RData")
prediction setl <- predict (modelGl, testing setl inputs)
compare setl <- data.frame(testing setl output, prediction setl)

# The model for training on training set2 and predicting on testing set2

modelG2 <- mlp(training set2 inputs, training set2 output, size = 4,
learnFuncParams = c(0.01, 0.01), maxit = 200, inputsTest =
testing set2 inputs, targetsTest = testing set2 output,
learnFunc = "BackpropMomentum", 1inOut=TRUE)
save (modelG2, file="modelG2 set2.RData")
rm (modelG2)

load ("modelG2 set2.RData")
prediction set2 <- predict (modelG2, testing set2 inputs)
compare set2 <- data.frame(testing set2 output, prediction set2)

# The model for training on training set3 and predicting on testing set3

modelG3 <- mlp(training set3 inputs, training set3 output, size = 4,
learnFuncParams = c(0.01, 0.01), maxit = 200, inputsTest =
testing set3 inputs, targetsTest = testing set3 output,
learnFunc = "BackpropMomentum", l1inOut=TRUE)
save (modelG3, file="modelG3 set3.RData")
rm (modelG3)

load ("modelG3 set3.RData")
prediction set3 <- predict (modelG3, testing set3 inputs)
compare set3 <- data.frame(testing set3 output, prediction set3)

FHAEFHH S H A -Processing results for setl-######4#4#4H44H4HH#HH#HHHH
# Edit this again to direct the rest of the graph output to the same directory as
at the start>>

setwd ('/home/nick/Post confirmation projects/New Scoring/All CASP _models/NN work/Hy
perparam_testing graphs/6_10_ 21 Glob_and Tot_ output')

# Iterative error for prediction setl vs testing setl
jpeg ("ModelGl IterativeError.jpg")
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plotIterativeError (modelGl)
legend (x="'bottomright', "modelGl iterative error")
dev.off ()

# Regression error for prediction setl vs testing setl

jpeg ("ModelGl RegressionError.jpg")
plotRegressionError (testing setl output$Global score, prediction setl)
legend (x="'bottomright', "modelGl refression error")

dev.off ()

# Simple setl scatter plot with regression line and correlation value

jpeg ("Setl prediction V Global score scatter.jpg")

plot (main='Prediction set 1 scatter (Global)',prediction setl,

testing setl output$Global score,
col=c("blue"),abline(lm(testing setl output$Global score ~ prediction setl)))

legend (x="'bottomright', legend=paste ('modelGl Pearson =',round(cor (prediction setl,
testing setl output$Global score),2)))

dev.off ()

# __________________________________________________________________________________

# Summary of modell to give R-squared values and model checking graphs.
setl modelG <-lm(testing setl output$Global score ~ prediction setl)
summary (setl modelG)

par (mfrow=c(2,2))

plot (main="'Predict setl versus Global score', setl modelG)

par (mfrow=c(1l,1))

# Confusion table, TPR, FPR, ROC plot and AUC

# Convert the results as binaries for creation of a confusion table so that TPR and
FPR can be clearly seen and calculated manually.

# Firstly, compare the actual and predicted value to get an absolute difference.
compare setl$diff <- abs(compare setl$Global score - compare setlSprediction setl)
# Next, if difference is within 0.06, it can be considered correct so is set to the
SAME value as actual, if greater that 0.06 it remains

# as the predicted value.

compare setl$bin <- ifelse(compare setl$diff < 0.06, compare setl$Global score,
compare setl$prediction setl)

# Now, when rounded, they should have the appropriate values - prevents close
scores like 5.4 and 5.6 being rounded to different numbers.

compare setl$Global Rscore <- round(as.numeric(testing setl output$Global score),l)
compare setl$R prediction <- round(as.numeric (compare setl$bin),1)

# Now make two binary variables. Above 0.5 =1 below = 0.

compare setl$bin P <- ifelse(compare setl$R prediction > 0.5, 1, 0) # for the
predicted value

compare setl$bin A <- ifelse(compare setl$Global Rscore > 0.5, 1, 0) # for the
actual value

# Now make a confusion matrix with the Actual Global score on the left and the
predictions as columns across the top.

sink ('ModelGl confusion matrix.txt')

confusionMatrix (compare setl$R prediction, compare setl$Global Rscore)

sink ()

# Also, just for reference, a simple binary confusion matrix
confusionMatrix (compare setl$bin P, compare setl$bin A)

# Now a ROC plot using the unaltered predicted values and the binary actual
(Global score) values (0.5 cut-off)

predl <- prediction(compare setl$prediction setl, compare setlSbin A)

perfl <- performance (predl, "tpr", "fpr")

jpeg ("ModelGl ROC plot.jpg")

plot (perfl, colorize=TRUE, print.cutoffs.at=seq(0,1,0.1))

abline (a=0, b=1)

233



Appendices

dev.off ()

# Calculate AUC

sink ('ModelGl AUC.txt'")

auc.perfl <-performance (predl, measure="auc")
auc.perfl@y.values

sink ()

FHEFH A ###-Processing results for set2-####HF#HFHHFHFHHFHFHFHFHEH
# Iterative error for prediction set2 vs testing set2
jpeg ("ModelG2 IterativeError.jpg")

plotIterativeError (modelG2)

legend (x="'bottomright', "modelG2 iterative error")
dev.off ()

# Regression error for prediction set2 vs testing set2

jpeg ("ModelG2 RegressionError.jpg")
plotRegressionError (prediction set2,testing set2 output$Global score)
legend (x="'bottomright', "modelG2 refression error")

dev.off ()

# Simple set2 scatter plot with regression line and correlation value

jpeg ("Set2 prediction V Global score scatter.jpg")

plot (main='Prediction set 2 scatter

(Global) ',prediction set2,testing set2 output$Global score,
col=c("red"),abline (Im(testing set2 output$Global score ~ prediction set2)))

legend(x="bottomright', legend=paste('modelG2 Pearson =',round(cor (prediction set2,
testing set2 output$Global score),2)))

dev.off ()

# __________________________________________________________________________________

# Summary of model2 to give R-squared values and model checking graphs.
set2 modelG <-lm(testing set2 output$Global score ~ prediction set2)
summary (set2 modelG)

par (mfrow=c(2,2))

plot (main='Predict set2 versus Global score', set2 modelG)

par (mfrow=c(1l,1))

# Confusion table, TPR, FPR, ROC plot and AUC

# Convert the results as binaries for creation of a confusion table so that TPR and
FPR can be clearly seen and calculated manually.

# Firstly, compare the actual and predicted value to get an absolute difference.
compare set2$diff <- abs(compare set2$Global score - compare set2$prediction set2)
# Next, if difference is within 0.06, it can be considered correct so is set to the
SAME value as actual, if greater that 0.06 it remains

# as the predicted value.

compare set2$bin <- ifelse(compare set2$diff < 0.06, compare set2$Global score,
compare set2$prediction set2)

# Now, when rounded, they should have the appropriate values - prevents close
scores like 5.4 and 5.6 being rounded to different numbers.

compare set2$Global Rscore <- round(as.numeric(testing set2 output$Global score), 1)
compare_set2$R prediction <- round(as.numeric (compare set2$bin), 1)

# Now make two binary variables. Above 0.5 =1 below = 0.

compare set2$bin P <- ifelse(compare set2$R prediction > 0.5, 1, 0) # for the
predicted value

compare set2$bin A <- ifelse(compare set2$Global Rscore > 0.5, 1, 0) # for the
actual value

# Now make a confusion matrix with the Actual Global score on the left and the
predictions as columns across the top.

sink ('ModelG2 confusion matrix.txt')

confusionMatrix (compare set2$R prediction, compare set2$Global Rscore)

sink ()
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# Also, just for reference,a simple binary confusion matrix
confusionMatrix (compare set2$bin P, compare set2$bin A)

# Now a ROC plot using the unaltered predicted values and the binary actual
(Global score) values (0.5 cut-off)

pred2 <- prediction(compare set2$prediction set2, compare set2Sbin A)
perf2 <- performance (pred2, "tpr", "fpr")

jpeg ("ModelG2 ROC plot.jpg")

plot (perf2, colorize=TRUE, print.cutoffs.at=seq(0,1,0.1))

abline (a=0, b=1)

dev.off ()

# Calculate AUC

sink ('ModelG2 AUC.txt'")

auc.perf2 <-performance (pred2, measure="auc")

auc.perf2@y.values

sink ()

FHEFH A4 -Processing results for set3-#####H###H#HHFHHFHFHFFESS
# Iterative error for prediction set3 vs testing set3

jpeg ("ModelG3 IterativeError.jpg")

plotIterativeError (modelG3)

legend (x="'bottomright', "modelG3 iterative error")

dev.off ()

# Regression error for prediction set3 vs testing set3

jpeg ("ModelG3 RegressionError.jpg")
plotRegressionError (prediction set3,testing set3 output$Global score)
legend (x="'bottomright', "modelG3 refression error")

dev.off ()

# Simple set3 scatter plot with regression line and correlation value

jpeg ("Set3 prediction V Global score scatter.jpg")

plot (main="'Prediction set 3 scatter

(Global) ',prediction set3,testing set3 output$Global score,
col=c("green"),abline (lm(testing set3 output$Global score ~ prediction set3)))

legend (x="'bottomright', legend=paste ('modelG3 Pearson =',round(cor (prediction set3,
testing set3 output$Global score),2)))

dev.off ()

# __________________________________________________________________________________

# Summary of model3 to give R-squared values and model checking graphs.
set3 modelG <-lm(testing set3 output$Global score ~ prediction set3)
summary (set3 modelG)

par (mfrow=c(2,2))

plot (main='Predict set3 versus Global score', set3 modelG)

par (mfrow=c(1l,1))

# Confusion table, TPR, FPR, ROC plot and AUC

# Convert the results as binaries for creation of a confusion table so that TPR and
FPR can be clearly seen and calculated manually.

# Firstly, compare the actual and predicted value to get an absolute difference.
compare_set3$diff <- abs(compare set3$Global score - compare set3$prediction set3)
# Next, if difference is within 0.06, it can be considered correct so is set to the
SAME value as actual, if greater that 0.06 it remains

# as the predicted value.

compare set3$bin <- ifelse(compare set3$diff < 0.06, compare set3$Global score,
compare set3S$prediction set3)

# Now, when rounded, they should have the appropriate values - prevents close
scores like 5.4 and 5.6 being rounded to different numbers.

compare set3$Global Rscore <- round(as.numeric(testing set3 output$Global score),l)
compare set3$R prediction <- round(as.numeric (compare set3$bin),1)

# Now make two binary variables. Above 0.5 =1 below = 0.
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compare set3$bin P <- ifelse (compare set3$R prediction > 0.5, 1, 0) # for the
predicted value

compare set3$bin A <- ifelse(compare set3$Global Rscore > 0.5, 1, 0) # for the
actual value

# Now make a confusion matrix with the Actual Global score on the left and the
predictions as columns across the top.

sink ('ModelG3 confusion matrix.txt')
confusionMatrix (compare set3$R prediction, compare set3$Global Rscore)

sink ()

# Also, just for reference,a simple binary confusion matrix
confusionMatrix (compare set3S$bin P, compare set3$bin A)

# Now a ROC plot using the unaltered predicted values and the binary actual
(Global score) values (0.5 cut-off)

pred3 <- prediction(compare set3$prediction set3, compare set3Sbin A)

perf3 <- performance (pred3, "tpr", "fpr")

jpeg ("ModelG3 ROC plot.jpg")

plot (perf3, colorize=TRUE, print.cutoffs.at=seq(0,1,0.1))

abline (a=0, b=1)

dev.off ()

# Calculate AUC

sink ('ModelG3 AUC.txt")

auc.perf3 <-performance (pred3, measure="auc")

auc.perf3@y.values

sink ()
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