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Abstract 

Computational protein modelling has increased in public profile following the success of 

AlphaFold2 at CASP14 in 2020. This led many to proclaim the protein folding problem 

essentially solved, meaning in silico methods could now fill the sequence-structure gap which 

had grown since the advent of next generation sequencing techniques. 

However, proteins which prove problematic to experimental methods like X-ray crystallography 

and NMR are often multimeric in nature, like trans-membrane proteins or receptor binding 

interactions and, as the 2020 success was limited to tertiary structures, significant obstacles 

in quaternary structure elucidation remained. Contemporaneous analysis of assembly 

modelling showed that atomic contact prediction was a particular weakness and, as model 

refinement focusses on correcting small errors in atomic positioning, we proposed that a novel 

refinement method could be realised if full model coordinate files could be successfully 

submitted and recycled through the AF2 neural network. We present data in this thesis 

demonstrating that this is possible and that it significantly improved the quality of models 

including the official AF2 competition models from CASP14. 

Model quality assessment programs for quaternary structures had been largely absent with 

modellers relying on various proprietary accuracy estimates and docking scores. 

ModFOLDdock was conceived to independently evaluate multimeric model quality from any 

modelling software. Here we show how ModFOLDdock was improved by neural network 

training using three conceptual target scores and regression analysis leading to a significant 

increase in predictive performance. Further optimisation of our three unique combinations of 

distance-based quality measures resulted in the definition of three ModFOLDdock variants, all 

of which were subsequently highly placed in the CASP15 EMA competition, ranking 2nd for 

global score, 1st for interface score and 2nd for interface residue score. Evidence is also 

presented showing that ModFOLDdock outperforms the AlphaFold2 quality measures plDDT 

and pTM at quality-ranking quaternary structure models. 
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1.0 An overview of the problem and the broad aim of the thesis 

The discipline of computational protein modelling has evolved to address the problems 

associated with protein structure determination by experimental means. Many of these 

problems have been overcome with sophisticated practical approaches including X-ray 

crystallography, cryogenic electron microscopy (Cryo-EM) and nuclear magnetic resonance 

(NMR) techniques. However, the complexity and technical demands of these processes has 

made experimental structure determination an expensive and time-consuming process 

(Nealon et al., 2017). As such, experimental techniques have not kept pace with the rate of 

identification of new protein sequences, which followed the completion of the Human Genome 

project in 2003, nor with the subsequent rise of techniques like two-dimensional gel 

electrophoresis (2-DE) and mass spectroscopy (MS) which have underpinned an expansion 

of protein expression mapping (Al-Amrani et al., 2021). These kinds of proteomics advances 

have led to a significant sequence-structure gap resulting in an approximate 0.06% structure 

representation (Varadi et al., 2022) within the Protein Data Bank (PDB) of the roughly 200 

million amino acid sequences deposited in the UniProtKB database (The-UniProt-Consortium, 

2021). Further to this, the rate of protein-protein interaction (PPI) identification has been 

increased by techniques like the yeast two-hybrid process. On the other hand, experimental 

structural determination methods have been described as showing less success with 

quaternary structure determination (Lensink et al., 2017). This can be due to harsh preparation 

procedures like purification and dehydration which may distort or destroy associations between 

individual protein chains. Multimeric proteins, exhibiting some form of transient or obligate 

quaternary structure, therefore, represent a particular challenge in terms of closing the 

sequence-structure gap. 

This study was conceived in 2018 with the aim of developing two unpublished, emergent 

computational pipelines; MultiFOLD for multimeric protein modelling and ModFOLDdock for 

multimeric protein model quality assessment (MQA). It was the intention that these two pieces 

of software would combine into a symbiotic pair with ModFOLDdock quality assessment driving 

continued improvements in MultiFOLD modelling. The ultimate intention was to create a 

publicly available webserver providing a one-stop multimer modelling and quality assessment 

tool, underpinned by accepted benchmarking results, which could be used to advance the 

quality of protein quaternary structure modelling and biomolecular research in general. 

1.1 The essentials of protein structure and folding 

1.1.1 Amino acid structure 

α-amino acids are relatively simple organic molecules, all of which share a backbone or main 

chain consisting of a nitrogen and two carbon atoms (N-C-C). At one end the nitrogen forms 
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an amine (NH2) group with a carboxyl (COOH) group formed by the carbon at the other end. 

The central α-carbon is attached to a single hydrogen and one other group, often referred to 

as the R (residue) group or sidechain, which is different for each of the 20 naturally occurring 

amino acids. This structure is shown in Figure 1.1 for two example amino acids and is important 

for two reasons; firstly, the amine and carboxyl groups from different amino acids are able to 

form a (peptide) bond between them, meaning that amino acids can be polymerised into long 

polypeptide chains. Secondly, the different R-groups confer different chemical and physical 

properties to each amino acid resulting in amino acid categorisation as aromatic, hydrophilic, 

hydrophobic, bulky, charged, polar or neutral. One other feature of polypeptides is that there 

is rotation around the σ-bonds within and between the amino acids, these are known as torsion 

angles and are called phi (Φ) (N to Cα), psi (Ψ) (Cα to Carboxyl) and omega (Ω) (peptide 

bond). 

 

Figure 1.1 The structure of two α-amino acids showing main and sidechains. A. Glycine with a 

hydrogen sidechain and showing Φ, Ψ and Ω angles (adapted from 

https://commons.wikimedia.org/wiki/File:Glycine-neutral-Ipttt-conformer-3D-bs-17.png), B. Tyrosine 

with a bulky aromatic sidechain. (adapted from https://commons.wikimedia.org/wiki/File:Tyrosine-from-

xtal-3D-bs-17.png). 

1.1.2 Protein structure (primary to quaternary) and torsion angles 

As organised polypeptides, proteins are essentially chains of amino acids joined together by 

peptide bonds and the order in which the amino acids occur is referred to as a protein’s primary 

structure - also simply called its sequence. The metaphor of beads on a string is sometimes 

used to visualise this arrangement and primary structure is classified as covalent bonding 

between main chain atoms. The sequence or primary structure, exemplified for three amino 

acids in Figure 1.2, is important because the properties of the relative amino acid sidechains 

will influence the final 3-D structure of the protein. 

A simple example of a chemical property influence would be that amino acids with hydrophobic 

sidechains tend to favour the water-free core of a protein. A simple illustration of a physical 

property influence would be that sidechain size will dictate the ranges of phi (φ) and psi (ψ) 

torsion angles possible for any amino acid, meaning that Glycine, for example, is usually found 

at sharp turns in polypeptide chains. In this way primary structure is thought to govern  
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Figure 1.2 A section of primary structure showing the peptide bond. R = sidechains, the carboxyl 

carbon is now a carbonyl group and the amine group is now an amide (image adapted from EMBL-EBI 

online training: https://www.ebi.ac.uk/training/online/courses/biomacromolecular-

structures/proteins/levels-of-protein-structure-primary/). 

spontaneous higher-level protein folding through sidechain interaction, a concept often termed 

Levinthal’s paradox (Zwanzig et al., 1992). Levinthal argued that the short time it takes for a 

protein to fold evidences a folding pathway or mechanism governing the formation of the 

correct fold combination. A task that a random approach could theoretically take eternity to 

achieve. 

Higher levels of protein structure are termed secondary, tertiary and quaternary structure. 

Secondary structures are stabilised by hydrogen bonding between main chain carbonyl groups 

(coloured red in Figure 1.2) and amide groups (coloured blue). This mostly results in one of 

two structures, the alpha helix or the beta sheet (although other structures are possible). These 

structures are determined by the torsion angles adopted by the constituent amino acids. In α-

helices each amino acid hydrogen bonds with another four places further along the chain with 

typical torsion angles of -60o (phi) and -50o (psi) (Sailbil, 2010). In contrast, β-sheets form when 

torsion angles of -140o (phi) and +130o (psi) allow polypeptide chains to run alongside one 

another. Both structures are shown in Figure 1.3A. 

Tertiary structures, shown in Figure 1.3B, are also stabilised by hydrogen bonding, but this 

time between amino acid sidechains which have been spatially rearranged following 

hydrophobic collapse of the structure, rather than main chain atoms. Side chains exert a certain 

influence over secondary structure via permitted torsion angles but will govern tertiary structure 

to a much greater extent through their level of hydrophobicity. Tertiary structure is characterised 

as secondary structure elements folding over each other via bends and twists using 

unstructured “loop” regions and is heavily influenced by the percentage and positioning of 

amino acids with sidechains of different properties. The result of the folding is to align linearly 

distant amino acids to form recognisable motifs some of which will be part of functional 

domains or active sites, in the case of enzymes. 
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Figure 1.3 A. Secondary structures showing an α-helix and β-sheet made up of β-strands, and 

B. Tertiary structure showing folding of the secondary structure elements. (image adapted from 

EMBL-EBI online training: https://www.ebi.ac.uk/training/online/courses/biomacromolecular-

structures/proteins/levels-of-protein-structure-primary/levels-of-protein-structure-secondary/) 

The final level of protein structure is quaternary structure, a concept first proposed by Bernal 

et al. in 1958 and is the result of two or more individual protein chains binding together either 

permanently (obligate proteins) or in a transient association (non-obligate). This level 

introduces some additional structural complexity by having one (or more) interchain interfaces. 

Also to consider is the stoichiometry of the structure, i.e., the number of sub-units involved 

(dimer, trimer or higher association), and the symmetry (the orientation that each sub-unit takes 

relative to the others). Additionally, it is possible that some conformational changes may take 

place within the individual protein chains upon binding. This particular phenomenon is shown 

in Figure 1.4 where the unstructured regions in the monomers shown in image B 

spontaneously form α-helices upon association to form the interface, shown in image A. 

 

 

 

 

 

 

Figure 1.4. The quaternary structure of a simple homodimer. A. α-helices correctly form the 

interface. B. An early MultiFOLD model showing that the loop regions of the TBM tertiary model have 

not been altered to form the correct α-helix interface. Image taken from (Nealon et al., 2017). 

1.1.3 Protein folding 

After the cellular processes of transcription and translation, a polypeptide chain rapidly folds 

into a predetermined structure that minimises the molecule’s free energy (Anfinsen and 

Scheraga, 1975). Only at this stage can the polypeptide chain truly be referred to as a func-

tional protein and its final three-dimensional conformation will depend on a number of factors 

that are a direct consequence of its primary structure. While this discussion ignores chaperone 

proteins and post-translational modifications (PTMs) such as phosphorylation, glycosylation 

A B 
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and methylation it is important to note that these can influence the stability and function of the 

protein (Zhong et al., 2023). However, many proteins can achieve their native conformation 

without chaperones or PTMs, relying on main chain hydrogen bonding to stabilise their sec-

ondary structure (influenced by the preferred Φ and Ψ angles of individual amino acids) and 

the intra molecular forces resulting from hydrophobic collapse which are a direct consequence 

of side chain properties. These forces can be broadly characterised as Van der Waals interac-

tions for larger, non-polar side chains; electrostatic interactions between charged side chains; 

permanent diploe interactions between polar side chains and possibly disulfide bridges (S-S 

covalent bonds) which are a consequence of Cysteine thiol (S-H) group bonding. All of these 

interactions are important in stabilising the protein but it is thought that the main thermody-

namic driver for protein folding is, in fact, the interaction between the polypeptide chain and 

the water surrounding it, often referred to simply as the hydrophobic effect (Li et al., 2021). 

Folding has the effect of increasing the entropy of the whole system due to the release of water 

molecules, which tend to become ordered around hydrophobic regions and as ΔG = ΔH – TΔS, 

the greater the entropy (S), the lower the free energy (G) if enthalpy (H) is constant or very 

small. Li et al. estimated that the change in enthalpy for main chain atoms forming H-bonds is 

approximately +2.7Kcal/mol while the entropy released due to the hydrophobic effect may 

lower the Gibbs fee energy to -23Kcal/mol (measured for Leu-Leu interactions), thus exempli-

fying the entropic compensation that hydrophobic collapse is assumed to provide to drive spon-

taneous folding. In this example only main chain interactions were considered and this is be-

cause the formation of secondary structure regions (β-turns, in particular) is thought to be the 

initial step in protein folding with one turn (sometimes called a foldon) influencing the formation 

of others in a chain-reaction style process (Englander and Mayne, 2014). Thereafter, further 

hydrophobic entropy gains are achieved as the protein folds into its final three-dimensional 

tertiary structure and buries hydrophobic side chains at its core. This hypothesis satisfies both 

Levinthal’s paradox, that the degrees of rotational freedom are too great to allow folding without 

a pre-defined pathway and Anfinsen’s assertion that folding must result in the lowest free en-

ergy conformation and be somehow encoded in the primary structure of the protein. 

Unfortunately, while the fundamental principles that determine the final folded structure of pro-

teins are better understood, the exact pathway and intermediate steps involved in protein fold-

ing remain elusive. Despite recent advances in artificial intelligence (AI) such as AlphaFold2 

(AF2), which have improved the ability to predict final structures, understanding the dynamic 

folding process and its determining factors remains unsolved. Solving the folding problem is 

important as the function of a protein is generally considered a direct result of its three-dimen-

sional shape which brings distant parts of the polypeptide chain together. These are then able 

to form structural motifs such as the β-turn which underpins the formation of the β-sheet or the 
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helix-turn-helix which has a role in DNA interaction and which themselves often form part of a 

functional domain of the protein. Being able to predict a protein’s domain and the exact atomic 

coordinates within that domain from its primary structure would allow an understanding of the 

substrate or ligand with which the protein interacts as well as interactions with other proteins. 

Exact functions and modes of action could then be determined via accurate three-dimensional 

models which would allow insights into diseases associated with improper protein interactions 

and aggregation as well as therapeutic drug design where detailed knowledge of binding or 

active sites allows targeting of molecular pathways involved in disease. 

1.2 Protein structure in healthcare and disease mechanisms 

It has been estimated that free proteins may interact with up to 10 others to form low-affinity 

complexes (Chen and Skolnick, 2008), many of which are involved in cell catalysis, signalling 

or regulatory pathways (Sowmya et al., 2015). An understanding of protein quaternary 

structure and protein-protein interactions (PPI) would therefore represent an important asset 

in structure-based drug design, and accurate protein models could be particularly useful in 

developing new therapeutics targeting cell signalling pathways, for example, which often 

involve a cascade of protein binding interactions. Some notable current treatments that rely on 

PPIs are those for cancer treatment, HIV, Alzheimer’s, and Parkinson’s disease. 

For cancer treatment it may be possible to further exploit therapeutic approaches like the 

design of ligands to disrupt abnormal PPIs which would otherwise result in malignancy, similar 

to the Bcl-2 inhibitors for apoptosis regulation (D'Aguanno and Del Bufalo, 2020) and 

monoclonal antibody (mAbs) treatment to bind to specific target proteins in the same way as 

Trastuzumab targets the HER2 receptor limiting breast cancer cell proliferation (Gajria and 

Chandarlapaty, 2011). In HIV (HAART) treatment, enzyme inhibitors that target the active site 

of the HIV-1 protease have been effective in blocking the enzyme binding interactions with its 

substrates thus preventing viral replication (Lv et al., 2015). Research into new treatments for 

Alzheimer's has recently employed PPI networks to identify potential repurposing of known 

drugs Raloxifene and gentian violet (Soleimani Zakeri et al., 2021). 

1.2.1 Parkinson’s and the LRRK2 protein 

Parkinson's disease (PD), a neurodegenerative disorder resulting from the loss of 

dopaminergic neurons in the substantia nigra, is a particularly interesting example where 

mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified as a genetic 

risk factor. The product of this gene, the RoCo (Roc and CoR domain) protein LRRK2, has 

been suggested as the vector for Parkinson’s development. Human LRRK2 shares a 

homologue with the anaerobic phototrophic bacterium Chlorobium tepidum, called Ct.RoCo, 

which has been structurally solved and is shown in Figure 1.5. It is known that the Ct.RoCo 
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protein is involved in a GDP-mediated dimerisation cycle in which the monomer is GTP-bound 

while the dimer is GDP-bound (Deyaert et al., 2019). 

 

 

 

 

 

 

 

 

Figure 1.5 The PDB structure 6hlu showing the C. tepidum LRRK2 protein Ct.RoCo, coloured 

by domain. The Leucine rich repeat (LRR) is shown in red, the linker section in pink, the RoC section 

in blue, a second linker in green, the N-COR section in yellow and the C-COR section in orange. 

The LRRK2 protein is an example of a broader class known as the RoCo proteins which 

contain three key domains, the leucine rich repeat (LRR), the Ras-like GTPase (Roc) and the 

C-terminal of Roc (CoR). Conformational changes in the LRR and CoR domains are thought 

to regulate the dimerisation cycle. As a large, multi-domain protein involved in PPI and potential 

conformational changes, the LRRK2 protein represents a classic problem for experimental and 

computational protein modellers alike. As a result, the McGuffin group was contacted in 2020 

by a research partnership from the Parkinson's Disease Consortium (UKPDC), the Department 

of Molecular Neuroscience, UCL and The Royal Veterinary College to model the human 

LRRK2 protein to allow assessment of its structural similarity to Ct.RoCo and thus whether the 

same GTP/GDP binding was likely. Although we were able to produce a reasonable quality 

model of the structure, the technology at the time did not allow the atomic level accuracy that 

this work required. More recently, advances have been made in producing experimental 

models of this protein, particularly using Cryo-EM and ET (electron tomography, described 

further in section 1.3.3) technology, however these have led to either high resolution images 

of single domains or low resolution images of the full length structure bound to microtubules 

(Zhang and Kortholt, 2023). The N-terminal domain remains unresolved as does the 

identification of the domains involved in membrane binding and the dynamic conformational 

changes involved in dimerisation and phosphorylation and, importantly how these are affected 

by the PD mutations. The same study describes how AlphaFold2 structures have contributed 

to the structural knowledgebase but also highlights some disagreements between the 

predicted and observed structures, which are yet to be resolved. The continued struggle to 

produce a full-length, atomic resolution model of LRRK2 for disease understanding and 

potential drug development exemplifies the need to improve the quality of protein quaternary 

structure modelling. 
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1.3 Experimental methods of protein structure determination 

1.3.1 X-ray crystallography 

X-ray crystallography has traditionally been considered the gold standard for biomolecular 

structural determination due to its ability to produce images at atomic resolution. Briefly, the 

method involves the crystallisation of the target protein followed by X-ray diffraction and finally 

mathematical calculations to produce the electron density map and the final molecular 

structure. Despite its standing as a cornerstone of structural bioinformatics, the technique is 

not without its challenges and limitations. 

In order to produce the required well-ordered crystals, sufficient quantities of the protein must 

first be expressed by a suitable cellular host and then purified. Thereafter, the sample is 

subjected to dehydrating and crystallising conditions, which can in themselves prove 

challenging for some proteins due to size, solubility and flexibility issues. Obtaining suitably 

high-quality crystals can, therefore, require extensive optimisation of conditions which can be 

time-consuming and resource intensive, although advances such as microcrystal electron 

diffraction (MicroED) (Mu et al., 2021) and automated crystallization screening (Shaw Stewart 

and Mueller-Dieckmann, 2014) have significantly improved efficiency and success rates by 

allowing the use of smaller crystals and faster identification of optimal conditions. 

 

Figure 1.6 The famous Photo 51 showing the X-ray diffraction pattern of DNA (Image taken from 

https://en.wikipedia.org/wiki/File:Photo_51_x-ray_diffraction_image.jpg). 

The X-ray process involves collecting diffraction patterns resulting from the interaction between 

the electrons in the sample and the X-ray wave as explained by Bragg’s law (Thomas, 2012). 

However, despite the complexity of this process, the result is merely a pattern of light and dark 

spots, as shown by Frankin’s famous crystallographic Photo 51 of DNA (Figure 1.6). These 

patterns require mathematical interpretation. Diffraction patterns similar to those shown in 

Figure 1.6 correspond to the arrangement of atoms within the crystal lattice and the spot 

intensities contain information about the spatial distribution of electrons. Mathematical 

techniques such as a Fourier transform or molecular replacement (where a known model of a 

homologous structure provides starting point values) can be used to construct an electron 

density map from the diffraction pattern, which is then interpreted into atomic coordinates. In 
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addition to the potential difficulties mentioned above with the crystallisation process, X-ray 

crystallography only produces a single snapshot of one conformation of a protein, which may 

not represent its biological form. Additionally, proteins are not static entities; they exhibit 

flexibility and undergo conformational changes related to their function and these will not be 

captured by crystallography. Lastly, as alluded to in Section 1.0, crystallography conditions are 

extreme and larger proteins, particularly multimeric structures can become damaged during 

the process. Membrane proteins, due to their size and hydrophobic transmembrane section 

represent a particular crystallisation challenge. 

1.3.2 Nuclear Magnetic Resonance 

Nuclear Magnetic Resonance (NMR) is a spectroscopic technique originally used for small 

organic molecule structure determination, but which has been adapted for larger molecules 

such as nucleic acids and proteins. The core concept is that all nucleons exhibit a phenomenon 

known as spin, meaning that a nucleus comprising odd numbers of nucleons will itself exhibit 

an overall spin moment. Nuclear spin is measurable in Hydrogen atoms as they have only one 

proton and so proton NMR (also known as 1H NMR) is a useful technique to investigate organic 

molecules due to their high Hydrogen atom content. Other NMR techniques are also possible 

using isotopes of carbon (13C NMR) and sometimes nitrogen (15N NMR). 

Structure determination for small organic molecules, where the identity of the molecule is 

unknown, centres on two key concepts, that of carbon environments in 13C NMR and spin (or 

J) coupling for 1H NMR. The former allows the user to identify the number of carbon atoms in 

a molecule, whereas the latter allows the assessment of the number of hydrogens on each 

carbon by interpretation of peak splitting within the trace. Along with the chemical shift which 

helps to identify different organic functional groups, the identity of molecules can be 

determined. For proteins, the identity of the molecule is not in question as it is described 

entirely by the primary structure. The important aspect is the spatial arrangement of the amino 

acids within the protein. For this a slightly different spin characteristic is used, one called the 

Nuclear Overhauser Effect (NOE). The NOE is essentially the transfer of spin, called cross-

relaxation, between atoms that are in close proximity, usually defined as ≤ 6Å (Hu et al., 2021). 

In this way local spatial relationships can by determined via either a 2-D tracing technique 

known as NOESY or a slightly more complicated rotational version called ROESY. Spin-

coupling can, however, play a role in refinement of the structure suggested by the NOE. This 

technique, called residual dipolar coupling (RDC), essentially involves comparisons of peak 

splitting patterns for identical molecules measured under different anisotropic (orientation) 

conditions. NMR requires less harsh conditions than crystallography and is therefore more 

suitable for structure determination in environments resembling physiological conditions. It is 
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also more sensitive to alternative protein conformations and protein dynamics meaning that 

investigations into PPIs are possible. NMR has also been used successfully to characterise 

membrane proteins (Opella and Marassi, 2017) and the number of NMR structures deposited 

in the PDB has risen year-on-year since 1991, currently totalling 14,189 (result of a search on 

02/03/2024). However, NMR can encounter resolution limitations with larger proteins and 

complexes in excess of 80kDa due to spectral overlap (Hu et al., 2021) and requires relatively 

high sample concentrations and stability of its target protein (Benjin and Ling, 2020). Another 

limiting factor has traditionally been the length of time required for specialist data interpretation, 

taking months in some cases to convert measurements into structures (Klukowski et al., 2022), 

particularly for proteins with multiple conformations or significant dynamics. 

1.3.3 Cryogenic Electron Microscopy 

Cryogenic electron microscopy (Cryo-EM) has recently emerged as a potentially revolutionary 

technique allowing structural determination of large proteins, complexes and membrane 

proteins at near-atomic resolution without the need for crystallisation. This immediately 

resolves many issues surrounding X-ray crystallography, making Cryo-EM suitable for studying 

challenging targets and those with multiple dynamic conformations under near native 

conditions (Murata and Wolf, 2018). A recent and notable example of this was its use to model 

the multimeric SARS-CoV spike protein trimer (Alsaadi and Jones, 2019). The basic technique 

centres around flash-freezing a solution of the target protein in vitreous ice prior to examination 

by electron bombardment, but there have been low resolution issues surrounding the 

structures produced for many years (Callaway, 2020). Consequently, the number of structures 

resolved by EM techniques in the PDB has been slow to develop, standing at just a single 

structure in 1991 and climbing to 320 by 2010 following Richard Henderson’s resolution review 

in 1995 (Henderson, 1995). However, following the work of Dubochet, Frank, and Henderson 

in 2017, 2020 saw a breakthrough in Cryo-EM techniques, allowing true atomic-level resolution 

(below 3Å (Ashmore et al., 2021)) to be obtained for the first time (Yip et al., 2020;Nakane T, 

2020) with structures reaching a maximum resolution of 1.2Å. Accordingly, the number of 

structures in the PDB has risen to 19,106 (03/03/24) with 4582 deposited in 2023 alone. 

However, Cryo-EM is not without its challenges; problems may yet be encountered with 

unstable, aggregated or low homogeneity samples, buffer contamination or freezing issues, all 

of which can reduce contrast and resolution. Sample preparation therefore continues to be 

time intensive, requiring a high level of expertise coupled with high-quality instrumentation, 

especially for small (<500kDa) or flexible proteins (Benjin and Ling, 2020). 

Despite this, recent advances have led to the development of new techniques like time-

resolved cryo-electron microscopy (TR-EM) and Cryo-electron tomography (Cryo-ET). These 
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two innovative methods enable visualisation of biological molecules in dynamic states and in 

cellular conditions. With TR-EM, conformational changes can be captured by freezing and 

immobilising molecules at different time points during their dynamic transition. This could 

reveal further details of PPIs or even the mechanism of protein folding itself. Cryo-ET allows 

investigation into whole cells and, through tilted imaging, can show the 3-D location of large 

biomolecules within the cell. Additionally, recent work following CASP15 suggested that 

mechanisms for both validating Cryo-EM structures using AF2-style distance predictions 

(Sanchez Rodriguez et al., 2022) as well as resolving poorly modelled loop regions by 

refinement can be realised using predicted computational structures (Mulvaney et al., 2023). 

1.4 Computational solutions to protein structure prediction 

Although the discipline of protein modelling began experimentally with Kendrew’s 1957 model 

of myoglobin interpreted from X-ray analysis, it wasn’t long before computational methods 

were developed, initially in the form of probabilistic secondary structure prediction by the 

Chou–Fasman method in the early 1970s (Chou and Fasman, 1974). The Chou-Fasman 

method was based on amino acid frequencies determined by X-ray crystallography 

demonstrating that, from the earliest days, computational methods have relied on experimental 

data to make predictions. Thus, as the availability of experimental data increased, the potential 

for complementary computational methods also rose, with the single most significant source 

of data being the Protein Data Bank (PDB), established in 1971 at the Brookhaven National 

Laboratory, which dovetailed with the development of the first sequence alignment algorithm 

by Needleman and Wunsch (Needleman and Wunsch, 1970). The first successful homology 

model, meaning the construction of a model of a protein with an unresolved structure entirely 

by comparison with evolutionarily related homologues, is generally considered to be Greer’s 

1980 structure of the haptoglobin heavy chain (Greer, 1980). From that point, using the 

increasing number of experimental structures in the PDB, which hit 25,000 in around 2003 and 

currently stands at 217,157 (PDB search on 13/3/24), as well as the growing availability of 

sequence databases (UniProtKB held 190 million in 2021, (The-UniProt-Consortium, 2021)) 

and increasing computational power, homology or comparative modelling has become a useful 

method of protein structure determination. Additionally, it has been estimated that at least 70% 

of known protein sequences have at least one domain related to another protein (Fiser, 2010) 

meaning that, as more structures are determined experimentally, many more structures 

become available for homology modelling. 

1.4.1 A summary of tertiary structure comparative modelling 

The terms comparative modelling (CM), homology modelling (HM) and template-based 

modelling (TBM) have become almost interchangeable, although strictly speaking homology 

modelling describes the process of using structural templates with an established evolutionary 
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relationship to the target sequence. Regardless of terminology differences, the method has 

been a popular technique driving computational tertiary structure modelling. Rangwala and 

Kapris (Rangwala and Karypis, 2011) defined the process in terms of five distinct stages; 

selection of templates, alignment of sequences, model building, quality evaluation and 

refinement. 

Identification of suitable templates is often the most important part of the TBM process and 

can be achieved by sequence alignment tools such as PSI-BLAST (Altschul et al., 1997) using 

the NCBI database (Sayers et al., 2022) to produce paired alignments between two 

sequences. Often attempting a global alignment of the whole target sequence using the 

Needleman and Wunsch algorithm or similar, results in few or poor matches owing to the 

potential for protein domains to swap places over time. Therefore alignment routines often use 

local sequence alignment techniques, first devised by Smith and Waterman (Smith and 

Waterman, 1981b), where sequences are considered in segments and then cross-aligned to 

allow a search of the whole sequence for matches. Again, due to the nature of protein 

evolution, even successful alignments encounter missing sequence sections (deletions), 

additional sections (insertions) or substitutions where amino acids have been replaced with 

others. It can then become difficult to directly compare sequence alignments and a BLOSUM 

matrix (Henikoff and Henikoff, 1992) is often used to contextualise each alignment by scoring 

conserved amino acids well and penalising missing sections or those where replacements 

have occurred, particularly in ordered secondary structure regions. Some programs also use 

a secondary structure consensus predictor like PSIPRED (Jones, 1999) at this point to 

increase confidence in the final template selection. Despite some structural diversion with 

increasing evolutionary distance, protein structure has remained surprisingly stable (Chothia and 

Lesk, 1986) and, in general, sequence identities above 30% have been successful in 

establishing similar structures via evolutionary relationships (Buenavista et al., 2012), although 

this threshold is somewhat length-dependent and may depend on the absolute number of 

shared residues. For sequences with very low identities, a technique known as fold recognition 

or threading can be employed. In this approach, the query sequence is used to generate a 

position-specific scoring matrix (PSSM), which captures evolutionary information by scoring 

each position based on a multiple sequence alignment. The PSSM is then used to search the 

PDB for compatible structures by aligning the sequence to known structural templates, thus 

predicting the fold of the query sequence (Bowie et al., 1991). 

Once templates are identified it is usual to perform a second alignment, often a multiple 

sequence alignment (MSA) is used to align the target protein sequence with one or more 

template structures. The goal is to identify structurally conserved regions between the target 
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and templates to guide the construction of the model. From this it is possible for modelling 

software to construct an initial model, most commonly by spatial restraints as used by the 

popular modelling software MODELLER (Eswar et al., 2006). During this process inter residue 

distances, and a host of stereochemical constraints including bond lengths and dihedral angles 

are used to construct complementary structures guided by the template and then select the 

best structure on the basis of minimum violation of the constraints. Unfortunately, this is rarely 

sufficient to build the complete model unless very close and high-quality templates are 

available. The parts missing tend to consist of the unstructured loop regions which occur 

between areas of organised secondary structure which, in the main, make up the fold and 

domains of the protein. Loop modelling can be achieved either by Ab initio modelling entirely 

guided by physics-based rules (often represented by the CHARMM (Brooks et al., 1983) force 

field) to predict the shape from first principles (e.g., ModLoop (Fiser and Sali, 2003) or Rosetta 

(Simons et al., 1997)) or by using a loop-fragment database (e.g., ArchPRED) (Barozet et al., 

2021). It is worth mentioning here that unstructured loops also present a problem for 

experimental methods, with estimations that up to 69% of structures in the PDB have missing 

fragments, rising to 80% for very high resolution structures (Djinovic-Carugo and Carugo, 

2015). This can be due to inherent flexibility, making loops difficult to resolve accurately by 

crystallography or NMR. Flexibility can lead to incoherent X-ray scattering and a subsequently 

weak contribution to the electron density map or a weak NOE signal in NMR, resulting in an 

ensemble of differing conformations (Kwan et al., 2011). 

Despite the sophistication of modelling software, it is not uncommon for models to contain both 

local and global errors like unrealistic contacts or hydrogen bonds, steric clashes, incorrect 

bond lengths or unfavourable dihedral angles (Bhattacharya and Cheng, 2013). Despite this it 

can be challenging to improve models and attempts can result in the deterioration of model 

quality, particularly for TBM models (Adiyaman, 2021). Refinement is the process of improving 

a model by making small changes to the 3D structure with the aim that the new model will be 

closer to the native protein than the original. Refinement programs can be broadly split into 

two types; stand-alone stereochemical force fields like AMBER (Cornell et al., 1996) which can 

be used to directly optimise for bond-length and geometry and full molecular dynamics (MD) 

simulations (of which the full AMBER package is also an example). MD programs can be 

further sub-divided into manual programs which tend to perform computationally intensive 

simulations and are available to download and run locally, requiring some technical familiarity 

with the software. Alternatively, automated server-style programs are available via public 

webpages which tend to be quicker and less computationally intensive, using methods like 

side-chain optimisation and less stringent energy minimisation functions  (Feig, 2017). 
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To briefly explain molecular dynamics simulations. These simulate the motion of atoms over 

time when the model is programmatically solvated in water with an ionic component designed 

to mimic physiological conditions. The stereochemical force fields (AMBER or CHARMM) are 

again used to govern the potential energy of the system and so dictate the atomic positions. 

The simulation traditionally consists of two stages; equilibration - where the protein is allowed 

to adjust to the environment via energy minimization to fix clashes and achieve a stable starting 

point, and the main simulation - which may include a perturbation step, thereafter allowing the 

model to settle into a thermodynamically favourable state over a short period of time. The goal 

is to allow the model to explore different conformations and interactions arriving at the 

thermodynamically most favourable. After the simulation, the programs perform two further 

functions; the first is sampling, meaning to create a range of refined models, the second is 

scoring, using an energy function such as DFIRE (Zhang et al., 2004) or a stereochemical 

checker like MolProbity (Williams et al., 2018), to identify any improvements. 

1.4.2 CASP competitions and the success of different modelling strategies 

The Critical Assessment of techniques for protein Structure Prediction (CASP) experiment is 

a biennial blind structure prediction competition created by John Moult and colleagues in 1994 

(Moult, 2005). Its aim is to objectively assess the prediction capability of modelling groups 

worldwide and to create a forum for shared practice. Organisers source unpublished 

experimental structures and invite predictor groups to model the structures, the native 

structures are revealed some months later along with scores for each submitted model (Moult 

et al., 2011). The experiments have attracted increasing participation over the years; CASP1 

consisted of 35 invited predictor groups (Moult et al., 1995) whereas CASP8 (2008), for 

example, received predictions from 253 groups across 24 countries. 

In the earlier years, many predictor groups favoured ab initio modelling using physics-based 

methods including free energy calculations, electrostatic interactions, hydrogen bonding and 

solvation energy scoring functions to empirically solve the folding problem (Moult, 2005). By 

CASP10 (2012) the number of solved structures in the PDB had reached 87,000, representing 

1393 unique folds and researchers had changed their focus to comparative modelling to exploit 

the available templates. The rise of TBM methods allowed the creation of ever greater numbers 

of models for each target, potentially at the expense of the understanding of folding mechanics, 

but also creating an increasing requirement for model quality assessment (MQA) and ranking 

programs. Consequently, two future challenges highlighted in the CASP9 report (Moult et al., 

2011) were the improvement in accuracy of regions not easily derived from a template and 

improvements in methods for selecting the best model from those generated by TBM 

programs. 
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By 2016, these challenges had started to be met and CASP12 and 13 models showed an 

increase in accuracy (Kryshtafovych et al., 2018) which was attributed partly to the increased 

number and quality of templates available in the PDB, but also to improved model selection by 

MQA programs (Croll et al., 2019), highlighting the importance of quality assessment in driving 

modelling advances. The next significant increase in model quality was seen at CASP14 

(2020) with the participation of Google DeepMind’s AlphaFold2 (AF2) (Jumper et al., 2021b) 

deep learning software. The increased levels of accuracy and methods by which they were 

attained are covered later in Section 1.5. 

Quaternary structure modelling, known as assembly modelling, was included as an assessed 

category from 2016 (CASP12) and, in 2022 (CASP15), the estimation of model accuracy 

(EMA) category was modified to focus on scoring quaternary structure models. This, again, 

demonstrated the value that CASP organisers placed on quality estimates in advancing protein 

modelling quality. 

1.4.3 Docking and the docking problem 

As described in Section 1.2, correctly predicting protein assembly binding orientations using 

docking methods may provide a knowledge base for medical development. One route could 

be via drug development, particularly those designed to disrupt protein-protein binding 

interactions but a second, equally important route, could be via the generation of antigen-

antibody complexes for the treatment of autoimmune conditions or vaccine development, the 

latter exemplified by work supporting the recent Covid vaccines (Bansal et al., 2021). 

Docking and screening routines, in which an initial phase of protein docking is followed by 

scoring each docking pose, were popular methods in early CASP experiments (Vasker, 2014). 

This was due to a number of factors, firstly that docking programs had been developed for 

protein-ligand docking studies (Sousa et al., 2013) and these were easily repurposed for 

protein quaternary structure modelling and, secondly, that TBM approaches had experienced 

limited success due to a lack of multimeric structures of sufficient quality to use as templates 

(Lensink et al., 2016). 

The docking problem is one where, using only the 3D atomic coordinates the native positional 

and rotational orientations between two protein molecules must be identified (Vasker, 2014). 

This must be achieved without significant overlap of atomic space (clashes) nor by leaving 

gaps between the chains. Shape complementarity could rely on flexibility so it would be useful 

if docking algorithms allowed flexible chain binding. However, this has for the most part, 

remained too computationally expensive (Marze et al., 2018) and grid-based rigid-body 

docking methods became the core technology, representing a less complicated but affordable 
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compromise (Garzon et al., 2009), although soft docking approaches permit a certain steric 

overlap to represent flexibility (Bonvin, 2006). 

Solving this problem requires the sampling of many thousands or even millions of potential 

poses to account for the many translational and rotational orientations possible between the 

two proteins, often referred to as receptor and ligand regardless of size difference. To facilitate 

this within the capabilities of most servers, a fast Fourier transform (FFT) algorithm was used 

(Katchalski-Katzir et al., 1992). This involved representing proteins as 3D projections 

consisting of nodes and edges where each point is defined by a range of scores. These include 

definitions of surface (1), internal (-1) or external (0) space as well as a number of amino acid 

properties like hydrophobicity, side-chain size and electrostatic interactions, for example. 

These values are then discretised as a matrix where they can be converted by a Fourier 

transform into a frequency-space representation (Yin and Yau, 2017). It is then much simpler 

to compare frequencies to find potential matches than it would have been to compare all of the 

individual scores, on the assumption that areas with complementary properties are likely to 

represent binding sites. Promising poses which show high surface to surface definition (rather 

than surface to internal or external atomic space) can then be scored on a shape-

complementarity or energy basis. A list of high-scoring poses and scores can then be output 

by the program. 

1.4.4 Quaternary structure prediction at CASP 

Assuming it is possible to replicate a high percentage of docking poses via the FFT method, 

the success of docking methods is then governed by the ability to select the native-like poses 

from the decoys. Docking success therefore becomes a function of MQA accuracy, a reason 

for the pressing need to develop reliable quaternary structure MQA methods. 

In an early joint CASP/CAPRI experiment run as part of CASP11 (2014), despite the difficulties 

with reliable scoring and selection techniques, docking was considered a superior method to 

early multimeric TBM attempts, mainly due to the relatively low numbers and quality of 

available templates in the PDB and specialist databases like PISA (Krissinel and Henrick, 

2007), (Lensink et al., 2016). 

At CASP13 (2018), participating groups in the assembly competition employed a mix of 

docking and TBM strategies (Kryshtafovych et al., 2019), but the success remained somewhat 

varied, leading the authors to conclude that, although good models were seen when closely 

related templates existed for the whole assembly structure, the approach of building separate 

monomers and then docking them via rigid body methods was essentially flawed. This opinion 

was somewhat reinforced by the CASP13 official results (Duarte and Guzenko, 2018) which 
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showed that assembly modelling had only a 31% success rate (measured by all aspects of 

assessor total score >0.5) which could further be broken down into global relatedness 

(measured by TM-score >0.5) of 80% but interface similarity (measured by interface contact 

score (ICS) >0.5) of only 34%. Despite the development of hybrid techniques employing both 

TBM and docking methods, exemplified by software like GALAXY (Lee et al., 2017) and data-

driven approaches like HADDOCK (Vangone et al., 2017) as well as the availability of interface 

fragment libraries like Swiss-Model (Waterhouse et al., 2018) and ProtCID (Xu and Dunbrack, 

2020), CASP14 assembly modelling resulted in only marginal improvements in accuracy, with 

the percentage of TM-scores >0.5 rising to 86% and those for ICS rising to 38% (Karaca, 

2020). 

It was clear that the formation of correct interfaces was a problem for quaternary structure 

prediction. The Venclovas group, who had achieved first and second place in CASP13 and 14 

assembly modelling respectively, further demonstrated this problem by breaking down their 

CASP14 modelling results by method and comparing them by QS-score, which is particularly 

sensitive to interface orientation. They found that for free docking 80% of models scored 0.3 

or lower, for hybrid docking this reduced to 55%, further reducing down to only 9% for TBM 

modelling (Dapkunas et al., 2021). Although this analysis used a very limited number of models 

and docking methods were only employed where good templates could not be found, it 

nevertheless exemplified the difficulty in locating good multimeric templates as well as the 

continued problems with docking model interfaces. 

1.4.5 Refinement and a gap in quaternary prediction methods 

The status of multimer or quaternary structure modelling at that point in time was the motivation 

for the title of this project, that is to say that the data pointed to the need for a reliable multimeric 

MQA method to improve the selection of native structures from long lists of decoy models and 

also that errors in multimeric models appeared to centre around the interface contacts, an area 

potentially sensitive to the resolution of clashes by refinement. At the time, there were limited 

options for multimer refinement and of the two methods explored, SymmRef (Mashiach-

Farkash et al., 2011) and GalaxyRefineComplex (Heo et al., 2016), the latter was chosen due 

to the former’s specialisation for symmetrical structures which possibly limited its use. 

GalaxyRefineComplex is a side-chain repacking algorithm from the Seok lab in which models 

are relaxed using molecular dynamics (MD) simulations. It was the initial intention to improve 

multimer models by this method and incorporate a similar approach into our fledgling 

MultiFOLD pipeline. In the end, due to rapid advances in computational methods, a different 

method of refinement and model improvement was eventually developed for MultiFOLD. 
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1.5 Advances in computational methods 

1.5.1 The importance of multiple sequence alignments (MSA) 

The concept of a multiple sequence alignment (MSA) has been known to the protein modelling 

community since the early days of computational biology research in the mid to late 20th 

century, with seminal contributions by pioneers such as Margaret O. Dayhoff (Strasser, 2010) 

and advancements in alignment algorithms by researchers like Smith and Waterman (Smith 

and Waterman, 1981a). The ability of an MSA to reveal patterns not seen in simple pairwise 

alignments has made them useful in fold recognition or threading approaches, where amino 

acid probability profiles are created to identify similar folds in different templates or secondary 

structure similarities (Jones, 1999). Consequently a number of algorithms like Divide and 

Conquer (DCA) (Tonges et al., 1996), MUSCLE (Edgar, 2004) and Kalign (Lassmann and 

Sonnhammer, 2005) were developed with Clustal Omega (Sievers and Higgins, 2014) 

becoming a popular choice a little later. 

 

Figure 1.7 A multiple sequence alignment (MSA). An example the output for the test amino acid 

sequence supplied on the Clustalw webpage (https://www.ebi.ac.uk/jdispatcher/msa/clustalo). 

However, it wasn’t until later that deep alignments were used specifically to establish 

evolutionary relationships (de Juan et al., 2013). The theory is essentially that conserved residues 

can be used to highlight evolutionarily stable regions of the protein and that where sequentially 

distant amino acid residues are shown to co-mutate, the likelihood is that there is a relationship 

between them, based on a contact formed upon folding. By charting these co-evolutionary 

mutations, it is possible to construct a contact map which can be used to guide (template) Free 

Modelling (FM) predictions (Li et al., 2019), that is, modelling using energy functions and 

conformational mapping rather than that relying on the availability of similar structures in the 

PDB. However, creating deep MSAs can be computationally expensive, and interpreting the 

coevolution data via a Potts model requires sufficient depth meaning that early methods like 

PSICOV (Jones et al., 2012) and GREMLIN (Kamisetty et al., 2013) could fail for shallow 

alignments. To solve this, an element of machine learning was added which was able to 

distinguish between conservative (little structural effect) and non-conservative (significant 

effect) mutations (Lupo et al., 2022) using fewer sequences by training on prior data. Another 

of the pioneering methods linking MSA information with supervised machine learning for 

https://www.ebi.ac.uk/jdispatcher/msa/clustalo
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accuracy gains was MetaPSICOV (Jones et al., 2015). The use of deep learning methods for 

contact prediction pushed the accuracy of contacts maps even further, a concept which was 

later adapted by DeepMind with well documented success in their first version of AlphaFold 

(Senior et al., 2019). 

1.5.2 Machine learning 

The key concepts of machine learning, the technology underpinning Artificial Intelligence (AI), 

are that collections of data points are defined by distinct unitary parameters such as time, 

volume or temperature, for example. At its most basic, machine learning is simply a case of 

defining these parameters as either inputs or outputs and setting a computer the task of 

predicting the latter from the former. Machine learning is routinely categorised into three main 

types: supervised, unsupervised and reinforcement learning. Briefly, supervised learning uses 

labelled data and the algorithm is asked to find the best way to associate the input parameters 

with the true labels which form the output parameter. True labels are often supplied via 

experimental processes, and in the case of MQA, these would be the observed quality scores 

of the model that are generated by comparison with the native structure. In unsupervised 

learning, the algorithm will be supplied with unlabelled data where the emphasis is on learning 

how to cluster like data together, reduce the range of data to focus on important patterns or to 

detect anomalous values (Parasa et al., 2021). Reinforcement learning, on the other hand, is 

more focussed on decision-making in a reward-penalty paradigm with the aim of maximising 

reward over penalty. Reinforcement learning is commonly associated with gaming-style 

algorithms. 

Of the three types, supervised learning is most often used in protein modelling scenarios as it 

is suited to either classification or regression tasks (Greener et al., 2022). Classification tasks 

are used if the true labels are mutually exclusive, like identifying protein sequences that 

represent the distinct secondary structure conformations helix, sheet or strand, perhaps. 

Regression tasks are more suited to data that are continuous in nature, like quality assessment 

scores. Sometimes it is appropriate to convert continuous data into categorical data to add a 

classification task to the regression task, this is usually done to allow the user to collect a single 

score enabling direct comparisons between different scenarios. A common example of this is 

creating binary data used to construct contingency tables from which a true positive rate (TPR) 

value can be calculated or, additionally, receiver operator curves (ROC) from which an area 

under the curve (AUC) value can be calculated. When using supervised learning with 

continuous data, analysed as a regression task, a simple multi-layer perceptron (MLP) is the 

recommended machine learning architecture (Greener et al., 2022). 
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1.5.3 Support vector machines (SVMs) 

Support Vector Machines (SVMs) are explained here as they are mentioned in Chapter 3 as a 

machine learning class that had an initial impact on protein MQA. They are supervised 

learning-based algorithms which are particularly suited to classification tasks. They work by 

classifying data into two classes based on a specified feature. In order to visualise the concept, 

it is useful to consider a number of points plotted on an axis with a line drawn to separate the 

two distinct classes, as depicted in Figure 1.8A. In this case, the further the points are from the 

dividing line the more confident we can be that they truly belong to their respective class. The 

margin is a conceptual area between the dividing line and the first true point in each class, the 

boundaries of which are described by the two support vectors and which is the focus of the 

SVM. As more data is added to the model it is conceivable that anomalies will encroach into 

the margin and some will be misclassified on the wrong side of the dividing line. An SVM will 

then attempt to redraw the dividing line as a plane of separation by replotting the data from 

one dimension to two dimensions (or higher if required) thus finding a new separating line to 

minimise misclassification. This is essentially support vector regression using a hyperplane to 

optimally separate the data. The power of SVMs can be used to decide where a data point fits 

into a pattern, for example, whether a model agrees with the native structure or not. Powerful 

computers can be used to apply hyperplanes to higher level distributions to make decisions 

for thousands or millions of data points. 

1.5.4 Neural network (NN) architecture and training 

An artificial neural network (ANN, often abbreviated simply to NN) works on the principle of 

programmed nodes and connectors with the whole arrangement often referred to as a model, 

(a term avoided whenever possible in this document to minimise confusion with a protein 3D 

model, instead we refer to the learned NN model as the “weights”, see below). Nodes 

(representing artificial neurons) are arranged in layers and are interconnected by a series of 

connectors (representing artificial synapses). A simple representation of this architecture can 

be found in Figure 1.8B, along with the SVM diagram. The output from one node represents 

the input to one in the next layer, this output is a number and is usually referred to as a weight. 

During supervised training, a NN learns by adjusting the weights between nodes in individual 

layers to minimise the difference between the final predicted value and the true label. This 

difference is often termed the loss function which is usually measured by mean squared error 

for regression tasks. NNs always have an input layer for the initial input values and an output 

layer for the output prediction but vary by the number of hidden layers that separate them. 

Additionally, NN architecture may vary by the number of nodes within each hidden layer. Deep 

neural networks (DNN) such as the DeepMind network behind AlphaFold consisting of many 

hidden layers and requiring considerable computational power. 
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The simplest form of NN is a feed-forward network which only transmits the signal forward, 

from input to output layer without feedback to previous layers. This is essentially a multi-layer 

perceptron (MLP) and uses a concept called backpropagation to calculate the loss function 

and thus automatically adjust the weights. In order to ensure this is done appropriately, the 

first step in training is to set the network hyperparameters. If using a package like the Stuttgart 

Neural Network Simulator (SNNS), many of the more complicated parameters are controlled 

automatically. However, it is still necessary to set the number of neurons in each layer, the 

number of layers, the learning rate (which defines the step size for the weight updates that 

occur with each iteration), the maximum difference between prediction and true label consid-

ered an error (Max Diff) and the maximum number of iterations that the optimisation algorithm 

allows during training (Max It). This can be accomplished by calculating the maximum perfor-

mance from a number of test runs with varied hyperparameter settings. The point of this is to 

avoid overfitting and underfitting. Overfitting is where the MLP is essentially too powerful for 

the data presented to it and will proceed to learn the dataset rather than the relationships 

within, leading to perfect performance on the training data but poor performance on testing 

data. Underfitting is the opposite, where the MLP fails to learn the relationships and performs 

poorly on all data. This is explained more comprehensively in Chapter 3 (3.3.5). 

The next step is the training of the MLP itself. To avoid overfitting, one commonly used strategy 

is called N-fold cross-validation. In this technique, data are split into training and testing 

datasets so that the data used for predicting (testing dataset) are separate from the training 

dataset. In this way the true labels for the testing dataset are never seen by the MLP. N-part 

cross-validation results in the dataset being split into N parts, the MPL will train on N -1 parts 

and predict on the remaining part of the dataset. Often, N versions of the MLP are created so 

that every part of the dataset is equally used for both training and testing. 

 

Figure 1.8 Representations of two types of machine learning (ML). A. A representation of an SVM 

showing the hyperplane and two support vectors. B. The architecture of a simple feed forward MLP 

with one input, one hidden and one output layer. 
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1.5.5 AlphaFold2 (AF2) and new levels of accuracy in CASP14 

At CASP14 (2020) Google DeepMind submitted tertiary structure models using their new 

method AlphaFold2 (AF2), which represented a significant improvement in tertiary structure 

model quality. In fact, the high accuracy they achieved in the FM (no templates available) and 

FM-TBM (limited templates available) classes (Kryshtafovych et al., 2019) has been described 

as “atomic level” (Yang et al., 2023) with median GDT_TS (see Appendix 1 for the definition) 

scores of 87.0 and 92.4 respectively (Jumper et al., 2021a) (scores >75 are considered to have 

mostly correct atomic coordinates (Kryshtafovych et al., 2019)). These were impressive figures 

when contextualised against the previous experiment (CASP13 in 2018) where the FM 

average GDT_TS score for the highest scoring group was 61.4 (Senior et al., 2019). 

AlphaFold2 achieved this impressive jump in performance with the unique union of two key 

ideas. The first was a deep multiple sequence alignment (MSA) which was made accessible 

by clustering, where similar sequences are clustered together and a single representative of 

each cluster is submitted for consideration. This technique reduced the computational 

resources required to detect evolutionary relationships between amino acids and also added. 

AF2 also constructed detailed pair representations in the form of residue pair relationships like 

type, position and distance measures. This information was combined with that from the MSA 

and used to create a “distogram” (Li, 2022) from which the basis for a residue contact map of 

the target protein could be formed. The second was a deep neural network (DNN), or more 

correctly, a pair of DNNs (Jumper et al., 2021b) running on Google DeepMind’s powerful 

servers. The attention-based transformer (Evoformer) was used to interpret the MSA and 

distogram information (Lupo et al., 2022) into contacts and then a graph representation of a 

starting model, with information then passed to the Structure Module to construct a final real-

world structure from the starting model by applying protein modelling constraints such as 

torsion angles and side-chain preferences as which were obtained using a set of residue 

triangulation calculations . DeepMind also programmed a feedback or recycle pathway into the 

algorithm, allowing AlphaFold2 to repeatedly pass information about the newly forming model 

created by the Structure Module back to Evoformer for further evaluation. This clever idea 

allowed a shuttling of information backwards and forwards between the modules allowing the 

DNNs to reinterpret results and adjust structures accordingly. This resulted in high-accuracy 

modelling being achievable for FM structures for the first time, a term previously only 

associated with TBM modelling when closely related homologs were available as templates. 

Moreover, these models required CASP assessors to develop a new high-accuracy score 

(DipDiff) to assess whether differences in GDT scores were due to model or native structure 

deficiencies, the models were also shown to be accurate enough for use in molecular 
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replacement techniques (Pereira et al., 2021). However, one crucial question is whether 

AlphaFold2 would ever be able to predict novel structures, considering its reliance on MSA’s. 

1.5.6 AF2-Multimer 

When DeepMind released AF2 as a Jupyter notebook on Google’s Co-laboratory platform 

(Colab) in July 2021, following their GitHub code release a few days earlier, there were a 

number of attempts by developers to adapt the technology to model multimeric proteins. 

Developers were encouraged by realistic-looking interfaces in CASP14 AF2 models of 

monomeric structures, which were known to form quaternary interactions (Egbert et al., 2021). 

Two popular techniques were to either add an amino acid linker (usually Glycine due to its 

potential flexibility) between dimer chains to simulate a dual domain tertiary structure (Ghani 

et al., 2022) or to add a 32 amino acid long gap between the individual chains. The latter 

technique exploited some programming within the AF2 code which allowed a maximum 32 

residue gap between relative amino acid positions meaning that an offset greater than this 

forced AF2 to treat the amino acid indexes as separate chains (Mirdita et al., 2022). Some 

success was seen with both of these techniques (Gao et al., 2022) before a new version of 

AF2 called AlphaFold-Multimer (AFM) was released in late 2021. In the paper describing the 

release of this updated method (Evans et al., 2022), it was confirmed that this version had 

been retrained on multimeric data and that superior performance had been achieved over the 

AF2 linker method. The results showed that 67% of heteromeric models in a 4433-model test 

dataset were scored as acceptable, with a DockQ score (Basu and Wallner, 2016a) of 0.23 or 

greater, 23% of which achieved higher accuracy defined as DockQ scores reaching the 0.8 

threshold (see Section 3.1.3 for a full description of DockQ). The results were similar for 

homomeric targets with 69% of models ≥0.23 of which 31% were ≥0.8. Although there were 

no comparisons for the AF2 linker method using this dataset, comparative performance using 

a template-restricted dataset of 17 heterodimers was included. AFM achieved good models 

(DockQ ≥0.49) for 14 models, 6 of which met the ≥0.8 high-quality threshold compared to 9 

(≥0.49) and 4 ≥0.8 for the AF2 linker method. While AFM achieved better results than the linker 

method it was not clear if this was consistent throughout both heteromer and homomer 

populations. What was clear from these results was that AlphaFold Multimer was not able to 

replicate the outstanding quality that AF2 had achieved for tertiary structures at CASP14 which 

may, to some extent, reflect the lower total number and variety of complexes available to make 

up datasets for training quaternary structure methods. Consequently, some structural models 

in existing datasets were originally generated by protein docking methods whose quality is 

lower than state of the art tertiary structure predictors (Chen et al., 2023). 
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1.5.7 Other MSA-NN methods, RoseTTAFold and ColabFold 

RoseTTAFold (RF) (Baek et al., 2021) is a tertiary structure prediction method from the Baker 

laboratory which was inspired by the AF2 success at CASP14 and represented an evolution 

of their trRosetta method which used a neural network to predict inter-residue geometries and 

use them as modelling restraints in their popular Rosetta algorithm (hence “tr” for transform 

restrained) (Yang et al., 2020). RF went a step further than trRosetta, using a three-track neural 

network to assess sequence data (1-D), a 2-D distance matrix and also the 3-D atomic 

coordinates. The method achieved similar but slightly lower performance to AF2 (Baek et al., 

2021) but was able to run on a modest server, although this could incur a time penalty. This 

method treats the MSA differently by using distinct aspects to represent different parts of the 

protein structure, rather like the 3D-shotgun method which focussed on different structural 

aspects at the scoring stage (Fischer, 2003). The consequence of this was that RF was able 

to model both mono and multimeric proteins, as whole MSAs did not necessarily need to 

equate to each single chain entity, thus, not only was multimeric modelling possible, an element 

of flexible backbone modelling was introduced in which chains are built in a complementary 

fashion rather than via single chain construction and docking, which is essentially the AFM 

way. For the initial iteration of RF there was a small quality gap between its models and AF2 

models, however RF2 was redesigned to include a number of AF2 features and closed the 

quality gap to almost zero, with RF2 actually out-performing AFM on CASP14 target structures 

(Baek et al., 2023). This study also suggested that RF2 was now outperforming AF2 on 

computing time, particularly noticeable for longer structures.  

ColabFold (Mirdita et al., 2022) is a reimplementation of the AF2 and RF algorithms which also 

runs on the Google Colab platform. It was developed by a consortium from Harvard university 

with the intention of making MSA-NN based modelling technology readily available to the wider 

community. The major difference between ColabFold and AF2 is that the former reduces large-

scale database searches and therefore saves computing memory and runtimes by replacing 

JackHMMER (Johnson et al., 2010) and HHblits (Remmert et al., 2012) used by AF2 with the 

fast homology search algorithm MMseqs2 (Steinegger and Soding, 2017). This resulted in an 

estimated 40-60-fold faster search speed thus optimising MSA construction time. Rather than 

using the extensive databases used by AF2 (Uniref90 (Suzek et al., 2015), Uniclust30 (Mirdita 

et al., 2017), MGnify (Mitchell et al., 2020) and BFD (Jumper et al., 2021b)), MMSeqs2 

searches the sequence identity-clustered UniRef30 (30% identity) database, the results of 

which are used to search a merged and clustered version of the BFD/MGnify databases which 

is also filtered to keep the 10 most diverse sequences in each cluster. The result is a user-

friendly community resource described as achieving very similar results to the full AF2 

installation in most cases (Mirdita et al., 2022). 
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1.5.8 The potential downsides of MSA-NN modelling 

The depth of an MSA is important, it’s widely held that less than 30 hits leads to reduced 

accuracy (Jumper et al., 2021b), although the quality of the alignments will also be a factor. 

This becomes important when proteins with no previously solved homologues or those 

underrepresented in the various databases are modelled. Training for all AI systems centres 

on the structures in the PDB, it is known that experimental structures represent only snapshots 

of many potential protein conformations and also are a product of their experimental 

preparation methods (like crystallisation), which may not represent cellular conditions. These 

issues introduce a margin of error into PDB structures, which is likely to be repeated by 

predictive AI methods. Larger assemblies tend to cause particular problems with either amino 

acid number exceeding system limits or multiple chains extending GPU memory use beyond 

capacity. This was seen during CASP15, where many of the larger complexes (>2000-3000 

total residues) required additional human input (Ozden et al., 2023). Lastly, the NN modelling 

processes that the methods use do not appear to be shedding any light on folding pathways 

or the underlying mechanism linking primary structure to tertiary or quaternary structure 

(Outeiral et al., 2022). 

1.6 Model quality assessment (MQA) – the philosophy and intention 

The increase in accuracy attained by AlphaFold at CASP14 was only quantifiable due to the 

existence of model quality assessment programs. In this case model quality was assessed 

absolutely, that is by reference to experimentally determined structures which were deemed 

of sufficient resolution (<2Å (Kryshtafovych and Fidelis, 2009)) to act as a proxy for the native 

conformation. Scores obtained by this method are referred to as observed quality scores and 

are deemed to be accurate in describing the model in terms of its similarity to the native struc-

ture. However, there are still two potential sources of error, even with observed scores. Firstly, 

is the question of how accurate the experimental structure is, in terms of resolution but also in 

terms of how representative the crystalline (or other) image is of the native biological confor-

mation. As the saying attributed to George Box goes, “All models are wrong, some are prom-

ising” and there may be known flexibility in the native protein, which would render any snapshot 

as unrepresentative or conformational anomalies in the experimental structure that are attribut-

able to crystal packing artefacts, for example. Secondly, is the question of what the MQA pro-

gram actually measures and whether it is sufficient for the model to be proclaimed accurate. 

The former point is one of philosophy concerning the acceptance of experimental structures 

as the ground truth and will be difficult to resolve until developing experimental technologies 

like TR-EM and Cryo-ET allow true native conformations to be sampled or indeed developing 

computational methods like RoseTTAFold diffusion (Watson et al., 2023) or hybrid AF2-NMR 

methods (Ma et al., 2023) allow modelling which is independent of crystal structures. Advances 
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on this scale would represent a further step change in protein modelling accuracy and appear, 

as yet some way distant. However, the latter point relating to which aspect of the model to 

measure has been one that the protein modelling community has been striving to resolve since 

MQA methods were conceived. 

The intention of observed MQA is many fold; to allow the objective assessment of models for 

purposes of ranking to find the most representative model from a decoy group; to allow fair 

comparisons between models from different sources; to benchmark the accuracy of modelling 

techniques in general and to allow an objective assessment of the usefulness of models or 

local parts of models for applied research as briefly described in Section 1.2. From the earliest 

CASP competitions, observed MQA has been effected using a variety of quality measures with 

the aim of providing a balanced overview of quality. These measures were mostly based on 

the superposition scores root mean square deviation (RMSD) and the Global Distance Test 

(GDT) with the template modelling score (TM-score) (Zhang and Skolnick, 2005) as well as 

the superposition free local distance difference test (lDDT) (Mariani et al., 2013) being intro-

duced later. The exact definition of different scores is important and detailed descriptions of 

these and other scores are included in Chapter 3, Section 3.1.2 and also in Appendix 1. In an 

attempt to give a balanced assessment of model quality, CASP assessors have routinely used 

an assessor’s formula to combine individual scores, for example, the CASP11 assessors for-

mula combined two GDT-based scores with lDDT, SG (sphere grinder score, (Kryshtafovych 

et al., 2014)) and a weighted contribution of the stereochemical-based score MolProbity (Chen 

et al., 2010) to give a final ranking score for submitted models. In order to visualise how differ-

ent scores differently represent the models, one superposition score (TM-score) and one su-

perposition-free score (lDDT) are described below. 

The TM-score is based on the TM-align (Zhang and Skolnick, 2005) algorithm, which is a 

pairwise alignment of Cα atoms in the protein chain backbone. It works via a number of iterative 

alignments, starting with a secondary structure alignment based on the dictionary of secondary 

structure of proteins DSSP (Kabsch and Sander, 1983) distance definitions, followed by a 

gapless and then a gapped threading algorithm to complete the initial alignment. The structure 

is then subject to a number of rotational and scoring rounds until no further improvement in 

alignment score is achieved. The TM-score is calculated as the distance between residue pairs 

normalised by a factored chain length value which means that the score is not length 

dependent. The local Distance Difference Test (lDDT) is designed to be super-position-

independent and is calculated as the fraction of contacts between atoms of different residues 

present in the model that are also present in the reference structure. For example, if a contact 

exists between atoms of residue A and B in the reference structure and is also evident in the 
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model (regardless of any difference in the actual orientation) the contact is said to be 

conserved as shown in Figure 1.9B where the greyed structure represents an alternative 

formation in which the contact is still present. The global lDDT score is a mean of all residue-

level scores.  

 

Figure 1.9 Two contrasting methods of scoring. A. The superposition alignment by TM-align on which 

TM-score is based, where scoring relies on the closeness of the alignment. B. The superposition-free 

distance score lDDT showing that the lower domain will score equally whether it occupies the coloured 

position (lower left) or the greyed position (lower right) with respect to the upper domain. (TM-align 

image adapted from the example page at https://seq2fun.dcmb.med.umich.edu//TM-align/example/, 

lDDT image adapted from (Mariani et al., 2013)). 

For a protein with well modelled domains but incorrect inter-domain orientation, for example, 

scoring by TM-score may heavily penalise the model on the basis of misalignment, whereas 

the lDDT score could remain consistent regardless of differences in the orientations of the 

domains. The best score would depend on whether the overall shape or the local domain was 

considered more important. Again see, Chapter 3, Section 3.1.2 for details of the score 

calculations. 

The Critical Assessment of PRedicted Interactions (CAPRI) group (Janin et al., 2003), a similar 

competition to CASP but focussed on PPI and protein quaternary structure, uses a similar 

approach of multiple quality indicators but limits them to three scores called Fnat, LRMS and 

iRMS. Fnat is defined as the fraction of native interface contacts observed in the model, LRMS 

is the root mean square deviation (RMSD) of the chain denoted the ligand (smaller chain of a 

complex) after superposition of the larger chain and iRMS is the RMSD between interface 

residues seen in the native structure compared to the model (again this definition is included 

in Chapter 3, Section 3.1.2).  

In this way the protein modelling community has used the observed scores from successive 

CASP and CAPRI competitions, as well as the on-going server competition CAMEO (Contin-

https://seq2fun.dcmb.med.umich.edu/TM-align/example/
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uous Automated Model EvaluatiOn) (Haas et al., 2018) to benchmark the quality of their mod-

els, assess new modelling technology and drive the improvement in modelling that has taken 

place since 1994. 

1.6.1 Predicting model quality and MQAPs 

Rating and benchmarking the quality of models against experimental structures is a valuable 

exercise, but if computational modelling is to truly fill the sequence-structure gap and create 

reliable models of proteins with no experimentally solved homologues, MQAPs must be able 

to predict a model’s accuracy equally reliably without a reference structure. This is the problem 

that the CASP blind estimation of model accuracy (EMA) competition has been attempting to 

address since 2006 (CASP7) (Kwon et al., 2021). 

There is an important difference between MQAPs and quality assessment scores; MQAPs are 

programs developed to predict model quality using one or many individual quality assessment 

scores. MQAPs can be categorised in a number of ways; one popular method is by the number 

of models they require in order to formulate an accurate score. Thus, MQAPs can be separated 

into single-model and consensus or clustering methods. Single-model methods use molecular 

scoring functions which they apply to each model individually, making them suitable for scoring 

one or only a few models. Some use physiochemical features, often referred to simply as 

physics-based methods such as Ramachandran torsion angle constraints, bond lengths, envi-

ronment compatibility (hydrophobicity or solvent accessibility) or structural features (such as 

secondary structure compatibility), to determine a model’s conformity to expected values. Oth-

ers, such as VoroMQA (Olechnovic and Venclovas, 2014) rely on a single structural feature, 

in this case the distance between Voronoi cells defined using van der Waals radii. Consensus 

or clustering methods tend to focus on pairwise distance comparisons and often employ a mix 

of proprietary and established quality scores from which a consensus is calculated. The algo-

rithms usually measure distances between residue pairs and compare them on an all against 

all basis. The results are then clustered by distance similarities and the best models are scored 

on the basis that recurrent patterns are likely to be more like native proteins than random 

occurrences (Kryshtafovych and Fidelis, 2009). Although these methods have been described 

as performing better than single-model methods (Pages et al., 2019), their efficacy relies on 

the model population size and quality, with accuracy decreasing with fewer or less diverse 

models. Notable proponents of this method have been Pcons (Lundström et al., 2001) and 

ModFOLD (McGuffin et al., 2021) and, despite their success, one long-standing problem has 

been finding the optimal weighting and combination of quality measures to create a repre-

sentative consensus score (Kryshtafovych and Fidelis, 2009). Two adaptations of the cluster-

ing category are the quasi single-model and hybrid methods. Quasi single-model methods are 
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designed to retain the accuracy of clustering methods while allowing both multiple and single-

model inputs. They do this by creating their own set of reference models to act as a set of 

comparators (McGuffin et al., 2013) and work well as long as the decoy set are diverse enough 

to allow differentiation. Hybrid methods are consensus methods combining a range of individ-

ual approaches such as clustering, single-model, traditional stereochemical measurements or 

ML, with the aim of creating a consensus score which is more accurate than any of the indi-

vidual contributing scores (Chen and Siu, 2020). 

One alternative method of MQAP classification is whether local (residue level) scores are out-

put in addition to the global score relating to the whole model (Chen and Siu, 2020). This 

distinction became increasingly relevant with the rise of modelling by contact prediction meth-

ods from around 2010. These methods were shown to have plateaued at only 20% precision 

(FM modelling) up to CASP11 (2014), but increased to 40% in CASP12 and again to 70% by 

CASP13 (Kryshtafovych et al., 2019). The authors attributed the initial increase in success to 

better interpretation of transitivity (linking two proteins not previously considered homologous 

via a shared intermediate (Bolten et al., 2001)) shown by the MSA, while the second increase 

was attributed to the rise of ML techniques, particularly deep neural networks (DNN). This, shift 

in focus was largely responsible for the increase in popularity of observed quality assessment 

by lDDT, which is sensitive to distances in the local environment. As single-model predictive 

MQA methods were considered to estimate lDDT more reliably than clustering methods (Kwon 

et al., 2021), an increase in single-model methods was also seen at this time, demonstrating 

how different scores and methods vary with prevailing modelling technology. Latterly, with the 

advent of AF2, the lDDT score and TM-score have both seen renewed popularity to comple-

ment AF2’s predicted quality measures, plDDT and pTM. 

1.6.2 MQA for multimeric proteins 

An important and continuing problem for accurate multimer modelling remains reliable MQA to 

rank and select the highest quality predicted models (Kinch et al., 2021). This statement refers 

to the lack of reliable independent predictive quaternary structure MQAPs prior to CASP15, 

with the possible exception of the ProQDock program (Basu and Wallner, 2016b) and Voro-

MQA, the latter designed for tertiary structures but able to assess multimers (a more compre-

hensive history of early multimeric MQA is given in Chapter 3, Section 3.1.1). In 2020, however, 

there was a gradual change in focus from tertiary structure to quaternary structure MQA, fol-

lowing the success of AF2 at CASP14 prompting some groups to declare that the tertiary struc-

ture prediction problem was essentially solved (Kwon et al., 2021). At this time, and continuing 

the trend favouring single-model methods, Han et al offered a classification of MQAPs as either 

physical energy, statistical potential or machine learning (ML) based (Han et al., 2021). In 
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Han’s definition, traditional distance-based and physical energy methods were essentially con-

signed to the past along with Boltzmann statistical-potential methods, which had suffered is-

sues with defining a hypothetical reference state to compare observed frequencies (Rykunov 

and Fiser, 2010)). In place of these and other multi-model methods Han et al. argued in favour 

of graph-based neural network (GNN) technology. Indeed single-model GNN based methods 

featured highly at CASP15 where both VoroIF-GNN (Olechnovic and Venclovas, 2023), an 

updated version of the Voronoi tessellation program VoroMQA and GuijunLab-RocketX (Liu et 

al., 2023), using the latest version of DeepUMQA (Guo et al., 2022) an Ultrafast Shape Recog-

nition-based system, both used the technology to predict local residue contacts well (Studer et 

al., 2023). Two other notable deep learning methods used deep neural networks to understand 

PPI interfaces rather than GNNs. These were DeepRank (Renaud et al., 2021) and MULTI-

COM_qa (Cheng et al., 2023) and, whereas DeepRank did not feature at CASP15, MULTI-

COM_qa used a hybrid pairwise similarity method linked to interface deep learning to rank first 

in the CASP15 global score category. 

As mentioned in Section 1.5.6, the structural models in many existing datasets used for training 

quaternary structure methods were generated by protein docking methods whose quality is 

lower than state of the art tertiary structure predictors, for example (Chen et al., 2023) and 

training deep learning MQA methods on these datasets could lead to lower accuracy on with 

higher quality structures. The McGuffin group were consequently somewhat circumspect about 

the wisdom of relying on deep learning exclusively, favouring the view that it is not possible to 

describe the quality of a protein or protein complex model by a single measure (Kwon et al., 

2021). Therefore, the ModFOLDdock methods were designed to increase prediction accuracy 

by using a combination of individual established and bespoke algorithms. This approach fo-

cussed on the all-important weighting of a calculated consensus score from a range of single-

model and clustering methods as well as an element of deep-learning input (Edmunds et al., 

2023). The relative success of this approach at CASP15, compared to the other methods de-

scribed in this section is covered in detail in Chapter 4. 

1.7 Original hypothesis and project objectives 

This project has evolved over the five or so years since its beginning in late 2018, however the 

fundamental philosophy, aims and principles underpinning it remain largely unaltered. The 

philosophy has been that the whole is greater than the sum of its parts, meaning that optimal 

combinations of methodologies of proven quality are likely to be significantly better than any 

single method. The overall aim has always been to create easy-to-use pipelines for modelling 

and quality assessment, bringing together state-of-the-art technologies in publicly available 

servers, which provide better performance than any single constituent method. The principles 
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governing this aim have been to survey and critically analyse the available technology and to 

use blind competition benchmarking to objectively assess performance progress. 

In 2018 a gap in the protein multimer modelling landscape was identified - there were few 

publicly available multimer or quaternary structure modelling methods, which didn’t require the 

installation of specialist docking software. There were even fewer independent multimer model 

quality assessment programs (see Chapter 3 for fuller account of the multimer modelling 

landscape). Therefore, in accordance with the above, the specific aims of the project became: 

1. To investigate methods for the improvement of MultiFOLD, an unpublished multimer 

modelling pipeline to include, but not limited to, the concept of refinement to reduce atomic 

overlap and clashes and thus improve interface quality. 

2. To analyse the performance of and optimise ModFOLDdock MQA scoring routines in order 

to close the gap between predicted and observed score accuracy. 

It was reasoned that observed scores could be used to continually assess improvements in 

both MultiFOLD model quality and ModFOLDdock predicted score accuracy between blind 

benchmarking experiments. 

The radical improvement in modelling accuracy achieved by AlphaFold2 at CASP14 in 2020 

represented a new benchmark for state-of-art tertiary structure modelling. It was not clear, 

however, whether this accuracy level could be reproduced for multimeric proteins. Although 

the fundamental aims of the project did not change, new tools such as ColabFold were now 

available with which to achieve them, although the baseline for modelling accuracy and 

predicted quality assessment had now increased substantially. During the long process of 

experimental modelling that ensued it was noticed that multimer modelling using AFM was less 

accurate than that achieved for tertiary modelling with AF2. In addition, it was noticed that the 

AFM accuracy self-estimates (ASEs) were similarly inaccurate in some cases (see Chapter 5 

for both). To address these continued accuracy gaps the aims of the project were extended 

and now became: 

1. To investigate methods to improve MultiFOLD to include the concept of refinement to 

produce a measurable improvement over baseline modelling using AFM alone. 

2. To optimise ModFOLDdock MQA scoring routines in order to close the gap between 

predicted and observed score accuracy and also beyond the accuracy of AFM plDDT and pTM 

scores. 
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CHAPTER 2 

MultiFOLD: Improvement of protein tertiary and quaternary structure modelling 

using the AlphaFold2 recycling process
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Work presented in this chapter has been published in the following paper: 

Improvement of protein tertiary and quaternary structure predictions using the ReFOLD 

refinement method and the AlphaFold2 recycling process. Adiyaman R., Edmunds N S., 

Genc A G., Alharbi S M A., & McGuffin L J. Bioinformatics Advances, Volume 3, Issue 1, 2023. 

Individual author contributions are as follows. 

Adiyaman R: ReFOLD4 refinement. 

Edmunds N S: AlphaFold2 recycling proof of concept work using tertiary structures. 

Genc A G: Extension of AlphaFold2 recycling to quaternary structures. 

Alharbi S M A: Rendering of images in PyMOL. 

McGuffin L J: Overview and guidance from conception to publication. 

Cited as (Adiyaman et al., 2023) in the text. 
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2.1 Background and historical context 

This chapter describes the development of MultiFOLD from a hybrid-docking pipeline to an AI-

based tool incorporating scoring of multiple alternative models followed by a recycling-

refinement routine designed to improve model quality beyond levels attainable by AlphaFold2 

alone. 

As recently as early 2020, template-based modelling (TBM) and rigid grid-based docking 

methods remained the mainstay of multimer modelling pipelines. These had been in existence 

since at least 2004 (Pierce et al., 2014) and much of the intervening research had been 

concerned with the use of so-called data-driven approaches. TBM methods had shifted focus 

from early methods which considered lower resolution techniques like SAXs or cryo-EM to 

provide clues to the overall shape and structure of target multimeric proteins (van Dijk et al., 

2005) towards interface prediction methods (Xue et al., 2015). These included use of fragment 

libraries such as Swiss-Model (Waterhouse et al., 2018) and interface libraries like ProtCID 

(Xu and Dunbrack, 2020) intended to improve TBM accuracy and guide interface identification 

for docking routines. At this time the MultiFOLD pipeline was described as a hybrid-docking 

modelling tool incorporating both TBM and docking technology (McGuffin et al., 2020), 

although it was necessary to run each process individually and manually collate results to form 

a single model population. 

2.1.1 The early MultiFOLD pipeline used for CASP13 (2018) 

The McGuffin group’s method for the creation, scoring and ranking of quaternary structure 

models can be simplified into four phases; template identification, tertiary structure modelling, 

oligomeric modelling and quality assessment (McGuffin et al., 2018). In order to maximise the 

number of tertiary models feeding into the oligomeric pipeline, a dual input approach was used 

by pooling CASP server models with our own IntFOLD (McGuffin et al., 2019) tertiary structure 

models. The CASP13 MultiFOLD modelling pipeline is summarised in Figure 2.1. 

 

 

 

 

 

Figure 2.1. An overview of the MultiFOLD CASP13 oligomeric modelling process. This shows how 

the templates identified by IntFOLD, and both the IntFOLD and CASP server tertiary models (highlighted 

in green), fed into the TBM and docking pipelines. 

Stage 1 models were created from sequence via a two-step process using the IntFOLD server 

and this was followed by model ranking and selection rounds. In the initial step, tertiary 
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templates were identified using six individual fold-recognition programs and the 8 threading 

programs in the LOMETS package (Wu and Zhang, 2007) before being quality assessed with 

ModFOLDclust2 (McGuffin and Roche, 2010). In the second step, an initial model was built 

from the two top-ranked templates which was iteratively compared to models built using all 

other templates. The best model was then selected on amino acid coverage and the process 

was performed twice more with a second ModFOLDclust2 scoring round. Stage 2 models 

underwent an additional refinement and re-ranking step in which I-TASSER (Yang and Zhang, 

2015) and HHpred (Soding et al., 2005) were used to build three separate models each. These 

were added to the group of models and fed into a loop of molecular dynamics based refinement 

by ReFOLD (Shuid et al., 2017) and ranking by ModFOLD7_rank. The final top ranked tertiary 

model (or models for heteromers), along with the list of IntFOLD templates was then input into 

the oligomeric modelling process. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. A flowchart showing the oligomeric TBM and docking routes within the CASP13 

MultiFOLD pipeline. Decision points in the Docking and TBM pipelines are represented by rectangles 

in Figure 2.1. Docking was always performed but TBM may not have always produced suitable 

templates. 

As shown in Figure 2.2, the PDBe PISA database (Krissinel, 2010) was referenced to validate 

the templates for the TBM process. For each template verified as stable, quaternary structure 

models were built by alignment using TM-align (Zhang and Skolnick, 2005) using the top 

tertiary structures identified earlier in the process. In the complementary docking process, the 

same tertiary structures were submitted to a range of established docking programs, 
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increasing the number and variety of oligomeric models available. These were, ZDOCK (Pierce 

et al., 2014), MEGADOCK (Masahito Ohue et al., 2014), FRODOCK (Garzon et al., 2009), 

PatchDock (Schneidman-Duhovny et al., 2005) and LZerD (Venkatraman et al., 2009) for 

dimers and M-ZDOCK and Multi-LZerD for multimers. The top docking models (determined 

upon visual inspection) and the TBM models were then pooled into one population which was 

then scored and ranked using an earlier version of ModFOLDdock. Top ranked models were 

visually inspected in PyMOL (Schrödinger, 2018) for obvious clashes or alignment errors prior 

to submission. 

2.1.2 Overall performance at CASP13 

Since 2014 (CASP11) the competition has included a quaternary structure or assembly 

category. CASP13 included 42 assembly targets comprising 30 homomers (18 dimers, 9 

trimers, 1 tetramer, 1 hexamer and 1 octamer) along with 12 heteromers. CASP13 ran from 

April to August 2018 and native structures and scores were revealed during the conference in 

December 2018 (https://predictioncenter.org/casp13/index.cgi). 

CASP group rankings are based on a calculated overall Z-Score which is a combination of Z-

scores for four CASP measures; F1 (interface contact score, ICS), Jaccard (interface patch 

score, IPS), lDDT-oligo and GDT_TS (definitions of scores can be found in Appendix 1). Z-

scores are based on the standard deviation (SD) from the mean and in a model population the 

Z-score is calculated as:  

Z    = x – µ 
  σ 

Where Z is the standardised Z-score, x is the observed value (in this case the model score), µ 

is the mean value (mean score for the sample of models being considered) and σ represents 

the standard deviation (SD) for the sample. Therefore, the Z-score is a measure of distance 

from the mean in SD units where 0 represents the mean value while 2 would represent a model 

in the outer 5% of the distribution (assuming the rule for normal distribution where 1 SD 

accounts for 68% and 2 SD, 95% of results).  

CASP reduce Z-score bias by first, only including Z-scores > 0.0. A higher Z-score therefore 

always means a better than average model. Secondly, rankings are calculated for both 

summed and averaged Z-scores as not all groups submit models for all targets. Whereas a 

summed Z-score potentially favours groups submitting models for more targets, average Z-

score may disadvantage groups who attempt a greater number of difficult targets. The final 

rankings are given in terms of summed Z-score. Figure 2.3, below, displays summed Z-score 

results calculated for CASP13 assembly modelling. 

https://predictioncenter.org/casp13/index.cgi
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The McGuffin group submitted models for homomeric complexes only and Table 2.1 shows 

that the group was ranked between 12th and 16th depending on Z-score calculation, the only 

exception occurring for Hard targets where the group was ranked 6th by Average Z-score, 

although it must be noted that models were submitted for only 4 out of the 13 hard targets. 

Overall, the group was placed 14th by summed Z-score as shown in the final ranking plot in 

Figure 2.3. See Appendix 2 for definitions of CASP difficulty categories and a list of individual 

targets and scores for models submitted at CASP13. 

Table 2.1. McGuffin group multimeric modelling Z-scores by CASP13 target difficulty. Highlighted 

scores show the best ranking achieved by the McGuffin group per difficulty rating. “Max. score” is the 

maximum score attained by any group in the competition. 

Target Difficulty Measure Score Rank Max score 

Easy 
Sum Z-score (>0.0) 1.25 14 10.77 

Average Z-score (>0.0) 0.12 16 0.89 

Medium 
Sum Z-score (>0.0) 2.93 11 12.95 

Average Z-score (>0.0) 0.20 15 1.05 

Hard 
Sum Z-score (>0.0) 1.85 12 12.23 

Average Z-score (>0.0) 0.47 6 0.96 

All 
Sum Z-score (>0.0) 6.03 14 35.97 

Average Z-score (>0.0) 0.20 16 0.86 

 

 
 

 

 

 

 

 

 

Figure 2.3. CASP13 final group rankings by summed Z-score for assembly modelling. The 

McGuffin group is G460 and the horizontal arrow shows the Z-score achieved in comparison to other 

groups. (Image taken from https://predictioncenter.org/casp13/ zscores_multimer.cgi). Group identities 

above McGuffin are (from 1st): 366:Venclovas, 068:Seok, 086:Baker, 344:Kiharalab, 329:D-Haven, 

192:Elofsson, 163:Bates-BMM, 135:SBROD, 470:Seok-assembly(S), 196:Grudinin, 432:Seok-native-

assembly(S), 004:YA SARA, 208:KIAS-Gdansk. (S=server group) 

https://predictioncenter.org/casp13/%20zscores_multimer.cgi
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2.1.3 Analysis of CASP13 performance 

Closer analysis revealed that the performance of both MultiFOLD modelling and 

ModFOLDdock model selection were variable. Figure 2.4 shows ModFOLDdock predicted and 

observed scores side by side for each target. Consensus6 scores are an unweighted mean of 

all six ModFOLDdock predicted scores, observed scores are an unweighted mean of five 

observed scores (see Section 3.1.3) calculated with reference to native structures. 

Figure 2.4. MultiFOLD CASP13 multimeric modelling performance as determined by predicted 

ModFOLDdock “Consensus6” score versus an observed mean score calculated retrospectively 

with reference to native structures. Left. A bar plot of ModFOLDdock Consensus6 (coloured light 

blue) versus mean observed scores (coloured black). Right. The same data as a scatter plot. 

The first observation from both plots in Figure 2.4 is that the predicted and observed scores 

were generally below 0.5, suggesting a potential for improvement in many models. Any 

suggestion, however, that the predicted scores were good measures of the observed scores 

is dispelled by the magnitude differences between the bars representing the two scores in the 

left-hand bar plot as well as the clustering of most of the scores above the equivalence line in 

the right-hand scatter plot. Table 2.2 shows a more formal comparison of the results using a 

Wilcoxon signed rank test. This provides good evidence that the predicted scores were 

significantly greater than the equivalent observed scores. 

Table 2.2. Wilcoxon signed rank test values for ModFOLDdock predicted versus calculated 

observed scores for MultiFOLD CASP13 multimer models. Significance is calculated at the 95% 

confidence level meaning P-values <0.05 are considered significant. 

 

 

Scores compared Independence and distribution symmetry p-value 

Predicted and observed Paired; 2-sided test 4.37x10-05 

Predicted and observed Paired; 1-sided test, predicted > observed 2.18x10-05 
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There are two notable examples which also serve to highlight the differences between 

predicted and observed scores. The model for T1016 was underpredicted with a consensus 

score of 0.458 but achieved a mean observed score of 0.667. CASP official scores of 76.73, 

0.689 and 0.693 for GDT_TS, lDDT and QS-score respectively all agreed that the model was 

underpredicted. 

 

Figure 2.5. A comparative illustration of two models for CASP13 target T1016. A. The under-

predicted MultiFOLD model. B. The equivalent CASP13 native structure. Models coloured by chain. 

The model for T0995, by contrast, was scored highly at the prediction stage (0.733) but turned 

out to suffer problems with global orientation and interface accuracy. These were confirmed 

by an observed score of 0.225 and low CASP scores of 10.40 for GDT TS and 0.018 for QS-

score. 

Figure 2.6. A comparative illustration of models for the CASP13 homomeric target T0995 

(categorised as A8). A. The MultiFOLD model. B. The CASP native structure showing 8 monomers as 

part of the cyclic homo-18-mer Cyanide dihydratase from Bacillus pumilus C1 variant (PDB 8C5I). 

2.1.4 Overview of CASP13 performance 

Figure 2.4, along with the above two examples shown in Figures 2.5 and 2.6, highlight 

inconsistencies in ModFOLDdock predicted scoring leading to inaccurate model ranking. This 

resulted in variable discernment between good and poorer models making it difficult to select 

the best model from the range of decoys. In addition to the models highlighted, there were also 
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a number of cases where a significantly better model (defined as having an observed score 

>0.1 compared with the submitted model) existed in the decoy population but it was not 

selected.  

In terms of modelling, the results also show that MultiFOLD models tend to be rated more 

highly with the position independent lDDT score with an average of 0.501 (see Appendix 3 for 

supporting data) than with the interface implicit QS-score with an average of only 0.053. This 

suggests that the tertiary structure models constructed by IntFOLD and fed into MultiFOLD 

were of generally good quality, but that the TBM and docking oligomeric modelling procedures 

were either failing to orientate these correctly in the multimeric model or failing to produce a 

sufficiently accurate interface. Both of these problems are typical of rigid-body systems where 

monomer construction and docking or alignment are performed in separate steps. Further 

examples of CASP13 models compared to their native structure can be found in Appendix 4. 

2.1.5 An exploratory investigation into quaternary structure refinement 

One method for eliminating minor errors in protein models is to use refinement techniques (see 

Introduction 1.4.1). Although refinement can have a variable effect on tertiary structure 

improvement, sometimes leading to a degradation in quality (Fan and Mark, 2004;Terashi and 

Kihara, 2018), there have been some positive results, particularly seen with FM models 

(Adiyaman and McGuffin, 2019), and it was considered that, despite a lack of documented 

support for quaternary structure model refinement at the time, there were likely to be some 

advantages to this approach. 

GalaxyRefineComplex (GRC) (Heo et al., 2016) is a molecular dynamics-based side-chain 

repacking algorithm that was one of only a few refinement programs designed specifically for 

protein complexes. In their description of the software the authors explain that many docking 

programs employ relatively low-resolution scoring functions to perform their orientation 

analysis in order to conserve computational power. This potentially leaves room for 

improvement in interface and chain orientation and in their paper, Heo et al. found that 

GalaxyRefineComplex compared favourably with established refinement programs such as 

RosettaDock and SymmRef in improving a ZDOCK benchmark set. The effect of 

GalaxyRefineComplex on our CASP13 models was investigated. 

Sixteen CASP13 homodimers were selected for this exploratory study (T0965, T0966, T0970, 

T0973, T0976, T0983, T0984, T0997, T1000, T1001, T1003, T1006, T1010, T1016 and T1018) 

as it was estimated that refinement of these should prove less CPU intensive than higher order 

structures. For TBM models, three models per target were selected by observed score: the 

highest-scoring model, a mid-scoring model and the lowest-scoring model making a total of 48 

individual models. In addition, the 100 docking models created for target T0976 were 
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investigated. These comprised 25 models each from the FRODOCK, MEGADOCK, 

PatchDock and ZDOCK programs. Again, to conserve processing power a test sample of 36 

models was created by calculating the minimum, 25%, 50%, 75% and maximum quartiles 

using observed scores and then selecting models with scores within 10% of the minimum and 

maximum value and +/- 5% either side of each of the quartile values. A total of 36 docking 

models was selected. A working hypothesis was that refined models would show an overall 

improvement (measured by calculated mean observed score) compared to baseline models. 

A secondary consideration was whether improvement varied by model construction method 

(TBM or docking (FM)). To test this, the mean observed scores for the unrefined and refined 

population were compared using a paired Wilcoxon signed rank test (analysis was carried out 

in R version 3.6.3). 

Table 2.3. Results of a paired Wilcoxon signed rank test on GRC refined versus original models 

using calculated observed scores. TBM models numbers 48 across 16 CASP13 targets and docking 

models numbered 100 for target T0976. Again the 95% confidence level was used and P-values <0.05 

are considered significant. 

For TBM models the p-value of 0.328 obtained was above the accepted 95% confidence 

significance cut-off of 0.05 and therefore the null hypothesis must be accepted: TBM models 

were not significantly improved by refinement with GalaxyRefineComplex. However, for 

docking models the p-values obtained of 2.91x10-11 for a two sided test followed by that for a 

one sided test (refined scores are greater than unrefined scores) of 1.45x10-11 meant that this 

time the null hypothesis can be rejected, and it can be concluded that T0976 docking models 

show a significant improvement upon refinement with GalaxyRefineComplex. Notwithstanding 

the difference in model populations, a possible explanation for this difference is that TBM 

models are based on templates of known proteins, and as such their atomic coordinates are 

less likely to result in clashes or disallowed torsion angles, leaving less room for improvement 

by physics-based refinement procedures. TBM models may therefore respond variably to 

refinement depending on the closeness of fit between the template and the native protein. This 

agrees with later findings (Adiyaman, 2021) showing that TBM models are often more difficult 

to successfully refine than FM models. In contrast, rigid body docking algorithms arrange 

individual chains without reference to a template. It is possible that, as Heo, Lee and Seok 

predicted, the low-resolution scoring functions employed in this process present an opportunity 

for refinement routines to improve docking models to a greater degree. Indeed, considering 

the absolute changes in best and median scores across the range of high, mid and low starting 

Model models compared Independence and distribution symmetry p-value 

TBM.  Refined versus original models Paired; 2-sided test 0.328 

Docking.  Refined versus original models Paired; 2-sided test 2.91x10-11 

Docking.  Refined versus original models Paired; 1-sided test; refined > unrefined 1.45x10-11 
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model quality shown in Table 2.4, evidence exists for low-scoring models showing a greater 

margin of improvement. 

Table 2.4. Differential improvement of the 100 T0976 docking models refined with GRC as 

measured by change in best and median observed score. Models were grouped by the quality of 

the unrefined starting model measured by mean observed score. 

Starting model quality High (>0.7) Medium (0.7-0.3) Low (<0.3) 

Mean improvement in best score 0.03 0.29 0.21 

Mean improvement in median score 0.06 0.04 0.12 

Although this prospective study on its own, did not present strong enough evidence for 

successful quaternary structure refinement, the concept of the positive effect of refinement on 

FM and lower scoring models was influential in the design of the subsequent investigation into 

the AlphaFold2 custom template recycle pipeline explained in section 2.1.7. 

2.1.6 Comparative analysis of CASP14 (2020) assembly modelling 

CASP14 is arguably the most significant of the CASP experiments to-date due to the 

introduction of the AlphaFold2 software and its impact in increasing the accuracy of tertiary 

structure modelling. However, before this is considered, it is worth briefly describing the 

assembly modelling that took place. The competition was disrupted due to Covid-19 with all 

meetings taking place online and a truncated population of assembly targets (22, down from 

42 in the previous round). Appendix 5 provides a full list and categorisation of all the assembly 

models submitted by the McGuffin group. 

The methodology used to create, score and select McGuffin models for CASP14 was similar 

to that described for CASP13. There were, however, a number of minor differences; the 

MultiFOLD program code was reinstalled on the group server which involved a number of 

updates to underlying programs; FRODOCK (from v1.05 to v3.12), MEGADOCK (from v4.0.2 

to v4.1.1) and a replacement version of Multi-LZerD. Secondly an additional scoring step using 

the Voronoi tessellation program VoroMQA (Olechnovic and Venclovas, 2017) was introduced 

alongside the older version of ModFOLDdock. The VoroMQA score was combined with the 

ModFOLDdock Concensus6 score to create a hybrid unweighted mean of both scores which 

was used as the primary ranking value. Assembly modelling results are summarised in Table 

2.5 and CASP13 equivalent values are supplied in grey for comparison. 
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Table 2.5. McGuffin group CASP14 assembly modelling Z-scores by Target difficulty. CASP 13 

scores in grey for comparison. 

Target Difficulty Measure Score Rank Max score 

Easy 

(Z-score >0.0) 

CASP14 Sum Z-score 

(CASP13 for comparison) 

0.25 17 1.67 

1.25 14 10.77 

CASP14 Average Z-score 

(CASP13 for comparison) 

0.13 17 0.84 

0.12 16 0.89 

Medium 

(Z-score >0.0) 

CASP14 Sum Z-score   

(CASP13 for comparison) 

2.19 17 21.16 

2.93 11 12.95 

CASP14 Average Z-score  

(CASP13 for comparison) 

0.37 9 1.11 

0.20 15 1.05 

Difficult 

(Z-score >0.0) 

CASP14 Sum Z-score   

(CASP13 for comparison) 

1.39 17 8.44 

1.85 12 12.23 

CASP14 Average Z-score  

(CASP13 for comparison) 

0.28 15 1.17 

0.47 6 0.96 

All 

(Z-score >0.0) 

CASP14 Sum Z-score   

(CASP13 for comparison) 

3.85 19 31.27 

6.03 14 35.97 

CASP14 Average Z-score  

(CASP13 for comparison) 

0.30 16 1.17 

0.20 16 0.86 

 

As can be seen the McGuffin group (220) ranked 19th by summed Z-score (see Appendix 5 for 

a bar plot of full CASP rankings) across all difficulty categories and 16th by average Z-score 

with a value of 0.3 (max for any group was 1.17). This compared with 14th and 16th respectively 

achieved in CASP13. Although the CASP14 rankings were lower it must be stated that the 

McGuffin group submitted models for only 13 homomeric targets (and was therefore naturally 

penalised by the summed Z-score value) and that the CASP14 targets were rated as more 

difficult due to their generally higher oligomeric state, including two large icosahedral structures 

and the classification of four structures in a new extreme category (Karaca, 2020). Competing 

groups scored an average of 0.86 for TM-score but only 0.38 for ICS (F1) score, showing that 

CASP14 assembly structures continued to present challenging interfaces for modellers. 

In the CASP13 analysis, successful modelling was defined as having any model for a target 

scored as acceptable quality, i.e., QS-score > 0.1 and this was based on a slightly more 

stringent definition by the Venclovas group (Dapkunas et al., 2019) in their CASP13 analysis. 
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While in CASP13 this applied to 3/30 (10%) of the McGuffin group’s models, in CASP14 it 

applied to 3/13 models, a higher rate of 23%. 

2.1.7 Tertiary structure model quality improvement using AlphaFold2 custom template 

recycling 

At CASP14 DeepMind’s AlphaFold group submitted tertiary structure models which were 

widely accepted as a significant advancement in predicted model quality. They achieved high 

accuracy in both FM and FM-TBM classes with median GDT_TS scores of 87.0 and 92.4 

respectively. Measured on a 0-100 scale, GDT_TS scores above 50 are considered correct in 

overall topology with scores over 75 considered to have mostly correct atomic coordinates 

(Kryshtafovych et al., 2019). These are clearly impressive values especially when 

contextualised against CASP13 where the average tertiary GDT_TS score for the best 

performing FM group (A7D) was 61.4 (Senior et al., 2019). 

The AlphaFold group achieved these improvements using a machine learning model 

(AlphaFold2) based on two key factors; a multiple sequence alignment (MSA), used to highlight 

potential evolutionary relationships between amino acids, and a deep neural network (DNN) 

used to interpret them. While both of these concepts are familiar to the protein modelling 

community, AlphaFold2’s success appeared to be their unique combination in the construction 

of an accurate residue distance map. This is then used to construct a detailed contact map 

which can be interpreted by further neural network (NN) input into a starting model to which 

the emerging structure can be compared. A schematic of AlphaFold2 is shown in Figure 2.7 

below. However, there was a third interesting process within the AlphaFold2 model; the 

existence of a recycle route intended to allow repeated iterations of the partially completed 

 

 

Figure 2.7. A schematic of AlphaFold2 architecture. Taken from (Jumper et al., 2021). This shows 

how MSA, and pair representation data is processed and iterated via a recycling feedback loop. 

proto model through the DNNs until no further improvement was detectable. One early-

identified adaptation of this was to input electron density maps to enhance experimental 
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modelling accuracy (Terwilliger, 2022). Inspired by this, an alternative idea was proposed; that 

the recycle function actually represented a ready-made refinement loop. 

ColabFold (Mirdita et al., 2022) is a free open-source tool combining the AlphaFold2 algorithm 

with the fast alignment package MMseqs2 and hosted on Google Colaboratory. Neither early 

AlphaFold2 or ColabFold versions supplied a way of manually controlling the selection of 

templates feeding into the system. However, after an initial experimental version developed 

for use with Phenix software (Terwilliger, 2022), this function was added as a “custom 

template” input function to the main ColabFold software as shown in Figure 2.8. Thus, it 

became possible to add alternative models as “templates” straight into the recycle loop and its 

potential as a full model refinement tool became available for investigation. 

 
Figure 2.8. “Custom template” inputs into the AlphaFold2 architecture. Custom templates may 

now be manually added in addition to a template search. They are incorporated into the recycling loop 

shown in Figure 2.7. Image adapted from (Jumper et al., 2021). 
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2.2 Objectives 

The main hypothesis for this study was based on the supposition that full tertiary structure 

models of proteins could be successfully refined via the custom template option included in 

ColabFold by recycling through the NN architecture. The primary outcome was that repeated 

recycling would show improvement in these models beyond their starting quality with support 

for this viewpoint coming from the ColabFold team’s own paper (Roney and Ovchinnikov, 

2022), which postulated that the AlphaFold2 neural network had learned a potential protein 

folding energy function. Our primary hypothesis was: 

H0: Custom template recycling through ColabFold results in models no different in quality to 

the baseline models input as templates. H1: Custom template recycling results in models of 

higher quality than the baseline models which were input as templates. 

There were also three secondary considerations. The first of these was particularly relevant as 

it has been shown that the accuracy of AlphaFold2 predictions decreases markedly when it is 

not able to construct an MSA (Lin et al., 2023;Roney and Ovchinnikov, 2022). If model 

improvement was seen from recycling in single sequence mode it would suggest that AF2 is 

using internal factors to effect those improvements. For this reason, a hypothesis was also 

constructed for the first of the secondary considerations. 

1. Would similar improvement be seen for recycling in both single sequence and MSA 

modes?  

H0: Recycling in single sequence mode produces models no different in quality compared to 

the baseline models used as templates. H1: Recycling in single sequence mode produces 

improvement in models similar to that seen for MSA mode. 

2. Would improvement be seen in the official DeepMind AF2 competition models? 

3. Would improvement be linear with recycle number and can an optimal number of recycles 

be determined? 

If the primary outcome was proven, then the custom recycling strategy could be adopted as a 

key component to our CASP15 modelling pipeline, which would potentially confer an 

advantage over other state-of-the-art modelling software. 
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2.3 Materials and Methods 

The goal of the project, of which this study formed the foundation part, was to improve upon 

the performance of AF2-Multimer quaternary structure modelling through custom template 

recycling. This study represented the initial proof of concept phase using tertiary structures 

which, it was reasoned, represented a simpler basis for testing and scoring. 

To test the hypotheses, the study was designed around free modelling (FM) CASP14 tertiary 

structure targets to eliminate any confounding effects associated with TBM models. These 

were quality-assessed against their CASP reference structures to build a bank of baseline 

observed scores. The models were then submitted to ColabFold as custom templates for 

recycling through the algorithm. The resulting top-ranked models could then be rescored 

against the same reference models and the scores then directly compared to the baseline to 

assess any improvement in model quality. If successful, the study could be extended to 

quaternary structure models. 

Two sets of CASP14 tertiary structure models were selected and the AlphaFold2 NN weights 

trained on pre-CASP14 data were used to recycle them. The selection of this particular dataset 

was important as the AlphaFold2 neural network was trained on models populating the PDB 

prior to CASP14 (2020), using more recent datasets risked introducing a bias into the modelling 

as AlphaFold2 could potentially have already encountered the structures. At the time, this 

represented the most suitable set of 3D models and great care was taken to ensure that the 

pre-CASP14 neural network weights were selected when using ColabFold as this guaranteed 

training had taken place on data predating these models. 

The first set of models chosen were DeepMind’s AlphaFold group (group 427) official CASP14 

submissions, the rationale being that AF2 is essentially an FM modelling tool and according to 

the findings in section 2.1.5 it should be possible to refine these. Secondly, at the time these 

represented the best independently verified models available and so a technique able to 

improve these should be able to improve any other models available. The second set of models 

were selected from the five groups ranking immediately below group 427 in the CASP14 official 

rankings. These were viewed as lower-quality starting models which, again according to the 

findings in section 2.1.5, may allow greater potential for improvement by refinement. The 

argument that this procedure amounted to simple remodelling was controlled for in two ways; 

firstly by using the official AlphaFold group’s CASP14 models with the AlphaFold2 model 

trained on pre-CASP14 data - the rationale being that any improvement in model quality must 

be due to recycling refinement, as the same software should not be able to improve upon its 

original model unless a different internal process is invoked. Secondly, by running parallel MSA 

and single sequence recycling (with all other parameters matched) any influence of an updated 
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MSA should be negated. Consistent improvement under these conditions would suggest that 

AlphaFold2 is refining the model supplied rather than ignoring the template and remodelling 

from scratch. Also, as a further control measure to ensure we were testing for the recycling 

effect only and no other refinement stages, the Amber relaxation option was not enabled. 

2.3.1 Refinement of 16 CASP14 AlphaFold2 models 

CASP14 rank 1 AlphaFold2 tertiary structure models were downloaded from the CASP Data 

Archive (https://predictioncenter.org/download_area/) along with their official results tables. 

Previous research has suggested that protein models created using template-based modelling 

(TBM) have a lower tendency for improvement compared to those created from free modelling 

(FM) methods (Adiyaman, 2021). Therefore, to maximise refinement potential, the 16 models 

submitted by the AlphaFold group in the CASP FM-only class were selected, matching those 

targets used in the ReFOLD4 analysis which was included a section A of the research paper 

(Adiyaman et al., 2023).  

Two structural alignment scoring methods - the TM-score (Template Modelling score) and the 

lDDT score (local Distance Difference Test) were used to provide performance metrics for 

model benchmarking. These scores, generated by downloadable versions of the TM-score 

(Zhang and Skolnick, 2004) and lDDT (Mariani et al., 2013) methods, describe the backbone 

(TM-score) and local environment (lDDT) similarities of two protein models. Initially, the 

downloaded model and the experimentally determined native structure were compared to 

collect baseline TM and lDDT scores. Each AlphaFold2 model was then converted from pdb 

to mmCif format using  https://mmcif.pdbj.org/converter which makes use of the RSCB PDB 

MAXIT suite of programs.  

To eliminate ColabFold runtime errors the following workarounds were necessary. The 

template model name and job name needed to match with a maximum of 4 characters. The 

jobname was therefore always set as the numeric part of the CASP target, e.g. 10**. A chain 

identifier was required in column 22 of the PDB file prior to mmCif conversion. Also, to satisfy 

the AF2 algorithm’s requirement for a creation date, the following information was added to the 

bottom of each template mmCif file: 

“loop_ 

_pdbx_audit_revision_history.ordinal 

_pdbx_audit_revision_history.data_content_type 

_pdbx_audit_revision_history.major_revision 

_pdbx_audit_revision_history.minor_revision 

_pdbx_audit_revision_history.revision_date 

1 'Structure model' 1 0 2020-06-17 

2 'Structure model' 1 1 2021-01-20” 

https://mmcif.pdbj.org/converter
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The converted mmCif model files were then submitted to the Google Colaboratory version of 

ColabFold (release 3, v1.3.0 [4-Mar-2022]) as custom templates along with their respective 

amino acid sequences.  Each model was submitted eight separate times using the following 

recycle and MSA combinations; MSA: 1, 3, 6 and 12 recycles; Single sequence: 1, 3, 6 and 12 

recycles. The following ColabFold settings were used. 

- Google Colab version: AlphaFold2 using MMseqs2. 

- Template_mode:  custom 

- msa_mode:   MMseqs2 (UniRef+Environmental) OR single_sequence 

- pair_mode:   unpaired+paired  

- model-type:   auto1 

- num_recycles:   1, 3, 6, 12. 

The five models created by default for each individual ColabFold run were collected along with 

their predicted pTM and plDDT scores. Rank 1 models were then rescored with TM-score and 

lDDT programs in the same way as described for baseline scoring. In this way TM-score and 

lDDT scores obtained at baseline and for each recycle combination, along with the ColabFold-

generated predicted scores (pTM and plDDT), could be directly compared.  

2.3.2 Refinement of 47 CASP14 non-AlphaFold2 models 

To explore the capacity for improvement of lower-scoring models, the same CASP14 targets 

were selected from groups making up the next five best-ranked groups beneath the AlphaFold 

group in the CASP14 rankings. These were (by rank): Baker (Gp.473, Av Sum Z-score=90.8), 

Baker-experimental (Gp.403, Av Sum Z-score=88.9), Feig-R2 (Gp.480, Av Sum Z-

score=72.5), Zhang (Gp.129, Av Sum Z-score=67.9) and tFold_human (Gp.009, Av Sum Z-

score=61.2). By comparison, AlphaFold2 (Gp.427) had an Av sum Z-score of 244. All groups 

had a total Domain count of 92 so the comparison of Sum Z-scores is valid. In addition, only 

models with a CASP TM-score of ≥ 0.45 were used, as those below this threshold cannot be 

guaranteed to have the same fundamental fold as the reference models (Xu and Zhang, 2010), 

so a total of 47 non-AlphaFold2 models were processed. 

Models, scores and reference structures for these targets were downloaded from the CASP14 

website and scored with the TM-score and lDDT algorithms in the same way as previously 

described in 2.3.1. ColabFold recycling using MSA was submitted to the same Google 

Colaboratory version of ColabFold (release 3, v1.3.0 [4-Mar-2022]) as used in 2.3.1, recycling 

using single sequence submissions (no MSA) was carried out using the same release (v1.3.0) 

of LocalColabFold (Mirdita et al., 2022), which was installed on our own local server to avoid 

 
1 GitHub - DeepMind/AlphaFold: Open source code for AlphaFold2. (“selecting Auto from the model type 

monomer_ptm: This is the original CASP14 model fine-tuned with the pTM head, providing a pairwise confidence 

measure. It is slightly less accurate than the normal monomer model.”) 

https://github.com/deepmind/alphafold
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Google Colab GPU restrictions adversely affecting our available modelling time. The 

equivalent LocalColabFold settings used were: 

--num-recycle (1, 3, 6, 12) --msa-mode single_sequence --model-type auto --rank plddt  

--pair-mode unpaired+paired --templates --custom-template-path 

LocalColabFold was therefore run with the following command format: 

colabfold_batch --num-recycle 12 --msa-mode single_sequence --model-type auto --rank plddt --pair-

mode unpaired+paired --templates --custom-template-path <path to mmCif files> <full path of fasta file> 

<full path of output directory> 

Again, the five resulting models and their predicted scores for each ColabFold run were 

collected and rank 1 models were rescored with the TM-score and lDDT programs. The 

workflow for the methodology is summarised in Figure 2.9 allowing baseline and recycle TM-

score and lDDT to be directly compared. Statistical analysis for all models was performed using 

R-studio version 1.3.1093. 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. A workflow summary for the custom template recycling experiment. This shows how 

AF2 and other groups’ models were recycled through ColabFold and assessed by comparison to 

baseline lDDT and TM-scores. 

2.3.3 Treatment of quaternary structures 

The processes described above were repeated for multimeric CASP14 targets by a co-

researcher as part of the published collaborative study (Adiyaman et al., 2023). This part used 

models from ten targets (H1045, H1065, H1072, T1032, T1054, T1070, T1073, T1078, T1083, 

T1084) for the top 5 performing groups in the CASP14 assembly category. These were Baker-

experimental (Baek et al., 2021), Venclovas (Dapkunas et al., 2021), Takeda-Shitaka, Seok 

(Park et al., 2021) and DATE. DeepMind did not submit multimeric models for CASP14 and so 

models were generated using AF2-Multimer (AFM) for the same targets to allow for common 

subset analysis. Baseline models were scored and refined using similar parameters described 

for monomers and observed scores were generated using MM-Align (Mukherjee and Zhang, 

2009) for TM-score and OpenStructure (Biasini et al., 2013) for IDDT-oligo and, additionally, 
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QS-score (Bertoni et al., 2017). A short summary of key results for quaternary structure models 

will be included in the relevant results sections. 

2.3.4. Study design. 

This study can be categorised as having two factors; the type of recycling and the modelling 

software used to create the initial models. Both factors have two levels. For recycling these 

are either MSA or single sequence; for modelling they are either AF2 or non-AF2 models. 

Table 2.6. The recycle experiment study design in terms of factors, level and treatment groups. 

  Factor 1 – recycling 

Levels MSA Single sequence 
 
Factor 2 – 
modelling 

AF2 models 
MSA modelling,  
AF2 models 

Single sequence modelling,  
AF2 models 

Non-AF2 
models 

MSA modelling,  
non-AF2 models 

Single sequence modelling,  
non-AF2 models 

Therefore, there are four treatment groups as shown in Table 2.6. 

2.4 Results and Discussion. 

2.4.1 Primary hypothesis. Repeated recycling shows improvement of models beyond 

their initial quality. 

Both global TM-scores and lDDT scores were collected during the investigation, however, the 

analysis concentrated on the improvement in lDDT scores. The rationale being that, unlike TM-

score, which is primarily associated with backbone configuration, lDDT is more likely to detect 

small changes in the local atomic arrangement which typically result from refinement. 

Table 2.7 shows the significance values (p-values) obtained from the comparison between 

baseline and recycled lDDT scores for the 16 CASP14 AlphaFold2 (AF2) and 47 non-

AlphaFold2 (non-AF2) tertiary models. P-values were calculated at the 95% confidence level 

using a 1-tailed Wilcoxon signed-rank test for non-parametric data between observed baseline 

lDDT scores (template model) and recycled lDDT scores (rank 1 output model). These have 

been calculated between baseline and each recycle and also between consecutive recycles. 

A p-value of ≤0.05 shows a significant difference between any two model populations, 

suggesting an improvement in quality for that number of recycles. Table 2.8a shows equivalent 

data for TM-scores calculated by the same method. It is worth restating here the primary 

hypotheses being tested: 

H0. Custom template recycling through ColabFold results in models no different in quality to 

the baseline model input as templates. H1. Custom template recycling results in models of 

higher quality than the baseline models input as templates. 
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In Table 2.7, rows 1 and 2 indicate a significant improvement in quality for the AF2 models 

compared to baseline for recycle 1, 3, 6 and 12 as indicated by values in bold. Although 

significant improvement after 1 recycle is limited to models recycled in single sequence mode  

Table 2.7. Calculated p-values for observed lDDT scores between baseline and recycled CASP14 

AF2 and non-AF2 monomer models. P-values ≤0.05 are in bold. 

 
Models 

Recycle 
model 

Base to 1 
recycle 

1 to 3 
recycles 

Base to 3 
recycles 

3 to 6 
recycles 

Base to 6 
recycles 

6 to 12 
recycles 

Base to 12 
recycles. 

AF2 MSA 0.187 0.756 0.005 0.043 0.007 0.351 0.013 

SS 0.011 0.954 0.018 0.124 0.059 0.637 0.038 

Non-
AF2 

MSA 1.23x10-9 1.21x10-8 7.10x10-15 0.015 7.10x10-15 0.473 1.23x10-9 

SS 1.70x10-9 4.91x10-5 1.50x10-9 0.175 1.50x10-9 0.587 1.40x10-9 
Key: Base = Baseline, SS=Single sequence. MSA=Multiple Sequence Alignment. The 1-tailed Wilcoxon signed-rank test P-

values were calculated at the 95% confidence level using lDDT scores across 16 AlphaFold2 CASP14 top-ranked models (upper 

two rows) and 47 non-AlphaFold models from CASP14 targets (lower 2 rows). 

Table 2.8a. Calculated p-values for observed TM-scores between baseline and recycled for 

CASP14 AF2 and non-AF2 monomer models. P-values ≤0.05 are in bold. 

 
Models 

Recycle 
model 

Base to 1 
recycle 

1 to 3 
recycles 

Base to 3 
recycles 

3 to 6 
recycles 

Base to 6 
recycles 

6 to 12 
recycles 

Base to 12 
recycles. 

AF2 MSA 0.679 0.801 0.796 0.106 0.958 0.363 0.776 

SS 0.717 0.909 0.860 0.033 0.897 0.782 0.698 

Non-
AF2 

MSA 1.42x10-14 6.31x10-5 4.36x10-12 0.898 8.05x10-9 0.240 2.40x10-12 

SS 5.13x10-7 7.61x10-5 3.35x10-7 0.033 1.98x10-7 0.660 1.62x10-7 
Key: Base = Baseline, SS=Single sequence. MSA=Multiple Sequence Alignment. The 1-tailed Wilcoxon signed-rank test P-

values were calculated at the 95% confidence level using TM-scores across 16 AlphaFold2 CASP14 top-ranked models (upper 

two rows) and 47 non-AlphaFold2 models from CASP14 targets (lower 2 rows). 

and improvement after 6 recycles is limited to MSA mode, improvement after both 3 and 12 

recycles is seen for both recycling modes. Similarly, rows 3 and 4 show that significant 

improvement in non-AF2 model quality compared to baseline occurred for both modes after all 

recycles. From 6 to 12 recycles there was no further significant improvement for either method. 

From these results the null hypothesis can be rejected for improvement in lDDT from baseline 

and it can be stated that recycling produces significantly higher quality models than baseline 

in the majority of cases (14 out of the 16 recycle phases across the two groups studied) in 

agreement with the alternative hypothesis. 

Table 2.8a shows similar data for TM-score improvement. There are significant increases 

between baseline and 1 recycle and from 1 to 3 recycles for non-AF2 models, however there 

is no further significant improvement between 3 to 6 or 6 to 12 recycles. For the AF2 models 

there is no significant improvement in TM-score except for the one isolated result of 0.033 

which occurred between 3 to 6 recycles in single sequence mode. From these results, with 

respect to TM-score, the null hypothesis must be accepted for AF2 models, but the alternative 

hypothesis may be accepted for non-AF2 models. This supports the rationale above that the 

superposition dependent TM-score based on the backbone is not sufficiently sensitive to 

relatively small changes in local atomic arrangement. 
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The data for quaternary structures shown in Table 2.8b also showed significant improvement 

upon recycling and, again, the improvement was greater for non-AFM than AFM models with 

a pattern that was not linear with recycle number. Specifically, non-AFM models showed 

significant improvement as measured by oligo-lDDT, TM-score and QS-score for baseline to 

all recycles for both MSA and single sequence recycling (with the exception of single sequence 

recycling measured by oligo-lDDT where significant improvement was only seen between 1 to 

3 and 6 to 12 recycles). For AFM models, the best improvement was seen for TM-scores which 

showed significant improvement from baseline to 1 and 6 recycles for MSA recycling and for 

baseline to all recycles for single sequence recycling. For oligo-lDDT significant improvement 

was seen for MSA recycling (baseline to 16 and 12 recycles) but not to the same extent for 

single sequence recycling. Significant improvement by QS-score was seen in one isolated 

case (1 to 3 recycles) for AFM models. Despite this, absolute rates in terms of the percentage 

of models improved were calculated as 80% (MSA) and 30% (SS) for AFM models and 94% 

(MSA) and 64% (SS) for non-AFM models as measured by oligo-lDDT, 70% (MSA) and 80% 

(SS) for AFM models and 98% (MSA) and 82% (SS) for non-AFM models as measured by 

TM-score and 50% (MSA) and 30% (SS) for AFM models and 86% (MSA) and 60% (SS) for 

non-AFM models as measured by QS-score (Adiyaman et al., 2023). 

Table 2.8b Calculated P-values for observed oligo-lDDT (A), TM-score (B) and QS-score (C), for 

recycled AFM and non-AFM CASP14 multimer models. P-values ≤0.05 are in bold. 

A 
 
Models 

Recycle 
type 

Baseline 
to  
1 recycle 

1 recycle 
to 3 
recycles 

Baseline 
to 3 
recycles 

3 recycles 
to 6 
recycles 

Baseline 
to 6 
recycles 

6 recycles 
to 12 
recycles 

Baseline 
to 12 
recycles 

AFM MSA 1.11x10-1 5.20x10-1 1.79x10-1 7.68x10-2 4.16x10-2 1.11x10-1 5.15x10-2 

SS 9.97x10-1 4.16x10-2 9.37x10-1 6.18x10-2 9.37x10-1 9.74x10-1 9.37x10-1 

non-
AFM 

MSA 3.75x10-3 4.27x10-5 1.40x10-5 6.92x10-3 1.02x10-6 9.56x10-1 4.93x10-7 

SS 8.49x10-1 1.48x10-2 5.12x10-1 1.61x10-1 4.20x10-1 1.01x10-2 3.29x10-1 

B 
AFM MSA 3.33x10-2 2.70x10-1 6.31x10-2 6.31x10-2 2.08x10-2 8.21x10-1 1.54x10-1 

SS 5.15x10-2 1.79x10-1 2.08x10-2 6.20x10-1 1.25x10-2 6.20x10-1 2.08x10-2 

non-
AFM 

MSA 2.07x10-9 2.72x10-1 1.45x10-9 9.43x10-1 2.93x10-9 9.86x10-1 6.89x10-9 

SS 3.34x10-3 3.97x10-3 5.52x10-4 7.46x10-1 1.37x10-4 3.75x10-1 2.95x10-4 

C 

AFM MSA 4.16x10-1 5.72x10-1 1.98x10-1 4.27x10-1 5.00x10-1 5.00x10-1 5.00x10-1 

SS 7.99x10-1 5.02x10-2 5.00x10-1 1.86x10-1 3.42x10-1 8.62x10-1 3.38x10-1 

non-
AFM 

MSA 1.58x10-7 2.27x10-1 2.58x10-7 1.58x10-1 1.10x10-7 2.33x10-1 6.80x10-8 

SS 3.49x10-2 1.12x10-2 4.18x10-3 3.08x10-1 2.55x10-3 2.41x10-1 4.09x10-3 
*SS=Single sequence. P-values were calculated at the 95% confidence level. The 1-tailed Wilcoxon signed-rank test P-values 
were calculated using oligo-lDDT scores (A), TM-scores (B) and QS-scores (C) for AFM models of 10 CASP14 targets (generated 
with ColabFold) and the same 10 targets for models submitted by the 5 top-ranking groups in CASP14 (non-AFM). Supporting 
raw data is available in Appendix 6. 
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2.4.2 Secondary hypothesis. Is similar improvement seen for recycling in both single 

sequence and MSA modes? 

To further investigate the differential improvement between MSA and single sequence 

recycling the two methods were directly compared using a 1-tailed Wilcoxon signed-rank test 

to test whether lDDT scores for MSA recycling were significantly higher than those obtained 

for single sequence recycling. In addition, a 1-tailed Ansari-Bradley test was used to 

investigate any significant differences in quartiles which may be occurring in the data but that 

remain hidden when using tests comparing mean values. Again, it is worth restating the 

hypotheses being tested: H0. Recycling in single sequence mode results in models no different 

in quality compared to the baseline models used as templates. H1. Recycling in single 

sequence mode results in improvement in models similar to that seen for MSA mode. Table 

2.9, below, shows p-values obtained for the 16 CASP14 AlphaFold2 tertiary structure models. 

Equivalent data for the 47 non-AlphaFold2 tertiary models is presented in Table 2.10. 

Table 2.9. CASP14 AF2 model comparisons between mean lDDT scores (top) and scale 

parameters (bottom). Single-sequence and MSA recycling across 1, 3, 6 and 12 recycles. 

                      P-value 
Test 

Recycle 1 
(SS v MSA) 

Recycle 3 
(SS v MSA) 

Recycle 6 
(SS v MSA) 

Recycle 12 
(SS v MSA) 

Wilcox signed rank 0.097 0.052 0.111 0.129 

Ansari test 0.397 0.500 0.425 0.544 
Key: SS=Single sequence. MSA=Multiple Sequence Alignment. The 1-tailed Wilcoxon signed-rank test (top row) and Ansari 

test (bottom row) P-values were calculated at the 95% confidence level (those <0.05 are in bold) using lDDT scores for the 16 

AlphaFold2 CASP14 top-ranked models from CASP14 targets. 

Table 2.10. CASP14 non-AF2 model comparisons between mean lDDT scores (top) and scale 

parameters (bottom). Single-sequence and MSA recycling across 1, 3, 6 and 12 recycles. 

                      P-value 
Test 

Recycle 1 
(SS v MSA) 

Recycle 3 
(SS v MSA) 

Recycle 6 
(SS v MSA) 

Recycle 12 
(SS v MSA) 

Wilcox signed rank 1.42x10-14 5.34x10-9 2.94x10-12 7.80x10-9 

Ansari test 0.014 0.015 0.019 0.012 
Key: SS=Single sequence. MSA=Multiple Sequence Alignment. The 1-tailed Wilcoxon signed-rank test (top row) and Ansari 

test (bottom row) P-values were calculated at the 95% confidence level (those <0.05 are in bold) using lDDT scores for the 47 

non-AlphaFold2 CASP14 top-ranked models from CASP14 targets. 

From Tables 2.9 and 2.10 it can be seen that there is no significant difference in model quality 

between MSA and single sequence recycling methods for the AF2 models according to both 

the Wilcoxon and Ansari tests. However, there is a significant difference, detected by both 

tests, at every recycle for non-AF2 models. However, it is unknown whether an equivalent MSA 

was used to produce the non-AF2 models, and so it is possible that this difference simply 

highlights the power of the MSA in producing better contact and distance maps on which to 

base models. 

Figure 2.10 shows a graphical representation of the relative improvements in lDDT score for 

all models on which the values in Table 2.9 and 2.10 were based. As expected from the values 
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in the table, MSA recycling (left plot) shows an increase in quality for non-AF2 models to a 

much greater extent than that for single sequence. Nevertheless, according to the values in 

Table 2.7 models produced by single sequence recycling were still significantly improved. In 

this case the null hypothesis should be rejected as single sequence recycling clearly results in 

model improvement which is significant for both model populations. However, it is also true 

that the alternative hypothesis can be applied only to the AF2 models but not the non-AF2 

models as the improvement for single sequence recycling could not reasonably be said to be 

similar to that for MSA recycling for this model population. Therefore, a different interpretation 

maybe required; that single sequence recycling can be viewed as representing refinement due 

to AlphaFold2’s learned protein folding function and the difference between the improvement 

seen between AF2 and non-AF2 models is the effect of additionally using a multiple sequence 

alignment. 

Figure 2.10. Scatter plots to show comparisons in observed lDDT scores between baseline and 

all recycles for all monomeric models. Left. MSA recycling. Right. Single sequence recycling. 

During discussions for this section and 2.4.1, the secondary consideration of whether 

improvement would be seen in official DeepMind AF2 competition models has also been 

answered. The fact that this improvement was seen for both MSA and single sequence 

recycling using the AF2 model with pre-CASP14 weights, meaning that no new information 

was presented to the algorithm, is further indication that improvement is occurring via some 

sort of learned function within the AF2 neural network. One contextual point to note is that 

DeepMind entered CASP14 as a manual group meaning that changes may have been made 

to models which were not due entirely to the AF2 software and that this part of the experiment 

could have been carried out with models generated by ColabFold. Nevertheless, it remains 

that the CASP14 AF2 models represented the best independently benchmarked models 

available to us at the time. 
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In addition, quaternary structure model improvement was also seen for single sequence 

recycling as well as MSA recycling, and this improvement was also apparent for AFM models. 

As measured by lDDT-oligo score, 30% of AFM models were improved from baseline after 

single sequence recycling, compared to 80% using MSA recycling, but the percentage 

improvement was higher for non-AFM models where 64% improved with single sequence 

recycling compared to 94% for MSA. Similar levels of improvement were seen for TM-score 

(up to 80% of AFM models and 98% non-AFM models) and QS-score (up to 50% of AFM 

models and 86% non-AFM models) (Adiyaman et al., 2023). 

2.4.3 Is improvement linear with recycle number and can an optimal number of recycles 

be determined? 

Finally, the secondary considerations of linearity and identification of an optimal recycle 

number need to be addressed. Table 2.7 shows that improvement in model quality doesn't 

follow a linear trend; higher recycle numbers do not consistently yield more significant 

improvements. For AF2 models, only two consecutive recycles (baseline to 1 recycle and 1 to 

3 recycles) show a significant increase in lDDT for single sequence modelling and three 

(baseline to 1 recycle, 1 to 3 recycles and 3 to 6 recycles) for MSA modelling. Similarly, any 

improvement in score for non-AF2 models after 6 recycles (3 for single sequence) also 

becomes non-significant. 

Figure 2.11. Plots to show the change from baseline in cumulative observed lDDT scores (all 

recycles) per modelling group. Left. MSA recycling. Right. Single sequence recycling. Data for all 

monomer models for AF2 and non-AF2 groups. 

Identification of the recycle number producing the most improvement is not immediately 

obvious from the data in the tables. Therefore, it may be worth looking at the cumulative lDDT 

change from baseline for all individual groups to get a better representation of the trends as 

shown below in Figure 2.11. For the MSA recycling data (Figure 2.11, left plot), two groups, 
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Zhang and Feig, showed a slight increase in cumulative score from recycle 3 to 6 and a further 

increase from recycle 6 to 12, which also included a marginal increase for the Baker group. All 

other groups showed no further improvement after 3 recycles. For the single sequence 

recycling data, the Feig, tFOLD and Baker-experimental groups all showed improvement after 

3 recycles with the Zhang group showing further improvement only at 12 recycles. The AF2 

and Baker groups showed no further improvement after 3 recycles. Interestingly a number of 

groups showed a slight decrease in model quality after 3 recycles, specifically AF2, Baker-

experimental and tFOLD for MSA recycling and AF2 for single sequence (with a dip from Zhang 

group at 6 recycles). A decrease in quality for some models is not uncommon with refinement 

procedures (Adiyaman and McGuffin, 2019) and in light of this, to avoid the risk of a decrease 

in quality during recycling, it would be prudent to suggest 3 recycles as the optimum number 

for tertiary structures. 

2.4.4 Improvement of non-AF2 models beyond AF2 quality. 

An important and unexpected effect seen when recycling non-AF2 models was the 

improvement of some models beyond the quality of the equivalent DeepMind AF2 competition 

models as measured by lDDT score. This was surprising as the full power of the DeepMind 

neural network and MSA search facility would have been used to create these original models 

whereas the quicker MMSeqs search method was used with the ColabFold method, producing 

a slightly different MSA, which would not necessarily be expected to out-perform the former. 

This enhanced improvement may, again, be indicative of a process other than simple 

correction of modelling inaccuracies using the information available in an MSA. Two examples 

of this are shown in Figure 2.12 and 2.13 below. 

 

Figure 2.12. Images of CASP14 target T1074. Left. The Baker group’s predicted model (blue, lDDT 

0.491, TM-score 0.576) superposed with the native structure (purple). Centre. The refined model in red 

(lDDT 0.906, TM-score 0.959). Right. The refined model superposed with the native structure and 

showing a very close alignment. 

Figure 2.12 shows the improvement seen in the Baker group’s model for the CASP14 target 

T1074. The left-hand image shows the model (coloured blue) in superposition with the native 

structure, revealing a misaligned lower beta sheet and resulting in a TM-score of 0.576 and an 
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lDDT score of 0.491. The recycled model, centre (coloured red) and right in superposition with 

the native structure, shows that this misalignment has been corrected and the TM-score has 

improved to 0.959 with a similarly improved lDDT score of 0.906. For comparison the 

competition AF2 model scored a TM-score of 0.930 and an lDDT score of 0.848. 

 

 

 

Figure 2.13. Images of CASP14 target T1049. Far left. The Zhang group’s predicted model (blue, 

lDDT 0.552, TM-score 0.674) superposed with the native structure (purple). Centre left. The refined 

model in red (lDDT 0.872, TM-score 0.940). Centre right. The refined model superposed with the native 

structure and showing a closer alignment. Right. An enlargement showing a superposition of all three 

models and highlighting a newly formed β-strand (circled), absent in predicted model. 

Similarly Figure 2.13 shows the improvements seen to the Zhang group’s model for T1049. 

Again, the original model is coloured blue and, in the superposition with the native structure on 

the left, shows a number of positional inconsistencies in the beta strands as well as the loop 

sections. These have been corrected in the recycled (red) model and led to improvement in 

scores from 0.674 to 0.940 for the TM-score and from 0.552 to 0.872 for lDDT. The right-hand 

graphic shows an enlarged section of a superposition of all three models (predicted, recycled 

and native) highlighting the correct inclusion of a small beta section in the recycled model 

(circled in black) which was not present in the predicted model. For comparison the equivalent 

AF2 model scored 0.930 and 0.848 for TM-score and lDDT respectively, which was, again, 

lower than this recycled model. 

Similar levels of improvement were seen for quaternary structures, although for these models 

it could not be claimed that recycling had improved DeepMind official competition models as 

the AFM models used in the study were specifically created for this project using ColabFold 

(DeepMind did not submit any predictions for multimeric targets). Nevertheless, a good 

example of AFM model improvement is shown in Figure 2.14 panel A in which the interface 

orientation of the AFM model is corrected via recycling, resulting in improvement in the lDDT-

oligo, TM-score and QS-score. Further to this, Figure 2.14 panel B shows a Venclovas group 

model for H1045 which improved to match the scores achieved by the equivalent AFM model 

for TM-score, and slightly beyond that achieved by AFM for lDDT-oligo and QS-score. 
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Figure 2.14. A. Images of the AFM model for CASP14 multimeric target T1078. Left. The AFM 

predicted model with lDDT-oligo, TM-score and QS-score values. Right. The refined model with 

equivalent scores. B. Images of the Venclovas group model for CASP14 target H1045. Left. The 

original predicted model, again with lDDT-oligo, TM-score and QS-score values. Right. The refined 

model and equivalent scores. The scores for the equivalent AFM model were: lDDT-oligo 0.87, TM-

score 0.95 and QS-score 0.97. Images coloured by plDDT and adapted from (Adiyaman et al., 2023). 

2.5 Conclusions 

The conclusion for the primary outcome is that recycling full tertiary structure protein models 

via the ColabFold custom template option is possible, and that it significantly improves full 

model structures beyond their starting quality. Conversely, significant improvements were not 

seen in a parallel study using more conventional molecular dynamics refinement techniques 

(Adiyaman et al., 2023). 

Findings for the three secondary considerations can be summarised as following: 

Improvement for both MSA and single sequence modes. 

Firstly, recycling using both MSA and single sequence modes leads to significant improvement 

in model quality compared to the baseline, as measured by lDDT score. It has been 

demonstrated that although a greater improvement in model quality occurs when the 

AlphaFold2 algorithm is able to perform a multiple sequence alignment (MSA) during recycling, 

a significant improvement in model quality is still apparent when only the amino acid sequence 

is supplied (single sequence modelling). 
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Improvement in official DeepMind AF2 competition models. 

It has been shown that improvement occurs not only with non-AF2 models with a median 

baseline lDDT score of 0.580 but also with the official DeepMind AlphaFold2 models with a 

much higher median baseline lDDT of 0.751. Also, there is no significant difference in lDDT 

scores between MSA and single sequence recycled AF2 model populations. As it has been 

previously documented that AF2 performance considerably decreases when using sequence-

only modelling (Roney and Ovchinnikov, 2022), this strongly suggests that model improvement 

is being achieved via template refinement rather than remodelling despite any slight 

differences in MSA construction. Indeed, as the AF2 models were originally built by the same 

software it should not be possible to improve them by remodelling if no further information is 

available to the algorithm. In seeming contradiction to this, there is a significant difference 

between MSA and single sequence recycling for the non-AF2 models. However, this is likely 

due to differences in the original modelling software used, i.e. that AF2 is finding 

inconsistencies between the models and its own algorithm, which it is able to better correct 

using the additional information provided by a new or different MSA. 

Pattern of improvement and optimal recycle number. 

Thirdly, that improvement in model quality is non-linear. The lack of significant improvement in 

consecutive recycles (evidenced in Table 2.7 and 2.8) shows that a higher recycle number 

does not equate to more significant improvement. Therefore, committing tertiary structures to 

more than 3 recycles is unlikely to further improve the model and may represent an 

unnecessary processing overhead along with the risk of decreasing the quality of high scoring 

models. 

In summary, it can be concluded that recycling through the AF2 DNN, via the use of custom 

templates, will lead to an improvement in tertiary and quaternary structure model quality in the 

vast majority of cases, even for models with a very high level of initial accuracy. Using the MSA 

mode as a recycling option will likely lead to a certain amount of remodelling if the template is 

not an AF2 model and that single sequence mode therefore probably better represents “pure 

refinement”. 

In explanation, it may be that the AF2 algorithm is using the template as an enhanced starting 

model in place of its usual contact matrix thus allowing modelling to start at a point deeper in 

the folding funnel of the energy landscape. Alternatively, it may be that the AF2 DNN has, to 

some degree, learnt a protein folding function (an algorithmic ability to recognise correct or 

incorrect folds) which can be exploited to improve models without any additional information 

simply by repeated iteration of the model through the network regardless of the quality of the 

initial model. A similar alternative may be related to the recently published work on diffusion 



Chapter 2 

62 
 

de-novo protein design (Watson et al., 2023). Here model coordinates are deliberately 

obscured with a noise function prior to denoising using a specially trained version of 

RoseTTAFold (RFdiffusion) and one of the training strategies (self-conditioning) was cited as 

being ‘inspired by AF2 recycling”. It’s possible that some of the lower quality models acted as 

crude “noisy” structures in that they provided a rough starting point and that, through 

successive iterations, AF2 was able to reduce the initial 'noise' and progressively improve the 

structure. While the folding funnel concept focuses on the energy landscape and convergence 

towards the native state, diffusion suggests iterative refinement of an initially crude structure. 

The results above were important because they inspired the following MultiFOLD pipeline, 

shown below in Figure 2.15, which was used for the CASP15 competition and also underlies 

the version available publicly on the IntFOLD website. Here a dual modelling process is used 

including two versions of the AlphaFold2 model. LocalColabFold 1.0.0 features the AF2 model 

used in the AF2 Advanced version which is the model trained on tertiary structures but which 

was used extensively, following CASP14, to model multimeric structures (Bryant et al., 2022) 

before AF2-Multimer was released. During the process AMBER relaxation is used in 50% of 

models and ranking is performed by ModFOLDdockR, see Chapter 4 for details of the 

development of this version. Of the 20 models created by the dual pathway, the top 5 are then 

recycled as custom templates in a refinement stage before being pooled with the remaining 

population ready for final quality assessment and ranking. 

 

Figure 2.15. The updated MultiFOLD pipeline developed for CASP15. This configuration was 

inspired by the recycling results described in this chapter. 
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CHAPTER 3 

Development of new global and local quality estimates for quaternary structure 

models using artificial Neural Network (NN) comparisons with CASP quality 

scores.
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3.1 Background and historical context 

Protein modelling software has historically produced large numbers of models, some of which 

may be native-like, while others (decoys) may be structurally different. Modelling confidence 

scores are designed to objectively differentiate between these two model groups (Elofsson et 

al., 2018) and can be categorised into two broad types. Accuracy self-estimate (ASE) scores 

usually refer to the modelling confidence scores output by the modelling software while the 

term estimates of model accuracy (EMA) is usually applied to confidence scores calculated by 

separate, independent, software. The term model quality assessment (MQA) can be 

considered an umbrella term covering both ASEs and EMA, however the terms EMA and MQA 

are often used interchangeably in the published literature. 

Modelling pipelines often provide proprietary ASE scores, and this clearly presents a problem 

when attempting to meaningfully evaluate models from different sources by ASE score 

comparison alone. This was demonstrated during CASP15 where groups were required to 

standardise their ASE scores into predicted lDDT scores (plDDT) for the competition; some 

were more successful than others and the accuracy varied depending on the target protein 

(Gabriel Studer et al., 2023). Outside of the competition arena where ASE scores may remain 

proprietary in nature, model quality assessment via independent EMA methods remains a 

critical stage in selecting the most representative model from multiple modelling sources. 

3.1.1 A brief history of MQA 

Conceptually, model quality assessment appears a relatively straight forward problem but it 

has been shown to be challenging to reliably determine whether two protein structures are 

similar enough for one to be representative of the other (Xiao Chen et al., 2021). This has led 

to a high degree of variation in the approaches used. 

Traditionally, MQA has been divided into single-model and clustering methods. In general, 

single-model methods employ a number of physical checks to assess each model’s structural 

integrity. These range from residue environment compatibility, e.g. hydrophobicity and solvent 

accessibility to structural features, such as secondary structure compatibility and assessment 

of backbone torsion angles (McGuffin, 2010). Users are then presented with scores showing 

how well each model conforms to hypothetical 3D norms. One problem with these plausibility 

checks is that a model may score well because it conforms to pre-programmed ideals, whereas 

another, which could be closer to the native structure, may score badly due to minor structural 

defects (Edmunds and McGuffin, 2021). In an aim to reduce these errors, consensus and 

clustering approaches were developed. Single-model consensus approaches operate as 

described above but include a number of diverse scoring algorithms which can then be 

combined to create a single consensus score. In reality, most consensus approaches perform 
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a clustering routine (McGuffin and Roche, 2010) where models are clustered on the basis of 

their conformational similarities determined by distance-based pairwise measurements. Here 

the distances between any two amino acids in one structure are directly compared to the 

distances between equivalent residues in all other models across the population. Models 

representative of large clusters are proposed to have a higher likelihood of resembling the 

native structure than remote models as correct conformations should occur repeatedly while 

errors are deemed to occur randomly. The obvious drawbacks with clustering are that accuracy 

will likely diminish with a decreasing model population and that all-against-all comparisons 

become computationally restrictive for very large populations. As a compromise, quasi-single-

model methods attempt to exploit the best of both worlds by creating a population of reference 

models which are then used to perform one-against-all comparisons with the target structure. 

These comparisons are less computationally expensive and quasi-single-model approaches 

such as the ModFOLD suite of programs (McGuffin, 2008) performed well in CASP tertiary 

structure EMA competitions (Chen and Siu, 2020) which have been running since CASP7 in 

2006. 

Latterly, approaches centring on the assessment of contact profile similarity, for example CAD-

score, VoroMQA (Olechnovic and Venclovas, 2017) and CDA-score (Maghrabi and McGuffin, 

2017), and those employing machine learning (ML) techniques have been developed. While 

early support vector machine (SVM) algorithms such as ProQ2 and 3 (Uziela et al., 2016) were 

successful, deep learning techniques using neural networks (NN), such as ProQ3D (Uziela et 

al., 2017), were able to flourish by using training datasets from a model pool which had 

significantly increased in quality following CASP13 (2018) (Chen and Siu, 2020). Finally, hybrid 

consensus programs such as ModFOLD7 and 8 (McGuffin et al., 2021), and MULTICOM 

(Cheng et al., 2023) combined single and multi-model techniques, contact information and 

trained neural networks to further improve performance. 

The systems described above were initially developed for tertiary structure MQA and, in 2018 

when this project was conceived, quaternary structure MQA was less well developed. At this 

time the modelling landscape was dominated by numerous docking programs scattered across 

a number of websites, for example FRODOCK (Garzon et al., 2009) was accessed from the 

InterEvDock webserver (Vavrusa M et al., 2016) and PatchDock (Duhovny et al., 2002) from 

the SymmDock (Schneidman-Duhovny et al., 2005) site, which required the user to supply fully 

modelled monomers as well as constraints and other technical data in some cases. The many 

programs without interactive webservers often additionally required the download and 

installation of stand-alone docking software. Estimations of model accuracy were mostly via 

docking or reranking scores like ZDOCK’s ZRANK score (Pierce and Weng, 2007), although 

there were two early attempts at objective ASE in the form of Swiss-model’s QSQE score 
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(Bertoni et al., 2017) and HADDOCK’s own accuracy score (Vangone et al., 2017). However, 

independent predicted MQA programs were largely absent with the exception of ProQDock 

(Basu and Wallner, 2016b), available as a download from 2016. Significant barriers to 

accessible and accurate predicted model quality assessment for quaternary structures 

therefore existed at this time. 

This chapter will focus on an analysis of our multimer MQA software performance over recent 

CASP experiments identifying both limitations in early versions and the identification of areas 

for development. The intention is to document our research and development leading up to the 

world-class performance of ModFOLDdock in the CASP15 EMA competition (2022), which is 

fully documented in Chapter 4. 

3.1.2 Scores for calculating the observed model quality by comparison with native 

structures 

Descriptions of commonly used scores for determining the observed quality of 3D models are 

given in Appendix 1, but the main features of RMSD, GDT_TS, TM-score, lDDT and QS-score 

will be repeated here for convenience as these scores are often referred to in this chapter. The 

descriptions include a three-point classification of protein model evaluation methods 

(Olechnovic et al., 2019) which categorises them as; either superposition-based or 

superposition-free; global or local in similarity and all atom or atom subset (e.g. Cα or Cβ 

atoms) in coverage. 

Root Mean Square Deviation (RMSD) (Arun et al., 1987) (superposition-based, global, Cα 

atoms only) calculates the sum of the squares of the distances between Cα atoms of the model 

and native structure. This value is then divided by the total number of residues and the square 

root calculated to give a normalised deviation. Scores closer to 0 are better. The main 

drawbacks with RMSD stem from each Cα atom being treated equally. A small area of 

deviation within the model, often a loop or terminal section, can quite heavily penalise an 

otherwise representative model, also the interpretation of both an acceptable deviation 

distance (e.g. 5Å) as well as the length of the superposition alignment may vary for chains of 

different length. For example, a lower RMSD score calculated over a 50% alignment may not 

be better than a higher score calculated over 75%. 

Global Distance Test, Total Score (GDT_TS) (Zemla, 2003) (superposition-based, global, Cα 

atoms only) represents the percentage of residues in the largest superimposable substructure 

falling within a predefined distance compared to the native structure. CASP uses the mean of 

four distances (1, 2, 4 and 8Å) to calculate the overall score on a 0-100 scale. It can be 

summarised as GDT TS (Mp, Mr) = (P1 + P2 + P4 + P8)/4 where Mp and Mr represent the 
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predicted and reference models respectively, and P1, P2, P4, and P8 represent the percentage 

of Cα atoms which can be superposed at each distance cut-off. 

The oligo version of the GDT score is very similar and uses the above distances to construct 

a rotational matrix (Kabsch, 1976) which can be manipulated to find the minimum super-

position RMSD before calculating the final score. The GDT attempts to improve upon RMSD 

by using the mean of all four cut-off distances to limit the effect of a small number of large 

errors however, it still suffers from length-dependent bias (Zhang and Skolnick, 2004) as a 

substructure alignment of only 60% within 8Å might be considered poor for a short protein of 

50 residues but be more favourably viewed for one of 500 residues. This is also an issue for 

the MaxSub score (Siew et al., 2000) which calculates a similar alignment substructure 

agreement but uses only one cut-off distance (often 3.5Å). 

The global score which is widely accepted to have solved the length dependence problem is 

TM-score (Zhang and Skolnick, 2004) which not only normalises by the whole length of the 

native structure (LN), but also calculates a length dependent distance cut-off (d0=1.24 

√LN −
3

15 − 1.8) meaning that TM-scores for chains of different lengths can be directly 

compared (N.B. the TM-score for multimers is calculated using the MM-align package). Using 

di as the distance between corresponding residues in the target and reference protein and with 

d0 and LN as defined above, the TM-score calculation can be summarised as follows. 

TM-score = max[1/LN ∑
1

1+(
𝑑𝑖

𝑑0(𝐿𝑁)
)

2] 

The local Distance Difference Test (lDDT) (superposition-free, local, all atom) is a 0-1 score 

expressing the fraction of contacts shared or conserved between a model and its native 

structure regardless of orientation. lDDT-oligo is the multimer equivalent which uses the QS-

score (see below) chain mapping routine to identify intra and inter-chain contacts prior to 

calculating the test score. The score penalises both deficiency of atoms and incorrect 

stoichiometry in the model structure and, while this is a good measure of, for example, domain 

or individual chain similarity, it gives little impression of the orientation of one domain to the 

next or one chain to another (for the oligo version). In some ways this could be considered an 

advantage given the multi-conformational nature of some proteins, but it can also be argued 

that it elicits limited information about the interface quality.  

Quaternary Structure (QS-score) (Bertoni et al., 2017) (superposition-based, local interface, 

Cβ atoms). A score representing the fraction of shared interface contacts within 12Å between 

model and reference structure once a mapping algorithm has identified multimer symmetry 

and equivalent chains. A 0–1 score where 0 represents different quaternary structures and 1 
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suggests very similar models. Higher scores therefore represent correct stoichiometry, 

symmetry, and a high fraction of conserved interface contacts. 

3.1.3 Scores used in the CASP13 version of ModFOLDdock 

Analyses in this chapter is concerned with ModFOLDdock score optimisation and the 

contributing scores are described below. ModFOLDdock can compute both predicted and 

observed scores, the latter being calculated compared to a known reference structure. There 

are six predicted scores (1 single model and 5 clustering scores); consisting of two DockQ 

scores; ProQDock and DockQJury, IA-score (ModFOLDIA), two QS-scores; QSscoreJury and 

QSscoreOfficialJury and an lDDT score (lDDTOfficialJury). ProQDock is the only single model 

score, all scores have a 0-1 range. 

The DockQ (Basu and Wallner, 2016a) routine creates a score based on the CAPRI (Critical 

Assessment of Prediction of Interactions) quality measures Fnat, LRMS and iRMS. Fnat is 

defined as the fraction of native interface contacts observed in the model, LRMS is the root 

mean square deviation (RMSD) of the chain denoted the ligand (smaller chain of a complex) 

after superposition of the larger chain and iRMS is the RMSD between interface residues seen 

in the native structure compared to the model. A 0 to 1 score, the range of DockQ scores 

matches the following CAPRI quality classes: < 0.23 (Incorrect), 0.23 – 0.49 (Acceptable), 0.49 

– 0.8 (Medium) and > 0.8 (High). ModFOLDdock calculates two DockQ scores; ProQDock 

(Basu and Wallner, 2016b) (single-model method) and a clustering-style DockQJury method. 

IA-score (ModFOLDIA). A proprietary score created by the McGuffin group. To calculate this 

score, interface residues are identified (defined as ≤5Å between non-Hydrogen atoms in 

different chains) and the minimum contact distance (Dmin) for each contacting residue is 

measured. Equivalent residues in all other models are then identified and the mean Dmin is 

then calculated across the sample. Si and Mean Si are then calculated as follows: 

Si= 1/(1+(Dmin /20)2) and Mean Si = 1/(1+(Mean Dmin /20)2).  

The IA score for each interface residue (i) is then the absolute difference of Si from the mean 

Si, i.e. IA = 1-|S i -MeanS i | 

The global predicted ModFOLDIA score for a model is the sum of the residue scores 

normalised by the maximum mean number of interface residues across all models for the same 

target. Scores of <1 represent variation from the mean. 

QSscoreJury (QSJ) and QSscoreOfficialJury (QSOJ) (see QS-score definition above and 

in Appendix 1). The difference between the two QS-scores is that QSJ uses in-house code to 

calculate the fraction of correctly modelled interface contacts normalised by the total predicted 



Chapter 3 

69 
 

contacts, whereas QSOJ employs OpenStructure (Biasini et al., 2013) to calculate QS-scores 

using the “ost compare-structures” action. 

lDDTOfficialJury (again, see the lDDT definition above and in Appendix 1) 

Scores suffixed ‘Jury’ are calculated by the 3D Jury method. The rationale being that the 

average of many low-energy conformations is closer to the native structure than the absolute 

lowest-scoring model. In terms of scores, this translates as pairwise comparisons between 

models on an all-against-all basis followed by the calculation of the mean scores. During the 

calculation, models are assigned a MaxSub score to calculate similarity by counting the 

numbers of pairs of Cα atoms that remain within 3.5A after optimal super positioning. 

Structures are considered dissimilar if the Cα atom count is less than 40. The final 3D-Jury 

score is the sum of similarity scores across model pairs divided by the number of model pairs 

(+1). Models representative of the mean value of the largest cluster are therefore selected. 

There are also five comparative ModFOLDdock observed scores, which require a reference or 

native structure for score calculation. All scores are calculated as described above (without 

clustering) or in Section 3.1.2 and are calculated on a 1-versus-all basis rather than the all-

verses-all used for predicted scores. The scores are IA-score, DockQ, QSscore_Calc, 

QsscoreOfficial and lDDTOfficial. 

3.1.4 Multimer MQA lacked accuracy at CASP13 and 14 

CASP13 took place in 2018 and included a quaternary or assembly modelling category which 

comprised 42 multimeric targets. The McGuffin group modelling methodology and subsequent 

performance is covered in detail in Chapter 2 along with some of the issues and shortcomings, 

which were revealed and targeted for improvement. This chapter will focus exclusively on the 

issues surrounding model quality assessment of the 30 models submitted. 

Selected scores for all homomeric targets modelled by our group are shown in Table 3.1. 

Additionally, images of the structures along with a table of scores showing models with the 

largest discrepancies between submitted and observed scores can be found in Appendix 4. 

The CASP scores presented in Table 3.1 were chosen to represent the quality of the models 

by both global relatedness and interface similarity to the native structure. GDT and lDDT are 

the two scores contributing to the global element of the overall Z-score calculation on which 

CASP13 group rankings were based (see Section 2.1.2) and QS-score represents a single 

overall score encompassing both global stoichiometry and interface geometry accuracy (Haas 

et al., 2018). These are presented along with the ModFOLDdock predicted Consensus6 score 

(an unweighted mean of all constituent predicted scores) and the retrospectively calculated 

Observed mean score. 
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Table 3.1. Quality assessment scores (predicted and observed) for McGuffin CASP13 assembly 

models. Rows labelled Submitted represent scores for the group’s top model submitted to CASP 

whereas those labelled Best were identified retrospectively by mean observed score. Most of the models 

labelled as Best were not selected for CASP submission and therefore have no accompanying CASP 

scores. Best model scores are not given for either T0996 as it was a manually created single model or 

for T1016 where the submitted model was also the best model. 

 
Target 

 
Model 

Predicted 
C6 score 

Observed 
mean score 

CASP scores 

GDT_TS RMSD lDDT QS-score 

T0960 Submitted 0.356 0.156 6.55 71.86 0.285 0.000 

 Best 0.343 0.328     

T0961 Submitted 0.370 0.441 23.70 31.07 0.689 0.000 

 Best 0.338 0.841     

T0963 Submitted 0.317 0.144 6.83 77.57 0.331 0.000 

 Best 0.243 0.291     

T0965 Submitted 0.369 0.436 32.75 15.19 0.582 0.200 

 Best 0.322 0.487     

T0966 Submitted 0.331 0.161 30.66 33.58 0.597 0.000 

 Best 0.202 0.29     

T0970 Submitted 0.379 0.207 20.71 14.31 0.351 0.000 

 Best 0.295 0.301     

T0973 Submitted 0.364 0.172 26.76 20.21 0.340 0.016 

 Best 0.260 0.293     

T0976 Submitted 0.378 0.166 27.05 25.88 0.570 0.001 

 Best 0.259 0.569     

T0977 Submitted 0.446 0.191 14.40 42.55 0.477 0.002 

 Best 0.179 0.468     

T0979 Submitted 0.367 0.256 14.17 47.54 0.314 0.000 

 Best 0.260 0.452     

T0981 Submitted 0.510 0.148 6.51 59.09 0.318 0.001 

 Best 0.156 0.371     

T0983 Submitted 0.399 0.287 45.04 21.14 0.751 0.000 

 Best 0.370 0.834     

T0984 Submitted 0.399 0.326 45.38 5.53 0.634 0.477 

 Best 0.372 0.604     

T0989 Submitted 0.462 0.125 8.88 34.53 0.250 0.014 

 Best 0.350 0.197     

T0991 Submitted 0.375 0.114 11.04 23.45 0.231 0.001 

 Best 0.277 0.199     

T0995 Submitted 0.733 0.225 10.40 33.28 0.590 0.018 

 Best 0.606 0.268     

T0996 Submitted NA NA 3.84 59.72 0.492 0.006 

        

T0997 Submitted 0.321 0.179 31.10 15.38 0.494 0.000 

 Best 0.273 0.261     

T0998 Submitted 0.341 0.08 8.21 29.04 0.165 0.000 

 Best 0.273 0.188     

T0999 Submitted 0.242 0.198 12.80 39.41 0.691 0.005 

 Best 0.173 0.274     

T1000 Submitted 0.284 0.158 23.86 23.47 0.568 0.000 

 Best 0.263 0.313     

T1001 Submitted 0.384 0.169 39.03 9.17 0.669 0.036 

 Best 0.291 0.263     

T1003 Submitted 0.331 0.228 42.58 27.02 0.643 0.000 

 Best 0.217 0.470     
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T1004 Submitted 0.378 0.246 16.56 53.19 0.527 0.003 

 Best 0.272 0.366     

T1006 Submitted 0.406 0.319 49.66 14.46 0.639 0.000 

 Best 0.361 0.865     

T1009 Submitted 0.285 0.270 32.39 16.37 0.575 0.004 

 Best 0.253 0.409     

T1010 Submitted 0.358 0.260 26.14 10.38 0.357 0.072 

 Best 0.285 0.382     

T1016 Submitted 0.458 0.667 76.73 2.50 0.686 0.693 

        

T1018 Submitted 0.354 0.212 39.89 14.62 0.637 0.000 

 Best 0.264 0.381     

T1020 Submitted 0.462 0.381 23.62 22.71 0.567 0.019 

 Best 0.306 0.621     

The data in Table 3.1 show that the best available model was selected for submission on only 

one occasion (T1016). In all but two other cases (T0961 and T0965), the submitted models 

were overpredicted compared to their observed scores with a mean overprediction value of 

0.146 (this difference was shown to be statistically significant using a Wilcoxon signed rank 

test in Chapter 2 (Table 2.2, P-value of 2.18x10-05). Calculating the score difference across all 

best available models, on the other hand, shows a mean underprediction of -0.128. Just as 

importantly, the observed scores for the best available models are on average 0.18 higher than 

that for the models selected for submission, with a maximum difference as high as 0.546 for 

target T1006, showing that models closer to the native structure were clearly available in the 

decoy population and should have been selected. This data, which was collected for an initial 

exploratory study into ModFOLDdock performance, is represented graphically in both Figure 

3.1, showing comparisons between ModFOLDdock predicted scores and the CASP scores 

listed in Table 3.1, and in Figure 3.2, showing the improved correlations obtained between 

equivalent ModFOLDdock observed scores and the same CASP scores. 
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Figure 3.1. Correlation of ModFOLDdock Consensus6 score with observed scores for McGuffin 

group CASP13 assembly models. Top left. With observed mean score. Top right. With CASP13 GDT 

TS score. Bottom left. With CASP13 lDDT-oligo. Bottom right. With CASP13 QS-Score. 

Figure 3.1 clearly shows that the ModFOLDdock predicted Consensus6 score does not 

correlate well with either our own observed mean score or the CASP scores shown, 

demonstrating that the unweighted ModFOLDdock Consensus6 score used in CASP13 was 

not a good model quality differentiation tool. Figure 3.2 shows much a stronger positive 

correlation between GDT and ModFOLDdock mean observed score, despite some spread in 

the scatter. Correlations with lDDT and QS-score are weaker, but still improved from their 

predicted counterparts. As ModFOLDdock uses the same contributing scores for both 

predicted and observed calculations, these differences suggest that there is potentially hidden 

predictive power within the ModFOLDdock score blend which could be improved with 

optimisation. 
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Figure 3.2. Correlation of mean observed score with CASP13 observed scores for McGuffin 

group CASP13 assembly models. Left. With GDT TS score. Middle. With lDDT score. Right. With 

QS-Score. 

CASP13 analysis was not performed until the latter part of 2019 and so it had not been possible 

for a full optimisation programme to be implemented prior to the start of CASP14 which took 

place during the first half of 2020. In an effort to reduce the disparity between predicted and 

observed performance the McGuffin MQA pipeline was updated to include the Voronoi 

tessellation program VoroMQA (Olechnovic and Venclovas, 2014) alongside ModFOLDdock 

scores. The VoroMQA score was combined with the ModFOLDdock Consensus6 score to 

create a hybrid unweighted mean of both scores which was used as the primary ranking score 

for CASP14 (see Appendix 7 for a short analysis of VoroMQA versus ProQDock on which this 

decision was based). CASP14 organisers had also updated their assessor Z-score calculation, 

replacing GDT TS with TM-score as the score representing global quality alongside lDDT-

oligo. Figures 3.3 and 3.4 reflect these changes in metrics and show plots equivalent to those 

in Figures 3.1 and 3.2 for McGuffin group CASP14 assembly models. Models were submitted 

for 14 out of 22 CASP14 targets. 
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Figure 3.3. The correlation of ModFOLDdock Consensus6 score with observed scores for 

McGuffin group CASP14 assembly models. Top left. With observed mean score. Top right. With 

CASP14 TM-score. Bottom left. With CASP14 lDDT-oligo. Bottom right. With CASP14 QS-Score. 

 

Figure 3.4. The correlation of mean observed score with CASP14 observed scores for McGuffin 

group CASP14 assembly models. Left. With TM-score. Middle. With lDDT-oligo score. Right. With 

QS-Score.  
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The plots in Figures 3.3 show similar trends for the CASP14 data to those seen for CASP13. 

ModFOLDdock predicted scores again correlated poorly with our own calculated observed 

score as well as CASP TM-score, lDDT-oligo and QS-score. Additionally, and again similarly 

to the CASP13 data, Figure 3.4 shows better correlations between the ModFOLDdock 

calculated observed score and the official CASP measures. 

The conclusions drawn from the results were that the correlations obtained for observed scores 

suggested that ModFOLDdock components represented a set of promising metrics when 

compared to observed global superposition scores, but that there was a large accuracy gap 

between the observed and predicted scores. We aimed to reduce this accuracy gap via a 

program of optimisation of the predicted score combination. This can be a challenging process 

as it is unclear which aspect of model quality best represents overall accuracy, hence the 

multiple scores quoted by CASP and CAPRI, for example. Therefore, in order to achieve 

reliable optimisation, it was vital that a suitable single or very few target scores be identified. 

3.1.5 Identifying a target score for optimisation is not immediately obvious. 

Following the success of the first four CASP experiments which focussed mainly on tertiary 

structure prediction, CAPRI (Critical Assessment or PRediction of Interactions) was set up in 

2001 (Lensink et al., 2018) as an additional experiment looking specifically at the prediction of 

protein interactions. Like CASP, CAPRI is a blind prediction competition using unpublished 

experimental structures which are supplied to participating groups. The expertise that CAPRI 

have accrued with quaternary structure models has led to the development of their own method 

for evaluating model quality compared to native structures, which relies on three related 

measures: Fnat, IRMS and iRMS. Fnat is the fraction of interfacial contacts expressed in the 

reference structure that are maintained or conserved in the model with a contact defined as 

any non-Hydrogen atom from either chain within 5Å. lRMS is a score representing the 

backbone RMSD of the (smaller) chain, deemed the ligand, within the complex upon 

superposition of the longer chain, deemed the receptor and iRMS is a score representing the 

RMSD of interfacial residues as measured by Cβ atoms with a distance cut-off of 10Å 

(sometimes 8Å) between the superposed native and predicted structures (Basu and Wallner, 

2016a). These are used to define four quality classes as follows: 

• Incorrect:  Fnat < 0.1 or both lRMS > 10 and iRMS > 4.0 

• Acceptable:  Fnat between 0.1 and 0.3 and either LRMS ≤ 10.0 or iRMS ≤ 4.0 or 

  Fnat ≥ 0.3 and both LRMS > 5.0 and iRMS > 2.0 

• Medium:  Fnat between 0.3 and 0.5 and either LRMS ≤ 5.0 or iRMS ≤ 2.0 or 

  Fnat ≥ 0.5 and both LRMS > 1.0 and iRMS > 1.0 

• High:   Fnat ≥ 0.5 and either LRMS ≤ 1.0 or iRMS ≤ 1.0 
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There are some problems, however, with using the CAPRI scoring routine as a target score 

for optimisation: firstly, that the quality classifications do not easily equate to a single numerical 

scale but, also, that the calculations for each class rely on knowledge of both the predicted 

and native structure. Nevertheless, Basu and Wallner (Basu and Wallner, 2016a) were able to 

adapt the routine into a combined numerical predictor called DockQ (described in Section 

3.1.3) which has proved to be a popular score due to its documented correlation with the 

CAPRI quality classifiers and has been chosen as a comparator score for a number of 

published studies (Johansson-Akhe and Wallner, 2022, Pozzati et al., 2022). DockQ was 

therefore initially considered as a potential target score. 

In 2014 CASP held the first of two joint CASP/CAPRI experiments. This represented CASP 

round 11 and CAPRI round 30 and led to a vital sharing of information and technologies 

between the two groups. A second joint experiment was held two years later in CASP12/ 

CAPRI-37 and this set the precedent for the inclusion of a blinded complex modelling category 

in all future CASP competitions. CASP organisers have routinely ranked participant groups 

based on combined calculated Z-scores across a number of measures. For example, in 

CASP12 group rankings for TBM domains were determined using the combined Z-scores of 

the following scores: GDT_HA + (SG+lDDT+CAD)/3 + ASE (see Appendix 1 for score 

definitions). In a similar vein, CASP assessors’ formula for assembly structures has been 

developed around the combined Z-scores of four methods and, like the CAPRI assessment, 

they comprise a mix of local interface and global similarity scores. The four individual scores 

are ICS (Interface Contact Score), often referred to as F1, IPS (Interface Patch Score), often 

referred to as Jaccard, lDDT-oligo (local Distance Difference Test for oligomers) and GDT_TS 

(up to CASP13) replaced by TM-score (CASP14 and above). See Appendix 1 for ICS and IPS 

definitions and calculation formulae. 

Sum Z-scores for overall group rankings were calculated as an unweighted mean of: 

Z-score(F1) + Z-score(Jaccard) + Z-score(lDDT-oligo.) + Z-score(GDT_TS) in CASP13 and  

Z-score(F1) + Z-score(Jaccard) + Z-score(lDDT-oligo.) + Z-score(TM-score) in CASP14. 

If a Z-score can be considered as simply a statistically normalised version of the raw score, it 

follows that the higher the value of the raw score the higher the value of the equivalent Z-score 

and therefore the higher the contribution of that Z-score to a groups’ ranking position. 

Considering this relationship between raw Z-score and successful modelling, the magnitude 

of these four numerical scores was considered an important indicator of model quality. Just as 

importantly, though, is that these scores can be used separately or in combination to assess 

different aspects of model quality. These scores represented alternative target scores to 

https://predictioncenter.org/casp12/doc/help.html#GDT_HA
https://predictioncenter.org/casp12/doc/help.html#sg_6_2
https://predictioncenter.org/casp12/doc/help.html#lddt
https://predictioncenter.org/casp12/doc/help.html#cad_score
https://predictioncenter.org/casp12/doc/help.html#ASE
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DockQ and to test whether combinations of these scores did indeed offer greater potential 

flexibility, three artificial scores were defined as:  

• Local score: a calculated unweighted mean of F1 and Jaccard, 

• Global score: a calculated unweighted mean of lDDT-oligo and GDT_TS/TM-score 

• Total score: a calculated unweighted mean of all four scores. 

Matrices of Pearson correlation coefficients were then produced to compare these scores with 

ModFOLDdock observed scores, which conveniently also included a DockQ score, using two 

datasets of CASP13 and 14 data (see 3.3 below for a description of the dataset).  

Figure 3.5. Pearson correlation matrices of CASP assessor scores with each ModFOLDdock 

observed score using CASP13 and 14 assembly models from all CASP groups. Left. CASP13 

data. Right. CASP14 data. 

From both matrices in Figure 3.5 it can be seen that DockQ has a strong correlation with 

QSscore_Official (0.90 for CASP13 and 0.92 for CASP14 data). However, the calculated Local 

score has a similarly strong linear relationship with both QS-scores (0.89/0.96 for CASP13 and 

0.81/0.90 for CASP14 data), in addition the calculated Global score has a strong correlation 

with lDDT_Official (0.9 CASP13 and 0.86 CASP14), which is not seen for DockQ. As a result, 

it was considered that using the in-house calculated CASP scores would indeed offer a greater 

flexibility in assessing aspects of both local and global model quality whereas DockQ might 

offer a more limited assessment. Also, the complexity of the input values for DockQ score gives 

it a high variability of contributing factors, that is to say that when optimising to DockQ there 

could be uncertainty whether improvements in agreement represented those in global 

superposition, chain orientation or interface contacts (all of which contribute to the overall 

DockQ score). Using separate target scores might give a clearer signal about the individual 

conformational contribution to improvement and so calculated Local, Global and Total scores 

were selected as target scores for ModFOLDdock optimisation. 
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3.2 Objectives 

The objective of this investigation was to identify the maximum level of agreement between 

the ModFOLDdock predicted scores and the three scores defined above (Local, Global and 

Total) with emphasis on the Local and Global scores. The primary outcome was that optimally 

combined ModFOLDdock scores would show improved agreement with the target scores 

beyond their consensus baseline level. This is described by the following two hypotheses:  

1. H0: There is no relationship between ModFOLDdock predicted scores and the 

combined CASP local quality measures ICS and IPS. H1. Individual ModFOLDdock 

predicted scores can be combined to form strong positive correlations with combined 

CASP local quality measures. 

2. H0: There is no relationship between ModFOLDdock predicted scores and the 

combined CASP global quality measures lDDT-oligo and either GDT TS (for CASP13 

data) or TM-score (for CASP14 data). H1. Individual ModFOLDdock predicted scores 

can be combined to form strong positive correlations with combined CASP global 

quality measures. 

The primary outcomes will be measured by Pearson correlation coefficient, ROC plot and 

associated AUC value with an additional Wilcoxon signed rank test performed on observed 

scores as a confirmatory measure. All of these should show improvement over consensus 

baseline values. 
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3.3 Materials and Methods 

To investigate the hypotheses, a dataset was created containing all CASP13 and 14 assembly 

models. CASP scores for all modelling groups were taken from the CASP raw data tables 

available at https://predictioncenter.org/casp13/results.cgi?view=targets&trtype=multimer and 

https://predictioncenter.org/casp14/results.cgi?view=targets&trtype=multimer. The dataset 

comprised all homomeric models of varying stoichiometries and difficulty ratings along with 

CASP assessor scores and, in total, comprised 3282 models over 44 CASP targets (T0960 – 

T1087). Models were rescored with ModFOLDdock on a per target basis and both predicted 

and observed scores were applied. Due to the high number of models, the rescoring process 

required a substantial time investment and it was decided to exclude all heteromeric targets 

from the dataset due to the high CPU demands experienced when predicting the scores of 

those with higher order stoichiometry. 

3.3.1 Objective data processing using an RSNNS Neural Network (NN) 

An objective method of investigation, and one that offered potential for revealing hidden 

relationships within the ModFOLDdock score population, was the creation and supervised 

training of a neural network. The R Stuttgart Neural Network Simulator library (RSNNS), 

(Bergmeir and Benitez, 2012) was used to create a neural network with the architecture of a 

simple feed-forward multi-layer perceptron (MLP) with one hidden layer, an example of which 

is depicted in Figure 3.6. This was chosen due to the flexibility of the program described in the 

above article and personal familiarity with R programming. The ROCR library was used to 

create Receiver Operator Characteristic (ROC) plots and corresponding Area Under the Curve 

(AUC) metrics to measure performance of the classification by True Positive Rate (TPR) over 

all thresholds of False Positive Rate (FPR). 

 

 

 

 

 

 

Figure 3.6. A schematic of a single hidden layer MLP NN with six inputs similar to that 

programmed in this study. 

The main pitfalls with neural networks are accidental over- and underfitting. Overfitting results 

when a powerful network learns the whole training dataset rather than the trends within the 

Inputs (scores) Hidden layer Output 

https://predictioncenter.org/casp13/results.cgi?view=targets&trtype=multimer
https://predictioncenter.org/casp14/results.cgi?view=targets&trtype=multimer
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data. This is often revealed when the predicted and true-label data are plotted and 

characterised by a very close fit between the distributions of the two variables with a high 

variability in the regression line matching the distribution. Underfitting results from poor 

learning and is often characterised by a poor fit to the data distribution and low variability 

(inappropriate straight line) in a regression plot. These problems can often be limited by using 

a recognised supervised learning technique coupled with hyperparameter optimisation. 

3.3.2 Ensuring fair score distribution - three-fold cross validation. 

Supervised training, when a target training value (referred to as a true label) is supplied, was 

undertaken using the 3-fold cross validation method. This approach attempts to control for 

problems that may be encountered when using a dataset that is simply split to form a single 

training and testing set. The most notable issue with this simple approach is that the data may 

not follow a random distribution in each set, meaning that one set could have more data in the 

correct or incorrect class or that the numerical magnitude is substantially uneven between the 

sets. These differences may lead to the NN performing well on the training dataset but poorly 

on the testing dataset (underfitting). Cross validation allows every data point in the whole 

dataset to be included fairly in both training and testing stages (an example R program is 

included in Appendix 14). 

To set up the cross-validation, CASP scores were first used to calculate the Local, Global and 

Total target scores as described at the end of Section 3.1.5. Three subset arrays were then 

defined containing models for different targets; subset1 contained 15 targets, subset2, 15 

targets and subset3, 14 targets. Targets were assigned using a random generator and resulted 

in the following subset populations. 

subset1 (T0999 T1038 T0977 T0997 T1083 T1054 T0989 T1016 T1048 T1003 T1087 T0984 

T0983 T1020 T0966) 

subset2 (T0963 T0995 T1001 T1018 T0976 T0998 T0965 T1061 T1062 T1010 T1070 T1078 

T1000 T1080 T1084) 

subset3 (T0970 T1006 T0961 T1032 T0973 T1034 T0960 T0979 T1004 T0981 T0996 T0991 

T1009 T0985) 

Test and training datasets were then created from these subset arrays for each of the CASP 

Global, Local, and Total scores. During programming, the Global score was tested first and so 

the process will be described for this score only but it was then repeated in exactly the same 

way for the Local and Total scores. 

• Training_set1 comprised data from subset 2 and 3 but no data from subset 1. 

• Training_set2 comprised data from subset 1 and 3 but no data from subset 2. 

• Training_set3 comprised data from subset 1 and 2 but no data from subset 3. 
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This organisation is represented in Figure 3.7. 

 

Figure 3.7 The model populations used for supervised MLP training. Those selected are in grey 

and those omitted are in white for each training and testing dataset. 

Adopting this strategy ensured there was no overlap of targets in individual training and testing 

datasets (the full list of targets in each can be found in Appendix 8). The data within each 

training and testing dataset was programmatically shuffled into a random order preventing any 

bias in score distribution. For each master dataset, two further datasets were then created 

which contained only input (ModFOLDdock scores) or output (Global score) scores. A binary 

cut-off was created to allow the calculation of true and false predictions, which were used to 

populate the confusion matrices and determine the TPR and FPR for the ROC calculations. 

To do this the predicted scores were compared to the target Global scores to calculate a 

difference. The difference value was then used to ensure scores were correctly rounded to 

one decimal place. Finally, the scores were converted to binary values using 0.5 as the cut-off 

value, i.e. score > 0.5=1 and score ≤ 0.5=0. 

 

Figure 3.8. A diagram showing the training and testing subsets used in 3-fold cross validation 

for MLP 1, 2 and 3. 

The neural networks, henceforth referred to as MLPs, were then created to predict on each 

testing set after supervised learning using each corresponding training set. Three separate 

MLPs were defined with different network weights, one for each training and testing set 

combination, i.e. MLP1 was trained on training set 1 and tested on testing dataset 1, MLP2 

was trained on training set 2 and tested on testing set 2 and MLP3 was trained on training set 

3 and tested on testing set 3 as shown in Figure 3.8.  

Training set 1 → subset 1 subset 2 subset 3 → score 1 

Training set 2 → subset 1 subset 2 subset 3 → score 2 

Training set 3 → subset 1 subset 2 subset 3 → score 3 

 Testing set 1 Testing set 2 Testing set 3  
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Initially the setup was performed using default hyperparameters (row 1 of Table 3.2 below, 

values in red) to obtain starting point weights. Before the full cross validation was run, 

hyperparameter optimisation was required to find the values giving the best performance 

(described in full in Section 3.3.4). Once this was complete, predictions from each of the three 

MLPs could be run using optimised hyperparameter settings. As defined in the Objectives 

section, Pearson correlation coefficients, ROC plots and AUC calculations were used as the 

primary outcome measures for improvement over baseline data. Additional data analysis was 

also conducted using the LM-style measures adjusted R-squared, residual standard error and 

maximum standardised residual values (the latter as a measure of the residual size in standard 

deviation units). These metrics were used to provide additional insight into the relationships 

within the regression models. All comparison values were calculated with reference to 

calculated CASP Local, Global or Total scores. 

3.3.3 Creating baseline and observed values for comparisons. 

Baseline values for Pearson correlations, ROC plots and AUC values were manually 

calculated using two different predictor values versus each of the three target scores. To do 

this, testing sets 1, 2 and 3 inputs were combined with testing sets 1, 2 and 3 outputs minus 

the NN training and MLP prediction stage. These baseline values could then be directly 

compared to post-training values to quantify any improvement. The two baseline predictor 

values were: 

1. The ModFOLDdock Consensus6 predicted score. 

2. The optimal combination of one or more individual ModFOLDdock predicted scores. 

A third set of values representing the optimal combination of one or more individual 

ModFOLDdock observed scores was also created. These scores would act as the theoretical 

maximum agreement that the predicted scores could reach. 

3.3.4 Fine-tuning the RSNNS MLPs – Hyperparameter optimisation. 

During setup with default hyperparameter values it was noticed that the lowest values for both 

individual score correlations and all score predictions was consistently achieved with 

comparisons to calculated Local score. This, then, appeared to be the most difficult score to 

predict (which seems reasonable due to the nature of predicting interfacial contacts). The Local 

score program was therefore used for initial hyperparameter testing.  

The four hyperparameters included in test variations were learning rate, maximum difference 

considered an error (Max, error), maximum iterations (Max It.) and number of hidden neurones 

(Size). Ten different variations of hyperparameters were created and the results were 

assessed by Pearson correlation coefficient and ROC AUC for each of the three MLPs. 
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Table 3.2. RSNNS MLP hyperparameter testing variations and performance results for local 

scores. Data was collected using the combined MLP 1, 2 and 3 training datasets. 

Hyperparameter 1 2 3 4 5 6 7 8 9 10 

Learning rate 0.01 0.05 0.01 0.1 0.01 0.01 0.01 0.01 0.01 0.01 

Max Diff. 0.01 0.01 0.05 0.1 0.01 0.01 0.01 0.01 0.01 0.01 

Max It. 100 100 100 100 200 100 100 100 200 500 

Size 4 4 4 4 4 5,4 5,4,2 4,2 4,2 4 

Performance 1 2 3 4 5 6 7 8 9 10 

MLP1 correlation 0.91 0.91 0.91 0.91 0.92 0.91 0.9 0.9 0.91 0.91 

MLP2 correlation 0.83 0.83 0.84 0.84 0.84 0.83 0.82 0.83 0.83 0.83 

MLP3 correlation 0.93 0.93 0.93 0.93 0.94 0.93 0.93 0.93 0.93 0.93 

All correlation 0.87 0.87 0.87 0.88 0.89 0.87 0.87 0.87 0.87 0.87 

MLP1 ROC AUC 0.988 0.989 0.988 0.988 0.989 0.989 0.988 0.989 0.989 0.989 

MLP2 ROC AUC 0.943 0.94 0.943 0.94 0.941 0.939 0.94 0.94 0.942 0.94 

MLP3 ROC AUC 0.989 0.989 0.99 0.99 0.99 0.99 0.989 0.99 0.989 0.989 

All ROC AUC 0.97 0.972 0.973 0.972 0.973 0.972 0.972 0.973 0.973 0.972 

 

Variation 5 (shaded grey) resulted in the overall best performance indicators (as calculated by 

a mean score across all performance values) and so hyperparameters were set to: learning 

rate = 0.01, Maximum Diff. = 0.01, Maximum It. = 200 and hidden nodes (Size) = 4 for the 

cross-validation process. This process was performed twice more for Global and Total target 

scores and very similar results were obtained. The Global target score program showed the 

best performance with the same hyperparameter settings listed above whereas the Total score 

program performed better with a Maximum It. of 100. 

3.3.5 Iterative and regression errors – checking for over and underfitting. 

Plots were created for iterative error with loss measured by the sum of squares error (SSE) 

across iterations. For these graphs the training loss is represented by the black line and the 

estimated validation loss, i.e. that which would be encountered on unseen data, is represented 

by the red line. For both, a smooth downward curve is desirable; a curve which remains high, 

particularly for the validation loss may represent underfitting, whereas an upward trend in either 

line may represent overfitting. The iterative error and regression error plots for MLP1, 2 and 3 

are shown below. 
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Figure 3.9 Iterative and regression error plots for the three RSNNS MLPs. Top. Iterative error for 

MLP1 (left), MLP2 (middle) and MLP3 (right). Bottom. Regression error for the same MLPs. Data was 

collected using the combined MLP 1, 2 and 3 training datasets. 

The iterative error plots in the top row of Figure 3.9 show that the MLPs have been well trained 

on each respective training dataset as shown by the smooth downward curve. All three plots 

show little further improvement and plateau after approximately 20 iterations which is indicative 

of each model reaching a point where further training iterations do not significantly improve its 

fit to the training data. This assumption is supported by the validation error line for MLPs 1 and 

3 which show decreases with no sustained increase. MLP2, however, does show evidence of 

underfitting with a larger difference between the training and validation data. To assess 

whether this was problematic, the regression error and supporting statistics for this MLP were 

checked. From the lower three graphs in Figure 3.9 it can be seen that MLP2 actually has the 

lowest deviation between ideal (black) and test (red) regression lines but that the data from 

training set 2 has the widest scatter with more outliers. A look at the accompanying regression 

statistics for this model reveals coefficients with an estimated intercept of 0.015582 and an 

estimate for the training set of 0.760812. This shows that when true values are 0, estimated 

predicted values would be 0.015582 and that each 1-unit change in the true value would lead 

to a 0.760812 change in predicted value. Additionally, an R-squared value of 0.6898 indicates 

a relatively good fit, explaining about 68.98% of the variance in the dependent variable. An F-

statistic, which measures the ratio of variance explained by regression to that explained by 

residuals, of 2591 with a p-value of 2x10-16 is highly significant, supporting the overall 
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significance of the MLP scores. In conclusion, MLP2 shows some deviation from ideals but 

predictions remain significant compared to actual values. 

3.4 Results and Discussion. 

3.4.1 The baseline values. 

3.4.1.1 Results for the Consensus6 predicted score.  

The following regression plots, ROC plots and AUC values shown in Figure 3.10 were 

produced using the combined training and testing datasets defined above but with no neural 

network training or prediction. These show the baseline relationships between the unweighted 

Consensus6 score with each of the calculated Local, Global and Total target scores. 

Comparisons of the primary outcome measures Pearson corelation and ROC AUC as well as 

additional LM-style regression metrics are presented in Table 3.3. 

Table 3.3. Comparisons of two primary outcome measures (Pearson coefficient and ROC AUC - 

in bold) and LM-style regression metrics for baseline ModFOLDdock Consensus6 scores. 

Comparison values are calculated with reference to calculated CASP Local, Global and Total target 

scores using the combined training datasets but with no MLP prediction. 

Regression statistic Local Global Total 

Pearson coefficient 0.80 0.765 0.835 

Adjusted R-squared 0.64 0.58 0.69 

Max. std. residual 4.54 3.15 3.58 

Residual standard error 0.13 0.12 0.104 

Statistical comparisons Local Global Total 

ROC AUC 0.966 0.875 0.948 
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Figure 3.10 Scatter plots and ROC plots for ModFOLDdock Consensus6 score versus all target 

scores for the combined training and testing datasets. Top. Local score. Middle. Global score. 

Bottom. Total score. ROC plot right-hand axis shows AUC values, coloured blue to red for low to high 

values respectively. Values on the plotted line represent the thresholds used to calculate the AUC. 
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The results appear to show promising levels of agreement between the unweighted consensus 

score and the three selected target scores as measured by Pearson correlation coefficient. 

However, a closer look at the accompanying standardised residual values and the statistical 

data in Table 3.3 reveals that the spread of the data is relatively high with all three distributions 

having maximum standardised residuals greater than 3.0 (values greater than 3.0 are 

generally considered as representing outliers (Lin et al., 2017)) as well as R-squared values 

ranging from 0.58 to 0.69 showing that between 31-42% of the variation in the plots cannot be 

accounted for by the relationship between the scores.  

3.4.1.2 The optimal combination of individual ModFOLDdock predicted scores.  

Table 3.4 shows the same regression and statistical comparisons as Table 3.3 but this time 

for the optimal agreement between target scores and either any single or any combination of 

the ModFOLDdock predicted scores. Table 3.4 and the graphical data in Figure 3.11 below 

show that optimal agreement was seen between QSscoreOfficialJury and the Local target 

score, the unweighted mean of lDDTOfficialJury and QSscoreOfficialJury and the Global target 

score and the unweighted mean of lDDTOfficialJury, QSscoreOfficialJury and DockQJury and 

the Total target score. 

Table 3.4. Comparisons of the two primary outcome measures (Pearson coefficient and ROC 

AUC - in bold) and LM-style regression metrics for baseline ModFOLDdock optimal score 

combinations. Comparison values are calculated with reference to CASP Local, Global and Total target 

scores using the combined training datasets but with no MLP prediction. 

Regression statistic Local Global Total 

Pearson coefficient 0.89 0.88 0.90 

Adjusted R-squared 0.78 0.77 0.80 

Max. std. residual 5.13 4.12 4.85 

Residual standard error 0.100 0.088 0.083 

Statistical comparisons Local Global Total 

ROC AUC 0.976 0.931 0.971 
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Figure 3.11 Scatter plots and ROC plots for optimal combinations of ModFOLDdock 

predicted scores versus all target scores for the combined training and testing datasets. Top. 

Local score. Middle. Global score. Bottom. Total score. ROC plot right-hand (y2) axis shows AUC 

values, coloured blue to red for low to high values respectively. Values on the plotted line represent 

the thresholds used to calculate the AUC. 
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Comparing this set of results to those in Table 3.3 and Figure 3.10 for the Consensus6 

baseline, it can be seen that better agreements between the target scores and either single or 

combinations of the ModFOLDdock predicted scores are achievable. This is true for the 

Pearson correlation coefficients, ROC AUC values and R-squared values. However, the 

maximum standardised residual values have increased compared with those for Consensus6 

scores suggesting that outliers may be fewer but possibly more extreme in value.  

3.4.1.3 Results for optimal combination of individual observed scores. 

Figure 3.12 shows the Pearson correlation coefficients obtained between the target scores and 

optimal combinations of observed scores similar to those in Figure 3.11. Table 3.5 summarises 

the baseline and observed correlation and ROC AUC primary outcome measures from 

sections 3.4.1.1 and 3.4.1.2 for easy comparison. Values obtained for observed scores should, 

in theory, represent the maximum agreement obtainable between target and predicted scores. 

Figure 3.12 Scatter plots for optimal combinations of observed scores versus all target scores 

for the combined datasets. Left. Local score. Middle. Global score. Right. Total score. 

Table 3.5 A comparison of Pearson correlation and ROC AUC primary outcome measures 

between ModFOLDdock baseline (Consensus6 and optimally combined) and observed scores 

and all three target scores. 

Target 
score 

 
ModFOLDdock predicted baseline score 

Correlation 
coefficient 

ROC 
AUC 

Local Consensus6 0.80 0.966 

Global Consensus6 0.77 0.875 

Total Consensus6 0.84 0.948 

 Optimally combined predicted baseline score   

Local QSscoreOfficialJury 0.89 0.977 

Global (lDDTOfficialJury + QSscoreOfficialJury) /2  0.88 0.931 

Total (lDDTOfficialJury + QSscoreOfficialJury + DockQJury) /3  0.90 0.971 

 Optimally combined observed scores   

Local (QSscoreOfficial + QSscore_Calc) /2 0.96 0.995 

Global lDDTOfficial 0.89 0.934 

Total (QSscoreOfficial + QSscore_Calc + lDDTOfficial) /3 0.96 0.988 
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The improvement in Pearson correlation and ROC AUC values between the Consesnsus6 

scores and those for manually created optimal combinations is summarised in Table 3.5 along 

with further improvements seen for the observed score combinations. This data suggests that 

improved agreements are possible with optimal combination of the ModFOLDdock scores and 

that there remains room for improvement up to a ceiling shown by the observed score 

combinations. It is therefore reasonable to postulate that a neural network may be able to 

improve optimal combinations beyond that possible manually. The key outcomes of a 

successful neural network training and prediction process are therefore a further increase in 

the Pearson correlation, ROC AUC and R-squared values, with a simultaneous reduction in 

the magnitude of the residual standard error and maximum standardised residual values. 
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3.4.2 Three-fold cross validation results

 

Figure 3.13 Scatter plots (left) and ROC plots for cross-validation of NN predictions of Local 

target score. Top. Results for MLP1. Middle. Results for MLP2. Bottom. Results for MLP3. ROC plot 

right-hand (y2) axis shows AUC values, coloured blue to red for low to high values respectively. Values 

on the plotted line represent the thresholds used to calculate the AUC. 

The plots in Figure 3.13, for Local target score, show that the two primary outcome measures, 

Pearson coefficient and ROC AUC values, have increased beyond those achieved for both 
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Consensus6 and optimal baseline values for MLP1 and 3. However, for MLP2, while the 

Pearson coefficient has increased beyond the Consensus6 baseline value of 0.80 it has not 

exceeded the optimal baseline value of 0.89. The AUC has also reduced from baseline of 

0.966 to 0.941. 

 

Figure 3.14 Scatter plots (left) and ROC plots (right) for cross-validation of NN predictions for 

Global target scores. Top. Results for MLP1. Middle. Results for MLP2. Bottom. Results for MLP3. 

ROC plot right-hand (y2) axis shows AUC values, coloured blue to red for low to high values respectively. 

Values on the plotted line represent the thresholds used to calculate the AUC. 
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Again, Figure 3.14 shows that the Pearson coefficient and ROC AUC score primary outcome 

measures for MLP1 and 3 have increased beyond baseline values for Global scores but, again 

the MLP2 Pearson coefficient has not exceeded the optimal combination baseline and the 

AUC value remains below both baseline values. 

 

Figure 3.15 Scatter plots (left) and ROC plots (right) for cross-validation of NN predictions for 

Total target scores. Top. Results for MLP1. Middle. Results for MLP2. Bottom. Results for MLP3. 

ROC plot right-hand (y2) axis shows AUC values, coloured blue to red for low to high values respectively. 

Values on the plotted line represent the thresholds used to calculate the AUC. 
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Similarly, Figure 3.15 shows that MLP1 and 3 have again improved from baseline for Total 

score but MLP2 shows no improvement in either Pearson coefficient or ROC AUC value. 

These results suggest that the NN is training successfully on training sets 1 and 3 and 

predicting accurately on their respective testing sets. However, either training or testing set 2 

appears to contain some data that is inhibiting successful training. Although all effort was made 

to ensure a random distribution of models across datasets, a closer inspection of the model 

populations reveals that models for targets T1061 (T5 phage tail subcomplex), T1070 

(Escherichia virus CBA120) and T1080 (Bdellovibrio bacteriovorus), all of which were rated 

“Difficult” by CASP and mentioned as being poorly modelled by the majority of groups in the 

CASP14 Assembly Assessment (Karaca, 2020), are included together in testing set 2. It is 

possible that MLP2 has not had sufficient training on similarly poorly modelled structures in 

training set 2 to make accurate predictions for these structures in testing set 2. 

3.4.3 Combining NN predictions to produce a final prediction result. 

To create the following plots the results from MLPs 1, 2 and 3 (trained on set 1, 2 or 3) were 

combined to predict the final scores. As before, the predictions were compared by Pearson 

correlation coefficient and ROC AUC values. 
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Figure 3.16 Scatter plots (left) and ROC plots (right) for predictions from the combined MLPs for 

each target score. Top. Local score. Middle. Global score. Bottom. Total score. ROC plot right-hand 

(y2) axis shows AUC values, coloured blue to red for low to high values respectively. Values on the 

plotted line represent the thresholds used to calculate the AUC. 
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To allow at-a-glance comparisons across all baseline, cross-validation and final prediction 

stages, the Pearson correlation coefficient and ROC AUC primary outcome measures from 

Figure 3.16 are collated with those from baseline and cross validation training in Table 3.6  

Table 3.6. A comparison of primary outcome measures Pearson coefficient and ROC AUC values 

for the three combined RSNNS MLPs for all 3 target scores. C6 = Consensus6 baseline, 

Max=optimal combinations baseline. 

Correlation 
score Measure 

Baseline Cross-validation Final 
Prediction C6 Max. MLP 1 MLP 2 MLP 3 

Local 
Pearson r 0.80 0.89 0.91 0.83 0.93 0.87 

ROC AUC 0.966 0.977 0.989 0.941 0.989 0.969 

Global 
Pearson r 0.77 0.88 0.92 0.81 0.94 0.88 

ROC AUC 0.875 0.931 0.947 0.869 0.970 0.927 

Total 
Pearson r 0.84 0.9 0.94 0.84 0.95 0.90 

ROC AUC 0.948 0.971 0.989 0.924 0.991 0.971 

 
Table 3.6 shows that the effect of NN training for all three target scores has resulted in an 

increase in the primary outcome measures of Pearson coefficient and ROC AUC compared to 

their Consensus6 baseline values. In comparison to the optimal combinations baseline, the 

data are slightly less clear. NN predictions have equalled the baseline Pearson coefficient 

value for the Global score (0.88) and both Pearson coefficient (0.90) and ROC AUC (0.971) 

values for the Total score. For Local score both Pearson coefficient and ROC AUC fell slightly 

short of the values achieved with the optimal combination baseline, as did ROC AUC for Global 

score. 

Table 3.7. A comparison of the LM-style regression measures for the three combined RSNNS 

MLPs for all 3 target scores. C6 = Consensus6 baseline, Max=optimal combinations baseline. 

Correlation 
score Measure 

Baseline Final 
Prediction C6 Max. 

Local 

Adjusted R-squared 0.64 0.78 0.756 

Max. standardised residual 4.54 5.13 4.87 

Residual standard error 0.13 0.100 0.107 

Global 

Adjusted R-squared 0.58 0.77 0.781 

Max. standardised residual 3.15 4.12 4.30 

Residual standard error 0.12 0.088 0.087 

Total 

Adjusted R-squared 0.69 0.80 0.804 

Max. standardised residual 3.58 4.85 4.35 

Residual standard error 0.104 0.083 0.084 

 
Table 3.7 shows the LM-style regression statistics for Consensus6 and optimal combination 

baselines as well as those for the final NN prediction. All R-squared values show an increase 

from the Consensus6 baseline suggesting a better fit to the regression line by the post-training 

values. R-squared values also increase over the optimal combination baseline values for 
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Global and Total scores. The maximum standardised residual values, however, have not 

returned to their Consensus6 baseline low and remain above the 3.0 outlier cut-off for all 

scores. The residual standard error scores have decreased from the Consensus6 baseline 

showing that the overall standard deviation of the regression residuals has reduced over this 

baseline but they are not noticeably reduced compared to the optimal combination baseline. 

In summary, when measured against the primary outcomes, the results showed that the 

Pearson correlation coefficient and ROC AUC values had improved over the Consensus6 

baseline values but were either slightly below or equal to those obtained for the optimal 

combination baseline. For the LM-style regression measures, the R-squared values improved 

beyond both baselines in two out of the three cases, and a simultaneous reduction in the 

magnitude of the residual standard error was seen in comparison with the Consensus6 

baseline. Maximum standardised residual values, in general, did not decrease from baseline. 

3.4.3.1 Results of a Wilcoxon signed rank test for significance. 

There are some conflicting results in both the primary outcome measures of Pearson 

correlation coefficient and ROC AUC as well as the LM-style regression scores. To resolve 

these and determine more objectively whether there was significant improvement after neural 

network training, a Wilcoxon signed rank test for significance was performed between both 

sets of baseline scores and the final NN predictions. To do this, the top scoring model for each 

CASP target was determined for each of the Consensus6 and optimal combination baselines 

as well as the NN predicted scores. The observed scores associated with each of these top-

ranked models were then compared using the Wilcoxon test. In this way a more objective 

measure of performance can be made by utilising observed scores which always have a higher 

degree of accuracy. The non-parametric Wilcoxon signed-rank test was chosen as scores 

were not normally distributed and a paired version was used, as each method predicts over 

the same target model set. The test was one-tailed to assess an increase in MPL predictions 

over both baselines. Top scoring models were sampled for each of the Local, Global and Total 

scores and the results are presented in Table 3.8. 
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Table 3.8. A comparison of observed scores for models ranked top (1) for each scoring method 

using a paired Wilcoxon signed rank test. Models were ranked by Local, Global and Total predicted 

scores and the equivalent associated observed scores were sampled for the test. P-values were 

calculated at the 95% confidence and significant values of ≤0.05 are in bold. 

Score Comparison P-value 

Local 
Consensus6 baseline versus final prediction 0.0146 

Optimal combination baseline versus final prediction 0.7532 

Global 
Consensus6 baseline versus final prediction 8.14x10-5 

Optimal combination baseline versus final prediction 0.2781 

Total 
Consensus6 baseline versus final prediction 2.36x10-4 

Optimal combination baseline versus final prediction 0.6025 

 
The results in Table 3.8 show more definitively that neural network (NN) training was able to 

significantly improve the prediction of all three scores when compared to the Consensus6 

baseline. However, the process was not able to significantly improve upon the predictions for 

the optimally combined baseline scores. This was not to say that no improvement was detected 

- for each predicted score the sum of observed scores was always highest for the MLP 

prediction - just that the improvement was only significant compared to the Consensus6 

baseline. 

3.5 Conclusions 

3.5.1 There is agreement between NN predictions and CASP assessor scores. 

This study has established that there are promising levels of agreement between 

ModFOLDdock predicted model quality scores and the CASP official observed scores which 

had not been seen before. The results suggest that by referencing the CASP Z-score 

calculations intended to assign overall group rankings, three useful target scores representing 

the Local, Global and Total quality of the protein models could be determined. Furthermore, 

results from Pearson correlation coefficients and R-squared values along with ROC AUC 

values confirmed that predictions can be improved by using weighted combinations of the 

scores. The same measures also confirm that similar improvement in all three predicted scores 

can be achieved by using the target scores to train a simple multi-layer perceptron (MLP) prior 

to prediction. Lastly, it has been shown that, according to a Wilcoxon signed rank test, MLP 

training significantly improves all three scores over the original Consensus6 score. 

It must also be noted that improvement over the optimal combination baseline was not 

consistently seen in Pearson correlation coefficient or ROC AUC values. Furthermore, one 

would have hoped to see a consistent improvement in the LM-style measures showing a better 

fit to the regression line for NN predictions, i.e. an increase in R-squared values (showing that 

a higher percentage of variance in one variable is explained by the other) and a decrease in 

both residual standard error and maximum standardised residual showing that the size of the 
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residuals is decreasing. Unfortunately, this was only seen in comparison to the Consensus6 

baseline. 

3.5.2 The lack of improvement beyond optimal combinations can be explained. 

It may be possible that the failure of the MLP training to significantly improve predictions over 

the optimally combined baseline was the product of the relatively small size of the dataset 

(while there are over 3000 models in the dataset, these models represent only 44 distinct 

targets) coupled with two further limitations inherent in the data. The first of these limitations is 

to do with the design of ModFOLDdock itself. Namely that there are relatively few (six) inputs 

from contributing scores which may produce a narrow bandwidth of data for the MLP to 

interpret. That is to say that there may not be enough variation within the six scores for an 

anomalous result in one single score to be sufficiently outweighed by the others. The second 

issue is to do with the reliability of the scores within the dataset. While Global and Total scores 

appear to have been well predicted by the MLP, Local score prediction has been less 

successful. A look at the mean values reveals that the mean Local score was only 0.21 

compared with 0.45 for Global score. This tendency for generally lower values throughout the 

dataset resulted in a more limited range of model quality for the MLP to interpret. The disparity 

in range between Local score (which is calculated from IPS and ICS score) and global score 

(calculated from TM-score and lDDT) is described in the official CASP14 assembly modelling 

review (Karaca, 2020) which described a low modelling success rate of 38% as measured by 

ICS compared to 86% as measured by TM-score (success was defined as scores >0.4). This 

was cited as evidence that the interface area was consistently less accurately modelled than 

the global fold in CASP14 models. This may explain the decreased performance of the MLP 

for Local score prediction. 

It is also likely that increasing both the size of the training dataset and the number of data 

points supplied to the NN would enhance accuracy. Both of these changes would also likely 

allow the size of the NN to be increased without fear of overfitting which would result in a 

deeper NN architecture. 

3.5.3 The data support the hypotheses. 

Notwithstanding these issues, the results obtained do support both hypotheses outlined in the 

objectives, i.e. that individual ModFOLDdock scores can indeed be combined to form strong 

positive correlations with combined CASP Local and Global quality measures. Further to this, 

the increase in agreement achieved between MLP predicted and target score for all scores is 

statistically significant compared to the original Consensus6 score. These results are important 

as they reveal that the simple consensus approach used up until this point was masking potent 

information hidden within the ModFOLDdock constituent scores. As such ModFOLDdock now 
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represents a MQAP with potential to reliably distinguish between native-like and decoy models 

of protein multimeric complexes. 

Post CASP15 (2022) the ModFOLDdock MQAP was made publicly available via the IntFOLD 

website (https://www.reading.ac.uk/bioinf/ModFOLDdock/). 

 

https://www.reading.ac.uk/bioinf/ModFOLDdock/
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CHAPTER 4 

Independent performance benchmarking of MultiFOLD and ModFOLDdock 

using CASP15 data
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4.1 Background 

If CASP14 was notable for the unprecedented increase in tertiary structure prediction accuracy 

achieved by AlphaFold, CASP15 was also notable for a definite shift in emphasis toward 

multimeric or quaternary structure modelling. This was demonstrated, not only by an increase 

in the number of assembly targets, up to 41 from only 22 in CASP14 (37 of which were shared 

CAPRI targets), but also by the inclusion of an estimation of model accuracy (EMA) category 

for quaternary structures for the first time. For the EMA competition, specific score definition 

and submission formats called QMODE1 and QMODE2 were required and the work described 

in this chapter builds upon the three new ModFOLDdock consensus scores (localscore, 

globalscore and totalscore) identified in Chapter 3. Part one of the results describes the 

correlations and ranking agreements achieved during the QMODE2 calibration process and 

part two documents the successful ModFOLDdock performance using data from the CASP15 

assessors’ official analysis. Also considered in a post-CASP analysis is the effect of enhanced 

ModFOLDdock accuracy on MultiFOLD modelling performance as well as comparisons to 

previous CASP competitions. 

4.1.1 ModFOLDdock updates 

In Section 3.1.4 the inclusion of a VoroMQA score into the CASP14 ModFOLDdock pipeline 

and its use in calculating an extended consensus score was explained. However, VoroMQA 

had not formally replaced ProQDock as a single-model component method within the program 

code itself. With the ModFOLDdock updates that were undertaken to meet CASP15 

requirements, this change was now also included. A second addition was made to the 

ModFOLDdock code base, and this was prompted by the positive results seen at CASP14 for 

the ModFOLD8 tertiary MQA server (McGuffin et al., 2021) and which were, in part, due to an 

increased contribution of the Contact Distance Agreement (CDA) score (Maghrabi and 

McGuffin, 2017). It was realised that it would be possible to create a multimeric version of the 

CDA score by direct sampling of the AlphaFold2 contact map created during the modelling 

process (see section 4.3.1 for the methodology) and so work was undertaken to add a 

multimeric CDA score as a seventh ModFOLDdock constituent score. Due to these updates 

and the additional EMA requirements, a second round of finer-grained ModFOLDdock 

optimisation was now required in addition to that already described in Chapter 3. This round is 

henceforth referred to as the “QMODE2 calibration”. 

4.1.2 The QMODE specifications 

The new EMA category was solely concerned with multimeric (assembly) models and required 

submissions of scores within 48 hours of the release of each model population. Competing 

groups were required to submit scores for all models (often in the region of 300) as they were 

released, on a target-by-target basis, in either of two formats: QMODE1 or QMODE2. Both 
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QMODE formats required a global score (SCORE), in a 0-1 range, as an estimate of the overall 

accuracy of the whole modelled complex. This score was mandatory. A second score 

(QSCORE), also with a 0-1 range, and intended to reflect the overall accuracy of the model 

interface, was specified for both QMODE formats, but its inclusion was optional. QMODE2 

additionally required a series of individual residue-level confidence scores (again with a range 

of 0-1). These were to be applied to all amino acid residues located on different chains where 

the Cβ to Cβ (Cα for Glycine) distance was measured as ≤8Å. These were intended to reflect 

the likelihood of the identified interface residues in the model matching the interface residues 

of the native structure. Figure 4.1 below shows an example of the required QMODE2 format 

and all ModFOLDdock variants were programmed to submit all three scores for QMODE2. The 

QMODE format description is available from: 

https://predictioncenter.org/casp15/index.cgi?page=format#QA. 

 

 

 

 

 

 

 

 

Figure 4.1. QMODE2 scoring requirements for the CASP15 EMA competition.  

Ringed in red: the global score (SCORE); ringed in blue: the overall interface score (QSCORE) and 

ringed in green: the residue-level confidence scores. Image taken from (Edmunds et al., 2023). 

 

4.1.3 TS format updates for modelling 

The only change in the modelling format was that the B-factor column, which is used as a 

residue accuracy measure, now needed to be populated with a predicted lDDT-like score 

(plDDT) with a range of 0-100 instead of a displacement estimate in Ångströms. This meant 

that higher scores would now signify a closer predicted agreement with the native structure 

rather than a more distant one.  

https://predictioncenter.org/casp15/index.cgi?page=format#QA
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4.2 Objectives 

The previous chapter described how the CASP14 “Global” and “Local” scores used for Z-score 

calculations took the form of unweighted means of lDDT-oligo plus TM-score and F1 or 

interface contact score (ICS) plus Jaccard coefficient or interface patch score (IPS) 

respectively. In the context of the CASP15 EMA scores, the CASP14 “Global” score could be 

considered broadly comparable to the CASP15 “SCORE” and the CASP14 “Local” score to 

the CASP15 “QSCORE”. It was reasoned then, that considering the demonstrated 

relationships of predicted localscore and globalscore to their observed Local and Global score 

counterparts, comparable projected ModFOLDdock score combinations might be used to 

generate the SCORE and QSCORE for the QMODE2 files. As a result, three main objectives 

and one secondary consideration were established for the QMODE2 calibration. 

The first objective was to identify the new maximum agreements which could be obtained 

between ModFOLDdock predicted scores, which now included the CDA and Voronota-JS 

derived VoroMQA scores as components, and the observed Global and Local scores as 

proxies for SCORE and QSCORE respectively. 

The second objective was to optimally combine predicted scores into an individual residue 

confidence score. 

The third objective was to modify the output of MultiFOLD and ModFOLDdock to report 

similarity or "plDDT" scores, scaled to 0-100, in the B-factor to conform with TS format 

requirements and to update all contact identification to 8Å to conform with EMA requirements, 

respectively. 

The secondary consideration was to explore the relationship between the combinations of 

predicted scores optimised for either correlation or ranking, i.e., are these the same or different 

optimal combinations of scores? 
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4.3 Materials and Methods 

4.3.1 Justifying a closer focus on interface contacts within ModFOLDdock 

In section 4.1 the CDA score’s promising contribution to ModFOLD8 performance was 

mentioned. There were, however, three further reasons for introducing an adaptation of this 

score as well as an updated version of the VoroMQA score into ModFOLDdock. Firstly, the 

poor ICS scores seen in CASP14 (Karaca, 2020) represent an obvious area for improvement 

and it was likely that a greater emphasis on interface contacts would be required to achieve 

modelling success in CASP15. Secondly, the CASP15 EMA criteria specifically required a 

residue-level confidence score for each amino acid calculated to be within the model interface. 

Scores which were directly based on interface or contact identification would therefore likely 

make valuable contributions to this score. Lastly, it was considered important to maintain some 

single-model methods in the MQA pipeline as they often have superior performance compared 

to clustering methods in cases when there are few variations between models or when only 

few models are considered (Elofsson et al., 2018). 

4.3.2 The multimer CDA score calculation 

This is an adaptation of the tertiary structure Contact Distance Agreement score (Maghrabi 

and McGuffin, 2017) which compares contact probabilities from contact prediction software 

such as DeepMetaPSICOV (Kandathil et al., 2019) to the Euclidean distance (measured in 

Ångströms) of equivalent atom pairs within a model. The CDA score is determined for any 

residue in the model having a Cβ-Cβ within 8Å and is calculated as: 

(∑p)/c 

where p is the predicted contact probability and c is the number of residue-residue contacts in 

the model where p has a value. The quaternary structure version operates using a similar 

concept except that the contact probability values are instead supplied by the AlphaFold2 

contact map which is conveniently generated during LocalColabFold (v1.0.0) modelling. The 

same logic is used for the multimeric calculation, and the CDA score for any residue with Cβ-

Cβ ≤ 8Å will again be (∑p)/c where p is the LocalColabFold contact map probability and c is 

the number of residue-residue contacts in the model where p has a value.  

4.3.3 The Voronota-js-VoroMQA score calculation 

This was calculated using the Voronota-JS JavaScript expansion of the core Voronota 

software (Olechnovic and Venclovas, 2014) called voronota-js-voromqa. As part of this release 

version, it was still possible to continue to calculate the overall VoroMQA score from the core 

software (now referred to as the Voro-light score) as well as an updated set of scores known 

as Voro-dark scores. Key among these were two scores referred to as “global” and “interface 

energy” in the Venclovas group’s description of their modelling and quality assessment 
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process for CASP13 (Olechnovic and Venclovas, 2017). These scores, along with an “interface 

atoms” score, are produced by the -inter-chain qualifier and are output as the full_dark_score 

and sel_energy scores which equate to the global and interface energy scores respectively. 

The Venclovas team used these to create a tournament scoring scenario, the format of which 

was to compare two models (A & B) to create a win, lose or draw result as follows: If A scores 

higher than B in all 3 scores, A wins; if any of the 3 scores disagree a draw is declared; if A 

scores lower than B in all 3 scores, A loses. The -tour-sort qualifier runs this function on an all-

against-all basis and assigns a final rank to each model. 

The Venclovas group have been consistently highly placed in CASP competitions and so it 

was considered a worthwhile time investment to re-score the full CASP13 and 14 dataset used 

in Chapter 3 with full Voro-Dark scores using the -interchain option as described above, as 

well as invoking the tournament scoring function for each individual target. Although the time-

consuming tournament scoring did not produce rankings well correlated with the observed 

scores (maximum Pearson coefficient 0.22), promising correlations were seen between the 

Voro full_dark_score and CASP lDDT-oligo score (Pearson coefficients of 0.77 and 0.71, with 

the CASP13 and CASP14 data, respectively). From this evidence it was concluded that, while 

it was not worthwhile formally recreating tournament scoring as part of our QA pipeline, the 

underlying Voronota-JS full_dark_score likely contained important, if slightly orthogonal, 

information about model interface quality. It was therefore decided that the full_dark_score 

using the -interchain --output-dark-scores command switches, representing the Voronoi 

tessellation score for interface atoms, would represent a useful additional interface-focussed 

score. 

4.3.4 A CASP14 dataset and manual comparisons were the best choices for the 

QMODE2 calibration 

There is a general consensus of opinion that models from the latest CASP experiment 

represent the most up-to-date modelling techniques and state-of-the-art technology 

(Kryshtafovych et al., 2019) and it is therefore preferable to use these data whenever possible. 

This viewpoint prompted a decision about the makeup of the dataset used for QMODE2 

calibration. On one hand was the undeniable validity of the above statement, which would 

favour using a CASP14 only dataset. On the other, was documented analysis showing that, in 

general, interfaces had not been well modelled in CASP14 (as explained in Chapter 3, section 

3.5.2), shown by a clear difference in mean ICS scores of 20.89 for CASP13 models compared 

to 6.58 for CASP14 models. In mitigation of this and in favour of CASP14 data are the three 

following points: firstly, the mean IPS scores were much more similar (0.31 versus 0.23) 

meaning that the identification of the interface patch was roughly equivalent over the two 

experiments but contact identification appeared to be lacking for CASP14 models. Secondly, 
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CASP14 had a much lower percentage of easy targets (6.9%) compared to 28.5% in CASP13, 

meaning that templates for the full assembly, including the interface, were less common for 

the later experiment. Lastly, CASP14 modelling still showed a shift towards higher scores in 

general compared to CASP13 (Karaca, 2020). One last but important point to consider was 

the likely CPU-load and time investment required to rescore all models with the updated 

version of ModFOLDdock. To re-score a combined CASP13/14 dataset with more than 3000 

models was considered too time intensive in light of the available window until the start of 

CASP15. Based on these considerations a CASP14 dataset was selected for QMODE2 

optimisation. The dataset comprised all models (2060) submitted by all groups for 17 CASP14 

targets T1032, T1034, T1038, T1048, T1054, T1062, T1070, T1078, T1080, T1083, T1084, 

T1087, H1036, H1045, H1047, H1065 and H1072. This set of targets represented the 

population for which native structures were available from the CASP prediction centre website 

at the time and for which ModFOLDdock predicted scores could be generated within a 24-hour 

timeframe. 

The manual comparison method used for this optimisation, mentioned in the section title and 

described in detail below, was also adopted in consideration of the time constraints. An ideal 

scenario would have seen the optimisation achieved by a further round of neural network 

training with an improved MLP design (see Chapter 6 for improvement details).  

Figure 4.2. A work flowchart of the QMODE2 manual ModFOLDdock optimisation process. Stage 

1 processes are coloured yellow, stage 2 are coloured green and stage 3 are coloured blue. Decision 

points 2 and 3 are coloured white. 
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Instead, the comparisons were performed on an iterative basis with each comparison stage 

informing decisions about the format of the next. As an objective MLP was not used, this 

exploratory method helped to reduce any bias resulting from the strong pre-existing 

relationships described in Chapter 3, notwithstanding their importance empirically or as a basis 

for this work. The workflow described in the following sections is summarised in the Figure 4.2 

flowchart for ease of interpretation. At each stage, comparisons were considered separately, 

either for correlation with observed scores or agreement with observed score ranking. 

4.3.5 Per target correlation comparisons (stage 1) 

For each target, Pearson correlation coefficients were calculated between all ModFOLDdock 

predicted scores and the following observed scores: both observed QS-scores in the 

ModFOLDdock pipeline (QSscore_Calc and QSscore_Official) and the CASP observed scores 

QS-glob, F1 (ICS), lDDT-oligo, Jaccard coefficient (IPS) and TM-score as well as the Local, 

Global and Total calculated target scores. The selection of these scores was justified as 

follows. The QS-score was a contributing component to all three ModFOLDdock score 

combinations which produced maximal baseline correlations and ROC AUC values with Local, 

Global and Total scores in Chapter 3. Therefore, all available QS-scores were included. The 

CASP scores ICS, lDDT-oligo, IPS and TM-score were chosen as they are the assessor scores 

for Z-score rankings which were used to calculate the target Local, Global and Total scores for 

the MLP training in Chapter 3. Results are presented as Pearson correlation matrices for 

individual targets in Figure 4.3 (heteromer targets) and Figures 4.4A and B (homomer targets). 

4.3.6 Per target top-rank comparisons (stage 1) 

Each model quality score (lDDT, QS-score etc.) assesses quality according to an individual 

calculation and therefore each of the ModFOLDdock component scores may select a different 

top-ranked model from a model pool. In cases where observed scores are available, one way 

to estimate the true quality of the top-ranked models is to use the sum of the observed scores 

for each model as a quality metric. On a per target basis, then, models were ranked in turn by 

each ModFOLDdock component score and the full set of associated observed scores (IAscore, 

DockQ, QSscore_Calc, QSscore_Official, lDDTOfficial, QSglob, F1, lDDT-oligo, Jaccard, TM-

score, Local, Global and Total) were summed to produce the quality metric (obs_sum). The 

full results table is included in Appendix 9 and data from 4.3.5 and 4.3.6 were fed into stage 2 

tables 4.1 and 4.2 respectively. 

4.3.7 Cross target comparisons (stage 2) 

To determine the overall relative strength of agreement between predicted and observed 

scores, the data from stage 1 processes were used to create two cross-target listings. Data 

from the stage 1 correlation matrices (4.3.5) was averaged across all targets to produce mean 
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cross-target correlation values. These were intended to display the average cross-target 

performance of each predicted score versus the key observed scores ICS, IPS, TM-score, 

lDDT-oligo, Local and Global scores in order to identify those scores likely to positively 

contribute to SCORE and QSCORE. Results are presented in Table 4.1 where the best 

average coefficients or those ≥ 0.5 are highlighted as potential contributing scores. Data from 

the stage 1 cumulative top rank scores (4.3.6) was summed across all targets to identify 

predicted scores with consistent high-ranking performance. Results are shown in Table 4.2. 

Highlighted data from Tables 4.1 and 4.2 were used to inform the initial score combination 

decisions as shown in Figure 4.2 decision box 2. 

4.3.8 Final comparisons calculated against QMODE score proxies (stage 3) 

For stage 3 comparisons, the target observed scores were limited to the Global and Local 

calculated scores. These were intended to act as proxies for the QMODE-defined SCORE 

(global fold) and QSCORE (global interface) scores respectively. For correlation data, all 

possible combinations of ModFOLDdock component scores were calculated and the mean 

correlation values were then compared with the two target scores. This meant that scores A to 

G, representing the seven component scores, were considered individually and in every 

combination and Peason, Spearman and Kendall correlation coefficients were calculated for 

each of these combinations against the two target scores. Table 4.3 shows the key results 

from this process. The cumulative top-rank data was treated similarly, with all possible 

combinations of ModFOLDdock component scores calculated but this time using the 

cumulative observed scores from each of the two target scores to estimate the quality in terms 

of global fold and global interface for each top-ranked model. Table 4.4 shows the key results. 

The number of combinations considered for the stage 3 processes was defined as follows. For 

7 scores there are a total of 7! =5040 permutations. However, as the order of the score 

combinations is unimportant the unique combinations are reduced according to the formula: 

C(n ,k)= 
𝑛!

𝑘!× (𝑛−𝑘)!
 Each term can be calculated and then summed, thus: 

C(7,1)= 
7!

1!×(7−1)!
 = 7  C(7,2)= 

7!

2!×(7−2)!
 = 21 

C(7,3)= 
7!

3!×(7−3)!
 = 35  C(7,4)= 

7!

4!×(7−4)!
 = 35 

C(7,5)= 
7!

5!×(7−5)!
 = 21  C(7,6)= 

7!

6!×(7−6)!
 = 7 C(7,7)= 

7!

7!×(7−7)!
 = 1 

Adding them up: 7+21+35+35+21+7+1=127 unique combinations. Full results tables can be 

found in Appendix 10.  



Chapter 4 

111 
 

4.4 Results and Discussion 

The results are presented in two parts. Part 1 describes the results obtained from the QMODE2 

calibration processes just described. Part 2 uses the official independent assessment data 

from CASP15 to show benchmarking comparisons of ModFOLDdock and MultiFOLD 

performance against other state-of-the-art MQA and modelling software. 

4.4.1 Part 1. Results for QMODE2 calibration 

Decision point 2. Results from the correlation experiments are shown in Figures 4.3, 4.4A and 

4.4B and summarised in Table 4.1. These suggested that the component scores most likely to 

contribute positively to the global fold score (SCORE, labelled as Global in Table 4.1) were 

lDDTOfficialJury and VoroMQA with Pearson correlation coefficients of 0.79 and 0.59 

respectively. The next highest coefficient was for QSscoreOfficialJury with a value of 0.47 

which is only slightly below the 0.5 threshold defined for a moderate correlation. These 

component scores are highlighted in bold in Table 4.1 and confirm the results from the MLP 

training and prediction process in Chapter 3 which also selected lDDTOfficialJury and 

QSscoreOfficialJury as global score contributors. These latest results showed that the newly 

added Voronoi-JS VoroMQA score should be also considered for inclusion. 

Similarly, scores likely to contribute positively to the global interface score (QSCORE, labelled 

as Local in Table 4.1) were QSscoreOfficialJury, DockQJury and QSscoreJury, with 

coefficients of 0.58, 0.46 and 0.42 respectively (also in bold in Table 4.1). These results 

partially confirmed those seen in Chapter 3 where the highest correlation coefficient was 

achieved by QSscoreOfficialJury alone. However, these results suggested that DockQJury and 

QSscoreJury should also be considered at this stage. 

Results from the top-rank calculations shown in Table 4.2 showed that the most likely scores 

contributing to ranking by global fold score (SCORE) were QSscoreOfficialJury, VoroMQA 

and lDDTOfficialJury, which were in agreement with the correlation results. However, results 

for the global interface score (QSCORE) agreed with only two of the three scores suggested 

by the correlation results. DockQJury and QSscoreOfficialJury were again selected but 

VoroMQA was preferred to QSscoreJury. 

At this stage it was clear that the ranking results in Table 4.2 were the result of different score 

combinations than the correlation results in Table 4.1. In line with the secondary consideration 

defined in the objectives, it was decided that ranking and correlation results should be 

considered separately. Thus, the main decision point 2 outcome was that two versions of 

ModFOLDdock would be considered separately: ModFOLDdock for best correlation with 

observed scores and ModFOLDdockR for best agreement with observed score ranking. 
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Figure 4.3. Pearson correlation matrices for CASP14 heteromer targets. From top left to right; H1036, H1045, H1047, H1065 and H1072. ModFOLDdock 

component scores versus single and calculated observed scores. Blank cells equate to cases where scores could not be calculated, usually due to size issues. 

1
12 
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Figure 4.4A. Pearson correlation matrices for CASP14 homomer targets. From top left to right; T1032, T1034, T1038, T1048, T1054 and T1062. 

ModFOLDdock component scores versus single and calculated observed scores. 

1
13 
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Figure 4.4B. Pearson correlation matrices for CASP14 homomer targets. From top left to right; T1070, T1078, T1080, T1083, T1084 and T1087. 

ModFOLDdock component scores versus single and calculated observed scores. Again, blank cells equate to uncalculated scores. 

1
14 
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Table 4.1. Mean correlations for ModFOLDdock component scores (top row) versus key observed scores (left column). Created from individual per 

target Pearson coefficients. Values in bold are the highest component score values achieved for observed Global and Local observed scores (also highlighted). 

 

 

 

 

 

 

 

 

 

Table 4.2. Cumulative observed scores (top row) for models top-ranked by ModFOLDdock component scores (left column). Scores are rounded to 2 

decimal places (1 for F1) for display purposes. Table is ordered by decreasing sum of all scores (obs_sum) with the top three highlighted. 

Scores are created from individual per target top-rank tables where the observed scores are collected for each of the top-ranked models for each component 

score, these are then summed across all targets to give rankings per observed score and an overall (summed) ranking (obs_sum). 

Score ModFOLDIA DockQJury QSscoreJury QSscoreOfficialJury lDDTOfficialJury VoroMQA CDA score 

QSscore_Calc 0.52375 0.4025 0.410625 0.51125 0.253125 0.1975 0.041875 

QSscore_Official 0.293125 0.443125 0.366875 0.553125 0.226875 0.19938 -0.05313 

QSglob 0.28875 0.44125 0.37375 0.580625 0.244375 0.21063 -0.04625 

F1 (ICS) 0.275625 0.438125 0.32375 0.538125 0.21125 0.20563 -0.06938 

lDDT-oligo 0.253125 0.24125 0.2825 0.376875 0.93 0.68563 0.498125 

Jaccard (IPS) 0.42125 0.4225 0.43875 0.5475 0.268125 0.25375 0.01125 

TM-score 0.321875 0.363125 0.411875 0.481875 0.544375 0.40813 0.223125 

Local 0.38125 0.46625 0.424375 0.585625 0.269375 0.2525 -0.01313 

Global 0.3225 0.33 0.3875 0.47375 0.799375 0.595 0.395 

Total 0.386875 0.41875 0.446875 0.565625 0.6325 0.50313 0.2425 

Score IAscore DockQ QSscore_ 

Calc 

QSscore_ 

Official 

lDDT_ 

Official 

QS 

Glob 

F1 lDDT 

oligo 

Jaccard 

Coeff. 

TM-
score 

Local Global Total obs_sum 

QSscoreOfficialJury 11.35 3.36 9.05 5.57 8.28 5.57 431.8 8.71 6.51 8.84 5.41 8.77 7.09 520.32 

DockQJury 10.30 3.58 7.76 5.34 7.20 4.81 427.6 7.46 5.82 8.28 5.05 7.87 6.46 507.52 

VoroMQA 10.31 2.74 7.43 4.39 8.03 4.08 381.9 8.55 5.92 8.23 4.87 8.39 6.63 461.46 

lDDTOfficialJury 9.51 2.52 7.17 4.01 9.44 3.96 314.3 9.44 4.96 8.18 4.05 8.81 6.43 392.77 

ModFOLDIA 11.90 1.99 8.38 3.38 7.67 3.22 274.0 7.98 5.79 7.63 4.27 7.81 6.04 350.05 

QSscoreJury 5.80 1.40 4.67 2.99 7.74 2.99 222.2 7.70 4.18 7.87 3.20 7.79 5.49 284.02 

CDA score 7.65 0.99 5.27 1.23 7.02 1.23 90.9 7.02 3.54 6.70 2.22 6.86 4.45 145.15 

1
15 
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Decision point 3. Tables 4.3 and 4.4 show truncated versions of the final all-against-all 

comparison tables described in stage 3 (again see Appendix 10 for the full version). Pearson, 

Spearman and Kendall correlation coefficients were calculated for the relationships, but in 

cases where individual coefficient scores disagreed, it was considered important to assess the 

data in terms of a linear relationship, taking into account proportionality of increase as well as 

direction and also treating outliers more strictly. It was therefore decided that the Pearson r 

value would be given preference over the Spearman rho or Kendall tau values when making 

final decisions on combinations (see Appendix 11 for the relevant coefficient formulae). 

Table 4.3. Selected rows showing correlations between the observed global interface and Global 

fold scores and all combinations of the 7 component scores. A=ModFOLDIA, B=DockQJury, C= 

QSscoreJury, D=QSscoreOfficialJury, E=lDDTOfficialJury, F=voronota-js-voromqa, G=CDA-score. Top 

scores in each column in bold. Combinations used for ModFOLDdock scores are highlighted in green. 

Adapted from (Edmunds et al., 2023). 

Component 
combination 

Interface (QSCORE) Fold (SCORE) 

Pearson Spearman Kendall Pearson Spearman Kendall 

B+E 0.6221383 0.4662672 0.3370294 0.897708 0.8895329 0.7178826 

D+E 0.7678932 0.6149145 0.451429 0.8886437 0.8864162 0.7204588 

B+D 0.9005487 0.8246907 0.6435966 0.6419381 0.5309702 0.3781203 

D 0.8904282 0.8440979 0.6601409 0.6263819 0.5468863 0.389032 

 

Table 4.4. Selected cumulative observed global interface and Global fold scores of top ranked 

models for every combination of the 7 component scores. (A-G are as described for table 4.3). Top 

scores in each column are shown in bold. ModFOLDdockR score combinations are highlighted in green. 

Adapted from (Edmunds et al., 2023). 

Component combination Interface (QSCORE) Fold (SCORE) 

C+E+F 4.962 9.145 

B+D+F 5.6105 8.479 

 

From the ModFOLDdock global fold (SCORE) results in Table 4.3, it was clear that the 

combination of DockQJury (B) and lDDTOfficialJury (E) was optimal, having the highest 

correlation value in two out of the three correlation coefficients. The global interface (QSCORE) 

results were not so clear showing a disagreement between the Pearson and both the 

Spearman and Kendall coefficients. Nevertheless, the convention of prioritising the Pearson 

linear relationship was adhered to and the DockQJury (B) and QSscoreOfficialJury (D) 

combination was selected. 

The results for maximum ranking scores in Table 4.4 were easier to interpret as there was only 

one top score for each category. For the final stage 3 decision, the following score 

combinations were selected: 
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ModFOLDdock: -  SCORE: mean of DockQJury + lDDTOfficialJury.  

QSCORE: mean of DockQJury and QSscoreOfficialJury 

ModFOLDdockR: - SCORE: mean of QSscoreJury + lDDTOfficialJury + VoroMQA. 

   QSCORE: mean of DockQJury + QSscoreOfficialJury + VoroMQA. 

As a final validation exercise, the new methods for ModFOLDdock and ModFOLDdockR were 

benchmarked against all component scores, with the results presented visually as bar plots in 

Figure 4.5. The comparative performance showed that for both the correlations in A and B and 

the top-rank observed totals in C and D, the combinations identified in Tables 4.3 and 4.4 out-

performed all individual component scores. 

Figure 4.5. Bar plots showing benchmarking results for ModFOLDdock and ModFOLDdockR 

methods (in green) against all component scores (in blue). A. Pearson coefficients between 

calculated observed Local score and ModFOLDdock QSCORE calculated from B+D (in green) and 

component scores (in blue). B. Pearson correlations between calculated observed Global score and 

ModFOLDdock SCORE calculated from B+E (in green) and component scores (in blue). C. Cumulative 

observed Local score for top-ranked models identified by ModFOLDdockR calculated QSCORE (in 

green) and component scores (in blue). D. Cumulative observed Global score for top-ranked models 

identified by ModFOLDdockR calculated SCORE (in green) and component scores (in blue). The error 

bars show +/- the standard error in the observed scores of the top ranked models for each method. 

Reproduced from (Edmunds et al., 2023). 

In terms of the local residue confidence scores required for QMODE2, the most appropriate 

component scores to consider were ModFOLDIA, VoroMQA and CDA, each of which had been 

designed specifically to consider interface residues and output both global and per-residue 

scores as default. Unlike the two global scores (SCORE and QSCORE), a full testing 

programme was not undertaken for the per residue scores prior to CASP15. The main reason 

for this was the lack of a precedent for such scores and uncertainty over the exact method of 
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assessment that CASP may use to differentiate between representative and non-

representative scores. Instead, the following basic logic was used to assign residue-level 

confidence scores. ModFOLDIA is the McGuffin group’s own score designed for protein 

quaternary structure assessment in CASP12 with interface residue level scores, and so it was 

appropriate that this should form the residue-level score for the ModFOLDdock variant. Indeed 

ModFOLDIA was the only entry in the CASP12 Interface Accuracy (IA) assessment 

(https://predictioncenter.org/casp12/index.cgi?page=format), so this previous abandoned 

format represents the only precedent. As ModFOLDdockR was designed for ranking and the 

VoroMQA score had featured in both ranking scores (see Table 4.4) and considering its 

success in the Venclovas team model selection method mentioned in Section 4.3.1, it was 

decided that the ranking residue-level score should be a mean of both ModFOLDIA and 

VoroMQA local scores. Lastly, the other interface residue level score available was the CDA 

score, which was included in the ModFOLDdockS variant (see below). 

The last stage of the QMODE2 optimisation stemmed from the uncertainty over the size and 

complexity of the models which would make up the CASP15 EMA competition. As very large 

models could lead to memory and CPU issues during all-against-all calculations, a quasi-

single-model variant of ModFOLDdock was developed which utilised the MultiFOLD pipeline 

to construct 30 reference models against which comparison calculations were performed.  

In summary, the ModFOLDdock global scores were optimised for positive linear Pearson 

correlation with observed scores, calculated using elements of the CASP14 assessors' 

formulae. The ModFOLDdockR global scores were optimised by rank, meaning that the 

predicted top-ranked model should always have the highest observed score. Finally, 

ModFOLDdockS used a quasi-single model approach were each model was compared to 30 

reference models built using the MultiFOLD modelling pipeline. The scores contributing to the 

global fold score (SCORE), the overall interface accuracy score (QSCORE) and the individual 

residue-level confidence scores for all three variants are shown in Table 4.5 and in the 

organogram in Figure 4.6. 

Table 4.5. Individual ModFOLDdock component scores contributing to each CASP15 QMODE2 

score for each ModFOLDdock variant. Reproduced from (Edmunds et al., 2023). 

Variant Fold Interface Residue 

ModFOLDdock DockQJury, 

lDDTOfficialJury 

DockQJury, 

QSscoreOfficialJury 

ModFOLDIA 

ModFOLDdockR QSscoreJury, 

lDDTOfficialJury, 

voronota-js-voromqa 

DockQJury, 

QSscoreOfficialJury, 

voronota-js-voromqa 

voronota-js-voromqa, 

ModFOLDIA 

ModFOLDdockS DockQJury, 

lDDTOfficialJury 

DockQJury, 

QSscoreOfficialJury 

CDA, voronota-js-

voromqa, ModFOLDIA 

 

https://predictioncenter.org/casp12/index.cgi?page=format
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Figure 4.6. A flowchart showing the constituent component methods and their contributions to 

the consensus and residue confidence scores for the three ModFOLDdock variants.  

A. ModFOLDdock, B. ModFOLDdockR, C. ModFOLDdockS. Green coloured boxes indicate the scores 

that contribute directly to the overall global fold (SCORE), overall interface (QSCORE) and individual 

residue confidence scores. Reproduced from (Edmunds et al., 2023). 
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4.4.2 Part 2. CASP15 official rankings and results 

4.4.2.1 ModFOLDdock achieved peak performance across EMA categories 

All three ModFOLDdock variants were successful in submitting predictions across all CASP 

targets for all three scores in the QMODE2 category. This is shown by the three bar charts in 

Figure 4.7 which display a 100% prediction rate for ModFOLDdock variants alongside the rates 

achieved by other EMA software. Only those meeting the 80% threshold were considered 

successful EMA predictors and included in further CASP analysis. In the local residue 

confidence score category (right-hand plot in Figure 4.7), ModFOLDdock variants were notable 

as the only methods to continue to achieve a 100% prediction rate, showing a reliability and 

consistency across the full range of targets, not achieved by any other method. 

The bar plots in Figure 4.8 display the official CASP15 rankings of EMA software meeting the 

80% threshold using official assessor quality measures. These plots show that assessors 

placed at least one of the ModFOLDdock variants first or second within each of the three EMA 

categories (disregarding the placing of the CASP assembly consensus (AC) method). For ease 

of interpretation, the ranks achieved by all ModFOLDdock variants for each QMODE2 score 

shown in Figure 4.8, are summarised in Table 4.6.  

For reference, the assembly consensus benchmark score (AC) is an all-against-all predicted 

accuracy score (S) calculated for each residue (i) in each model (x). It is the average per-

residue score (𝑓) calculated using all models (y) in the target population (N) as reference. For 

SCORE, 𝑓 is the oligo-GDT TS score and for QSCORE, 𝑓 is the QS-score (calculated using 

the QS-align tool25). 

𝑆(𝑥) =
1

(𝑁 − 1)
∑ 𝑓(𝑥𝑖, 𝑦)

𝑦!=𝑥

 

Table 4.6. A summary of ModFOLDdock variant rankings in CASP15 QMODE2 EMA categories. 

Numbers with an asterix signify rankings with the assembly consensus (AC) disregarded (to convert 

these to the actual ranks shown in Figure 4.8 add 1 to the score shown in the table). 

 

 

 

 

 

 

This independently verified performance (SCORE rank 2, QSCORE rank 1 and Local residue 

rank 2) showed that the ModFOLDdock methods were  among the top few  EMA programs at 

CASP15 (arguably the best overall if ranks are averaged over the three categories, which 

Variant Rank /23 
(SCORE) 

Rank /18 
(QSCORE) 

Rank /13  
(residue) 

ModFOLDdock 2 2* 6 

ModFOLDdockR 4* 1* 2 

ModFOLDdockS 12* 5* 3 
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would be legitimate as each variant is available to users from the ModFOLDdock server 

webpage). On this basis the McGuffin group was invited to present the ModFOLDdock method 

at the CASP15 conference and also to publish the work described in this chapter in the Proteins 

2023 special edition, as listed on the chapter title page. 

4.4.2.2 ModFOLDdock local per-residue scores showed unique qualities 

The local residue scores in the right-hand bar plot in Figure 4.8 were calculated using a 

combination of per-residue lDDT, CAD, PatchQS and PatchDockQ scores (definitions of the 

patch scores and the local residue Z-score calculations can be found in Appendix 12). Of the 

four scores, lDDT and CAD were used to assess accuracy in terms of relative neighbourhood 

atom positions, while PatchQS and PatchDockQ were primarily used to assess inter-chain 

positioning (Studer, Tauriello and Schwede, 2023), meaning that these latter two scores were 

important in correctly identifying native-like patches of interface residues. Figure 4.8 shows 

that GuijinLab-RocketX out-performed the ModFOLDdockR and S variants (second and third 

places respectively) according to the calculated summed per-residue score with 

ModFOLDdock ranked in only sixth place. However, a closer look at the contributing scores 

shown in the Figure 4.8 plot shows that almost all of the ModFOLDdock score is composed of 

the two patch scores suggesting a particular sensitivity to interface patch identification. Indeed, 

when the emphasis of the analysis was changed to focus on the recognition of native interface 

residues by averaged ROC AUC scores, the ModFOLDdock variant moved from sixth to first 

place. The results of this aspect of the CASP analysis are presented in Figure 4.9 showing the 

recalculated ranks with ModFOLDdock at the top. 

Further to this, a final piece of CASP analysis focussed specifically on the antibody-antigen 

binding interactions described by heteromers H1166, H1167 and H1168. Results for this 

analysis are shown in Figure 4.10 and, again, showed that ModFOLDdock variants performed 

well in the overall ranking derived from all four lDDT, CAD, PatchQS and PatchDockQ scores 

(shown in panel A), where they were once again second only to GuijinLab-RocketX. Again, 

and in line with the reranking described above, when the ROC AUC scores were considered 

in isolation, all ModFOLDdock variants were shown to out-perform all other methods (panel 

B). 

The ModFOLDdock methods, therefore, seem particularly well suited to the task of identifying 

patches of native-like interface residues and it appears that this ability becomes enhanced 

when applied to antibody-antigen interactions. This could be a unique property of the 

ModFOLDdock method. 

 



Chapter 4 

122 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7. CASP15 EMA software meeting the 80% threshold. Left. For global fold SCORE. Middle. For global interface QSCORE. Right. For local residue 

confidence scores. AC is the assembly consensus baseline (described in Section 4.4.2.1). Reproduced from (Studer et al., 2023). 

 
Figure 4.8. CASP15 EMA rankings. Left. Overall ranking by Z-score for global fold SCORE where ranking score (RSscore) = RS(TM-score) + RS(Oligo-

GDTTS). Middle. Similar Z-score rankings for global interface QSCORE, RSqscore=RS(QS-score)+RS(DockQ-wave). Right. Local interface accuracy based 

on Z-scores where RSLocal=RS(lDDT)+RS(CAD)+RS(PatchQS)+RS(PatchDockQ). AC is the assembly consensus baseline. For SCORE and QSCORE, P= 

Pearson r, S=Spearman rho, R=ROC AUC and L=Loss. DockQ-wave is the DockQ weighted average used to score higher-order complexes. Reproduced from 

(Studer et al., 2023).
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Figure 4.9. CASP15 EMA local interface residue identification ranking calculated by averaged 

ROC AUC scores. Showing identification of model interface residues matching those in the native 

structure. Reproduced from (Studer et al., 2023). 

 
Figure 4.10. CASP15 EMA antibody/antigen local score evaluation. A. A similar analysis to Figure 

4.8 (right hand graph for local) but for the antibody-antigen targets H1166, H1167 and H1168 only. B. 

Identification of interface residues similar to Figure 4.9 but, again, only for the three antibody/antigen 

targets. Reproduced from (Studer et al., 2023). 

 
4.4.2.3 Multimer modelling analysis. 

A brief analysis of modelling performance is included here as a comparison with the analysis 

described in Chapter 2 (and briefly in Chapter 3) for CASP13 and 14 modelling. It is also 

pertinent to ModFOLDdock performance due to the inclusion of the method within the CASP15 

modelling pipeline as described in Figure 2.15 (Chapter 2). Table 4.7 shows selected CASP15 

modelling group rankings by sum Z-score (which continues to be calculated as Z-score(ICS) 

+ Z-score(IPS) + Z-score(lDDT-oligo) + Z-score(TM-score)).  

As can be seen from Table 4.7, both the McGuffin (manual) and MultiFOLD (server) groups 

(both of which used the MultiFOLD/ModFOLDdock pipeline) were placed above the naïve 

NBIS-AF2-Multimer group, which acted as the AlphaFold2-Multimer modelling baseline, as 

well as the ColabFold group (which used the same base software), in all categories with the 

exception of TBM/FM for MultiFOLD. This is reflected in the CASP15 official assembly results 

(Burcu Ozden et al., 2023) and supports the two hypotheses from Chapter 2 that the 

MultiFOLD pipeline, in general, added value to the baseline modelling capabilities of 

AlphaFold2-Multimer. 
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Table 4.7. CASP15 assembly group rankings (Sum Z-score >0.0, for rank1 models) by category. 

Groups selected are unmodified AFM/ColabFold users or those with the highest prediction accuracy 

(Yang) or top TBM method (PEZY). Model total is given in column headings, Z-scores in brackets. AF2 

baseline (NBIS-AF2-Multimer) is shaded. Data is for multimers, sorted by overall rank and taken from 

the CASP results page (https://predictioncenter.org/casp15/). 

                   Category 
Group 

TBM  
Rank /82 

TBM/FM 
Rank /85 

FM  
Rank /68 

Overall 
Rank /87 

Yang (439) 7 (7.35) 5 (14.25) 11 (2.56) 5 (24.17) 

McGuffin (manual) 15 (6.01) 10 (11.01) 8 (2.86) 9 (19.89) 

PEZY Foldings (278) 4 (7.73) 27 (7.96) 16 (2.24) 13 (17.94) 

MultiFOLD (server) 12 (6.22) 37 (5.71) 3 (3.29) 23 (15.23) 

ColabFold (446) 30 (4.73) 33 (6.15) 18 (1.87) 29 (12.79) 

NBIS-AF2-Multimer 20 (5.37) 32 (6.24) 38 (0.64) 30 (12.27) 

Maximum Z-score 11.63 21.28 4.93 35.29 

Across the modelling categories, it can be seen that both the McGuffin and MultiFOLD groups 

fared roughly equally for TBM models (Z-scores of 6.01 and 6.22 respectively), whereas 

human processing appeared to have a large positive effect on TBM/FM models (Z-score of 

11.01 compared to 5.71 for the server models). However, this effect was reversed for FM 

models where the MultiFOLD server was more accurate (Z-score of 3.29 compared to 2.86 for 

the McGuffin group). As the base models would have been very similar, this suggests that the 

objective model selection process carried out by the server version was superior to human 

interpretation for FM models.  

Results for the same categories were also available for the groups’ best-scoring models rather 

than models designated model 1. The data for groups’ best models is shown in Table 4.8. 

Table 4.8. Selected CASP15 assembly group rankings (Sum Z-score >0.0, for models rated best) 

by category. Equivalent to the data shown in Table 4.7 but for groups’ best-rated models. Data is, 

again, for multimers, sorted by overall rank and taken from the CASP results page 

(https://predictioncenter.org/casp15/). 

                   Category 
Group 

TBM  
Rank /82 

TBM/FM 
Rank /85 

FM 
Rank /68 

Overall 
Rank /87 

PEZY Foldings (278) 1 (17.20) 17 (10.97) 20 (2.63) 4 (30.07) 

Yang (439) 6 (8.90) 5 (16.92) 14 (3.88) 6 (28.60) 

McGuffin (manual) 18 (6.25) 10 (12.79) 15 (3.69) 13 (22.73) 

ColabFold (446) 17 (6.57) 20 (10.60) 23 (2.44) 19 (18.38) 

MultiFOLD (server) 21 (6.00) 37 (7.33) 10 (4.11) 26 (17.42) 

NBIS-AF2-Multimer 24 (5.94) 33 (8.64) 48 (1.04) 30 (14.89) 

Maximum Z-score 17.20 28.41 6.49 41.80 

 

An interesting trend was noticed on comparison of the data across the two tables. Both the 

McGuffin and MultiFOLD groups were ranked higher for rank 1 models than for their best 

models, except in the TBM/FM category where there was no difference in rank. This is best 

illustrated by the MultiFOLD comparative ranks; 12/21 (TBM), 37/37 (TBM/FM), 3/10 (FM) and 

23/26 (overall) with rank 1 model ranks shown in bold. This effect could be observed for the 

https://predictioncenter.org/casp15/
https://predictioncenter.org/casp15/
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NBIS-AF2-Multimer group and Yang group (included as the group having the highest 

prediction accuracy (Studer et al., 2023) and also as a AF2-Multimer user) but arguably not as 

strongly as for MultiFOLD. Notably, ColabFold, which was rated highest for self-evaluation 

metrics in the same CASP publication by Studer et al., did not show this effect. 

Group 278 (PEZY Foldings) was included in the tables as it was the top modelling group in the 

TBM category when the best model is selected. This group exemplified the expected trend in 

rank performance across the two tables, that at least some ranks would improve when a 

group’s best models are considered. This is because the chances of detecting a good model 

increases with a widened model population, i.e. groups will not always select the best model 

as their rank 1 model. Rather than being penalised by limiting assessment to rank 1 models, 

the McGuffin and particularly the MultiFOLD group benefitted from this. It follows that the rate 

of identification of the best model as the rank 1 model must have been better than average for 

McGuffin and MultiFOLD groups. It is possible that this is an effect of the AlphaFold2-Multimer 

ranking methods (plDDT and pTM) due to data from the NBIS-AF2-Multimer group but, if this 

were the cause, is it curious that the effect was not also seen for the ColabFold group. It is 

possible, therefore, that one strength of the MultiFOLD modelling pipeline was the selection of 

the best model by ModFOLDdock variants. If correct, this would represent significant progress 

in addressing the issues described in previous chapters surrounding CASP13 and 14 model 

selection. 

4.4.2.4 Comparative analysis across CASP competitions. 

This section attempts to mirror the analysis caried out for CASP13 and 14 modelling in Chapter 

3 by listing ModFOLDdockR predicted scores (this variant was used as it was the primary 

ranking tool in the MultiFOLD pipeline) alongside CASP assessor scores and an observed 

ModFOLDdock score as an additional a measure of predicted score accuracy. The column 

titled “Difference between rank 1 and this model” was calculated as an absolute difference 

between the calculated observed score for the “best” model and the predicted rank 1 model; 

this demonstrates the high performance of model ranking and selection.  

Table 4.9. A summary of group 462 (MultiFOLD) CASP15 multimer models rated as “best models” 

in the CASP results tables. CASP Global and Local scores have been artificially calculated to give 

comparisons with ModFOLDdockR predicted scores. The difference is calculated as an absolute 

difference between Total score for the model scored “best” by CASP and the rank 1 model from the 

MultiFOLD pipeline (a score of 0.0 denotes the best model was selected as rank 1). 

Target Stoichiometry 

MFDR Predicted CASP calculated Difference between 
rank 1 and this model Global Local Global Local 

H1106 A1B1 0.7073 0.5700 0.831 0.663 0.005 

H1111 A9B9C9 0.4857 0.4191 0.077 0.0395 0.0 

H1114 A4B8C8 0.6020 0.4664 0.2285 0.178 NA 

H1129 A1B1 0.6008 0.1978 0.65 0.0315 0.0 



Chapter 4 

126 
 

H1134 A1B1 0.6893 0.5769 0.9295 0.797 0.286 

H1135 A9B3 0.7166 0.3899 0.59 0.347 0.0 

H1137 A1-I1 0.6638 0.5112 0.6475 0.735 0.0 

H1140 A1B1 0.6438 0.2373 0.681 0.2485 0.0 

H1141 A1B1 0.6996 0.4355 0.7395 0.1655 0.054 

H1142 A1B1 0.6815 0.2876 0.6985 0.07 0.005 

H1143 A1B1 0.7691 0.5741 0.9045 0.776 0.008 

H1144 A1B1 0.7057 0.4187 0.7545 0.3255 0.028 

H1151 A1B1 0.7668 0.6466 0.8985 0.8065 0.0003 

H1157 A1B1 0.7929 0.6413 0.756 0.7 0.0004 

H1166 A1B1C1 0.8066 0.5322 0.7795 0.5845 0.0 

H1167 A1B1C1 0.8106 0.5527 0.772 0.6185 0.0 

H1168 A1B1C1 0.8317 0.7195 0.901 0.828 0.0037 

H1171 A6B1 0.4235 0.2972 0.66 0.6085 0.0001 

H1172 A6B2 0.4337 0.2847 0.8395 0.5345 0.006 

H1185 A1B1C1D1 0.8186 0.7384 0.8825 0.664 NA 

T1109 A2 0.8502 0.7849 0.8705 0.4765 0.0 

T1110 A2 0.8653 0.8295 0.955 0.931 0.004 

T1113 A2 0.8133 0.7309 0.9105 0.886 0.005 

T1115 A16 0.4882 0.2907 0.064 0.0385 0.0 

T1121 A2 0.8183 0.6560 0.6565 0.3425 0.006 

T1123 A2 0.3052 0.1794 0.203 0.02 0.002 

T1124 A2 0.8345 0.7252 0.9155 0.865 0.0 

T1127 A2 0.8506 0.8335 0.932 0.8865 0.001 

T1132 A6 0.7771 0.4746 0.9645 0.879 0.0 

T1153 A2 0.7833 0.6394 0.8945 0.748 0.019 

T1160 A2 0.8341 0.7794 0.3945 0.336 0.0 

T1161 A2 0.7572 0.6363 0.5615 0.563 0.01 

T1170 A6 0.6788 0.2878 0.8665 0.6335 0.002 

T1173 A3 0.6393 0.3666 0.4065 0.4265 0.017 

T1174 A3 0.7355 0.4521 0.6725 0.724 0.0 

T1176 A8 0.5245 0.2210 0.298 0.015 0.01 

T1178 A2 0.1749 0 0.4325 0 0.0007 

T1179 A2 0.3732 0.1820 0.188 0.0595 0.009 

T1181 A3 0.8269 0.5660 0.805 0.5125 0.03 

T1187 A2 0.6035 0.2767 0.8985 0.855 0.0 

T1192 A10 0.6966 0.3120 0.7655 0.553 NA 

Chapter 3 scores for CASP13 modelling (Table 3.1) showed that the best model was selected 

as the rank 1 only once (1/30 or 3.3%). This number has increased to 14/42 (or 33.3%) for 

CASP15 modelling (shown as a difference of 0.0) – a tenfold increase. Further to this, the 

difference in observed scores between best and rank 1 models reduced from an average of 

0.18 and a maximum of 0.546 for CASP13 data to an average only 0.013 and a maximum of 

0.286 for CASP15 data. However, it must be pointed out that a maximum difference of this 

magnitude was only seen for one target with the next highest value of 0.054, an order of 

magnitude lower. The scatter plots in Figure 4.11 include Pearson correlation coefficients 

between ModFOLDdockR predicted and calculated CASP Local, Global, and Total scores for 

the models in Table 4.9. For comparison with Chapter 3, Figure 3.1, TM-score, QS-score and 

IDDT-oligo correlations are also included in Figure 4.12. The plots in both figures, although 
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comparative rather than exact duplicates, show an increase in accuracy in CASP15 compared 

to CASP13 modelling. Specifically, the correlation coefficients between ModFOLDdock 

predicted scores and CASP assessor scores, shown in Figure 4.12, have increased from            

-0.07, 0.1 and 0.16 seen in Figure 3.1, for GDT TS, lDDT-oligo and QS-score respectively, to 

0.63, 0.64 and 0.61 for the equivalent TM-score, lDDT-oligo and QS-score respectively. 

 
Figure 4.11. Pearson correlations for ModFOLDdockR predicted scores and equivalents 

calculated from CASP15 scores for group 462 (MultiFOLD) multimer models. A. ModFOLDdockR 

calculated Local score versus a Local score calculated from CASP15 ICS and IPS scores. B. 

ModFOLDdockR calculated Global score versus a Global score calculated from CASP15 TM-score and 

lDDT-oligo score. C. ModFOLDdockR calculated Total score versus an equivalent score calculated from 

all 4 CASP15 scores. 

Figure 4.12. Pearson correlations between ModFOLDdockR predicted scores and individual 

CASP15 scores for group 462 (MultiFOLD) multimer models. A. ModFOLDdockR calculated Global 

score versus CASP15 lDDT-oligo score. B. ModFOLDdockR calculated Global score versus CASP15 

TM-score. C. ModFOLDdockR calculated Local score versus CASP15 QS-score. 

Figure 4.13A shows similar plots for the ModFOLDdockR variant but extending the data to 

include models from all CASP15 groups. In these plots homomer targets T1160 and T1161 

and heteromer targets H1171 and H1172 have been excluded. These form two pairings of the 

five alternative ensemble structures (T1109-T1110, T1158 series, T1160-T1161, H1171-

T1172 and T1195-T1197) which were added to the CASP15 experiment as specific modelling 

challenges. T1160 and T1161 represent two different conformations of very similar sequences 

resulting from the effect of five mutations and different crystallisation conditions, whereas 

H1171 and H1172 are two alternative functional conformations of the Holiday junction complex 

(Kryshtafovych et al., 2023). When included, these targets produced clear outliers affecting the 



Chapter 4 

128 
 

correlations, although the T1109-T1110 pair appeared to be well scored (native structures for 

T1195-T1197 were not available at the time of analysis).  

Figure 4.13A. Scatter plots with Pearson correlations for ModFOLDdockR predicted scores and 

equivalents calculated from CASP15 scores for all group models. A. ModFOLDdockR calculated 

Local score versus a Local score calculated from CASP15 ICS and IPS scores. B. ModFOLDdockR 

calculated Global score versus a Global score calculated from CASP15 TM-score and lDDT-oligo score. 

C. ModFOLDdockR calculated Total score versus an equivalent score calculated from all 4 CASP15 

scores. D. ModFOLDdockR calculated Global score versus CASP15 lDDT-oligo score. E. 

ModFOLDdockR calculated Global score versus CASP15 TM-score. F. ModFOLDdockR calculated 

Local score versus CASP15 QS-score. 

However, upon removal, strong Pearson correlation coefficients of 0.81 and 0.72 with 

calculated Local and Global observed scores respectively were revealed, increased from 0.66 

and 0.65 obtained with the group 462 (MultiFOLD) models alone. Slightly better coefficients of 

0.81 and 0.76 for the same scores are also shown for the ModFOLDdock variant in Figure 

4.13B, with increases likely due to this variant’s development for correlation with observed 

scores. 
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Figure 4.13B. Scatter plots with Pearson correlations for ModFOLDdock predicted scores and 

equivalents calculated from CASP15 scores (all groups’ models). A. ModFOLDdock calculated 

Local score versus a Local score calculated from CASP15 ICS and IPS scores. B. ModFOLDdock 

calculated Global score versus a Global score calculated from CASP15 TM-score and lDDT-oligo score. 

C. ModFOLDdock calculated Total score versus an equivalent score calculated from all 4 CASP15 

scores. D. ModFOLDdock calculated Global score versus CASP15 lDDT-oligo score. E. ModFOLDdock 

calculated Global score versus CASP15 TM-score. F. ModFOLDdock calculated Local score versus 

CASP15 QS-score. 

ModFOLDdockS scores are added for comparison in Figure 4.13C and show slightly weaker 

correlations, likely due to the modelling challenges of some larger targets which would impact 

on the quality and variety of decoy structures used for the clustering algorithms. 
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Figure 4.13C. Scatter plots with Pearson correlations for ModFOLDdockS predicted scores and 

equivalents calculated from CASP15 scores (all groups’ models). A. ModFOLDdockS calculated 

Local score versus a Local score calculated from CASP15 ICS and IPS scores. B. ModFOLDdockS 

calculated Global score versus a Global score calculated from CASP15 TM-score and lDDT-oligo score. 

C. ModFOLDdockS calculated Total score versus an equivalent score calculated from all 4 CASP15 

scores. D. ModFOLDdockS calculated Global score versus CASP15 lDDT-oligo score. E. 

ModFOLDdockS calculated Global score versus CASP15 TM-score. F. ModFOLDdockS calculated 

Local score versus CASP15 QS-score. 

Finally Figure 4.14 shows similar data to that in Figures 4.13A and B but differentiated into 

separate homomer and heteromer plots. This shows that all ModFOLDdock variants maintain 

comparative performance across protein targets with differing stoichiometry and symmetry. 

Targets T1160, T1161, H1171 and H1172 were again omitted as explained previously. 
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Figure 4.14. Scatter plots with Pearson R value between predicted Global (fold) score and 

observed lDDT-oligo for all ModFOLDdock variants for CASP15 models from all groups. Top. 

Plots for homomeric targets for ModFOLDdock (left), ModFOLDdockR (middle) and ModFOLDdockS 

(right). Bottom. The plots between the same variables in the same left to right variant order for all 

heteromeric targets. Image taken from (Edmunds et al., 2023). 

 

4.5 Conclusions 

This chapter described the QMODE2 optimisation process of the hybrid consensus MQA 

programs ModFOLDdock, ModFOLDdockR and ModFOLDdockS. For ModFOLDdock, 

component quality scores were combined to achieve optimal correlations with observed target 

scores. For ModFOLDdockR, the quality scores were combined for optimal ranking, meaning 

that the models with the highest observed scores were ranked top. ModFOLDdockS was 

additionally developed to address the limitations of clustering-based systems by employing a 

quasi-single model approach using MultiFOLD reference models. In all cases the target 

observed scores used for optimisation were those identified in Chapter 3. The data in this 

chapter resulted from blind independent benchmarking of the ModFOLDdock MQA method 

and showed that its performance was competitive with the best methods available in 2022. 

The official results from the CASP15 competition suggest that the three ModFOLDdock 

variants could reasonably be described as having performed better than any other single 

method in the new multimer EMA category. Specifically, being alone in achieving a 100% 

prediction rate across all three EMA categories as well as achieving best rankings of 2nd place 

in the SCORE category (ModFOLDdock), 1st place in the QSCORE category 
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(ModFOLDdockR) and 2nd place in the local interface residue category (ModFOLDdockR). 

Additionally, all three ModFOLDdock variants showed superior interface patch identification 

abilities as measured by the PatchQS and PatchDockQ scores, which was stronger still for 

antibody-antigen binding interactions. Later analysis also showed an increase in correlations 

between ModFOLDdock variants’ predicted scores and CASP observed scores from a 

maximum of 0.16 seen in CASP13 to a maximum of 0.64 when using MultiFOLD group data 

with a further increase to a maximum of 0.81 when all CASP15 data was considered. This 

represents at least a 4-fold increase in accuracy as measured by Pearson correlation and this 

was maintained across homo and heteromer model populations. 

In terms of multimer modelling, MultiFOLD out-performed both the NBIS-AF2-Multimer and the 

ColabFold groups which represent the baseline modelling performance using the AF2-

Multimer and ColabFold software respectively. This success appeared, at least in part, to be 

due to the ability of ModFOLDdockR to rank the best model at the top of a decoy population 

resulting in MultiFOLD’s competition ranking being higher for rank 1 models than for the CASP-

selected best models. Later analysis showed that the observed best model was correctly 

identified as the rank 1 model in 33% of cases, a 10-fold increase in the same metric seen in 

CASP13 and that the average difference or loss between predicted and observed scores 

reduced from 0.18 seen at CASP13 to 0.013, as measured by an average of global fold and 

global interface score. 
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CHAPTER 5 

Benchmarking of AlphaFold2 accuracy self-estimates as empirical quality 

measures and model ranking indicators and their comparison with 

independent model quality assessment programs.
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Work presented in this chapter is currently available in bioRΧiv preprint format: 

Benchmarking of AlphaFold2 accuracy self-estimates as empirical quality measures and 

model ranking indicators and their comparison with independent model quality assessment 

programs. 

Nicholas S. Edmunds, Ahmet G. Genc, Liam J. McGuffin 

bioRxiv 2023.12.15.571846 

 

The same work is currently accepted for publication in the Oxford University Press (OUP) 

Bioinformatics journal, subject to successful review. 
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5.1 Background 

Since the success of AlphaFold2 (Jumper et al., 2021) at CASP14 in 2020 many articles have 

detailed the methodology by which AF2 achieved its level of accuracy, most notably by the 

DeepMind group itself (Evans et al., 2022) as well a group led by Jeffrey Skolnick (Skolnick et 

al., 2021) and the group who pioneered the development of the ColabFold adaptation of the 

software (Mirdita et al., 2022). It is usual for protein modelling software to provide accuracy 

self-estimate scores to accompany their models (Varadi et al., 2022) and while competition 

modellers are concerned with correlation agreements and statistical measures of significance 

across large datasets, the accuracy and usefulness of a single predicted score for one or only 

a few models may be more important to the general biologist. AlphaFold2’s state-of-the-art 

predicted models are increasingly relied upon and so it is vital that their accuracy is 

independently verified. In straightforward tertiary structure modelling AlphaFold2’s predicted 

lDDT score (plDDT) has been considered a useful indicator of quality (Takei and Ishida, 2022), 

but it is unclear whether this reliability transfers to quaternary structure modelling and whether 

there are any occasions when the accuracy of these scores should be questioned. 

 

5.1.1 AlphaFold2 predictions of model accuracy (plDDT, PAE and pTM) 

plDDT is based on the local distance difference test (lDDT) (Mariani et al., 2013) which 

compares distances between individual atoms to estimate confidence in the arrangement of 

amino acid residues in the local environment (for a full description see Appendix 1). It is useful 

for assessing the local accuracy of domains, for example, as it will not penalise incorrect 

relative orientations of domains within a model of a multi-domain protein if there is a good 

match between the inter-atomic distance matrices. AF2 provides local plDDT per-residue 

scores in the B-factor column of a model’s coordinates file and a global per-model score which 

is output in the modelling log file. 

The plDDT score itself is derived from the lDDT-Cα score (Tunyasuvunakool et al., 2021) which 

considers only the backbone Cα atoms in the distance calculation rather than the full all-atom 

lDDT score. It has a range of 0-100 (but lDDT values are also sometimes quoted as decimals 

in the 0-1 range), with high scores indicating higher confidence (Jumper et al., 2021). In 

general, plDDT values ≥ 90 equate to high confidence, those between 90 and 70 as confident, 

from 70 to 50 as low confidence and <50 as very low confidence with a tendency for disorder 

(Varadi et al., 2022). These confidence levels mean that plDDT scores are somewhat different 

to regular all-atom lDDT scores. Pfam (Stroe, 2021), for example, considers lDDT scores of 

≥0.6 as representing reasonable models, 0.7 as good quality models and those above 0.8 as 

great models. 
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PAE represents the Predicted Aligned Error for residue backbone atoms, measured in 

Ångströms and calculated for each residue. Values are designed to measure the confidence 

in the predicted super-position of any two residues within the model and the native structure 

and it can be used to compare the residue confidence scores within a domain to those between 

domains. Lower scores represent low predicted error and therefore higher confidence, and 

higher scores (capped at 31.75) (Varadi et al., 2022) represent higher predicted error and 

therefore lower confidence. PAE is output as a colour-coded image mapping the areas of high 

and low confidence and also as machine-readable Json-formatted individual residue scores. 

pTM is based on the topological similarity score TM-score (Zhang and Skolnick, 2004) and is 

calculated from the PAE matrix (Wallner, 2023). In later AlphaFold2 versions this is also output 

in the modelling log file and has a range of 0-1. No published confidence boundaries could be 

found for pTM but, traditionally, a TM-score of 1.0 would suggest a perfect match between a 

model and its native structure, a score greater than 0.5 is mostly interpreted as representing 

the same globular fold and scores below 0.17 are associated with unrelated proteins (Zhang 

and Skolnick, 2004). However, Jumper et al. (2021) described a relationship between pTM and 

TM-score as TM-score = 0.98 × pTM + 0.07 and so it may be appropriate to artificially construct 

pTM confidence boundaries using this relationship, if desired. 

This study will concentrate on plDDT and pTM only for three simple reasons; PAE is not 

automatically normalised into an overall value meaning plDDT and pTM are the most often 

quoted AlphaFold2 confidence metrics; AF2 models are ranked by plDDT and AF2-Multimer 

models are ranked by pTM (Evans et al., 2022) (see footnote1 for Evans’ description and 

ColabFold versions to which it applies), and that these scores are familiar and directly 

measurable against their observed counterparts, lDDT and TM-score. 

5.1.2 Documented descriptions of AlphaFold2 predicted scores 

One of the strengths of the AF2 algorithm has been described as its ability to recognise low 

accuracy local areas (Shao et al., 2022) or indeed whole models and apply confidence scores 

appropriately. As stated above, linear relationships have been described (Jumper et al., 2021) 

for lDDT-Cα as 0.997 × plDDT − 1.17 and TM-score as 0.98 × pTM + 0.07. While these 

relationships acknowledge a tendency for some over-prediction with plDDT, the suggestion is 

that both scores are consistently applied across the scoring range. However, at CASP15 

(2022), despite plDDT and pTM scores from AF2 successfully contributing to many groups’ 

 
1 a weighted combination of pTM and interface ipTM, calculated as (0.8 x ipTM + 0.2 x pTM). ColabFold 

v1.5.0 (Jan-2022 onwards) used the weighted ipTM-pTM score to rank multimers when using the 

AlphaFold2_mmseqs2, AlphaFold2_batch and colabfold_batch variants. 
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model-selection algorithms, it was noticed that there was a variability in these scores, 

particularly for multimer models of very similar quality. One group (Wallner, 2023) reported that 

up to one-third of models with a ranking confidence of pTM > 0.8 actually had the wrong domain 

orientation and our own experiences during CASP15 modelling revealed an increase in plDDT 

as high as 40 points during model refinement, which would suggest an overprediction of model 

quality improvement. 

 

5.1.3 Wider uses of AlphaFold2 rely on accurate predicted quality 

Since the CASP14 success detailed above, AlphaFold2 has been used in a DeepMind-EMBL 

collaboration to create the AlphaFold Protein Structure Database https://alphafold.ebi.ac.uk 

(Tunyasuvunakool et al., 2021). This is aimed at creating a community resource allowing easy 

access to protein structures which remain unsolved by traditional experimental methods. With 

the growing profile of in-silico modelling against the backdrop of a growing community 

investment in artificial intelligence (AI), databases such as this are likely to increase in 

popularity along with a greater reliance on computational modelling software. Although, for 

now, the database is limited to tertiary structures, it might, nevertheless, be prudent to examine 

whether AlphaFold2’s confidence metrics can be relied upon to rate and rank models 

accurately across the whole quality range. 

 
Further to this, at least three published works describe using the AlphaFold derivative 

ColabFold to input models as custom templates. One group (Terwilliger et al., 2022) input 

electron density maps during model generation from experimental data, another (Adiyaman et 

al., 2023) described a procedure for model improvement using custom template recycling as 

a refinement strategy, and a third (Roney and Ovchinnikov, 2022) described a method for using 

AlphaFold2 as a quality assessment tool. The latter study suggested that AlphaFold2 has the 

ability to quality-rank sidechain-masked custom templates with state-of-the-art accuracy and 

that the results provide evidence for a neural network-learned protein folding energy function 

which AlphaFold2 is able to apply without external co-evolutionary data. 

It is clear, then, that significant reliance is being placed on plDDT and pTM scores and this 

study aims to assess the performance of these scores in both monomer and multimer model 

populations in comparison to their observed lDDT and TM-score counterparts. Within the 

model populations, models will be generated both with and without custom template recycling 

to evaluate whether there is a variation in predictive performance with this single variable. In 

addition plDDT and pTM will be compared to quality scores generated by the independent 

quality assessment programs ModFOLD9 (tertiary structures) and ModFOLDdock (quaternary 

structures) (McGuffin et al., 2023). 

https://alphafold.ebi.ac.uk/
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5.2 Objectives 

Using blind modelling and assessment data from CASP15, the relationship between 

AlphaFold2 predicted scores and their observed counterparts, the lDDT score (including lDDT-

Cα and oligo-lDDT) and the TM-score, will be examined. First, the analysis will attempt to 

objectively assess the scores’ accuracy at describing tertiary and quaternary structures in 

terms of both global model quality and ranking agreement with observed scores. Second, blind 

prediction scores used for the CASP15 EMA competition will then be used to examine the 

comparative performance between ModFOLDdock and AF2-Multimer scores for quaternary 

structures. Similarly, ModFOLD9 predictions, which were also blind and run in house prior to 

the release of the CASP15 experimental structures, will be used to examine the performance 

between AlphaFold2 and ModFOLD9 scores for tertiary structures. Finally, the effect of using 

custom template recycling is examined in terms of the accuracy of the AlphaFold2 and AF2-

Multimer scores. For this part, a CASP14 dataset similar to that described in Chapter 2 is used. 

The study is designed around four primary and one secondary consideration. The following 

four hypotheses address the primary considerations. 

1. Allowing for the published modest overestimation in plDDT, are AF2 predicted scores 

higher than the equivalent observed scores? 

H0. There is no increase in magnitude between the AF2 predicted and equivalent observed 

scores. H1. The magnitude of the AF2 predicted scores is higher than the equivalent 

observed scores. 

2. Is AlphaFold2 model ranking reliable compared to ranking by observed scores, as 

measured by association between model rank categories? 

H0. There is no association between the AF2 predicted and observed score ranking 

categories. H1. There is an association between the AF2 predicted and observed score 

ranking categories. 

3. Can model ranking accuracy be improved by independent MQA programs? 

H0. There is no difference between the independent QA and AF2 rankings as measured 

by the association between model rank categories. H1. Independent QA and observed 

score model rank are more closely associated than AF2 and observed score model ranks. 

4. Is the accuracy of predicted scores affected by custom template recycling? 

H0. There is no difference between AF2 regular modelling and custom template modelling 

predicted scores, when compared to equivalent observed scores. H1. AF2 predicted 

scores following custom template modelling show greater variation than scores from 

regular modelling, when compared to equivalent observed scores. 

Secondary consideration. Do the results support the notion by Roney and Ovchinnikov that 

AlphaFold2 can be successfully repurposed as a general model quality assessment tool?  
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5.3 Materials and Methods 

5.3.1 Selection of models to test the hypotheses 

Four individual datasets were used for this study.  

Population A (CASP15 monomers) comprised the McGuffin group’s tertiary structure 

submissions for CASP15. Population B (CASP15 multimers) was composed of both the 

McGuffin group’s (MultiFOLD, group 462) and the ColabFold group’s (group 446) multimer 

submissions for CASP15. Group 446 submissions are publicly available from 

https://casp15.colabfold.com/). Population C (recycled monomers) is a superset of the AF2 

and non-AF2 models used in the custom-template recycling experiment described in Chapter 

2. The original model population was fixed at 16 CASP14 targets to form a common subset 

with the ReFOLD4 molecular dynamics analysis which used only the FM targets submitted by 

the AlphaFold group. The emphasis of this experiment has shifted from measuring model 

improvement to measuring model quality overprediction and so it was felt that the inclusion of 

four additional FM/TBM targets, for which scores had already been collected, was justified to 

increase the model population without significantly altering the difficulty of the models. This 

increased the total target number to 20. Population D (recycled multimers) is the same 

multimer population used in the custom-template recycling experiment also in Chapter 2. 

5.3.2 The Population A dataset – CASP15 monomers 

This consisted of all McGuffin group’s blind model submissions for CASP15 regular tertiary 

structure targets for which ModFOLD9 scores and a reference native structure were available. 

The dataset comprised a total of 26 targets: T1104, T1112, T1120, T1122, T1125, T1130, 

T1131, T1133, T1139, T1145, T1146, T1147, T1150, T1154, T1155, T1158, T1159, T1162, 

T1163, T1175, T1177, T1180, T1182, T1183, T1188 & T1194. 

Our group’s modelling algorithm used two separate rounds as shown in Chapter 2, Figure 2.15. 

Round 1 used regular modelling only, with no refinement process, whereas round 2 included 

refinement by custom template recycling. Models were therefore split into two sub-populations; 

Population A1 represented the round 1 models (regular modelling) and these were created 

with a default of 12 recycles and both with and without AMBER relaxation, resulting in 20 

models per target (5 unrelaxed AF2, 5 relaxed AF2, 5 unrelaxed AFM and 5 relaxed AFM). For 

a small minority of large targets memory constraints meant relaxation was not always possible 

resulting in fewer models. Population A2 represented the round 2 models (denoted by the 

addition of R to the model’s name, e.g., AFMR) which were subject to custom template 

recycling and resulted in 10 models per target. Again, 5 of these underwent AMBER relaxation 

while the other 5 remained unrelaxed. In this way a maximum of 30 models were created per 

target. Predicted plDDT and pTM scores were harvested directly from the server for both sub 

populations and predicted ModFOLD9 scores were collected from the original cached datasets 

https://casp15.colabfold.com/
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used during CASP15. Observed lDDT and TM-scores were generated using the downloadable 

versions of TM-score (Zhang and Skolnick, 2004) and lDDT score (Mariani et al., 2013) to 

compare models for each target with the CASP observed structures. A total of 735 models 

were analysed; consisting of 490 round 1 and 245 round 2 models. 

5.3.3 The Population B dataset – CASP15 multimers 

This model population comprised all blind multimer (assembly) CASP15 model submissions 

for both the MultiFOLD (462) and ColabFold (446) group servers. These two sets of models 

were chosen because they were created using the same base ColabFold software (although 

exact versions may differ slightly) but differed by the use of custom template recycling in the 

MultiFOLD pipeline. The rationale was that the ColabFold models could be used to asses AF2-

Multimer score overprediction when only regular modelling was used and, that by comparing 

the ColabFold and MultiFOLD populations, the effect of the additional custom template 

recycling on predicted scores could be assessed. 

The ColabFold group multimers are named Population B1. For these, custom template 

recycling and AMBER relaxation were not used and 12 recycles was used as default 

(Ovchinnikov et al., 2022). The predicted scores, plDDT, pTM (and iPTM where available) were 

harvested directly from the server website (see 5.3.1 for the URL). 

The MultiFOLD group models are named Population B2. The same pathway as outlined in 

5.3.2 above, including custom template recycling, was used to create these models. Only the 

final 5 models submitted to CASP were used for analysis and again predicted scores were 

collected directly from the server.  

For comparisons with observed scores, the official CASP15 assessor oligo-lDDT and TM-

scores were downloaded from the CASP15 prediction centre results webpage 

(https://predictioncenter.org/casp15/results.cgi?view=targets&tr_type=multimer). As the 

ModFOLDdock server participated in the CASP15 EMA experiment, predicted ModFOLDdock 

and ModFOLDdockR scores were also readily available for both sub populations of models. 

Scores for rank 1 to 5 models were collected for all multimer models for which data were 

available, resulting in 395 individual models across the following 41 targets (the ColabFold 

group submitted no models for three targets making a total of 38); H1106, H1111, H1114, 

H1129, H1134, H1135, H1137 (MultiFOLD only), H1140, H1141, H1142, H1143, H1144, 

H1151, H1157, H1166, H1167, H1168, H1171, H1172, H1185, T1109, T1110, T1113, T1115 

(MultiFOLD only), T1121, T1123, T1124, T1127, T1132, T1153, T1160, T1161, T1170, T1173, 

T1174, T1176, T1178, T1179, T1181, T1187 and T1192 (MultiFOLD only).  In total the 

Population B dataset consisted of 395 multimer scores. 

https://predictioncenter.org/casp15/results.cgi?view=targets&tr_type=multimer
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5.3.4 The Population C dataset – recycled monomers 

This dataset consisted of the custom template recycled AlphaFold2 and non-AlphaFold2 

tertiary models used in Chapter 2, with the addition of four extra targets as explained in section 

5.3.1 above. There were minor processing differences when creating the recycled AF2 and 

non-AF2 models which are explained below. 

The AlphaFold2 Rank 1 models were downloaded from the CASP14 website for the following 

20 CASP14 FM targets: T1027, T1029, T1031, T1033, T1037, T1039, T1040, T1041, T1042, 

T1043, T1047s1, T1047s2, T1055, T1058, T1064, T1074, T1090, T1093, T1094, T1096. 

Again, as described in section 5.3.2, observed quality assessment scores were generated 

using the downloadable versions of TM-score and lDDT score. To affect the recycling, model 

PDB files were converted to mmCIF format using the RSCB PDB MAXIT suite of programs 

(https://mmcif.pdbj.org/converter). These were then submitted to the Google Colaboratory 

hosted ColabFold (release 3, v1.3.0 [4-Mar-2022]) as custom templates along with their 

respective amino acid sequences. ColabFold was run twice per model (both MSA and single-

sequence modes), and, within each mode, the model was submitted four times for 1, 3, 6 and 

12 recycles. ColabFold settings used were: Template_mode: custom; msa_mode: MMseqs2 

(UniRef+Environmental) OR single sequence; pair_mode: unpaired+paired; model-type: auto; 

num_recycles: 1, 3, 6, 12 (selecting “auto” from the model type defaulted to the original pre-

CASP14 AF2 model). Amber relaxation was not enabled. Models created for each ColabFold 

run were collected along with their predicted pTM and plDDT scores and then rescored with 

TM-score and lDDT as described above. The process, illustrated below in Figure 5.1, created 

800 individual scores from 8 sets of scores per model across 5 models per target for 20 targets. 

 
 
 
 
 
 
Figure 5.1 An illustration of input and output models during ColabFold custom template 

recycling. Each model (template) was input into ColabFold eight times using different recycling modes 

(MSA and single sequence) and produced five new models by default each time. 

 
The same logic was employed for non-AF2 CASP14 models. These were selected from the 

same 20 FM targets for the next five best-ranked groups beneath AlphaFold2 at CASP14. 

These were Baker (473), Baker-experimental (403), Feig-R2 (480), Zhang (129) and 

tFold_human (009). To ensure consistency in terms of globular fold similarity, only models with 

a TM-score ≥0.45 were selected and this resulted in a total of 47 individual models.  

The full list of models used is: 

ColabFold 1 Input model 5 output models 
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T1029TS009_1-D1, T1031TS009_1-D1, T1033TS009_1-D1, T1037TS009_1-D1, 

T1041TS009_1-D1, T1042TS009_1-D1, T1043TS009_1-D1, T1049TS009_1-D1, 

T1090TS009_1-D1, T1031TS129_1-D1, T1037TS129_1-D1, T1040TS129_1-D1, 

T1041TS129_1-D1, T1042TS129_1-D1, T1049TS129_1-D1, T1074TS129_1-D1, 

T1090TS129_1-D1, T1096TS129_1,       T1027TS403_1-D1, T1031TS403_1-D1, 

T1033TS403_1-D1, T1037TS403_1-D1, T1039TS403_1-D1, T1041TS403_1-D1, 

T1042TS403_1-D1, T1043TS403_1-D1, T1049TS403_1-D1, T1090TS403_1-D1, 

T1096TS403_1,       T1031TS473_1-D1, T1033TS473_1-D1, T1037TS473_1-D1, 

T1039TS473_1-D1, T1041TS473_1-D1, T1042TS473_1-D1, T1043TS473_1-D1, 

T1049TS473_1-D1, T1074TS473_1-D1, T1090TS473_1-D1, T1031TS480_1-D1, 

T1037TS480_1-D1, T1041TS480_1-D1, T1042TS480_1-D1, T1049TS480_1-D1, 

T1074TS480_1-D1, T1090TS480_1-D1, T1096TS480_1. 

Models were downloaded from the CASP14 website, scored with TM-score and lDDT and 

recycled as templates with the MSA option in the same way as described for AF2 models. 

Single sequence recycling was carried out using release v1.3.0 of LocalColabFold (Mirdita et 

al., 2022) installed on our own server to overcome the Google Colaboratory GPU restrictions 

in the time available. The equivalent LocalColabFold settings were used: msa-mode: 

single_sequence; model-type: auto; rank: plddt; pair-mode: unpaired+paired; templates: --

custom-template-path. The resulting rank 1-5 models were collected along with their plDDT 

and pTM scores and rescored against the native structure to produce a set of observed lDDT 

and TM-scores. This again resulted in eight sets of five models per input model creating a total 

of 1880 individual model scores. 

5.3.5 The Population D dataset – recycled multimer models 

This dataset consisted of the custom template recycled multimer models used in Chapter 2. 

As the AlphaFold2 group did not submit multimer (assembly) models at CASP14, models for 

this dataset were selected from the CASP14 top five ranked groups. According to official 

results tables, these were Baker, Venclovas, Takeda-Shitaka, Seok and DATE. Some of the 

multimer targets were too large to recycle through AF2-Multimer (training was limited to models 

up to 1536 residues and the algorithm can experience memory issues with models of more 

than a few thousand residues (Bryant et al., 2022)) and therefore the targets used in this set 

were limited by size to: H1045, H1065, H1072, T1032, T1054, T1070, T1073, T1078, T1083, 

T1084. Again, top-ranked models were used as the custom templates and were subjected to 

recycling (1, 3, 6 and 12) using ColabFold (MSA and SS modes) in the same way as described 

for the monomer structures above. The resulting 50 rank 1-5 models were then collected along 

with their plDDT and pTM scores. Observed scores were obtained by assessing each model 

against their relevant native structures using the OpenStructure and MM-Align (Mukherjee and 
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Zhang, 2009) programs to obtain observed oligo-lDDT and TM-scores respectively. Using the 

same calculation as above, this resulted in eight sets of scores for each of the five models per 

individual group-target combination, a total of 2000 individual scores. The processing of 

Population D described above was conducted by Ahmet Gurkan Genc and kindly shared with 

me as part of the joint experiment on recycling described in Chapter 2. An overall total of 5,810 

model scores were collected across the whole study. 

Table 5.1. A summary of the different model populations used in the study. 

Model population Type and modelling software Stoichiometry and type of modelling 

Population A1 CASP15, MultiFOLD round 1 Monomer, regular modelling. 

Population A2 CASP15, MultiFOLD round 2 Monomer, custom recycling included. 

Population B1 CASP15, ColabFold Multimer, regular modelling. 

Population B2 CASP15, MultiFOLD Multimer, custom recycling included. 

Population C CASP14, AF2 and non-AF2 Monomer, custom recycling included. 

Population D CASP14, top 5 groups. Multimer, custom recycling included. 

 

5.3.6 Handling of Multimer pTM scores and the procedure for model ranking 

Multimer models created by AlphaFold2 variants are, by default, ranked by pTM rather than 

plDDT. As stated in the introduction there is a slight difference in the calculation of the pTM-

based ranking between versions of ColabFold. In AF2-Multimer and in later versions of 

ColabFold (v1.5.0) ranking is calculated based on a ratio of 0.8 * ipTM + 0.2 * pTM (Evans et 

al., 2022), whereas in earlier versions, ranking is calculated on pTM score alone. As some 

multimer models in this population were created with ColabFold v1.3 and some with v1.5 there 

was potentially heterogeneous ranking across the model population, and it was necessary to 

allow for this when comparing ranks. To this end, multimer models were routinely re-ranked by 

pTM score before comparison with observed rankings. The procedure for deriving model ranks 

in R consisted of ranking each individual set of 5 related models, i.e., models output from a 

single run of AlphaFold2 modelling, using the statement rank <score>, ties.method =”random” 

where <score> can be replaced with any of the predicted or observed scores as necessary. 

This was applied to observed score ranking but also to ranking by pTM for the reasons 

explained above. In this way any differences in the way the AlphaFold2 algorithm originally 

ranked the data were negated and the ranks were assigned uniformly across all populations. 

Multi-factor contingency tables to display ranking comparisons were created in R using the 

caret package with the confusionMatrix() command and four further statistical measures were 

used to assess relatedness. Sensitivity, specificity, precision, and accuracy were calculated 

for individual rank classes (1, 2, 3, 4 and 5) and, to construct meaningful comparisons between 

the contingency tables, macro-averaged versions of these statistics were calculated as mean 

values across all categories for each table. Individual metrics were calculated as follows: 
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Sensitivity = TP / (TP + FN),  

Specificity = TN / (TN + FP),  

Precision = TP / (TP + FP) and  

Accuracy = (TP + TN) / (TP + FN + TN + FN). 

(TP=true positive, TN=true negatives, FP=false positive and FN=false negatives, see Appendix 13 for a 

more comprehensive description of these metrics) 

As ranking data is categorical, it is possible to assess the association between the predicted 

model ranks and observed model ranks using the Chi-squared and Fisher’s exact tests, where 

P-values <0.05 would suggest relatedness between distributions. Fisher’s exact test is often 

used for smaller sample sizes (single contingency table cells of less than 5) or where 

independence of observations cannot be guaranteed and, while the concept of independence 

holds for the assignment of ranks based on predicted and observed scores, some tables do 

have low figures in individual cells. As regards multi-contingency tables (larger than 2x2), no 

clear distinction between the two tests could be found other than Chi-squared may run into 

problems with very sparse data and Fisher’s can become computationally intensive for large 

tables. It was decided that both tests would be run as a check for each other, i.e., agreement 

between the two tests would confer confidence in the result. A Monte Carlo resampling method 

(simulate.p.value) with default simulations of 2000 was used for the Fisher’s exact test to allow 

a more robust estimate of the p-value and prevent any computational overheads which can 

occur when this test is applied to larger contingency tables. This procedure generates 2000 

random datasets and computes the test statistic for each one. The sample test statistic is then 

compared to the distribution of simulated test statistics to estimate the p-value whilst avoiding 

exhaustive calculations (Crawley, 2015). Analysis was performed using R version 3.6.3 

running in R-studio.  
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5.4 Results and Discussion 

Results will be considered in relation to the four hypotheses in the objectives. 

5.4.1 Hypothesis 1. Are AF2 predicted scores higher than the equivalent observed 

scores? 

In this study hypothesis four deals specifically with the effects of custom template recycling on 

predicted score reliability. Therefore, in order to focus on one independent variable at a time, 

the simpler question of whether predicted scores are good quality indicators must be answered 

using only models which have not undergone custom template recycling. For monomers, this 

is population A1 (round 1 models) and for multimers this is population B1 (ColabFold 

multimers). Population A1 will be considered first. 

5.4.1.1. Part 1. Monomer data; Population A1, (round 1) 

Monomers are ranked by default by plDDT scores and so monomer results will focus on 

plDDT/lDDT similarity. 

Figure 5.2. Plots of plDDT versus observed lDDT for round 1 monomers in population A1. 

Left. A scatter plot. Middle. A density plot. Right. A boxplot for the same population. For all plots plDDT 

has been rescaled to fit the 0-1 lDDT range. 

 

 
Figure 5.3. Plots of plDDT versus observed lDDT-Cα for round 1 monomers population A1. 

Left. A scatter plot. Middle. A density plot. Right. A boxplot for the same population. Again, plDDT has 

been rescaled to the 0-1 range. 

 
The plots in Figure 5.2 show that plDDT scores are slightly elevated compared to the all-atom 

lDDT scores. However, when plDDT scores are considered with reference to lDDT-Cα scores 
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(Jumper et al., 2021;Tunyasuvunakool et al., 2021) in Figure 5.3, there is no evidence of plDDT 

over-prediction, in-fact the boxplot in Figure 5.3 shows a slightly lower median score for plDDT. 

It should also be possible to check whether the plDDT values in this sample are in line with the 

published linear relationship described in section 5.1.2 (lDDT-Cα=0.997×plDDT− 1.17). If the 

median plDDT value of 0.91 from the Figure 5.3 boxplot is considered as a convenient 

example, the median lDDT-Cα score can be calculated from plDDT in three simple steps: 

1. Convert plDDT back to its 0-100 range: 0.91 x 100 = 91.0 

2. Calculate lDDT-Cα from the relationship: 0.997 x 91 - 1.17 = 89.56 

3. Convert lDDT-Cα back to the 0-1 range: 89.56/100 = 0.8956 or 0.90 to 2.d.p. 

From Figure 5.3 it can be seen that the actual lDDT-Cα is 0.92, meaning that rather than being 

overpredicted, plDDT has in fact been slightly underpredicted for this sample of models.  

To formally test this data against hypothesis 1, a Wilcoxon signed rank test for non-parametric 

paired data was carried out to test significance. The following results were obtained (a Shapiro 

test for normality gave p-values of <0.05 for all three (plDDT, lDDT and lDDT-Cα) scores, 

showing the distributions to be non-normal in all cases). 

Table 5.2. Calculated p-values from a Wilcoxon signed rank test for population A1, round 1 

monomers. P-values ≤0.05 are in bold. 

 

 

Wilcoxon signed-rank test P-values were calculated at the 95% confidence level using plDDT and lDDT or lDDT-Cα scores. 

From the results in Table 5.2, it can be concluded that, for this sample of monomers, there is 

a significant difference between predicted and observed lDDT scores as shown by the P-

values of 2.2x10-16 and 9.69x10-6 for the 2-sided Wilcoxon tests for all atom lDDT and lDDT-

Cα respectively. However, there is disagreement between the two scores, with row 2 of the 

table showing that according to a 1-sided test, plDDT values are greater than those for all atom 

lDDT (p-value of 2.2x10-16) while row 4 shows the opposite, that lDDT-Cα values are actually 

significantly higher than plDDT values (p-value of 4.81x10-6). Considering the published works 

cited earlier confirming that plDDT is based on lDDT-Cα it would be more appropriate to accept 

the null hypothesis in this case. Therefore, for monomers constructed from regular straight-

forward AF2 modelling and assessed by lDDT-Cα: There is no increase in magnitude between 

the AF2 predicted and equivalent observed scores. 

5.4.1.2 Part 2. Multimer data; Population B1 (ColabFold multimers). 

For multimers pTM is the default ranking metric, however plDDT was used in early versions of 

ColabFold and so both scores are considered here. 

Scores compared Independence and distribution symmetry p-value 

plDDT versus lDDT Paired; 2-sided test. 2.2x10-16 

plDDT versus lDDT Paired; 1-sided (plDDT > lDDT) 2.2x10-16 

plDDT versus lDDT-Cα Paired; 2-sided test. 9.69x10-6 

plDDT versus lDDT-Cα Paired, 1-sided (plDDT < lDDT-Cα) 4.81x10-6 
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Figure 5.4. Plots of pTM score versus observed TM-score for Population B1 (ColabFold 

multimers). Left. A scatter plot. Middle. A density plot. Right. A boxplot. 

 

 
Figure 5.5. Plots of plDDT score versus observed CASP oligo-lDDT for Population B1 (ColabFold 

multimers). Left. A scatter plot. Middle. A density plot. Right. A boxplot. plDDT has been rescaled to 

0-1. 

Both the scatter and density plots in Figure 5.4 appear to show an under-estimation of pTM 

score for higher quality multimer models but a relatively large overestimation for some lower-

quality models. For Figure 5.5, plDDT appears to be over-estimated across the quality range 

which may be accounted for by the use of an all-atom observed oligo-lDDT score. However, 

as with pTM scores, there is a more pronounced overestimation for some models in the lower 

quality range. The Shapiro test for normality (all scores were non-normal) and Wilcoxon signed 

rank test for significance were executed in the same way as described for monomer data.  

Table 5.3. Calculated p-values from a Wilcoxon signed rank test for population B1, ColabFold 

multimers. P-values ≤0.05 are in bold. 

 

 

Wilcoxon signed-rank test P-values were calculated at the 95% confidence level using plDDT and oligo-lDDT or pTM and TM-

scores. 

Scores compared Independence and distribution symmetry p-value 

plDDT versus oligo-lDDT Paired; 1-sided test, plDDT > oligo-lDDT 2.2x10-16 

pTM versus TM-score Paired, 2-sided 0.038 

pTM versus TM-score  Paired; 1-sided test, pTM> TM-score 0.980 

pTM versus TM-score  Paired; 1-sided test, pTM< TM-score 0.0192 
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Table 5.3 shows that there is a significant difference between predicted plDDT and observed 

oligo-lDDT scores and that plDDT values are significantly higher than oligo-lDDT as shown by 

the p-value of 2.2x10-16. For hypothesis 1, with respect to lDDT, the alternative hypothesis can 

therefore be accepted for ColabFold multimers, i.e., The magnitude of the AF2 predicted 

scores is higher than the equivalent observed scores. 

The data are not so clear for TM scores. There is a significant difference between pTM and 

TM-score but rather than pTM being the greater of the two (p-value of 0.980), TM-score may 

in fact be greater than pTM (p-value of 0.019). To reveal more information about the 

relationship between pTM and TM-score, a further investigation into the variation in the two 

scores is described in Figure 5.6 below. 

 

Figure 5.6. Two plots showing the difference between predicted and observed scores for 

population B1 (ColabFold multimers). The line at 0.0 represents the observed score; predicted scores 

are represented as points. Left. pTM versus TM-score. Right. plDDT (rescaled to 0-1) versus oligo-

lDDT score. Numbers on the x-axis are the models in the population, ordered from low to high observed 

score. 

The relationships suggested in Figure 5.5 and Table 5.3 are more clearly shown by the two 

plots in Figure 5.6. Both plots show that an overestimation of predicted scores is more likely 

for lower quality models with a maximum difference of +0.65 for pTM and +0.74 for plDDT. 

Again, a tendency for underestimation of pTM in higher quality models is apparent with a 

maximum difference of -0.32. This explains the Wilcoxon test results for pTM; there is both 

over and under-estimation occurring which is quality-related and which, to some extent, cancel 

each other out. While there is an allusion to minor pTM underprediction in the mathematical 

relationships described in section 5.1.2 (Jumper et al., 2021), no documentation relating to an 

overprediction for lower quality models could be found. A similar pattern of underestimation is 

not seen for plDDT. 
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For hypothesis 1, with respect to TM-score, the null hypothesis must be accepted for ColabFold 

multimers, i.e., There is no increase in magnitude between the AF2 predicted and equivalent 

observed scores. However, a caveat must be added to this last statement, that, for this 

population (intended to represent regular multimer modelling), while a significant increase in 

predicted TM-score could not be detected in the overall population, overprediction was 

observed in models of lower observed quality. 

5.4.2 Hypothesis 2. Is AlphaFold2 model ranking reliable compared to ranking by 

observed scores, as measured by association between model rank categories? 

Again, to answer this question fairly, models which have not undergone custom template 

recycling must be used. Therefore, this analysis will use the same data as used in 5.4.1 -

Population A1 (round 1 models) and Population B1 (ColabFold multimers). Ranking values 

and statistics were calculated as described in section 5.3.6. 

 
Figure 5.7. Contingency tables showing the rank agreement between observed lDDT and plDDT 

values for Population A1 (round 1 monomers). Left. For all-atom observed lDDT scores. Right. For 

observed lDDT-Cα scores. Accompanying table of calculated statistics below. 

 
Table 5.4. Summary statistics, including four macro-averaged test characteristics, Fisher’s exact 

test and Chi-squared test for population A1 (round 1 monomers) ranking agreement between 

predicted and observed ranks. 

 
 
 
 
 
 

 
 

P-values were calculated at the 95% confidence level meaning those ≤0.05 are considered significant. 

 
 

Test lDDT result lDDT-Ca result 

Macro-Sensitivity (TPR) 0.3204 0.3428 

Macro-Specificity 0.8301 0.8357 

Macro-Precision 0.3204 0.3428 

Macro-Accuracy  0.7281 0.7371 

Fisher's Exact (p-value) < 0.001 < 0.001 

Chi-squared (χ2; p-value) 128.27; 2.2x10-16 167.35; 2.2x10-16 
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Figure 5.8. Contingency tables showing rank agreement for Multimers in Population B1 

(ColabFold multimers). Left. Observed TM-scores versus pTM. Right. Observed oligo-lDDT versus 

plDDT scores. Accompanying table of calculated statistics below. 
 

Table 5.5. Summary statistics, including four macro-averaged test characteristics, Fisher’s exact 

test and Chi-squared test for population B1 (ColabFold multimers) ranking agreement between 

predicted and observed ranks. 

Test pTM result plDDT result 

Macro-Sensitivity (TPR) 0.3052 0.2842 

Macro-Specificity 0.8263 0.8210 

Macro-Precision 0.3052 0.2842 

Macro-Accuracy  0.7221 0.7136 

Fisher's Exact (p-value) < 0.001 < 0.001 

Chi-squared (χ2, p-value) 40.26; 0.0007 51.31; 1.41x10-5 
P-values were calculated at the 95% confidence level meaning those ≤0.05 are considered significant. 

The contingency tables in Figure 5.7 show strong agreement for monomer data between 

observed lDDT-derived ranks and plDDT predicted ranks with a slightly stronger agreement 

when lDDT-Cα is used as the observed measure. The level of agreement for rank 1 and rank 

5 data shown in the contingency tables is supported by mean true positive rates (TPR) of 

32.04% and 34.28% for lDDT and lDDT-Cα respectively. In addition, the Fisher’s exact tests 

return p-values well below the significance level of 0.05 and the Chi-squared tests return values 

of 128.27 (lDDT) and 167.35 (lDDT- Cα) with very small p-values. These data provide robust 

evidence that this distribution was unlikely to occur by chance and that there is a significant 

positive relationship between the predicted and observed scores. 

For the multimer population represented by Figure 5.8, the agreement looks appreciably less 

certain for both pTM and plDDT scores. The summary statistics show a reduction in mean TPR 

to 30.5% for pTM and 28.4% for plDDT. Both Fisher’s exact and Chi-squared p-values, 

however, remain significant suggesting a relationship between the two rank sets, although it is 
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notable that the magnitude of the χ2 statistic has decreased for both pTM and plDDT 

suggesting a weaker association between predicted and observed ranks. 

For hypothesis 2, these results suggest that there is significant association between the 

distribution of predicted and observed ranks for both monomer and multimer model populations 

created via regular modelling and the alternative hypothesis can be accepted, i.e., There is an 

association between the AF2 predicted and observed score ranking categories. Similarly, to 

section 5.4.1, though, a qualifying statement may be appropriate here to add that the 

association appears more robust for tertiary structure ranking by plDDT than for multimer 

ranking by either plDDT or pTM. 

5.4.3 Hypothesis 3. Can model ranking accuracy be improved by independent MQA? 

The individual rank-agreement and TPR values described above for monomer and multimer 

models need to be contextualised by comparison to another leading QA method. This section 

presents identical analysis for ranking based on predicted scores from the independent QA 

programs ModFOLD9 (monomer data) and ModFOLDdock (multimer data). 

 
Figure 5.9. Contingency tables showing the rank agreement between observed lDDT and 

ModFOLD9 values for Population A1 (round 1 monomers). Left. Using all-atom lDDT scores. Right. 

Using observed lDDT-Cα scores. Accompanying table of calculated statistics below. 

 
Table 5.6. Summary statistics for population A1 (round 1 monomers) ranking agreement between 

predicted ModFOLD9 and lDDT observed ranks. 

Test lDDT result lDDT-Ca result 

Macro-Sensitivity (TPR) 0.2551 0.2693 

Macro-Specificity 0.8137 0.8173 

Macro-Precision 0.2551 0.2693 

Macro-Accuracy  0.7020 0.7077 

Fisher's Exact (p-value) < 0.001 < 0.001 

Chi-squared (χ2; p-value) 61.93; 2.5x10-7 63.67; 1.24x10-7 
P-values were calculated at the 95% confidence level meaning those ≤0.05 are considered significant. 
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Visual comparison of the data in Figure 5.9 to those in Figure 5.7 shows that ModFOLD9 has 

been unable to improve upon the ranking agreement between plDDT and lDDT scores for 

monomers. TPR is reduced from 34.2% to 26.9% (lDDT-Cα) and all other macro-averaged 

statistics are lower than previously reported. Although the Fisher’s exact and Chi-squared tests 

continue to return significant p-values, the χ2 values, in agreement the TPR scores, have 

reduced suggesting a weaker overall association between the ranks. 

Therefore, the closeness of the relationship has not been improved by ModFOLD9 and for 

hypothesis 3, in respect to ModFOLD9, the null hypotheses must be accepted, i.e., There is 

no difference between the independent QA and AF2 rankings as measured by the association 

between model rank categories. 

 
Figure 5.10. Contingency tables showing rank agreement for Population B1 (ColabFold 

multimers). Left. Between observed TM-scores and ModFOLDdock score. Right. Between observed 

oligo-lDDT and ModFOLDdock score. Accompanying table of calculated statistics below. 

 
Table 5.7. Summary statistics for population B1 (ColabFold multimers) ranking agreement 

between predicted ModFOLDdock and observed oligo-lDDT ranks. 

Test TM-score Result lDDT result 

Macro-Sensitivity (TPR) 0.3421  0.4315 

Macro-Specificity 0.8355 0.8578 

Macro-Precision 0.3421 0.4315 

Macro-Accuracy  0.7368 0.7726 

Fisher's Exact (p-value) < 0.001 < 0.001 

X-squared (χ2; p-value) 38.42; 0.0013 78.94; 2.57x10-10 
P-values were calculated at the 95% confidence level meaning those ≤0.05 are considered significant. 

In contrast, a visual comparison of the data in Figure 5.10 with those from Figure 5.8 suggests 

ranking agreement for multimers is stronger for ModFOLDdock scores, particularly for lDDT 

rank agreement. This is supported by the data in Table 5.7 where the TPR has increased from 

30.5% in Table 5.5 to 34.2% in Table 5.7 for TM-score and more appreciably from 28.4% to 
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43.1% for oligo-lDDT score. The Chi squared values have remained similar for TM-score 

across the two tables, however Table 5.7 shows an increase in the χ2 statistic from 51.31 to 

78.94 for oligo-lDDT ranking. This increase, along with the increased TPR values, is strongly 

suggestive of a closer positive association between ModFOLDdock and oligo-lDDT ranking. 

For hypothesis 3, then, with respect to multimer ranking by TM-score, there is insufficient 

evidence to reject the null hypothesis. There is no difference between the independent QA and 

AF2 rankings as measured by the association between model rank categories. 

However, with respect to multimer ranking by oligo-lDDT, considering the increases in scores 

described above, there may be sufficient evidence to accept the alternative hypothesis, i.e., 

Independent QA and observed score model rank are more closely associated than AF2 and 

observed score model ranks. 

5.4.4 Hypothesis 4. Is the accuracy of predicted scores affected by custom template 

recycling? 

To answer this question data is presented from the four model populations which underwent 

custom template recycling. For monomers this is Population A2 (CASP15 round 2 monomers) 

and Population C (recycled monomers), for multimers it is Population B2 (CASP15 MultiFOLD 

group multimers) and Population D (recycled multimers). It would be logical to start with the 

data for populations A2 and B2 because these two groups can be directly compared to their 

unrecycled counterparts, i.e. Population A2, the CASP15 round 2 monomers (recycled) can 

be directly compared with the Population A1 CASP15 round 1 monomers (unrecycled) which 

were discussed in section 5.4.1.1 and Population B2, the MultiFOLD group multimers 

(recycled) can be directly compared to the Population B1 ColabFold group multimers 

(unrecycled) which were discussed in section 5.4.1.2. Populations C and D have no direct 

comparisons and so will be discussed last to provide support of the population A and B data. 

5.4.4.1 Population A2 (CASP15 round 2 monomers) 

 
Figure 5.11. Plots for plDDT versus observed lDDT for Population A2 (CASP15 round 2 

monomers). Left. A scatter plot. Middle. A density plot. Right. A boxplot. For all plots plDDT has been 

rescaled to fit the 0-1 lDDT range. 
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Figure 5.12. Plots for plDDT versus observed lDDT-Cα for Population A2 (CASP15 round 2 

monomers). Left. A scatter plot. Middle. A density plot. Right. A boxplot. For all plots plDDT has been 

rescaled to fit the 0-1 lDDT range. 

 

 
Figure 5.13. Equivalent plots of ModFOLD9 score versus observed lDDT for Population A2 

(CASP15 round 2 monomers). Left. A scatter plot. Middle. A density plot. Right. A boxplot. For all 

plots plDDT has been rescaled to fit the 0-1 lDDT range. 

 
Comparing the data from Figure 5.11 directly with that for the round 1 monomers presented in 

Figure 5.2 (section 5.4.1.1), it is apparent that there is a wider spread of data in the scatter plot 

in Figure 5.11 with an increase in plDDT scores, which are reflected in the density plot and the 

boxplot. Figure 5.12, for lDDT-Cα scores, shows a similar spread in the scatter plot but 

accompanied by a less noticeable difference between the plDDT and lDDT-Cα distributions in 

the density and boxplot. Wilcoxon signed rank tests for significance in Table 5.8 (below), 

however, reveal that the difference between the plDDT and lDDT-Cα score is significant as is 

the difference between the round 2 monomer plDDT scores and their round 1 counterparts. 

 
Table 5.8. Calculated p-values from Wilcoxon signed tests for population A2, round 2 monomers. 
P-values ≤0.05 are in bold. 

Row Scores compared Independence and distribution symmetry p-value 

1 R2 plDDT versus lDDT-Cα Paired; 2-sided test 0.0001 

2 R2 plDDT versus lDDT-Cα Paired; 1-sided test, plDDT > lDDT-Cα 5.83x10-5 

3 R2 plDDT versus R1 plDDT  Unpaired; 2-sided 1.293x10-9 

4 R2 plDDT versus R1 plDDT Unpaired; 1-sided, R2 > R1 6.465x10-10 

5 R2 lDDT-Cα versus R1 lDDT-Cα Unpaired; 2-sided 0.1255 
Wilcoxon test P-values were calculated at the 95% confidence level using and those ≤0.05 are considered significant. 
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Table 5.8, row 1, shows that according to a paired 2-sided Wilcoxon test there is a significant 

difference between plDDT and lDDT-Cα observed scores for round 2 monomers and, further 

to this, the results of a paired 1-sided test in row 2 show that that plDDT scores are significantly 

higher. These findings agree with the scatter plots in Figures 5.11 and 5.12 showing over-

prediction in mid-quality models which was not present in the round 1 data. Notably, the over-

prediction is also absent from the equivalent round 2 ModFOLD9 scatter plot shown in Figure 

5.13. This is good evidence that overprediction of plDDT occurs in monomer models with 

custom template recycling. 

To further test this, a 2-sided Wilcoxon test was used to directly compare round 1 and round 2 

monomer plDDT scores (row 3) and this showed a significant difference between the two 

scores, evidenced by a p-value of 1.293x10-9. Further, it was established that the round 2 

monomer scores were significantly higher than those for round 1, evidenced by a p-value of 

6.465x10-10 from the 1-sided test in row 4. Importantly, there was no such difference between 

the equivalent round 1 and 2 monomer observed lDDT-Cα scores as shown by the p-value of 

0.1255 (row 5 of the table) meaning that round 1 and 2 monomer models were not significantly 

different in quality. 

It is therefore reasonable to conclude that these prediction errors have been introduced by 

custom template recycling and, for hypothesis 4 in respect to monomer models, the alternative 

hypothesis can be accepted, i.e., AF2 predicted scores following custom template modelling 

show greater variation than scores from regular modelling, when compared to equivalent 

observed scores. 
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5.4.4.2 Population B2 (CASP15 MultiFOLD multimers) 

 

 
Figure 5.14. Plots for Population B2 (MultiFOLD multimers). Scatter plots (left), density plots 

(middle) and box plots (right) for; A. pTM versus observed TM-score. B. plDDT versus observed 

CASP oligo-lDDT. C. Comparison plots for ModFOLDdock score versus TM-score. D. Comparison plots 

for ModFOLDdock versus oligo-lDDT. plDDT figures are rescaled to 0-1. 
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The plots in Figure 5.14, panels A and B, can be directly compared to Figures 5.4 and 5.5 for 

ColabFold multimers in section 5.4.1.2. Considering the plots in panel A for TM-scores, the 

spread of points in the scatter plot is noticeably greater than that shown in Figure 5.4. Further, 

although the mean observed TM-score in the boxplots reduces from 0.745 (Figure 5.4) to 0.68 

across the two populations, the equivalent mean pTM rises from 0.72 to 0.76. Secondly, 

considering panel B for lDDT scores in a similar way, the scatter plot again shows an increase 

in the spread of data compared to its equivalent in Figure 5.5 and there is also a marked shift 

to the right in plDDT when comparing the density plots, and a corresponding increase in mean 

plDDT score shown in the boxplot. These changes suggest a similar overprediction to that 

seen for monomers is also occurring for multimers which have been subject to custom template 

recycling. For comparison, the scatter plots in panels C and D showing ModFOLDdock scores 

versus both observed TM-score (C) and oligo-lDDT scores (D) for the same population, show 

little evidence of sustained overprediction. If anything, ModFOLDdock appears to suffer from 

a tendency for under-prediction of these models.  

 

 
Figure 5.15. Plots to show variation between predicted and observed scores for Population B2 

(MultiFOLD multimers). Left. pTM versus TM-score. Right. plDDT versus oligo-lDDT. Plots are 

equivalent to those in Figure 5.6 for ColabFold multimers. plDDT figures are rescaled to 0-1. 

 
The relationships suggested in Figure 5.14, panels A and B, are more clearly shown by the 

two variation plots in Figure 5.15. In agreement with Figure 5.6, both plots show overprediction 

of scores for lower quality models with maximum and minimum differences of +0.657 and            

-0.325 respectively for pTM score and a maximum difference of +0.828 for plDDT score. 

Although the maximum and minimum deviation in the data for pTM score are almost identical 

to those from Figure 5.6, the maximum deviation in plDDT scores has increased from 0.747 to 

0.828. Also, upon visual comparison of the two pairs of plots it is clear that the number of 
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models in the over-predicted regions in Figure 5.15 has increased over those in Figure 5.6 

despite a similar number of models overall (205 and 190 respectively). Wilcoxon signed rank 

tests were again used to quantify these differences in terms of significance and the results are 

presented in Table 5.9 below. 

Table 5.9. Wilcoxon tests for Population B2 MultiFOLD multimers and Population B1 ColabFold 

multimers. P-values ≤0.05 are in bold. 

Row Scores compared Independence and distribution symmetry p-value 

1 MultiFOLD plDDT versus oligo-lDDT Paired; 1-sided test, plDDT > oligo-lDDT 2.20x10-16 

2 MultiFOLD pTM versus TM-score Paired; 1-sided test, pTM > TM-score 1.46x10-5 

3 MultiFOLD versus ColabFold plDDT  Unpaired; 1-sided, MultiFOLD > ColabFold 7.193x10-8 

4 MultiFOLD versus ColabFold oligo-lDDT Unpaired; 2-sided. 0.283 

5 MultiFOLD versus ColabFold pTM Unpaired; 1-sided; MultiFOLD > ColabFold 0.014 

6 MultiFOLD versus ColabFold TM-score Unpaired; 2-sided. 0.252 
Wilcoxon test P-values were calculated at the 95% confidence level using and those ≤0.05 are considered significant. 

Table 5.9, rows 1 and 2 confirm that both predicted plDDT and pTM scores are significantly 

greater than their observed counterparts (oligo-lDDT and TM-score) for MultiFOLD multimers 

as evidenced by p-values of 2.20x10-16 for plDDT versus oligo-lDDT and 1.46x10-5 for pTM 

versus TM-score. Furthermore, there is confirmation that the plDDT (row 3) and pTM (row 5) 

scores are significantly greater than the equivalent predicted scores for ColabFold multimers 

but, importantly, there is no significant difference between the equivalent two sets of observed 

scores (row 4 for oligo-lDDT and row 6 for TM-score). This again shows that, for a similar set 

of models based on the same CASP targets, both sets of observed scores are similar but both 

predicted pTM and plDDT scores are significantly different and are higher in both cases for the 

group subject to custom template recycling. 

Therefore, with respect to multimers, the alternative hypothesis must again be accepted, i.e., 

AF2 predicted scores following custom template modelling show greater variation than scores 

from regular modelling, when compared to equivalent observed scores.  
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5.4.4.3 Population C (recycled monomers). 
 

 
Figure 5.16. Plots for plDDT versus observed lDDT-Cα for population C (recycled monomers). 

Left. A scatter plot showing the spread of data. Right. A boxplot comparing the distribution of lDDT-Cα, 

lDDT and plDDT scores for the same population. lDDT and lDDT-Cα have been rescaled to the 0-100 

range. Arrow (in red) on the scatter plot shows the potential degree of variation in predicted scores for 

models with similar observed scores. 

 

 
Figure 5.17. Plots for pTM versus observed TM-score for population C (recycled monomers). 

Left. A scatter plot showing the spread of data. Right. A boxplot for both scores from the same 

population. Arrow (in red) on the scatter plot shows the potential degree of variation in predicted scores 

for models with similar observed scores. 

Finally, the purely recycled models (population C and D) are considered. The scatter plots in 

Figures 5.16 and 5.17 show Pearson correlation coefficients of 0.87 and 0.89 respectively 

between predicted and observed scores. Although these correlations appear very respectable, 

both plots show a pronounced spread in the data with a high proportion of outliers. The red 
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bars on each scatter plot show the potential degree of variation in predicted scores for models 

with similar observed scores. For an observed score of approximately 0.5, predicted plDDT 

scores range from approximately 0.5 to 0.9 (Figure 5.16) and pTM scores range from 

approximately 0.3 to 0.9 (Figure 5.17). These results strongly support the hypothesis that using 

custom template recycling appears to produce a much higher degree of variability both plDDT 

and pTM scores. 

5.4.4.4 Population D (recycled multimers). 

 

Figure 5.18. Plots for Population D (Recycled multimers). Scatter plots (left), density plots 

(middle) and box plots (right). A. pTM versus observed TM-score. B. plDDT versus observed CASP 

oligo-lDDT. plDDT values are rescaled to 0-1. 

Figure 5.18 shows a similar spread of data to that seen in Figures 5.16 and 5.17. Panel A 

again shows a tendency for multimer pTM over and under-prediction meaning a high variation 

in predicted pTM score for models with similar observed scores. In panel B, all three plots 

demonstrate a high tendency for plDDT over-prediction and again, this is more pronounced for 

mid to lower quality models. 

As both population C and D were subject to up to 12 recycles and were entirely created via 

custom template recycling, these results support the hypotheses drawn above for population 

A and B, that using custom template recycling produces a higher degree of variability in 

AlphaFold2 predicted scores for both monomer and multimer models and that this effect is 

more pronounced for multimers. 
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5.5 Conclusions 

Throughout, data in this chapter has been orientated toward answering four primary questions 

concerning the accuracy of the often-quoted AlphaFold2 predicted scores plDDT and pTM, 

both as empirical descriptors of model quality and as reliable ranking scores. Further to this, 

there remains the more challenging secondary consideration of whether the AlphaFold2 neural 

network has learnt a useful energy function which can be applied to extend its use to general 

model quality assessment. 

plDDT is a reliable indicator of tertiary structure (monomer) model quality and ranking. 

From the data presented in section 5.4.1.1, plDDT was shown to be a reliable indicator of 

tertiary structure model quality when straightforward regular modelling was used and showed 

impressive Pearson correlation coefficients with both observed lDDT and lDDT-Cα scores 

which the independent QA method, ModFOLD9, was unable to improve upon. plDDT 

prediction accuracy appeared to be maintained across the scoring range and any over-

prediction may be potentially explained by the published linear relationship with lDDT-Cα.  

Ranking of the same tertiary model population also showed an agreement between plDDT and 

lDDT-Cα assigned ranks, which ModFOLD9 was, again, unable to improve. For straightforward 

regular tertiary modelling and it can be concluded that plDDT appears to be a reliable quality 

descriptor and ranking tool for tertiary structure models. 

Both pTM and plDDT show variability as indicators of multimer model quality and 

ranking. 

The reliability, however, was not maintained for all multimers. As shown by the plots in section 

5.4.1.2, both pTM and plDDT showed variability for models of similar quality with pTM showing 

a tendency for underestimation for higher quality models and both scores showing 

overestimation for some lower quality models. The overestimation was more pronounced for 

plDDT.  

This variability also affected ranking accuracy, with both pTM and plDDT showing a lower 

association with observed score ranking than was seen for monomers. Of the two scores the 

association was less strong for plDDT-assigned ranks. ModFOLDdock, which did not show 

over-prediction to the same degree, was able to improve upon the rank agreement of plDDT 

although there was insufficient evidence to draw the same conclusion for pTM. Nevertheless,  

there remains some unreliability in the ability of pTM and plDDT to differentiate between some 

high and low quality multimer models created by regular modelling and ModFOLDdock scores 

represent a more reliable method for ranking multimer models. 
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Greater variability of AF2 predicted scores is seen if custom template recycling is used. 

Finally, convincing evidence is presented in section 5.4.4 that using the custom template option 

to recycle models through the AlphaFold2 algorithm results in a much greater variability in 

predicted scores for both tertiary structures and multimers and that the variability is more 

extreme for multimer models. This provides cautionary evidence that the use of AF2 and AF2-

Multimer outside of their intended end-to-end operation could result in mis-scoring and mis-

ranking of models. 

Independent MQA is essential but AF2 is an unlikely MQA program in its current form. 

In light of these results, while recycling custom templates through AlphaFold2 improves model 

quality (Adiyaman et al., 2023) the accuracy of the accompanying predicted scores will be 

severely affected in some cases. For this reason, it is considered unlikely that AlphaFold2 

would be a useful tool for accurate quality assessment (QA) of whole models as the only way 

to achieve this would be via the custom template route. 

Further to this, where the custom template option is used for tertiary structure modelling, it is 

essential that an independent QA program such as ModFOLD9 is used to ensure accuracy in 

predicted scoring and model ranking. For any multimer modelling, whether straightforward or 

via custom template recycling, an independent QA program such as ModFOLDdock should 

also be used for the same reasons. MQA programs not only offer an alternative opinion on 

quality but also enable models from different software to be objectively compared. 
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CHAPTER 6 

Synthesis, conclusion and next directions
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6.1 Synopsis of studies  

This thesis describes a body of work completed over a 5 year period (2018–23) with two main 

aims; one, to identify methods for the improvement of predicted protein quaternary structure 

modelling over that achievable by docking technology; two, to develop a method for accurate 

and independent quaternary structure predictive model quality assessment, a technology that 

was largely missing from the modelling toolkit at the time. A tacit third aim was the symbiosis 

of these two developments to drive improvement in quaternary structure model quality. 

6.1.1 Analysis of MultiFOLD performance and incorporating AF2 recycling 

An extensive analysis of quaternary structure modelling performance at CASP13 was carried 

out as a baseline for development. In this analysis, and based on a similar analysis by the 

Venclovas group (Dapkunas et al., 2019) successful modelling was defined as models having 

a QS-score > 0.1. It was found that, even with this fairly low threshold, the early hybrid 

docking/TBM version of the MultiFOLD pipeline achieved only 10% success rate (3/30 

models). 

Following the success of AF2 at CASP14 and the subsequent code release by the DeepMind 

group leading to the development of ColabFold, we were able to explore the possibility of 

model refinement and improvement via the custom template recycling option with the intention 

that this could provide a unique advantage in an updated version of MultiFOLD. 

It was established that this novel use of recycling using full structural coordinate files was 

possible, and that it significantly improved models beyond their starting quality as measured 

by comparison with their native structures using the lDDT score. This improvement was not 

seen in a parallel MD refinement study (Adiyaman et al., 2023). Further to this it was shown 

that a significant improvement in model quality was achievable without the need for an MSA 

and that official DeepMind AlphaFold2 models were also slightly but significantly improved by 

this process. Success in this initial study underpinned the application of this technique to 

quaternary structure modelling where similar improvements were seen, including 

improvements measured by QS-score, suggesting improvements to multimer interfaces. 

Documented evidence (Roney and Ovchinnikov, 2022) showed that AF2 performance 

decreases considerably without an MSA, meaning that the improvements we obtained provide 

some evidence for either a learnt protein folding function in the AF2 DNN or that template 

information can be used to avoid local minima within the folding funnel energy landscape. 

Benchmarking at CASP15 resulted in MultiFOLD outperforming both the naïve NBIS-AF2-

Multimer and the ColabFold groups (Burcu Ozden et al., 2023) showing that the unique 

combination of AF2 features with a blend of existing and proprietary EMA scores added value 

beyond the baseline modelling capabilities of AlphaFold2-Multimer. 
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6.1.2 Developing new quality estimates and optimisation of artificial Neural Network 

(NN) correlations for CASP15 

The main aim of this part of the study was the development of an independent, publicly 

available model quality assessment program (MQAP) to predict the quality of quaternary 

structure models. Although many MQAP options existed for tertiary structures, very few 

resources existed for the quality comparison of multimer models built using different modelling 

software. If the life sciences community was to accept multimeric models, a reliable method 

for predicting model quality was vital. To achieve this, the first part of the study was dedicated 

to finding a route for the improvement of the unpublished MQAP ModFOLDdock, which had 

been used during the CASP13 assembly modelling competition but which had shown 

inaccuracies compared with observed scores of up to 0.546 (0-1 scale) and had a success 

rate in selecting the best model from a decoy set of 1/30 or 3.3%. 

Initial regression analysis was performed with observed scores and this found that there was 

useful information contained within the six ModFOLDdock predicted scores which had been 

previously masked by the calculation of an overall consensus score. A novel use of the CASP 

assessor scores as Local, Global and Total target scores revealed improved correlations. 

These scores were then used as target scores to train a simple MLP by supervised learning 

using three-part cross-validation. The resulting unique combination of the six distance-based 

scores was designed to differentiate between models on the basis of global fold, interface 

quality and overall similarity. 

When ModFOLDdock was optimised for CASP15 it was found that the Local and Global scores 

defined previously fitted the definitions of the QMODE2 SCORE (global fold) and QSCORE 

(global interface) categories specified for the new assembly EMA competition. During further 

optimisation three variants of ModFOLDdock were defined to produce quality scores according 

to user requirements, these were; ModFOLDdock – optimised for correlation with observed 

scores and likely to provide a good estimate of empirical quality; ModFOLDdockR – optimised 

for ranking, more likely to differentiate between decoy models for top model selection, and 

ModFOLDdockS – designed as a quasi-single model method to allow reliable quality 

assessment of a single or only few models. 

ModFOLDdock variants achieved a 100% prediction rate (i.e., they generated scores for all 

targets) in all three CASP15 EMA categories and were ranked in 2nd place for (global) SCORE 

(ModFOLDdock), 1st place for (global interface) QSCORE (ModFOLDdockR) and 2nd place for 

local interface residue score (ModFOLDdockR). Additionally, ModFOLDdock variants rated 

highly when identifying the interface patch in antibody-antigen interactions. Overall, 

ModFOLDdock variants improved the Pearson correlation between predicted and CASP 
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observed scores from 0.16 seen in CASP13 to a maximum of 0.81 when all CASP15 data was 

considered. Further to this, the increase in modelling success described in 6.1.1 was partially 

attributable to model selection by ModFOLDdockR and provides good evidence of model 

quality assessment improving modelling quality. 

6.1.3 Comparison of AF2 accuracy estimates with ModFOLDdock MQA scores 

As the life sciences community becomes more used to AlphaFold modelling, there is likely to 

be more reliance on the AF2 predicted quality measures, which have shown great reliability 

for tertiary structure models. It had yet to be established if this reliability extends to quaternary 

structure modelling.  

In this part of the study, the AlphaFold2 predicted quality measures, plDDT and pTM were 

investigated as reliable descriptors of both model quality and as ranking measurements for 

both tertiary and quaternary structure models. Their performance was compared to both 

ModFOLD9 for tertiary structures and ModFOLDdock for quaternary structures. 

To the best of our knowledge, this work showed for the first time the pattern of over and under 

estimation of these scores for quaternary structures, as applied by AF2-Multimer. It also shows 

that the variation is exacerbated by the use of custom template recycling, suggesting that that 

AFM quality scores may be a product of MSA strength and when the custom template option 

is used, the accuracy is somewhat overwritten. It was demonstrated that ModFOLDdock, as 

an independent MQA method, did not show the same pattern of variation with changing 

modelling conditions and statistical analysis suggested that ModFOLDdock represented a 

more accurate ranking tool than either plDDT or pTM for multimeric models. 

6.2 Conclusions 

6.2.1 Quaternary structure modelling 

The recycling experiment showed that significant improvements, as measured by native-

dependent quality scores, can be made to both tertiary and quaternary structure models at a 

low computational cost by this process. In some cases, non-AF2 tertiary structure models were 

improved beyond the quality of the equivalent AF2 model, and quaternary structure model 

improvement was evident from increases in both TM-score and QS-score. Furthermore, 

improvement was significant in the absence of an MSA, even for some high quality models 

and, considering documented evidence for a decrease in AF2 modelling quality without an 

MSA (Roney and Ovchinnikov, 2022), these improvements are suggestive of a learned 

function within the AF2 neural network. Recycling was subsequently included in the MultiFOLD 

pipeline and blind benchmarking at CASP15 showed that MultiFOLD out-performed the 

baseline NBIS-AF2-Multimer and the ColabFold group in assembly modelling. 
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A parallel study using the same dataset as the recycling experiment showed that the molecular 

dynamics refinement program ReFOLD4 (Adiyaman et al., 2023), improved the geometry-

based MolProbity scores (Chen et al., 2010) rather than native-dependent scores. This means 

that creating models via MultiFOLD, which includes recycling, followed by further refinement 

with ReFOLD4 could improve both the backbone and atomic positioning within 3D models with 

a low computational overhead, considering ReFOLD4’s targeted constraint approach which 

will not attempt to refine residues with high plDDT scores. This could be important in moving 

closer to models accurate enough for medical or drug interaction studies, indeed Section 6.2.4 

includes references to some studies where MultiFOLD has been chosen specifically for these 

advantages. 

6.2.2 Quaternary model quality assessment 

The identification of novel target scores for the combination of ModFOLDdock predicted quality 

measures and the comparison of these to CASP assessor scores led to prediction accuracy 

increases of 8.75%, 14% and 7% for Local, Global and Total scores respectively. The 

relationships defined by this process and confirmed by supervised NN training were then used 

in defining and optimising three ModFOLDdock variants for the CASP15 EMA competition as 

well as for an additional ranking tool within the MultiFOLD pipeline. 

ModFOLDdock variants were highly placed in all three EMA categories making ModFOLDdock 

arguably the most successful EMA method at CASP15. ModFOLDdockR additionally 

demonstrated its ranking ability within the MultiFOLD modelling pipeline by identifying the best 

model from a decoy population 33% of the time, a 10-fold increase from CASP13 performance. 

Additionally, ModFOLDdock variants showed especially good interface patch identification for 

antibody-antigen binding interactions which may be an important aspect to advertise to the 

biological modelling community. Finally, it was demonstrated that ModFOLDdock was able to 

outperform plDDT and pTM as a ranking tool for AFM models as it did not show variability or 

a tendency for overprediction in the same way as the AFM quality measures. 

These achievements show that correctly optimised distance-based scoring algorithms can 

compete with machine learning (ML) systems which can suffer from accuracy issues when 

there is a lack of high-quality models for training datasets. Until multimer modelling reaches 

the levels of quality associated with AF2 tertiary models, traditional quality measures could 

play an important role in driving the development of quaternary structure modelling in the short 

to medium term. The final point on ModFOLDdock versus plDDT and pTM scores provides 

evidence that adapting AF2 and AFM for use outside of their end-to-end operation could result 

in model mis-scoring and mis-ranking. 
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6.2.3 Continued benchmarking of MultiFOLD 

The CASP15 success achieved in 2022 has been further validated by encouraging results for 

the MultiFOLD server in the ongoing CAMEO BETA modelling of structures and complexes 

community project (Haas et al., 2019). The data presented in Figure 6.1 show that MultiFOLD 

(Server 1) outperforms the other three currently registered servers as measured by both lDDT-

oligo and QS-score. The values plotted are cumulative scores normalised to the 0-1 range to 

compensate for the different number of targets modelled by each server. Servers 1 and 76 

modelled 127 targets, Server 4, 80 targets and Server 2 only 40 targets, therefore normalised 

values were created by calculating cumulative Server 1 scores for sets of targets matching 

each other server. The normalised score is then calculated as  

𝑆𝑐𝑜𝑟𝑒

𝑆𝑒𝑟𝑣𝑒𝑟 1 𝑠𝑐𝑜𝑟𝑒
 

Further analysis (Genc, 2024) has shown that the MultiFOLD server maintains its performance 

advantage over the other servers and, in all except the homomer category, the advantage is 

significant at the 95% confidence level. This slight performance dip for homomers is due to the 

difficulty with stoichiometry determination which is unclear from the single sequence provided 

for homomers versus the three which would be provided for a trimer, for example. Homomer 

stoichiometry must therefore be inferred from templates which can be problematic for 

previously uncharacterised proteins. 

Figure 6.1 Relative performance of MultiFOLD (Server 1) and the other servers competing in 

CAMEO BETA modelling. Data is for combined heteromer and homomer models. A. lDDT-oligo scores 

normalised as described above for matching target populations modelled by each server (common 

subsets). B. Similarly normalised data for QS-scores. Data was collected between January 2023 and 

March 2024 and kindly provided by Ahmet G Genc (Genc, 2024). Server identities are hidden to all 

except CAMEO organisers. 

 

 



Chapter 6 

169 
 

6.2.4 Impact of the MultiFOLD and ModFOLDdock servers 

A number of groups have published papers citing both MultiFOLD and ModFOLDdock as 

integral parts of their research. Brief descriptions of four example studies are given below. 

1. Diverse genetic contexts of HicA toxin domains propose a role in anti-phage defense, 

(Gerdes, 2024). In this study dimers of the PaV-LD phage class 1 HicAB and the 

Campylobacter class 2 HicAB were modelled using MultiFOLD and quality assessed using 

ModFOLDdock. This was a bioinformatics examination of the role of the HicA domain in the 

toxin–antitoxin (TA) system as an anti-phage defence mechanism. The elucidation of the 

interaction was described as advancing the understanding of the TA system functionality within 

the microbial world. 

2. Disabling spidroin N-terminal homologs' reverse reaction unveils why its intermolecular 

disulfide bonds have not evolved for 380 million years, (Mi et al., 2023). This study cited 

MultiFOLD’s independently validated improved performance over AlphaFold2 and used the 

server to predict the NT and CT self-assembly spidroin domains. 

3. Are the integrin binding motifs within SARS CoV-2 spike protein and MHC class II alleles 

playing the key role in COVID-19? (Gerencer and McGuffin, 2023). This study used MultiFOLD 

models to predict the visibility of the integrin-binding ECD (Glu-Cys-Asp) and LDI (Leu-Asp-

Ile) motifs on the S (spike) protein. 

4. In Silico Evaluation, Phylogenetic Analysis, and Structural Modeling of the Class II 

Hydrophobin Family from Different Fungal Phytopathogens, (Bouqellah and Farag, 2023). This 

study used MultiFOLD as well as AF2 and trRosetta to model HFBII structures and found that 

“MultiFOLD showed a higher modelling precision than the other [Alphafold2 and trRossetta] 

tools, by pTM and plDDT”. This was verified by observed TM-scores of 7.1 (MultiFOLD), 0.69 

(AF2) and 0.62 (trRosetta) when compared to the experimental HFBII structure (PDB: 4AOG). 

Of these, the HicAB (1) and the SARS-CoV-2 binding motifs (3) study exemplify how 

understanding protein binding and complex formation can be integral to the furtherance of 

biomedical research. The HicA proteins are small bacterial proteins with a domain responsible 

for their toxic activity. Production of HicA is often increased at times of bacterial stress, 

inhibiting cellular function and leading to dormancy. This is thought to be a potential route for 

antibiotic resistance allowing the bacteria to lie dormant until levels of antibiotic are reduced. 

The HicB proteins bind to the HicA domain and prevent its exposure. Understanding the 

dimerisation could lead to the development of drug-induced HicA binding, preventing 

dormancy and therefore reducing resistance.  
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Both the ECD and LDI motifs lie within the SARS-CoV-2 receptor binding domain (RBD) and 

have been implicated in integrin (ECD) and angiotensin-converting enzyme 2 (ACE2) binding 

(LDI). Studying the interactions of these domains may enhance understanding of the ability of 

the SARS-CoV-2 virus to infect a diverse range of cells causing the severe viral loads which 

were seen in some cases during the pandemic. The ECD is of particular interest as integrin 

can be activated via cytokinin release (Liu et al., 2022) leading to enhanced integrin-mediated 

cell entry following initial ACE2-mediated entry. A vaccine developed specifically against this 

domain may limit the ability of Covid to cause serious disease. 

The publications resulting from the work in this thesis have been useful to the general 

community. According to a Google Scholar search on 11/4/24, Prediction of protein structures, 

functions and interactions using the IntFOLD7, MultiFOLD and ModFOLDdock servers 

(McGuffin et al., 2023) has received 21 citations; Estimation of model accuracy in CASP15 

using the ModFOLDdock server (Edmunds et al., 2023) has received 10 citations and 

Improvement of protein tertiary and quaternary structure predictions using the ReFOLD 

refinement method and the AlphaFold2 recycling process (Adiyaman et al., 2023) has received 

7 citations. 

6.3 Future directions 

6.3.1 Short term developments 

The first and most pressing task is the development of version 2 of ModFOLDdock to further 

improve performance and maintain competitiveness at CASP16. To achieve this, a modified 

version of the neural network which was proposed in Chapter 3 will be integrated into the 

source code with the function of optimising an enhanced set of component scores into a 

consensus score. At the time of writing this is currently in the pretraining test stage for the 

residue-level confidence score, a representation of which is shown in Figure 6.2. As suggested 

in Chapter 3, one way to increase the predictive power of a neural network while avoiding the 

overfitting problem is to increase the number of inputs available for consideration. The logic 

adopted for ModFOLDdock version 2 is to firstly identify interface residues as those within 8Å 

of a residue, in the hypothetical example below this is residue “A11”. The five closest 

neighbouring residues are then calculated by the shortest Euclidean distance from the target 

residue. In Figure 6.2 this is A10 and A15 on the same chain and B11, B6 and B25 on the 

complementary chain, as shown by the yellow and cyan graphic on top the left. The values (0-

1) for eight quality scores for each of the residues identified by the measures above are then 

used as input to the neural network, making a total of 48 input scores per residue. From these 

an optimal consensus score describing the modelling accuracy of each interface residue is 

calculated. The structural image top right shows a target residue (yellow) in the middle of an 

interface, the bottom right image shows a target residue (again in yellow) on the edge of an 
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interface, in cases where edge residues have less than five contacting residues (within 8Å) 

one or more of the scores will be set to 0 for padding. 

 

Figure 6.2 The proposed format for the version 2 ModFOLDdock MLP used to calculate optimal 

residue level confidence scores. Each residue, identified in the left-hand circular graphic and the 

right-hand structural image, is scored on the basis of eight different scoring methods for itself and the 

closest five residues, as measured by Euclidean distance. 

The CASP15 results, documented in Chapter 4, highlighted that ModFOLDdock had a 

particular affinity for interface patch identification, which was particularly strong for antibody-

antigen binding interactions. Understanding what characterises a protein segment as a 

potential antibody interaction patch could be important in the design of vaccines or 

autoimmune treatment (Guarra and Colombo, 2023). This affinity could be specifically explored 

and developed by extended testing on antibody-antigen targets to determine the power of 

patch detection. 

The use of DNNs in MQA programs has been shown to increase performance over previous 

version of the program, for example VoroIF out-performed VoroMQA in testing (Olechnovic 

and Venclovas, 2023). The idea underpinning the Bonvin group’s DeepRank was to use the 

flexible programming language PyTorch to create a trainable NN which could be used out of 

the box or retrained to the users’ specifications. The aim was to predict the quality of protein 

multimers on the basis of the similarity of their interfaces with experimentally derived proteins. 

In 2021, when this was investigated for possible integration into the ModFOLDdock pipeline, 

there appeared to be difficulties with interpretation of the output of the program, however 

continued development and a greater time period to fully investigate the flexibility of the NN 

may make this a viable direction. This is possibly preferable to suggestions to adapt the AF2 

NN for this purpose (Roney and Ovchinnikov, 2022) as evidence from Chapter 5 suggests a 

perturbation in quality score reliability when AF2 is used in this way. 
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Also of value would be further investigation into the score profile of the two AF2 model accuracy 

measures plDDT and pTM. It was established in Chapter 5 that there is score overprediction 

for some low and medium quality models, a situation which becomes more significant if custom 

templates are used during modelling. It has been proposed that the AF2 NN has learned a 

protein folding function, but this is clearly incomplete or inaccurate in some aspects – as AF2 

continues to rely on MSA data to build accurate models. Understanding exactly which models 

are prone to overprediction and which conditions exacerbate overprediction may help to 

uncover some of the inaccuracies in this proposed folding function, presenting an opportunity 

for targeted improvement. 

6.3.2 Longer term developments 

For MultiFOLD modelling there are two potential directions to improve model quality. These 

were highlighted in the analysis of the AFsample method (Wallner, 2023) during CASP15 

which suggested that where the evolutionary signal from an MSA is weak, improvements to 

model quality can be made by either augmenting the MSA or performing neural network 

dropout to increase the diversity of models sampled. There is evidence for and against adding 

a custom, paired MSA to AlphaFold2. Work on AF2 PPI prediction (Bryant et al., 2022) found 

that this significantly improved model quality while similar work on AlphaFastPPI (Yin et al., 

2022) suggested that pairing was not important. Despite this disagreement, as MultiFOLD runs 

both AF2 and AFM in tandem, it would likely be worthwhile investigating the effect of a paired 

MSA on the AF2 arm of the pipeline as well as the effect of MSAs constructed on structural 

similarity (rather than sequence) on the AFM arm.  

The Wallner group were able to program a dropout rate into the AF2 neural network for their 

AF2sample pipeline, meaning that some of the weights in the network were randomly set to 

zero. During training, this is often employed to prevent overfitting and allows the network to 

learn different solutions to the same problem by sampling a greater diversity of models. 

According to the CASP15 results page, AF2sample was officially ranked in third place for 

multimeric modelling and so this approach has proven efficacy and it would be a viable 

research method for inclusion into the MultiFOLD pipeline. 
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Figure 6.3 Two proposed structures for CASP15 target H1111. A. The McGuffin model as a cyclic 

nonomer of ABC trimers. B. The same target as a cyclic nonomer of AB chains with a chain C 

transmembrane tail. C. The CASP nonomer reference structure. Structures are coloured by chain. 

One frustrating problem which arose during both CASP14 and CASP15 modelling, and which 

applies equally to MQA, is that of stoichiometry or symmetry. For homomers, it is not always 

obvious whether individual chains form a dimer or higher association and for heteromers, if the 

stoichiometry is known, it is not always clear how the different chains repeat and fit together. 

While the former problem is addressed by the new stoichiometry prediction protein language 

model QUEEN (QUaternary state prediction using dEEp learning) (Avraham et al., 2023) with 

some encouraging results, a good example of the latter problem is the heteromeric CASP15 

target H1111 with a A9B9C9 stoichiometry, shown in Figure 6.3. It was not clear whether this 

would result in a circular structure of all three chains in one plane (a polo style shape), 

represented by panel A or whether two chains formed the circular pore with the third forming 

a trans-membrane tail section, represented by panel B. The CASP native structure, in panel 

C, shows that the former idea was closer to the truth. In addition, and as described in the 

ReFOLD4 refinement work (Adiyaman et al., 2023), research is increasingly considering a 

protein conformational landscape as a more important concept than a single correct or 

incorrect model, a concept first proposed by Alexei Kurakin (Kurakin, 2009). 

To address these issues of arrangement and flexibility, a pragmatic approach would be to 

continue with small percentage gains in modelling, producing an ever-improving population of 

quaternary structure models. These in-turn will act as an improved quality training dataset for 

ML approaches to both modelling and MQA, leading to gradual improvement in ML learning 

and the development of a true fold and dock approach. The neural network dropout approach 

described above may have a role in addressing the flexibility issue specifically. If dropout 

produces an increased variety of models for a neural network to sample, it may be that these 

intermediates actually represent different but valid conformations of the model. Instead of 

allowing the network to simply assess these during the creation of a single final model, it may 

be useful to output these alongside the final model as a representation of the conformational 
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landscape of the protein. This may lead to deeper understanding of the flexibility inherent in 

certain structures as well as creating an increased diversity of models for subsequent training 

datasets. 
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Appendix 1 
 
Definitions of key quality scoring routines used in this study. 

GDT_TS. Global Distance Score (Total Score) is a common CASP score and represents the 

number of model residues which fall into a predefined distance constraint when compared to 

the native structure. The score is expressed as a percentage and so the higher the score, the 

greater the percentage of residues found within this distance. Higher scores are better with 

100 representing the perfect fit. CASP uses the mean sum of four constraint distances (1, 2, 4 

and 8A), i.e. GDT_TS = (GDT_P1 + GDT_P2 + GDT_P4 + GDT_P8)/4. 

RMSD. Root Mean Square Deviation. This considers the distance in 3-D space (x,y,z) between 

two sets of coordinates (the model (r) and native structure (r’)) for C-alpha atoms. The squares 

of each distance (rx – r’x, ry - r’y, rz - r’z etc.) are summed and divided by the total number of 

residues considered. RMSD is the square root of this value (closer to 0 the better). 

 

TM-Score. Template Modelling Score which is traditionally used to assess the similarity 

between the tertiary structures of two proteins. A 0-1 score with >0.5 considered to generally 

represent the same globular fold. It is essentially the reciprocals of target sequence length 

multiplied by the sum of the distance of each aligned residue divided by the modified cubed 

root of the aligned length (d0). 

 

 

 

lDDT. Local Distance Difference Test expressed as a score between 0 and 1. The score is 

designed to be super-position-independent and expresses the fraction of contacts shared 

between a model and native structure regardless of any difference in the actual orientation. 

lDDT is calculated for all pairs of atoms present in the native structure within an inclusion radius 

(often 5-15Å) and lDDT scores are calculated as the fraction of preserved contacts where a 

preserved contact is determined as being within 0.5Å, 1Å, 2Å and 4Å. Total lDDT score is an 

average of the fraction of contacts preserved over the four distances. If one of the atoms in a 

pair is missing the distance is considered non-conserved. A score of 0 represents no 

conserved contacts and 1 represents a perfect match. In reality these extremes are rarely 

seen, and scores tend to be in the range 0.25 – 0.6. 
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QS-score. Quaternary Structure score. It expresses the fraction of shared interface contacts 

within 12A. A 0–1 score with 0 representing a radically different quaternary structures and 1 

suggesting very similar models. QS-score is Calculated as follows:  

Identify equivalent chains by sequence alignment. Calculate symmetry of the complex and 

create symmetry groups from chains which can reproduce the full structure. Use superposition 

to map the chains of two identical symmetry groups from different models. For each symmetry 

group, consider all possible pairings using one symmetry group as a base to superpose 

complexes, the lowest global RMSD considered the correct mapping. Identify “mapped” 

residues as those equivalent by sequence alignment between models. Identify contacts as Cβ 

atoms (Cα for Glycine) of residues from different chains within 12Å. Identify “shared” residues 

as those mapped and that form a contact in both models. Non-shared residues are those that 

either form contacts but are not “mapped” or that are “mapped” but form contacts only in one 

model. Dapkūnas, Olechnovič and Venclovas (Dapkunas et al., 2019) ,in an analysis of their 

CASP13 performance, defined categories as; high > 0.7; medium 0.3 to <0.7; low >0.1 to 0.3; 

and incorrect as ≤ 0.1. 

Jaccard or Interface Patch Similarity (IPS). A 0-1 score calculated using the number of 

interface residue contacts that are present in both the model (A) and the target (B) divided by 

the interface residues in the target (B) but not in the model (A) + those in the model (A) but 

not in the target (B). Often written as J(A, B) = |A∩B| / |A∪B| (Lafita et al., 2018). 

F1 or Interface Contact Similarity (ICS). A 0-1 score equivalent to the F1 score divided by 

100. It can be calculated as the combination of precision (P) and recall (R) of contact 

predictions where contacts are defined as non-Hydrogen atoms from residues on different 

chains within 5Å of each other. Distances below 3Å are treated as clashes. ICS is calculated 

as: 

ICS or F1(P,R) = 2 x 
P(M,T) x R(M,T)

P(M,T)+R(M,T)
 

where M is the model contact set and T is the target contact set (Lafita et al., 2018). 

Definitions of precision and recall are covered in Section 5.1, but briefly, Precision is TP/TP+FP 

and Recall (sensitivity) is TP/TP+FN. An F1 score can be calculated as the harmonic mean of 

Precision and Recall (i.e. the reciprocal of reciprocal values, e.g. 2/(1/prec + 1/recall)). Recall 

is calculated using the number of correct interface residues in the model divided by the number 

of all native interface residues in the target (x100) and Precision is a similar score to recall but 

this time calculated by the number of correct interface residues in the model divided by the 

sum of the correct and incorrect interface residues in the model. 
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GDT HA is the Global Distance Test, High Accuracy score. This is calculated by the same 

method as GDT TS but uses stricter distance cut-offs: (0.5Å + 1Å + 2Å + 4Å)/4 

SG score is the Sphere Grinder score (https://predictioncenter.org/casp12/doc/help.html).  

The Sphere Grinder score is calculated using two parameters: a sphere of fixed radius and 

two RMSD cutoff values of 2Å and 4Å. For each residue, the RMSD is calculated between the 

model and the target using only the atoms falling inside a sphere of 6Å which centres around 

the Cα atom. The global Sphere Grinder Score (SG) is then calculated as the percentage of 

residues with RMSD under each of the 2Å and 4Å cutoff values. 

CAD score is the Contact Area Difference score (Olechnovic et al., 2013) For this score, the 

contact area for each pair of residues with a nonzero contact in the target structure is calculated 

along with the equivalent residue contact area in the model. For every residue pair the contact 

area difference is then the absolute difference of contact areas between residues in the target 

and in model. Additional residues in the model not present in the target are excluded and 

residues missing from the model have their contact areas set to zero. 

  

https://predictioncenter.org/casp12/doc/help.html
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Appendix 2 
 
Data from the CASP13 competition. 

 
Table S2.1 Definitions of CASP multimer target difficulty categories. 

Category Description 

Easy A template exists for sub-unit and assembly. 

Medium A partial template exists for sub-unit or assembly. 

Difficult No template exist for either sub-unit or assembly. 

Table S2.2 List of individual targets and scores for CASP13 assembly models submitted by the McGuffin 

group along with ModFOLDdock and CASP scores. (Target colour key: Hard, Med, Easy) 

Target Type Submitted model name 

ModFOLDdock scores CASP scores 

Consensus6 
Observed 

Mean GDT_TS RMSD 
lDDT 
(olig) 

QS  
(best) 

T0960 trimer T0960-zdock.2.pdb 0.356 0.156 6.55 71.86 0.285 0.000 

T0961 tetramer T0961_Refine1_assembly1_4y9j.ent 0.370 0.441 23.70 31.07 0.689 0.000 

T0963 trimer T0963-zdock.5.pdb 0.317 0.144 6.83 77.57 0.331 0.000 

T0965 dimer T0965_Refold8_assembly1_4zrm.ent 0.369 0.436 32.75 15.19 0.582 0.200 

T0966 dimer T0966_Refold9_assembly1_5t09.ent 0.331 0.161 30.66 33.58 0.597 0.000 

T0970 dimer T0970-zdock-complex.7.pdb 0.379 0.207 20.71 14.31 0.351 0.000 

T0973 dimer T0970-zdock-complex.15.pdb   0.364 0.172 26.76 20.21 0.340 0.016 

T0976 dimer Frodock-T0976_25.pdb 0.378 0.166 27.05 25.88 0.570 0.001 

T0977 trimer T0977-zdock-complex.4.pdb 0.446 0.191 14.40 42.55 0.477 0.002 

T0979 trimer T0979-mzdock-complex.1.pdb 0.367 0.256 14.17 47.54 0.314 0.000 

T0981 trimer zdock-T0981-complex.5.pdb 0.510 0.148 6.51 59.09 0.318 0.001 

T0983 dimer T0983-patchdock-output.txt.15.pdb 0.399 0.287 45.04 21.14 0.751 0.000 

T0984 dimer patchdock-T0984-output.txt.5.pdb 0.399 0.326 45.38 5.53 0.634 0.477 

T0985* dimer zdock-T0985-complex.3.pdb 0.359 0.269 34.37 9.02 0.416 0.150 

T0989 trimer megadock-T0989-ABC_11.pdb 0.462 0.125 8.88 34.53 0.250 0.014 

T0991 dimer megadock-T0991_23.pdb 0.375 0.114 11.04 23.45 0.231 0.001 
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T0995 octamer zdock-T0995-ABCDEFGH-4.pdb 0.733 0.225 10.40 33.28 0.590 0.018 

T0996 hexamer Manually constructed from dimer NA NA 3.84 59.72 0.492 0.006 

T0997 dimer Frodock-T0997_6.pdb 0.321 0.179 31.10 15.38 0.494 0.000 

T0998 dimer zdock-T0998-14.pdb 0.341 0.08 8.21 29.04 0.165 0.000 

T0999 dimer Frodock-T0999_3.pdb 0.242 0.198 12.80 39.41 0.691 0.005 

T1000 dimer megadock-T1000_22.pdb 0.284 0.158 23.86 23.47 0.568 0.000 

T1001 dimer megadock-T1001_6.pdb 0.384 0.169 39.03 9.17 0.669 0.036 

T1003 dimer zdock-T1003-AB-2.pdb 0.331 0.228 42.58 27.02 0.643 0.000 

T1004 trimer mzdock-T1004-ABC.7.pdb 0.378 0.246 16.56 53.19 0.527 0.003 

T1006 dimer Frodock-T1006-AB_11.pdb 0.406 0.319 49.66 14.46 0.639 0.000 

T1009 dimer zdock-T1009-AB-22.pdb 0.285 0.270 32.39 16.37 0.575 0.004 

T1010 dimer Frodock-T1010-AB_3.pdb 0.358 0.260 26.14 10.38 0.357 0.072 

T1016 dimer T1016_Refold8_assembly1_4ij5.ent 0.458 0.667 76.73 2.50 0.689 0.693 

T1018 dimer Frodock-T1018-AB_1.pdb 0.354 0.212 39.89 14.62 0.637 0.000 

T1020 timer zdock-T1020-ABC-5.pdb 0.462 0.381 23.62 22.71 0.567 0.019 

 * Originally released as A1 although has A2 structure – excluded from any analyses. 
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Appendix 3 
 
Individual CASP13 target performance by lDDT and QS scores. 

 

Figure S3.1 (below) shows CASP13 oligo-lDDT and QS-scores for submitted structures. Nine 

models (T0961, T0982, T0984, T0999, T1001, T1003, T1006, T1016 and T1018) scored above 

0.6 for lDDT. Less impressive is the spread of QS-score which considers the interface and 

therefore implicitly the relative orientations of the monomers. 

Figure S3.1 Individual CASP13 target performance by lDDT and QS scores. Left, a bar graph to 

show comparative score magnitude, right a scatter graph of the same data showing that MultiFOLD 

CASP13 models rated more highly with lDDT than QS-score. 
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Appendix 4 
 
Model images from the CASP13 competition 

 
 
Figure S4.1 McGuffin group submitted, best and native CASP13 assembly structures. A. T0960, 

B. T0965, C. T0966, D. T0970, E. T0977. For each row, the submitted model is on the left, the CASP 

reference structure is central and the best McGuffin group model by mean observed score is on the 

right. 
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Figure S4.2 McGuffin group submitted, best and native CASP13 assembly structures. F. T0979, 

G. T0983, H. T0984, I. T0989, J. T0991. For each row, the submitted model is on the left, the CASP 

reference structure is central and the best McGuffin group model by mean observed score is on the 

right. 



Appendices 

197 
 

 

Figure S4.3 McGuffin group submitted, best and native CASP13 assembly structures. K. T0997, 

L. T0998, M. T1010, N. T1016, O. T1018, P. T1020. For each row, the submitted model is on the left, 

the CASP reference structure is central and the best McGuffin group model by mean observed score is 

on the right. For T1016, the submitted model was also the best model. 
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Table S4.1 McGuffin group submitted CASP13 assembly structures. For each row, the predicted 

score is the ModFOLDdock Consensus6 score and the observed score is an observed mean score. For 

T1016, the submitted model was also the best model. 

Target 
Submitted model Best model 

Predicted score Observed score Predicted score Observed score 

T0960 0.356 0.156 0.343 0.328 

T0965 0.369 0.436 0.322 0.487 

T0966 0.331 0.161 0.202 0.259 

T0970 0.379 0.207 0.295 0.301 

T0977 0.446 0.191 0.179 0.468 

T0979 0.367 0.256 0.260 0.452 

T0983 0.399 0.287 0.370 0.834 

T0984 0.399 0.326 0.372 0.604 

T0989 0.462 0.125 0.350 0.197 

T0991 0.375 0.114 0.277 0.199 

T0997 0.321 0.179 0.273 0.261 

T0998 0.341 0.08 0.273 0.188 

T1010 0.358 0.260 0.285 0.382 

T1016 0.458 0.667   

T1018 0.354 0.212 0.264 0.381 

T1020 0.462 0.381 0.306 0.621 
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Appendix 5 
 
Data from the CASP14 competition. 
 

Figure S5.1 CASP14 final group rankings for assembly structures by summed Z-score. McGuffin 

(19th) is Group 220. (Image from https://predictioncenter.org/casp14/zscores_multimer.cgi). 

 

Table S5.1 Full list of McGuffin group CASP14 assembly models. ModFOLDdock predicted scores, 

a calculated observed score and CASP official scores are also listed. 

Target 

(Difficult 

Med 

Easy) Type Submitted model name 

ModFOLDdock scores CASP official scores 

Calculated 

predicted 

(Consensus6) 

score. 

 

Calculated 

Observed 

Mean 

Global Local 

TM-

score 
lDDT 

(oligo) 
ICS   

(F1) 
IPS  

(Jacc) 

T1032 
Dimer 

(A2) 
Yang_FM_TS3_pdb1gxj.pdb 0.524 0.380 0.644 0.429 26.0 0.28 

T1034 
Tetramer 

(D2) 
Complex1.pdb (intertwined 

monomer) 
0.352 0.338 0.268 0.607 0.0 0.06 

T1038 
Dimer 

(A2) 
Model01.pdb 0.08 0.08 0.216 0.130 0.0 0.12 

T1048 
Tetramer 

(D2) T1048_ReFOLD_pdb5k7b.pdb 0.275 0.232 0.519 0.127 1.3 0.20 

T1052 
Trimer 

(C3) T1052_ReFOLD_pdb6f7d.pdb 0.356 0.452 0.691 0.556 33.2 0.45 

T1054 
Dimer 

(C2) Complex5.pdb 0.336 0.239 0.495 0.531 0.0 0.19 

T1061 
Trimer 

(C3) T1061_ReFOLD_10_pdb3cdd.pdb 0.487 0.206 0.473 0.240 0.7 0.16 

https://predictioncenter.org/casp14/zscores_multimer.cgi
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T1062 Trimer 
Part of H1060 T5 bacteriophage 

tail. Cancelled. 
1700_TR1062_pdb3cop.pdb 

0.383 0.282 - - - - 

T1070 
Trimer 

(C3) 
Complex4.pdb (intertwined 

monomer) 
0.488 0.199 0.177 0.395 0.0 0.04 

T1073 Tetramer Cancelled - - - - - - 

T1078 
Dimer 

(A2) Decoy3.pdb 0.480 0.390 0.519 0.556 0.0 0.39 

T1080 
Trimer 

(C3) 
Complex3.pdb (intertwined 

monomer) 
0.543 0.204 0.218 0.181 3.3 0.15 

T1083 
Dimer 

(C2) Decoy9.pdb 0.436 0.465 0.603 0.578 30.6 0.44 

T1084 
Dimer 

(C2) Decoy1.pdb 0.314 0.392 0.700 0.491 0.0 0.50 

T1087 
Dimer 

(C2) Complex9.pdb 0.353 0.197 0.420 0.326 0.0 0.25 
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Appendix 6 
 
Data for recycling models. 

 
Table S6.1 Raw oligo-lDDT, TM-score and QS-score values for non-AF2 multimeric templates and recycled models. Values for baseline and MSA 

recycling up to 6 recycles. 

Model Base 
lDDT 

Base 
Tmscore 

Base QS R1M lDDT R1M TM R1M QS R3M lDDT R3M TM R3M QS R6M lDDT R6M TM R6M QS 

H1045TS403_1 0.6941 0.8705 0.55 0.8348 0.91572 0.97 0.8411 0.91612 0.97 0.8406 0.91485 0.97 

H1065TS403_1 0.6964 0.79217 0.54 0.8489 0.96635 0.8 0.8995 0.96694 0.92 0.904 0.96781 0.91 

H1072TS403_1 0.3793 0.39764 0.04 0.7326 0.90913 0.74 0.7153 0.65021 0.6 0.71 0.65284 0.6 

T1032TS403_1 0.5428 0.69464 0.54 0.548 0.71818 0.64 0.5477 0.71465 0.64 0.6385 0.71047 0.65 

T1054TS403_1 0.6073 0.4408 0 0.6058 0.52535 0 0.6179 0.51768 0 0.6065 0.50974 0 

T1070TS403_1 0.4009 0.35172 0.04 0.3508 0.3485 0.05 0.4022 0.34343 0.04 0.4034 0.24387 0.04 

T1073TS403_1 0.5496 0.36837 0 0.3769 0.43095 0 0.549 0.31806 0 0.5548 0.36847 0 

T1078TS403_1 0.4989 0.5622 0.03 0.5485 0.79588 0.38 0.7814 0.90926 0.41 0.7865 0.91857 0.42 

T1083TS403_1 0.6092 0.66167 0.38 0.7143 0.83212 0.74 0.6865 0.84397 0.79 0.7117 0.84599 0.77 

T1084TS403_1 0.8318 0.917 0.89 0.8367 0.91925 0.9 0.8664 0.91632 0.91 0.8652 0.91512 0.91 

H1045TS029_1 0.5402 0.72313 0.84 0.8803 0.95618 0.98 0.8723 0.94974 0.97 0.8802 0.95326 0.98 

H1065TS029_1 0.6243 0.61334 0.1 0.9038 0.97124 0.91 0.9082 0.97181 0.92 0.9242 0.98032 0.92 

H1072TS029_1 0.4639 0.54438 0.27 0.7726 0.89189 0.8 0.7581 0.86708 0.75 0.7986 0.86773 0.75 

T1032TS029_1 0.4168 0.62816 0.49 0.6819 0.68005 0.78 0.6933 0.70035 0.81 0.6956 0.69974 0.82 

T1054TS029_1 0.5231 0.34135 0.05 0.5323 0.31614 0.05 0.586 0.46527 0 0.6881 0.46935 0 

T1070TS029_1 0.4061 0.40359 0.17 0.0307 0.43896 0 0.1387 0.43547 0 0.3773 0.57464 0.08 

T1073TS029_1 0.5097 0.30683 0 0.1387 0.37109 0 0.4726 0.38088 0 0.4952 0.32283 0 

T1078TS029_1 0.5525 0.5011 0.16 0.7092 0.92204 0.78 0.9106 0.97969 0.87 0.8927 0.9788 0.82 

T1083TS029_1 0.4843 0.63454 0.36 0.7831 0.88441 0.88 0.7844 0.88121 0.86 0.7388 0.81028 0.75 

T1084TS029_1 0.7564 0.89285 0.86 0.8538 0.91678 0.92 0.8688 0.91706 0.91 0.8657 0.91591 0.91 

H1045TS055_1 0.7309 0.86583 0.9 0.8573 0.94246 0.97 0.8633 0.94865 0.97 0.8693 0.94736 0.97 

H1065TS055_1 0.5651 0.46602 0 0.8802 0.96372 0.91 0.8861 0.96441 0.86 0.9036 0.96838 0.91 

H1072TS055_1 0.4558 0.52742 0.26 0.7715 0.75995 0.82 0.7876 0.87109 0.83 0.772 0.78825 0.81 

T1032TS055_1 0.521 0.6318 0.41 0.6607 0.70659 0.8 0.6765 0.70192 0.73 0.6712 0.69893 0.73 
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T1054TS055_1 0.5277 0.47971 0.02 0.5993 0.45661 0 0.5945 0.4637 0 0.6702 0.4623 0 

T1070TS055_1 0.3082 0.39635 0.11 0.0433 0.4698 0 0.1257 0.45214 0.03 0.1363 0.4689 0.04 

T1073TS055_1 0.5624 0.37717 0.01 0.116 0.34005 0 0.0897 0.40542 0 0.343 0.37925 0 

T1078TS055_1 0.5535 0.50414 0 0.6595 0.84231 0.23 0.6929 0.60142 0.03 0.7239 0.57459 0.06 

T1083TS055_1 0.5196 0.46014 0.03 0.4958 0.54648 0.14 0.4564 0.51314 0 0.4755 0.50738 0 

T1084TS055_1 0.4965 0.628 0.08 0.8376 0.90441 0.91 0.8276 0.89667 0.9 0.8417 0.89508 0.91 

H1045TS193_1 0.644 0.73828 0.7 0.8364 0.93322 0.97 0.8415 0.93789 0.97 0.8542 0.94305 0.97 

H1065TS193_1 0.5917 0.49039 0 0.8803 0.96799 0.92 0.9067 0.97095 0.92 0.912 0.97238 0.92 

H1072TS193_1 0.3669 0.41473 0 0.7469 0.91312 0.76 0.7838 0.91805 0.84 0.7826 0.92704 0.83 

T1032TS193_1 0.5245 0.67494 0.32 0.5731 0.70659 0.71 0.6769 0.70668 0.82 0.6884 0.70504 0.82 

T1054TS193_1 0.5808 0.4326 0 0.396 0.4494 0 0.6301 0.46481 0 0.5134 0.46279 0 

T1070TS193_1 0.3493 0.20958 0.08 0.2219 0.45695 0.03 0.3996 0.60863 0.14 0.4164 0.59298 0.15 

T1073TS193_1 0.577 0.264 0 0.3073 0.3604 0 0.4706 0.32679 0 0.4833 0.33302 0 

T1078TS193_1 0.5525 0.52102 0.03 0.7608 0.89011 0.41 0.7898 0.91225 0.48 0.7857 0.89763 0.46 

T1083TS193_1 0.5077 0.68924 0.37 0.6348 0.82861 0.65 0.6393 0.81673 0.69 0.6759 0.78969 0.71 

T1084TS193_1 0.5926 0.83961 0.26 0.8194 0.91798 0.87 0.8307 0.90978 0.87 0.8317 0.90766 0.87 

H1045TS288_1 0.6941 0.89242 0.55 0.8607 0.94987 0.98 0.8741 0.95031 0.97 0.8715 0.94876 0.97 

H1065TS288_1 0.5922 0.54885 0.08 0.8679 0.95833 0.91 0.9009 0.96687 0.91 0.9036 0.96805 0.91 

H1072TS288_1 0.1569 0.35328 0.01 0.8312 0.7735 0.84 0.8329 0.7667 0.8 0.7714 0.7646 0.79 

T1032TS288_1 0.4333 0.62798 0.38 0.6672 0.67896 0.79 0.6908 0.6917 0.8 0.6931 0.69671 0.81 

T1054TS288_1 0.4423 0.37302 0 0.5719 0.52735 0 0.4375 0.47961 0 0.5818 0.46331 0 

T1070TS288_1 0.3645 0.46944 0.1 0.0527 0.46773 0 0.0383 0.46671 0 0.2113 0.4758 0.13 

T1073TS288_1 0.6012 0.28678 0 0.1389 0.38875 0 0.442 0.44164 0 0.2923 0.42993 0 

T1078TS288_1 0.5488 0.5262 0.14 0.7619 0.91001 0.37 0.7882 0.90636 0.47 0.7851 0.89773 0.46 

T1083TS288_1 0.4159 0.39931 0 0.6654 0.83358 0.71 0.7379 0.8411 0.74 0.7232 0.83325 0.76 

T1084TS288_1 0.4961 0.60716 0 0.9162 0.7732 0.84 0.9108 0.8217 0.87 0.9084 0.8138 0.89 
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Table S6.2 Raw oligo-lDDT, TM-score and QS-score values for non-AF2 multimeric templates and recycled models. Values for single sequence recycling 

from 1 to 6 recycles and MSA recycling for 12 recycles. 

Model R12M 
lDDT 

R12M TM R12M 
QS 

R1S 
lDDT 

R1S TM R3S QS R3S lDDT R3S TM R1S QS R6S lDDT R6S TM R6S QS 

H1045TS403_1 0.8394 0.91424 0.97 0.7583 0.87639 0.88 0.7704 0.88566 0.88 0.7704 0.89318 0.88 

H1065TS403_1 0.893 0.95498 0.9 0.7451 0.86745 0.61 0.7674 0.90588 0.68 0.7516 0.9282 0.6 

H1072TS403_1 0.6996 0.65885 0.6 0.476 0.41265 0.2 0.4481 0.41551 0.17 0.4706 0.45148 0.24 

T1032TS403_1 0.639 0.70573 0.69 0.4789 0.3871 0 0.4766 0.38763 0 0.5031 0.38598 0 

T1054TS403_1 0.6173 0.44815 0 0.6039 0.54798 0 0.5962 0.56297 0 0.574 0.56699 0 

T1070TS403_1 0.4034 0.2439 0.04 0.0888 0.29817 0 0.0837 0.30546 0 0.0043 0.29691 0 

T1073TS403_1 0.5536 0.36797 0 0.0717 0.36162 0 0.0123 0.38273 0 0.0189 0.3786 0 

T1078TS403_1 0.789 0.9003 0.45 0.4854 0.6527 0.08 0.514 0.6042 0.05 0.5169 0.62909 0.08 

T1083TS403_1 0.6864 0.84445 0.77 0.6148 0.81168 0.64 0.6915 0.81831 0.78 0.7219 0.82512 0.78 

T1084TS403_1 0.865 0.91401 0.91 0.8235 0.9172 0.9 0.8518 0.91599 0.91 0.8563 0.91489 0.91 

H1045TS029_1 0.8624 0.94753 0.96 0.5484 0.64799 0.33 0.6003 0.77669 0.81 0.489 0.76988 0.67 

H1065TS029_1 0.9142 0.97721 0.92 0.6427 0.84457 0.31 0.7001 0.87 0.51 0.6591 0.8674 0.36 

H1072TS029_1 0.7794 0.89112 0.82 0.4822 0.40123 0.24 0.4954 0.41017 0.25 0.493 0.40702 0.27 

T1032TS029_1 0.6946 0.70124 0.82 0.3401 0.41985 0 0.1423 0.42742 0 0.0071 0.47176 0 

T1054TS029_1 0.6425 0.46563 0 0.3669 0.34013 0.04 0.3592 0.35223 0.04 0.3566 0.34413 0.04 

T1070TS029_1 0.3721 0.53891 0.05 0.029 0.37798 0 0.1281 0.34773 0 0.1223 0.3379 0 

T1073TS029_1 0.5689 0.3067 0 0.1081 0.35169 0 0.1453 0.38384 0 0.1347 0.38853 0 

T1078TS029_1 0.891 0.97861 0.83 0.5279 0.76103 0.31 0.5821 0.76482 0.35 0.7277 0.7576 0.34 

T1083TS029_1 0.7404 0.80122 0.74 0.5478 0.53528 0.33 0.5206 0.53174 0.33 0.6914 0.79302 0.74 

T1084TS029_1 0.8682 0.91559 0.91 0.7723 0.88271 0.84 0.8512 0.91348 0.91 0.848 0.91499 0.93 
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H1045TS055_1 0.8698 0.94592 0.97 0.7694 0.90183 0.9 0.8051 0.90341 0.96 0.8054 0.90536 0.96 

H1065TS055_1 0.903 0.96607 0.91 0.5997 0.74899 0.44 0.6449 0.78525 0.47 0.6412 0.78592 0.48 

H1072TS055_1 0.7706 0.78414 0.82 0.4273 0.62623 0.23 0.7204 0.86813 0.74 0.7247 0.84546 0.76 

T1032TS055_1 0.6698 0.69709 0.72 0.494 0.37884 0 0.4227 0.37165 0 0.5105 0.37817 0 

T1054TS055_1 0.6356 0.46229 0 0.472 0.5202 0.01 0.5171 0.51574 0.01 0.54 0.52285 0.01 

T1070TS055_1 0.2424 0.4737 0.14 0.0609 0.25857 0 0.0607 0.25334 0 0.05 0.25729 0 

T1073TS055_1 0.2358 0.32047 0 0.0946 0.49086 0 0.0876 0.36534 0 0.1153 0.40977 0 

T1078TS055_1 0.7158 0.56991 0.02 0.5523 0.846 0.24 0.5417 0.84281 0.13 0.576 0.76093 0.2 

T1083TS055_1 0.4627 0.50962 0 0.5442 0.56705 0.33 0.522 0.53965 0.3 0.5211 0.54316 0.32 

T1084TS055_1 0.837 0.89466 0.91 0.8277 0.91436 0.9 0.8247 0.90588 0.9 0.8283 0.90297 0.9 

H1045TS193_1 0.8336 0.93511 0.96 0.6704 0.81332 0.76 0.6576 0.82093 0.67 0.6646 0.82424 0.67 

H1065TS193_1 0.9011 0.96569 0.91 0.7534 0.89832 0.69 0.7763 0.91781 0.7 0.7683 0.91117 0.69 

H1072TS193_1 0.7833 0.93163 0.83 0.4916 0.40838 0.25 0.4884 0.40688 0.26 0.7311 0.91764 0.77 

T1032TS193_1 0.692 0.7063 0.82 0.4953 0.68727 0.23 0.4947 0.67843 0.33 0.4816 0.67847 0.32 

T1054TS193_1 0.6462 0.45169 0 0.4724 0.43312 0 0.4642 0.43973 0 0.4869 0.44032 0 

T1070TS193_1 0.437 0.58796 0.19 0.1562 0.34389 0 0.0329 0.35657 0 0.0247 0.33723 0 

T1073TS193_1 0.4945 0.32866 0 0.073 0.35206 0 0.0726 0.38864 0 0.0712 0.36999 0 

T1078TS193_1 0.7828 0.89139 0.46 0.5209 0.53855 0.05 0.5242 0.55523 0.07 0.5248 0.54367 0.06 

T1083TS193_1 0.681 0.83552 0.73 0.6211 0.78945 0.65 0.6241 0.7965 0.66 0.6443 0.80441 0.65 

T1084TS193_1 0.8294 0.90684 0.87 0.8011 0.91514 0.86 0.8282 0.91594 0.87 0.8195 0.91123 0.87 

H1045TS288_1 0.8718 0.9463 0.97 0.7079 0.87398 0.79 0.746 0.88394 0.86 0.7449 0.88577 0.86 

H1065TS288_1 0.9128 0.97535 0.91 0.6588 0.83271 0.48 0.7016 0.84097 0.55 0.6975 0.8443 0.49 

H1072TS288_1 0.7555 0.7713 0.82 0.1626 0.31025 0.09 0.2681 0.37219 0.23 0.382 0.3448 0.11 
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T1032TS288_1 0.6936 0.69949 0.82 0.4256 0.72135 0.24 0.3926 0.72378 0.2 0.3806 0.71892 0.16 

T1054TS288_1 0.5554 0.46384 0 0.4876 0.67178 0.03 0.4986 0.66589 0.02 0.4949 0.65563 0.03 

T1070TS288_1 0.3229 0.55227 0.15 0.0264 0.29077 0 0.0164 0.285 0 0.0336 0.25303 0 

T1073TS288_1 0.255 0.41348 0 0.0379 0.40448 0 0.0615 0.42795 0 0.0794 0.39785 0 

T1078TS288_1 0.7863 0.89944 0.46 0.554 0.83157 0.33 0.5756 0.79542 0.24 0.6191 0.77877 0.28 

T1083TS288_1 0.7051 0.82316 0.7 0.3505 0.43179 0 0.5192 0.5407 0.29 0.5186 0.53282 0.33 

T1084TS288_1 0.90696 0.8185 0.89 0.783 0.9149 0.81 0.8037 0.91367 0.81 0.801 0.91192 0.81 

 

Table S6.3 Raw oligo-lDDT, TM-score and QS-score values for non-AF2 multimeric templates and recycled models. Values for single sequence recycling 

for 12 recycles. 

Model R12S lDDT R12S 
TM 

R12S QS Model R12S lDDT R12S TM R12S QS Model R12S lDDT R12S TM R12S QS 

H1045TS403_1 0.774 0.89081 0.78 T1078TS029_1 0.726 0.75277 0.29 T1054TS193_1 0.4676 0.43913 0 

H1065TS403_1 0.7816 0.93318 0.67 T1083TS029_1 0.6994 0.79688 0.73 T1070TS193_1 0.0331 0.31707 0 

H1072TS403_1 0.4658 0.44995 0.24 T1084TS029_1 0.8498 0.91575 0.93 T1073TS193_1 0.0936 0.37456 0 

T1032TS403_1 0.5104 0.38489 0 H1045TS055_1 0.8049 0.90574 0.96 T1078TS193_1 0.5207 0.55806 0.06 

T1054TS403_1 0.5687 0.57783 0 H1065TS055_1 0.6666 0.78877 0.59 T1083TS193_1 0.6277 0.81837 0.63 

T1070TS403_1 0.0837 0.28378 0 H1072TS055_1 0.7245 0.85944 0.76 T1084TS193_1 0.8214 0.9116 0.87 

T1073TS403_1 0.008 0.3491 0 T1032TS055_1 0.5127 0.37748 0 H1045TS288_1 0.7572 0.88694 0.96 

T1078TS403_1 0.5105 0.63449 0.09 T1054TS055_1 0.5683 0.51446 0.01 H1065TS288_1 0.6977 0.84587 0.49 

T1083TS403_1 0.7188 0.82794 0.81 T1070TS055_1 0.0494 0.24598 0 H1072TS288_1 0.3814 0.36069 0.11 

T1084TS403_1 0.8571 0.91484 0.91 T1073TS055_1 0.0982 0.33388 0 T1032TS288_1 0.38 0.71991 0.14 

H1045TS029_1 0.5571 0.77194 0.43 T1078TS055_1 0.5936 0.75993 0.17 T1054TS288_1 0.4829 0.66127 0.03 

H1065TS029_1 0.7202 0.85967 0.5 T1083TS055_1 0.5217 0.54049 0.32 T1070TS288_1 0.109 0.2726 0 

H1072TS029_1 0.4954 0.39909 0.25 T1084TS055_1 0.8302 0.90327 0.9 T1073TS288_1 0.0871 0.38828 0 

T1032TS029_1 0.0083 0.47871 0 H1045TS193_1 0.6608 0.82552 0.6 T1078TS288_1 0.6903 0.74729 0.34 

T1054TS029_1 0.3677 0.34346 0.04 H1065TS193_1 0.8132 0.94236 0.8 T1083TS288_1 0.5352 0.52642 0.36 

T1070TS029_1 0.1203 0.31612 0 H1072TS193_1 0.7627 0.92985 0.82 T1084TS288_1 0.8006 0.91217 0.81 

T1073TS029_1 
 

0.0826 0.39551 0 T1032TS193_1 0.4876 0.67988 0.32     
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Table S6.4 Raw oligo-lDDT, TM-score and QS-score values for AF2 generated multimeric templates and recycled models. Values for all recycles. 

Model Group Base_lDDT Base_Tm Base_QS R1_lDDT R1_TM R1_QS R3_lDDT R3_TM R3_QS R6_lDDT R6_TM R6_QS R12_lDDT R12_TM- R12_QS 

H1045 AF2M-MSA 0.8742 0.94927 0.97 0.8815 0.94909 0.97 0.8806 0.94912 0.97 0.8797 0.9486 0.97 0.8804 0.94779 0.97 

H1065 AF2M-MSA 0.9114 0.97252 0.92 0.9153 0.97046 0.91 0.9159 0.97184 0.91 0.916 0.97196 0.92 0.9161 0.9721 0.92 

H1072 AF2M-MSA 0.7616 0.78298 0.79 0.7617 0.80674 0.82 0.7534 0.77881 0.78 0.7542 0.78988 0.78 0.7548 0.78678 0.78 

T1032 AF2M-MSA 0.6903 0.69637 0.82 0.6719 0.7038 0.82 0.6714 0.70364 0.82 0.6708 0.70611 0.82 0.6709 0.70384 0.82 

T1054 AF2M-MSA 0.5338 0.46892 0 0.6729 0.46242 0 0.6663 0.46288 0 0.6709 0.46291 0 0.672 0.46312 0 

T1070 AF2M-MSA 0.5618 0.54822 0.09 0.5794 0.54973 0.1 0.5823 0.54936 0.11 0.7577 0.54926 0.12 0.5794 0.54927 0.11 

T1073 AF2M-MSA 0.5986 0.30144 0 0.0899 0.30779 0 0.2908 0.30818 0 0.5978 0.36487 0 0.5869 0.27121 0 

T1078 AF2M-MSA 0.7149 0.59815 0.02 0.8734 0.96779 0.84 0.8778 0.97032 0.83 0.8781 0.97006 0.84 0.8797 0.97156 0.84 

T1083 AF2M-MSA 0.8241 0.90093 0.89 0.8436 0.90928 0.88 0.843 0.90799 0.88 0.8437 0.90834 0.88 0.8429 0.90764 0.88 

T1084 AF2M-MSA 0.5843 0.6453 0.06 0.5059 0.8423 0.03 0.5061 0.84365 0.08 0.2059 0.852 0.01 0.5885 0.85356 0.02 

H1045 
AF2M-
SingleSeq 

0.2428 0.28591 0.07 0.1315 0.27903 0 0.2133 0.26856 0 0.2199 0.27281 0 0.2178 0.24783 0 

H1065 
AF2M-
SingleSeq 

0.3764 0.49303 0.02 0.3483 0.48146 0.02 0.3504 0.48756 0.02 0.3504 0.48924 0.02 0.3448 0.48944 0.01 

H1072 
AF2M-
SingleSeq 

0.2373 0.33465 0.17 0.4529 0.39146 0.24 0.7298 0.88703 0.75 0.7404 0.88638 0.76 0.7168 0.88807 
0.74 

 

T1032 
AF2M-
SingleSeq 

0.2065 0.16496 0 0.1709 0.26459 0 0.071 0.26805 0 0.0708 0.26749 0 0.0684 0.26338 0 

T1054 
AF2M-
SingleSeq 

0.2815 0.25325 0.01 0.088 0.31607 0 0.1841 0.32831 0 0.2588 0.28748 0.03 0.2487 0.28768 0.03 

T1070 
AF2M-
SingleSeq 

0.222 0.1463 0 0.0357 0.2046 0 0.0586 0.19999 0 0.0561 0.1956 0 0.0566 0.20109 0 
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T1073 
AF2M-
SingleSeq 

0.4184 0.2514 0 0.0019 0.41818 0 0.0002 0.32082 0 0.0006 0.33985 0 0.0005 0.35228 0 

T1078 
AF2M-
SingleSeq 

0.2119 0.38906 0.03 0.0726 0.40806 0  0.41676  0.1526 0.41072 0.01 0.1503 0.39622 0.02 

T1083 
AF2M-
SingleSeq 

0.5246 0.52756 0.31 0.4608 0.46824 0  0.526  0.5295 0.53289 0.31 0.5304 0.53116 0.31 

T1084 
AF2M-
SingleSeq 

0.824 0.90504 0.86 0.825 0.91626 0.9  0.91644  0.8425 0.9131 0.91 0.8441 0.91369 0.91 
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Appendix 7 
 
A short analysis of ProQDock versus VoroMQA as a single model method. 

The Voronoi tessellation-based model quality assessment program VoroMQA produces a 

single score between 0-1 with the following rating categories: <0.3 poor, 0.3 – 0.399 variable 

and >0.4 good with 5.5 likely to represent a native structure. The following is an investigation 

into the potential for VoroMQA to replace ProQDock as a single model prediction tool to 

improve the ModFOLDdock predicted consensus score. 

There are two reasons for selecting VoroMQA and both centre around the fact that ProQDock 

and VoroMQA are single model scores. Firstly, this means they are easily comparable across 

different runs of the program without requiring recreation of the same model population every 

time (as is necessary with a clustering score) and, secondly, that in cases where only a few 

models exist and clustering routines understandably drop in accuracy accordingly, it is vital 

that a single model approach be retained as its accuracy should be maintained. VoroMQA 

would therefore represent a like-for-like replacement for ProQDock in this sense. The reason 

for the replacement of ProQDock is that, despite being a 0-1 score, there are occasions where 

the scores have ranged either greater than 1.0 or less than 0.0. Anecdotally it has also been 

noticed that ProQDock scores tend to be more extreme than others within ModFOLDdock and 

therefore may be disproportionally influencing the final Consensus score. 

Figure S7.1. Scatter plots of an unweighted ModFOLDdock predicted consensus score versus a 

predicted ProQDock score (left) and a predicted lDDT score (right) for three randomly selected targets 

(T0965, T0966 and T1016). 

To illustrate this point the left hand graph in Figure S7.1 shows how the predicted ProQDock 

values for three randomly selected targets correlate well with the predicted consensus score 

and appear to outweigh the contribution of lDDT score (right), for example. To further 



Appendices 

209 
 

investigate the ProQDock influence a range of partial consensus scores were calculated and 

compared to the full Consensus6 score (the mean of all six ModFOLDdock scores) and a 

calculated Consensus5 score (omitting ProQDock). These were: 

Consensus5 – all ModFOLDdock scores, omitting only ProQDock; 

Consensus4 - omitting both ProQDock and DockQJury; 

Consensus3a - ModFOLDIA, QSscoreOfficialJury and LDDT score only; 

Consensus3b - ModFOLDIA, QSscoreJury and LDDT score only; 

Consensus2a - QSscoreJury and LDDT score only; 

Consensus2b –  ModFOLDIA score and LDDT score only. 

Table S7.1 shows the Pearson and Spearman correlation coefficients calculated between 

partial consensus scores and the full consensus6 score. Table S7.2 shows similar data 

calculated with respect to the consensus5 score. 

Table S7.1 Pearson and Spearman-rank correlation coefficients calculated between the consensus6 

score and all other consensus scores for the three chosen targets. 

Score (x). Score (y). Pearson correlation Spearman correlation                    

Consensus6 Consensus5 0.874 0.693 

Consensus6 Consensus4 0.864 0.669 

Consensus6 Consensus3a 0.868 0.661 

Consensus6 Consensus3b 0.853 0.660 

Consensus6 Consensus2a 0.678 0.604 

Consensus6 Consensus2b 0.854 0.654 

 
Table S7.2 Pearson and Spearman-rank correlations calculated with respect to the consensus5 score 

(ProQDock removed) using the same targets as Table S7.1. 

Score (x). Score (y). Pearson correlation Spearman correlation             

Consensus5 Consensus4 0.998 0.983 

Consensus5 Consensus3a 0.994 0.953 

Consensus5 Consensus3b 0.996 0.972 

Consensus5 Consensus2a 0.888 0.898 

Consensus5 Consensus2b 0.989 0.936 

 

Tables S7.1 and S7.2 show that both Pearson and Spearman coefficients improve when 

ProQDock is removed, suggesting that a better agreement between all other individual 

predicted scores exists, giving an initial rationale for further investigation. 

To assess the relative agreement between predicted scores, ProQDock and VoroMQA can be 

compared to a calculated mean observed score as this is likely to represent true model quality 

more accuracy. For this analysis a total of 96 models across the 16 CASP13 targets listed in 

Figures 4.1, 4.2 and 4.3 were used. 
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Figure S7.2 Scatter plots between calculated observed mean and VoroMQA score (left) and calculated 

observed mean and ProQDock score (right). Values shown are Pearson coefficients. 

 

 

 

 

 

 

 

Figure S7.3 Scatter plots between observed mean score versus the consensus6 score calculated with 

VoroMQA score (left) and the consensus6 score calculated with ProQDock score (right). Values shown 

are Pearson coefficients. 

Table S7.3 Pearson correlations coefficients between individual observed scores and predicted 

VoroMQA score and ProQDock scores. 

 

 

 

 

 

 

 

  

Score VoroMQA correlation ProQDock correlation 

Mean 0.37 0.20 

IA score 0.21 0.04 

DockQ 0.34 0.27 

QS Score 0.16 0.11 

QS Official 0.35 0.20 

lDDT 0.61 0.26 

0.3742115 0.2032361 

0.6156523 0.6282908 
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Figure S7.4 A box plot of predicted VoroMQA scores (left) and ProQDock scores (right) for 

CASP13 multimers. The minimum ProQDock score is -0.487 and the maximum score is 1.388, which 

are both outside of the 0-1 range. 

Figure S7.2 shows no discernible difference between the correlations achieved with VoroMQA 

and ProQDock against the mean observed score. Similarly, the data in Figure S7.3 show that 

there is no clear difference between a consensus score calculated with VoroMQA and one 

calculated with ProQDock when plotted against the observed mean score. However, the data 

in Table 7.3 show that the VoroMQA score is more closely correlated with individual observed 

scores than is ProQDock. Additionally, Figure S7.4 shows that ProQDock produces a score 

with a much larger range (-0.487 to +1.388) than VoroMQA (0.299 to 0.573), meaning that the 

ProQDock contribution to the consensus score is likely to be both greater and more variable 

than other scores. 

In conclusion, although VoroMQA score has not been clearly demonstrated to be a more 

accurate single-model score than ProQDock with this dataset, the lower variability in range 

suggests that it is likely to be a more reliable contributor to a consensus score. Additionally, 

VoroMQA score correlates slightly better with individual observed scores and is at least an 

order of magnitude quicker at calculating the score than ProQDock. From this initial data, the 

best conclusion that can be drawn is that VoroMQA is unlikely to lead to a decrease in accuracy 

of the calculated consensus score. A larger study with increased numbers and variability in 

models may produce more informative data. 
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Appendix 8 
 
Full list of targets in each neural network training and testing dataset. 

Training_set1 is T0960 T0961 T0963 T0965 T0970 T0973 T0976 T0979 T0981 T0983 T0984 

T0985 T0995 T0996 T0998 T1000 T1001 T1004 T1006 T1010 T1018 T1032 T1034 T1061 

T1062 T1070 T1078 T1080 T1084. Testing_set1 is T0966 T0977 T0989 T0991 T0997 T0999 

T1003 T1009 T1016 T1020 T1038 T1048 T1054 T1083 T1087. 

Training_set2 is T0960 T0961 T0966 T0970 T0973 T0977 T0981 T0985 T0989 T0991 T0996 

T0997 T0999 T1000 T1003 T1004 T1006 T1009 T1010 T1016 T1020 T1032 T1034 T1038 

T1048 T1054 T1080 T1083 T1087. Testing_set2 is T0963 T0965 T0976 T0979 T0983 T0984 

T0995 T0998 T1001 T1018 T1061 T1062 T1070 T1078 T1084. 

Training_set3 is T0963 T0965 T0966 T0976 T0977 T0979 T0983 T0984 T0989 T0991 T0995 

T0997 T0998 T0999 T1001 T1003 T1009 T1016 T1018 T1020 T1038 T1048 T1054 T1061 

T1062 T1070 T1078 T1083 T1084 T1087. Testing_set3 is T0960 T0961 T0970 T0973 T0981 

T0985 T0996 T1000 T1004 T1006 T1010 T1032 T1034 T1080, 
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Appendix 9 
 
Per-target top-rank comparisons by summed observed score. 

Table S9.1 Per-target top-rank comparisons by summed observed scores. Used to create Chapter 4, Table 4.2. Cumulative observed scores for models 

top-ranked by ModFOLDdock component scores. 

Model method predicted score IAscore DockQ QSscore Calc QSscore Official lDDT Official QS-glob F1 oligo-lDDT Jaccard Coeff. TM-score local Global Total Obs sum 

H1036TS403_4 QSscoreOfficialJury 0.436142 0.888154 0.315667 0.804396 0.711567 0.755689 0.712 68.3 0.756 0.7 0.712 0.6915 0.734 0.71275 76.79372 

H1036TS403_4 lDDTOfficialJury 0.585221 0.888154 0.315667 0.804396 0.711567 0.755689 0.712 68.3 0.756 0.7 0.712 0.6915 0.734 0.71275 76.79372 

H1036TS191_3 consensus 0.544371 0.375422 0.001 0.285714 0.702524 0.750596 0.703 68.9 0.751 0.72 0.702 0.7045 0.7265 0.7155 76.03776 

H1036TS336_2 VoroMQA 0.674968 0.377688 0.001833 0.278119 0.635775 0.737535 0.642 68.2 0.737 0.7 0.702 0.691 0.7195 0.70525 75.1277 

H1036TS018_4 QSscoreJury 0.590578 0.326421 0.000917 0.259341 0.659856 0.689083 0.66 61.5 0.689 0.65 0.701 0.6325 0.695 0.66375 68.12687 

H1036TS221_1 ModFOLDIA 0.936138 0.376363 0.000917 0.274424 0.595587 0.599698 0.541 53.5 0.582 0.64 0.634 0.5875 0.608 0.59775 59.53724 

H1036TS221_2 DockQJury 0.195891 0.39396 0.000917 0.285088 0.590039 0.601442 0.51 53.2 0.579 0.64 0.638 0.586 0.6085 0.59725 59.2302 

H1045TS288_3 ModFOLDIA 0.827475 0.935895 0.551 0.8 0.906336 0.733067 0.818 71.5 0.706 0.69 0.835 0.7025 0.7705 0.7365 80.6848 

H1045TS288_2 DockQJury 0.259323 0.918805 0.695 0.847826 0.929725 0.738588 0.624 78.4 0.713 0.78 0.889 0.782 0.801 0.7915 87.91044 

H1045TS177_3 QSscoreJury 0.547336 0.483834 0.143 0.465116 0.510624 0.645535 0.511 29.3 0.646 0.45 0.676 0.3715 0.661 0.51625 35.37986 

H1045TS298_4 QSscoreOfficialJury 0.368645 0.94704 0.622 0.911111 0.904321 0.719356 0.904 80.4 0.719 0.87 0.869 0.837 0.794 0.8155 90.31233 

H1045TS217_5 lDDTOfficialJury 0.683542 0.070839 0.005 0 0 0.773455 0 0 0.773 0 0.482 0 0.6275 0.31375 3.045544 

H1045TS288_2 VoroMQA 0.668059 0.918805 0.695 0.847826 0.929725 0.738588 0.624 78.4 0.713 0.78 0.889 0.782 0.801 0.7915 87.91044 

H1045TS477_4 CDAscore 0.882939 0.874816 0.554 0.744186 0.8871 0.68006 0.887 68.7 0.68 0.65 0.869 0.6685 0.7745 0.7215 77.69066 

H1045TS298_3 consensus 0.582653 0.967714 0.58 0.886364 0.906374 0.717168 0.906 76.1 0.717 0.81 0.862 0.7855 0.7895 0.7875 85.81512 

H1047TS062_3 ModFOLDIA 0.605809 0.00287 0.003 0.007622 0 0.161766 0 0 0.606 0.01 0.155 0.005 0.3805 0.19275 1.524508 

H1047TS323_1 DockQJury 0.03125 0.005518 0.005 0.028286 0 0.155111 0 0 0.59 0.04 0.328 0.02 0.459 0.2395 1.870416 

H1047TS217_3 QSscoreJury 0.235788 0.030685 0.002 0 0 0.651188 0 0 0.65 0 0.152 0 0.401 0.2005 2.087373 

H1047TS323_1 QSscoreOfficialJury 0.035118 0.005518 0.005 0.028286 0 0.155111 0 0 0.59 0.04 0.328 0.02 0.459 0.2395 1.870416 

H1047TS298_3 lDDTOfficialJury 0.478137 0.082832 0.004 0.012048 0 0.648291 0 0 0.648 0.01 0.373 0.005 0.5105 0.25775 2.551421 

H1047TS029_5 VoroMQA 0.627563 0.000124 0.003 0.002292 0 0.030649 0 0 0.611 0 0.372 0 0.4915 0.24575 1.756315 

H1047TS018_3 CDAscore 0.813968 0.217757 0.007 0.019608 0 0.615743 0 0 0.616 0.01 0.351 0.005 0.4835 0.24425 2.569858 

H1047TS323_1 consensus 0.380102 0.005518 0.005 0.028286 0 0.155111 0 0 0.59 0.04 0.328 0.02 0.459 0.2395 1.870416 

H1065TS029_1 ModFOLDIA 0.867387 0.817291 0.046 0.666667 0.103135 0.624287 0.103 4.1 0.624 0.57 0.611 0.3055 0.6175 0.4615 9.649879 

H1065TS192_1 DockQJury 0.043515 0.852361 0.497 0.75 0.71669 0.692479 0.632 47.7 0.672 0.65 0.867 0.5635 0.7695 0.6665 56.02903 

H1065TS403_1 QSscoreJury 0.45057 0.429595 0.328 0.433333 0.540531 0.696362 0.541 39.7 0.696 0.43 0.792 0.4135 0.744 0.57875 46.32307 

H1065TS403_1 QSscoreOfficialJury 0.093168 0.429595 0.328 0.433333 0.540531 0.696362 0.541 39.7 0.696 0.43 0.792 0.4135 0.744 0.57875 46.32307 

H1065TS375_2 lDDTOfficialJury 0.577558 0.801337 0.399 0.65 0.618291 0.686356 0.562 40.7 0.679 0.56 0.8 0.4835 0.7395 0.6115 48.29048 

H1065TS193_2 VoroMQA 0.685827 0.836294 0.08 0.433333 0.008418 0.632559 0.008 0 0.633 0.3 0.584 0.15 0.6085 0.37925 4.653354 

H1065TS018_1 CDAscore 0.909294 0.52779 0.041 0.416667 0.125663 0.607921 0.126 7.6 0.608 0.35 0.536 0.213 0.572 0.3925 12.11654 

H1065TS375_2 consensus 0.491271 0.801337 0.399 0.65 0.618291 0.686356 0.562 40.7 0.679 0.56 0.8 0.4835 0.7395 0.6115 48.29048 

H1072TS029_4 ModFOLDIA 0.96409 0.840724 0.025833 0.663158 0.012158 0.393542 0.012 4.2 0.394 0.21 0.325 0.126 0.3595 0.24275 7.804665 

H1072TS055_3 DockQJury 0.052395 0.880054 0.009667 0.631579 0.288027 0.481315 0.288 22.1 0.481 0.31 0.408 0.2655 0.4445 0.355 26.94264 
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H1072TS451_5 QSscoreJury 0.656695 0.368273 0.0125 0.321053 0.008352 0.350496 0.008 1.7 0.35 0.11 0.291 0.0635 0.3205 0.192 4.095673 

H1072TS055_3 QSscoreOfficialJury 0.099584 0.880054 0.009667 0.631579 0.288027 0.481315 0.288 22.1 0.481 0.31 0.408 0.2655 0.4445 0.355 26.94264 

H1072TS336_2 lDDTOfficialJury 0.40573 0.887155 0.0345 0.788945 0.270489 0.490034 0.27 20 0.49 0.36 0.391 0.28 0.4405 0.36025 25.06287 

H1072TS403_5 VoroMQA 0.631099 0.179369 0.002667 0.364407 0.015288 0.257962 0.015 2 0.258 0.24 0.348 0.13 0.303 0.2165 4.330192 

H1072TS451_5 CDAscore 0.979508 0.368273 0.0125 0.321053 0.008352 0.350496 0.008 1.7 0.35 0.11 0.291 0.0635 0.3205 0.192 4.095673 

H1072TS029_1 consensus 0.509477 0.852835 0.011667 0.689474 0.273271 0.471468 0.273 21.5 0.464 0.36 0.377 0.2875 0.4205 0.354 26.33471 

T1032TS018_2o ModFOLDIA 0.877046 0.733537 0.266 0.576923 0.448143 0.468454 0.448 39.6 0.468 0.48 0.606 0.438 0.537 0.4875 45.55756 

T1032TS029_1o DockQJury 0.140868 0.866015 0.319 0.662651 0.490257 0.416794 0.49 47.5 0.417 0.51 0.624 0.4925 0.5205 0.5065 53.81522 

T1032TS403_4o QSscoreJury 0.607873 0.625015 0.289 0.512195 0.595944 0.548577 0.596 39.5 0.549 0.46 0.676 0.4275 0.6125 0.52 45.91173 

T1032TS055_5o QSscoreOfficialJury 0.346661 0.869346 0.311 0.695122 0.617453 0.459678 0.617 49.8 0.458 0.58 0.663 0.539 0.5605 0.54975 56.71985 

T1032TS403_1o lDDTOfficialJury 0.527605 0.807074 0.29 0.573171 0.537606 0.542758 0.538 37.6 0.543 0.46 0.688 0.418 0.6155 0.51675 44.12986 

T1032TS193_1o VoroMQA 0.629243 0.185468 0.389 0.30198 0.323403 0.524503 0.323 34.1 0.525 0.27 0.668 0.3055 0.5965 0.451 38.96335 

T1032TS062_2o CDAscore 0.874542 0.239736 0.064 0.207317 0 0.456007 0 0 0.447 0.12 0.424 0.06 0.4355 0.24775 2.701311 

T1032TS055_2o consensus 0.508739 0.734103 0.239 0.55914 0.396982 0.523653 0.397 30.2 0.524 0.42 0.626 0.361 0.575 0.468 36.02388 

T1034TS298_4o ModFOLDIA 0.877023 0.781745 0.014 0.365714 0 0.628997 0 0 0.629 0.15 0.255 0.075 0.442 0.2585 3.599956 

T1034TS278_3o DockQJury 0.062049 0.266635 0.005333 0.173913 0.002725 0.271955 0.003 0 0.272 0.08 0.251 0.04 0.2615 0.15075 1.778811 

T1034TS278_1o QSscoreJury 0.420891 0.18021 0.004333 0.118012 0.002134 0.282398 0.002 0 0.282 0.07 0.252 0.035 0.267 0.151 1.646088 

T1034TS336_4o QSscoreOfficialJury 0.062853 0.856235 0.0405 0.440994 0.038755 0.576263 0.039 5.5 0.57 0.16 0.289 0.1075 0.4295 0.2685 9.316246 

T1034TS403_4o lDDTOfficialJury 0.566801 0.602784 0.007 0.130435 0 0.63489 0 0 0.635 0.03 0.229 0.015 0.432 0.2235 2.939609 

T1034TS403_5o VoroMQA 0.722309 0.539521 0.005667 0.136646 0 0.62443 0 0 0.624 0.01 0.229 0.005 0.4265 0.21575 2.816514 

T1034TS298_1o CDAscore 0.873061 0.496648 0.006333 0.006211 0 0.608733 0 0 0.609 0 0.235 0 0.422 0.211 2.594926 

T1034TS298_4o consensus 0.474863 0.781745 0.014 0.365714 0 0.628997 0 0 0.629 0.15 0.255 0.075 0.442 0.2585 3.599956 

T1038TS288_2o ModFOLDIA 0.753016 0.691331 0.043 0.34375 0.059225 0.350848 0.059 5.1 0.351 0.24 0.165 0.1455 0.258 0.20175 8.008405 

T1038TS055_3o DockQJury 0.017068 0.564309 0.015 0.081633 0 0.345438 0 0 0.345 0.04 0.244 0.02 0.2945 0.15725 2.10713 

T1038TS173_2o QSscoreJury 0.272994 0.154355 0.017 0 0 0.352876 0 0 0.353 0 0.244 0 0.2985 0.14925 1.56898 

T1038TS055_3o QSscoreOfficialJury 0.072302 0.564309 0.015 0.081633 0 0.345438 0 0 0.345 0.04 0.244 0.02 0.2945 0.15725 2.10713 

T1038TS173_2o lDDTOfficialJury 0.415824 0.154355 0.017 0 0 0.352876 0 0 0.353 0 0.244 0 0.2985 0.14925 1.56898 

T1038TS029_2o VoroMQA 0.619228 0.456601 0.008 0 0 0.21605 0 0 0.216 0 0.175 0 0.1955 0.09775 1.364901 

T1038TS491_4o CDAscore 0.727472 0.228225 0.005 0 0 0.142094 0 0 0.142 0 0.139 0 0.1405 0.07025 0.86707 

T1038TS029_1o consensus 0.370974 0.670027 0.015 0.196721 0.005929 0.347871 0.006 1.4 0.348 0.12 0.248 0.067 0.298 0.1825 3.905047 

T1048TS491_4o ModFOLDIA 0.916972 0.696915 0.0365 0.656863 0.037263 0.277298 0.037 4.1 0.277 0.25 0.411 0.1455 0.344 0.24475 7.514089 

T1048TS029_3o DockQJury 0.126001 0.951356 0.142333 0.722222 0.111374 0.340394 0.114 11.5 0.325 0.25 0.371 0.1825 0.348 0.26525 15.62343 

T1048TS403_5o QSscoreJury 0.684588 0.915932 0.213 0.849162 0.310906 0.465348 0.311 24.2 0.465 0.61 0.729 0.426 0.597 0.5115 30.60385 

T1048TS336_1o QSscoreOfficialJury 0.183577 0.586138 0.125333 0.577586 0.086821 0.378914 0.087 9.2 0.379 0.18 0.416 0.136 0.3975 0.26675 12.81704 

T1048TS336_1o lDDTOfficialJury 0.449982 0.586138 0.125333 0.577586 0.086821 0.378914 0.087 9.2 0.379 0.18 0.416 0.136 0.3975 0.26675 12.81704 

T1048TS029_3o VoroMQA 0.60206 0.951356 0.142333 0.722222 0.111374 0.340394 0.114 11.5 0.325 0.25 0.371 0.1825 0.348 0.26525 15.62343 

T1048TS491_4o CDAscore 0.928728 0.696915 0.0365 0.656863 0.037263 0.277298 0.037 4.1 0.277 0.25 0.411 0.1455 0.344 0.24475 7.514089 

T1048TS336_1o consensus 0.496773 0.586138 0.125333 0.577586 0.086821 0.378914 0.087 9.2 0.379 0.18 0.416 0.136 0.3975 0.26675 12.81704 

T1054TS071_1o ModFOLDIA 0.800832 0.634481 0.03 0.261364 0.019021 0.478512 0.019 2.2 0.479 0.18 0.306 0.101 0.3925 0.24675 5.347627 

T1054TS477_2o DockQJury 0.016371 0.50209 0.016 0.25 0.017895 0.238881 0.018 1.1 0.239 0.17 0.225 0.0905 0.232 0.16125 3.260616 

T1054TS071_4o QSscoreJury 0.286667 0.299806 0.01 0.045455 0.00134 0.459168 0.001 0 0.459 0.03 0.261 0.015 0.36 0.1875 2.129268 

T1054TS155_3o QSscoreOfficialJury 0.060389 0.428122 0.018 0.170455 0.03022 0.34375 0.03 1.3 0.344 0.13 0.28 0.0715 0.312 0.19175 3.649795 
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T1054TS193_5o lDDTOfficialJury 0.517932 0.44815 0.013 0.159091 0 0.591884 0 0 0.592 0.12 0.443 0.06 0.5175 0.28875 3.233375 

T1054TS029_1o VoroMQA 0.683178 0.838984 0.03 0.386364 0.045859 0.523084 0.046 1.9 0.523 0.25 0.34 0.1345 0.4315 0.283 5.732291 

T1054TS343_5o CDAscore 0.896283 0.431243 0.019 0.068182 0 0.552377 0 0 0.552 0.04 0.425 0.02 0.4885 0.25425 2.850552 

T1054TS403_1o consensus 0.428236 0.585018 0.013 0.022727 0 0.607308 0 0 0.607 0.01 0.44 0.005 0.5235 0.26425 3.077803 

T1062TS451_2o ModFOLDIA 0.966394 0.796361 0.06 0.692308 0.088247 0.366607 0.088 12.5 0.367 0.26 0.309 0.1925 0.338 0.26525 16.32327 

T1062TS375_5o DockQJury 0.05188 0.867152 0.093333 0.769231 0.09625 0.379098 0.057 10.7 0.298 0.27 0.306 0.1885 0.302 0.24525 14.57181 

T1062TS029_5o QSscoreJury 0.806536 0.114141 0.038 0.115385 0.065213 0.155578 0.065 6.8 0.156 0.07 0.19 0.069 0.173 0.121 8.132317 

T1062TS403_1o QSscoreOfficialJury 0.236498 0.872957 0.083333 0.807692 0.097339 0.382572 0.097 9.4 0.383 0.26 0.308 0.177 0.3455 0.26125 13.47564 

T1062TS062_5o lDDTOfficialJury 0.477273 0.865886 0.096 0.730769 0.078981 0.376321 0.079 11.9 0.376 0.25 0.317 0.1845 0.3465 0.2655 15.86646 

T1062TS029_3o VoroMQA 0.698997 0.833768 0.152 0.730769 0.535384 0.419598 0.535 43.3 0.42 0.55 0.478 0.4915 0.449 0.47025 49.36527 

T1062TS288_4o CDAscore 0.901135 0.376197 0.033333 0.333333 0.03688 0.360429 0.037 0 0.36 0.16 0.309 0.08 0.3345 0.20725 2.627923 

T1062TS451_2o consensus 0.543647 0.796361 0.06 0.692308 0.088247 0.366607 0.088 12.5 0.367 0.26 0.309 0.1925 0.338 0.26525 16.32327 

T1070TS360_2o ModFOLDIA 0.763751 0.472349 0.007667 0.128415 0.002273 0.251581 0.002 0 0.251 0.03 0.243 0.015 0.247 0.131 1.781285 

T1070TS155_4o DockQJury 0.034772 0.207268 0.032 0.150273 0.055088 0.104761 0.055 1.8 0.105 0.06 0.204 0.039 0.1545 0.09675 3.06364 

T1070TS155_2o QSscoreJury 0.348167 0.232155 0.058333 0.112022 0.061075 0.182231 0.061 2 0.182 0.07 0.29 0.045 0.236 0.1405 3.670316 

T1070TS173_4o QSscoreOfficialJury 0.086956 0.516053 0.023667 0.352459 0.103594 0.210385 0.104 2.5 0.21 0.17 0.287 0.0975 0.2485 0.173 4.996159 

T1070TS062_2o lDDTOfficialJury 0.399771 0.140748 0.006667 0.098361 0 0.405659 0 0 0.406 0.02 0.163 0.01 0.2845 0.14725 1.682184 

T1070TS193_1o VoroMQA 0.664489 0.750588 0.007667 0.401639 0.082869 0.349272 0.083 5.8 0.349 0.18 0.177 0.119 0.263 0.191 8.754036 

T1070TS099_3o CDAscore 0.820657 0.096606 0.007333 0.027322 0 0.423508 0 0 0.424 0.01 0.181 0.005 0.3025 0.15375 1.631019 

T1070TS221_1o consensus 0.405337 0.418661 0.016667 0.237705 0.104024 0.435398 0.104 3.1 0.435 0.12 0.32 0.0755 0.3775 0.2265 5.970954 

T1078TS343_2o ModFOLDIA 0.884971 0.879712 0.029 0.549296 0.003849 0.542363 0.004 0 0.503 0.38 0.509 0.19 0.506 0.348 4.44422 

T1078TS155_4o DockQJury 0.028052 0.69152 0.042 0.366197 0.105355 0.400917 0.105 1.3 0.4 0.26 0.424 0.1365 0.412 0.27425 4.91774 

T1078TS341_2o QSscoreJury 0.492857 0.275209 0.021 0.225352 0 0.455837 0 0 0.448 0.21 0.458 0.105 0.453 0.279 2.930398 

T1078TS029_1o QSscoreOfficialJury 0.083671 0.542543 0.078 0.514563 0.161571 0.552705 0.162 6 0.552 0.44 0.496 0.25 0.524 0.387 10.66038 

T1078TS451_2o lDDTOfficialJury 0.495588 0.650297 0.024 0.408451 0.000326 0.555001 0 0 0.555 0.3 0.491 0.15 0.523 0.3365 3.993575 

T1078TS029_4o VoroMQA 0.709846 0.681954 0.145 0.422535 0.16387 0.558115 0.15 12.4 0.537 0.33 0.629 0.227 0.583 0.405 17.23247 

T1078TS099_1o CDAscore 0.862483 0.389903 0.029 0.366197 0 0.54563 0 0 0.545 0.3 0.529 0.15 0.537 0.3435 3.73523 

T1078TS029_2o consensus 0.472829 0.735909 0.057 0.43662 0.061399 0.54002 0.061 1.1 0.54 0.28 0.486 0.1455 0.513 0.32925 5.285698 

T1083TS343_5o ModFOLDIA 0.916158 0.708569 0.079 0.448718 0.028797 0.505065 0.016 1 0.46 0.33 0.453 0.17 0.4565 0.31325 4.9689 

T1083TS029_4o DockQJury 0.067 0.660058 0.531 0.628205 0.638186 0.552899 0.638 57 0.553 0.6 0.697 0.585 0.625 0.605 64.31335 

T1083TS062_4o QSscoreJury 0.593162 0.363217 0.018 0.320513 0 0.503681 0 0 0.504 0.3 0.533 0.15 0.5185 0.33425 3.545161 

T1083TS403_2o QSscoreOfficialJury 0.155181 0.854141 0.232 0.761905 0.46968 0.617292 0.47 15.1 0.617 0.65 0.59 0.4005 0.6035 0.502 21.86802 

T1083TS403_5o lDDTOfficialJury 0.566593 0.897379 0.149 0.679487 0.371674 0.605726 0.372 9.4 0.606 0.52 0.53 0.307 0.568 0.4375 15.44377 

T1083TS403_3o VoroMQA 0.592349 0.767266 0.228 0.755319 0.323609 0.60834 0.324 18.3 0.608 0.7 0.566 0.4415 0.587 0.51425 24.72328 

T1083TS491_1o CDAscore 0.94229 0.308305 0.015 0.205128 0 0.274788 0 0 0.275 0.18 0.369 0.09 0.322 0.206 2.245221 

T1083TS071_2o consensus 0.509299 0.752382 0.296 0.653846 0.549226 0.587014 0.549 31.9 0.586 0.58 0.655 0.4495 0.6205 0.535 38.71347 

T1084TS055_2o ModFOLDIA 0.946689 0.975269 0.462 0.690909 0.685708 0.648825 0.686 45.4 0.649 0.53 0.79 0.492 0.7195 0.60575 53.33496 

T1084TS029_1o DockQJury 0.164807 0.748833 0.751 0.680556 0.875724 0.765828 0.857 63.3 0.756 0.63 0.893 0.6315 0.8245 0.728 72.44194 

T1084TS288_1o QSscoreJury 0.620482 0.35643 0.058 0.290909 0 0.502626 0 0 0.496 0.27 0.596 0.135 0.546 0.3405 3.591465 

T1084TS298_5o QSscoreOfficialJury 0.239461 0.86197 0.604 0.781818 0.8707 0.754856 0.871 77.7 0.755 0.72 0.896 0.7485 0.8255 0.787 87.17634 

T1084TS403_1o lDDTOfficialJury 0.606947 0.84711 0.635 0.822581 0.892888 0.831829 0.893 81 0.832 0.77 0.917 0.79 0.8745 0.83225 90.93816 

T1084TS403_2o VoroMQA 0.650103 0.825112 0.507 0.745455 0.854123 0.758857 0.854 73 0.759 0.68 0.884 0.705 0.8215 0.76325 82.1573 
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T1084TS071_5o CDAscore 0.938053 0.837262 0.089 0.654545 0.028895 0.496844 0.029 0 0.497 0.54 0.677 0.27 0.587 0.4285 5.135046 

T1084TS298_5o consensus 0.560929 0.86197 0.604 0.781818 0.8707 0.754856 0.871 77.7 0.755 0.72 0.896 0.7485 0.8255 0.787 87.17634 

T1087TS177_4o ModFOLDIA 0.926989 0.637445 0.293 0.542169 0.325078 0.479538 0.325 24.4 0.48 0.49 0.541 0.367 0.5105 0.43875 29.82948 

T1087TS177_1o DockQJury 0.06075 0.658947 0.406 0.518072 0.405164 0.526152 0.405 31.5 0.526 0.45 0.649 0.3825 0.5875 0.485 37.49933 

T1087TS173_2o QSscoreJury 0.558957 0.141323 0.073 0.13253 0.071864 0.477447 0.072 5.4 0.456 0.13 0.487 0.092 0.4715 0.28175 8.286413 

T1087TS177_1o QSscoreOfficialJury 0.127095 0.658947 0.406 0.518072 0.405164 0.526152 0.405 31.5 0.526 0.45 0.649 0.3825 0.5875 0.485 37.49933 

T1087TS403_1o lDDTOfficialJury 0.513801 0.780363 0.393 0.735294 0.444684 0.629435 0.445 36.2 0.629 0.68 0.786 0.521 0.7075 0.61425 43.56553 

T1087TS029_2o VoroMQA 0.636739 0.790714 0.322 0.566265 0.320614 0.505094 0.321 30.4 0.505 0.45 0.598 0.377 0.5515 0.46425 36.17144 

T1087TS066_3o CDAscore 0.922755 0.639529 0.029 0.530121 0.03695 0.475315 0.037 2.4 0.475 0.47 0.465 0.247 0.47 0.3585 6.633415 

T1087TS193_1o consensus 0.498275 0.647962 0.093 0.530121 0.293467 0.525697 0.293 21.2 0.526 0.47 0.536 0.341 0.531 0.436 26.42325 
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Appendix 10 
 
Full versions of final all-against-all comparison tables described in stage 3. 

Table S10.1 Data for Chapter 4, Table 4.3. Correlations between the observed global interface and fold 

scores and every combination of the 7 component scores, based on the CASP14 multimer data: 

A=ModFOLDIA, B=DockQJury, C=QSscoreJury, D=QSscoreOfficialJury, E=lDDTOfficialJury, 

F=voronota-js-voromqa, G=CDA-score. The top scores in each column are shown in bold. The 

combinations used for the ModFOLDdock fold and interface scores are highlighted in green. 

Method 
combination 

Interface Fold 

Pearson Spearman Kendall Pearson Spearman Kendall 

B+E 0.6221383 0.4662672 0.3370294 0.897708 0.8895329 0.7178826 

D+E 0.7678932 0.6149145 0.451429 0.8886437 0.8864162 0.7204588 

B+D+E+F 0.7370915 0.5618972 0.4084465 0.8755656 0.8648914 0.6910571 

D+E+F 0.6796071 0.5390013 0.3894662 0.8748695 0.8658919 0.6912109 

B+D+E 0.8155852 0.6325805 0.4671395 0.8738063 0.8812126 0.7138623 

B+E+F 0.5398861 0.4028433 0.2887446 0.8507348 0.8403956 0.6561161 

E 0.4398352 0.3730243 0.2678815 0.8503973 0.8587005 0.6726669 

E+F 0.4053162 0.3287048 0.2352872 0.8024292 0.8084877 0.6153324 

B+C+D+E+F 0.7941014 0.7417475 0.552793 0.7869698 0.7413835 0.564248 

C+D+E+F 0.7561131 0.7344757 0.5432355 0.7773438 0.740087 0.5629397 

A+B+D+E+F 0.7440054 0.7063684 0.5241025 0.7740935 0.7298914 0.5474411 

B+C+E+F 0.6886405 0.682026 0.4928813 0.77257 0.7296966 0.5545109 

B+D+F 0.82149 0.6114097 0.4479444 0.7606479 0.7381083 0.5590382 

D+F 0.7698032 0.5881448 0.4268164 0.7599284 0.7393382 0.5587745 

A+D+E+F 0.7021574 0.6944457 0.511267 0.7595768 0.7250281 0.5418011 

B+C+D+E 0.8339838 0.7859983 0.592779 0.7462676 0.696275 0.520593 

C+E+F 0.6134071 0.6547062 0.4648403 0.7417553 0.7143769 0.538481 

A+B+E+F 0.6275222 0.629427 0.4553829 0.7412427 0.7066384 0.5248789 

A+B+D+E 0.7705623 0.7432268 0.5556862 0.7353772 0.6776837 0.4981892 

C+D+E 0.7973255 0.779981 0.5836362 0.7337487 0.6933543 0.5177601 

B+C+E 0.7368397 0.7398483 0.5406193 0.7320624 0.6813849 0.5099464 

A+D+E 0.7265591 0.7328193 0.5432948 0.7169642 0.671624 0.4915085 

B+F 0.5660863 0.3635316 0.2592923 0.7137864 0.6852296 0.5128599 

B+D+E+F+G 0.404772 0.3780916 0.2710916 0.7101008 0.7061886 0.553011 

A+B+C+D+E+F 0.7635909 0.7739465 0.581026 0.7083849 0.6634288 0.4891847 

A+E+F 0.5560334 0.5970161 0.4261682 0.7073137 0.6875881 0.5044643 

A+B+E 0.6486699 0.6680471 0.4850158 0.6952704 0.6487127 0.4725049 

B+C+D+E+F+G 0.5244234 0.5830563 0.412383 0.693544 0.6456508 0.4798443 

A+C+D+E+F 0.7308335 0.7665216 0.5709852 0.6924358 0.6571411 0.4831878 
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A+B+D+E+F+G 0.5098543 0.5772571 0.4069296 0.6923436 0.6586154 0.4819218 

C+E 0.651986 0.7111715 0.5072599 0.6921837 0.6585876 0.4896367 

A+B+C+E+F 0.6820997 0.7336256 0.5382033 0.6785479 0.6422252 0.4708995 

D+E+F+G 0.322943 0.336453 0.2426468 0.6655271 0.6797333 0.5371782 

A+B+C+D+E 0.7767018 0.7949579 0.6008529 0.6636642 0.6161361 0.4468922 

A+B+C+D+E+F+G 0.5752266 0.6696365 0.4772083 0.6628724 0.61441 0.4467918 

A+D+E+F+G 0.4534166 0.5418677 0.3798655 0.6615978 0.6340081 0.4614429 

C+D+E+F+G 0.4632582 0.5481547 0.3875863 0.6606479 0.6218252 0.4615751 

B+D+E+G 0.3875972 0.3909207 0.2861465 0.657835 0.6568015 0.5137236 

A+E 0.5664097 0.6327542 0.4510429 0.6517214 0.623084 0.4474086 

A+B+D+F 0.7623274 0.7355312 0.5461741 0.6514716 0.5946109 0.4284181 

A+C+E+F 0.6316307 0.7140192 0.5164196 0.650924 0.6241992 0.4542625 

A+B+D+E+G 0.5031556 0.5929763 0.4203144 0.6474392 0.6030616 0.4331001 

B+C+D+E+G 0.5184236 0.5958047 0.4257621 0.6438089 0.5959577 0.4371545 

A+C+D+E 0.7419265 0.78715 0.5899385 0.6436479 0.6069291 0.4387054 

B+D 0.9005487 0.8246907 0.6435966 0.6419381 0.5309702 0.3781203 

A+C+D+E+F+G 0.5309632 0.6464253 0.4565751 0.6379261 0.5954371 0.4301802 

B+C+D+F 0.8175272 0.7770315 0.5889212 0.637794 0.5740778 0.4180225 

D 0.8904282 0.8440979 0.6601409 0.6263819 0.5468863 0.389032 

A+B+C+E 0.692102 0.7551501 0.5565514 0.6252666 0.5871694 0.4235903 

A+D+F 0.7117394 0.7213149 0.5301804 0.622492 0.5825022 0.4172562 

A+B+C+D+E+G 0.5709968 0.6804326 0.4864792 0.6196486 0.5683172 0.406208 

A+B+E+F+G 0.3599946 0.4367296 0.3031905 0.6129679 0.5757836 0.417113 

A+D+E+G 0.4407902 0.5547524 0.3917973 0.6112724 0.5745229 0.4106077 

C+D+F 0.7728359 0.7688163 0.5767856 0.6092083 0.5646974 0.4102714 

B+C+E+F+G 0.3607219 0.4482979 0.3162082 0.6082477 0.5674795 0.4255933 

C+D+E+G 0.4501244 0.5582474 0.4005675 0.6043174 0.5679783 0.4172322 

A+B+C+E+F+G 0.4609644 0.5808734 0.4031719 0.6038874 0.5565473 0.3965046 

D+E+G 0.2933906 0.3537209 0.2610584 0.6029764 0.6337003 0.5030273 

B 0.8191334 0.6607223 0.508491 0.6028232 0.4526431 0.3333887 

A+B+D+F+G 0.4890414 0.5849852 0.4139539 0.5929576 0.5377722 0.3810692 

A+C+E 0.6362988 0.7327199 0.5304996 0.5909937 0.5620175 0.402464 

A+C+D+E+G 0.5230199 0.6551545 0.4642964 0.5908642 0.5464175 0.3876725 

B+D+F+G 0.354711 0.3933636 0.2905136 0.590493 0.5839326 0.4563542 

A+B+C+D+F 0.7620261 0.790109 0.5947494 0.5876953 0.5479381 0.3910265 

B+E+F+G 0.1851618 0.2087258 0.1507441 0.5831396 0.6225731 0.4928905 

A+B+F 0.618582 0.6458525 0.4640224 0.5803044 0.5419518 0.3857262 
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B+C+D+F+G 0.5012339 0.5883603 0.4232738 0.5783218 0.5269261 0.3826374 

F 0.2763438 0.1935796 0.1387928 0.5760358 0.5914943 0.4220089 

B+C+F 0.693108 0.7096416 0.5203948 0.5736845 0.5263652 0.383877 

A+C+E+F+G 0.4048945 0.5446632 0.3756973 0.5690548 0.5268085 0.3730967 

A+E+F+G 0.2891742 0.391625 0.271775 0.5683542 0.5419194 0.3920983 

A+B+C+D+F+G 0.5594844 0.674622 0.482897 0.5664158 0.5174481 0.3660899 

A+B+D 0.768613 0.7525183 0.558776 0.5610124 0.4917038 0.3451411 

A+C+D+F 0.7226791 0.7797477 0.5814859 0.5604365 0.5346216 0.380508 

C+E+F+G 0.2814387 0.4114624 0.2892574 0.5582347 0.5390696 0.4061662 

A+B+E+G 0.3378762 0.4456156 0.3136935 0.5549658 0.511629 0.3660532 

A+B+C+E+G 0.4475483 0.5869245 0.410364 0.5516895 0.5016167 0.3515447 

A+D+F+G 0.4182374 0.5407973 0.3815873 0.5494807 0.5019142 0.3543656 

B+C+E+G 0.3358963 0.4615773 0.3322916 0.5424231 0.5047689 0.379338 

A+C+D+F+G 0.5065592 0.6472278 0.4586581 0.5327191 0.491706 0.3455039 

C+D+F+G 0.4227912 0.5436172 0.3943254 0.5296769 0.4914799 0.359338 

A+B+C+F 0.6645752 0.741465 0.5427793 0.5288693 0.5045896 0.3578339 

B+C+D 0.8269361 0.8091608 0.6240246 0.5266822 0.4474464 0.3143817 

D+F+G 0.2409491 0.3563423 0.2642462 0.5200666 0.5632211 0.4457454 

A+D 0.7113254 0.7359118 0.5398023 0.5183876 0.472099 0.3289444 

A+F 0.5191631 0.5945452 0.416958 0.5173752 0.4959425 0.3466355 

E+F+G 0.08656197 0.1623278 0.1190342 0.516321 0.5948857 0.4702613 

A+B+D+G 0.4680578 0.5842217 0.4176302 0.5161636 0.4451738 0.3088823 

A+C+E+G 0.3863691 0.5462825 0.3798923 0.5119406 0.4660067 0.3253892 

A+B+C+D 0.7580323 0.7981737 0.6005767 0.5110592 0.4718043 0.3301004 

B+E+G 0.1361889 0.2239605 0.1650852 0.5046949 0.5940821 0.4727034 

A+E+G 0.2593274 0.3971522 0.2793416 0.5032234 0.4725844 0.338792 

A+B+C+D+G 0.5443057 0.6752321 0.4848112 0.5008184 0.4516605 0.3133573 

C+F 0.5830781 0.6636917 0.4721933 0.5005905 0.4783326 0.347197 

B+C+D+G 0.4768018 0.5843225 0.4297474 0.4884084 0.4384612 0.3118733 

A+B+C+F+G 0.4226695 0.5722815 0.4006841 0.4856252 0.4384016 0.3041032 

A+C+F 0.600404 0.7118308 0.5111797 0.4840006 0.4705569 0.331071 

C+E+G 0.2468374 0.4239733 0.303394 0.483393 0.4721439 0.3579832 

A+B+F+G 0.3005459 0.423398 0.2983356 0.4808792 0.4279865 0.3033854 

C+D 0.776152 0.8001199 0.6106079 0.4783409 0.430884 0.301257 

B+D+G 0.3094441 0.4280989 0.3231873 0.4782347 0.476807 0.362241 

A+C+D 0.7141838 0.7852169 0.5846252 0.4757161 0.4529065 0.3157709 

A+D+G 0.3891704 0.5360537 0.3833224 0.4642765 0.4031501 0.2789366 
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A+C+D+G 0.4865639 0.6439374 0.4579553 0.46168 0.4198982 0.2893849 

A+B 0.6071178 0.6558811 0.4686983 0.4534903 0.4125144 0.285917 

B+C+F+G 0.2905314 0.4458545 0.3235596 0.4523077 0.4241992 0.318057 

A+C+F+G 0.3548218 0.5249093 0.3653983 0.439687 0.3948 0.2728716 

A+B+C 0.650793 0.7447487 0.5436193 0.4311374 0.4121513 0.2869405 

C+D+G 0.3883645 0.5329598 0.3977753 0.429081 0.3939667 0.2836269 

E+G 0.02468937 0.1761515 0.1302842 0.4251367 0.5724286 0.4517576 

A+F+G 0.2113104 0.3688911 0.2583106 0.4196708 0.3812478 0.2700233 

A+B+C+G 0.3957246 0.5623156 0.3984426 0.4068951 0.3560086 0.2435724 

B+C 0.6909383 0.7484381 0.5628754 0.4061099 0.3721297 0.2628535 

B+F+G 0.05367426 0.1978878 0.1437184 0.3952618 0.5245636 0.4094789 

D+G 0.1774821 0.4080011 0.306333 0.3898023 0.4662864 0.3551107 

A+B+G 0.2594555 0.4228055 0.3027759 0.3843279 0.32582 0.2272073 

C+F+G 0.1884297 0.405049 0.2890516 0.3814986 0.385034 0.291479 

A+C 0.5777453 0.7109297 0.5076395 0.3745237 0.3699924 0.2545747 

A 0.4867195 0.5868364 0.4057687 0.3654596 0.3366946 0.2293649 

A+C+G 0.3220312 0.5120821 0.3609473 0.3550122 0.307833 0.2099138 

B+C+G 0.241169 0.4606827 0.3420289 0.3371482 0.3392478 0.250484 

A+G 0.1615911 0.3670324 0.2590266 0.3145923 0.2748015 0.1898057 

F+G -0.07501003 0.1258351 0.0909146 0.2987003 0.4859893 0.3728236 

C 0.5505007 0.6904874 0.5030818 0.2886947 0.2966009 0.2073917 

C+G 0.128631 0.4234011 0.3054489 0.2560357 0.2986689 0.2202136 

B+G -0.03138041 0.2517043 0.181093 0.2454451 0.4397153 0.3312597 

G -0.1693019 0.1327867 0.09281258 0.1382419 0.3581771 0.2661346 

 

Table S10.2 Data used for Chapter 4, Table 4.4. Cumulative observed global interface and fold 

scores of the top ranked models for every combination of the 7 component scores based on the CASP14 

multimer data: A=ModFOLDIA, B=DockQJury, C=QSscoreJury, D=QSscoreOfficialJury, 

E=lDDTOfficialJury, F=voronota-js-voromqa, G=CDA-score. The top scores in each column are shown 

in bold. The ModFOLDdockR fold and interface score combinations are highlighted in green. 

Method combination Interface Fold 

C+E+F 4.962 9.145 

B+D+G 5.2505 9.097 

E+F 5.04 9.091 

B+E+F 5.4545 9.0885 

D+E+F 5.117 9.064 

B+E+F+G 5.136 9.0625 

C+D+E+G 5.006 9.0485 
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B+E 5.167 9.01 

D+E 5.3215 9.003 

B+C+D+E+G 5.196 8.9935 

B+C+D+E 5.2155 8.985 

A+B+C+D+E+F+G 5.0855 8.956 

B+D+E 5.345 8.948 

B+C+D+G 5.126 8.9285 

B+D+E+F 5.1455 8.913 

D+E+G 4.8725 8.9055 

A+C+F 5.286 8.883 

D+E+F+G 4.6635 8.8575 

C+D+E 4.919 8.856 

C+D+G 4.6205 8.8535 

B+D+E+G 4.912 8.812 

A+B+D+E+F+G 4.944 8.8085 

E 4.0515 8.805 

B+D+E+F+G 4.657 8.802 

A+B+D+E+F 5.0655 8.797 

A+B+C+D+F+G 5.2595 8.785 

A+B+C+D+E+G 4.931 8.7825 

A+C+D+E+G 4.931 8.7825 

B+C+E+F 4.7155 8.7825 

A+B+C+E 5.3425 8.7795 

D 5.414 8.7745 

A+B+C+D+E+F 5.408 8.7745 

C+D+E+F 4.6355 8.774 

D+G 4.6135 8.7625 

A+C+D+E+F+G 4.9075 8.7585 

A+B+D+F 5.3465 8.7565 

A+B+D+F+G 4.905 8.7535 

A+B+C+E+F 4.8465 8.7495 

A+B+C+E+G 4.757 8.7145 

A+B+C+E+F+G 4.7275 8.7075 

B+D+F+G 4.8505 8.707 

B+C+D+E+F 4.943 8.704 

A+B+F+G 4.6465 8.6965 

C+E+F+G 4.3265 8.6965 
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A+C+D+E 5.114 8.68 

B+E+G 4.3635 8.6705 

A+D+E+F 4.7285 8.67 

B+C+E+G 4.339 8.67 

E+F+G 4.349 8.6685 

A+B+C+F+G 4.4715 8.6675 

A+B+C+D+F 5.335 8.666 

A+D+E+F+G 4.6845 8.6655 

A+C+D+E+F 4.7645 8.6605 

A+B+E+F+G 4.646 8.6535 

A+B+E+F 4.5695 8.6525 

A+C+F+G 4.7275 8.648 

A+B+C+F 5.057 8.6475 

A+D+F 5.207 8.6465 

C+D+F+G 4.5735 8.646 

A+B+C+D+E 5.1365 8.644 

B+C+D+F+G 4.796 8.6435 

A+C+E+F 4.6035 8.6425 

C+D+E+F+G 4.5855 8.6385 

B+C+D+F 5.4965 8.638 

C+D+F 5.185 8.638 

B+C+D+E+F+G 4.808 8.636 

A+B+D+G 5.238 8.6305 

A+D+E+G 4.7865 8.6305 

A+B+D+E+G 4.776 8.6185 

A+F+G 4.4245 8.615 

A+C+E 4.87 8.6145 

B+F+G 4.852 8.602 

A+C+E+F+G 4.558 8.5985 

C+E 4.2275 8.596 

A+D+F+G 4.7225 8.5825 

A+C+D 5.2855 8.5745 

C+F+G 3.9805 8.574 

B+C+E+F+G 4.559 8.572 

A+D+E 4.9065 8.57 

B+C+F+G 4.549 8.5665 

D+F 5.4435 8.564 
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D+F+G 4.687 8.563 

C+E+G 4.036 8.555 

A+C+D+F+G 4.9095 8.5535 

A+D+G 5.1505 8.5475 

B+D 5.412 8.547 

B+C+F 5.3875 8.5365 

A+C 5.247 8.5345 

B+C+G 4.3575 8.5335 

A+B+E+G 4.365 8.5065 

A+B+D+E 4.8725 8.493 

A+B+C+D+G 5.4715 8.488 

A+B+E 4.6945 8.4835 

A+C+D+G 5.283 8.483 

B+D+F 5.6105 8.479 

A+C+E+G 4.394 8.4625 

B+C+E 4.4885 8.4585 

A+D 5.206 8.448 

A+B+C+D 5.478 8.4325 

A+C+D+F 4.8075 8.42 

A+C+G 4.776 8.418 

B+C+D 5.2495 8.4175 

A+B+G 4.775 8.4065 

A+E 4.6635 8.405 

C+F 4.6335 8.403 

F 4.8695 8.3865 

A+B+F 4.592 8.3765 

A+B+C 5.026 8.367 

A+B+D 5.286 8.3585 

A+F 4.522 8.3505 

A+E+G 4.146 8.3485 

A+E+F+G 4.2285 8.3415 

A+B+C+G 5.02 8.3305 

C+G 3.3645 8.315 

C+D 4.6965 8.3065 

B+F 5.449 8.2965 

A+G 4.562 8.2915 

A+E+F 4.0765 8.207 
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E+G 2.579 8.166 

F+G 3.4355 8.112 

A+B 4.8615 8.089 

B+G 3.818 8.055 

B+C 4.4975 7.964 

B 5.048 7.8685 

A 4.265 7.808 

C 3.201 7.788 

G 2.2295 7.0715 
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Appendix 11 
 
Definitions of Pearson, Spearman and Kendall correlation coefficients. 

The Pearson correlation coefficient r is a normalised version of covariance, where the output 

is always between -1 and 1. The formula, for two variables X and Y is: 

     r = 
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋 𝜎𝑌
 

where σ is the standard deviation (SD) of each variable. 

In explanation, variance (σ2) is a measure of how much a set of data points differ from their 

mean. It is calculated as the average of the squared differences between each data point and 

the mean, i.e. sum of (x-x̄)2/n. Covariance measures the degree to which two variables change 

together, i.e. sum of (x- x̄)(y-ȳ)/n. Standard deviation (the square root of variance) is √(x- x̄)2/n. 

Spearman, ρ (rho), and Kendall, τ (tau), rank correlation coefficients are both non-parametric 

measure using the rank variable of the data. Spearman assesses how well the relationship 

between two variables can be described using a monotonic function using the formula: 

ρ = 1 –  
6 (𝑠𝑢𝑚 𝑑𝑖2)

𝑛(𝑛2 − 1)
 

Where di is the difference between the ranks of corresponding pairs of observations and n is 

the number of observations. Spearman correlation coefficient can be calculated by assigning 

ranks to the values for each variable, calculating the differences between ranks for variable 

pairs and then squaring the differences. Finally these values are summed. Kendall measures 

the similarity of the orderings of the data when ranked by each of the variables and can be 

described as: 

τ =  
𝐶−𝐷

𝑛(𝑛−1)/2
 

where C is the number of concordant pairs (where the ranks agree), D is the number of 

discordant pairs and n is the number of observations. Kendall is calculated by counting the 

number of concordant and discordant pairs of observations and then using these counts to 

compute the correlation coefficient. 

The choice between Pearson, Spearman, or Kendall correlation coefficients may alluded to in 

Chapter 4 can depend upon the perceived importance of: Linear Relationship: Pearson 

correlation coefficient is specifically designed to measure the strength and direction of a linear 

relationship between two variables. Proportionality of Increase: Pearson correlation coefficient 
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considers the proportionality of increase or decrease in the variables. It reflects the degree to 

which a change in one variable is associated with a proportional change in the other variable. 

Outlier Treatment: Pearson correlation is sensitive to outliers, meaning that extreme values 

can significantly affect the correlation coefficient. 
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Appendix 12 
 
Definitions of CASP15 PatchQS and PatchDockQ scores and the local Z-score 

calculation. 

PatchQS and PatchDockQ are two reference scores created specifically for the CASP15 EMA 

competition and based on the QS-score and DockQ methods (Studer et al., 2023). They are 

designed to assess the quality of interchain interactions and sample each model interface 

residue. For an interface residue r in chain A of the model two interface patches are defined 

for Cβ atoms as; 

Patch one = (chain A and 8Å <> r) and (12Å <> chain != A). Meaning that patch one consists 

of all residues in chain A within 8Å of residue r that are also within 12Å of any other chain. 

Patch two: (chain != A and 8Å <> r min) and (12Å <> A). Patch two uses r min as a reference 

point. It consists of all residues of any chain within 8Å of r min that are also within 12Å to chain 

A, where r min is defined as the closest residue to r in any chain which is not chain A (!= A). 

(<> means within that distance) 

1. ROC AUC values. 

Firstly the whole dataset of observed scores is sampled to calculate the 75th quartile value. 

This is then used as the threshold value against which the binary variable is calculated. A ROC 

AUC value is then calculated (in R this can be calculated using the pROC package). AUC 

values less than 0.5 are considered worse than a random selection and so the minimum AUC 

value was set to 0.5. These values were calculated using the lDDT, CAD, PatchQS and 

PatchDockQ as the target (observed) value. 

2. Pearson r values. 

This is a straight-forward Pearson correlation value, again calculated using the lDDT, CAD, 

PatchQS and PatchDockQ as the target (observed) value. 

3. Spearman rho values. 

As above, these are straight forward Spearman correlation values calculated using the lDDT, 

CAD, PatchQS and PatchDockQ as the target (observed) value. 

4. Calculation of Z scores. 

Z-scores are calculated (e.g. using the scale(value) operator in R) for each score above. So a 

Z-score value will be calculated for:  

ROC_AUC_lDDT ROC_AUC_CAD ROC_AUC_PatchQS ROC_AUC_PatchDockQ 
Pearson_lDDT Pearson_CAD  Pearson_PatchQS Pearson_PatchDockQ 
Spearman_lDDT Spearman_CAD Spearman_PatchQS Spearman_PatchDockQ 
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5. Summation of like scores. 

Overall scores are calculated as follows, where <score> is each of lDDT, CAD, PatchQS and 

PatchDockQ: 

Z_<score>= Z_ROC_AUC_<score> + 0.5Z_Pearson_<score> + 0.5Z_Spearman_<score> 

6. Final Z score. 

A final Z-score is calculated as a simple addition of Z_lDDT + Z_CAD + Z_PatchQS + 

Z_Patch_DockQ.  
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Appendix 13 
 
Definitions of Sensitivity, Specificity, Precision and Accuracy. 

Each metric is best explained with reference to one class only, in this case rank 1 models. 

Sensitivity (recall or TPR) = TP / (TP + FN). Meaning: of all the 

cases where models were ranked 1 by observed score, how 

many were also ranked 1 by predicted score. The 

intersection of the blue and pink circles represents the true 

positives (TP) and the rest of the blue circle represents the 

false negatives (FN). TPR is therefore the number of models in 

the intersect divided by the total number of models in the blue circle. 

Summary: Percent or fraction of True Positives. 

Specificity = TN / (TN + FP). Meaning: of all the models that are 

not ranked 1 by observed score, how many were also not 

ranked 1 by predicted score. In the example, true negative 

(TN) is represented by the intersect between yellow and green 

circles and false positives (FP) are represented by the portion 

of the pink which does not intersect with the blue circle above. 

Summary: Percent or fraction of True Negatives. 

Precision =  TP / (TP + FP). Meaning: of all the cases that were predicted as rank 1 how many actually 

were rank 1. In the example diagrams, this is again the intersect of the pink and blue circles but this time 

divided by the total number of models in the pink circle. Summary: Percent or fraction of positives that 

were truly positives. 

Accuracy = (TP + TN) / (TP + TN + FP + FN). Meaning: of all models in the population, how many 

were correctly predicted. In the example diagrams this would be both intersections added together 

divided by this number plus the portion of the pink circle which does not intersect with the blue and the 

portion of the blue circle which does not intersect with the pink. Summary: Percent or fraction correctly 

classified. 

  

True    
rank 1

Predicted 
rank 1

True    
other 
rank

Predicted 
other 
rank
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Appendix 14 
 
Example R script (Global score) for MLP three-fold cross validation.  

library(RSNNS) 

library(data.table) 

library(ROCR) 

library(ggplot2) 

#---------------------------------------------------------------------------------- 

# Name: Glob_RSNNS_3fold_X_Val.R Version: 1.4 Date: 29-Sep-21  Author: Nick Edmunds 

# Revision history (add details of any revisions since Date above):  

# 1-Oct-21 (NE): added summary stats for each baseline graph. 

# 1-Oct-21 (NE): added model-checking statistics to check fit of lm to each 

baseline graph and to each prediction model. 

# 1-Oct-21 (NE): removed consensus6 from testing and training sets1,2 and 3 and 

created a separate baseline_test1,2 and 3. 

# 6-Oct-21 (NE): created a binary variable in testing_all_outputs dataset and added 

ROC plots and AUC calcs for individual scores. 

# 13-Oct-21 (NE): Added baseline correlation, ROC/AUC plots for Observed scores. 

# 15-Oct-21 (NE): Added testing_all_sets$Global_predictions <- predictions to add 

predictions to a permanent dataset created in loc program. 

# Function: 

# A 3-Fold cross validation for the NN prediction of Global Score from all 6 

ModFOLDdock predicted scores. 

# Defines 3 training sets containing models from different CASP13 and 14 targets. 

Training sets are balanced to include roughly 

# the same number of targets from ech CASP competition and also by number of easy, 

medium and difficult rated targets. 

# Creates correlation plots for each individual (of the 6) ModFOLDdock scores 

against a calculated CASP Global score plus the 

# same for a mean consensus 6 score - these act as baseline correlations for 

comparison. 

# Thereafter, each training set is predicted separately, the model saved and then 

reloaded and simple correlations, regression 

# errors, iterative errors as well as confusion matrices and ROC plots with AUC 

calculations are output. 

# Edit this to direct graph output to the desired directory>> 

# 

setwd('/home/nick/Post_confirmation_projects/New_Scoring/All_CASP_models/NN_work/Hy

perparam_testing_graphs/6_10_21_Glob_and_Tot_output') 

#---------------------------------------------------------------------------------- 

# Define 3 subset arrays containing different Target ids (sub_set1=15, subset2=15, 

sub_set3=14 targets). 

sub_set1 <- c("T1016", "T1003", "T1020", "T0977", "T0999", "T0997", "T1083", 

"T1048", "T1087", "T0966", "T0991", "T1009", "T1038", "T1054", "T0989") 

sub_set2 <- c("T0995", "T0979", "T0984", "T0983", "T0963", "T1018", "T0976", 

"T0998", "T0965", "T1062", "T1078", "T1084", "T1001", "T1061", "T1070") 

sub_set3 <- c("T1006", "T0961", "T1032", "T0973", "T0970", "T1034", "T0960", 

"T1004", "T0981", "T0996", "T0985", "T1000", "T1080", "T1010") 

 

# Define training datasets so that training_set1 contains NO rows from sub_set1, 

training_set2 contains NO rows from sub_set2 and training_set3 contains NO rows 

from sub_set3. 

# So training_set1 will only have rows from sub_set2 and sub_set3 

training_set1 <- subset(CASP_combined, Target!="T1016" & Target!="T1003" & 

Target!="T1020" & Target!="T0977" & Target!="T0999" & Target!="T0997" & 

Target!="T1083" & Target!="T1048" & Target!="T1087" & Target!="T0966" & 

Target!="T0991" & Target!="T1009" & Target!="T1038" & Target!="T1054" & 

Target!="T0989") 
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# training_set2 will only have rows from sub_set1 and sub_set3 

training_set2 <- subset(CASP_combined, Target!="T0995" & Target!="T0979" & 

Target!="T0984" & Target!="T0983" & Target!="T0963" & Target!="T1018" & 

Target!="T0976" & Target!="T0998" & Target!="T0965" & Target!="T1062" & 

Target!="T1078" & Target!="T1084" & Target!="T1001" & Target!="T1061" & 

Target!="T1070") 

# training_set3 will only have rows from sub_set1 and sub_set2 

training_set3 <- subset(CASP_combined, Target!="T1006" & Target!="T0961" & 

Target!="T1032" & Target!="T0973" & Target!="T0970" & Target!="T1034" & 

Target!="T0960" & Target!="T1004" & Target!="T0981" & Target!="T0996" & 

Target!="T0985" & Target!="T1000" & Target!="T1080" & Target!="T1010") 

 

# Define testing datasets so that testing_set1 contains ONLY rows for sub_set1, 

testing_set2 contains ONLY rows for sub_set2 and training set3 contains ONLY rows 

for sub_set3. 

testing_set1 <- subset(CASP_combined, 

Target=="T1016"|Target=="T1003"|Target=="T1020"|Target=="T0977"|Target=="T0999"|Tar

get=="T0997"|Target=="T1083"|Target=="T1048"|Target=="T1087"|Target=="T0966"|Target

=="T0991"|Target=="T1009"|Target=="T1038"|Target=="T1054"|Target=="T0989") 

testing_set2 <- subset(CASP_combined, 

Target=="T0995"|Target=="T0979"|Target=="T0984"|Target=="T0983"|Target=="T0963"|Tar

get=="T1018"|Target=="T0976"|Target=="T0998"|Target=="T0965"|Target=="T1062"|Target

=="T1078"|Target=="T1084"|Target=="T1001"|Target=="T1061"|Target=="T1070") 

testing_set3 <- subset(CASP_combined, 

Target=="T1006"|Target=="T0961"|Target=="T1032"|Target=="T0973"|Target=="T0970"|Tar

get=="T1034"|Target=="T0960"|Target=="T1004"|Target=="T0981"|Target=="T0996"|Target

=="T0985"|Target=="T1000"|Target=="T1080"|Target=="T1010") 

 

# Shuffle training_set1 (data from sub_set2 and sub_set3) into a random order and 

split into inputs and output datasets 

training_set1_shuffle <- training_set1[sample(1:nrow(training_set1), 

length(1:nrow(training_set1))),1:ncol(training_set1)] 

training_set1_inputs  <- training_set1_shuffle[c(28,29,30,31,32,33)] # just the 6 

MFD scores as inputs 

training_set1_output  <- training_set1_shuffle[c(42)]  # just Global_score as the 

output 

# Same for testing_set1 (data from sub_set1) minus the random order 

baseline_set1_inputs<- testing_set1[c(28,29,30,31,32,33,34)]  # MFD scores incl. 

consensus6 for baseline correlation calculations. 

testing_set1_inputs <- testing_set1[c(28,29,30,31,32,33)] # just the 6 MFD scores 

as inputs 

testing_set1_output <- testing_set1[c(42)]  # just Global_score as the output_input 

 

# Shuffle training_set2 (data from sub_set1 and sub_set1) into a random order and 

split into inputs and output datasets 

training_set2_shuffle <- training_set2[sample(1:nrow(training_set2), 

length(1:nrow(training_set2))),1:ncol(training_set2)] 

training_set2_inputs  <- training_set2_shuffle[c(28,29,30,31,32,33)] # just the 6 

MFD scores as inputs 

training_set2_output  <- training_set2_shuffle[c(42)]    # just Global_score as the 

output 

# Same for testing_set2 (data from sub_set2) minus the random order 

baseline_set2_inputs<- testing_set2[c(28,29,30,31,32,33,34)] # MFD scores incl. 

consensus6 for baseline correlation calculations. 

testing_set2_inputs <- testing_set2[c(28,29,30,31,32,33)]  # just the 6 MFD scores 

as inputs 

testing_set2_output <- testing_set2[c(42)]  # just Global_score as the output_input 
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# Shuffle training_set3 (data from sub_set1 and sub_set1) into a random order and 

split into inputs and output datasets 

training_set3_shuffle <- training_set3[sample(1:nrow(training_set3), 

length(1:nrow(training_set3))),1:ncol(training_set3)] 

training_set3_inputs  <- training_set3_shuffle[c(28,29,30,31,32,33)] # just 6 MFD 

scores input 

training_set3_output  <- training_set3_shuffle[c(42)] #just Global_score as output 

# Same for testing_set3 (data from sub_set3) minus the random order 

baseline_set3_inputs<- testing_set3[c(28,29,30,31,32,33,34)]  # MFD scores incl. 

consensus6 for baseline correlation calculations. 

testing_set3_inputs <- testing_set3[c(28,29,30,31,32,33)] # just 6 MFD scores input 

testing_set3_output <- testing_set3[c(42)]  # just Global_score as the input 

 

# ######################### Create the models for the predictions ################# 

# Add the general working directory so that all the models get saved to a single 

directory 

setwd('/home/nick/Post_confirmation_projects/New_Scoring/All_CASP_models/NN_work/') 

# The model for training on training_set1 and predicting on testing_set1 (learning 

rate 0.01, max difference 0.01) 

modelG1 <- mlp(training_set1_inputs, training_set1_output, size = 4,  

              learnFuncParams = c(0.01, 0.01), maxit = 200, inputsTest = 

testing_set1_inputs, targetsTest = testing_set1_output,  

              learnFunc = "BackpropMomentum", linOut=TRUE)  

save(modelG1, file="modelG1_set1.RData") 

rm(modelG1) 

load("modelG1_set1.RData") 

prediction_set1 <- predict(modelG1, testing_set1_inputs) 

compare_set1 <- data.frame(testing_set1_output, prediction_set1) 

 

# The model for training on training_set2 and predicting on testing_set2 

modelG2 <- mlp(training_set2_inputs, training_set2_output, size = 4,  

              learnFuncParams = c(0.01, 0.01), maxit = 200, inputsTest = 

testing_set2_inputs, targetsTest = testing_set2_output,  

              learnFunc = "BackpropMomentum", linOut=TRUE)  

save(modelG2, file="modelG2_set2.RData") 

rm(modelG2) 

load("modelG2_set2.RData") 

prediction_set2 <- predict(modelG2, testing_set2_inputs) 

compare_set2 <- data.frame(testing_set2_output, prediction_set2) 

 

# The model for training on training_set3 and predicting on testing_set3 

modelG3 <- mlp(training_set3_inputs, training_set3_output, size = 4,  

              learnFuncParams = c(0.01, 0.01), maxit = 200, inputsTest = 

testing_set3_inputs, targetsTest = testing_set3_output,  

              learnFunc = "BackpropMomentum", linOut=TRUE)  

save(modelG3, file="modelG3_set3.RData") 

rm(modelG3) 

load("modelG3_set3.RData") 

prediction_set3 <- predict(modelG3, testing_set3_inputs) 

compare_set3 <- data.frame(testing_set3_output, prediction_set3) 

 

#############################-Processing results for set1-######################## 

# Edit this again to direct the rest of the graph output to the same directory as 

at the start>> 

setwd('/home/nick/Post_confirmation_projects/New_Scoring/All_CASP_models/NN_work/Hy

perparam_testing_graphs/6_10_21_Glob_and_Tot_output') 

 

# Iterative error for prediction set1 vs testing_set1 

jpeg("ModelG1_IterativeError.jpg") 
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plotIterativeError(modelG1) 

legend(x='bottomright', "modelG1 iterative error") 

dev.off() 

#-------------------------------------------------------------------------------- 

# Regression error for prediction set1 vs testing_set1 

jpeg("ModelG1_RegressionError.jpg") 

plotRegressionError(testing_set1_output$Global_score, prediction_set1) 

legend(x='bottomright', "modelG1 refression error") 

dev.off() 

#--------------------------------------------------------------------------------- 

# Simple set1 scatter plot with regression line and correlation value 

jpeg("Set1_prediction_V_Global_score_scatter.jpg") 

plot(main='Prediction set 1 scatter (Global)',prediction_set1, 

testing_set1_output$Global_score, 

col=c("blue"),abline(lm(testing_set1_output$Global_score ~ prediction_set1))) 

legend(x='bottomright', legend=paste('modelG1 Pearson =',round(cor(prediction_set1, 

testing_set1_output$Global_score),2))) 

dev.off() 

#---------------------------------------------------------------------------------- 

# Summary of model1 to give R-squared values and model checking graphs. 

set1_modelG <-lm(testing_set1_output$Global_score ~ prediction_set1) 

summary(set1_modelG) 

par(mfrow=c(2,2)) 

plot(main='Predict set1 versus Global score', set1_modelG) 

par(mfrow=c(1,1)) 

#--------------------------------------------------------------------------------- 

# Confusion table, TPR, FPR, ROC plot and AUC 

# Convert the results as binaries for creation of a confusion table so that TPR and 

FPR can be clearly seen and calculated manually. 

# Firstly, compare the actual and predicted value to get an absolute difference. 

compare_set1$diff <- abs(compare_set1$Global_score - compare_set1$prediction_set1) 

# Next, if difference is within 0.06, it can be considered correct so is set to the 

SAME value as actual, if greater that 0.06 it remains 

# as the predicted value. 

compare_set1$bin <- ifelse(compare_set1$diff < 0.06, compare_set1$Global_score, 

compare_set1$prediction_set1) 

# Now, when rounded, they should have the appropriate values - prevents close 

scores like 5.4 and 5.6 being rounded to different numbers. 

compare_set1$Global_Rscore <- round(as.numeric(testing_set1_output$Global_score),1) 

compare_set1$R_prediction  <- round(as.numeric(compare_set1$bin),1) 

# Now make two binary variables. Above 0.5 =1 below = 0. 

compare_set1$bin_P <- ifelse(compare_set1$R_prediction > 0.5, 1, 0) # for the 

predicted value 

compare_set1$bin_A <- ifelse(compare_set1$Global_Rscore > 0.5, 1, 0) # for the 

actual value 

# Now make a confusion matrix with the Actual Global score on the left and the 

predictions as columns across the top. 

sink('ModelG1_confusion_matrix.txt') 

confusionMatrix(compare_set1$R_prediction, compare_set1$Global_Rscore) 

sink() 

# Also, just for reference, a simple binary confusion matrix 

confusionMatrix(compare_set1$bin_P, compare_set1$bin_A) 

# Now a ROC plot using the unaltered predicted values and the binary actual 

(Global_score) values (0.5 cut-off) 

pred1 <- prediction(compare_set1$prediction_set1, compare_set1$bin_A) 

perf1 <- performance(pred1, "tpr", "fpr") 

jpeg("ModelG1_ROC_plot.jpg") 

plot(perf1, colorize=TRUE, print.cutoffs.at=seq(0,1,0.1)) 

abline(a=0, b=1) 



Appendices 

234 
 

dev.off() 

# Calculate AUC 

sink('ModelG1_AUC.txt') 

auc.perf1 <-performance(pred1, measure="auc") 

auc.perf1@y.values 

sink() 

#############################-Processing results for set2-######################### 

# Iterative error for prediction set2 vs testing_set2 

jpeg("ModelG2_IterativeError.jpg") 

plotIterativeError(modelG2) 

legend(x='bottomright', "modelG2 iterative error") 

dev.off() 

#---------------------------------------------------------------------------------- 

# Regression error for prediction set2 vs testing_set2 

jpeg("ModelG2_RegressionError.jpg") 

plotRegressionError(prediction_set2,testing_set2_output$Global_score) 

legend(x='bottomright', "modelG2 refression error") 

dev.off() 

#---------------------------------------------------------------------------------- 

# Simple set2 scatter plot with regression line and correlation value 

jpeg("Set2_prediction_V_Global_score_scatter.jpg") 

plot(main='Prediction set 2 scatter 

(Global)',prediction_set2,testing_set2_output$Global_score, 

col=c("red"),abline(lm(testing_set2_output$Global_score ~ prediction_set2))) 

legend(x='bottomright', legend=paste('modelG2 Pearson =',round(cor(prediction_set2, 

testing_set2_output$Global_score),2))) 

dev.off() 

#---------------------------------------------------------------------------------- 

# Summary of model2 to give R-squared values and model checking graphs. 

set2_modelG <-lm(testing_set2_output$Global_score ~ prediction_set2) 

summary(set2_modelG) 

par(mfrow=c(2,2)) 

plot(main='Predict set2 versus Global score', set2_modelG) 

par(mfrow=c(1,1)) 

#---------------------------------------------------------------------------------- 

# Confusion table, TPR, FPR, ROC plot and AUC 

# Convert the results as binaries for creation of a confusion table so that TPR and 

FPR can be clearly seen and calculated manually. 

# Firstly, compare the actual and predicted value to get an absolute difference. 

compare_set2$diff <- abs(compare_set2$Global_score - compare_set2$prediction_set2) 

# Next, if difference is within 0.06, it can be considered correct so is set to the 

SAME value as actual, if greater that 0.06 it remains 

# as the predicted value. 

compare_set2$bin <- ifelse(compare_set2$diff < 0.06, compare_set2$Global_score, 

compare_set2$prediction_set2) 

# Now, when rounded, they should have the appropriate values - prevents close 

scores like 5.4 and 5.6 being rounded to different numbers. 

compare_set2$Global_Rscore <- round(as.numeric(testing_set2_output$Global_score),1) 

compare_set2$R_prediction  <- round(as.numeric(compare_set2$bin),1) 

# Now make two binary variables. Above 0.5 =1 below = 0. 

compare_set2$bin_P <- ifelse(compare_set2$R_prediction > 0.5, 1, 0) # for the 

predicted value 

compare_set2$bin_A <- ifelse(compare_set2$Global_Rscore > 0.5, 1, 0) # for the 

actual value 

# Now make a confusion matrix with the Actual Global score on the left and the 

predictions as columns across the top. 

sink('ModelG2_confusion_matrix.txt') 

confusionMatrix(compare_set2$R_prediction, compare_set2$Global_Rscore) 

sink() 
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# Also, just for reference,a simple binary confusion matrix 

confusionMatrix(compare_set2$bin_P, compare_set2$bin_A) 

# Now a ROC plot using the unaltered predicted values and the binary actual 

(Global_score) values (0.5 cut-off) 

pred2 <- prediction(compare_set2$prediction_set2, compare_set2$bin_A) 

perf2 <- performance(pred2, "tpr", "fpr") 

jpeg("ModelG2_ROC_plot.jpg") 

plot(perf2, colorize=TRUE, print.cutoffs.at=seq(0,1,0.1)) 

abline(a=0, b=1) 

dev.off() 

# Calculate AUC 

sink('ModelG2_AUC.txt') 

auc.perf2 <-performance(pred2, measure="auc") 

auc.perf2@y.values 

sink() 

#############################-Processing results for set3-######################## 

# Iterative error for prediction set3 vs testing_set3 

jpeg("ModelG3_IterativeError.jpg") 

plotIterativeError(modelG3) 

legend(x='bottomright', "modelG3 iterative error") 

dev.off() 

#--------------------------------------------------------------------------------- 

# Regression error for prediction set3 vs testing_set3 

jpeg("ModelG3_RegressionError.jpg") 

plotRegressionError(prediction_set3,testing_set3_output$Global_score) 

legend(x='bottomright', "modelG3 refression error") 

dev.off() 

#--------------------------------------------------------------------------------- 

# Simple set3 scatter plot with regression line and correlation value 

jpeg("Set3_prediction_V_Global_score_scatter.jpg") 

plot(main='Prediction set 3 scatter 

(Global)',prediction_set3,testing_set3_output$Global_score, 

col=c("green"),abline(lm(testing_set3_output$Global_score ~ prediction_set3))) 

legend(x='bottomright', legend=paste('modelG3 Pearson =',round(cor(prediction_set3, 

testing_set3_output$Global_score),2))) 

dev.off() 

#---------------------------------------------------------------------------------- 

# Summary of model3 to give R-squared values and model checking graphs. 

set3_modelG <-lm(testing_set3_output$Global_score ~ prediction_set3) 

summary(set3_modelG) 

par(mfrow=c(2,2)) 

plot(main='Predict set3 versus Global score', set3_modelG) 

par(mfrow=c(1,1)) 

#---------------------------------------------------------------------------------- 

# Confusion table, TPR, FPR, ROC plot and AUC 

# Convert the results as binaries for creation of a confusion table so that TPR and 

FPR can be clearly seen and calculated manually. 

# Firstly, compare the actual and predicted value to get an absolute difference. 

compare_set3$diff <- abs(compare_set3$Global_score - compare_set3$prediction_set3) 

# Next, if difference is within 0.06, it can be considered correct so is set to the 

SAME value as actual, if greater that 0.06 it remains 

# as the predicted value. 

compare_set3$bin <- ifelse(compare_set3$diff < 0.06, compare_set3$Global_score, 

compare_set3$prediction_set3) 

# Now, when rounded, they should have the appropriate values - prevents close 

scores like 5.4 and 5.6 being rounded to different numbers. 

compare_set3$Global_Rscore <- round(as.numeric(testing_set3_output$Global_score),1) 

compare_set3$R_prediction  <- round(as.numeric(compare_set3$bin),1) 

# Now make two binary variables. Above 0.5 =1 below = 0. 
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compare_set3$bin_P <- ifelse(compare_set3$R_prediction > 0.5, 1, 0) # for the 

predicted value 

compare_set3$bin_A <- ifelse(compare_set3$Global_Rscore > 0.5, 1, 0) # for the 

actual value 

# Now make a confusion matrix with the Actual Global score on the left and the 

predictions as columns across the top. 

sink('ModelG3_confusion_matrix.txt') 

confusionMatrix(compare_set3$R_prediction, compare_set3$Global_Rscore) 

sink() 

# Also, just for reference,a simple binary confusion matrix 

confusionMatrix(compare_set3$bin_P, compare_set3$bin_A) 

# Now a ROC plot using the unaltered predicted values and the binary actual 

(Global_score) values (0.5 cut-off) 

pred3 <- prediction(compare_set3$prediction_set3, compare_set3$bin_A) 

perf3 <- performance(pred3, "tpr", "fpr") 

jpeg("ModelG3_ROC_plot.jpg") 

plot(perf3, colorize=TRUE, print.cutoffs.at=seq(0,1,0.1)) 

abline(a=0, b=1) 

dev.off() 

# Calculate AUC 

sink('ModelG3_AUC.txt') 

auc.perf3 <-performance(pred3, measure="auc") 

auc.perf3@y.values 

sink() 

 

 




