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Abstract

Large-scale afforestation programmes are generally presented as effective ways of increasing the
terrestrial carbon sink while preserving water availability and biodiversity. Yet, a meta-analysis of
both numerical and observational studies suggests that further research is needed to support this
view. The use of inappropriate concepts (e.g., the biotic pump theory), the poor simulation of key
processes (e.g., tree mortality, water use efficiency), and the limited model ability to capture recent
observed trends (e.g., increasing water vapor deficit, terrestrial carbon uptake) should all draw our
attention to the limitations of available theories and Earth System Models. Observations, either
based on remote sensing or on early afforestation initiatives, also suggest potential trade-offs
between terrestrial carbon uptake and water availability. There is thus a need to better monitor and
physically understand the observed fluctuations of the terrestrial water and carbon cycles to
promote suitable nature-based mitigation pathways depending on pre-existing vegetation, scale, as

well as baseline and future climates.
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1. Introduction

According to the sixth Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC, 2022), agriculture, forestry and other land use (AFOLU) currently represent around
15% of the human emissions of greenhouse gases (GHG). Yet, changes in current practices and tree
restoration are expected to provide an efficient tool to strengthen the terrestrial carbon sink and,
thus, compensate for the residual emissions of carbon dioxide by the mid-century. In modelled
socio-economic pathways that reach global net-zero CO, emissions, 5-16 GtCO, are compensated
for by net negative emissions and 4 to 20% of these reductions are achieved by CO, mitigation
options in the AFOLU sector at the point when net zero is reached. This significant contribution
however remains very uncertain (by a factor 5) given the lack of quantitative evaluation of on-

going afforestation efforts (Friedlingstein et al., 2022).

The 3rd Working Group (WG3) of IPCC claims that AFOLU mitigation options, when sustainably
implemented, can deliver large-scale GHG emission reductions and enhanced removals. Yet, the
efficiency and sustainability of these land-based carbon dioxide removal (CDR) solutions are still a
matter of debate (e.g., Bastin et al., 2019; Lewis et al., 2019; Veldman et al., 2019). Moreover, their
potential side-effects on water availability have not been much discussed (Friedlingstein et al.,
2019). Last but not least, the growing appropriation of the CDR concepts by the fossil fuel industry,
as evidenced by the recent COP28 (https://carbonremovals.org/), may look as a "deadly climate
gamble" (https://www.corporateeurope.org/sites/default/files/2022-09/Deadly%20climate

%20gamble%20layout_3.pdf) unless carefully legitimized by the scientific community.

In a recent review, Roe et al. (2021a) provided two independent estimates of the land-based
mitigation potential in the context of a net-zero emission objective by 2050. According to +1.5°C
compatible pathways from integrated assessment models (IAMs), AFOLU and bio-energy with
carbon capture and storage (BECCS), can provide 0.9-36.6 (median 13.8) GtCO./yr of mitigation

potential in 2050, which represents 4-40% (median 25%, 16% for AFOLU only) of the total

3
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mitigation required for a 1.5 °C pathway (CO.. means the number of metric tons of CO, emissions
with the same global warming potential as one metric ton of another greenhouse gas). In a parallel
supply-side assessment, AFOLU and BECCS actions provide an even larger 2.4—48.1 (median 14.6)
GtCO,/yr range of mitigation potential from 2020 to 2050, although the median AFOLU
contribution (10.6 GtCO,/yr) is fairly consistent with the top-down estimate (9.1 GtCO,/yr). Yet,
IAM results and supply-side analyses differed on types of mitigation measures included and on their
relative contributions. Moreover, the feasibility and sustainability of these land-based mitigation

options were not considered.

Beyond the technical mitigation potentials, cost-effective estimates have also been assessed (Roe et
al., 2021b) and may represent a more realistic target for decision-makers. The global cost-effective
potential (i.e., with a cost not exceeding $100/tCO,.) was found to be approximately 50% from
forests and other ecosystems, 35% from agriculture, and 15% from demand-side measures, but
shows a strong spatial variability. The forest sector is thus the most attractive land-based CDR
solution for some of the world’s largest companies which already rely on "carbon offsets" to reach
their net-zero emission commitment. A large proportion (about 80%) of the overall afforestation
potential is however in Global South countries, where feasibility barriers remain a matter of concern
and where a new form of "carbon colonialism" was denounced, consisting of placing the burden of

the negative emissions on their shoulders (Navaro, 2022).

Forestry is mentioned as a priority in terms of adaptation and mitigation in achieving the Paris
Agreement goals in around 50% of the current Nationally Determined Contributions. The
deployment of CDR projects is thus expected to accelerate in the coming years. Large-scale tree
planting, along with forest restoration, are being promoted by multiple entities, including non-profit
organizations but also commercial initiatives. There are however serious concerns that this is
distracting from the need to rapidly phase out use of fossil fuels and that the expansion of forestry

framed as a climate change mitigation solution is coming at the cost of carbon rich and biodiverse
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native ecosystems and local resource rights (Seddon et al., 2021). Besides ethical and justice-related
problems, large uncertainties regarding the efficiency, sustainability and collateral hydroclimate

effects of these projects must be further scrutinized.

In this review, we first adopt a bottom-up approach and assess both deforestation and afforestation
experiments based on state-of-the-art Earth System Models (ESMs) in order to showcase their
potentially useful but still uncertain outcomes, as well as their missing or misrepresented processes
(Section 2). We then turn to observational studies and existing large-scale afforestation projects to
further highlight the actual limitations of afforestation as an efficient CDR method (Section 3).
Finally, we conclude that the expected carbon and water benefits of future afforestation
programmes need further scientific support and that observations can be increasingly useful to

narrow modelling uncertainties in coupled carbon-climate projections (Section 4).

2. Numerical experiments

2.1 Sensitivity of climate to land cover change

a) Deforestation

Several generations of numerical models, ranging from simple TAMs to much more comprehensive
ESMs, have been used to explore the consequences of more or less idealized land cover change

scenarios.

According to the AR6 WG, large-scale deforestation has likely decreased evapotranspiration (ET)
and precipitation (P), and increased runoff over the deforested regions (Douville et al., 2021a). This
assessment is consistent with the model-dependent response of nine ESMs to an idealized global
deforestation scenario in which 20 million km? of forested areas were replaced with grasslands

(Boysen et al., 2020). Yet, the effect on global mean temperature ranged from no significant change

5
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to a cooling by 0.55°C and the regional precipitation response was even more uncertain (see also Li

et al., 2023a).

At the regional scale, the hydrological impact of deforestation is particularly unclear in the northern
mid-latitudes where some models show a precipitation decrease, but others rather show an increase
(Fig. 1). In the deforested tropical areas, the decrease in precipitation is generally stronger and more
robust although some models show a local increase associated with an horizontal advection of moist
air from the Atlantic and west Amazon. These results are broadly consistent with a meta-analysis of
previous Amazonian deforestation experiments conducting with global (GCMs) or regional (RCMs)
climate models and leading to precipitation changes ranging from —38 to +5 % (Spracklen and

Garcia-Carreras, 2015).

Interestingly, it was also suggested that even a limited deforestation of the Amazon rainforest could
trigger a dieback of the entire ecosystem (Boers et al., 2017). As recognized by the authors, the
physical mechanisms behind such a tipping point are however a matter of debate. Their result was
not based on a comprehensive ESM, but on a conceptual model assuming a nonlinear coupling
between the Amazon rainforest and the atmospheric moisture transport from the Atlantic to the
South American continent. This model is inspired by the Biotic Pump Theory (hereafter BPT,
Makarieva and Gorshkov, 2007; Makarieva et al., 2023) which states that low-level air masses
move from areas with weak evaporation (E) to areas with more intensive E via condensation-
induced mass removal and atmospheric dynamics. The conceptual model leads to a precipitation
deficit of up to 40% in non-deforested parts of the western Amazon and regions further
downstream. The BTP theory has been however heavily criticized (Meesters et al., 2009; Bouman
et al., 2023) and this strong precipitation sensitivityis inconsistent with the hydrological response
simulated by most GCMs or ESMs (e.g., Spracklen and Garcia-Carreras, 2015; Ruiz-Vasquez et al.,

2020; Boysen et al., 2020).
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One of the key uncertainty behind the water cycle response to perturbed land cover is the induced
ET change which may depend, regardless of the magnitude and patterns of land-cover change, on
the background climate (Willeit et al., 2014), the implemented land management strategy (Kauskal
et al., 2017), and the selected ESM (Boysen et al., 2020). Such a response can be compared in off-
line land surface model (LSM) simulations driven by prescribed land cover change and atmospheric
forcings (Guimberteau et al., 2017). The uncertainty range on ET changes was shown to first
depend on the selected GCM forcing, while runoff uncertainty is rather dominated by structural
differences among LSMs. Yet, this off-line strategy does not account for land-atmosphere coupling
and thus the adjustment of the atmospheric boundary layer to changes in either land cover or LSM

(Lagué et al., 2019).

Beyond idealized deforestation experiments, more realistic sensitivity experiments to land cover
change or dynamic vegetation have also been conducted and have all suggested a limited
vegetation influence on precipitation (e.g., Debortoli et al., 2016; Taylor et al., 2022; Luo et al.,
2024). For instance, a multi-model land use change study focusing on the Sahel excludes a major
contribution of land use and land cover change to the observed 20th century precipitation variability
(e.g., Herman et al., 2023), thereby confirming that land use changes are not large enough to have
been the cause of the Sahel drought in the 1980s (Taylor et al., 2002). Another recent hydrologic
modelling study focused on the combined effects of forest thinning and global warming on the
Beaver Creek watershed (~1,100- km?) in central Arizona (Cederstrom et al., 2024). On average,
forest thinning was found to increase the annual mean streamflow by +12% through lower plant
transpiration by —19%, while also increasing the change in soil water storage by +42%. In contrast
with the dominant thinking, forest cover reductions could thus delay the detrimental effects of

warming on streamflow until +4°C.

b) Afforestation
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Over the last few years, a growing attention has been paid to afforestation/reforestation
scenarios rather than deforestation experiments. Beyond the hydroclimate impacts at the regional
scale, the main motivation was to assess the expected effect on the global carbon cycle. Planting
trees in areas that currently don't have trees — a process called afforestation — is generally
considered as a readily available climate change mitigation option, whose efficiency and cost are
generally assessed using integrated assessment models (IAMs, Roe et al. 2021a,b) but may depend
on location, scale, and both present-day and future climates. Doelman et al. (2020) estimated for
instance that large-scale afforestation has a mitigation potential of 4.9 GtCO,/year at 200 US$/tCO,
in 2050 and is thus a suitable albeit relatively minor mitigation option that can only play a limited

role in keeping global warming below +2°C under an intermediate (SSP2) emission scenario.

IAMs are however not the most suitable tool for assessing the efficiency of afforestation. They can
account for the fact that land ecosystems absorb on average 30% of anthropogenic CO, emissions,
but the natural fluctuations in the net land surface flux of CO; are usually considered as a simple
function of global or regional mean surface temperatures and the interactions with the water cycle
are not accounted for. In contrast, recent observations suggest that the atmospheric CO, growth rate
is primarily controlled by changes in terrestrial water storage, with dry years leading to a faster rate
of increase (Zhang et al., 2021). While this global relationship was shown to be underestimated in
current ESMs (Humphrey et al., 2018), the impacts of water limitations on photosynthesis are
simply ignored in most IAMs which typically use low dimensional estimates of the carbon density

associated with different land use types to assess the carbon uptake potential.

Apart from sequestering carbon, large-scale afforestation is generally expected to increase regional
precipitation levels and to represent a smart, land-based strategy to combat drought (e.g., Ellison et
al., 2012; Baker, 2021). Again inspired by the BPT, this possibility has retained the attention of
many engineers and organizations interested in forest conservation (e.g., https://hydrologie-

regenerative.fr/) or in promoting afforestation as a sustainable mitigation option (e.g.,
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https://forestsnews.cifor.org/10316/ make-it-rain-planting-forests-to-help-drought-stricken-regions).
Yet, it has received so far a limited support from the climate modelling community and few
numerical studies have been performed so far that validate large-scale afforestation projects as a

safe mitigation option.

As an exception, a global hydrological model was recently used to show that a maximum global
afforestation scenario would on average increase evaporation by 0.6 mm/day, which could
potentially contribue to a subsequent 0.4 mm/day increase of precipitation over land (Tuinenberg et
al., 2022). This off-line study is however based on the same unrealistic tree restoration potential as
in Bastin et al. (2019) and does not consider the crucial land-atmosphere interactions that may
temper the ET response to afforestation in the real world (e.g., Lagué et al., 2019). As another
example, van Dijke et al. (2022) explored the hydrological consequences of a 900 Mha tree
restoration by using an ensemble of data-driven mechanistic models and found complex changes in

water availability ranging from a -38% decrease in some regions to a +6% increase in others.

ESMs are arguably the most comprehensive tool for simulating the water-carbon nexus and, thus,
assessing both the mitigation potential and the hydroclimate side effects of afforestation. One such
early study (Arora and Montenegro, 2011) focused on the land surface energy budget. Complete
(100%) versus partial (50%) afforestation of the land domain currently occupied by crops led to a
reduced global warming by around 0.45 and 0.25°C, respectively. The surface warming reduction
per unit afforested area was found to be three times higher in the tropics than in the extratropics,
suggesting that tropical afforestation is potentially a more effective strategy. Yet, the hydrological

response was not explored.

More recently, an emission-driven ESM was used to quantify the potential benefits from pantropical

tree restoration through an idealized experiment where all land use in the tropics is stopped and
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vegetation is allowed to recover under an intermediate (RCP2.6) mitigation scenario (Koch et al.,
2021a). Tropical tree restoration of 1529 Mha was found to increase live biomass by 130 Pg C by
the end of the century (Fig. 2). Yet, the subsequent reduction in oceanic and extratropical terrestrial
carbon uptake implied that carbon in the atmosphere only reduces by 18 Pg C by 2100. The
resulting COy benefit (only 9 ppm) thus did not translate to a detectable reduction in global
warming and afforestation did not strongly contribute to negative emissions. De Hertog et al. (2022)
compared the local and remote responses of three ESMs to four idealized experiments performed
under present-day climate conditions, including global afforestation with or without extensive wood
harvesting, and a full cropland world with or without extensive irrigation. The surface air
temperature response to deforestation was largely consistent with observations, with a cooling in
boreal latitudes and a warming in the tropics. Yet, the energy balance components (including latent
heat) driving these temperature changes were shown to be model-dependent, thus suggesting an

uncertain response of both ET and precipitation at the regional scale.

It has been argued that the global ESMs are flawed because of their relatively coarse horizontal
resolution (Branch and Wulfmeyer, 2019) or their misrepresentation of the cooling effect of plant
transpiration (Makarieva et al., 2024). The former study however suggests a local heat low effect
driven by suppressed rather than increased ET, and thus contradicts the BPT hypothesis. Moreover,
afforestation experiments conducted with higher resolution regional climate models do not
necessarily show stronger impacts on precipitation (Strandberg and Kjellstrém, 2019). Several
studies also suggest that horizontal resolution may not be the Achille's heel of current ESMs given
their lack of structural diversity (e.g., Franks et al., 2017) and limited ability (e.g., Gier et al., 2024)
to capture the narrow interactions between the terrestrial water and carbon cycles (cf. Section
2.2).Smaller scale afforestation programmes have arguably even smaller benefits in terms of
mitigation, although they may also come with fewer negative side effects. Using a high-resolution
LSM, the hydrological impacts of alternative afforestation scenarios across Great Britain have been

recently explored (Buechel et al., 2023). Off-line LSM simulations suggested that the proposed

10
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scale of afforestation is unlikely to significantly alter regional hydrology (in these relatively wet
regions), although it can noticeably decrease minimum flow during dry periods. The afforestation
levels only marginally impact hydrological processes compared to prescribed changes in
precipitation, temperature, and CO,. Similarly, a recent pan-African afforestation sensitivity
experiment conducted with a high-resolution, atmosphere-only, global numerical weather prediction
model did not reveal any significant influence on summer precipitation (Smiatek and Kunstmann,
2023). Finally, a variable-resolution coupled land-atmosphere global climate model was used to
investigate the vegetation-induced changes in precipitation over China and found a non-significant
increase in precipitation from vegetation greening, though sufficient to cancel out enhanced ET and

resulting in weak impact on soil moisture (Li et al., 2018).

2.2 Carbon-water nexus representation in current ESMs

As the next CMIP intercomparison should be based on emissions-driven rather than
concentrations-driven ESMs (Sanderson et al., 2023), it becomes even more urgent to assess their
ability to simulate the complex interactions between the terrestrial components of the carbon and
water cycle, respectively. The LSMs (i.e., land surface components of ESMs) have at their
foundation a coupling of evapotranspiration through plant stomata, balanced with carbon uptake for
photosynthesis, and the impact of these processes on the land energy and water budget. The
representation of these elements is subject to strategies of plant gas exchange (and how these are
parameterised) as well as soil properties (depth, texture) and vegetation structure. Coupling of land
surface energy partitioning and evapotranspiration with atmospheric processes, as facilitated by
ESMs, is also critical for understanding the full implications of both GHG emissions (Déll et al.,

2016; D'Odorico et al., 2018) and forest expansion (e.g., Lagué et al., 2019; De Hertog et al., 2022).

The amount of carbon dioxide that plants take from the air depends on how plants respond to water
stress. At the same time, plants also control the loss of water from the landscape through

transpiration. The ratio of carbon assimilation to ET, referred to as water use efficiency (WUE), has

11
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258 been the focus of many observational and modelling studies and is generally expected to increase as
259 aresponse to increasing atmospheric CO, concentration (e.g., De Kauwe et al., 2013; Zhang et al.,
260 2019; Lavergne et al., 2019; Fatichi et al., 2023). Worldwide in situ measurements suggest that

261 water availability and carbon uptake behave quite similarly across many locations and climate

262 conditions (e.g., Short Gianotti and Entekhabi, 2024). Yet, little is known about the interactive

263  effects of rising CO,and CO,-induced climate change on WUE at the scale of ecosystems

264 (Lemordant et al., 2018; Li et al., 2023b). Moreover, water availability is not the only limitation to
265 the observed carbon uptake at the local scale. In situ measurements show that enhanced VPD can
266 reduce photosynthesis by the same magnitude as severe soil drying in a deciduous broadleaf forest,
267 and suggest that rising VPD due to global warming may drive drought-like CO, flux responses even

268 if soil moisture does not decrease (Sulman et al., 2016).

269  Models of stomatal conductance implemented in ESMs are typically characterized by a single fitted
270 parameter which may reflect a lack of model diversity and the need of a better and vegetation-trait
271 dependent tuning of this critical parameter (e.g., Franks et al., 2017). Moreover, rising temperature
272  and water vapour pressure deficit (VPD) may play a more important role than declining stomatal
273  conductance in regulating ET and GPP (Fang et al., 2022). Likewise, plant growth can offset the
274  effect of increased WUE on water resources at the regional scale (Singh et al., 2020) and increased

275 WUE may not compensate for carbon loss in European forests (e.g., Montibeller et al., 2022).

276  The evaluation of state-of-the-art ESMs suggests persistent issues in the representation of the

277  terrestrial carbon and water cycles. Despite an improvement in the simulation of net primary

278  productivity (NPP), unrealistically high correlations are still found with soil carbon stocks and
279 suggest a potential overestimation of the long-term terrestrial carbon sink (Varney et al., 2022).
280 Compared to satellite data and ground observations, most CMIP6 models show an overall bias in
281 land water storage and thus underestimate the maximum annual soil moisture depletion, especially

282 in the Amazon region (Giardina et al., 2024). Simulating the leaf area index (LAI) remains

24 12
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challenging with a large model spread in both CMIP5 and CMIP6 ESMs. Global mean land carbon
uptake (NBP) is relatively well reproduced, but hides compensating errors between the northern and
southern hemispheres. Overall, a slight improvement in the simulation of land carbon cycle
parameters is found in CMIP6 compared to CMIP5, but with many biases remaining (Gier et al.,
2024). Most models also fail to capture the present-day tropical forest carbon dynamics (Koch et al.,
2021b), as well as historical trends in terrestrial carbon uptake (Peng et al., 2022) or near-surface

relative humidity (Douville and Willett, 2022; Simpson et al., 2023; Fig. 3).

Even if the representation of the terrestrial carbon-water nexus has however evolved considerably in
recent LSMs (Blyth et al., 2021), persistent atmospheric and land surface biases may thus challenge
their on-line performance in coupled simulations. It has been for instance suggested that current
ESMs underestimate the response of ET to soil moisture while overestimating its response to
vapour pressure deficit (Zhang et al., 2023). Likewise, the most sophisticated LSMs include a
nitrogen cycle to better represent the terrestrial carbon cycle (Arora et al., 2020) but most of them
overestimate the amount of nitrogen fixation in the tropics and therefore the extent of the latitudinal
gradient in the global distribution (Davies-Barnard et al., 2022). Moreover, carbon assimilation
following afforestation is a transient process where the uptake rates depend on multiple factors such
as the age of the forest. Many modelling groups are presently shifting their vegetation scheme from
‘big leaf’ models to demographic approaches where tree growth evolves as a function of age (Weng
et al., 2015; Fisher et al., 2018; Koven et al., 2020; Chen et al., 2022). Regrowth rates are not
subject to the lag processes inherent in the real world growth of trees from seeds, and models do not

track the disturbance and carbon uptake status of forests of different age.

To sum-up, the increasing complexity of LSMs and the persistent though slightly reduced biases in
the other components of the ESMs have not led to a much stronger performance in simulating the
present-day climate and the recent trends observed in the terrestrial carbon and water cycles in fully

coupled historical simulations. This increased model complexity relies on an enhanced use of Earth

13
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observations, yet not available for the simulation of future climate. Model calibration is likely to
improve the simulation of present-day climate but may lead to overconfident projections. While
ESMs will be increasingly used in emissions-driven mode, their ability to assess the feasibility and

hydrological impacts of alternative land-based mitigation strategies remain to be demonstrated.

3. Observations, including remote sensing and on-going afforestation programmes

3.1 Tropics and subtropics

Planting trees require both an important man power and a favourable climate. A growing
majority of the world’s population resides in the tropics where the strong rainfall seasonality and
variability make the dry season a critical period for vegetation, and adaptation to climate change a
particularly difficult challenge (Douville et al., 2021a; Allan, 2023). The key question is not only
how the overall water availability will change in a warmer climate, but also the extent to which the
projected increase in the number and severity of dry extremes may cause serious and widespread
damages (e.g., wildfires, tree mortality) to natural and managed forests and may challenge some if

not most of the tree restoration programimes.

Tree ring data emphasise that effective demarcation of water-limited from non-water-limited
behaviour of stomata is critical to improving hydrological models and ESMs that operate at regional
to global scales (Adams et al., 2021). Multiple forests have already experienced an increased tree
mortality since the early 21st century, probably due to increased water limitations and climate
variability (e.g., Forzieri et al., 2022). Reported mortality rates appear to be increasing even in
moist tropical forests, with significant carbon storage consequences that could be underestimated in
current ESMs (McDowell et al., 2018). The majority of the mortality drivers (rising temperature
and vapour pressure deficit, drought, wind events, fire, among others) may kill trees in part through

carbon starvation and hydraulic failure (Zuidema et al., 2022). Yet, the relative importance of each

14
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driver remains unknown (McDowell et al., 2018), as well as the vulnerability of far less studied

tropical dry forests (Schroder et al., 2021).

Over Amazonia, the increasing persistence of monthly to seasonal anomalies in remotely sensed
vegetation optical depth suggest that more than three quarters of the forest has been losing
resilience since the early 2000s, at a faster rate in regions with significant rainfall deficits (Boulton
et al., 2022). Observations also show a recent amplification of the precipitation and P-E annual
cycles, and an increasing duration of the dry season (Fu et al., 2013; Leite-Filho et al., 2019; Liang
et al., 2020; Wainwright et al., 2022; Allan 2023). The perturbed hydrology increases the risk of
forest dieback (Brienen et al., 2015), while in return forest loss might intensify regional droughts
(Zemp et al., 2017). The risk of self-amplified Amazon forest loss is expected to increase
nonlinearly with the dry-season intensification (Bochow and Boers, 2023). Aircraft measurements
of low-level carbon dioxide concentrations reveal that southeastern Amazonia already acts as a net
carbon source to the atmosphere, partly due to larger warming and moisture stress compared to the

western part (Gatti et al., 2021).

In South Asia, climate change, land use and a growing water demand for irrigation all represent
major threats for the sustainability of forested areas. India has announced its net-zero target for the
year 2070, and measures are being taken to decarbonise many sectors of the economy. Yet,
achieving net-zero emissions is here also contingent on carbon capture and storage. In this light,
India has pledged to expand its forest cover to absorb an additional three billion tonnes of CO, from
the atmosphere by 2030. Yet, an increasing year-to-year precipitation variability (Douville et al.,
2021a) may challenge this mitigation potential. Indian researchers at the Center for Study of
Science, Technology and Policy (CSTEP) suggest that the overall objective cannot be achieved just
by reducing deforestation. Restoring the degraded forest land (reforestation) and creating new
forests (afforestation) thus appears as an essential strategy. Yet, forestry engineers highlight that

insufficient guidance on suitable sites for tree restoration has already led to planting the wrong
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species or growing trees in unsuitable areas (Ghosh, 2023), thus suggesting a mismatch between the

afforestation ambition and the achievable potential.

Central and eastern Sahel are projected to experience stronger monsoon rainfall in a warmer
climate, but also an increased precipitation seasonality and variability (Douville et al., 2021a). In
this context, the recent pan-African GGW programme for enhancing the resilience of Sahelian
landscapes and water resources remains a matter of debate. Over the past fifty years, a large number
of local initiatives have resulted in only a limited degree of success (Schucknecht et al., 2016). A
visual inspection of very high resolution satellite images indicates that "large-scale tree restoration
to prevent the desert expansion has long been promoted but never been really achieved" (Turner et

al., 2023).

There are other multiple observational lines of evidence that tree mortality is accelerating in the
tropics. As a recent example, Bauman et al. (2022) analyses a 49-year record of tree dynamics from
24 old-growth forest plots encompassing a broad climatic gradient across the Australian moist
tropics and found that the tree mortality risk has, on average, doubled across all plots and species
over the last 35 years. Associated losses in biomass were not offset by gains from growth and
replenishment. Plots in drier climates presented higher average mortality risk, but local mean
climate did not predict the pace of the observed increase in mortality risk. A long-term increase in
vapour pressure deficit (a decline in relative humidity) was evident across the region and may have

been the primary cause of mortality.

In the subtropics, the situation may be even worse. In addition to the projected dryland expansion
(e.g., Huang et al., 2015), reliable observations of near-surface water vapour deficit suggest that the
land surface drying is generally underestimated by most ESMs over the historical period (Simpson
et al., 2023). The implications of this mismatch are substantial (Allan and Douville, 2024). Even
drier arid zones can put further pressure on water resources and intensify extreme heat and

wildfires. An even drier and thirstier atmosphere can also lead to more rapid onset of drought. The
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underestimated continental drying is all the more worrying given that the subtropics are among the
least densely vegetated regions in the world and could have represented an attractive opportunity to
enhance the global terrestrial carbon storage. The observed drying, which has further strengthened

since the late 1990s (Xu et al., 2024), may explain the limited success of existing large-scale GGW

programmes and warns against the systematic use of afforestation as a suitable mitigation strategy.

3.2 Extratropics

Many satellite observations available since the 1980s have revealed a human-induced
"greening" of the northern extratropical land surface, with broad implications for the surface water
and carbon budgets (Myneny et al., 1997; Zhou et al., 2001). Using two leaf area index (LAI)
products and multiple historical simulations from nineteen ESMs, a formal statistical method was
used to attribute such a greening to the human influence on the Earth’s climate, including the CO,
fertilization effect and the associated increase in surface temperature (Mao et al., 2016). Yet, more
recent studies suggest that global greening has been overestimated and/or indicate that the greening
period has been followed by a significant "browning" (e.g., Cortés et al., 2021; Pan et al., 2018;
Chen et al., 2022; Fig. 5). This reversal was largely explained by increasing atmospheric VPD and
decreasing in soil moisture north of 45°N in summer, potentially exacerbated by a possible shift in

the vegetation phenology (Lian et al., 2020).

A better understanding of the dominant climatic drivers that control vegetation trends across regions
and biomes is essential for assessing ecosystem dynamics and land-climate interactions in a
warming world. While temperature has long been considered as dominant control in global
vegetation trends, there is growing evidence water availability plays an increasingly important role
(Humphrey et al., 2018). In a recent study based on satellite-derived normalized difference

vegetation index from 1981 to 2015, Zhang et al. (2021) found that the trends in terrestrial carbon
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uptake reversed in the early 2000s, mostly due to a recent drying trend and possible changes in
water use efficiency (Li et al., 2023b). On the basis of upscaled estimates from machine learning
methods and in situ observations, the latter study suggested that, globally speaking, the WUE has
not risen as expected since 2001, which may be due to the increased vapour pressure deficit (Allan

and Douville, 2024) that can depress photosynthesis while increasing ET.

In Argentina, tree mortality has risen and tree growth has declined since the mid-1970s in the
Nothofagus forests, particularly at the lower elevations in the eastern slope of the Andes and as a
result of the increasing frequency of drought events (Rodriguez-Caton et al., 2016). Conversely,
small-scale afforestation initiatives have been shown to increase water stress as indicated by base
flow measurements, namely the proportion of a streamflow not attributable to direct runoff from
precipitation or melting snow. Afforestation can reduce base flow by up to 50%, as revealed for
instance by a two-year study on seven paired basins. With their deep roots and tall canopies, trees
absorb and transpire more water than do grasses, resulting in drier streams. Another study
conducted in Uruguay came to similar conclusions: the researchers observed an 18-22% drop in
base flow in the afforested watershed compared with the watershed that had been left as grassland

(Zhang and Wei, 2021).

Hydrological effects of tree restoration can also vary with time as forests regrow. For instance,
Coble et al. (2020) reviewed long-term responses of low flows to logging across 25 catchments in
North America. They identified dynamic low-flow responses over three distinct periods associated
with the gradual increase in leaf area index and related ET: consistent increase in the first 5 to 10
years, variable responses (increase, no change, or decline) during the next 10 to 20 years, and
substantial decline in 16 out of the 25 watersheds decades later. These results highlight the need of
long-term monitoring for assessing the hydrological consequences and the sustainability of carbon

sequestration as a result of afforestation initiatives. Likewise, the recent dramatic increase in
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wildfires (Zhao et al., 2021) may also challenge former assessments of the vulnerability of carbon

storage in North American boreal forests during the 21st century (Balshi et al., 2009).

In China, most of the tree restoration programmes involve afforestation in areas where annual
precipitation is less than 400 millimetres. Drought is thus a major constraint on forest growth and
sustainability (Zhao et al., 2023) and a growing number of studies suggest that this strategy has
resulted in unintended ecological and water security concerns at the regional scale. A paired plot
study of the water balance of afforestation on the Loess Plateau, where water yields have recently
dropped by 30 to 50%, has shown that the understorey is the main water consumer in tree
plantations (Schwarzel et al., 2019). Yet, annual throughfall under the forest was found to be much
weaker compared to grassland areas. Observational regression analyses also support that the water
consumed by large-scale afforestation has a considerable impact on water supply and may have
contributed to recent droughts (Xiao et al., 2020). Recently, a more comprehensive study based on
72 paired sites across the Loess Plateau confirmed that afforestation led to reduced deep soil
moisture (Li et al., 2023c). Overall, the study revealed overlooked hydrological costs and over-
optimistic expectations of sustained carbon sequestration under afforestation. Recently, a
comprehensive evaluation of recent water constraints and their implications for vegetation growth
in China between 1982 and 2015 was conducted by analyzing the spatiotemporal patterns of the
relationship between vegetation growth and water availability based on both satellite and in situ
observations (Song et al., 2024). The study, also based on an off-line LSM, revealed that water
constraints can mediate the climate and atmospheric CO, effects on vegetation growth and may thus

exacerbate the uncertainty surrounding the vegetation sustainability in a warming climate.

In Europe, Teuling et al. (2019) explored how both changes in climate and land use (mainly
deforestation and afforestation) have impacted the amount and distribution of water availability
since the 1950s. Using a high resolution Budyko model constrained by lysimeter observations, they

showed that increased forest cover, forest stand age, and urbanization have all led to significant
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changes in runoff. Yet, land use change alone could not explain the main changes in water
availability. High-resolution satellite data also suggest that an excess tree mortality in European
forests since 1987 can be related to drought events (Senf et al., 2020). The relationship between
water availability and tree mortality shows a nonlinear behavior, with excess mortality increasing
steeply when the integrated water balance from March to July falls below a given threshold.
Overall, drought may already have caused approximately 0.5 Mha of excess forest mortality, albeit

not considering the extreme European drought events after 2016.

Of particular concern are other potential drivers of tree mortality associated with the climate-
induced water stress, such as wildfires and insect outbreaks. A global assessment suggested that at
least some of the world's forested ecosystems may be already responding to climate change and
raised concern that forests may become increasingly vulnerable to higher die-off in response to
further warming, including in the extratropics (Allen et al., 2010). Recent statistical analyses based
on satellite data indicated that global variations of forest cover "generated a mean land surface
warming corresponding to about 18% of the global biogeochemical signal due to CO, emission
from land-use change" from 2003 to 2012 (Alkama et al., 2016). They also revealed "significant
increases in fire weather have occurred in most world regions during recent decades due to climate
change" (Jones et al., 2022) and a dramatic increase in tree mortality (Hartmann et al., 2022).
Advances in high-resolution data, from both field assessments and satellites, are urgently needed for

a global stocktake of forest exposure and vulnerability around the world.

4. Discussion and conclusion

Achieving the Paris Agreement requires aggressive mitigation strategies alongside negative
emissions of carbon dioxide. According to the latest IPCC report from WG3 (IPCC, 2022), AFOLU

currently represents 22% (13 GtCO-,) of the total anthropogenic CO, emissions but could rapidly
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become a sink rather than a source of carbon by using well-managed land-based CDR strategies.
Yet and so far, it was not possible (i.e., neither in their mandate nor technically feasible) for the
other IPCC working groups to express their concerns about the feasibility or potential side-effects
of such ambitious tree restoration policies. Carbon removal and sequestration strategies, including
AFOLU, are usually represented upstream of ESMs on the basis of much simpler IAMs. The next
round of coordinated ESM experiments (i.e., CMIP7) could partly fill this gap (Sanderson et al.,
2023). Yet, proper accounting of the coupled Earth system impacts of and feedbacks on such
mitigation strategies requires a more explicit process representation to build self-consistent physical

and biogeochemical representations of their potential effectiveness and risks under climate change.

Our meta-analysis of existing afforestation initiatives suggests that ill-advised or poorly-managed
programmes may be less efficient and beneficial than currently assumed (e.g., Ghosh, 2023). In
particular, they can contribute to the depletion of freshwater resources that currently support other
human and ecosystem services (e.g., Kaushal et al., 2017). The decrease in water storage may then
impact the vegetation capacity to buffer drought events and, ultimately, put at risk the terrestrial
carbon storage. Forest restoration strategies thus need to adapt to the ongoing and future climate
change, not only in terms of mean state but also considering the projected increase in variability and
extremes. In addition, water resources cannot be secured without also considering the rapidly
increasing water demand from both a warming atmosphere (Allan et al., 2020) and the growing

global population (Abbott et al., 2019).

The resilience of the most aggressive afforestation strategies should be also assessed in the light of
current ESM uncertainties in the response of the carbon and water cycles to anthropogenic forcings
(Arora et al., 2021; Douville et al., 2021a), especially in terms of extreme dry conditions and their
potential impacts on vegetation (Seneviratne et al., 2021). Drought is already considered to be the
most widespread factor affecting terrestrial vegetation productivity via direct physiological effects.

Drought-related NPP reduction should become prevalent, especially in most arid areas and tropical
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regions, by the end of 21" century (Xu et al., 2019; Cao et al., 2022). It may thus represent a major
obstacle for planning tree restoration in the Global South, as well as in northern subtropical and
mid-latitude arid lands where current ESMs may still underestimate the ongoing and future near

surface drying (Allan and Douville, 2024).

Beyond the gradual expansion of arid areas, deeper and more reliable assessments of potential
tipping points in the water and/or carbon cycle are urgently needed (Lenton et al., 2019; Abrams et
al., 2023). Yet, they should not be based on invalid theories or poorly tested elements of ESMs.
Symmetrically, over-optimistic assessments of land-based mitigation solutions should be avoided
(Arevesen et al., 2010). Projections of both massive forest diebacks (e.g., Cox et al., 2008; Boers et
al., 2017) and huge CO2 removals from afforestation (e.g., Bastin et al., 2019; Liang et al., 2024)
are frequently featured in "high-profile" publications but may not represent the most plausible
outcomes. Worst-case scenarios that cannot be entirely ruled out should however receive a greater
attention given their disproportionate implications for both human societies and natural ecosystems
(Sutton, 2018). Unravelled model deficiencies leading to unexpected though more plausible (e.g.,
dry) storylines may also need to reconsider the necessary or feasible mitigation and adaptation
policies (e.g., Douville and Willett, 2023). High carbon sequestration potentials should be
interpreted with caution, as they often rely on the assumption of large deployement and long-term
retention of afforested/reforested lands, and on integrated or Earth system models that may

oversimplify forest growth, regrowth, and natural mortality processes (Liang et al., 2024)

The apparent hiatus between the current limitations and expected applications of ESMs in a climate
emergency context is all the more perturbing that these models are increasingly used, not only to
assess the consequences of different GHG emission scenarios but also the feasibility of more or less
ambitious land-based mitigation options (Wallis et al., 2014; Séférian et al., 2018; Bastin et al.,
2019; Sanderson et al., 2023; Rocha et al., 2024). Such objectives should however be based on solid

assumptions, carefully evaluated ESMs and thoroughly peer-reviewed publications (Friedlingstein
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et al., 2019). Persistent modelling uncertainties should not be used as a pretext for climate inaction.
On the contrary, they must reinforce the sense of urgency and encourage both more ambitious

mitigation policies and more cautious adaptation strategies (Douville et al., 2022b).

ESMs are and will remain extremely useful for understanding processes and feedbacks. They are
essential to interpret observations and to attribute observed changes in the Earth system, but their
increasing complexity may not allow them to narrow the range of climate projections under a given
emission scenario. For this purpose, models can be weighted by how well they reproduce
interannual variability (Cox et al., 2019), recent trends (Douville and Plazzotta, 2017; Chen et al.,
2022) or the full available historical record (Ribes et al., 2021; Douville et al., 2022a). The critical
assumptions in statistical methods are that all models are independent and representative of the
"truth" while sampling the range of uncertainty. None of these assumptions are strictly valid
(Sanderson et al., 2021), but these methods are however increasingly useful and show for instance
how the observed historical global warming can be misleading for constraining temperature changes
at the regional scale (Ribes et al., 2022) or other changes at the global scale (Douville and Willett,
2023), unless considered together with more directly relevant observations. Such methods can be
now applied to other even more policy-relevant variables, regarding both water cycle (e.g., Dutot

and Douville, 2023) and carbon cycle (e.g., Keenan et al., 2023).

Our conclusions are broadly consistent with the key findings of another recent synthesis focusing on
rangeland afforestation (Briske et al., 2024). According to the study, the presumed benefits of such
a land-based mitigation option originate from five major misconceptions: i) conflation between
afforestation and reforestation, ii) overestimation of the carbon sequestration potential, iii)
insufficient recognition of pre-existing ecosystem services, iv) potential for adverse ecological
outcomes, and v) the neocolonial character of afforestation programs. The latter criticism has been
echoed by multiple case studies (e.g., Lyons and Westoby, 2014; Richards and Lyons, 2016; Carton

and Andersson, 2017) and could become a major obstacle to the implementation of large-scale
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afforestation programs in the Global South (e.g., Navarro, 2022). Although thousands of people are
directly affected and continue to resist these projects around the world, their voices have been so far
silenced by those who claim that large-scale afforestation is however needed to compensate for the
residual emissions of the Global North. Yet, at the same time, this mitigation option is a lucrative
business opportunity which is is rooted in the same structures and interests which led to the
privatization of greenhouse gas emissions through carbon trading (Cabello and Gilbertson, 2012). In
agreement with Seddon et al. (2020), we thus urge policymakers, researchers and forestry engineers
to fully consider the potential trade-offs associated with afforestation, but also to acknowledge that
land-based mitigation options are not a substitute for the rapid phase out of fossil fuels and cannot

be implemented without the full consent of Indigenous Peoples and local communities.

To sum up, despite the fact that recent modelling studies suggest that afforestation may provide a
win-win strategy in the fight against global environmental change (global warming, soil erosion,
loss of biodiversity), our meta-analysis leads to more careful conclusions and raises concerns about
a possible water for carbon trade-off. The IPCC usually considers multiple lines of evidence,
combining a range of fundamental physics, observations and modelling, to provide policy relevant

assessments. It is therefore critical that the full range of evidence and impacts — including on local

water ressources and populations — are also considered in designing land-based mitigation
strategies. It is also urgent to better monitor and physically understand the observed fluctuations of
the terrestrial water and carbon cycles and to narrow model uncertainties regarding their projected

evolution.
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Figure 1: Spatial patterns of annual precipitation responses (mm/year) to an idealized global
deforestation scenario across nine CMIP6 Earth System Models. Only statistically significant
changes are shown. Contours depict the model-dependent although broadly similar areas of

deforestation (Source: Boysen et al., 2020).

Figure 2: Effect of tropical land-use stop and secondary succession on cumulative global carbon
fluxes (2006-2100 CE) in (a) control, (b) restoration, and (c) cumulative difference between
restoration and control simulation for land—atmosphere flux (Fi.a, green), ocean-atmosphere flux
(Focn, blue), deforestation emissions (Eruc, brown), atmospheric carbon (Fa, orange), and fossil fuel
emissions (Err, grey). The difference in fossil fuel emissions is zero and not plotted. Dashed line
indicates zero; fluxes below zero indicate a carbon benefit in the restoration simulation with respect

to the control simulation. Note the different vertical scales (Source: Koch et al., 2021a).

Figure 3: Area weighted average of 12 month running-mean near surface relative humidity
anomalies (%) relative to the 1980-1990 climatology over global arid and semi-arid regions. Black
shows ERAS, purple shows the CMIP6 ensemble mean, the pink range shows the 2.5th to 97.5th
percentile range across all the members from all models for CMIP6, maroon dashed shows the
LENS2 ensemble mean, blue solid shows the AMIP6 ensemble mean, the light blue shading shows
the 2.5th to 97.5th percentile range across all AMIP members from all models and blue dashing
shows another ensemble mean based on a single model ensemble driven by observed sea surface

temperatures (Source: Simpson et al., 2023).

Figure 4: Schematic on approaches to explicitly characterize and reduce the myriad uncertainties in
assessments of the hydrologic impacts of climate change and the development of representative

quantitative hydrologic storylines for specific applications (Source: Clark et al., 2016).
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1098 Figure 5: Break-off and decline of the global mean growing season integrated LAI from around
1099 2001, as diagnosed after averaging across three remote sensing data sets (AVHRR, GIMMS3g and

1100 GLASS) for the period 1982-2018 (Source: Chen et al., 2022).
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