

Call for caution regarding the efficacy of large-scale afforestation and its hydrological effects

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Douville, H., Allan, R. P. ORCID: <https://orcid.org/0000-0003-0264-9447>, Arias, P. A. and Fisher, R. A. (2024) Call for caution regarding the efficacy of large-scale afforestation and its hydrological effects. *Science of the Total Environment*, 950. 175299. ISSN 1879-1026 doi: [10.1016/j.scitotenv.2024.175299](https://doi.org/10.1016/j.scitotenv.2024.175299)
Available at <https://centaur.reading.ac.uk/117648/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1016/j.scitotenv.2024.175299>

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 *Confidential manuscript*

1

2

3

4 **Call for caution regarding the efficacy of large-scale afforestation and its hydrological effects**

5 ["Science becomes dangerous only when it imagines that it has reached its goal" (Shaw, 1906)]

6 Hervé Douville¹, Richard P. Allan², Paola A. Arias³, Rosie A. Fisher⁴

7

8 ¹*Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS, 42 Avenue Gaspard
9 Coriolis, 31057 Toulouse, France*

10 ²*Department of Meteorology and National Centre for Earth Observation, University of Reading, UK*

11 ³*Grupo de Ingeniería y Gestión Ambiental (GIGA), Escuela Ambiental, Facultad de Ingeniería, Universidad de
12 Antioquia, Medellín, Colombia*

13 ⁴*CICERO Center for International Climate Research, Oslo, Norway.*

14

15

16

17

18

19 *Corresponding author: Hervé Douville (herve.douville@meteo.fr)*

22 **Abstract**

24 Large-scale afforestation programmes are generally presented as effective ways of increasing the
25 terrestrial carbon sink while preserving water availability and biodiversity. Yet, a meta-analysis of
26 both numerical and observational studies suggests that further research is needed to support this
27 view. The use of inappropriate concepts (e.g., the biotic pump theory), the poor simulation of key
28 processes (e.g., tree mortality, water use efficiency), and the limited model ability to capture recent
29 observed trends (e.g., increasing water vapor deficit, terrestrial carbon uptake) should all draw our
30 attention to the limitations of available theories and Earth System Models. Observations, either
31 based on remote sensing or on early afforestation initiatives, also suggest potential trade-offs
32 between terrestrial carbon uptake and water availability. There is thus a need to better monitor and
33 physically understand the observed fluctuations of the terrestrial water and carbon cycles to
34 promote suitable nature-based mitigation pathways depending on pre-existing vegetation, scale, as
35 well as baseline and future climates.

36 **1. Introduction**

37 According to the sixth Assessment Report of the Intergovernmental Panel on Climate
38 Change (IPCC, 2022), agriculture, forestry and other land use (AFOLU) currently represent around
39 15% of the human emissions of greenhouse gases (GHG). Yet, changes in current practices and tree
40 restoration are expected to provide an efficient tool to strengthen the terrestrial carbon sink and,
41 thus, compensate for the residual emissions of carbon dioxide by the mid-century. In modelled
42 socio-economic pathways that reach global net-zero CO₂ emissions, 5–16 GtCO₂ are compensated
43 for by net negative emissions and 4 to 20% of these reductions are achieved by CO₂ mitigation
44 options in the AFOLU sector at the point when net zero is reached. This significant contribution
45 however remains very uncertain (by a factor 5) given the lack of quantitative evaluation of on-
46 going afforestation efforts (Friedlingstein et al., 2022).

47 The 3rd Working Group (WG3) of IPCC claims that AFOLU mitigation options, when sustainably
48 implemented, can deliver large-scale GHG emission reductions and enhanced removals. Yet, the
49 efficiency and sustainability of these land-based carbon dioxide removal (CDR) solutions are still a
50 matter of debate (e.g., Bastin et al., 2019; Lewis et al., 2019; Veldman et al., 2019). Moreover, their
51 potential side-effects on water availability have not been much discussed (Friedlingstein et al.,
52 2019). Last but not least, the growing appropriation of the CDR concepts by the fossil fuel industry,
53 as evidenced by the recent COP28 (<https://carbonremovals.org/>), may look as a "deadly climate
54 gamble" (https://www.corporateeurope.org/sites/default/files/2022-09/Deadly%20climate%20gamble%20layout_3.pdf) unless carefully legitimized by the scientific community.

56 In a recent review, Roe et al. (2021a) provided two independent estimates of the land-based
57 mitigation potential in the context of a net-zero emission objective by 2050. According to +1.5°C
58 compatible pathways from integrated assessment models (IAMs), AFOLU and bio-energy with
59 carbon capture and storage (BECCS), can provide 0.9–36.6 (median 13.8) GtCO_{2e}/yr of mitigation
60 potential in 2050, which represents 4–40% (median 25%, 16% for AFOLU only) of the total

7 *Confidential manuscript*
61 mitigation required for a 1.5 °C pathway (CO_{2e} means the number of metric tons of CO₂ emissions
62 with the same global warming potential as one metric ton of another greenhouse gas). In a parallel
63 supply-side assessment, AFOLU and BECCS actions provide an even larger 2.4–48.1 (median 14.6)
64 GtCO_{2e}/yr range of mitigation potential from 2020 to 2050, although the median AFOLU
65 contribution (10.6 GtCO_{2e}/yr) is fairly consistent with the top-down estimate (9.1 GtCO_{2e}/yr). Yet,
66 IAM results and supply-side analyses differed on types of mitigation measures included and on their
67 relative contributions. Moreover, the feasibility and sustainability of these land-based mitigation
68 options were not considered.

69 Beyond the technical mitigation potentials, cost-effective estimates have also been assessed (Roe et
70 al., 2021b) and may represent a more realistic target for decision-makers. The global cost-effective
71 potential (i.e., with a cost not exceeding \$100/tCO_{2e}) was found to be approximately 50% from
72 forests and other ecosystems, 35% from agriculture, and 15% from demand-side measures, but
73 shows a strong spatial variability. The forest sector is thus the most attractive land-based CDR
74 solution for some of the world's largest companies which already rely on "carbon offsets" to reach
75 their net-zero emission commitment. A large proportion (about 80%) of the overall afforestation
76 potential is however in Global South countries, where feasibility barriers remain a matter of concern
77 and where a new form of "carbon colonialism" was denounced, consisting of placing the burden of
78 the negative emissions on their shoulders (Navaro, 2022).

79 Forestry is mentioned as a priority in terms of adaptation and mitigation in achieving the Paris
80 Agreement goals in around 50% of the current Nationally Determined Contributions. The
81 deployment of CDR projects is thus expected to accelerate in the coming years. Large-scale tree
82 planting, along with forest restoration, are being promoted by multiple entities, including non-profit
83 organizations but also commercial initiatives. There are however serious concerns that this is
84 distracting from the need to rapidly phase out use of fossil fuels and that the expansion of forestry
85 framed as a climate change mitigation solution is coming at the cost of carbon rich and biodiverse

9 *Confidential manuscript*

86 native ecosystems and local resource rights (Seddon et al., 2021). Besides ethical and justice-related
87 problems, large uncertainties regarding the efficiency, sustainability and collateral hydroclimate
88 effects of these projects must be further scrutinized.

89 In this review, we first adopt a bottom-up approach and assess both deforestation and afforestation
90 experiments based on state-of-the-art Earth System Models (ESMs) in order to showcase their
91 potentially useful but still uncertain outcomes, as well as their missing or misrepresented processes
92 (Section 2). We then turn to observational studies and existing large-scale afforestation projects to
93 further highlight the actual limitations of afforestation as an efficient CDR method (Section 3).

94 Finally, we conclude that the expected carbon and water benefits of future afforestation
95 programmes need further scientific support and that observations can be increasingly useful to
96 narrow modelling uncertainties in coupled carbon-climate projections (Section 4).

97

98 **2. Numerical experiments**

99 **2.1 Sensitivity of climate to land cover change**

100 a) Deforestation

101 Several generations of numerical models, ranging from simple IAMs to much more comprehensive
102 ESMs, have been used to explore the consequences of more or less idealized land cover change
103 scenarios.

104 According to the AR6 WG1, large-scale deforestation has likely decreased evapotranspiration (ET)
105 and precipitation (P), and increased runoff over the deforested regions (Douville et al., 2021a). This
106 assessment is consistent with the model-dependent response of nine ESMs to an idealized global
107 deforestation scenario in which 20 million km² of forested areas were replaced with grasslands
108 (Boysen et al., 2020). Yet, the effect on global mean temperature ranged from no significant change

11 *Confidential manuscript*

109 to a cooling by 0.55°C and the regional precipitation response was even more uncertain (see also Li
110 et al., 2023a).

111 At the regional scale, the hydrological impact of deforestation is particularly unclear in the northern
112 mid-latitudes where some models show a precipitation decrease, but others rather show an increase
113 (Fig. 1). In the deforested tropical areas, the decrease in precipitation is generally stronger and more
114 robust although some models show a local increase associated with an horizontal advection of moist
115 air from the Atlantic and west Amazon. These results are broadly consistent with a meta-analysis of
116 previous Amazonian deforestation experiments conducting with global (GCMs) or regional (RCMs)
117 climate models and leading to precipitation changes ranging from –38 to +5 % (Spracklen and
118 Garcia-Carreras, 2015).

119 Interestingly, it was also suggested that even a limited deforestation of the Amazon rainforest could
120 trigger a dieback of the entire ecosystem (Boers et al., 2017). As recognized by the authors, the
121 physical mechanisms behind such a tipping point are however a matter of debate. Their result was
122 not based on a comprehensive ESM, but on a conceptual model assuming a nonlinear coupling
123 between the Amazon rainforest and the atmospheric moisture transport from the Atlantic to the
124 South American continent. This model is inspired by the Biotic Pump Theory (hereafter BPT,
125 Makarieva and Gorshkov, 2007; Makarieva et al., 2023) which states that low-level air masses
126 move from areas with weak evaporation (E) to areas with more intensive E via condensation-
127 induced mass removal and atmospheric dynamics. The conceptual model leads to a precipitation
128 deficit of up to 40% in non-deforested parts of the western Amazon and regions further
129 downstream. The BTP theory has been however heavily criticized (Meesters et al., 2009; Bouman
130 et al., 2023) and this strong precipitation sensitivity is inconsistent with the hydrological response
131 simulated by most GCMs or ESMs (e.g., Spracklen and Garcia-Carreras, 2015; Ruiz-Vasquez et al.,
132 2020; Boysen et al., 2020).

13 *Confidential manuscript*

133 One of the key uncertainty behind the water cycle response to perturbed land cover is the induced
134 ET change which may depend, regardless of the magnitude and patterns of land-cover change, on
135 the background climate (Willeit et al., 2014), the implemented land management strategy (Kauskal
136 et al., 2017), and the selected ESM (Boysen et al., 2020). Such a response can be compared in off-
137 line land surface model (LSM) simulations driven by prescribed land cover change and atmospheric
138 forcings (Guimberteau et al., 2017). The uncertainty range on ET changes was shown to first
139 depend on the selected GCM forcing, while runoff uncertainty is rather dominated by structural
140 differences among LSMs. Yet, this off-line strategy does not account for land-atmosphere coupling
141 and thus the adjustment of the atmospheric boundary layer to changes in either land cover or LSM
142 (Laguë et al., 2019).

143

144 Beyond idealized deforestation experiments, more realistic sensitivity experiments to land cover
145 change or dynamic vegetation have also been conducted and have all suggested a limited
146 vegetation influence on precipitation (e.g., Debortoli et al., 2016; Taylor et al., 2022; Luo et al.,
147 2024). For instance, a multi-model land use change study focusing on the Sahel excludes a major
148 contribution of land use and land cover change to the observed 20th century precipitation variability
149 (e.g., Herman et al., 2023), thereby confirming that land use changes are not large enough to have
150 been the cause of the Sahel drought in the 1980s (Taylor et al., 2002). Another recent hydrologic
151 modelling study focused on the combined effects of forest thinning and global warming on the
152 Beaver Creek watershed ($\sim 1,100$ - km 2) in central Arizona (Cederstrom et al., 2024). On average,
153 forest thinning was found to increase the annual mean streamflow by +12% through lower plant
154 transpiration by -19%, while also increasing the change in soil water storage by +42%. In contrast
155 with the dominant thinking, forest cover reductions could thus delay the detrimental effects of
156 warming on streamflow until +4°C.

157 b) Afforestation

158 Over the last few years, a growing attention has been paid to afforestation/reforestation
159 scenarios rather than deforestation experiments. Beyond the hydroclimate impacts at the regional
160 scale, the main motivation was to assess the expected effect on the global carbon cycle. Planting
161 trees in areas that currently don't have trees – a process called afforestation – is generally
162 considered as a readily available climate change mitigation option, whose efficiency and cost are
163 generally assessed using integrated assessment models (IAMs, Roe et al. 2021a,b) but may depend
164 on location, scale, and both present-day and future climates. Doelman et al. (2020) estimated for
165 instance that large-scale afforestation has a mitigation potential of 4.9 GtCO₂/year at 200 US\$/tCO₂
166 in 2050 and is thus a suitable albeit relatively minor mitigation option that can only play a limited
167 role in keeping global warming below +2°C under an intermediate (SSP2) emission scenario.

168 IAMs are however not the most suitable tool for assessing the efficiency of afforestation. They can
169 account for the fact that land ecosystems absorb on average 30% of anthropogenic CO₂ emissions,
170 but the natural fluctuations in the net land surface flux of CO₂ are usually considered as a simple
171 function of global or regional mean surface temperatures and the interactions with the water cycle
172 are not accounted for. In contrast, recent observations suggest that the atmospheric CO₂ growth rate
173 is primarily controlled by changes in terrestrial water storage, with dry years leading to a faster rate
174 of increase (Zhang et al., 2021). While this global relationship was shown to be underestimated in
175 current ESMs (Humphrey et al., 2018), the impacts of water limitations on photosynthesis are
176 simply ignored in most IAMs which typically use low dimensional estimates of the carbon density
177 associated with different land use types to assess the carbon uptake potential.

178 Apart from sequestering carbon, large-scale afforestation is generally expected to increase regional
179 precipitation levels and to represent a smart, land-based strategy to combat drought (e.g., Ellison et
180 al., 2012; Baker, 2021). Again inspired by the BPT, this possibility has retained the attention of
181 many engineers and organizations interested in forest conservation (e.g., [https://hydrologie-
182 regenerative.fr/](https://hydrologie-regenerative.fr/)) or in promoting afforestation as a sustainable mitigation option (e.g.,

17 *Confidential manuscript*

183 <https://forestsnews.cifor.org/10316/> make-it-rain-planting-forests-to-help-drought-stricken-regions).

184 Yet, it has received so far a limited support from the climate modelling community and few

185 numerical studies have been performed so far that validate large-scale afforestation projects as a

186 safe mitigation option.

187 As an exception, a global hydrological model was recently used to show that a maximum global

188 afforestation scenario would on average increase evaporation by 0.6 mm/day, which could

189 potentially contribute to a subsequent 0.4 mm/day increase of precipitation over land (Tuinenberg et

190 al., 2022). This off-line study is however based on the same unrealistic tree restoration potential as

191 in Bastin et al. (2019) and does not consider the crucial land-atmosphere interactions that may

192 temper the ET response to afforestation in the real world (e.g., Laguë et al., 2019). As another

193 example, van Dijke et al. (2022) explored the hydrological consequences of a 900 Mha tree

194 restoration by using an ensemble of data-driven mechanistic models and found complex changes in

195 water availability ranging from a -38% decrease in some regions to a +6% increase in others.

196

197 ESMs are arguably the most comprehensive tool for simulating the water-carbon nexus and, thus,

198 assessing both the mitigation potential and the hydroclimate side effects of afforestation. One such

199 early study (Arora and Montenegro, 2011) focused on the land surface energy budget. Complete

200 (100%) versus partial (50%) afforestation of the land domain currently occupied by crops led to a

201 reduced global warming by around 0.45 and 0.25°C, respectively. The surface warming reduction

202 per unit afforested area was found to be three times higher in the tropics than in the extratropics,

203 suggesting that tropical afforestation is potentially a more effective strategy. Yet, the hydrological

204 response was not explored.

205 More recently, an emission-driven ESM was used to quantify the potential benefits from pantropical

206 tree restoration through an idealized experiment where all land use in the tropics is stopped and

207 vegetation is allowed to recover under an intermediate (RCP2.6) mitigation scenario (Koch et al.,
208 2021a). Tropical tree restoration of 1529 Mha was found to increase live biomass by 130 Pg C by
209 the end of the century (Fig. 2). Yet, the subsequent reduction in oceanic and extratropical terrestrial
210 carbon uptake implied that carbon in the atmosphere only reduces by 18 Pg C by 2100. The
211 resulting CO₂ benefit (only 9 ppm) thus did not translate to a detectable reduction in global
212 warming and afforestation did not strongly contribute to negative emissions. De Hertog et al. (2022)
213 compared the local and remote responses of three ESMs to four idealized experiments performed
214 under present-day climate conditions, including global afforestation with or without extensive wood
215 harvesting, and a full cropland world with or without extensive irrigation. The surface air
216 temperature response to deforestation was largely consistent with observations, with a cooling in
217 boreal latitudes and a warming in the tropics. Yet, the energy balance components (including latent
218 heat) driving these temperature changes were shown to be model-dependent, thus suggesting an
219 uncertain response of both ET and precipitation at the regional scale.

220 It has been argued that the global ESMs are flawed because of their relatively coarse horizontal
221 resolution (Branch and Wulfmeyer, 2019) or their misrepresentation of the cooling effect of plant
222 transpiration (Makarieva et al., 2024). The former study however suggests a local heat low effect
223 driven by suppressed rather than increased ET, and thus contradicts the BPT hypothesis. Moreover,
224 afforestation experiments conducted with higher resolution regional climate models do not
225 necessarily show stronger impacts on precipitation (Strandberg and Kjellström, 2019). Several
226 studies also suggest that horizontal resolution may not be the Achille's heel of current ESMs given
227 their lack of structural diversity (e.g., Franks et al., 2017) and limited ability (e.g., Gier et al., 2024)
228 to capture the narrow interactions between the terrestrial water and carbon cycles (cf. Section
229 2.2). Smaller scale afforestation programmes have arguably even smaller benefits in terms of
230 mitigation, although they may also come with fewer negative side effects. Using a high-resolution
231 LSM, the hydrological impacts of alternative afforestation scenarios across Great Britain have been
232 recently explored (Buechel et al., 2023). Off-line LSM simulations suggested that the proposed

21 *Confidential manuscript*
233 scale of afforestation is unlikely to significantly alter regional hydrology (in these relatively wet
234 regions), although it can noticeably decrease minimum flow during dry periods. The afforestation
235 levels only marginally impact hydrological processes compared to prescribed changes in
236 precipitation, temperature, and CO₂. Similarly, a recent pan-African afforestation sensitivity
237 experiment conducted with a high-resolution, atmosphere-only, global numerical weather prediction
238 model did not reveal any significant influence on summer precipitation (Smiatek and Kunstmann,
239 2023). Finally, a variable-resolution coupled land-atmosphere global climate model was used to
240 investigate the vegetation-induced changes in precipitation over China and found a non-significant
241 increase in precipitation from vegetation greening, though sufficient to cancel out enhanced ET and
242 resulting in weak impact on soil moisture (Li et al., 2018).

243 **2.2 Carbon-water nexus representation in current ESMs**

244 As the next CMIP intercomparison should be based on emissions-driven rather than
245 concentrations-driven ESMs (Sanderson et al., 2023), it becomes even more urgent to assess their
246 ability to simulate the complex interactions between the terrestrial components of the carbon and
247 water cycle, respectively. The LSMs (i.e., land surface components of ESMs) have at their
248 foundation a coupling of evapotranspiration through plant stomata, balanced with carbon uptake for
249 photosynthesis, and the impact of these processes on the land energy and water budget. The
250 representation of these elements is subject to strategies of plant gas exchange (and how these are
251 parameterised) as well as soil properties (depth, texture) and vegetation structure. Coupling of land
252 surface energy partitioning and evapotranspiration with atmospheric processes, as facilitated by
253 ESMs, is also critical for understanding the full implications of both GHG emissions (Döll et al.,
254 2016; D'Odorico et al., 2018) and forest expansion (e.g., Laguë et al., 2019; De Hertog et al., 2022).

255 The amount of carbon dioxide that plants take from the air depends on how plants respond to water
256 stress. At the same time, plants also control the loss of water from the landscape through
257 transpiration. The ratio of carbon assimilation to ET, referred to as water use efficiency (WUE), has

23 *Confidential manuscript*
258 been the focus of many observational and modelling studies and is generally expected to increase as
259 a response to increasing atmospheric CO₂ concentration (e.g., De Kauwe et al., 2013; Zhang et al.,
260 2019; Lavergne et al., 2019; Fatichi et al., 2023). Worldwide *in situ* measurements suggest that
261 water availability and carbon uptake behave quite similarly across many locations and climate
262 conditions (e.g., Short Gianotti and Entekhabi, 2024). Yet, little is known about the interactive
263 effects of rising CO₂ and CO₂-induced climate change on WUE at the scale of ecosystems
264 (Lemordant et al., 2018; Li et al., 2023b). Moreover, water availability is not the only limitation to
265 the observed carbon uptake at the local scale. *In situ* measurements show that enhanced VPD can
266 reduce photosynthesis by the same magnitude as severe soil drying in a deciduous broadleaf forest,
267 and suggest that rising VPD due to global warming may drive drought-like CO₂ flux responses even
268 if soil moisture does not decrease (Sulman et al., 2016).

269 Models of stomatal conductance implemented in ESMs are typically characterized by a single fitted
270 parameter which may reflect a lack of model diversity and the need of a better and vegetation-trait
271 dependent tuning of this critical parameter (e.g., Franks et al., 2017). Moreover, rising temperature
272 and water vapour pressure deficit (VPD) may play a more important role than declining stomatal
273 conductance in regulating ET and GPP (Fang et al., 2022). Likewise, plant growth can offset the
274 effect of increased WUE on water resources at the regional scale (Singh et al., 2020) and increased
275 WUE may not compensate for carbon loss in European forests (e.g., Montibeller et al., 2022).

276 The evaluation of state-of-the-art ESMs suggests persistent issues in the representation of the
277 terrestrial carbon and water cycles. Despite an improvement in the simulation of net primary
278 productivity (NPP), unrealistically high correlations are still found with soil carbon stocks and
279 suggest a potential overestimation of the long-term terrestrial carbon sink (Varney et al., 2022).
280 Compared to satellite data and ground observations, most CMIP6 models show an overall bias in
281 land water storage and thus underestimate the maximum annual soil moisture depletion, especially
282 in the Amazon region (Giardina et al., 2024). Simulating the leaf area index (LAI) remains

25 *Confidential manuscript*
283 challenging with a large model spread in both CMIP5 and CMIP6 ESMs. Global mean land carbon
284 uptake (NBP) is relatively well reproduced, but hides compensating errors between the northern and
285 southern hemispheres. Overall, a slight improvement in the simulation of land carbon cycle
286 parameters is found in CMIP6 compared to CMIP5, but with many biases remaining (Gier et al.,
287 2024). Most models also fail to capture the present-day tropical forest carbon dynamics (Koch et al.,
288 2021b), as well as historical trends in terrestrial carbon uptake (Peng et al., 2022) or near-surface
289 relative humidity (Douville and Willett, 2022; Simpson et al., 2023; Fig. 3).

290 Even if the representation of the terrestrial carbon-water nexus has however evolved considerably in
291 recent LSMs (Blyth et al., 2021), persistent atmospheric and land surface biases may thus challenge
292 their on-line performance in coupled simulations. It has been for instance suggested that current
293 ESMs underestimate the response of ET to soil moisture while overestimating its response to
294 vapour pressure deficit (Zhang et al., 2023). Likewise, the most sophisticated LSMs include a
295 nitrogen cycle to better represent the terrestrial carbon cycle (Arora et al., 2020) but most of them
296 overestimate the amount of nitrogen fixation in the tropics and therefore the extent of the latitudinal
297 gradient in the global distribution (Davies-Barnard et al., 2022). Moreover, carbon assimilation
298 following afforestation is a transient process where the uptake rates depend on multiple factors such
299 as the age of the forest. Many modelling groups are presently shifting their vegetation scheme from
300 ‘big leaf’ models to demographic approaches where tree growth evolves as a function of age (Weng
301 et al., 2015; Fisher et al., 2018; Koven et al., 2020; Chen et al., 2022). Regrowth rates are not
302 subject to the lag processes inherent in the real world growth of trees from seeds, and models do not
303 track the disturbance and carbon uptake status of forests of different age.

304 To sum-up, the increasing complexity of LSMs and the persistent though slightly reduced biases in
305 the other components of the ESMs have not led to a much stronger performance in simulating the
306 present-day climate and the recent trends observed in the terrestrial carbon and water cycles in fully
307 coupled historical simulations. This increased model complexity relies on an enhanced use of Earth

27 *Confidential manuscript*

308 observations, yet not available for the simulation of future climate. Model calibration is likely to
309 improve the simulation of present-day climate but may lead to overconfident projections. While
310 ESMs will be increasingly used in emissions-driven mode, their ability to assess the feasibility and
311 hydrological impacts of alternative land-based mitigation strategies remain to be demonstrated.

312

313 **3. Observations, including remote sensing and on-going afforestation programmes**

314 **3.1 Tropics and subtropics**

315 Planting trees require both an important man power and a favourable climate. A growing
316 majority of the world's population resides in the tropics where the strong rainfall seasonality and
317 variability make the dry season a critical period for vegetation, and adaptation to climate change a
318 particularly difficult challenge (Douville et al., 2021a; Allan, 2023). The key question is not only
319 how the overall water availability will change in a warmer climate, but also the extent to which the
320 projected increase in the number and severity of dry extremes may cause serious and widespread
321 damages (e.g., wildfires, tree mortality) to natural and managed forests and may challenge some if
322 not most of the tree restoration programmes.

323 Tree ring data emphasise that effective demarcation of water-limited from non-water-limited
324 behaviour of stomata is critical to improving hydrological models and ESMs that operate at regional
325 to global scales (Adams et al., 2021). Multiple forests have already experienced an increased tree
326 mortality since the early 21st century, probably due to increased water limitations and climate
327 variability (e.g., Forzieri et al., 2022). Reported mortality rates appear to be increasing even in
328 moist tropical forests, with significant carbon storage consequences that could be underestimated in
329 current ESMs (McDowell et al., 2018). The majority of the mortality drivers (rising temperature
330 and vapour pressure deficit, drought, wind events, fire, among others) may kill trees in part through
331 carbon starvation and hydraulic failure (Zuidema et al., 2022). Yet, the relative importance of each

332 driver remains unknown (McDowell et al., 2018), as well as the vulnerability of far less studied
333 tropical dry forests (Schröder et al., 2021).

334 Over Amazonia, the increasing persistence of monthly to seasonal anomalies in remotely sensed
335 vegetation optical depth suggest that more than three quarters of the forest has been losing
336 resilience since the early 2000s, at a faster rate in regions with significant rainfall deficits (Boulton
337 et al., 2022). Observations also show a recent amplification of the precipitation and P-E annual
338 cycles, and an increasing duration of the dry season (Fu et al., 2013; Leite-Filho et al., 2019; Liang
339 et al., 2020; Wainwright et al., 2022; Allan 2023). The perturbed hydrology increases the risk of
340 forest dieback (Brienen et al., 2015), while in return forest loss might intensify regional droughts
341 (Zemp et al., 2017). The risk of self-amplified Amazon forest loss is expected to increase
342 nonlinearly with the dry-season intensification (Bochow and Boers, 2023). Aircraft measurements
343 of low-level carbon dioxide concentrations reveal that southeastern Amazonia already acts as a net
344 carbon source to the atmosphere, partly due to larger warming and moisture stress compared to the
345 western part (Gatti et al., 2021).

346 In South Asia, climate change, land use and a growing water demand for irrigation all represent
347 major threats for the sustainability of forested areas. India has announced its net-zero target for the
348 year 2070, and measures are being taken to decarbonise many sectors of the economy. Yet,
349 achieving net-zero emissions is here also contingent on carbon capture and storage. In this light,
350 India has pledged to expand its forest cover to absorb an additional three billion tonnes of CO₂ from
351 the atmosphere by 2030. Yet, an increasing year-to-year precipitation variability (Douville et al.,
352 2021a) may challenge this mitigation potential. Indian researchers at the Center for Study of
353 Science, Technology and Policy (CSTEP) suggest that the overall objective cannot be achieved just
354 by reducing deforestation. Restoring the degraded forest land (reforestation) and creating new
355 forests (afforestation) thus appears as an essential strategy. Yet, forestry engineers highlight that
356 insufficient guidance on suitable sites for tree restoration has already led to planting the wrong

31 *Confidential manuscript*

357 species or growing trees in unsuitable areas (Ghosh, 2023), thus suggesting a mismatch between the
358 afforestation ambition and the achievable potential.

359 Central and eastern Sahel are projected to experience stronger monsoon rainfall in a warmer
360 climate, but also an increased precipitation seasonality and variability (Douville et al., 2021a). In
361 this context, the recent pan-African GGW programme for enhancing the resilience of Sahelian
362 landscapes and water resources remains a matter of debate. Over the past fifty years, a large number
363 of local initiatives have resulted in only a limited degree of success (Schucknecht et al., 2016). A
364 visual inspection of very high resolution satellite images indicates that "large-scale tree restoration
365 to prevent the desert expansion has long been promoted but never been really achieved" (Turner et
366 al., 2023).

367 There are other multiple observational lines of evidence that tree mortality is accelerating in the
368 tropics. As a recent example, Bauman et al. (2022) analyses a 49-year record of tree dynamics from
369 24 old-growth forest plots encompassing a broad climatic gradient across the Australian moist
370 tropics and found that the tree mortality risk has, on average, doubled across all plots and species
371 over the last 35 years. Associated losses in biomass were not offset by gains from growth and
372 replenishment. Plots in drier climates presented higher average mortality risk, but local mean
373 climate did not predict the pace of the observed increase in mortality risk. A long-term increase in
374 vapour pressure deficit (a decline in relative humidity) was evident across the region and may have
375 been the primary cause of mortality.

376 In the subtropics, the situation may be even worse. In addition to the projected dryland expansion
377 (e.g., Huang et al., 2015), reliable observations of near-surface water vapour deficit suggest that the
378 land surface drying is generally underestimated by most ESMs over the historical period (Simpson
379 et al., 2023). The implications of this mismatch are substantial (Allan and Douville, 2024). Even
380 drier arid zones can put further pressure on water resources and intensify extreme heat and
381 wildfires. An even drier and thirstier atmosphere can also lead to more rapid onset of drought. The

33 *Confidential manuscript*
382 underestimated continental drying is all the more worrying given that the subtropics are among the
383 least densely vegetated regions in the world and could have represented an attractive opportunity to
384 enhance the global terrestrial carbon storage. The observed drying, which has further strengthened
385 since the late 1990s (Xu et al., 2024), may explain the limited success of existing large-scale GGW
386 programmes and warns against the systematic use of afforestation as a suitable mitigation strategy.

387

388 **3.2 Extratropics**

389 Many satellite observations available since the 1980s have revealed a human-induced
390 "greening" of the northern extratropical land surface, with broad implications for the surface water
391 and carbon budgets (Myneni et al., 1997; Zhou et al., 2001). Using two leaf area index (LAI)
392 products and multiple historical simulations from nineteen ESMs, a formal statistical method was
393 used to attribute such a greening to the human influence on the Earth's climate, including the CO₂
394 fertilization effect and the associated increase in surface temperature (Mao et al., 2016). Yet, more
395 recent studies suggest that global greening has been overestimated and/or indicate that the greening
396 period has been followed by a significant "browning" (e.g., Cortés et al., 2021; Pan et al., 2018;
397 Chen et al., 2022; Fig. 5). This reversal was largely explained by increasing atmospheric VPD and
398 decreasing in soil moisture north of 45°N in summer, potentially exacerbated by a possible shift in
399 the vegetation phenology (Lian et al., 2020).

400 A better understanding of the dominant climatic drivers that control vegetation trends across regions
401 and biomes is essential for assessing ecosystem dynamics and land-climate interactions in a
402 warming world. While temperature has long been considered as dominant control in global
403 vegetation trends, there is growing evidence water availability plays an increasingly important role
404 (Humphrey et al., 2018). In a recent study based on satellite-derived normalized difference
405 vegetation index from 1981 to 2015, Zhang et al. (2021) found that the trends in terrestrial carbon

406 uptake reversed in the early 2000s, mostly due to a recent drying trend and possible changes in
407 water use efficiency (Li et al., 2023b). On the basis of upscaled estimates from machine learning
408 methods and in situ observations, the latter study suggested that, globally speaking, the WUE has
409 not risen as expected since 2001, which may be due to the increased vapour pressure deficit (Allan
410 and Douville, 2024) that can depress photosynthesis while increasing ET.

411 In Argentina, tree mortality has risen and tree growth has declined since the mid-1970s in the
412 Nothofagus forests, particularly at the lower elevations in the eastern slope of the Andes and as a
413 result of the increasing frequency of drought events (Rodríguez-Catón et al., 2016). Conversely,
414 small-scale afforestation initiatives have been shown to increase water stress as indicated by base
415 flow measurements, namely the proportion of a streamflow not attributable to direct runoff from
416 precipitation or melting snow. Afforestation can reduce base flow by up to 50%, as revealed for
417 instance by a two-year study on seven paired basins. With their deep roots and tall canopies, trees
418 absorb and transpire more water than do grasses, resulting in drier streams. Another study
419 conducted in Uruguay came to similar conclusions: the researchers observed an 18–22% drop in
420 base flow in the afforested watershed compared with the watershed that had been left as grassland
421 (Zhang and Wei, 2021).

422 Hydrological effects of tree restoration can also vary with time as forests regrow. For instance,
423 Coble et al. (2020) reviewed long-term responses of low flows to logging across 25 catchments in
424 North America. They identified dynamic low-flow responses over three distinct periods associated
425 with the gradual increase in leaf area index and related ET: consistent increase in the first 5 to 10
426 years, variable responses (increase, no change, or decline) during the next 10 to 20 years, and
427 substantial decline in 16 out of the 25 watersheds decades later. These results highlight the need of
428 long-term monitoring for assessing the hydrological consequences and the sustainability of carbon
429 sequestration as a result of afforestation initiatives. Likewise, the recent dramatic increase in

37 *Confidential manuscript*

430 wildfires (Zhao et al., 2021) may also challenge former assessments of the vulnerability of carbon
431 storage in North American boreal forests during the 21st century (Balshi et al., 2009).

432 In China, most of the tree restoration programmes involve afforestation in areas where annual
433 precipitation is less than 400 millimetres. Drought is thus a major constraint on forest growth and
434 sustainability (Zhao et al., 2023) and a growing number of studies suggest that this strategy has
435 resulted in unintended ecological and water security concerns at the regional scale. A paired plot
436 study of the water balance of afforestation on the Loess Plateau, where water yields have recently
437 dropped by 30 to 50%, has shown that the understorey is the main water consumer in tree
438 plantations (Schwärzel et al., 2019). Yet, annual throughfall under the forest was found to be much
439 weaker compared to grassland areas. Observational regression analyses also support that the water
440 consumed by large-scale afforestation has a considerable impact on water supply and may have
441 contributed to recent droughts (Xiao et al., 2020). Recently, a more comprehensive study based on
442 72 paired sites across the Loess Plateau confirmed that afforestation led to reduced deep soil
443 moisture (Li et al., 2023c). Overall, the study revealed overlooked hydrological costs and over-
444 optimistic expectations of sustained carbon sequestration under afforestation. Recently, a
445 comprehensive evaluation of recent water constraints and their implications for vegetation growth
446 in China between 1982 and 2015 was conducted by analyzing the spatiotemporal patterns of the
447 relationship between vegetation growth and water availability based on both satellite and in situ
448 observations (Song et al., 2024). The study, also based on an off-line LSM, revealed that water
449 constraints can mediate the climate and atmospheric CO₂ effects on vegetation growth and may thus
450 exacerbate the uncertainty surrounding the vegetation sustainability in a warming climate.

451 In Europe, Teuling et al. (2019) explored how both changes in climate and land use (mainly
452 deforestation and afforestation) have impacted the amount and distribution of water availability
453 since the 1950s. Using a high resolution Budyko model constrained by lysimeter observations, they
454 showed that increased forest cover, forest stand age, and urbanization have all led to significant

39 *Confidential manuscript*

455 changes in runoff. Yet, land use change alone could not explain the main changes in water
456 availability. High-resolution satellite data also suggest that an excess tree mortality in European
457 forests since 1987 can be related to drought events (Senf et al., 2020). The relationship between
458 water availability and tree mortality shows a nonlinear behavior, with excess mortality increasing
459 steeply when the integrated water balance from March to July falls below a given threshold.
460 Overall, drought may already have caused approximately 0.5 Mha of excess forest mortality, albeit
461 not considering the extreme European drought events after 2016.

462 Of particular concern are other potential drivers of tree mortality associated with the climate-
463 induced water stress, such as wildfires and insect outbreaks. A global assessment suggested that at
464 least some of the world's forested ecosystems may be already responding to climate change and
465 raised concern that forests may become increasingly vulnerable to higher die-off in response to
466 further warming, including in the extratropics (Allen et al., 2010). Recent statistical analyses based
467 on satellite data indicated that global variations of forest cover "generated a mean land surface
468 warming corresponding to about 18% of the global biogeochemical signal due to CO₂ emission
469 from land-use change" from 2003 to 2012 (Alkama et al., 2016). They also revealed "significant
470 increases in fire weather have occurred in most world regions during recent decades due to climate
471 change" (Jones et al., 2022) and a dramatic increase in tree mortality (Hartmann et al., 2022).
472 Advances in high-resolution data, from both field assessments and satellites, are urgently needed for
473 a global stocktake of forest exposure and vulnerability around the world.

474

475 **4. Discussion and conclusion**

476 Achieving the Paris Agreement requires aggressive mitigation strategies alongside negative
477 emissions of carbon dioxide. According to the latest IPCC report from WG3 (IPCC, 2022), AFOLU
478 currently represents 22% (13 GtCO₂e) of the total anthropogenic CO₂ emissions but could rapidly

479 become a sink rather than a source of carbon by using well-managed land-based CDR strategies.

480 Yet and so far, it was not possible (i.e., neither in their mandate nor technically feasible) for the

481 other IPCC working groups to express their concerns about the feasibility or potential side-effects

482 of such ambitious tree restoration policies. Carbon removal and sequestration strategies, including

483 AFOLU, are usually represented upstream of ESMs on the basis of much simpler IAMs. The next

484 round of coordinated ESM experiments (i.e., CMIP7) could partly fill this gap (Sanderson et al.,

485 2023). Yet, proper accounting of the coupled Earth system impacts of and feedbacks on such

486 mitigation strategies requires a more explicit process representation to build self-consistent physical

487 and biogeochemical representations of their potential effectiveness and risks under climate change.

488 Our meta-analysis of existing afforestation initiatives suggests that ill-advised or poorly-managed

489 programmes may be less efficient and beneficial than currently assumed (e.g., Ghosh, 2023). In

490 particular, they can contribute to the depletion of freshwater resources that currently support other

491 human and ecosystem services (e.g., Kaushal et al., 2017). The decrease in water storage may then

492 impact the vegetation capacity to buffer drought events and, ultimately, put at risk the terrestrial

493 carbon storage. Forest restoration strategies thus need to adapt to the ongoing and future climate

494 change, not only in terms of mean state but also considering the projected increase in variability and

495 extremes. In addition, water resources cannot be secured without also considering the rapidly

496 increasing water demand from both a warming atmosphere (Allan et al., 2020) and the growing

497 global population (Abbott et al., 2019).

528 The resilience of the most aggressive afforestation strategies should be also assessed in the light of

529 current ESM uncertainties in the response of the carbon and water cycles to anthropogenic forcings

530 (Arora et al., 2021; Douville et al., 2021a), especially in terms of extreme dry conditions and their

531 potential impacts on vegetation (Seneviratne et al., 2021). Drought is already considered to be the

532 most widespread factor affecting terrestrial vegetation productivity via direct physiological effects.

533 Drought-related NPP reduction should become prevalent, especially in most arid areas and tropical

504 regions, by the end of 21th century (Xu et al., 2019; Cao et al., 2022). It may thus represent a major
505 obstacle for planning tree restoration in the Global South, as well as in northern subtropical and
506 mid-latitude arid lands where current ESMs may still underestimate the ongoing and future near
507 surface drying (Allan and Douville, 2024).

508 Beyond the gradual expansion of arid areas, deeper and more reliable assessments of potential
509 tipping points in the water and/or carbon cycle are urgently needed (Lenton et al., 2019; Abrams et
510 al., 2023). Yet, they should not be based on invalid theories or poorly tested elements of ESMs.

511 Symmetrically, over-optimistic assessments of land-based mitigation solutions should be avoided
512 (Arevesen et al., 2010). Projections of both massive forest diebacks (e.g., Cox et al., 2008; Boers et
513 al., 2017) and huge CO₂ removals from afforestation (e.g., Bastin et al., 2019; Liang et al., 2024)
514 are frequently featured in "high-profile" publications but may not represent the most plausible
515 outcomes. Worst-case scenarios that cannot be entirely ruled out should however receive a greater
516 attention given their disproportionate implications for both human societies and natural ecosystems
517 (Sutton, 2018). Unravelled model deficiencies leading to unexpected though more plausible (e.g.,
518 dry) storylines may also need to reconsider the necessary or feasible mitigation and adaptation
519 policies (e.g., Douville and Willett, 2023). High carbon sequestration potentials should be
520 interpreted with caution, as they often rely on the assumption of large deployment and long-term
521 retention of afforested/reforested lands, and on integrated or Earth system models that may
522 oversimplify forest growth, regrowth, and natural mortality processes (Liang et al., 2024)

523 The apparent hiatus between the current limitations and expected applications of ESMs in a climate
524 emergency context is all the more perturbing that these models are increasingly used, not only to
525 assess the consequences of different GHG emission scenarios but also the feasibility of more or less
526 ambitious land-based mitigation options (Wallis et al., 2014; Séférian et al., 2018; Bastin et al.,
527 2019; Sanderson et al., 2023; Rocha et al., 2024). Such objectives should however be based on solid
528 assumptions, carefully evaluated ESMs and thoroughly peer-reviewed publications (Friedlingstein

529 et al., 2019). Persistent modelling uncertainties should not be used as a pretext for climate inaction.

530 On the contrary, they must reinforce the sense of urgency and encourage both more ambitious

531 mitigation policies and more cautious adaptation strategies (Douville et al., 2022b).

532 ESMs are and will remain extremely useful for understanding processes and feedbacks. They are

533 essential to interpret observations and to attribute observed changes in the Earth system, but their

534 increasing complexity may not allow them to narrow the range of climate projections under a given

535 emission scenario. For this purpose, models can be weighted by how well they reproduce

536 interannual variability (Cox et al., 2019), recent trends (Douville and Plazzotta, 2017; Chen et al.,

537 2022) or the full available historical record (Ribes et al., 2021; Douville et al., 2022a). The critical

538 assumptions in statistical methods are that all models are independent and representative of the

539 "truth" while sampling the range of uncertainty. None of these assumptions are strictly valid

540 (Sanderson et al., 2021), but these methods are however increasingly useful and show for instance

541 how the observed historical global warming can be misleading for constraining temperature changes

542 at the regional scale (Ribes et al., 2022) or other changes at the global scale (Douville and Willett,

543 2023), unless considered together with more directly relevant observations. Such methods can be

544 now applied to other even more policy-relevant variables, regarding both water cycle (e.g., Dutot

545 and Douville, 2023) and carbon cycle (e.g., Keenan et al., 2023).

546 Our conclusions are broadly consistent with the key findings of another recent synthesis focusing on

547 rangeland afforestation (Briske et al., 2024). According to the study, the presumed benefits of such

548 a land-based mitigation option originate from five major misconceptions: i) conflation between

549 afforestation and reforestation, ii) overestimation of the carbon sequestration potential, iii)

550 insufficient recognition of pre-existing ecosystem services, iv) potential for adverse ecological

551 outcomes, and v) the neocolonial character of afforestation programs. The latter criticism has been

552 echoed by multiple case studies (e.g., Lyons and Westoby, 2014; Richards and Lyons, 2016; Carton

553 and Andersson, 2017) and could become a major obstacle to the implementation of large-scale

47 *Confidential manuscript*

554 afforestation programs in the Global South (e.g., Navarro, 2022). Although thousands of people are
555 directly affected and continue to resist these projects around the world, their voices have been so far
556 silenced by those who claim that large-scale afforestation is however needed to compensate for the
557 residual emissions of the Global North. Yet, at the same time, this mitigation option is a lucrative
558 business opportunity which is rooted in the same structures and interests which led to the
559 privatization of greenhouse gas emissions through carbon trading (Cabello and Gilbertson, 2012). In
560 agreement with Seddon et al. (2020), we thus urge policymakers, researchers and forestry engineers
561 to fully consider the potential trade-offs associated with afforestation, but also to acknowledge that
562 land-based mitigation options are not a substitute for the rapid phase out of fossil fuels and cannot
563 be implemented without the full consent of Indigenous Peoples and local communities.

564 To sum up, despite the fact that recent modelling studies suggest that afforestation may provide a
565 win-win strategy in the fight against global environmental change (global warming, soil erosion,
566 loss of biodiversity), our meta-analysis leads to more careful conclusions and raises concerns about
567 a possible water for carbon trade-off. The IPCC usually considers multiple lines of evidence,
568 combining a range of fundamental physics, observations and modelling, to provide policy relevant
569 assessments. It is therefore critical that the full range of evidence and impacts – including on local
570 water resources and populations – are also considered in designing land-based mitigation
571 strategies. It is also urgent to better monitor and physically understand the observed fluctuations of
572 the terrestrial water and carbon cycles and to narrow model uncertainties regarding their projected
573 evolution.

574

575 **Acknowledgments**

576 We are grateful to two anonymous reviewers for their constructive and helpful comments.

577 **References**

578 1. Abrams, J.F., Huntingford, C., Williamson, M.S., Armstrong McKay, D.I., Boulton, C.A.,
579 Buxton, J.E., et al. (2023) Committed global warming risks triggering multiple climate tipping
580 points. *Earth's Future*, 11, e2022EF003250, <https://doi.org/10.1029/2022EF003250>

581 2. Adams, M.A., Buckley, T.N., Binkley, D., Neumann, M., Turnbull, T.L. (2021) CO₂,
582 nitrogen deposition and a discontinuous climate response drive water use efficiency in global
583 forests. *Nature Comm.*, 12, 5194, <https://doi.org/10.1038/s41467-021-25365-1>

584 3. Alkama, R., & Cescatti, A. (2016). Biophysical climate impacts of recent changes in global
585 forest cover. *Science*, 351, 600–604. <https://doi.org/10.1126/science.aac8083>

586 4. Allan, R.P., M. Byrne, A. Cherchi, H. Douville, H. Fowler, T. Ghan, A. Swann, O. Zolina
587 (2020) Advances in understanding large-scale responses of the water cycle to climate change.
588 *Annals of the New York Academy of Sciences*, doi:10.1111/nyas.14337

589 5. Allan, R.P. (2023) Amplified seasonal range in precipitation minus evaporation, *Environ.*
590 *Res. Lett.* ,18, 094004

591 6. Allan, R.P., and Douville, H. (2024) An even drier future for the arid lands. PNAS
592 commentary, 121(2), e2320840121, <https://doi.org/10.1073/pnas.2320840121>

593 7. Arora, V.K., Montenegro, A. (2011) Small temperature benefits provided by realistic
594 afforestation efforts. *Nature Geoscience*, 4, 514-518, doi:10.1038/NGEO1182

595 8. Arora, V.K., et al. (2020) Carbon–concentration and carbon–climate feedbacks in CMIP6
596 models and their comparison to CMIP5 models. *Biogeosciences*, 17, 4173–4222

597 9. Badger, A. M. and P. A. Dirmeyer (2016) Diagnosing nonlinearities in the local and remote
598 responses to partial Amazon deforestation, *J. Geophys. Res. Atmos.*, 121, 9033–9047,
599 doi:10.1002/2015JD024013

51 *Confidential manuscript*

600 10. Baker, J.C.A. (2021) Planting trees to combat drought. *Nature Geoscience*, 14(7), 458–459.

601 <https://doi.org/10.1038/s41561-021-00787-0>

602 11. Baker, J.C.A., Spracklen, D.V. (2022) Divergent representation of precipitation recycling in

603 the Amazon and the Congo in CMIP6 models. *Geophys. Res. Lett.*, 49(10), e2021GL095136,

604 <https://doi.org/10.1029/2021GL095136>

605 12. Balshi, M.S., et al. (2009) Vulnerability of carbon storage in North American boreal forests

606 to wildfires during the 21st century. *Glob. Change Biol.*, <https://doi.org/10.1111/j.1365-2486.2009.01877.x>

607 13. Bastin, J-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C.M.,

609 Crowther, T.W. (2019) The global tree restoration potential. *Science*, 365, 76–79,

610 doi:10.1126/science.aax0848

611 14. Bauman, D. et al. (2022) Tropical tree mortality has increased with rising atmospheric water

612 stress. *Nature*, 608, 528–533, <https://doi.org/10.1038/s41586-022-04737-7>

613 15. Blyth, E.M., Arora, V.K., Clark, D.B., Dadson, S.J., De Kauwe, M.G., Lawrence, D.M.,

614 Melton, J.R., Pongratz, J., Turton, R.H., Yoshimura, K. and Yuan, H. (2021) Advances in land

615 surface modelling. *Current Climate Change Reports*, 7(2), 45–71

616 16. Bochow, N., Boers, N. (2023) The South American monsoon approaches a critical transition

617 in response to deforestation. *Sc. Adv.*, 9, eadd9973

618 17. Boers, N., Marwan, N., Barbosa, H.M.J., & Kurths, J. (2017) A deforestation-induced

619 tipping point for the South American monsoon system. *Sc. Rep.*, 7, 41489, doi:10.1038/srep41489

620 18. Bonan, G.B., Williams, M., Fisher, R.A. and Oleson, K.W., 2014. Modeling stomatal

621 conductance in the earth system: linking leaf water-use efficiency and water transport along the

622 soil–plant–atmosphere continuum. *Geosci. Model Dev.*, 7(5), 2193–2222

53 53 Confidential manuscript

623 19. Boulton, C.A., Lenton, T.M., Boers, N. (2022) Pronounced loss of Amazon rainforest

624 resilience since the early 2000s. *Nature Climate Change*, 12, 271–278,

625 <https://doi.org/10.1038/s41558-022-01287-8>

626 20. Bouman, M. (2023) Investigating the biotic pump theory - A study on condensation-induced

627 atmospheric dynamics, *MSc thesis*, Wageningen University, <https://edepot.wur.nl/634471>

628 21. Boysen, L., et al. (2020) Global climate response to idealized deforestation in CMIP6

629 models. *Biogeosc. Disc.*, <https://doi.org/10.5194/bg-2020-229>

630 22. Branch, O., and Wulfmeyer, V. (2019) Deliberate enhancement of rainfall using desert

631 plantations. *P. Natl. Acad. Sci. USA*, 116(38), 18841–18847

632 23. Brien, R. J. W. et al. (2015) Long-term decline of the Amazon carbon sink. *Nature*, 519,

633 344–348

634 24. Briske, D.D., Vetter, S., Coetsee, C. and Turner, M.D. (2024) Rangeland afforestation is not

635 a natural climate solution. *Front. Ecol. Environ.*, 22(5), e2727, doi:10.1002/fee.2727

636 25. Brovkin, V. et al. (2013) Effect of Anthropogenic Land-Use and Land-Cover Changes on

637 Climate and Land Carbon Storage in CMIP5 Projections for the Twenty-First Century. *J. Clim.*, 26,

638 6859–6881

639 26. Buechel, M., Slater, L., Dadson, S. (2023) Afforestation impacts on terrestrial hydrology

640 insignificant compared to climate change in Great Britain. *Hydrol. Earth Syst. Sci.*,

641 <https://doi.org/10.5194/hess-2023-138>

642 27. Cao, S., Wang, G. & Chen, L. (2010) Questionable value of planting thirsty trees in dry

643 regions. *Nature*, 465, 31, <https://doi.org/10.1038/465031d>

644 28. Cao, D. et al. (2022) Projected increases in global terrestrial net primary productivity loss

645 caused by drought under climate change. *Earth's Future*, doi: 10.1029/2022EF002681

55 55 Confidential manuscript

646 29. Carton, W. & Andersson, E. (2017) Where Forest Carbon Meets Its Maker: Forestry-Based
647 Offsetting as the Subsumption of Nature. *Society & Natural Resources*, 30(7), 829-843

648 30. Cederstrom, C.J., Vivoni, E.R., Mascaro, G., & Svoma, B. (2024) Forest treatment effects
649 on watershed responses under warming. *Water Resources Research*, 60, e2023WR035627.
650 <https://doi.org/10.1029/2023WR035627>

651 31. Chai, Y., Martins, G., Nobre, C., von Randow, C., Hen, T., Dolman, H. (2021)
652 Constraining Amazonian land surface temperature sensitivity to precipitation and the probability of
653 forest dieback. *npj Clim. and Atmos. Sc.*, 6, <https://www.nature.com/articles/s41612-021-00162-1>

654 32. Chen, Z., Zhou, T., Chen, X., Zhang, W., Zhang, L., et al. (2022) Observationally
655 constrained projection of Afro-Asian monsoon precipitation. *Nature Comm.*, 13, 2552,
656 <https://doi.org/10.1038/s41467-022-30106-z>

657 33. Chen, Y.-Y., Huang, W., Cheng, C.-T., Hong, J.-S., Yeh, F.-L., & Luyssaert, S. (2022)
658 Simulation of the impact of environmental disturbances on forest biomass in Taiwan. *J. of Geophys.
659 Res.: Biogeosciences*, 127, e2021JG006519, <https://doi.org/10.1029/2021JG006519>

660 34. Chitra-Tarak, R., Xu, C., Aguilar, S., Anderson-Teixeira, K.J., Chambers, J., Detto, M.,
661 Faybishenko, B., Fisher, R.A., Knox, R.G., Koven, C.D., Kueppers, L.M., Kunert, N., Kupers, S.J.,
662 McDowell, N.G., Newman, B.D., Paton, S.R., Pérez, R., Ruiz, L., Sack, L., Warren, J.M., Wolfe,
663 B.T., Wright, C., Wright, S.J., Zailaa, J. and McMahon, S.M. (2021) Hydraulically-vulnerable trees
664 survive on deep-water access during droughts in a tropical forest. *New Phytol.*, 231, 1798-1813,
665 <https://doi.org/10.1111/nph.17464>

666 35. Clark, M.P., Y. Fan, D.M. Lawrence, J.C. Adam, D. Bolster, D.J. Gochis, R.P. Hooper, M.
667 Kumar, L.R. Leung, D.S. Mackay, R.M. Maxwell, C. Shen, S.C. Swenson, and X. Zeng (2015)
668 Improving the representation of hydrologic processes in Earth System Models, *Water Resour. Res.*,
669 51, 5929–5956, doi:10.1002/2015WR017096

57 57 Confidential manuscript

670 36. Coble, A.A., et al., (2020) Long-term hydrological response to forest harvest during
671 seasonal low flow: Potential implications for current forest practices. *Sci. Total Environ.*, 730,
672 138926

673 37. Cortés, J., Mahecha, M. D., Reichstein, M., Myneni, R. B., Chen, C., & Brenning, A. (2021)
674 Where are global vegetation greening and browning trends significant? *Geophys. Res. Lett.*, 48,
675 e2020GL091496. <https://doi.org/10.1029/2020GL091496>

676 38. Costantini, M., Colin, J., & Decharme, B. (2023) Projected climate-driven changes of water
677 table depth in the world's major groundwater basins. *Earth's Future*, 11, e2022EF003068.
678 <https://doi.org/10.1029/2022EF003068>

679 39. Cox, P.M (2019) Emergent Constraints on Climate-Carbon Cycle Feedbacks. *Current*
680 *Climate Change Reports*, <https://doi.org/10.1007/s40641-019-00141-y>

681 40. Davies-Barnard, T., Zaehle, S., Friedlingstein, P. (2022) Assessment of the impacts of
682 biological nitrogen fixation structural uncertainty in CMIP6 Earth System Models. *Biogeosciences*,
683 19, 3491-3503, <https://doi.org/10.5194/bg-19-3491-2022>

684 41. Debortoli, N.S., Dubreuil, V., Hirota, M., Filho, S.R., Lindoso, D.P., Nabucet, J. (2016)
685 Detecting deforestation impacts in Southern Amazonia rainfall using rain gauges. *Int. J. Climatol.*,
686 37, 2889–2900, <https://doi.org/10.1002/joc.4886>

687 42. De Hertog, S.J., Havermann, F., Vanderkelen, I., Guo, S., Luo, F., Manola, I., Coumou, D.,
688 Davin, E.L., Duveiller, G., Lejeune, Q. and Pongratz, J. (2022) The biogeophysical effects of
689 idealized land cover and land management changes in Earth system models. *Earth System Dyn.*
690 *Discussions*, 1-53

691 43. De Kauwe, M.G., Medlyn, B.E., Zaehle, S., et al. (2013). Forest water use and water use
692 efficiency at elevated CO₂: a model-data intercomparison at two contrasting temperate forest FACE
693 sites. *Glob. Change Biol.*, 19, 1759-1779

59 59 Confidential manuscript

694 44. De Kauwe, M.G., Medlyn, B.E., Ukkola, A.M., Mu, M., Sabot, M.E., Pitman, A.J., Meir, P.,

695 Cernusak, L.A., Rifai, S.W., Choat, B. and Tissue, D.T., 2020. Identifying areas at risk of drought-

696 induced tree mortality across South-Eastern Australia. *Glob. Change Biol.*, 26(10), 5716-5733

697 45. Delire, C., Foley, J.A., Thompson, S. (2004) Long-Term Variability in a Coupled

698 Atmosphere–Biosphere Model. *J. Climate*, 17, 3947-3059

699 46. D’Odorico, P., Davis, K.F., Rosa, L., Carr, J.A., Chiarelli, D., Dell’Angelo, J., et al. (2018)

700 The global food-energy-water nexus. *Reviews of Geophysics*, 56, 456–531

701 <https://doi.org/10.1029/2017RG000591>

702 47. Doelman, J., et al. (2020) Afforestation for climate change mitigation: Potentials, risks and

703 trade-offs. *Glob. Change Biol.*, <https://doi.org/10.1111/gcb.14887>

704 48. Döll P., H. Douville, A. Güntner, H. Müller Schmied, Y. Wada (2016) Modelling freshwater

705 systems at the global scale: Challenges and prospects. *Surv. Geophys.*, 37, 195-221,

706 doi:10.1007/s10712-015-9343-1

707 49. Dong, B. and R. Sutton (2015) Dominant role of greenhouse-gas forcing in the recovery of

708 Sahel rainfall. *Nature Climate Change*, 5, 757–760, doi:10.1038/nclimate2664

709 50. Doughty, C. E. et al. (2015) Drought impact on forest carbon dynamics and fluxes in

710 Amazonia. *Nature*, 519, 78–82 (2015).

711 51. Douville, H., K. Raghavan, J. Renwick, R.P. Allan, P.A. Arias, M. Barlow, R. Cerezo-Mota,

712 A. Cherchi, T.Y. Gan, J. Gergis, D. Jiang, A. Khan, W. Pokam Mb, D. Rosenfeld, J. Tierney, and

713 O. Zolina, 2021: Water Cycle Changes. In Climate Change 2021: The Physical Science Basis.

714 Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on

715 Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N.

716 Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K.

717 Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press,

61 *Confidential manuscript*
718 Cambridge, United Kingdom and New York, NY, USA, pp. 1055-1210,
719 doi:10.1017/9781009157896.010

720 52. Douville, H., S. Qasmi, A. Ribes, O. Bock (2022a) Global warming at near-constant
721 tropospheric relative humidity is supported by observations. *Communications Earth &*
722 *Environment*, 3, 237, <https://doi.org/10.1038/s43247-022-00561-z>

723 53. Douville, H., R.P. Allan, P.A. Arias, R.A. Betts, M.A. Caretta, A. Cherchi, A. Mukherji, K.
724 Raghavan, J. Renwick (2022b) Water remains a blind spot in climate change policies. *PLOS Water*,
725 1(12), e0000058, <https://doi.org/10.1371/journal.pwat.0000058>

726 54. Douville, H., R. Chadwick, M. Saint-Lu, B. Medeiros (2023) Drivers of dry day sensitivity
727 to increased CO₂. *Geophys. Res. Lett.*, 50, e2023GL103200,
728 <https://dx.doi.org/10.1029/2023GL103200>

729 55. Dutot, E., Douville, H. (2023) Revisiting the potential to narrow uncertainty in annual
730 runoff projections of Arctic rivers. *Geophys. Res. Lett.*, 50, e2023GL104039,
731 <https://dx.doi.org/10.1029/2023GL104039>

732 56. Douville, H., Willett, K. (2023) A drier than expected future, supported by near-surface
733 relative humidity observations. *Sc. Adv.*, 9, ade6253, <https://doi.org/10.1126/sciadv.ade6253>

734 57. Eller, C.B., Rowland, L., Mencuccini, M., Rosas, T., Williams, K., et al. (2020) Stomatal
735 optimization based on xylem hydraulics (SOX) improves land surface model simulation of
736 vegetation responses to climate. *New Phytol*, 226, 1622-1637, <https://doi.org/10.1111/nph.16419>

737 58. Ellison, D. N., Futter, M., Bishop, K. (2012) On the forest cover–water yield debate: From
738 demand-to supply-side thinking. *Glob. Change Biol.*, 18(3), 806–820

739 59. Fang, Y., Leung, L.R., Koven, C.D., Bisht, G., Detto, M., Cheng, Y., McDowell, N.,
740 Muller-Landau, H., Wright, S.J. and Chambers, J.Q. (2022) Modeling the topographic influence on

63 *Confidential manuscript*

741 aboveground biomass using a coupled model of hillslope hydrology and ecosystem dynamics.

742 *Geosci. Model Dev.*, 15(20), 7879-7901

743 60. Fatichi, S., Paschalis, A., Bonetti, S., Manoli, G., Pappas, C. (2023) Water Use Efficiency:

744 A review of spatial and temporal variability. *Chapter in the Encyclopedia of Soils in the*

745 *Environment*, Second Edition, 5, 527-542, <https://doi.org/10.1016/B978-0-12-822974-3.00166-X>

746 61. Fisher, R.A., et al. (2017) Vegetation demographics in Earth System Models: A review of

747 progress and priorities. *Glob. Change Biol.*, doi:10.1111/gcb.13910

748 62. Franks, P.J., Berry, J.A., Lombardozzi, D.L., Bonan, G.B. (2017) Stomatal Function across

749 Temporal and Spatial Scales: Deep-Time Trends, Land-Atmosphere Coupling and Global Models.

750 *Plant Physiol.*, 174, 583-602

751 63. Friedlingstein, P. (2015) Carbon cycle feedbacks and future climate change. *Philosophical*

752 *Trans. R. Soc. A*, <https://doi.org/10.1098/rsta.2014.0421>

753 64. Friedlingstein, P., M. Allen, J.G. Canadell, G.P. Peters, S.I. Seneviratne. Comment on “The

754 global tree restoration potential”. *Science*, 10.1126/science.aay8060 (2019)

755 65. Friedlingstein, P., et al. (2022) Global Carbon Budget 2022, *Earth Syst. Sci. Data*, 14, 4811–

756 4900, <https://doi.org/10.5194/essd-14-4811-2022>

757 66. Fu, R., Yin, L., Li, W., Myneni, R.B. (2013) Increased dry-season length over southern

758 Amazonia in recent decades and its implication for future climate projection. *P. Natl. Acad. Sci.*

759 *USA*, 110 (45), 18110-18115, <https://doi.org/10.1073/pnas.1302584110>

760 67. Gatti, L.V., et al. (2021) Amazonia as a carbon source linked to deforestation and climate

761 change. *Nature*, 595, 388–393

762 68. Ghosh, S. (2023) Planting trees alone won’t solve the climate crisis. *Nature*,

763 <https://www.nature.com/articles/d44151-023-00166-1>

65 65. *Confidential manuscript*

764 69. Giardina, F., Padrón, R.S., Stocker, B.D., Schumacher, D.L., Seneviratne, S.I. (2024) Dry
765 biases in land water storage and excessive soil moisture limitation in CMIP6 models. *Research*
766 *Square Preprint*, <https://doi.org/10.21203/rs.3.rs-4086740/v1>

767 70. Gier, B.K., Schlund, M., Friedlingstein, P., Jones, C.D., Jones, C., Zaehle, S., Eyring, V.
768 (2024) Representation of the Terrestrial Carbon Cycle in CMIP6. *arXiv Preprint*,
769 <https://arxiv.org/abs/2402.05671>

770 71. Guilbert, M., Terray, P., Mignot, J. (2023) Intermodel spread of historical Indian monsoon
771 rainfall change in CMIP6: The role of the tropical Pacific mean-state. *J. Climate*, doi:10.1175/JCLI-
772 D-22-0585.1

773 72. Guimberteau, et al. (2017) Impacts of future deforestation and climate change on the
774 hydrology of the Amazon Basin: a multi-model analysis with a new set of land-cover change
775 scenarios. *Hydrol. Earth Syst. Sci.*, 21, 1455–1475, doi:10.5194/hess-21-1455-2017

776 73. Hartmann, H., et al. (2022) Climate Change Risks to Global Forest Health: Emergence of
777 Unexpected Events of Elevated Tree Mortality Worldwide. *Annu. Rev. Plant Biol.*, 73, 673–702,
778 <https://doi.org/10.1146/annurev-arplant-102820-012804>

779 74. Herman, R.J., Biasutti, M., Kushnir, Y. (2023) Drivers of low-frequency Sahel precipitation
780 variability: comparing CMIP5 and CMIP6 ensemble means with observations. *Climate Dynamics*,
781 61, 4449–4470, <https://doi.org/10.1007/s00382-023-06755-1>

782 75. Hoek van Dijke, A.J. et al. (2022) Shifts in regional water availability due to global tree
783 restoration. *Nature Geoscience*, 15, 363–368, <https://doi.org/10.1038/s41561-022-00935-0>

784 76. Huang, J., Yu, H., Guan, X., Wang, G., Guo, R. (2015) Accelerated dryland expansion
785 under climate change. *Nature Climate Change*, doi:10.1038/NCLIMATE2837

67 67. Confidential manuscript

786 77. Humphrey, V., Zscheischler, J., Ciais, P., Gudmundsson, L., Sitch, S. & Seneviratne, S.I.

787 (2018) Sensitivity of atmospheric CO₂ growth rate to observed changes in terrestrial water storage.

788 Nature, 560, 628-631, <https://doi.org/10.1038/s41586-018-0424-4>.

789 78. IPCC, 2022: Summary for Policymakers [P.R. Shukla, J. Skea, A. Reisinger, R. Slade, R.

790 Fradera, M. Pathak, A. Al Khourdajie, M. Belkacemi, R. van Diemen, A. Hasija, G. Lisboa, S. Luz,

791 J. Malley, D. McCollum, S. Some, P. Vyas, (eds.)]. In: Climate Change 2022: Mitigation of Climate

792 Change. Contribution of Working Group III to the Sixth Assessment Report of the

793 Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R.

794 van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G.

795 Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York,

796 NY, USA. doi: 10.1017/9781009157926.001

797 79. Jackson, L.S., et al. (2020) The effect of explicit convection on couplings between rainfall,

798 humidity and ascent over Africa under climate change. *J. Climate*, doi:10.1175/JCLI-D-19-0322.1

799 80. Joetzjer E., H. Douville, C. Delire (2013) Present-day and future Amazonian precipitation in

800 global climate models: CMIP5 versus CMIP3. *Clim. Dyn.*, doi:10.1007/s00382-012-1644-1

801 81. Jones, M.W., Abatzoglou, J.T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., et al.

802 (2022) Global and regional trends and drivers of fire under climate change. *Reviews of Geophysics*,

803 60, e2020RG000726. <https://doi.org/10.1029/2020RG000726>

804 82. Kaushal, S.S., Gold, A.J., Mayer, P.M. (2017) Land Use, Climate, and Water Resources —

805 Global Stages of Interaction. *Water*, 9, 815; doi:10.3390/w9100815

806 83. Kennedy, D., Swenson, S., Oleson, K.W., Lawrence, D.M., Fisher, R., Lola da Costa, A.C.

807 and Gentine, P. (2019) Implementing plant hydraulics in the community land model, version 5.

808 Journal of Advances in Modeling Earth Systems, 11(2), 485-513

69 Confidential manuscript

809 84. Knutti, R., Sedláček, J., Sanderson, B.M., Lorenz, R., Fischer, E.M. and Eyring, V. (2017)

810 A climate model projection weighting scheme accounting for performance and interdependence.

811 *Geophys. Res. Lett.*, 44, 1909–1918.

812 85. Koch, A., Brierley, C. and Lewis, S.L. (2021a) Effects of Earth system feedbacks on the

813 potential mitigation of large-scale tropical forest restoration. *Biogeosciences*, 18(8), 2627-2647

814 86. Koch, A., Hubau, W., & Lewis, S. L. (2021b) Earth System Models are not capturing

815 present-day tropical forest carbon dynamics. *Earth's Future*, 9, e2020EF001874.

816 <https://doi.org/10.1029/2020EF001874>

817 87.

818 88. Laguë, M.M., Bonan, G.B., Swann, A.L.S. (2019) Separating the Impact of Individual Land

819 Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled

820 Land–Atmosphere System. *J. Climate*, 32, 5725–5744, <https://doi.org/10.1175/JCLI-D-18-0812.1>

821 89. Lavergne, A, Graven, H, De Kauwe, MG, et al. (2019) Observed and modelled historical

822 trends in the water-use efficiency of plants and ecosystems. *Glob. Change Biol.*, 25, 2242-2257

823 90.

824 91. Leite-Filho, A.T., de Sousa Pontes, V.Y., Costa, M.H. (2019). Effects of deforestation on

825 the onset of the rainy season and the duration of dry spells in southern Amazonia. *J. Geophys. Res.: Atmospheres*, 124, 5268–5281, <https://doi.org/10.1029/2018JD02953>

827 92. Lemordant, L., P. Gentine, A.S. Swann, B.I. Cook, and J. Scheff (2018) Critical impact of

828 vegetation physiology on the continental hydrologic cycle in response to increasing CO₂. *Proc. Nat.*

829 *Acad. Sciences*, 115(16), 4093–4098, doi:10.1073/pnas.1720712115

830 93. Lenton, T. M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson, K., Steffen, W., &

831 Schellnhuber, H. J. (2019). Climate tipping points — Too risky to bet against. *Nature*, 575(7784),

832 592–595, <https://doi.org/10.1038/d41586-019-03595-0>

71 Confidential manuscript

833 94. Lewis, S.L., Mitchard, E.T.A., Prentice, C., Maslin, M., Poulter, B. (2019) Comment on

834 "The global tree restoration potential". *Science*, doi:10.1126/science.aaz0388

835 95. Li, J., Duan, Q., Wang, Y-P., Gong, W., Gan, Y., Wang, C. (2018) Parameter optimization

836 for carbon and water fluxes in two global land surface models based on surrogate modelling. *Int. J.*

837 *Climatol.*, 38, e1016–e1031

838 96. Li., Y., Piao, S., Li, L.Z.X., Chen, A., Wang, X., et al. (2018) Divergent hydrological

839 response to large-scale afforestation and vegetation greening in China. *Sc. Adv.*, 4, eaar4182

840 97. Li, Y., Baker, J.C.A., Brando, P.M., Hoffman, F.M., Lawrence, D.M., et al. (2023a) Future

841 increases in Amazonia water stress from CO₂ physiology and deforestation. *Nature Water*, 1, 769-

842 777, <https://doi.org/10.1038/s44221-023-00128-y>

843 98. Li, F., Xiao, J., Chen, J., Ballantyne, A., Jin, K., et al. (2023b) Global water use efficiency

844 saturation due to increased vapor pressure deficit. *Science*, 381, 672-677

845 99. Li, H. et al. (2023c) Afforestation triggers water mining and a single pulse of water for

846 carbon trade-off in deep soil. *Agriculture, Ecosystems and Environment*, 356, 108655

847 100. Lozano-Baez, S.E et al. (2019) Land restoration by tree planting in the tropics and

848 subtropics improves soil infiltration, but some critical gaps still hinder conclusive results. *Forest*

849 *Ecology and Management*, 444, 89-95

850 101. Lu, C., Zhao, T., Shi, X. Cao, S. (2018) Ecological restoration by afforestation may increase

851 groundwater depth and create potentially large ecological and water opportunity costs in arid and

852 semiarid China. *J. Cleaner Prod.*, 176, 1213-1222, <https://doi.org/10.1016/j.jclepro.2016.03.046>

853 102. Lu, Z., Miller, P. A., Zhang, Q., Zhang, Q., Wårldin, D., Nieradzik, L., et al. (2018) Dynamic

854 vegetation simulations of the mid-Holocene Green Sahara. *Geophys. Res. Lett.*, 45, 8294-8303,

855 <https://doi.org/10.1029/2018GL07919>

73 *Confidential manuscript*

856 103. Luo, X., Ge, J., Cao, Y., Liu, Y., Yang, L., Wang, S., & Guo, W. (2024). Local and nonlocal
857 biophysical effects of historical land use and land cover changes in CMIP6 models and the
858 intermodel uncertainty. *Earth's Future*, 12, e2023EF004220,
859 <https://doi.org/10.1029/2023EF004220>

860 Lyons, K. & Westoby, P. (2014) Carbon colonialism and
861 the new land grab: Plantation forestry in Uganda and its livelihood impacts. *Journal of Rural
Studies*, 36, 13-21

862 104. McDowell, N., et al. (2018) Drivers and mechanisms of tree mortality in moist tropical
863 forests. *New Phytol.*, 219, 851–869

864 105. Makarieva, A.M. & Gorshkov, V.G. (2007) Biotic pump of atmospheric moisture as driver
865 of the hydrological cycle on land. *Hydrol. Earth Syst. Sci.*, 11, 1013–1033

866 106. Makarieva, A.M, Nefiodov, A.V., Nobre, A.D., Baudena, M., Bardi, U., Sheil, D., Saleska,
867 S.R., Molina, R.D., Rammig, A. (2023) The role of ecosystem transpiration in creating alternate
868 moisture regimes by influencing atmospheric moisture convergence. *Glob. Change Biol.*, 29, 2536–
869 2556

870 107. Makarieva, A.M. , Nefiodov, A.V., Rammig, A., Nobre, A.D. (2024) Re-appraisal of the
871 global climatic role of natural forests for improved climate projections and policies.
872 <https://arxiv.org/abs/2301.09998> (submitted)

873 108. Malhi, Y., Aragão, L.E.O.C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P.,
874 Sitch, S., McSweeney, C., and Meir, P. (2009) Exploring the likelihood and mechanism of a
875 climate-change-induced dieback of the Amazon rainforest, *P. Natl. Acad. Sci. USA*, 106, 20610–
876 20615, <https://doi.org/10.1073/pnas.0804619106>

877 109. Marthews, T. R., Dadson, S. J., Clark, D. B., Blyth, E. M., Hayman, G. D., Yamazaki, D.,
878 Becher, O. R. E., Martínez-de la Torre, A., Prigent, C., and Jiménez, C. (2022) Inundation
879 prediction in tropical wetlands from JULES-CaMa-Flood global land surface simulations, *Hydrol.
880 Earth Syst. Sci.*, 26, 3151-3175, <https://doi.org/10.5194/hess-26-3151-2022>

75 *Confidential manuscript*

881 110. Meesters, A.G.C.A., Dolman, A.J., and Bruijnzeel, L.A. (2009) Comment on "Biotic pump
882 of atmospheric moisture as driver of the hydrological cycle on land" by A. M. Makarieva and V. G.
883 Gorshkov, *Hydrol. Earth Syst. Sci.*, 13, 1299–1305, <https://doi.org/10.5194/hess-13-1299-2009>

884 111. Molina, R.D., Salazar, J.F., Martínez, J.A., Villegas, J.C., & Arias, P.A. (2019). Forest-
885 induced exponential growth of precipitation along climatological wind streamlines over the
886 Amazon. *J. Geophys. Res.:Atmos.*, 124, 2589–2599, <https://doi.org/10.1029/2018JD029534>

887 112. Monerie, P.-A., C.M. Wainwright, M. Sidibe, and A.A. Akinsanola (2020) Model
888 uncertainties in climate change impacts on Sahel precipitation in ensembles of CMIP5 and CMIP6
889 simulations. *Climate Dynamics*, 55, 1385–1401, doi:10.1007/s00382-020-05332-0

890 113. Montibeller, B., Marshall., M., Mander, U., Uuemaa, E. (2022) Increased carbon
891 assimilation and efficient water usage may not compensate for carbon loss in European forests,
892 *Comm. Earth Env.*, 3, 194, <https://doi.org/10.1038/s43247-022-00535-1>

893 114.

894 115. Navarro, R. (2022) Climate Finance and Neo-colonialism: Exposing Hidden Dynamics. In:
895 Cash, C., Swatuk, L.A. (eds) *The Political Economy of Climate Finance: Lessons from
896 International Development*. International Political Economy Series. Palgrave Macmillan, Cham.
897 <https://doi.org/10.1007/978-3-031-12619-2-8>

898 116. Pan, N., Feng, X., Fu, B., Wang, S. Ji, F., Pan, S. (2018) Increasing global vegetation
899 browning hidden in overall vegetation greening: Insights from time-varying trends. *Remote Sensing
900 of Environment*, 214, 59-72

901 117. Parry, I.M., P.D.L. Ritchie, and P.M. Cox (2022) Evidence of localised Amazon rainforest
902 dieback in CMIP6 models. *Earth Syst. Dynam.*, 13, 1667–1675, <https://doi.org/10.5194/esd-13-1667-2022>

77 *Confidential manuscript*

904 118. Peng, J., Dan, L., Yang, F., Tang, X., & Wang, D. (2021). Global and regional estimation of
905 carbon uptake using CMIP6 ESM compared with TRENDY ensembles at the centennial scale.
906 *Journal of Geophys. Res. Atmos.*, 126, e2021JD035135, <https://doi.org/10.1029/2021JD035135>

907 119. Polcher, J., Schrapffer, A., Dupont, E., Rinchiuso, L., Zhou, X., Boucher, O., Mouche, E.,
908 Ottlé, C., and Servonnat, J. (2023) Hydrological modelling on atmospheric grids: using graphs of
909 sub-grid elements to transport energy and water, *Geosci. Model Dev.*, 16, 2583–2606,
910 <https://doi.org/10.5194/gmd-16-2583-2023>

911 120. Qiu, H., Bisht, G., Li, L., Hao, D., and Xu, D. (2024) Development of inter-grid-cell lateral
912 unsaturated and saturated flow model in the E3SM Land Model (v2.0), *Geosci. Model Dev.*, 17,
913 143-167, <https://doi.org/10.5194/gmd-17-143-2024>

914 121. Ribes, A., Qasmi, S., Gillett, N. (2021) Making climate projections conditional on historical
915 observations. *Science Advances*, 7, eabc0671

916 122. Richards, C. & Lyons, K. (2016) The new corporate enclosures: Plantation forestry, carbon
917 markets and the limits of financialised solutions to the climate crisis. *Land Use Policy*, 56, 209-216

918 123. Robock, A. (2016) Albedo enhancement by stratospheric sulfur injections: More research
919 needed. *Earth's Future*, 4, doi:10.1002/2016EF000407

920 124. Rocha, M. et al. (2024) From Earth System Models to Integrated Assessment Models:
921 Bridging the gap in climate modelling. ESM 2024 Research highlights,
922 <https://www.esm2025.eu/esm-iam-framework/>

923 125. Rodríguez-Catón, M., Villalba, R., Morales, M. and Srur A. (2016) Influence of droughts on
924 Nothofagus pumilio forest decline across northern Patagonia. *Ecosphere*, 7(7), e01390

925 126. Roe, S., et al. (2021a) Contribution of the land sector to a 1.5 °C world. *Nature Climate
926 Change*, <https://doi.org/10.1038/s41558-019-0591-9>

79 79 Confidential manuscript

927 127. Roe, S., Streck, C., Beach, R., Busch, J., Chapman, M., Daioglou, V., Deppermann, A.,

928 Doelman, J., Emmet-Booth, J., Engelmann, J. and Fricko, O. (2021b) Land-based measures to

929 mitigate climate change: Potential and feasibility by country. *Glob. Change Biol.*, 27(23), 6025-

930 6058.

931 128. Ruiz-Vasquez, M., Arias, P.A., Martínez, J.A., Espinoza, J.C (2020) Effects of Amazon

932 basin deforestation on regional atmospheric circulation and water vapor transport towards tropical

933 South America. *Climate Dynamics*, 54, 4169–4189

934 129. Sanderson, B.M. et al. (2021) The potential for structural errors in emergent constraints.

935 *Earth Syst. Dynam.*, 12, 899–918

936 130. Sanderson, B.M. et al. (2023) The need for carbon emissions-driven climate projections in

937 CMIP7. *EGU Preprint Discusion*, <https://doi.org/10.5194/egusphere-2023-2127>

938 131. Schrapffer, A., Sörensson, A., Polcher, J. et al. (2020) Benefits of representing floodplains

939 in a Land Surface Model: Pantanal simulated with ORCHIDEE CMIP6 version. *Clim. Dyn.*, 55,

940 1303–1323, <https://doi.org/10.1007/s00382-020-05324-0>

941 132. Schröder, J.M., Ávila Rodríguez, L.P., Günter, S. (2021) Research trends: Tropical dry

942 forests: The neglected research agenda? *For. Policy Econ.*, 122, 102333

943 133. Schucknecht, A., Meroni, M., Rembold, F. (2016) Monitoring project impact on biomass

944 increase in the context of the Great Green Wall for the Sahara and Sahel Initiative in Senegal, *EUR*

945 28020, doi:10.2788/639268

946 134. Schurer, A.P., Ballinger, A.P., Friedman, A.R., Hegerl, G.C., (2020) Human influence

947 strengthens the contrast between tropical wet and dry regions. *Environ. Res. Lett.*, 15, 104026

948 135. Schwärzel, K.; Zhang, L., Montanarella, L., Wang, Y., Sun, G. (2020) How afforestation

949 affects the water cycle in drylands: A process-based comparative analysis. *Glob. Change Biol.*, 26,

950 944-959, doi:10.1111/gcb.14875

81 81 Confidential manuscript

951 136. Seddon N, Smith A, Smith P, et al. 2021. Getting the message right on nature-based
952 solutions to climate change. *Glob. Change Biol.*, 27, 1518–1546.

953 137. Séférian, R., Rocher, M., Guivarch, C., Colin, J. (2018) Constraints on biomass energy
954 deployment in mitigation pathways: the case of water scarcity. *Environ. Res. Lett.*, 13, 054011,
955 <https://doi.org/10.1088/1748-9326/aabcd7>

956 138. Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., et al. (2010) Investigating
957 soil moisture–climate interactions in a changing climate: A review. *Earth-Science Reviews*, 99, 125–
958 161

959 139. Seneviratne, S.I., X. Zhang, M. Adnan, W. Badi, C. Dereczynski, A. Di Luca, S. Ghosh, I.
960 Iskandar, J. Kossin, S. Lewis, F. Otto, I. Pinto, M. Satoh, S.M. Vicente-Serrano, M. Wehner, and B.
961 Zhou, 2021: Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021:
962 The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of
963 the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L.
964 Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E.
965 Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)].
966 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1513–
967 1766, doi:10.1017/9781009157896.013.

968 140. Simpson, I.R. , McKinnon, K.A., Kennedy, D., Lawrence, D.M., Lehner, F., Seager, R.
969 (2023) Observed humidity trends in dry regions contradict climate models. *P. Natl. Acad. Sci. USA*,
970 in press

971 141. Singh, A., Kumar, S., Akula, S., Lawrence, D. M., & Lombardozzi, D. L. (2020) Plant
972 growth nullifies the effect of increased water-use efficiency on streamflow under elevated CO₂ in
973 the Southeastern United States. *Geophys. Res. Lett.*, 47, e2019GL086940.
974 <https://doi.org/10.1029/2019GL086940>

83 83 Confidential manuscript

975 142. Smiatek, G., Kuntzmann, H. (2023) Potential Impact of the Pan-African Great Green Wall

976 on Sahelian Summer Precipitation: A Global Modeling Approach with MPAS. *Earth Interactions*,

977 2, e220013, doi:10.1175/EI-D-22-0013.1

978 143.

979 144. Song, Y., Penuelas, J., Ciais, P., Wang, S., Zhang, Y., Gentile, P., et al. (2024). Recent

980 water constraints mediate the dominance of climate and atmospheric CO₂ on vegetation growth

981 across China. *Earth's Future*, 12, e2023EF004395, <https://doi.org/10.1029/2023EF004395>

982 145. Spracklen, D. and Garcia-Carreras, L. (2015) The impact of Amazonian deforestation on

983 Amazon basin rainfall. *Geophys. Res. Lett.*, 42, 9546–9552, doi:10.1002/2015gl066063

984 146. Staal, A., Theeuwen, J.J.E., Wang-Erlandsson, L., Wunderling, N., Dekker, S.C. (2023)

985 Targeted rainfall enhancement as an objective of forestation. *Glob. Change Biol.*, 30:e17096,

986 <https://doi.org/10.1111/gcb.17096>

987 147. Strandberg, G., Kjellström, E. (2019) Climate impacts from afforestation and deforestation.

988 *Earth Interactions*, 23, 1-27, doi: 10.1175/EI-D-17-0033.1

989 148. Sulman, B.N., Roman, D.T., Yi, K., Wang, L., Phillips, R.P., and Novick, K.A. (2016) High

990 atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry

991 soil, *Geophys. Res. Lett.*, 43, 9686–9695, doi:10.1002/2016GL069416.

992 149. Sutton, R.T. (2018) Ideas: a simple proposal to improve the contribution of IPCC WG1 to

993 the assessment and communication of climate change risks. *Earth Syst. Dynam. Discuss.*,

994 <https://doi.org/10.5194/esd-2018-36>

995 150. Swenson, S.C., Clark, M., Fan, Y., Lawrence, D.M. and Perket, J. (2019) Representing

996 intrahillslope lateral subsurface flow in the community land model. *Journal of Advances in*

997 *Modeling Earth Systems*, 11(12), 4044-4065

85 Confidential manuscript

998 151. Taylor, C.M., Lambin, E.F., Stephenne, N., Harding, R.J., Essery, R.L.H. (2002) The
999 Influence of Land Use Change on Climate in the Sahel. *J. Climate*, 15, 3615-3629

1000 152. Taylor, C.M., Klein, C., Parker, D.J., Harris, B.L. (2022) “Late-stage” deforestation
1001 enhances storm trends in coastal West Africa. *P. Natl. Acad. Sci. USA*, 119 (2) e2109285119,
1002 <https://doi.org/10.1073/pnas.2109285119>

1003 153. Taylor, S.D., Marconi, S. (2020) Rethinking global carbon storage potential of trees. A
1004 comment on Bastin et al. (2019). *Annals of Forest Science*, 77, 23, <https://doi.org/10.1007/s13595-020-0922-z>

1006 154. Teuling, A.J., et al. (2019) Climate change, reforestation/afforestation, and urbanization
1007 impacts on evapotranspiration and streamflow in Europe. *Hydrol. Earth Syst. Sci.*, 23, 3631–3652,
1008 <https://doi.org/10.5194/hess-23-3631-2019>

1009 155. Tuinenberg, O.A., Bosmans, J.H.C., Staal A. (2022) The global potential of forest
1010 restoration for drought mitigation. *Environ. Res. Lett.*, 17, 034045, <https://doi.org/10.1088/1748-9326/ac55b>

1012 156. Turner, M.D. et al. (2023) Great Green Walls: Hype, Myth, and Science. *Annu. Rev. Environ. Resour.*, 48, 263–287, <https://doi.org/10.1146/annurev-environ-112321-111102>

1014 157. Varney, R.M., Chadburn, S.E., Burke, E.J., Cox, P.M. (2022) Evaluation of soil carbon
1015 simulation in CMIP6 Earth system models. *Biogeosciences*, 19, 4671–4704,
1016 <https://doi.org/10.5194/bg-19-4671-2022>

1017 158. Veldman, J.W., et al. (2019) Comment on “The global tree restoration potential”. *Science*,
1018 doi:10.1126/science.aay7976

1019 159. Wainwright, C.M., Allan, R.P., & Black, E. (2022). Consistent trends in dry spell length in
1020 recent observations and future projections. *Geophys. Res. Lett.*, 49, e2021GL097231.
1021 <https://doi.org/10.1029/2021GL097231>

87 Confidential manuscript

1022 160. Wallis, P.J., et al. (2014) The water impacts of climate change mitigation measures.

1023 *Climatic Change*, 125, 209–220, doi:10.1007/s10584-014-1156-6

1024 161. Weng, E.S., Malyshev, S., Lichstein, J.W., Farrior, C.E., Dybzinski, R., Zhang, T.,

1025 Shevlakova, E. and Pacala, S.W. (2015) Scaling from individual trees to forests in an Earth system

1026 modeling framework using a mathematically tractable model of height-structured competition.

1027 *Biogeosciences*, 12(9), 2655-2694

1028 162. Willeit, M., Ganopolski, A., Feulner G. (2014) Asymmetry and uncertainties in

1029 biogeophysical climate–vegetation feedback over a range of CO₂ forcings. *Biogeosciences*, 11, 17–

1030 32, doi:10.5194/bg-11-17-2014

1031 163. Xu, T., Valocchi, A.J., Ye, M., Liang, F., Lin, Y.-F. (2017), Bayesian calibration of

1032 groundwater models with input data uncertainty, *Water Resour. Res.*, 53, 3224-3245,

1033 doi:10.1002/2016WR019512.

1034 164. Xu, C., McDowell, N.G., Fisher, R.A., Wei, L., Sevanto, S., Christoffersen, B.O., Weng, E.

1035 and Middleton, R.S. (2019) Increasing impacts of extreme droughts on vegetation productivity

1036 under climate change. *Nature Climate Change*, 9(12), 948-953

1037 165. Xu, C., Christoffersen, B., Robbins, Z., Knox, R., Fisher, R. A., Chitra-Tarak, R., Slot, M.,

1038 Solander, K., Kueppers, L., Koven, C., and McDowell, N. (2023) Quantification of hydraulic trait

1039 control on plant hydrodynamics and risk of hydraulic failure within a demographic structured

1040 vegetation model in a tropical forest (FATES–HYDRO V1.0), *Geosci. Model Dev.*, 16, 6267–6283,

1041 <https://doi.org/10.5194/gmd-16-6267-2023>

1042 166. Xu, W., Xia, X., Piao, S., Wu, D., Li, W., Yang, S., & Yuan, W. (2024) Weakened increase

1043 in global near-surface water vapor pressure during the last 20 years. *Geophys. Res. Lett.*, 51,

1044 e2023GL107909, <https://doi.org/10.1029/2023GL107909>

89 Confidential manuscript

1045 167. Yao Y, Wang X, Zeng Z, Liu Y, Peng S, Zhu Z, et al. (2016) The Effect of Afforestation on
1046 Soil Moisture Content in Northeastern China. *PLoS ONE* 11(8): e0160776.

1047 <https://doi.org/10.1371/journal.pone.0160776>

1048 168. Yao, Y., Joetzjer, E., Ciais, P., Viovy, N., Cresto Aleina, F., Chave, J., Sack, L., Bartlett,
1049 M., Meir, P., Fisher, R. and Luysaert, S. (2022) Forest fluxes and mortality response to drought:
1050 model description and evaluation at the Caxiuanã drought experiment. *Geosci. Model Dev.*, 15(20),
1051 7809-7833

1052 169. Yin, Z., Wang, X.H., Ottlé, C., Zhou, F., Guimberteau, M., Polcher, J., Peng, S.S., Piao,
1053 S.L., Li, L., Bo, Y. and Chen, X.L. (2020) Improvement of the irrigation scheme in the ORCHIDEE
1054 land surface model and impacts of irrigation on regional water budgets over China. *Journal of*
1055 *Advances in Modeling Earth Systems*, 12(4), p.e2019MS001770

1056 170. Zhang, Q., Ficklin, D., Manzoni, S., Wang, L., Way, D., Phillips, R.P., Novick, K.A. (2019)
1057 Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor
1058 pressure deficit. *Env. Res. Letters*, 14, 074023

1059 171. Zhang, A., et al. (2021) Water availability surpasses warmth in controlling global vegetation
1060 trends in recent decades revealed by satellite time series. *Environ. Res. Lett.*, 16, 074028

1061 172. Zhang, M., Wei, X. (2021) Deforestation, forestation, and water supply. A systematic
1062 approach helps to illuminate the complex forest-water nexus, *Science*, 371, 990-991,
1063 doi:10.1126/science.abe7821

1064 173. Zhang, W., Koch, J., Wei, F., Zeng, Z., Fang, Z., & Fensholt, R. (2023) Soil moisture and
1065 atmospheric aridity impact spatio-temporal changes in evapotranspiration at a global scale. *J.*
1066 *Geophys. Res.: Atmosphere*, 128, e2022JD038046, <https://doi.org/10.1029/2022JD038046>

91 *Confidential manuscript*

1067 174. Zhao, B., Zhuang, Q., Shurpali, N., Köster, K., Berninger, F., and Pumpanenet, J. (2021)

1068 North American boreal forests are a large carbon source due to wildfires from 1986 to 2016.

1069 *Scientific Reports*, 11, 7723, <https://doi.org/10.1038/s41598-021-87343-3>

1070 175. Zhao, D., Zhang, Z., & Zhang, Y. (2023) Soil moisture dominates the forest productivity

1071 decline during the 2022 China compound drought-heatwave event. *Geophys. Res. Lett.*, 50,

1072 e2023GL104539. <https://doi.org/10.1029/2023GL104539>

1073 176. Zuidema, P.A., Babst, F., Groenendijk, P. et al. (2022) Tropical tree growth driven by dry-

1074 season climate variability. *Nat. Geosci.*, 15, 269–276, <https://doi.org/10.1038/s41561-022-00911-8>

1075 **List of figures:**

1076 **Figure 1:** Spatial patterns of annual precipitation responses (mm/year) to an idealized global
1077 deforestation scenario across nine CMIP6 Earth System Models. Only statistically significant
1078 changes are shown. Contours depict the model-dependent although broadly similar areas of
1079 deforestation (Source: Boysen et al., 2020).

1080 **Figure 2:** Effect of tropical land-use stop and secondary succession on cumulative global carbon
1081 fluxes (2006–2100 CE) in (a) control, (b) restoration, and (c) cumulative difference between
1082 restoration and control simulation for land–atmosphere flux (F_{LA} , green), ocean-atmosphere flux
1083 (F_{OCN} , blue), deforestation emissions (E_{LUC} , brown), atmospheric carbon (F_A , orange), and fossil fuel
1084 emissions (E_{FF} , grey). The difference in fossil fuel emissions is zero and not plotted. Dashed line
1085 indicates zero; fluxes below zero indicate a carbon benefit in the restoration simulation with respect
1086 to the control simulation. Note the different vertical scales (Source: Koch et al., 2021a).

1087 **Figure 3:** Area weighted average of 12 month running-mean near surface relative humidity
1088 anomalies (%) relative to the 1980-1990 climatology over global arid and semi-arid regions. Black
1089 shows ERA5, purple shows the CMIP6 ensemble mean, the pink range shows the 2.5th to 97.5th
1090 percentile range across all the members from all models for CMIP6, maroon dashed shows the
1091 LENS2 ensemble mean, blue solid shows the AMIP6 ensemble mean, the light blue shading shows
1092 the 2.5th to 97.5th percentile range across all AMIP members from all models and blue dashing
1093 shows another ensemble mean based on a single model ensemble driven by observed sea surface
1094 temperatures (Source: Simpson et al., 2023).

1095 **Figure 4:** Schematic on approaches to explicitly characterize and reduce the myriad uncertainties in
1096 assessments of the hydrologic impacts of climate change and the development of representative
1097 quantitative hydrologic storylines for specific applications (Source: Clark et al., 2016).

1098 **Figure 5:** Break-off and decline of the global mean growing season integrated LAI from around
1099 2001, as diagnosed after averaging across three remote sensing data sets (AVHRR, GIMMS3g and
1100 GLASS) for the period 1982–2018 (Source: Chen et al., 2022).