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Abstract: Satellite rainfall estimates (SREs) play a crucial role in weather monitoring, forecasting

and modeling, particularly in regions where ground-based observations may be limited. This study

presents a comprehensive evaluation of three commonly used SREs—African Rainfall Climatology

version 2 (ARC2), Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) and

Tropical Application of Meteorology using SATellite data and ground-based observation (TAMSAT)—

with respect to their performance in detecting rainfall patterns in Nigeria at daily scales from 2002

to 2022. Observed data obtained from the Nigeria Meteorological Agency (NiMet) are used as

reference data. Evaluation metrics such as correlation coefficient, root mean square error, mean error,

bias, probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) are

employed to assess the performance of the SREs. The results show that all the SREs exhibit low bias

during the major rainfall season from May to October, and the products significantly overestimate

observed rainfall during the dry period from November to March in the Sahel and Savannah Zones.

Similarly, over the Guinea Zone, all the products indicate overestimation in the dry season. The

underperformance of SREs in dry seasons could be attributed to the rainfall retrieval algorithms,

intensity of rainfall occurrence and spatial-temporal resolution. These factors could potentially lead

to the accuracy of the rainfall retrieval being reduced due to intense stratiform clouds. However, all

the SREs indicated better detection capabilities and less false alarms during the wet season than in

dry periods. CHIRPS and TAMSAT exhibited high POD and CSI values with the least FAR across

agro-climatic zones during dry periods. Generally, CHIRPS turned out to be the best SRE and, as

such, would provide a useful dataset for research and operational use in Nigeria.

Keywords: evaluation; satellite rainfall estimates; gauge observation; Nigeria; West Africa

1. Introduction

Satellite rainfall estimates (SREs) play an important role in weather monitoring, climate
research, modeling and forecasting [1]. Changes in climate due to human activities have
increased the frequency of hydrological extremes, such as floods and droughts, since
1980 globally, including in West Africa [2]. This has precipitated socioeconomic losses for
vulnerable communities and resulted in the deaths of humans and livestock [3,4]. This
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is because the communities located here are largely subsistence farmers dependent on
rain-fed agriculture with only limited access to mechanization [5]. The sparseness of gauge
networks has reduced the quality and precision of early warning systems, forecasting
and modeling which will otherwise provide vital climate information services to the local
communities [6]. A reliable and accurate alternative SRE dataset is essential to enable better
weather and climate operations.

Evaluating SRE data is a prerequisite for understanding its accuracy and reliability [6].
Numerous studies have been carried out to evaluate the performance of SREs [7–10].
Aghakouchak et al. (2011) [1] evaluated CMORPH, PERSIAN, TMPA-V6, TMPA-RT and
Stage IV in the Central United States (USA). They concluded that none of these products
could be considered to be perfect for detecting rainfall events, and also noted that as the
choice of extreme rainfall threshold increased, the products tended to worsen. Mekonnen
et al. (2021) [11] evaluated different SREs over the high and low land regions of the upper
wash basin, Ethiopia. They discovered that the SREs exhibited better skills in the highland
areas of Ethiopia than in the lowlands. This agrees with other studies [12–16] which have
also noted that the performance of SREs is highly influenced by the climatic conditions
and topography of the studied region. In addition, several studies [2,17–21] evaluated
the accuracy of various satellite rainfall estimates against rain gauge observation over
Nigeria. These studies found that the spatial and temporal skills of these SREs vary across
the agro-climatic zones. Moreover, Usman et al. (2018) [22] assessed the ability of ARC2,
CHIRPS, TAMSAT, TARCAT and TRMM to reproduce rainfall trends during the period
1981–2015 over the northern part of Nigeria. Their study discovered that CHIRPS gave
the best estimate in terms of providing reliable estimates of daily, decadal, monthly and
seasonal rainfall amount. Over southwestern Nigeria, Akinyemi et al. (2020) [18] compared
the SREs with rain gauge observations from 1998 to 2016, and the results showed a high
correlation between the SREs and the rain gauge observation.

The aforementioned studies that have evaluated SREs in Nigeria mainly focus on the
evaluation of the SREs’ performances. However, none of the previous studies evaluated
their accuracy or assessed the rainfall detection capability of these SREs in Nigeria. This
study addresses this gap by also providing a guide to choosing a satellite-based rainfall
estimate that best captures rainfall patterns in different agro-climatic zones of Nigeria, as
operational monitoring of extreme events and forecasting of rainfall are primary concerns
that support decision making related to effectively managing agricultural services in Nigeria.
Directly addressing this need, the study evaluates SREs from the three most commonly used
satellite-based datasets, NOAA ARC2 (0.1◦ × 0.1◦), CHIRPS (0.05◦ × 0.05◦) and TAMSAT
(0.0375◦ × 0.0375◦), against ground-based rainfall observations from 2002 to 2022. These SREs
are currently in use in West African countries, including Nigeria.

This study identifies candidate rainfall dataset(s) for operational monitoring and re-
search, and assesses the performance of the SREs’ detection abilities. Quantitative statistics
measures such as correlation (r), root mean square error (RMSE), bias, mean error (ME), the
false alarm ratio (FAR), the probability of detection (POD) and the critical success index
(CSI) were used in this study [23–25]. This paper is organized into five sections. After the
introduction, the second section is about the data and methods used. The third section
is devoted to results. The fourth section is a discussion of the findings and suggestions
for future research to improve the effectiveness of climate information services in order to
support smallholder farmers in Nigeria. The fifth section is a conclusion.

2. Data and Methods

2.1. Datasets

2.1.1. Satellite-Based Rainfall Estimates (SREs)

The three SREs considered here are the National Oceanic and Atmospheric Adminis-
tration (NOAA) ARC2 (0.1◦ × 0.1◦), University of California, Santa Barbara (UCSB) Climate
Hazards Center (CHC) CHIRPS (0.05◦ × 0.05◦) and the University of Reading’s TAMSAT
(0.0375◦ × 0.0375◦)) datasets.
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African Rainfall Climatology version 2 (ARC2) is a daily estimate with historical
records from 1983 to the present and a spatial resolution of 0.1◦ [26]. ARC2 has been
developed to help solve challenging issues surrounding short-term temporal rainfall time
series in Africa. The algorithm of the ARC2 dataset uses 3-hourly thermal infrared (TIR)
temperature brightness and a 235 K threshold for the assessment of rain clouds. The TIR
satellite image is used to calculate cold cloud duration (CCD) based on threshold and the
conversion of CCD to rainfall is made using simple linear relationships. The dataset can be
accessed at ftp.cpc.ncep.noaa.gov (accessed on 10 July 2023).

The full details of the Climate Hazards Center InfraRed Precipitation with Station
data (CHIRPS) are described in [27–29]. The CHIRPS product is a blended rainfall dataset
that combines satellite data from several instruments with gauge observation from WMO’s
GTS and other sources. The CHIRPS is quasi-global (covering latitude 50◦S–50◦N and
longitude 180◦E–180◦W), at the daily, pentadal (5-days) and dekadal (10-days) scale, with
historical data from 1981 to the present and a spatial resolution of 0.05◦. It can be accessed
at https://www.chc.ucsb.edu/data/chirps (accessed on 10 July 2023).

The Tropical Application of Meteorology using SATellite data and ground-based obser-
vation (TAMSAT) is a satellite rainfall estimator, produced operationally at the University
of Reading, United Kingdom [30,31]. TAMSAT products have a spatial resolution of 0.0375◦

and cover the period from 1983 to the present. The TAMSAT method is based on the
assumption that raining clouds are identified by the temperature of cold-cloud-top tropi-
cal storms [29] as derived from Meteosat thermal infrared images. Cold cloud duration
(CCD) is then calibrated against historical gauge observation to generate seasonal and
spatial calibration parameters. The TAMSAT algorithm is locally calibrated using gauge
observations from most African countries. Like CHIRPS, TAMSAT uses gauges for bias
adjustment and is also available at daily, pentad, and dekadal time steps. It can be accessed
at https://www.tamsat.org.uk/data/ (accessed on 20 July 2023).

2.1.2. Rain Gauge Observations

Twenty-one years (2002–2022) of daily rain gauge observations were obtained from
the archive of Nigeria’s Meteorological Agency (NiMet) for 42 stations that are spatially
distributed across the country (Figure 1). The records for 30, 4, 6 and 2 stations date back to
the 1950, 1976, 1981 and 1997, respectively. Gauge station observations were collected in
ASCII format and the stations are distributed over the region between 4.3◦–13.8◦N latitude
and 3.42◦E–14.3◦E longitude. The data were carefully quality-controlled and validated by
NiMet’s data management unit (DMU) in line with WMO guidelines [32].

2.2. Methodology

The SREs evaluation in this study is based on three different agro-climatic zones,
defined according to rainfall characteristics of the 42 rain gauge stations in Nigeria.

The Nigerian climate is characterized by two seasons: a long wet season with the
majority of rainfall and a dry season with low or no rainfall [33]. The two seasons are
influenced by the southwesterly and northeasterly winds [34]. However, rainfall in Nigeria
is not uniform, the Guinea Zone receives the most rainfall followed by the Savannah Zone
then the Sahel Zone [2,35]. Due to the sudden and non-linear latitudinal shift of rainfall
from 5◦N to 10◦N, the Guinea and the Savannah Zones are characterized as bimodal
rainy seasons [2], while for the Sahel Zone, this process sets the stage for the unimodal
rainy season from June to October. The rainfall season goes from March to May (MAM),
June to August (JJA) and September to November (SON) over the Guinea and Savannah
Zones while July to September (JAS) is characterized as the peak rainfall period in the
Sahel Zone. Moreover, June to September (JJAS) is the period in which all the zones
experience widespread rainfall events as a result of more convective activities followed by
deep monsoon flow.

https://www.chc.ucsb.edu/data/chirps
https://www.tamsat.org.uk/data/
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2.2.1. Evaluation Metrics

We extracted daily satellite rainfall pixel values for the locations corresponding to
each rain gauge station (point-to-pixel) from 2002 to 2022 using the coordinates of the
42 gauge stations. This approach has been used by other studies [2,11,14,36,37] to evaluate
the performance of SREs, especially in areas with poor gauge stations. A caveat is that this
approach could underestimate the actual performance of satellite products [38]. Widely
used evaluation metrics [29], Pearson correlation coefficient (r), root mean square error
(RMSE), bias and mean error (ME) were considered in this study. The correlation coeffi-
cient (r) measures the association between two variables, and how well observed rainfall
corresponds to the SREs’ estimates. RMSE represents the magnitude of the estimated
average error between the SREs and rain gauge observation. The smaller the value of the
RMSE, the higher the central tendency. Bias shows how well SREs correspond to the rain
gauge observations. A bias value that is closer to 1 indicates that the cumulative SREs
are closer to the cumulative gauge rainfall observation. ME represents the average error
(positive values indicate overestimation while negative values indicate underestimation).
The perfect values for r, RMSE, bias and ME are −1 or +1, 0, 1 and 0 respectively [22].

r =
∑

n
i=1 (0 − Ō)(s − s̄)

√

∑
n
i=1(0 − Ō)

2
√

∑
n
i=1(s − s̄)2

− 1 ≤ r ≤ + 1 (1)

RMSE =

√

∑
n
i=1(S − O)2

n
, 0 to + ∞ (2)

Bias =
∑

n
i=1 S

∑
n
i=1 O

0 to + ∞ (3)

ME =
∑

n
i=1(S − O)

n
0 to + ∞ (4)
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where S and O are satellite and rain gauge data, s̄ and Ō are the mean satellite and rain
gauge data and n is the total number of samples.

2.2.2. Categorical Skill Metrics

To understand the detection capabilities of the SREs, three categorical skill metrics such
as probability of detection (POD), false alarm ratio (FAR) and critical success index (CSI)
were computed [25,39,40]. These metrics are calculated based on a 2 × 2 contingency table
(Table 1) [41,42]. In the contingency table, we consider rainfall rates of ≥1 mm/day [11,41,43].
The 90 quantiles (Q90) are considered to assess the capabilities of these three SREs in detecting
rainfall events at higher thresholds [1,44]. POD is used to calculate the correct detected rainfall,
FAR is used to calculate false events that rain gauge stations did not observe and CSI measures
how accurately SREs detect rainfall events. Moreover, when the values of POD and CSI are
high it simply indicates a more accurate detection ability of SREs. On the other hand, the high
value of FAR indicates a high ratio of falsely detected rainfall events.

Table 1. Contingency table for categorical indices.

Rain Gauge

Yes (R ≥ x) No (R < x)

SREs No (R < x) Hits (H) False alarm (FA)
No (R < x) Miss (M) Correct negatives (CN)

where R is the rainfall rate (mm/day) and x is a threshold (≥1 mm/day) for the rainfall rates [1].

POD =
TH

TH+TM
(5)

FAR =
TF

TH+TFA
(6)

CSI =
TH

TH+TM+TFA
(7)

where H, M and FA are hits, misses, and false alarm detections, respectively, while TH, TM,
and TFA stand for the number of times each case occurs.

3. Results

3.1. Evaluation of SREs for Estimating Rainfall

In this section, we assess the performance of all three SREs at annual and monthly
time scales in order to understand their ability to estimate rainfall patterns and annual
cycles by comparing their values with rain gauge data.

Figure 2 shows the spatial distribution of the mean annual rainfall estimates of ARC2,
CHIRPS and TAMSAT and that observed (gauge observation) during the period 2002–
2022. All three SREs showed an ability to capture spatial rainfall patterns. CHIRPS and
TAMSAT show a smoother spatial rainfall pattern than ARC2. This could be due to their
high spatial resolution (0.05◦ for CHIRPS and 0.0375◦ for TAMSAT). CHIRPS showed the
best performance with the highest r (0.92), close to perfect bias (0.97) and lowest RMSE
(61 mm/annum) (Figure 2c), followed by TAMSAT (Figure 2d) and then ARC2 (Figure 2a).
It is noted that all the SREs underestimated the mean annual rainfall. Generally, the
spatial rainfall patterns estimated by all the products were consistent with the observed
even though CHIRPS and TAMSAT had a better resolution. This implied that all the
products have the skills to capture south-north oscillations, which are partly connected to
the latitudinal migration of the Intertropical Convergence Zone (ITCZ).
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Figure 3a–f show the spatial and annual cycles for mean monthly rainfall over the
Sahel, Savannah and Guinea Zones, respectively. A summary of the statistical indicators for
the mean monthly rainfall products in all of the agro-climatic zones is presented in Table 2.
The results show that all the SREs were able to capture the spatial pattern and annual
cycles in all of the agro-climatic zones. This indicates that all of the satellite-derived data
effectively represented the latitudinal oscillations of the ITCZ as it moved from southern
to northern latitudes, bringing convective processes. Additionally, CHIRPS and TAMSAT
exhibit smoother spatial rainfall patterns than ARC2 (Figure 3a–c).

Over the Sahel Zones (Figure 3d), all of the estimates exhibited a high r (>0.97).
CHIRPS and TAMSAT showed an underestimation whereas ARC2 overestimated the
observed rainfall. Similarly, CHIRPS and TAMSAT produced the lowest RMSE values of
4.02 mm and 10.91 mm, while ARC2 produced a high RMSE value of 16.93 mm (Table 2).

In the Savannah Zone (Figure 3e), the estimates reasonably captured the annual cycles
and also indicated a strong correlation (r > 0.95), with CHIRPS producing the highest r
(0.98). CHIRPS and TAMSAT underestimated the observed rainfall while ARC2 indicated
an overestimation. Additionally, CHIRPS and TAMSAT indicated the lowest RMSE of
14.16 mm and 14.14 mm whereas ARC2 presented a higher RMSE of 26.22 mm (Table 2).

In the Guinea Zone (Figure 3f), all the estimates were able to capture the annual cycles
and a slight break of rain in August, which is sometimes called the little dry season [45,46]. The
entire set of estimates show encouraging agreements with observed rainfall by indicating high
r (>0.93), with TAMSAT producing the highest r (0.97). CHIRPS exhibited an underestimation
while ARC2 and TAMSAT showed an overestimation (Table 2). The lowest RMSE value of
8.86 mm was obtained by TAMSAT, while ARC2 and CHIRPS indicated RMSE values of
42.53 mm and 9.21 mm, respectively (Table 2).
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Table 2. Summary of the statistical indicators (correlation coefficient (r), bias, mean error (ME) and

root mean square error (RMSE)) for mean monthly rainfall products.

Sahel Savannah Guinea

ARC2 CHIRPS TAMSAT ARC2 CHIRPS TAMSAT ARC2 CHIRPS TAMSAT

r 0.98 0.99 0.99 0.96 0.98 0.97 0.94 0.96 0.97

Bias 1.02 0.97 0.90 0.92 0.90 0.91 0.80 0.99 1.03

ME 0.75 −1.17 −4.0 4.86 −6.52 −5.47 18.82 −0.85 3.08

RMSE 16.93 4.02 10.91 26.22 14.16 14.14 42.53 9.21 8.86

3.2. Performance Evaluation of SREs Detection Capability

To understand the detection capabilities of the SREs (ARC2, CHIRPS and TAMSAT)
with respect to observed rainfall, we computed the POD, FAR and CSI using average daily
rainfall data across the stations of each agro-climatic zone (Sahel, Savannah and Guinea),
covering the period 2002–2022. Quantiles 90 (Q90) were selected in order to evaluate the
detective capability of these products at a high threshold.

Figure 4 shows the computed values of monthly bias (MB) for all of the data and the
Q90 of each zone. Figure 4a shows the Sahel MB values when all the data are included
in the analysis. All the products indicated an overestimation (MB > 1) in March, April,
May and October (except for CHIRPS in October) while the bias values between June and
September were around 1 (Figure 4a). The CHIRPS scored a close to perfect bias value
from June to September and ARC2 scored the same in September. On the other hand, the
monthly quantiles bias value (MQB) increased by about two times during March, April,
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May and October (compare Figure 4a and Figure 4b). Between June and September, it is
noted that the MQB values of all the products do not significantly change, but in November
the bias values of ARC2 and TAMSAT exhibit overestimation.
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Figure 4c shows the MB values of all the estimates over the Savannah Zone when the all
of data are included in the analysis was performed for the Sahel zone. The products exhibited
overestimations (MB > 1) mostly during January, February, March, April, November and
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December (except for CHIRPS in January, April and December) (Figure 4c). This is comparable
to the bias values which are around 1 for the rest of the year. CHIRPS showed a better
performance in most of the months, followed by TAMSAT. During January, February and
November the MQB values increased to almost double (compare Figure 4c and Figure 4d). As
shown in Figure 4d, it was observed that, for high thresholds, the MQB values of all of the
estiamtes between May and October were around 1 (except for ARC2 in May).

Moreover, in the Guinea Zone, Figure 4e shows that all the products exhibited an
overestimation between January and April and October and December. Similarly, the
products showed less bias during the rest of the months. It is noted that all the SREs
showed a higher bias in this zone than in both Sahel and Savannah Zones. As noted in the
Sahel and Savannah Zones, the MQB values of all the products increased between January
to April and October to December, whereas the products did not significantly change from
May to September.

The monthly mean quantiles errors (MQEs) in the three agro-climatic zones are demon-
strated in Figure 5a–c. Figure 5a shows the Sahel Zone MQEs for ARC2, CHIRPS and
TAMSAT with respect to the Q90 of observed rainfall. As shown, all the products tended
towards high significant overestimation, particularly between April and October, with
TAMSAT indicating lower mean error followed by CHIRPS and then ARC2 (Figure 5a).
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Similarly, the MQE over the Savannah Zone is presented in Figure 5b. All the products
indicated considerable overestimation between March and October (except for ARC2 and
CHIRPS which underestimated the observed rainfall in June, July and August). It is noted,
in this zone, that all three estimates showed more overestimation than underestimation.
Additionally, all the estimates exhibit a lower mean error in this zone between June and
August than in the Sahel Zone (Figure 5b). Moreover, the mean error values obtained over
the Guinea Zone are larger than the results obtained in both the Sahel and Savannah Zones
(compare Figure 5a–c). The entire product overestimated observed rainfall in the Guinea
Zone (except for ARC2 which indicates underestimation in August). Generally, CHIRPS and
TAMSAT had lower mean error values than ARC2 in all of the agro-climatic zones (Figure 5).

The probability of detection (POD) values for all of the data and Q90 are presented
in Figure 6a–f for all three agro-climatic zones. In the Sahel Zone (Figure 6a), the best
POD values were obtained by the three products from May to September (MJJAS) which
covers a period of major rainfall over Sahel. Conversely, the SREs exhibit low POD values
in November, December, January, February and March (NDJFM). Additionally, all the
SREs indicated an increase at the Q90 threshold (Figure 6b). CHIRPS showed a better
performance by scoring a perfect value (1) for the QPOD between April and October,
followed by ARC2 from April to September and then TAMSAT in May to September.
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All the estimates showed lower FAR values (Figure 7a) from June to September, and
high FAR values in March, April, May, October and November. The QFAR values of all
of the SREs showed an increase (Figure 7b). As shown, all the estimates exhibited lower
QFAR values from June to September. CHIRPS and TAMSAT exhibited high QFAR values
in March, April, October and November (except for CHIRPS in November) whereas ARC2
showed high QFAR values between January to April and October to November. Addi-
tionally, for high thresholds (Q90), the QFAR of all the products is higher over November,
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March and April than the results shown in Figure 7a (all data). This implied that, with
respect to a high threshold (Q90), the FAR is higher during the dry season. Overall, the
ARC2 and TAMSAT estimates are subject to higher FAR values than the CHIRPS estimates.
Moreover, Figure 8a,b support the findings of both Figure 6a,b and Figure 7a,b by indicating
high CSI and QCSI values between June and September and weak CSI and QCSI values
during NDJFM.
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Remote Sens. 2024, 16, 1755 12 of 18

, x FOR PEER REVIEW 13 of 20

Critical success index (CSI) of three agro climatic zones. Sahel Zone: ( ) all data and ( ) 
Q90; Savannah Zone: ( ) all data and ( ) Q90; Guinea Zone: ( ) all data and ( ) Q90.

Figure 6c d demonstrates the POD (all data) and QPOD over the Savannah Zone
Similar to the results found in the Sahel Zone, the SREs show a slight increase in the QPOD 
values at the Q90 threshold (compare Figure 6c d). Figure 6c indicates that the three prod-
ucts exhibit high POD values between May and October (MJJASO), regardless of the 
choice of threshold. A lower performance is shown by all of the estimates between No-
vember and March (NDJFM) (Figure 6c). Similarly, all the products exhibit high QPOD 
values between January and November (except for CHIRPS and TAMSAT in January) 
(Figure 6d). However, as shown in Figure 7c, all products exhibit lower FAR values be-
tween April and October, and high FAR values during November to March (NDJFM). For 
the high threshold (Q90), the QFAR was higher during NDJFM except for CHIRPS which 
indicated a perfect QFAR value in December (Figure 7d). This shows that FAR is higher 
during the dry season than the finding given in Figure 7c (all data). Furthermore, Figure 
8c d shows correctly detected months where all the estimates indicated high CSI and QCSI 
values in MJJASO and low CSI and QCSI values during NDJFM

Figure 8. Critical success index (CSI) of three agro-climatic zones. Sahel Zone: (a) all data and

(b) Q90; Savannah Zone: (c) all data and (d) Q90; Guinea Zone: (e) all data and (f) Q90.

Figure 6c,d demonstrates the POD (all data) and QPOD over the Savannah Zone.
Similar to the results found in the Sahel Zone, the SREs show a slight increase in the
QPOD values at the Q90 threshold (compare Figure 6c,d). Figure 6c indicates that the
three products exhibit high POD values between May and October (MJJASO), regardless
of the choice of threshold. A lower performance is shown by all of the estimates between
November and March (NDJFM) (Figure 6c). Similarly, all the products exhibit high QPOD
values between January and November (except for CHIRPS and TAMSAT in January)
(Figure 6d). However, as shown in Figure 7c, all products exhibit lower FAR values
between April and October, and high FAR values during November to March (NDJFM).
For the high threshold (Q90), the QFAR was higher during NDJFM except for CHIRPS
which indicated a perfect QFAR value in December (Figure 7d). This shows that FAR is
higher during the dry season than the finding given in Figure 7c (all data). Furthermore,
Figure 8c,d shows correctly detected months where all the estimates indicated high CSI
and QCSI values in MJJASO and low CSI and QCSI values during NDJFM.

Figure 6e,f presents the POD and QPOD values over the Guinea Zone. CHIRPS and
TAMSAT exhibited high POD values between March and November, followed by ARC2
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(Figure 6e). As shown, all the estimates showed lower POD values during December,
January and February. CHIRPS and TAMSAT produced high QPOD values between March
and November, followed by ARC2 (Figure 6f). It is worth mentioning that CHIRPS and
TAMSAT outperformed ARC2 in exhibiting higher POD and CSI values (Figure 6e,f and
Figure 8e,f). Moreover, all the SREs exhibited lower FAR values (Figure 7e) between March
and November and higher values during December, January and February. Similarly, for
the high thresholds (Q90), the QFAR values (Figure 7f) were higher during December,
January and February than the finding in Figure 7e (all data). This means that, with respect
to the high thresholds, the FAR is higher during the period of the dry season which is
similar to the results found in the Sahel and Savannah Zones. Additionally, Figure 8e,f
indicate higher CSI values between March and November whereas the estimates showed
low CSI values in December, January and February. CHIRPS and TAMSAT produced
higher CSI values than ARC2.

Seasonal Variability of Satellite Rainfall Algorithm Skills

In this section, the seasonal variability of the satellite-based rainfall algorithms’ skills
is presented. Figure 9a–l shows a summary of the skills of all three SREs with respect to
different metrics during peak rainfall periods and dry periods with low or no rainfall over
the Sahel Zone (Figure 9a–d), Savannah Zone (Figure 9e–h) and Guinea Zone (Figure 9i–l).
The reader will notice that 1-FAR is plotted instead of FAR. This is applied to make the best
score for all indicators 1. Figure 9 was created by calculating the aforementioned statistics
based on the peak rainfall periods and dry periods with low or no rainfall within the dataset
used (2002–2022). As shown, Figure 9a–l clearly presents the algorithm’s performance
during the two climate conditions of the Sahel, Savannah and Guinea Zones.
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In the Sahel Zone, as depicted in Figure 9a (all data), the POD values for ARC2,
CHIRPS and TAMSAT during JJAS are 0.88, 0.95 and 0.92, respectively, whereas the CSI
values are 0.70, 0.75 and 0.73, respectively, indicating that CHIRPS has better skills to
correctly detect more rainfall events. Similarly, at the Q90 threshold, the POD and CSI
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values do not significantly change (Figure 9c). In addition, the 1-FAR values of ARC2,
CHIRPS and TAMSAT are 0.80, 0.81 and 0.80, indicating that CHIRPS has the lowest FAR,
followed by ARC2 and TAMSAT (Figure 9a). As shown in Figure 9c, the 1-FAR values of
all products do not change greatly at the Q90 threshold. Moreover, during NDJFM (dry
period) the POD and CSI values of all SREs were almost 0 for both the all data and Q90
thresholds (Figure 9b,d). This implies that all of the algorithms exhibited poor detection
skills in the dry period. The 1-FAR values of all three SREs decreased at the Q90 threshold
(compare Figure 9b and Figure 9d), which shows that all of the estimates missed more
rainfall events at a higher threshold, with CHIRPS indicating the lowest FAR, followed by
TAMSAT and then ARC2.

Over the Savannah Zone (Figure 9e), during JJAS, ARC2, CHIRPS and TAMSAT
exhibited respective POD values of 0.90, 0.93 and 0.96, with corresponding CSI values of
0.85, 0.89 and 0.90. This suggests that CHIRPS and TAMSAT are more effective in accurately
identifying rainfall events across all of the data. Similarly, there is little change in the POD
and CSI values at the Q90 threshold (Figure 9g). Additionally, ARC2, CHIRPS and TAMSAT
demonstrate 1-FAR values of 0.92, 0.93 and 0.93, respectively, implying that CHIRPS and
TAMSAT have the lowest FAR, followed by ARC2 (Figure 9e). Figure 9g illustrates minimal
variation in 1-FAR values across all of the estimates at the Q90 threshold. Furthermore,
in the dry period ARC2, CHIRPS and TAMSAT scored POD values of 0.31, 0.32 and 0.30,
respectively, and the CSI values were 0.14, 0.14 and 0.16 (Figure 9f). ARC2 and CHIRPS
exhibited the highest POD values whereas TAMSAT had the highest CSI value. At the
Q90 threshold, the POD and CSI values of all the estimates increased (Figure 9f,h). On
the other hand, the 1-FAR values of all the estimates were reduced at the Q90 threshold (see
Figure 9f,h), indicating that all of the estimates created a high number of false alarms during
the dry period. CHIRPS and TAMSAT showed the lowest FAR values followed by ARC2.

Moreover, in the Guinea Zone (Figure 9i), the POD values for ARC2, CHIRPS and
TAMSAT during JJAS are 0.83, 0.95 and 0.97, respectively. Meanwhile, their respective CSI
values are 0.83, 0.88 and 0.90. This indicates that CHIRPS and TAMSAT are more proficient
in accurately detecting rainfall events based on all of the data. Similarly, minimal changes
are observed in both the POD and CSI values at the Q90 threshold, as depicted in Figure 9k.
ARC2, CHIRPS and TAMSAT exhibit 1-FAR values of 0.99, 0.98 and 0.98, respectively
(Figure 9i), indicating that all of the estimates had the lowest FAR values during JJAS.
Figure 9k shows that the 1-FAR values of all products do not significantly change at the
Q90 threshold. In addition, during the dry period (DJF), ARC2, CHIRPS and TAMSAT
achieved POD values of 0.47, 0.53 and 0.52, respectively, while their CSI values were 0.23,
0.27 and 0.27, as shown in Figure 9j (all data). CHIRPS and TAMSAT exhibited the highest
POD and CSI values followed by ARC2. Similarly, when considering the Q90 threshold,
both the POD and CSI values of all products increased (compare Figure 9j and Figure 9l).
Conversely, the 1-FAR values of all products decreased at the Q90 threshold (Figure 9j,l),
indicating a high ratio of falsely detected rainfall events during the dry period for all of the
estimates. CHIRPS exhibited the lowest FAR, followed by ARC2 and TAMSAT. Generally,
the seasonal variability of the rainfall algorithms’ skills revealed that the SREs generally
performed better during the wet season (JJAS) compared to the dry season (NDJFM), with
CHIRPS exhibiting the lowest false alarms values during NDJFM, followed by TAMSAT.
This suggests that the low performance of the SREs during dry season could be attributed
to the rainfall retrieval algorithms, intensity of rainfall occurrence and spatial-temporal
resolution, which potentially lead to low accuracy in the rainfall retrieval carried out by the
algorithms resulting from the intense stratiform cloud coverage [1,42,47–50].

4. Discussion

In this study, we utilized a point-to-pixel evaluation approach to assess the accuracy of
SREs against gauge observations. Among the three products examined, CHIRPS exhibited
the best performance, followed closely by TAMSAT. These findings align with the previous
studies [51–56] conducted over West African regions and East Africa [38,57]. Similarly,
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CHIRPS and TAMSAT outperformed ARC2 in terms of capturing the southern–northern
latitude oscillations in the ITCZ, which led to convective processes in all of the agro-
climatic zones, including in the representations of both unimodal and bimodal annual
rainfall patterns of Nigeria noted by [2]. In addition, CHIRPS performed relatively better
in detecting rainfall occurrence and had less bias during the dry season, indicating its
robustness in differentiating between rainy and dry conditions. These results align with
the conclusions drawn by [2,51] regarding CHIRPS. ARC2 showed a poor performance
in another recent study [55] conducted over the West African region. The poor skills of
ARC2 could be related to the rainfall retrieval algorithm, the merging process and source
of the data used during its generations [50]. Moreover, with respect to a high threshold
(Q90), the false alarm ratio of all of the estimates was higher during the dry season than
wet season, with CHIRPS experiencing the least false alarms during dry season, followed
by TAMSAT. This is similar to the results of previous studies [51] conducted over West
Africa and China [23,43], which discovered that CHIRPS missed less rainfall during the dry
season. However, further research is still needed to scrutinize whether CHIRPS performs
better in detecting rainfall occurrence in the dry season.

All the estimates indicated a larger mean error in the Guinea Zone than in both the
Sahel and Savannah Zones. This variation may be attributed to the diverse land use and
land cover in the region, as well as the presence of the Atlantic Ocean in the southernmost
part of the country, which affects rainfall patterns [33]. A similar study [19] revealed that
the Guinea Zone naturally experiences frequent cloud cover, which remains consistent
regardless of rainfall. This persistent cloud cover could pose difficulties for satellite retrieval.
Conversely, cloud presence in the Sahel and Savannah Zones is primarily linked to rainy
episodes, reducing the likelihood of discrepancies between clouds associated with rainfall
and those without. This variation may contribute to the stronger correlation observed over
the Sahel Zone.

In this research, despite carrying out comprehensive quality control measures, the
mismatch between the point (gauge stations) and pixel (SREs estimate) measurements
could underestimate the actual performance of SREs [25,29]. Nevertheless, the study by
Zhang et al. (2018) [58] proposed that assessments conducted using either point-to-pixel
or pixel-to-pixel methodologies yielded comparable statistical outcomes, indicating that
the reciprocal evaluation and ranking of SREs may be disregarded. In addition, future
work could focus on the evaluation of satellite-retrieved extreme rainfall rates over Africa.
A thorough understanding of the rainfall rates obtained from satellites is essential for
enhancing early warning systems, forecasting and modeling, particularly in regions where
gauge stations are scarce. This topic is interesting as it can also contribute to mitigating the
significant impacts posed by extreme rainfall events on agriculture, environment and the
economy [11].

5. Conclusions

In this study, three satellite products (ARC2, CHIRPS and TAMSAT) were evaluated
with respect to rain gauge observation for the period 2002–2022. The results have important
implications for weather monitoring and forecasting in the region. These are summarized below.

All of the SREs showed the ability to capture the spatial patterns of mean annual
rainfall, with CHIRPS showing a high spatial resolution, r (0.92), bias (0.97) and lower
RMSE (61 mm/annum), followed by TAMSAT. Similarly, the all of the products show a
strong agreement (r > 0.94) with the observed data at mean monthly time steps. CHIRPS
and TAMSAT showed the lowest RMSE values of 4.02 mm/month and 8.86 mm/month.

Moreover, in both the Sahel and Savannah Zones, all of the SREs indicated less bias
during the major rainfall season (MJJASO) and mostly overestimation during the dry
season (NDJFM), while in the Guinea Zone, the products exhibited less bias between May
and September and more overestimation from January to April and October to December.
In addition, the entire products exhibit larger mean error over the Guinea Zones than in
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Sahel and Savannah Zones. Overall, CHIRPS and TAMSAT performed best, with less bias,
followed by ARC2.

Additionally, all three SREs were skillful in detecting rainfall occurrence during the
wet season in the Sahel and Savannah Zones, with high false alarm values largely occurring
during the dry season. Similarly, the detection capability of all the products was also more
encouraging in the wet season than in the dry season over the Guinea Zone. Generally,
the products showed high detection capabilities and a lower false alarm ratio during the
wet season than the dry season. CHIRPS and TAMSAT appear to have better detective
capabilities during the dry season.

The findings of this study offer valuable insights into selecting appropriate satellite
rainfall estimates (SREs) for regional applications, particularly in Nigeria. Moreover, our
research underscores the importance of addressing the identified limitations of existing
SREs and exploring innovative approaches to enhance their performance. By incorporating
new methodologies and data sources, there is potential to mitigate the challenges associated
with SREs and improve their utility for various applications, such as hydrological modeling
and agricultural planning. In addition, the findings of this study could also help algorithm
developers upgrade the performance of SREs’ retrieval algorithms.
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