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ABSTRACT
Data assimilation combines prior (or background) information
with observations to estimate the initial state of a dynamical
system over a given time-window. A common application is in
numerical weather prediction where a previous forecast and
atmospheric observations are used to obtain the initial con-
ditions for a numerical weather forecast. In four-dimensional
variational data assimilation (4D-Var), the problem is formu-
lated as a nonlinear least-squares problem, usually solved
using a variant of the classical Gauss-Newton (GN) method.
However, we show that GN may not converge if poorly initial-
ized. In particular, we show that this may occur when there
is greater uncertainty in the background information com-
pared to the observations, or when a long time-window is
used in 4D-Var allowingmore observations. The difficulties GN
encounters may lead to inaccurate initial state conditions for
subsequent forecasts. To overcome this, we apply two conver-
gent GN variants (line search and regularization) to the long
time-window4D-Var problemand investigate the caseswhere
they locate a more accurate estimate compared to GN within
a given budget of computational time and cost. We show that
these methods are able to improve the estimate of the initial
state, which may lead to a more accurate forecast.

Highlights

• Poor initialization of Gauss-Newton method may result in
failure to converge.

• Safeguarded Gauss-Newton improves initial state estimate
within limited time/cost.

• Results using twin experimentswith long time-windowand
chaotic Lorenz models.
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• Apply state of the art least-squares convergence theory to
data assimilation.

• Improvements to initial state estimate may lead to a more
accurate forecast.

1. Introduction

Four-dimensional variational data assimilation (4D-Var) aims to solve a nonlin-
ear least-squares problem thatminimizes the error in a prior estimate of the initial
state of a dynamical system together with the errors between observations and
numerical model estimates of the states of the system over time. In Numerical
Weather Prediction (NWP), 4D-Var is used to estimate the initial conditions for
a weather forecast [1]. The 4D-Var scheme is able to incorporate information
from a previous forecast along with observations over both temporal and spatial
domains, weighted by the uncertainties in the prior and the observations. From
a Bayesian point of view the solution is the maximum a posteriori estimate of
the initial state [2]. The nonlinear least-squares objective function is minimized
using an iterative method. The quality of the estimate and the subsequent fore-
cast depends on how accurately the 4D-Var problem is solved within the time
and computational cost available.

In this paper, we investigate the application of globally convergent optimiza-
tion methods to the 4D-Var problem; such methods use safeguards to guarantee
convergence from an arbitrary initial estimate by ensuring a sufficient, mono-
tonic/strict decrease in the objective function at each iteration. We focus on the
strong-constraint 4D-Var problem where we assume that the numerical model
of the system perfectly represents the true dynamics of the system or the model
errors are small enough to be neglected. This results in the formulation of vari-
ational data assimilation as an unconstrained nonlinear least-squares problem
and is employed by many operational meteorological centres [3], including the
Meteorological Service of Canada [4], the European Centre for Medium-range
Weather Forecasts (ECMWF) [5,6] and the Met Office [7].

Ideally, in large-scale unconstrained optimization, we seek a fast rate of con-
vergence, which can be achieved in nondegenerate cases using a Newton-type
method. However, these methods require the use of second order derivatives of
the objective function, which are too costly to compute and store operationally.
Therefore, optimization methods that approximate the high order terms, such as
limited memory Quasi-Newton [8–11], Inexact Newton [12], Truncated New-
ton [13,14], Adjoint Newton [15], Hessian-free Newton [16], Gauss-Newton
[17,18] and Approximate Gauss-Newton [19] methods have been considered.
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To compute efficiently the first derivatives of the objective function required by
these techniques, the adjoint of the numerical model is generally used [1]. More
recently, optimization methods that do not require the first derivatives of the
objective function are being examined to avoid the development and mainte-
nance costs associated with using the adjoint [20]. Alternative data assimilation
techniques that use ensemble methods to approximate the objective function
gradients, rather than using the adjoint, are also being investigated [21,22].

The incremental 4D-Var technique, used commonly in operational centres,
approximately solves a sequence of linear least-squares problems and has been
shown to be equivalent to the Gauss-Newton (GN) method under standard con-
ditions [23]. In the GN (or incremental) method the linearized problem is solved
in an inner loop of the algorithm; the solution to the nonlinear problem is then
updated in an outer loop and the problem is re-linearized. The accuracy with
which the inner loop is solved is known to affect the convergence of the outer
loop [23–25]. In our work, we focus on the convergence of the outer loop, where
accurate gradient information is used (as is the case when an adjoint is avail-
able) and we assume that the inner loop linear least-squares problem is solved
either exactly or inexactly. Furthermore, we use a variable transformation usu-
ally applied in operational 4D-Var to precondition the optimization problem, see
[26].

A general drawback of the GN method is that given a poor initialization, it
is not guaranteed to converge to a solution, known as the ‘analysis’ state, of the
4D-Var problem [17]. In NWP, the initial guess for the minimization is gener-
ally chosen to be the predicted initial state from a previous forecast, known as
the ‘prior’ or ‘background’ state. However, for some applications of 4D-Var this
choice may not be a good enough estimate of the analysis. We show that in such
cases, the GNminimization proceduremay fail to converge. There are threemain
strategies that safeguard GN and make it convergent from an arbitrary initial
guess: line search, regularization and trust region [18,27]. GNwith quadratic reg-
ularization (REG) is strongly related to GN with trust region (see Lemma 10.2.
of [18]), also referred to as the Levenberg-Marquardt method (LM) [27–29].
Indeed trust region and REG are similar safeguarding strategies for the Gauss
Newton method, but their subproblem solutions are different in that the trust
region subproblem is nonlinear, requiring more involved and expensive compu-
tational techniques while the REG subproblem is linear. Furthermore, REG has
interesting connections to Tikhonov regularization which is a crucial statistical
tool in data assimilation; REG automatically provides such a problem regular-
ization numerically, at every iteration. An adaptive regularization method using
cubic models (ARC) [30,31] is a popular variant that requires (more accurate)
second derivative problem information than REG, which is prohibitively expen-
sive for data assimilation. Furthermore, the subproblems in ARC are nonlinear,
which again brings in additional computational expense. Therefore, within our
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work, we choose to focus on the simpler variant REG and compare its perfor-
mance to GN with backtracking Armijo line search (LS) and GN alone, applied
to the preconditioned 4D-Var problemwhen there is limited computational time
and evaluations available, such as in NWP.

In previouswork, the use of a line search strategy in combinationwith aQuasi-
Newton approach was implemented in the ECMWF NWP system to solve the
4D-Var problem and was found to improve the minimization of the objective
function [6,8,32]. Météo France [33] and the Meteorological Service of Canada
[34] also adopted the method known as M1QN3. This method uses the Wolfe
line search conditions [35] to safeguard the convergence on the inner loop level.
The Wolfe conditions require the use of additional evaluations of the objective
function and especially its gradient, however, which is computationally costly
and impractical for use in the outer loop. This is unlike the Armijo condition
[36] used in our work, as in [37], which through the use of backtracking only
requires additional evaluations of the objective function but not its gradient [18].
We pair GN with backtracking Armijo line search and use a fixed number of
computational evaluations to guarantee a reduction in the outer loop objective
function (assuming the inner loop is solved to a high accuracy). We compare
this method to the GNmethod and to the GNmethod safeguarded by quadratic
regularization, using a simple, inexpensive updating strategy.

The use of the LMmethodhas been of interest in the data assimilation commu-
nity because of its similarities with GN and its convergence guarantees. Bergou
et al. [38] apply a variation of LM to the 4D-Var problem combined with the use
of ensemble methods for the linearized subproblems and prove global conver-
gence under an assumption that only approximate gradient and Jacobian values
are available and accurate within a certain probability. The work of [39] builds
on that of [38] and proposes a stochastic Levenberg-Marquardt framework that
handles both random models and noise in the function evaluations.

Other studies include that of Mandel et al. [40], who apply the incremental
4D-Varmethod to the weak-constraint (wheremodel error is accounted for) 4D-
Var problemwith the two-level quasi-geostrophic model, using the exact tangent
and adjoint models. They find that the method diverges due to the nonlinearity
of the model along a 10 day (long) time-window. They contrast the results of the
incremental 4D-Var method with those obtained when they use a LM method
to control the convergence of the incremental 4D-Var method, using an inexact
solver for the 4D-Var inner-problem. The regularization is fixed across all itera-
tions, and the algorithm’s performance is assessed using different values of this
parameter. They find that convergence is not guaranteed when the regularization
parameter is small while larger values enable the function value to decrease as
the method iterates. They conclude that investigations into an adaptive method
to adjust the regularization parameter at each iteration would be of interest; this
is an aspect present in our work here.
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More recently, the authors of [41] propose a novel LM method for applica-
tion to both zero and non-zero residual problems. This method is similar to
the REG method used in our work, except for the use of an additional param-
eter that corresponds to a successful step of the method balancing local and
global convergence requirements. The authors use an example to show how their
local convergence is satisfied by the standard 3D-Var problem and assess the
performance of their proposed LM method using preliminary numerical exper-
iments. The approach in [42] teams novel preconditioning techniques with the
trust region globalization strategy for large scale, nonlinear problems and finds
that their method only requires an additional function evaluation per outer loop
iteration, a trade-off for robustness of a global convergent solver.

Within this paper, we aim to investigate whether the use of globally conver-
gent optimization methods, namely LS and REG, is beneficial in variational data
assimilation, where there is limited time and computational cost available. We
focus on this particular question in simple frameworks so that we can fully ascer-
tain its effect. We do not require more sophisticated techniques as we want to be
able to see some precise effects of safeguarding the steps, without other features.
Hence, we consider the use of globally convergent strategies where we focus on
the convergence of the 4D-Var problem on the outer loop level, where accurate
gradient information is used (as is the case when an adjoint is available) and the
regularization parameter in REG is updated using a simple, inexpensive strat-
egy. We also consider the case of both an exact and inexact subproblem when
analyzing the quality of the analysis, for robustness of our conclusions.

Using two test models within the 4D-Var framework, we show that where
there is more uncertainty in the background information compared to the obser-
vations, the GN method may fail to converge, yet the convergent methods, LS
and REG, are able to improve the estimate of the analysis. Assimilation over long
time windows is of particular interest. We use data profiles to show numerically
that in the long time-window case and in cases where there is higher uncertainty
in the background information versus the observations, the globally convergent
methods are able to solve more problems than GN in the limited cost available.
By ‘solve’ we mean satisfying a criterion requiring a reduction in the objective
function within a set number of evaluations. We also show the effect that poor
background information has on the quality of the estimate obtained. We con-
sider the case where the background information is highly inaccurate compared
to the observations and find that, even when using an inexact solver, the globally
convergent methods outperformGN and the convergence of all three methods is
improved when more observations are included along the time-window. Finally,
for the case where GN performs well, we recommend further research into the
parameter updating strategies used within the globally convergent methods.

The structure of this paper is organized as follows. In Section 2 we outline the
strong-constraint 4D-Var problem as a nonlinear least-squares problem and the
GNmethod that is frequently used to solve it. In Section 3 we outline the globally
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convergent methods used within this paper. In Section 4 we describe the exper-
imental design including the dynamical models used. In Section 5 we present
the numerical results obtained when applying GN and the globally convergent
methods to the 4D-Var problem with different features. Finally, we conclude our
findings in Section 6. In an appendix we detail the proofs of convergence for the
REG and LS methods.

2. Variational data assimilation

2.1. 4D-Var: least-squares formulation

In four-dimensional variational data assimilation (4D-Var), the analysis xa0 ∈ R
n

is obtained by minimizing a objective function consisting of two terms: the
background term and the observation term, namely;

J (x0) = 1
2
(x0 − xb0)

TB−1(x0 − xb0) + 1
2

N∑
i=0

(yi − Hi(xi))TR−1
i (yi − Hi(xi)).

(1)

The background termmeasures the difference between the initial state of the sys-
tem and the background state vector xb0 ∈ R

n, which contains prior information.
The observation term measures the difference between information from obser-
vations at times ti in the observation vector yi ∈ R

pi and the model state vector
xi ∈ R

n at the same time through use of the observation operatorHi : R
n → R

pi

that maps from the model state space to the observation space. Both terms are
weighted by their corresponding covariancematrices to represent the uncertainty
in the respective measures, the background error covariance matrix B ∈ R

n×n

and the observation error covariance matrices at times ti, Ri ∈ R
pi×pi , which are

assumed to be symmetric positive definite. We note that observations are dis-
tributed both in time and space and there are usually fewer observations available
than there are state variables so p<n, where p = ∑N

i=0 pi. The 4D-Var objective
function (1) is subject to the nonlinear dynamicalmodel equationswhich contain
the physics of the system

xi = M0,i(x0), (2)

where the nonlinear model M0,i : R
n → R

n evolves the state vector from the
initial time point t0 to the time point ti.

We precondition the 4D-Var problem using a variable transform, which has
been shown to improve the conditioning of the variational optimization problem
[43,44]. To be able to use the negative square root of B in our variable trans-
formation, we first require the assumption that the matrix B is full rank. This
assumption is satisfied for our choices ofB in Section 5.We define a new variable
v to be,

v = B−1/2(x0 − xb0). (3)
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The 4D-Var objective function can then be written in terms of v, known as the
control variable in data assimilation (DA), and minimized with respect to this
instead. Furthermore, by including the model information within the objective
function, we are able to write the constrained optimization problem (1)–(2) in
the form of an unconstrained optimization problem and apply the minimiza-
tion methods described later in this paper. The preconditioned 4D-Var objective
function is given by

J (v) = 1
2
vTv + 1

2

N∑
i=0

(yi − Hi(M0,i(B1/2v + xb0)))
TR−1

i

× (yi − Hi(M0,i(B1/2v + xb0))). (4)

We note that the function (4) is continuously differentiable if the operators Hi
and M0,i are continuously differentiable. To save both computational cost and
time in 4D-Var, tangent linear approximations of the nonlinear operators in (4)
are used in the inner loop [5]. The tangent linear model (TLM) and tangent lin-
ear observation operator are usually derived by linearizing the discrete nonlinear
model equations.

In our nonlinear least-squares problem, namely,

min
v

J (v) := 1
2
‖r(v)‖22, (5)

the functionJ : R
n → R has a special form, where r(v) = [r1(v), . . . , rn+p(v)]T

and each rj : R
n → R, for j = 1, 2, . . . , n + p, is referred to as a residual. In (5), ‖ ·

‖2 denotes the l2-norm, which will be used throughout this paper. The function
J (v) in (4) can be written, equivalently, in the form of the objective in (5), where
the residual vector r(v) ∈ R

(n+p) and its Jacobian J(v) are given by

r(v) =

⎛
⎜⎜⎜⎜⎜⎜⎝

v
R−1/2
0 (y0 − H0(B1/2v + xb0))

R−1/2
1 (y1 − H1(M0,1(B1/2v + xb0)))

...
R−1/2
N (yN − HN(M0,N(B1/2v + xb0)))

⎞
⎟⎟⎟⎟⎟⎟⎠

and

J(v) =

⎛
⎜⎜⎜⎜⎜⎜⎝

I
−R−1/2

0 H0B1/2

−R−1/2
1 H1M0,1B1/2

...
−R−1/2

N HNM0,NB1/2

⎞
⎟⎟⎟⎟⎟⎟⎠
, (6)

where

M0,i = ∂M0,i

∂v

∣∣∣∣
M0,i(B1/2v+xb0)

and Hi = ∂H0

∂v

∣∣∣∣
M0,i(B1/2v+xb0)

(7)
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are the Jacobian matrices of the model operator M0,i and observation operator
Hi respectively,M0,i ∈ R

n×n is the tangent linear ofM0,i and Hi ∈ R
pi×n is the

tangent linear ofHi [2]. Note that the second entries of r(v) and J(v) in (6) do not
feature the nonlinear and tangent linear model operators as these entries reflect
time point i=0. In practice, an adjoint method is used to calculate the gradient
of (4), defined as

∇J (v) = J(v)Tr(v). (8)

The Hessian is the matrix of second-order partial derivatives of (4),

∇2J (v) = J(v)TJ(v) +
n+p∑
j=1

rj(v)∇2rj(v). (9)

In data assimilation, the second-order terms in (9) are often difficult to calculate
in the time and cost available and too large to store, and so one cannot easily use
Newton-type methods for 4D-Var. Therefore, a first-order approximation to the
Hessian of the objective function (4) is used, resulting in a GN method, and is
given by

S = J(v)TJ(v) = I +
N∑
i=0

B1/2MT
0,iH

T
i R

−1
i HiM0,iB1/2, (10)

which is, by construction, full rank and symmetric positive definite. The condi-
tion number in the l2-norm of (10), κ(S), is the ratio of its largest and smallest
eigenvalues and is related to the number of iterations used for the linear mini-
mization problems in 4D-Var and how sensitive the estimate of the initial state
is to perturbations of the data. We can use κ(S) to indicate how quickly and
accurately the optimization problem can be solved [45].

2.2. 4D-Var implementation

The incremental 4D-Var method, which was first proposed for practical imple-
mentation of the NWP problem in [5], has been shown to be equivalent to the
GN method when an exact TLM is used in the inner loop. When an approxi-
mate TLM is used, the method is equivalent to an inexact GNmethod [19,23]. A
summary of the GN method is given next.

In Algorithm 1, the updated control variable v(k+1) is computed by finding a
step s(k) that satisfies (11), which is known as the preconditioned linearized sub-
problem. By substituting v(k+1) into (3) and rearranging, we obtain the current
estimate x(k+1)

0 of the initial state to the original nonlinear 4D-Var problem.
To reduce the computational cost in large DA systems and to solve the DA

problem in real time, the series of problems (11) can be solved approximately in
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Algorithm 1 GN algorithm applied to (5) [17].
Step 0: Initialisation. Given v(0) ∈ R

n and some stopping criteria. Set k = 0.
Step 1: Check stopping criteria. While the stopping criteria are not satisfied, do:

Step 2: Step computation. Compute a step s(k) that satisfies

J(v(k))TJ(v(k))s(k) = −J(v(k))Tr(v(k)). (11)

Step 3: Iterate update. Set v(k+1) = v(k) + s(k), k := k + 1 and go to
Step 1.

the inner loop using iterative optimization methods such as Conjugate Gradi-
ent (CG) where a limited number of CG iterations are allowed and an exact or
approximate J is used [19].

We note that the step calculation (11) uniquely defines s(k), and s(k) is a descent
directionwhen J(v) is full column rank. This is the case in 4D-Var as the Jacobian,
J(v) in (6) is full column rank due to the presence of the identity matrix, thus
ensuring that s(k) is a descent direction.

The definitions of two solution types, namely, local and global minima, are
stated in Appendix, along with a brief explanation of the local convergence prop-
erty of GN.Although theGNmethod benefits from local convergence properties,
convergence can only be guaranteed if the initial guess v(0) of the algorithm is in
some neighborhood around an (unknown) local solution v∗, that is, convergence
from an arbitrary initial guess is not guaranteed [17]. Even if theGNmethod does
converge, it may not necessarily converge to the global minimum due to the fact
that multiple local minima of a nonlinear least-squares objective function may
exist.

GN has no way of adjusting the length of the step s(k) and hence, may take
steps that are too long and fail to decrease the objective function value and thus
to converge, see Example 10.2.5 in [17] and later in Section 5 where the poor per-
formance of GN is demonstrated. As GN only guarantees local convergence, we
are interested in investigating methods that converge when v(0) is far away from
a local minimizer v∗. We refer to these methods as ‘globally convergent’. Math-
ematical theory on global strategies can be found in [18] and [17]. Two globally
convergent methods are GN with line search and GN with quadratic regulariza-
tion, which use a strategy within the GN framework to achieve convergence to
a stationary point given an arbitrary initial guess by adjusting the length of the
step. These methods will be presented in the next section.

3. Globally convergent methods

Within this section, we outline the two globally convergent algorithms that we
apply in Section 5 to the preconditioned 4D-Var problem.
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3.1. Gauss-Newtonwith line search (LS)

A line search method aims to restrict the step s(k) in (11) so as to guarantee
a decrease in the value of J . Within our work, an inexact line search method
known as the backtracking-Armijo (bArmijo) algorithm is used within the inner
loop of GN to find a step length α > 0 that satisfies the Armijo condition [36].
The Gauss-Newton with backtracking-Armijo line search (LS) method is as
follows.

Algorithm 2 LS algorithm applied to (5) [18].
Step 0: Initialisation. Given v(0) ∈ R

n, τ ∈ (0, 1) and β ∈ (0, 1) and α0 > 0 and
some stopping criteria. Set k = 0.
Step 1: Check stopping criteria.While the stopping criteria are not satisfied, do:

Step 2: Step computation. Compute a step s(k) that satisfies

J(v(k))TJ(v(k))s(k) = −J(v(k))Tr(v(k)) (12)

and set α(k) = α0.
Step 3: Check Armijo condition.While the following (Armijo) condition

is not satisfied

J (v(k) + α(k)s(k)) ≤ J (v(k)) + βα(k)s(k)
T∇J (v(k)), (13)

do:
Step 4: Shrink stepsize. Set α(k) := τα(k) and go to Step 3.
Step 5: Iterate update. Set v(k+1) = v(k) + α(k)s(k), k := k + 1 and go to

Step 1.

In Algorithm 2, the control parameter β in (13) is typically chosen to be small
(see [18]). The step Equation (12) is the same as the GN step Equation (11); thus
whenα(k) = 1, theGNandLS iterates coincide at (the same) point v(k). The use of
condition (13) in this method ensures that the accepted steps produce a sequence
of strictly decreasing function values given �J (v(k))Ts(k) < 0. This latter con-
dition is satisfied by s(k) defined in (12) whenever J (v(k)) is full column rank
(which is the case here) as mentioned in Section 2 [18].

Despite its global convergence property (see Appendix A.1), the LS method
has some disadvantages. We remark that the use of the step length α(k) may
sometimes unnecessarily shorten the step s(k), slowing down the convergence.
Furthermore, LS may be computationally costly due to the need to calculate the
value of the function J each time α(k) is adjusted, although more sophisticated
updating strategies for α may be used to try to reduce this effect.

Other line search strategies are possible such as Wolfe, Goldstein-Armijo and
more [18], but they are more involved and potentially more computationally
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costly. As LS requires the re-evaluation of the outer loop objective function
each time it adjusts its line search parameter, its applicability to real systems
has been in doubt due to the computational cost limitations in 4D-Var [6].
In Section 5, we show that given the same cost as the GN method, the LS
method can in some cases, better minimize the preconditioned 4D-Var objective
function.

3.2. Gauss-Newtonwith regularization (REG)

The GNmethod may also be equipped with a globalization strategy by including
a regularization term γ (k)s(k) in the step calculation (11) of Algorithm 1. This
ensures that the accepted steps produce a sequence of monotonically decreas-
ing function values. This is a common variation of the GN method known as
the Levenberg-Marquardt method, proposed in [28] and [29]. The effect of the
regularization parameter γ (k) is to implicitly control the length of the step s(k).
Increasing γ (k) shortens the steps, thus increasing the possibility that the proce-
dure will decrease the objective function in the next iteration. The REG method
can be summarised as follows; see Algorithm 3.

As in Algorithms 1 and 2, the step Equation (14) is solved either exactly or
inexactly in the numerical experiments in Section 5.We note that when γ (k) = 0
in (14), the REG step in (14) is the same as the GN step in (11). By compar-
ing (14) with (11), we are able to see how the REG step differs from the GN
step. The diagonal entries of the Hessian of the 4D-Var objective function (4)
are increased by the regularization parameter γ (k) at each iteration of the REG
method. The method is able to vary its step between a GN and a gradient descent
step by adjusting γ (k) (see [18]) but may be costly due to the need to calculate the
value of the function J to assess the step. Note that other choices of the factors 1

2
and 2 for updating γ (k) in (18) are possible and even more sophisticated variants
for choosing γ (k) have been proposed. The proof of global convergence of the
REG method is presented in Appendix A.2.

4. Experimental design

Before evaluating the GN, LS and REGmethods numerically, we first explain the
experimental design.

Twin experiments are commonly used to test DA methods. They use error
statistics that satisfy the DA assumptions as well as synthetic observations gen-
erated by running the nonlinear model forward in time to produce a reference
state (not generally a local minimum of (5)). Within this section, we define our
choices for the twin experimental design.We begin by briefly outlining two com-
monly used dynamical models, which are sensitive to initial conditions (chaotic
nature), a property shared with NWP models.
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Algorithm 3 REG algorithm applied to (5) [46].
Step 0: Initialisation. Given x(0) ∈ R

n, 1 > η2 ≥ η1 > 0, γ (0) > 0 and some
stopping criteria. Set k = 0.
Step 1: Check stopping criteria.While the stopping criteria are not satisfied, do:

Step 2: Step computation. Compute a step s(k) that satisfies(
J(v(k))TJ(v(k)) + γ (k)I

)
s(k) = −J(v(k))Tr(v(k)). (14)

Step 3: Iterate update. Compute the ratio

ρ(k) = J (v(k)) − J (v(k) + s(k))
J (v(k)) − m(s(k))

, (15)

where

m(s(k)) = 1
2
‖J(v(k))s(k) + r(v(k))‖22 + 1

2
γ (k)‖s(k)‖22. (16)

Set

v(k+1) =
{
v(k) + s(k), if ρ(k) ≥ η1

v(k), otherwise.
(17)

Step 4: Regularisation parameters update. Set

γ (k+1) =

⎧⎪⎨
⎪⎩

1
2γ

(k), if ρ(k) ≥ η2 (very successful iteration)
γ (k), if η1 ≤ ρ(k) < η2 (successful iteration)
2γ (k), otherwise, (unsuccessful iteration)

(18)

Let k := k + 1 and go to Step 1.

4.1. Models

Lorenz 1963 model (L63) Proposed in [47], the Lorenz 63 model (L63) is a
popular experimental dynamical system that representsmeteorological processes
using a simplemodel. Themodel consists of three nonlinear, ordinary differential
equations given as

dx
dt

= σ(y − x),

dy
dt

= x(ρ − z) − y,

dz
dt

= xy − βz, (19)
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where the state vector consists of n=3 time-dependent variables x =
[x(t), y(t), z(t)]T ∈ R

3. The scalar parameters are chosen to be σ = 10, ρ = 8
3

and β = 28, making the system chaotic. A second-order Runge-Kutta method is
used to discretize the model equations using a time step �t = 0.025.

Lorenz 1996model (L96) Another popular experimental system is the atmo-
spheric Lorenz 96 model (L96) [48] given by the following n equations,

dxj
dt

= −xj−2xj−1 + xj−1xj+1 − xj + F, (20)

where j = 1, 2, . . . , n is a spatial coordinate. For a forcing term F=8 and n=40
state variables, the system is chaotic [48]. The variables are evenly distributed
over a circle of latitude of the Earth with n points with a cyclic domain and a
single time unit is equivalent to approximately 5 atmospheric days. A fourth-
order Runge-Kuttamethod is used to discretize themodel equations using a time
step �t = 0.025 (approximately 3 hours).

For both the L63 and L96 models, the time-window length ta is varied in the
numerical experiments in Section 5.1.We will now outline how we formulate the
twin experiments, beginning with generating the reference state.

4.2. Twin experiments

The reference state at time t0, x
ref
0 is used as the basis of a twin experiment in

the definition of the background state (the initial guess for the optimization algo-
rithms) as well as to generate the observations using a nonlinearmodel run called
the ‘nature’ run. We begin by explaining how we obtain xref0 .

Reference state A vector of length n is drawn from the uniform distribution
and used as the initial vector of state variables xrand. For the L63 model, xrand is
integrated forward using a second-order Runge-Kutta method, which is spun-
up over 1000 time steps to obtain the reference state on the model attractor for
the L63 twin experiments, xref0 ∈ R

3. This is the same for the L96 model except
a fourth-order Runge-Kutta method is used to obtain xref0 ∈ R

40. The reference
state at time t0, x

ref
0 can then be used to obtain the full nonlinearmodel trajectory.

We next explain how we obtain the background state vector used within our
twin experiments to be used as the initial guess for the optimization algorithms.

Background In 4D-Var, the initial guess for the optimization algorithm is
taken to be the background state at time t0, xb0, which incorporates information
from previous forecasts. In our experiments, the background state vector xb0 is
generated by adding Gaussian noise

εb ∼ N (0,B), (21)

to the reference state at time t0, x
ref
0 . For the background error covariancematrix,

we choose B = σ 2
b In where σ 2

b is the background error variance. The standard
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deviations of the errors from the reference state for each model are based on
the average order of magnitude of the entries of xref0 . For the L63 experiments,
σ 2
b = 0.25, 1, 6.25 and 25 represent a 5%, 10%, 25% and 50% error respectively.

Similarly for the L96 experiments we set σ 2
b = 0.0625, 0.25, 1.5625 and 6.25.

As previouslymentioned, we generate synthetic observations from a nonlinear
model run using the reference state at time t0, x

ref
0 . We next describe the choices

we made when specifying these observations.
Observations We consider both the spatial and temporal locations of the

observations. We assume that for both models observations of single state vari-
ables are taken andHi are the exact observation operators at times ti used to map
to observation space. For the L63model, we consider p=2 observations, one of x
and one of z per observation location in time. For the L96 model, we consider an
observation of the first half of the state variables per observation location in time.
This choice mimics what we may expect in reality where we have more observa-
tions concentrated in one part of the globe. For both models, we first consider
only one set of observations at time N (Nobs1) and then show the effect of using
more observations along the time-window in later experiments.Weuse imperfect
observations where the observations yi are generated by adding Gaussian noise

εo ∼ N (0,Ri), (22)

toHix
ref
i for each observation location in time. For the observation error covari-

ance matrix we choose Ri = σ 2
o Ip where σ 2

o is the observation error variance.
We expect the problem (4) to be more ill-conditioned, thus difficult to solve
accurately, when the ratio

σb

σo
(23)

is large [43,44]. The ratio (23) controls the influence of the observation term
in the preconditioned objective function (4). For all experiments, we set the
standard deviation of the observation error to be 10%of the average order ofmag-
nitude of the entries ofH(xrefi ) for bothmodels. For the L63model, this is σ 2

o = 1
and for the L96 model, this is σ 2

o = 0.25. We vary the background error variance
σ 2
b above and below σ 2

o such that the ratio (23) varies. This can be thought of
as having more confidence in the observations compared to background when
σb > σo and vice versa. Furthermore, as the initial guess is set to be the back-
ground state vector, which is dependent on the value of σb, by varying σ 2

b we are
essentially varying the initial guess of the algorithms, thus eliminating starting
point bias from our results [49]. It is important to recall here that under certain
conditions, the GNmethod is known for its fast convergence properties when in
close vicinity to a local minimum, see [17]. By choosing a small value of σ 2

b , we
expect the performance of GN to beat that of both LS and REG as it does not
require the adjustment of the additional parameters α(k) and γ (k). Also, when
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assuming that the observations are more accurate than the background, the use
of more observation locations in time means that we are constraining the esti-
mate of the initial state more tightly to the reference state in the twin experiment
design. The effect this has on the convergence of the optimization methods will
be investigated. We next outline the algorithmic choices we have made.

4.3. Algorithmic choices

Stopping criteriaWe now outline the criteria used to terminate Algorithms 1, 2
and 3. Due to the limited time and computational cost available in practice, the
GN method is not necessarily run to convergence and a stopping criterion is
used to limit the number of iterations. Each calculation of the residual vector
r(v) requires the non-linear model to be run forward to obtain the state at each
observation location in time. This can then be used to calculate the value of
the objective function. Furthermore, one run of the adjoint model is required
to calculate the gradient.

To reduce computational cost in practical implementations of 4D-Var, the
inner loop problem is solved at a lower resolution than the outer loop problem
[50]. However, as the dimension of the problems used within this paper are rela-
tively small compared toDA systems in practice, we solve the full resolution inner
loop problem using the full resolution residual and Jacobian given in (6) and for
the majority of our experiments we solve the inner loop problem using MAT-
LAB’s backslash operator where an appropriate solver is chosen according to the
properties of the Hessian matrix ∇2J (v) (see [51] for more details). For those
experiments where we state that we are solving the inner loop problem inexactly,
we useMATLAB’s preconditionedCGmethod (see [52] formore details).We use
MATLAB version R2016b throughout. The limit on the total number of function
and Jacobian evaluations is achieved by using the following criterion

kJ + l ≤ τe, (24)

where kJ is the total number of Jacobian evaluations (which is equivalent to the
number of outer iterations k in 4D-Var), l is the total number of function evalu-
ations and τe is the tolerance. The tolerance τe can be chosen according to the
maximum number of evaluations desired. We note that for GN, kJ = l as the
method requires as many Jacobian evaluations as function evaluations. How-
ever, for both LS and REG there could be more than one function evaluation
per Jacobian evaluation since for unsuccessful steps, the Jacobian is not updated
so kJ ≤ l.

To ensure that the algorithms are stopped before the function values stagnate,
the following common termination criterion based on the relative change in the
function at each iteration is also used

|J (v(k−1)) − J (v(k))|
1 + J (v(k))

≤ τs, (25)



3466 C. CARTIS ET AL.

for k ≥ 1, where τs is the tolerance, chosen to be 10−5. The criterion (25) is used
throughout Section 5 unless indicated otherwise.

We expect the norm of the gradient of the objective function, ‖∇J (v(k))‖ to
be close to zero at a stationary point. The following termination criterion will
be used in Section 5.2 to identify whether or not a given method has located a
stationary point

‖∇J (v(k))‖ ≤ 10−5. (26)

Parameter choices For the LS method, we choose α0 = 1 so that the first step
assessed by the bArmijo rule is the GN step. We set β = 0.1 and to adjust the
step length, τ = 0.5.

For the REG method, we select the initial regularization parameter to be
γ (0) = 1 so that the condition in Algorithm 3, γ (0) > 0, is satisfied and the REG
step differs from the GN step. Furthermore, we choose η1 = 0.1 and η2 = 0.9 to
assess how well the model (16) approximates the true function value at the next
iteration.

For all three optimization methods, we set τe = 8, 100 or 1000 depending on
the experiment. The choice of τe = 8 comes from thatwhich is used operationally
in the ECMWF Integrated Forecasting System [53], whereas the choice of τe =
100 or 1000 is used to measure the performance of the optimization methods
when closer to convergence.

In order to best present our results, we use data profiling described as follows.
Data profilesA data profile shows the proportion of problems a givenmethod

can solve within a fixed amount of work (τe) and a given tolerance (τf ) of the
change in the function value [54]. To ensure the robustness of our results, we
apply the three optimization methods to a series of nr randomly generated prob-
lems, where the randomness occurs through the background and observation
error vectors, εb and εo. For each realization, a new εb and εo are generated from
their respective distributions, (21) and (22). The following criterion proposed in
[54] is used to flag that an estimate of the initial state has been obtained by an
optimization method

J (v(l)
0 ) − J (vt0)

J (v(0)
0 ) − J (vt0)

≤ τf , (27)

where vt0 is a solution of (4) referred to as the ‘truth’ and τf is the tolerance.
The measure (27) compares the optimality gap J (v(l)

0 ) − J (vt0) relative to the
best reduction J (v(0)

0 ) − J (vt0) [54]. This ensures that the 4D-Var problem is
only flagged as solved by the optimizationmethod once the value of the objective
function is within some error (τf ) of the truth.

For our problems, the truth is unknown. We only know that, due to the non-
linearity of the 4D-Var problem, there may exist many values of v0 that could
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minimize (4) locally. We are interested in the estimate vt0 that gives the greatest
reduction in (4) that any of the three methods can obtain. Therefore, we set the
truth to be the v(l)

0 obtained by any of the three methods that gives the small-
est function value within the given number of evaluations. Using this criterion
allows us to benchmark the methods against each other using data profiles.

For each experiment, we plot the proportion of the same nr = 100 realisations
solved by each method against the relative accuracy obtained, τf . The relative
accuracy obtained is varied using τf = 10−i, where i = 0, 0.01, 0.02, . . . , 5.

5. Numerical results

In this section, we present the results when applying GN, LS and REG using the
experimental design described in the previous section. We begin by conducting
experiments showing the effect of the length of the assimilation time-window on
the convergence of the three methods.

5.1. Effect of time-window length

We produce data profiles for different time-window lengths to understand the
effect this has on the convergence of each method while limiting the number of
function and Jacobian evaluations to τe = 8. We choose a background error of
50% and an observation error of 10% so that the ratio (23) is large relative to the
other cases we consider. For both the L63 and L96models, we consider both short
and long time-window lengths of 6 hours (ta = 0.05), 12 hours (ta = 0.1), 1 day
(ta = 0.2) and 5 days (ta = 1) with the results shown in Figure 1.

From Figure 1, we see that as the length of the time-window of both the L63
and L96 problems is increased, the performance of the GN, LS and REGmethods
suffers.

For the L63 problems, Figure 1(a,b) show that GN and LS perform similarly
and solve more problems to high accuracy than REG. However, as the tolerance
τf is increased in both of these figures, we find that REG is solving all of the prob-
lems. Therefore, the REG estimate when the tolerance τf is small must be close to
that of GN and LS. In Figure 1(c), both LS and REG solve fewer problems com-
pared to GN, even for relatively large choices of τf . However, there is a choice of
τf where all three methods are solving all problems, again indicating that the LS
and REG estimates are close to the GN estimate. The initial guess for the three
methods (the background) appears to be close enough to the solution and so the
GN step is able to attain a sufficient decrease in the objective function as predicted
by its local convergence properties. LS and REG are inadvertently shortening the
GN step, which is a good step in the short time-window case. As we know, LS
and REG need to adjust their respective parameters, α(k) and γ (k) to attain GN’s
fast local convergence, so LS and REG are requiringmore evaluations than GN to
achieve the same result. For the L96 short time-window results in Figure 1(e–g),
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Figure 1. Data profiles for the GN (black squares), LS (magenta circles) and REG (blue triangles)
methods applied to the L63andL96problemsusingdifferent time-window lengths ta. These show
the proportion of nr = 100 problems solved by each of the methods against the specified accu-
racy − log(τf ) when τe = 8. The GN line is below the LS line in (a), (b), (e), (f ) and (g). (a) L63,
ta = 0.05. (b) L63, ta = 0.1. (c) L63, ta = 0.2. (d) L63, ta = 1. (e) L96, ta = 0.05. (f ) L96, ta = 0.1.
(g) L96, ta = 0.2. (h) L96, ta = 1.

this is not the case. In fact, REG is outperforming GN and LS and it appears that
LS is mimicking the behavior of GN quite closely as the GN step is attaining a
sufficient decrease in the objective function. However the decrease that the REG
step is achieving appears to be much greater for the L96 problems. Therefore,
REG is able to solve a greater number of problems within a higher level of accu-
racy, which explains the difference between the L63 results in Figure 1(a,b) and
the L96 results in Figure 1(e,f).

The long time-window results for the L63 and L96 problems are shown in
Figure 1(d,h), respectively. In both figures, LS is outperforming GN. For the
L63 problems, the performance of GN does not differ much from the perfor-
mance of REG. However, comparing the performance of GN in Figure 1(c) with
Figure 1(d), we can see that performance of GN has deteriorated greatly when
increasing the length of the time-window. In fact, in the results where even longer
time-windows are used (not included here), LS and REG outperform the GN
method for the L63 problems, as in Figure 1(h).

For the remainder of our experiments, we set ta = 1 in order to consider a long
time-window case only, as this is where we expect to see the greatest benefit from
the globally convergent methods.

5.2. Behaviour ofmethods and stagnation of GN

In order to gain an understanding of how the globally convergent methods, LS
and REG, compare with GN, we next demonstrate the behavior of GN, LS and
REG when applied to typical preconditioned 4D-Var L63 and L96 problems,
where the background error is large and the time-window length is long.
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Figure 2. Convergenceplots showing thevalueof theobjective functionat each iteration (includ-
ingunsuccessful iterations) of theGN (black squares), LS (magenta circles) andREG (blue triangles)
methods when applied to a L63 problem (a) and a L96 problem (b). (a) L63, Nobs1, σ 2

b = 25,
B = σ 2

b I, ta = 1, τe = 100. (b) L96, Nobs1, σ 2
b = 6.25, B = σ 2

b I, ta = 1 τe = 100.

Figure 2 shows the convergence plots for two typical realisations when using
the GN, LS and REG methods to obtain a solution to the preconditioned 4D-
Var problem with the L63 and L96 models. In this figure, the total number of
function and Jacobian evaluations allowed is set to τe = 100 for both the L63 and
the L96 problems to see if any progress is made beyond the number of evalua-
tions allowed in practice. We recall that GN updates the gradient (8) when the
function (4) is updated, so there are as many function evaluations as Jacobian
evaluations. However, both LS and REG only update the Jacobian on success-
ful iterations when there is a reduction in the objective function. Therefore, the
total number of evaluations used by each of the methods could consist of a dif-
ferent combination of function and Jacobian evaluations. As in Section 5.1, we
set the ratio (23) to be large. It is in this case that we are able to best demonstrate
the benefit of the globally convergent methods, LS and REG. In Figure 2, we set
τs = 10−3 to ensure that the methods stop before the function values stagnate.
As Figure 2 includes function evaluations for both successful and unsuccessful
step calculations, it is natural to see jumps in the function values of LS and REG
while their parameters, α(k) and γ (k) are being adjusted to guarantee a reduction
in the function.

For the L63 problems (Figure 2(a)), all three methods stop when the relative
change in the function criterion (25) is satisfied and before the limit on the total
number of function and Jacobian evaluations (24) is met. Table 1 supports this
figure by showing the algorithmic output for each of the GN, LS and REGmeth-
ods when two different stopping criteria are used. From these results, we see that
both LS and REG stop at the same function value, although REG requires fewer
evaluations to do so, and that GN is converging towards a larger value of the
objective function (4) than LS and REG. By instead stopping on the criterion (26)
and setting τe = 1000, we see in Table 1 that all three methods are still making
progress on the gradient and iterate level, indicating that the methods are in fact
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Table 1. Table of algorithmic output when applying, GN, LS and REG to a typical realization of the
L63 problems, corresponding to Figure 2(a).

Criteria Method l kJ J (v(kJ)) ‖v(kJ) − v(kJ−1)‖ ‖∇J (v(kJ))‖
GN 20 20 81.55 0.42 86.35

(25) LS 27 14 8.69 0.03 5.18
REG 14 14 8.69 0.05 1.00
GN 101 101 78.87 3.54−8 8.47−6

(26) LS 43 27 8.69 8.21−7 8.31−6

REG 66 66 8.69 7.34−7 9.24−6

Table 2. Table of algorithmic output when applying, GN, LS and REG to a typical realization of the
L96 problems, corresponding to Figure 2(b).

Criteria Method l kJ J (x(kJ)) ‖v(kJ) − v(kJ−1)‖ ‖∇J (v(kJ))‖
(25) GN 50 50 1728.99 20.02 5758.47

LS 24 14 12.72 0.07 10.09
REG 19 16 5.52 0.08 1.89

(26) GN 500 500 960.32 15.88 8015.13
LS 967 32 12.71 0 10.09
REG 967 32 5.51 0 0.03

locating stationary points despite a small change in the function value beyond
those shown in Figure 2.

For the L96 problems (Figure 2(b)), LS andREG stopwhen (25) is satisfied and
before (24) is satisfied, whereas GN only satisfies (24). Table 2 supports this figure
by showing the algorithmic output for each of the GN, LS and REG methods
when two different stopping criteria are used. From these results, we see that both
GN and LS are stopping at a larger value of the objective function (4) than REG.
Recall that the normof the gradient criterion (26) can be used to identify whether
or not a given method has located a stationary point. The values of ‖∇J (v(kJ))‖
for LS and REG when the relative change in the function criterion (25) is used
are much smaller than that of GN. However, when we instead use the norm of
the gradient criterion (26) and limit the number of iterations to τe = 1000, the
methods stop on the limit of the number of iterations. Therefore, our results do
not indicate that the estimates of LS and REGmay indeed be stationary points of
the objective function as they did for the L63 problems. However, LS and REG
are are able to make some improvement (REG more so than LS) on the gradient
norm level, unlike GN, which appears to fluctuate at gradient level, even after
τe = 1000 evaluations.

Table 2 shows that as LS and REG iterate beyond what is shown in Figure 2(b),
there is very little change in the value of the cost function, despite making some
change on the iterate and/or gradient level. The effect of rounding error means
that although we see progress made, the function value may remain stagnant
because of limitations in computer precision and because of the conditioning of
the problem. The condition number of the Hessian κ(S) can be used to indicate
the accuracy we could be able to achieve. In our work, both the L63 and L96
problems are well-conditioned.
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Figure 3. Data profiles for the GN (black squares), LS (magenta circles) and REG (blue triangles)
methods applied to the L63 problems in (a)–(d) and the L96 problems in (e)–(h) where nr = 100,
τe = 8 and where there is one observation at the end of the time-window. The observation error
is 10% and the background error is varied above and below this, as indicated in the plot captions.
The GN line is below the LS line in (c), (d), (g) and (h). (a) L63, 50% (b) L63, 25% (c) L63, 10% (d)
L63, 5% (e) L96, 50% (f) L96, 25% (g) L96, 10% (h) L96, 5%.

The observed behavior in this section is partly due to the fact that there is no
mechanism in GN to force it to converge as there is in LS and REG. The benefit
of these mechanisms is clearly shown in Figure 2(b) where the GN method is
stagnating while the LS and REG methods are converging, further motivating
our investigation of these methods.

5.3. Effect of background error variance

In this section, we study the effect on the performance of the three methods
when the uncertainty in the background information is increased whilst the
uncertainty in the observations is fixed. Figure 3 shows the data profiles used
to benchmark the performance of the GN, LS and REGmethods as the tolerance
τf is reduced, where τe = 8, while Figure 4 allows τe to increase for both mod-
els with the increase chosen relative to the dimension of the models, i.e. a larger
increase in τe is allowed for the L63 problems, where n=3, than the L96 prob-
lems, where n=40. From both these figures, we generally see that as the error in
the background is reduced, the performance of all three methods improves. The
conditioning of the problem has been shown to depend on the ratio of the stan-
dard deviations of the background andobservation errors (23) [43,44]. Therefore,
the estimate obtained by any of the optimization methods may not be accurate
enough to produce a reliable forecast if the ratio (23) is large. The accuracy of
the estimate obtained by each method will be investigated further later on in the
paper.

Figure 3(a,e) show that a globally convergent method is able to find a smaller
function value than GN. As the ratio (23) is reduced, from Figure 3(b,c,f,g) we
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Figure 4. Data profiles for the GN (black squares), LS (magenta circles) and REG (blue triangles)
methods applied to the L63 problems where τe = 1000 in (a)–(d) and the L96 problems where
τe = 100 in (e)–(h). We set nr = 100 and there is one observation at the end of the time-window.
The observation error is 10%and thebackgrounderror is varied above andbelow this, as indicated
in the plot captions. (a) L63, 50% (b) L63, 25% (c) L63, 10% (d) L63, 5% (e) L96, 50% (f) L96, 25%
(g) L96, 10% (h) L96, 5%.

see that the REGmethod is able to solve the most problems at the highest level of
accuracy. When there is less uncertainty in the background versus the observa-
tions, Figure 3(d) shows that for the L63 problems, all three methods are solving
close to all of the problems within a high level of accuracy. This is because the
three methods are able to solve a large portion of the cases when the problem
is well-conditioned, which could explain this result. However, for the L96 prob-
lems Figure 3(h) shows that the GN and LS methods are solving the majority of
the problems and REG is not performing as well at higher levels of background
accuracy. We can see the performance of REG improving for the L96 problems
when more evaluations are allowed in Figure 4(h).

In Figure 4, where more evaluations are allowed than in Figure 3, we see a
much greater difference between the globally convergent methods and GNwhen
the background error is larger than the observation error. In Figure 4(a,b,e,f), it
appears that when more evaluations are allowed, the performance of GN wors-
ens relative to LS and REG in the case when σb is large. The globally convergent
methods are able to locate estimates of the initial states for the preconditioned
4D-Var problem, which when compared to GN, better minimize the objective
function (4). When the background error is the same as the observation error in
Figure 4(c), it is GN that is performing better than LS and REG for the L63 prob-
lems. For LS, this could be because LS is unnecessarily shortening the GN step,
causing slower convergence. For the REG method, the regularization parameter
must be shrunk and therefore, REG requiresmore iterations to benefit fromGN’s
fast convergence property.

In Figure 4(d), all three methods are solving essentially the same number of
problems, with a slight decrease in success for REG, that again could be due to



OPTIMIZATION 3473

the need to adjust the regularization parameter. For the L96 problems, we see a
slightly different result. Figure 4(g-h) show that a globally convergent method is
solving more problems, more accurately than GN despite the background error
being at most equal to the observation error. This is an interesting result for this
higher-dimensional model as we would expect GN to locally converge at a faster
rate than the globally convergent methods due to the fact that GN does not need
to adjust any parameters; however, we find this not to be the case.

InDA, we are interested in knowing the accuracy of the estimate obtained as in
applications such as NWP, the estimate is used as the initial conditions for a fore-
cast and so the quality of this forecast will depend on the errors in the estimate.
In the following section, we quantify and compare the errors in the estimates
obtained by each method.

5.4. Quality of the analysis

We recall that the initial guess of the algorithms is the reference state xref0 per-
turbed by the background error εb. In order to compare the quality of the estimate
obtained by each method, we compare their estimate to the reference state xref0 to
understand how far the estimates obtained by the methods have deviated from
this. The analysis error for each state variable is given by εai = xai − xrefi . For each
realization, we calculate the root mean square error (RMSE) of the analysis error,
which is the difference between the reference state and the estimate obtained by
each method,

RMSE = 1√
n
‖εa‖2. (28)

For eachmethod, we plot the percentage of problems solved (according to the cri-
terion (27) where τf = 10−3) within a specified tolerance of the RMSE (28). We
acknowledge in this work that the code for the RMSE profiles has been adapted
from the code for the data profiles used in [54].

The results for the L63 and L96 problems are in Figure 5, which coincides
with the case shown in Figure 3 where τf = 10−3. From this, we see that the GN
method solves fewer problems within the same level of RMSE accuracy as LS and
REG when the background error is large in Figure 5(a,b,e,f). Furthermore, we
see how the RMSE of the analyzes successfully found by each method reduces
as the background error variance is reduced. This can be seen in the scale of
the x axis in Figure 5(a–d) for the L63 problems and Figure 5(e–h) for the L96
problems. For both models, the concentration of points in Figure 5(a,e) shows
us that the LS method is solving more problems than GN and REG within the
same RMSE tolerance. A similar result can be seen for REG in Figure 5(b,c,f,g).
In Figure 5(d,h), we see that all threemethods are performing similarly, theRMSE
errors for each of the analyzes are very close together.
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Figure 5. RMSE plots for the GN (black squares), LS (magenta circles) and REG (blue triangles)
methods applied to the L63 problems in (a)–(d) and the L96 problems in (e)–(h) where nr = 100,
τe = 8, τf = 10−3 and where there is one observation at the end of the time-window. The obser-
vation error is 10% and the background error is varied above and below this, as indicated in the
plot captions. (a) L63, 50% (b) L63, 25% (c) L63, 10% (d) L63, 5% (e) L96, 50% (f) L96, 25% (g) L96,
10% (h) L96, 5%.

We next use RMSE profiles to understand the effect of using an inexact solver
in the inner loop on the accuracy of the three methods when applied to the L63
and L96 problems.We consider the worst case for the three methods where there
is a 50%error in the background.Weuse theCGmethod,wherewe set the desired
CG tolerance to be τcg = 10−4, 10−3 or 10−2. For each realization, we set the
truth to be the minimum function value found by GN, LS and REG where the
inner loop problem is solved exactly and classify whether the problem is solved
according to the criterion (27). The results for the L63 and L96 problems are in
Figure 6.

FromFigure 5(a), we found that the LSmethod outperformedGNandREG for
the L63 problems. This is also the case for all levels of inexactness in Figure 6(a–c).
Furthermore, in these L63 figures we find that for the majority of cases, as the
accuracy with which the inner problem is solved reduces, the proportion of prob-
lems solved by each of GN, LS and REG also reduces. This result is to be expected
as it is known that the accuracy with which the inner loop is solved is known to
affect the convergence of the outer loop [23–25]. Therefore, we expect the outer
loop output to differ across the four levels of inexactness that we plot.

Figure 6(b) shows that the inexact LS method with τcg = 10−4 performs
marginally better than the exact LSmethod. Thismay be because although the LS
step calculation (which is the same as the GN step) differs depending on whether
an exact or inexact solver is used, the LSmethod is able to adjust the step and thus
improve convergence. This is not the case for GN, which does not have strategies
to alter the length of step and REG can only do so implicitly through the REG
parameter update. Therefore, it is possible that the LS method with an inexact
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Figure 6. RMSE plots for the GN, LS and REGmethods applied to the L63 problems in (a)–(c) and
the L96 problems in (d)–(f ) where nr = 100, τe = 8, τf = 10−3 and where there is one obser-
vation at the end of the time-window. The plots corresponding to a given problem and method
(indicated in the plot captions) show the RMSE results where the inner loop is either solved by
an exact method (black squares) or an inexact solver (CG) where τcg = 10−4 (magenta circles),
τcg = 10−3 (blue triangles) or τcg = 10−2 (red downward-pointing triangles). The background
error is 50% and the observation error is 10%. Note that a shorter range and finer scale is used for
the y-axis in (d). (a) L63, GN (b) L63, LS (c) L63, REG (d) L96, GN (e) L96, LS (f ) L96, REG.

solver is able to adjust the step such that it converges to a more accurate solution
than when using an exact solver.

The results for the L96 problems given in Figure 6(d–f) differ from those of
the L63 problems. More specifically, in Figure 6(d) we find that the minimum
function value located by GN did not satisfy criterion (27) with τf = 10−3 for
all choices of the CG tolerance, τcg , that we consider. This is to be expected as
even when using an exact solver, GN was only able solve relatively few problems
to the accuracy of τf = 10−3. Therefore, as we expect the number of problems
solved to degrade as the level of inexactness increases, it is reasonable to find that
zero problems are solved when using an inexact solver. This was also the case
for LS where τcg = 10−3 and 10−2 as well as REG for τcg = 10−2. In addition we
find that although LS was the preferred method when using an exact solver (see
Figure 5(e)), Figure 6(d–f) indicate that it is REG that is the preferred method in
the inexact case.

As it was difficult to compare the L96 results when τf = 10−3, we repeat the
L96 experiments for when we increase τf to 10−2 to better understand the effect
of using an inexact solver in the inner loop on the accuracy of the three methods.
These results are given in Figure 7. Figure 7(a) shows GN performing poorly
for all levels of inexactness. However, one problem appears to be solved when
τcg = 10−2, although this is still relatively poor compared to the performance of
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Figure 7. RMSE plots for the GN, LS and REGmethods applied to the L96 problems in where nr =
100, τe = 8, τf = 10−2 and where there is one observation at the end of the time-window. The
plots corresponding to a given problem and method (indicated in the plot captions) show the
RMSE resultswhere the inner loop is either solvedbyanexactmethod (black squares) or an inexact
solver (CG) where τcg = 10−4 (magenta circles), τcg = 10−3 (blue triangles) or τcg = 10−2 (red
downward-pointing triangles). The background error is 50% and the observation error is 10%.
Note that a shorter range and finer scale is used for the y-axis in (a). (a) L96, GN (b) L96, LS (c) L96,
REG.

LS and REG shown in Figure 7(b-c), respectively. In these figures we find that,
as with the L63 results, as the accuracy with which the inner problem is solved
reduces, the proportion of problems solved by LS and REG also reduces. The LS
method is preferred in the exact case, but it is REG that is the preferred method
in the inexact case, as indicated by the L96 results where τf = 10−3.

In this section, we studied how the quality of the analysis is affected when
using GN, LS and REG and also considered the effects of an inexact solver on the
performance of the three methods. Including more observations constrains the
solution to be closer to the reference state when the observation error is small.
We next show the effect on the performance of the methods as we include more
observations and see if this gives any improvement in the performance of the
methods when the background error is much larger than the observation error.

5.5. Effect of observations

Within this section, we show how the use of more observation locations in time
affects the performance of the threemethods.We take the worst case for the three
methods when there is a 50% error in the background and see if including more
observations in time with a 10% error affects the performance of the methods.
For bothmodels, we consider only equally spaced observations in time, one set of
observations at timeN (Nobs1), timesN/2 andN (Nobs2), timesN/4,N/2, 3N/4
and N (Nobs3) and the even time points (Nobs4), where N=40. For the Nobs1
case, observations are based on the reference state at the end of the time-window
and more observations are included over time in the Nobs2, Nobs3 and Nobs4
cases. This not only increases the condition number of the problem but also
constrains the estimate more tightly to the reference state.
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Figure 8. Data profiles where nr = 100 and τe = 8 for the L63 problems in (a)–(d) and the L96
problems in (e)–(h) for different observation locations in time, as indicated in the plot captions,
where the background error is 50%and the observation error is 10%. (a) L63, Nobs1 (b) L63, Nobs2
(c) L63, Nobs3 (d) L63, Nobs4 (e) L96, Nobs1 (f ) L96, Nobs2 (g) L96, Nobs3 (h) L96, Nobs4.

For the L63 problems from Figure 8(a–d), we see that as the number of obser-
vation locations in time is increased, all threemethods are solvingmore problems
at a higher level of accuracy. This is more apparent when more evaluations are
allowed as shown in Figure 9(a–d). Here, the performance of GN improves dras-
tically between the Nobs1 and Nobs2 cases (Figure 8(a-b)) while there is less
significant change in the behavior of LS and REG. In Figure 8(d), we see that GN
is able to solve more problems than LS and REG. Again, this could be because the
LS and REG methods require more iterations to converge when GN is perform-
ing well due to the need to adjust their parameters. This argument coincides with
Figure 9(d) where more evaluations are allowed and the LS and REG methods
are able to perform as well as or better than GN. For the L96 problems, we see a
different result. From Figure 8, we only see a significant improvement in the per-
formance of GN in the Nobs4 case (Figure 8(h)). Otherwise, there is little effect.
This conclusion can also be drawn from Figure 9(g-h) where more evaluations
are allowed.

Similar studies were carried out on the performance of GN, LS and REG
when applied to the preconditioned 4D-Var problem where we instead choose
B = σ 2

bCB, where CB is a correlation matrix; similar conclusions are drawn but
due to space constraints, are not included within this paper.

6. Conclusion

We have shown that the globally convergent methods, LS and REG, have the
capacity to improve current estimates of the DA analysis within the limited
time and cost available in DA, through the use of safeguards within GN which
guarantee the convergence of the method from any initial guesses.
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Figure 9. Data profiles where nr = 100 for the L63 problems where τe = 1000 in (a)–(d) and the
L96 problems where τe = 100 in (e)–(h) for different observation locations in time, as indicated
in the plot captions, where the background error is 50% and the observation error is 10%. The GN
line is below the LS line in (d). (a) L63, Nobs1 (b) L63, Nobs2 (c) L63, Nobs3 (d) L63, Nobs4 (e) L96,
Nobs1 (f ) L96, Nobs2 (g) L96, Nobs3 (h) L96, Nobs4.

Using the L63 and L96 models in the preconditioned 4D-Var framework, we
have shown that when there is more uncertainty in the background information
compared to the observations, the GN method may fail to converge in the long
time-window case yet the globally convergent methods LS and REG are able to
improve the estimate of the initial state. We compare the quality of the estimate
obtained using the RMSE of the analysis and show that even in the case where the
background is highly inaccurate compared to the observations, the globally con-
vergent methods find estimates with an RMSE less than or equal to the RMSE
of the estimates GN obtains. We take the case where the background is highly
inaccurate compared to the observations and find that, even when using an inex-
act solver, the globally convergent methods outperform GN. Furthermore, we
find that the convergence of all three methods is improved when more observa-
tions are included along the time-window. In addition to the numerical results,
the assumptions made in the global convergence theorems of both LS and REG
when applied to a general nonlinear least-squares problem and a discussion as to
whether these assumptions are satisfied in DA is presented in the appendix. We
note that preconditioning the second derivative matrix is not necessary for these
results to hold, although this is the case we have focused on within our work.

Our findings are important in DA as they show that in cases where the accu-
racy of the prior information is poor and when there is limited computational
budget, the globally convergent methods are able to minimize the 4D-Var objec-
tive function, unlike GN. We recommend that these methods are tested on DA
problems with realistic models and for different applications to understand if
these conclusions continue to hold. In particular, one should consider such prob-
lems where an accurate initial guess for the algorithms is unavailable and a long
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assimilation time-window is used, as we found that it is in this case that LS and
REG have an advantage over GN.

Within this paper, the 4D-Var inner loop problem is solved exactly, except in
Section 5.4, where we consider the effect of using an inexact solver. In practice it
must be solved inexactly, due to the size of the control vector, and by the use of
approximations to meet the computational and time constraints. This is a com-
mon area of research in the DA community in order to improve the quality of
the assimilation analysis as well as the speed of convergence of the algorithms.
Furthermore, in the case where GN performs better than LS and REG, further
research is needed on updating the globalization parameters (stepsize α(k) and
regularization parameter γ (k)) to speed up convergence.
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Appendix: Convergence theorems

In this section, we outline some existing global convergence results for the LS and REGmeth-
ods and discuss whether the assumptions made hold in DA. We first state the definitions of a
local and global minimum of an optimization problem minv∈Rn f (v) where f : R

n → R and
v ∈ R

n.

Definition A.1 (Local minimizer [18]): A point v∗ is a local minimizer of f if there is a
neighborhoodN of v∗ such that f (v∗) ≤ f (v) for all v ∈ N .

Definition A.2 (Global minimizer [18]): A point v∗ is a global minimizer of f : R
n → R if

f (v∗) ≤ f (v) for all v ∈ R
n.

A global solution is difficult to locate inmost cases due to the nonlinearity of the problems.
Therefore, a local solution is often sought by algorithms for nonlinear optimization.

We focus on nonlinear least-squares optimization problems of the form (5) for the remain-
der of this section. The GN method can only guarantee local convergence under certain
conditions and not necessarily global convergence. This is dependent on how close the initial
guess is from the local minimum the algorithm locates and whether or not the residual vector
r of (5) is a zero vector at a solution v∗. Furthermore, the region of local convergence depends
on problem constants not known a priori, such as Lipschitz constants of the gradient.

A local convergence result for the GN method can be found in Theorem 10.2.1 of [17]
where the performance of GN is shown to be dependent on whether or not the second-order
terms in (9) evaluated at the solution v∗ are close to zero. Another local convergence result
can be found in Theorem 4 of [19] where GN is treated as an inexact Newton method. The
theoremguarantees convergence of theGNmethod if for each iteration k = 0, 1, . . . , the norm
of the ratio ofQ(v(k)) and J(v(k))TJ(v(k)), the second and first terms of (9) respectively, is less
than or equal to some constant η̂ where 0 ≤ η̂ ≤ 1.
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It is important to note here that the globally convergent methods we are concerned with,
namely LS and REG, can only guarantee global convergence to a localminimumunder certain
conditions and not necessarily to a global minimum.

Before we list the assumptions for the global convergence theorems, we first state the
definition of the Lipschitz continuity property of a general function g as this is widely used in
the theorems.

Definition A.3 (Lipschitz continuous function (see [18] A.42)): Let g be a function where
g : R

n → R
m for general n andm. The function g is said to be Lipschitz continuous on some

setN ⊂ R
n if there exists a constant L> 0 such that,

‖g(v) − g(w)‖ ≤ L‖v − w‖, ∀ v,w ∈ N . (A1)

The following assumptions are used to prove global convergence of both the LS and REG
methods.

(A1) r is uniformly bounded above by ω > 0 such that ‖r(v)‖ ≤ ω.
(A2) r ∈ C1(Rn) is Lipschitz continuous on R

n with Lipschitz constant Lr > 0.
(A3) J is Lipschitz continuous on R

n with Lipschitz constant LJ > 0.
We remark that for the LS method, we can weaken assumptions (A2) and (A3) using

an open setN containing the level set

L =
{
v ∈ R

n |J (v) ≤ J (v(0))
}
. (A2)

In order to achieve the sufficient decrease property of the LS method, the following
assumption is needed.

(A4) J(v) in (6) is uniformly full rank for all v ∈ R
n, that is, the singular values of J(v) are

uniformly bounded away from zero, so there exists a constant ν such that ‖J(v)z‖ ≥ ν‖z‖
for all z ∈ R

n, and all v in an open neighborhoodN containing the level set L.

In 4D-Var practice, it is reasonable to assume that the physical quantities are bounded.
Therefore, we can say that both x0 − xb and the innovation vector y − H(x) are bounded
in practice, thus satisfying assumption (A1). In 4D-Var, we must assume that the nonlinear
model M0,i is Lipschitz continuous in order for (A2) to hold. As discussed in [55], this is a
common assumption made in the meteorological applications, where attractors are known to
exist. However, we cannot say that this is necessarily the case in 4D-Var practice, although it
is reasonable to assume thatM0,i is bounded, and hence thatM0,i is Lipschitz continuous.

In order for the Jacobian J to be Lipschitz continuous, we require its derivative to be
bounded above by its Lipschitz constant. Therefore, for assumption (A3) to hold, we require
r to be twice continuously differentiable in practice, which is a common assumption made in
4D-Var, and also, that these derivatives of r are bounded above.

As mentioned in Section 2, the preconditioned 4D-Var Hessian (10) is full rank by con-
struction as it consists of the identity matrix and a non-negative definite term. Therefore, the
Jacobian of the residual of the preconditioned problem in (6) is full rank and assumption (A4)
holds. This is also the case for the standard 4D-Var problem (1), because of the presence of
B1/2 in its Jacobian.

We now outline the global convergence theorems for the LS and REGmethods, using these
assumptions.
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A.1 Global convergence of the LSmethod

A proof for the global convergence of GN method with Wolfe line search conditions can be
found in [18], which uses the Zoutendijk condition. This proof can be adapted to prove the
global convergence theorem of the LS method, Algorithm 2, given as follows.

Theorem A.1 (Global convergence for the Gauss-Newton with bArmijo line search
method, Algorithm 2): Suppose we have a function J = 1

2 r
Tr and its gradient ∇J = JTr

where r ∈ C1(Rn) and J is the Jacobian of r. Assume (A1)–(A4) hold. Then if the iterates {v(k)}
are generated by the GN method with stepsizes α(k) that satisfy the Armijo condition (13), we
have

lim
k→∞

J(v(k))Tr(v(k)) = 0. (A3)

That is, the gradient norms converge to zero, and so the Gauss-Newton method with bArmijo
line search is globally convergent.

The proof of Theorem A.1 requires the bArmijo chosen stepsizes α(k) to be bounded
below, which can be derived using assumptions (A1)–(A3). Using this lower bound, as well as
assumption (A4), we are able to prove the Zoutendijk condition (as in [18]) and its variant∑

k≥0

cos(θ(k))‖∇J (v(k))‖2‖s(k)‖2 < ∞ (A4)

hold. Both the Zoutendijk condition and its variant (A4) use the angle between s(k) (the GN
search direction) and −∇J (v(k)) (the steepest descent direction), θ(k), which is given by

cos(θ(k)) = (−∇J (v(k)))Ts(k)

‖∇J (v(k))‖2‖s(k)‖2 . (A5)

By showing that the angle is uniformly bounded away from zero with k, one can show that
GN with line search is a globally convergent method.

We will next present the global convergence theorem for the REG method. The REG
method has no sufficient decrease condition as in the LS method. Therefore, the use of the
level set (A2) is not required. The assumptions for convergence are similar to the LS method
aside from the requirement of J(v) being full rank.

A.2 Global convergence of the REGmethod

The global convergence theorem for the GN with quadratic regularization method,
Algorithm 3, is given as follows.

Theorem A.2 (Global convergence for the Gauss-Newton with regularization method,
Algorithm 3): Suppose we have a function J = 1

2 r
Tr and its gradient ∇J = JTr where

r ∈ C1(Rn) and J is the Jacobian of r. Assume (A1)–(A3) hold. Then if the iterates {v(k)} are
generated by the Gauss-Newton with regularization method, we have that

lim
k→∞

J(v(k))Tr(v(k)) = 0. (A6)

That is, the gradient norms converge to zero, and so the Gauss-Newton method with regulariza-
tion is globally convergent.

We first note that some adaptations of the lemmas from the global convergence proof
of the Adaptive Regularisation algorithm using Cubics (ARC method) are used to prove
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Theorem A.2, see [30,31]. We begin the proof by deriving an expression for the predicted
model decrease in terms of the gradient. We require the use of an upper bound on γ (k),
denoted as γmax, which is derived using a property of Lipschitz continuous gradients.We show
that γ (k) ≤ γmax for all k ≥ 0 by first showing that if γ (k) is large enough, then we have a suc-
cessful step so that γ (k) can stop increasing due to unsuccessful steps in Algorithm 3. We use
the expression for γmax to prove global convergence of the REG method under assumptions
(A1)–(A3) by showing that the gradient norms converge to zero as we iterate.

Note that for both the LS and REG, if r(v(k)) → 0, i.e. (5) is a zero residual problem, then
we have that (A3) and (A6) hold as |J (v(k))| is uniformly bounded. However, in practice the
variational problem is not usually a zero residual problem.
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