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Abstract

Machine learning-based stock market beta estimators outperform established benchmark
models both statistically and economically. Analyzing the predictability of time-varying
market betas of U.S. stocks, we document that machine learning-based estimators produce
the lowest forecast and hedging errors. They also help to create better market-neutral
anomaly strategies and minimum variance portfolios. Among the various techniques, ran-
dom forests perform the best overall. Model complexity is highly time-varying. Historical
stock market betas, turnover, and size are the most important predictors. Compared to linear
regressions, allowing for nonlinearity and interactions significantly improves predictive
performance.

|I. Introduction

In single-factor asset pricing models, such as the capital asset pricing model
(CAPM) introduced by Sharpe (1964), Lintner (1965), and Mossin (1966), the
expected return of a stock in equilibrium is determined solely by its sensitivity to
market risk. While multifactor models that include additional factors can explain
the cross-sectional variation in expected returns somewhat better than the CAPM
(see, e.g., Fama and French (2008), Harvey, Liu, and Zhu (2016), for extensive
evidence), it explains the time series variation in returns well. Moreover, as shown
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2 Journal of Financial and Quantitative Analysis

by Graham and Harvey (2001), Jacobs and Shivdasani (2012), and Graham (2022),
the CAPM is widely used in the industry. The vast majority of chief financial
officers of large U.S. firms rely on a 1-factor market model to estimate their cost
of equity capital. For this application, firms typically estimate market betas as the
main component and treat the market risk premium as an almost free parameter
(Cochrane (2011), Jacobs and Shivdasani (2012)). Investors, in turn, use the market
betas for capital allocation decisions and portfolio risk management (Barber,
Huang, and Odean (2016), Berk and van Binsbergen (2016), and Daniel, Mota,
Rottke, and Santos (2020)).

However, there are two main problems with using the CAPM, and hence stock
market betas, for these applications: Betas i) are not directly observable, which
underscores the need for accurate estimates, and ii) are time-varying (Campbell,
Lettau, Malkiel, and Xu (2001)). The second problem complicates matters consid-
erably, because most of the above applications require accurate predictions of future
betas. Therefore, the main goal of both researchers and practitioners is to find
approaches that provide reliable estimates of future betas with minimal prediction
error.

Our objective is to examine whether machine learning-based models outper-
form established approaches in estimating time-varying market betas, and if so,
why. In our empirical analysis, we use 1) a large universe of U.S. stocks, ii) a long
and recent sample period, iii) a broad set of both benchmark and machine learning-
based beta estimators, and iv) a comprehensive set of predictor variables. Compared
to the existing literature, we go much deeper. Our first contribution is that we
significantly expand the scope and rigor in each of these four dimensions. More
importantly, our second contribution is to investigate when and how machine
learning estimators add value. To the best of our knowledge, we are the first to
comprehensively address the “black box” issue in stock market beta estimation by
examining the properties and operating scheme of machine learning techniques.

We compare the predictive performance of machine learning-based beta esti-
mators (linear regression, tree-based models, and neural networks) with that of
established benchmarks (rolling-window approaches as well as shrinkage-based,
portfolio-based, and long-memory forecasting models). We consider a comprehen-
sive set of 81 predictors, including sample beta estimates, predictors based on
accounting information, technical indicators, macroeconomic indicators, and the
industry classification of Fama and French (1997).

Our first main result is that machine learning techniques outperform estab-
lished approaches both statistically and economically. Random forests perform
especially well. They produce the lowest average value-weighted mean squared
error (MSE), closely followed by gradient-boosted regression trees (GBRT) and
neural networks. These three approaches yield considerably lower average forecast
errors than any of the established benchmarks and are included in the vast majority
of cases in the model confidence set (MCS) of Hansen, Lunde, and Nason (2011).
The corresponding fractions for all benchmark models being in the MCS are
substantially smaller. Moreover, the forecast errors for all benchmark approaches
are higher for most of the sample period, as indicated by positive and statistically
significant Diebold and Mariano (DM) (1995) test statistics. For example, com-
pared to 1-year rolling betas computed from daily returns, the most natural
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benchmark model, the average MSE for random forests is 20% lower. They
significantly outperform this benchmark approach in almost 70% of all sample
months and are more than twice as often in the MCS. Machine learning-based
estimators also outperform the benchmarks when evaluated on the basis of ex post
hedging errors.

We then examine the differences in forecast errors across beta estimators to
identify time periods and types of stocks for which these differences across such
estimators are particularly pronounced. The machine learning-based approaches
outperform the benchmark models even more in distressed economic environ-
ments (during or immediately following most recessions), that is, periods when it
is particularly difficult to accurately predict market betas. In contrast to estab-
lished beta estimators, random forests and other machine learning methods pro-
duce less extreme and less volatile forecasts. Such properties avoid systematically
underestimating the betas of stocks in low-beta deciles and systematically over-
estimating those in high-beta deciles, a central problem inherent in the task of
forecasting time-varying market betas. We also find that machine learning-based
approaches are superior for almost all types of stocks (sorted into portfolios based
on firm characteristics or industry) but are particularly beneficial for small stocks,
illiquid stocks, value stocks, and loser stocks. Including relevant firm fundamen-
tals as predictors in our forecasting models helps to generate better forecasts for
these stocks.

In addition to a statistical comparison, we analyze the economic value of beta
forecasts in portfolio construction exercises. We find that machine learning
methods again outperform established approaches. In contrast to the benchmark
models, they are able to generate anomaly portfolios that are ex post market neutral.
Furthermore, the machine learning methods generate market-neutral momentum,
idiosyncratic volatility, and betting-against-beta strategies with higher alphas than
the benchmark models. Finally, they produce better minimum variance portfolios
(MVPs) based on a single-factor parameterization of the covariance matrix.

In a penultimate step, we examine changes in the inherent model complexity
over time and decompose predictions into the contributions of individual variables.
We find that the degree of model complexity is positively correlated with the overall
difficulty of predicting market betas: More complex models are required when
market betas are more difficult to predict. Finally, we find that historical betas and
technical indicators are the first and second most important groups of predictor
variables, respectively. However, the importance of variables varies over time, and
unconditionally less informative variables occasionally play important roles.

Our results underscore the systematic relationship between market betas and
firm characteristics. An important reason for the outperformance of machine learn-
ing methods is their ability to capture the information content of a large set of firm
characteristics that appear to affect betas. Importantly, however, random forests,
GBRT, and neural networks also outperform linear regressions that include the
same set of covariates. We show that much of this outperformance is due to their
ability to exploit nonlinear and interactive patterns.

We perform extensive additional tests to demonstrate the robustness of our
results (reported in the Supplementary Material). For example, we show that our
results extend naturally to the prediction of other factor betas. In particular, for the
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Fama and French (1993) size and value betas, the machine learning methods also
produce significantly better forecasts than the benchmark models.

Machine learning methods must be properly trained and tuned to avoid over-
fitting. There are two types of overfitting: model overfitting and backtest
overfitting. The former refers to machine learning models with excessively high
in-sample fit but poor out-of-sample predictive performance. To avoid model over-
fitting, we need to control the degree of model complexity by tuning the relevant
hyperparameters. These parameters should be determined adaptively from the
sample data. Backtest overfitting refers to a researcher’s arbitrary choice of firm
coverage, sample period, predictors, and tuning parameters. If information from
the out-of-sample period is consciously or unconsciously used to fit the models
(Schorfheide and Wolpin (2012)), this can lead to exaggerated out-of-sample
predictive performance (Bailey, Borwein, de Prado, and Zhu (2014), (2017),
Harvey and Liu (2014), (2015), and Harvey et al. (2016)). To avoid backtest
overfitting, we use the largest possible firm coverage and sample period.! Moti-
vated by prior literature, we use a comprehensive set of 81 predictor variables rather
than focusing only on those covariates that have been shown to perform best in
similar predictive tasks. Finally, consistent with Gu, Kelly, and Xiu (2020), we
choose the time series cross-validation approach to fit the machine learning models.
We follow common parameter choices to cover a representative range of possible
specifications from which the hyperparameters are selected. This approach helps to
mitigate the risk of backtest overfitting.

The remainder of this article is organized as follows: Section II briefly
reviews the related literature on beta estimation and machine learning.
Section I1I describes our data set. Section [V summarizes the different forecasting
models (including the machine learning methods and tuning parameters). The
empirical results are presented in Sections V, VI, and VII. In particular, Sections V
and VI show the results of the statistical and economic forecast evaluations,
respectively. Section VII analyzes the properties and operating scheme of the
machine learning techniques. Section VIII concludes the article. The Supplemen-
tary Material provides details on the estimation of the benchmark and machine
learning models in Sections A and B, together with extensive additional analyses
and a battery of robustness checks in Section C.

Il. Literature Review

Because the original CAPM is a static, 1-period model, its most natural
application is based on the premise that stock market betas are constant over time.
However, several studies find evidence of time variation in these betas (Bollerslev,
Engle, and Woolridge (1988), Jagannathan and Wang (1996), Ferson and Harvey
(1999), Petkova and Zhang (2005), and Ang and Chen (2007)). Therefore, Jagan-
nathan and Wang (1996) propose a conditional version of the CAPM and show that

'According to Gu et al. (2020), using large data sets mitigates sample selection or data snooping
biases (Lo and MacKinlay (1990)) and also helps to avoid model overfitting by increasing the ratio of
observation count to parameter count.
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it explains the cross-sectional variation in expected returns better than its static
counterpart.

To estimate time-varying market betas, traditional approaches focus on histor-
ical return information. Black, Jensen, and Scholes (1972) and Fama and MacBeth
(1973) use the coefficient estimates from ordinary least squares (OLS) time series
regressions of stock-level excess returns on market portfolio excess returns. Their
5-year rolling window of monthly returns accounts for the time variation in beta
estimates. Despite being robust to misspecification (no predictors needed), rolling-
beta estimates face a bias—variance trade-off with respect to window length and data
frequency. In addition, such time series estimators are sensitive to outliers in the
return history and often produce extreme and volatile beta forecasts. The literature
offers modifications to the basic rolling-window approach to improve this trade-off.
For example, Hollstein, Prokopczuk, and Wese Simen (2019) show that a weighted
least squares regression approach with exponential weights performs well, while
Welch (2022) suggests winsorizing stock-level returns before running the time series
OLS regressions. Both studies find significantly reduced forecast errors compared to
the baseline rolling-window approach.

Enhancing rolling betas with additional cross-sectional information can also
improve beta forecasts. The idea is that a stock’s beta estimate should not be too
different from that of other stocks with similar characteristics. Vasicek (1973) and
Karolyi (1992) find that shrinking rolling-beta estimates toward a prior regarding
the true beta reduces estimation noise. In contrast, Cosemans, Frehen, Schotman,
and Bauer (2016) argue that shrinkage based on common priors only attenuates part
of the noise in rolling-beta estimates. They suggest specifying priors unique to each
firm based on a broad set of firm fundamentals as predictors. Kim, Korajczyk, and
Neuhierl (2020) and Kelly, Moskowitz, and Pruitt (2021) emphasize that com-
monly used firm fundamentals (such as size or the book-to-market ratio) can help
improve the prediction of time-varying market betas. Other approaches include
assigning portfolio beta estimates to individual stocks (Fama and French (1992))
and exploiting the long-memory properties of beta time series (Becker, Hollstein,
Prokopczuk, and Sibbertsen (2021)).

Studies using machine learning-based approaches are now abundant in the
empirical asset pricing literature. While most of them focus on the predictability of
return characteristics, there has been little research on the predictability of risk
characteristics.” For example, Christensen, Siggaard, and Veliyev (2023) compare
various machine learning algorithms in forecasting stock-level expected volatility
and find significant outperformance relative to the well-established heterogeneous
autoregressive approach.’ These studies focus almost exclusively on the total risk

?Several studies apply machine learning to predict expected stock returns (e.g., Gu et al. (2020),
Drobetz and Otto (2021), and Leippold, Wang, and Zhou (2021)), bond risk premia (e.g., Bianchi,
Biichner, and Tamoni (2021), Bali, Goyal, Huang, Jiang, and Wen (2022)), and earnings expectations
(e.g., van Binsbergen, Han, and Lopez-Lira (2023)), among others.

30ther studies, which also apply machine learning techniques to predict future volatility, each focus
on a specific method. For example, Mittnik, Robinzonov, and Spindler (2015) and Luong and Doku-
chaev (2018) consider tree-based models, while Donaldson and Kamstra (1997), Hillebrand and
Medeiros (2010), Fernandes, Medeiros, and Scharth (2014), Bucci (2020), and Rahimikia and Poon
(2020) explore neural networks.
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of a stock. However, an estimate of its systematic risk, that is, its CAPM beta, is at
least as important to companies and investors.

For most studies in the literature, the ultimate goal is to model expected stock
returns. As an intermittent tool, several studies use firm characteristics to capture the
time variation in multifactor betas (e.g., Connor and Linton (2007), Connor, Hag-
mann, and Linton (2012), Fan, Liao, and Wang (2016), and Kelly, Pruitt, and Su
(2019)). Kozak, Nagel, and Santosh (2020) and Gu, Kelly, and Xiu (2021) use
machine learning settings for this task. We contribute to this literature by focusing
explicitly and directly on the estimation of CAPM market betas using machine
learning methods. Our analysis is important for two main applications: i) equity cost
of capital estimation, for which it is industry practice to use estimated market betas
rather than expected returns, and ii) portfolio risk management, which requires
direct knowledge of stock-level systematic risk characteristics (i.e., stock market
betas).

The study most closely related to ours is Jourovski, Dubikovskyy, Adell,
Ramakrishnan, and Kosowski (2020). The authors use estimates from linear regres-
sions and tree-based models to predict realized betas. To do so, they analyze the
MSCIU.S. stock universe (on average 540 mostly large-cap stocks) over the sample
period from Jan. 1999 to Dec. 2019. They show that regression trees generally
outperform rolling-window estimation and linear regression both statistically and
economically. However, they do not compare the machine learning methods with
the best benchmark models documented in the recent literature. Furthermore, the
authors only examine the economic value of machine learning methods for betting-
against-beta portfolios. While they also analyze the importance of each predictor
variable, the authors do not examine changes in the inherent model complexity over
time or explore patterns of nonlinear and interactive effects in the relationship
between predictor variables and beta estimates.

Therefore, our empirical analysis goes much deeper: We i) comprehensively
compare the performance of machine learning estimators (including neural net-
works) with the best benchmark models documented in the recent literature, ii) ana-
lyze when and how machine learning techniques outperform by comparing the time
series of forecast errors and by analyzing the forecast errors of cross-sectional
portfolio sorts, iii) document the economic value for MVPs and a large set of
anomaly portfolios, iv) analyze both model complexity and variable importance
as well as nonlinear and interactive effects, and v) examine a much larger and longer
sample along with a much more comprehensive set of predictors.*

Ill. Data

Our market and fundamental data come from CRSP and Compustat, respec-
tively, and consist of daily and monthly returns and various firm characteristics.
They are aggregated on a monthly basis and denominated in U.S. dollars when

“A comparison with the best benchmark models is important because, as described in the text, several
methods exist that outperform simple rolling-window estimators. Without further analysis, it remains
unclear whether machine learning techniques also outperform more sophisticated, and thus more
conservative, benchmark models and indeed provide the best beta estimates.
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currency-related.”> Our sample is free of survivorship bias and includes all firms
that were or are listed on the New York Stock Exchange (NYSE), the American
Stock Exchange (AMEX), or the National Association of Securities Dealers
Automated Quotations (NASDAQ). To calculate excess returns, we use the
3-month U.S. T-bill rate, scaled to the daily or monthly horizon, as the risk-free
rate. The value-weighted portfolio of all stocks serves as a proxy for the market
portfolio.

In Table 1, we present our comprehensive set of 81 predictors in detail. It is an
extension of the set used by Cosemans et al. (2016), which includes five funda-
mental covariates (size, book-to-market ratio, financial leverage, operating lever-
age, and momentum), one macroeconomic covariate (default spread), and
47 dummies that correspond to the industry classification of Fama and French
(1997).° We augment this base set with 28 variables that have been shown to
explain the cross-sectional variation in future market betas (Beaver, Kettler, and
Scholes (1970), Amihud and Mendelson (2000), Jacoby, Fowler, and Gottesman
(2000), Chincarini, Kim, and Moneta (2020), and Kelly et al. (2021)).” In particular,
we include 25 additional fundamental covariates (e.g., age, illiquidity, or turnover),
which we classify into 18 predictors based on accounting information and 7
technical indicators. To capture the time series dynamics in betas, we further include
three predictors based on sample estimates of beta obtained from rolling regres-
sions. We use 3-month and 1-year historical windows of daily returns (OLS 1Y D
and OLS 3M_D, respectively) as well as a 5-year historical window of monthly
returns (OLS_5Y M) to obtain information about short-, medium-, and long-term
trends in the beta time series. The inclusion of historical betas based on three
different horizons allows for a heterogeneous autoregressive forecast structure.
As documented by Becker et al. (2021), this helps to capture the long-memory
properties of market beta time series.

For many firms, some of the firm characteristics are missing. In these cases, the
entire firm—month observations would have to be omitted because the econometric
models require data sets without missing data. To avoid losing these data, we use the
approach of Freyberger, Hoppner, Neuhierl, and Weber (2024) to impute missing
accounting-based firm characteristics and technical indicators. Specifically, we first
always take 60 months of data jointly. We impute the first 60 months together and
then use the current month and the 59 previous months to estimate the parameters.
Second, we identify all missing value patterns (combinations of missing and non-
missing variables) in the data. Third, for each of these patterns, we use the largest

SMarket data are assumed to become public immediately, and fundamental data are assumed to be
published 4 months after the end of the fiscal year.

Cosemans et al. (2016) follow Gulen, Xing, and Zhang (2011) in measuring a firm’s operating
leverage as the ratio of change in operating income before depreciation to change in net sales. We opt for
the Novy-Marx (2011) definition, which is another well-established measurement approach in the
literature. This choice increases consistency across predictors, especially with respect to financial
leverage. The main results of our empirical analysis are qualitatively similar for other operating leverage
definitions.

"From the extensive list of predictors that significantly predict future market betas in the Kelly et al.
(2021) study, we omit only the bid—ask spread because the data are largely unavailable until the
mid-1980s. The main findings of our empirical analysis are qualitatively similar when including the
bid-ask spread.
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TABLE 1

Variable Descriptions and Definitions

Table 1 presents the descriptions and definitions of the 81 predictors used in the empirical analysis. The sample includes all
firms that were or are listed on the NYSE, AMEX, or NASDAQ in any month during the sample period from Mar. 1970 to Dec.
2020. Data from CRSP and Compustat are aggregated on a monthly basis and denominated in U.S. dollars when currency-
related. Market data are assumed to be immediately available, and fundamental data are assumed to be available 4 months

after the end of the fiscal year.

# Predictor Description

Definition

Predictors Based on Sample Estimates of Beta
1 OLS_3M_D Short-term beta

2 OLS_1Y_D Medium-term beta

3 OLS_5Y_M Long-term beta

Predictors Based on Accounting Information

4 AGE Age

5 AT Total assets

6 BM Book-to-market ratio

7 CAPTURN Capital turnover

8 DIVPAY Dividend payout ratio

9 EP_COVAR Covariability in earnings

10 EP_VAR Variability in earnings

11 FINLEV Financial leverage

12 FXDCOS Fixed cost of sales

13 INVEST Investment

14 NOA Net operating assets

15 OPACCR Operating accruals

16 OPLEV Operating leverage

17 PPE PPE change-to-assets ratio

18 PROF Profitability

19 ROA Return on assets

20 ROE Return on equity

21 RON Return on net operating
assets

22 SALESTOASSETS  Sales-to-assets ratio

23 SALESTOPRICE Sales-to-price ratio

24 SGATOSALES SGA-to-sales ratio

Technical Indicators

25 ILLIQ llliquidity

26 INTERMOM Intermediate momentum

27 IVOL Idiosyncratic volatility

28 LTREV Long-term reversal

29 ME Size

30 MOM Momentum

31 RELPRC Relative price

32 STREV Short-term reversal

33 TO Turnover

Macroeconomic Indicators

34 DFY Default spread

Industry Classifiers

35-81 IND Industry classification

Sample beta estimate from rolling regressions using a
3-month window of daily returns

Sample beta estimate from rolling regressions using a 1-year
window of daily returns

Sample beta estimate from rolling regressions using a 5-year
window of monthly returns

Log number of years since first inclusion in CRSP

Log book value of total assets

Log ratio of book and market value of equity

Log ratio of net sales to lagged book value of total assets
Ratio of dividends paid during the last fiscal year to net
income

Coefficient estimate in the time series ordinary least squares
regression of monthly earnings-to-price ratios on the market's
monthly earnings-to-price ratio over the last 3 years

Log standard deviation of monthly earnings-to-price ratios
over the last 3 years

Log ratio of book value of total assets to market value of equity
Log ratio of selling, general, and administrative expenses
plus research and development expenses plus advertising
expenses to net sales

Year-on-year growth of book value of total assets

Ratio of operating assets minus operating liabilities to book
value of total assets

Ratio of changes in noncash working capital minus
depreciation to book value of total assets

Log ratio of operating costs (i.e., the sum of costs of goods
sold and selling, general, and administrative expense) to
market value of total assets

Ratio of changes in property, plants, and equipment (PPE) to
lagged book value of total assets

Ratio of gross profits to book value of equity

Ratio of income before extraordinary items to book value of
total assets

Ratio of income before extraordinary items to book value of
equity

Ratio of operating income after depreciation to lagged net
operating assets

Log ratio of net sales to book value of total assets

Log ratio of net sales to market value of equity

Log ratio of selling, general, and administrative (SGA)
expenses to net sales

Ratio of monthly absolute return to monthly dollar trading
volume

Excess return from month —12 to month —7

Log standard deviation of daily residuals from Fama and
French'’s (1992) 3-factor model within the current month
Excess return from month —36 to month —13

Log market value of equity

Excess return from month —12 to month —2

Ratio of end-of-month price to its highest daily price during
the last year

Excess return from the current month

Log monthly dollar trading volume

Yield differential between Moody’s Baa- and Aaa-rated
corporate bonds

Fama and French’s (1997) industry classification, resulting in
48 — 1 =47 industry dummies
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possible sample of complete cases, that is, firm—month observations with no
missing data, and regress each missing characteristic on all others that are available
for that pattern. This procedure gives us the best conditional expectation for the
missing variables as a function of the nonmissing variables. Finally, we use the
nonmissing characteristics of each stock along with the coefficient estimates from
this regression to impute the missing values.

We follow Cosemans et al. (2016) in cleaning the data set. We include a stock
in the empirical analysis for month # only if it meets the following criteria: First, its
book value of equity (according to Fama and French (1992)) must be nonnegative,
and both its net sales and monthly dollar trading volume must be positive. Second,
its return in the current month ¢ and over the previous 36 months must be available.
Third, after the imputation procedure, it must provide complete information on
historical and realized betas as well as all predictor variables used in the empirical
analysis. These requirements limit our sample period to Mar. 1970 to Dec. 2020, for
which we have an average of 1,806 stocks per month.

Following Cosemans et al. (2016), we winsorize outliers in all firm charac-
teristics to the 0.5th and 99.5th percentile values of their cross-sectional distribu-
tions. In addition, as in Kelly et al. (2019) and Freyberger, Neuhierl, and Weber
(2020), we cross-sectionally rank all firm characteristics each month and then map
the ranks to the (—1,+1) interval.

An important caveat is that many of the predictors are constructed similarly,
such as sample beta estimates based on different rolling windows, or contain similar
information, such as valuation ratios measured relative to the market value of the
stock, resulting in relatively high correlations. However, as discussed in the study
by Lewellen (2015), any resulting multicollinearity is not a major concern because
we are primarily interested in the overall predictive power of the machine learning-
based forecasting models rather than the marginal effects of each individual pre-
dictor. Moreover, most of the machine learning techniques we use are suitable for
solving the multicollinearity problem, either by their nature (tree-based models) or
by applying different types of regularization, such as lasso-based penalization of the
weights (neural networks).

IV. Forecast Models

The main objective of our empirical analysis is to investigate whether machine
learning techniques outperform established beta estimators in terms of predictive
performance, and if so, why. In particular, we are interested in whether incorpo-
rating nonlinearity and interactions in the relationship between predictors and
future market betas adds incremental predictive power. Therefore, we run a horse
race between traditional and machine learning-based beta estimators.

Following Cosemans et al. (2016) and Hollstein and Prokopczuk (2016), we
estimate and evaluate the forecasts at the individual stock level. The setup in our
analysis is as follows: Out-of-sample beta estimates are obtained at the firm level
and on a monthly basis following an iterative procedure. In the first iteration step,
we use data up to the end of month ¢ and obtain forecasts for the beta of each stock i
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during the out-of-sample forecast period (from the beginning of month 7+ 1 to the
end of month ¢+ k): ,b’l.FJ 44, (or abbreviated ﬁf,). We set k£ equal to 12 and focus on a
1-year forecast horizon.® In the next iteration step, we use data up to the end of
month ¢+ 1 and obtain forecasts of stock-level betas during the subsequent out-of-
sample forecast period (from the beginning of month 7+ 1 + 1 to the end of month
t+ 1+ k). By iterating through the data set, we obtain time series of overlapping
out-of-sample beta estimates, which we then compare to realized betas. Andersen,
Bollerslev, Diebold, and Wu (2006) document that a realized beta measure con-
structed from high-frequency returns is a consistent estimator of the true integrated
beta. Therefore, we measure future realized betas using daily returns over the 1-year

R

CovR . . .
K k= vt where Covh ., is the realized covariance

forecast horizon as f;,,; = Varl .,

between stock i and the market portfolio M, and Var]f;[’t o« 18 the realized market
variance. Both moments are computed from continuously compounded returns.

For the sake of brevity, we introduce the models used to estimate time-varying
market betas in Section A of the Supplementary Material (see Table Al in the
Supplementary Material for an overview). These models differ in their overall
approach and complexity, but they all aim to minimize the forecast error, which
we compute as the value-weighted MSE at the end of each month ¢

Ny 2
(1) MSE o= wia (Blk — Bl ) with k=12,

i=1
where N, is the number of stocks in the sample at the end of month ¢, and w;, is the
market capitalization-based weight of stock 7. It is important to note that realized
betas are themselves estimates. However, evaluating forecasts based on future
realized betas is an approach that works well statistically (see, e.g., Hansen and
Lunde (2006), for the theoretical framework and empirical evidence). Moreover, in
the context of volatility forecasting, Patton (2011) shows that the MSE criterion is
robust to mean-zero noise in the evaluation proxy.’

A. Benchmark Estimators

From the extensive literature on beta estimation, we select a representative set
of established forecasting models, which we classify into four model families based
on methodology (see Section A of the Supplementary Material for details, imple-
mentation choices, and references). The first model family consists of rolling-
window estimators, for which we consider two basic historical betas obtained from

8 Alternatively, 1-month and 5-year forecast horizons (with k = 1 and k = 60, respectively) are also
common in the literature. However, both alternatives have shortcomings. First, realized betas computed
from 1-month rolling windows of daily returns are very noisy, making it difficult to evaluate forecast
errors. Second, forecast horizons much longer than 12 months are less common in the industry due to the
underlying nature of fiscal years. We demonstrate the robustness of our results to different forecast
horizons in Section C of the Supplementary Material (see Table C7 in the Supplementary Material).

°In Section C of the Supplementary Material, we examine the robustness of our results to changes in
the forecast error measure. In particular, the results for an equal-weighted mean squared error (see
Table C4 in the Supplementary Material) and a value-weighted mean absolute error (see Table C5 in the
Supplementary Material) are qualitatively similar to our baseline results in Section V.
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rolling regressions using a 5-year window of monthly returns (OLS _5Y M) and a
1-year window of daily returns (OLS 1Y D) as well as two common modifica-
tions, exponentially weighted betas based on short (EWMA S) and long
(EWMA_L) half-lives and slope-winsorized betas (BSW). The second model
family consists of shrinkage-based estimators, for which we include three shrinkage
betas that shrink OLS 1Y D toward the average beta within the stock universe
(VASICEK), an industry portfolio (KAROLYT), and a firm-specific beta prior
(HYBRID). The third and fourth model families are portfolio-based and long-
memory estimators, respectively, for which we include portfolio betas assigned
to individual stocks (FAMA-FRENCH) and long-memory betas that exploit the
long-memory properties of beta time series (LONG-MEMO).

B. Machine Learning Estimators

The machine learning-based approaches follow a different, more rigid path to
capture the cross-sectional variation in future betas. For example, shrinkage-based
estimators derive prior beliefs and sample estimates of beta separately before
aggregating these two sources of information into shrinkage betas. Rather than
taking this “detour,” machine learning techniques focus directly on the goal of
predicting market betas. Realized betas enter directly into the regressive framework
as dependent variables, while sample estimates of beta, firm characteristics, etc.,
serve as predictors. This approach keeps the forecasting objective in mind when
training the model and uses multiple sources of information, potentially leading to
incremental predictive power. We adapt the additive prediction error model outlined
in the study by Gu et al. (2020) to describe a stock’s beta:

(2) ft-*—k =E, (ﬂft.;.k) +&irvks

where ﬁft 1 18 the realized beta of stock i over the 1-year forecast horizon starting at
the beginning of month 7+ 1, and ;. is an error term. The expected beta, £, (B5,..,),
is estimated as a function of the predictor variables and is described by the “true”
model g*(z;,), where z;, represents the P-dimensional set of predictors:

3) E, (ﬁft+k> =g"(zi4)-

Although our machine learning-based prediction models belong to different
families (linear regression, tree-based models, and neural networks), they are all
designed to approximate the true prediction model by minimizing the out-of-sample
MSE. Approximations of the conditional expectation g*(z;,) are flexible and
family-specific. The approximation function g(-) can be linear or nonlinear, as well
as parametric based on g(z;,,6), where 6 is the set of true parameters, or nonpara-
metric, with g(z;;).

1. Sample Splitting

Machine learning methods are designed to i) simultaneously incorporate a
large number of variables and ii) account for both nonlinearity and interactions in
the relationship between predictor variables and beta estimates. However, they are
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prone to overfitting, and thus we need to control model complexity by tuning the
relevant hyperparameters (e.g., the number and/or depth of trees in tree-based
models or the number of layers and/or nodes in neural networks). The hyperpara-
meters should be determined adaptively from the sample data and selected from an
extensive set of parameter specifications (see Panel B of Table A1 in Section A of
the Supplementary Material for more details). The parameter tuning approach
iteratively reduces the in-sample fit by searching for a level of model complexity
that produces reliable out-of-sample predictive performance. To this end, following
Gu et al. (2020), we apply the time series cross-validation approach, which pre-
serves the temporal order of the data and divides the sample into three distinct
subsamples: a training sample, a validation sample, and a test sample.

We use the training sample to estimate the model for multiple parameter
specifications, while we use the validation sample to tune the parameters. That
is, based on the models estimated from the training sample, we compute the time
series mean of the monthly value-weighted MSEs within the validation sample for
each parameter specification. The model with the parameter specification that
minimizes the validation error is used for out-of-sample testing. The test sample
is not used for either model estimation or parameter tuning. Therefore, it is truly out-
of-sample and appropriate for evaluating the out-of-sample predictive power of
a model.

In portfolio management applications, where new data emerge over time,
some sample splitting scheme must be applied that periodically incorporates more
recent data (see, e.g., West (20006), for an overview). We follow Gu et al. (2020) and
refit the models once a year. We use a rolling-window approach. Each year, we roll
forward the training and validation samples by 1 year, keeping the length of each
sample constant. We always select 10 years of data for training and validation, that
is, 9 years for training and 1 year for validation, and 1 year for testing. Starting in
Dec. 1979, we obtain the last beta estimates in Dec. 2019 using 10 years of data for
training and validation (Jan. 2009 to Dec. 2017 and Jan. 2018 to Dec. 2018,
respectively), which we compare to the realized betas over the following year.'?
In total, we use 40 years and 1 month of data for testing.

2. Machine Learning Techniques

In our empirical analysis, we analyze three different families of predictive
models that differ in their overall approach and complexity (see Section B of the
Supplementary Material for details, implementation choices, and references). The
first family of models consists of linear regressions, where we use the training
sample to run pooled OLS regressions of future realized betas ﬂft 14 on the set of
81 predictors. Specifically, we use either the OLS loss function (LM) or an elastic
net penalization (ELANET). The latter is the most common machine learning
technique to overcome the overfitting problem in a high-dimensional regression
setting. Unless explicitly included as predetermined terms, pooled regressions
cannot capture nonlinear or interactive effects. We use linear regressions as a

19Because we focus on a 1-year forecasting horizon, there is a 1-year gap between the end of the
sample used for training and validation (Dec. 2018) and the estimation date (Dec. 2019).
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benchmark to determine whether such effects, in addition to the interaction between
firm characteristics and the default spread, lead to additional predictive power.

The second model family consists of tree-based models, for which we include
random forests and GBRT, the most common representatives within this subcate-
gory. The third family of models are neural networks (NN_1-NN_5), for which we
consider specifications with up to 5 hidden layers and 32 neurons.'' Both tree-based
models and neural networks inherently account for nonlinearity and multiway
interactions without the need to add new predictors that capture these effects in
advance.

V. Statistical Analysis of Market Beta Forecasts
A. Forecast Errors

In the first step of our empirical analysis, we evaluate the models’ abilities to
predict out-of-sample market betas.!? In particular, we run a horse race between
established and machine learning-based beta estimators, comparing their predic-
tive performance from a statistical perspective. Panel A of Table 2 reports the time
series averages of the monthly value-weighted MSEs (based on a 1-year forecast
horizon), calculated as in equation (1). Ignoring any cross-sectional information,
the beta estimates obtained from rolling regressions lead to substantial average
forecast errors, ranging from 19.17% for the OLS 5Y M model to 9.44% for the
EWMA L model. Winsorizing or shrinking the rolling-beta estimates toward a
well-defined prior, assigning portfolio beta estimates to individual stocks, or
exploiting the long-memory properties of beta time series substantially reduce
the average MSE. Consistent with Cosemans et al. (2016), Becker et al. (2021),
and Welch (2022), the best performing estimators among our benchmark
approaches are slope-winsorized betas (8.77%), hybrid betas (8.53%), and long-
memory betas (8.29%).

Turning to the machine learning methods, we observe that tree-based models
and neural networks further reduce the average prediction error relative to the best
benchmark beta estimators (average MSEs between 7.77% and 8.04%). In con-
trast, linear regressions (both simple, 9.15%, and penalized, 8.89%) have notably
higher average MSEs.!? Therefore, using information from a large set of pre-
dictors in isolation is not sufficient to produce superior beta estimates, and much
ofthe outperformance of the RF, GBRT, and NN 1 models is due to their ability to

' Additional robustness tests in Section C of the Supplementary Material document that the predic-
tive performance for the neural network models deteriorates slightly with the number of hidden layers.
Therefore, in the main part of this article, we only present and discuss the results for the simplest NN_1
architecture.

2In Section C of the Supplementary Material, we additionally analyze the time series and cross-
sectional properties of the benchmark and machine learning-based beta estimators. We find that the
machine learning-based estimators have the lowest standard deviations and produce the least extreme
beta estimates (see Table C1 in the Supplementary Material).

3Our finding that tree-based models perform particularly well in estimating market beta is consistent
with Jourovski et al. (2020), although they do not analyze any of the top three performing benchmark
models or neural networks.
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TABLE 2
Forecast Errors (Value-Weighted MSEs)

Table 2 shows the differences in forecast errors obtained from the forecasting models presented in Section V. Panel A reports the time series averages of the monthly value-weighted MSEs:

2
MSEEQM, :Zfi‘ w,‘,(ﬁffHk —/ifrﬂ)k“) , with k=12, where N; is the number of stocks in the sample at the end of month t, and w;; is the market capitalization-based weight of stock i. Panel B reports the fraction of

months during the out-of-sample period for which the column model is i) in the Hansen et al. (2011) model confidence set (MCS) and ii) significantly better than the row model in a pairwise comparison (according to the

2
Diebold and Mariano (1995) test statistics). The DM tests of equal predictive ability examine the differences in stock-level squared forecast errors (SEs): SE%MU = (ﬁfFfwk */ff;%,) , with k =12. The DM test statistic in
=N

-, where df{;’) = SE52+;<\[ — SEEQMH is the difference in SEs, B(/‘/) = Z,ﬁy W,vtd,(’[‘” the value-weighted cross-sectional average of these differences, and

month ¢ for comparing model j with a competing model i is DME"” =

TTE,,,” the Newey and West (1987) standard error of Bim (with 4 lags to account for possible heteroscedasticity and autocorrelation). Statistical tests are based on the 10% significance level. The sample includes all firms that

wére or are listed on the NYSE, AMEX, or NASDAQ in any month during the sample period from Mar. 1970 to Dec. 2020. The first beta estimates are obtained in Dec. 1979.

Benchmark Estimators ML Estimators

OLS_5Y_ M OLS_1Y.D EWMAS EWMA_L BSW  VASICEK KAROLYI HYBRID FAMA-FRENCH LONG-MEMO LM ELANET RF GBRT NN_1

Panel A. Average Forecast Errors

MSE, value-weighted 19.17 9.70 9.55 9.44 8.77 8.91 8.97 8.53 9.1 8.29 9.15 8.89 7.77 8.04 7.79
(%)

Panel B. Forecast Errors over Time

sIsAjeuy SAlBIIUBNY PUE [BIOUBUI JO [BUINOP 1|

In MCS 3.74 32.64 40.54 41.79 49.69 46.99 50.10 52.81 43.04 67.15 51.77 57.80 82.54 68.19 78.59
Benchmark Estimators

vs. OLS_5Y_M 87.73 87.73 88.36 92.52 91.68 90.64 94.39 90.85 97.51 90.44 89.81 96.47 96.05 96.67
vs. OLS_1Y_D 1.87 32.22 48.44 74.22 81.50 83.58 72.35 50.31 60.29 46.78 50.73 68.61 61.75 62.99
vs. EWMA_S 1.25 28.27 39.29 52.60 50.52 48.02 54.05 40.75 55.72 43.04 4574 62.99 59.88 59.88
vs. EWMA_L 1.25 16.84 20.58 55.51 52.60 50.52 59.46 39.50 54.26 43.24 46.15 62.79 58.21 59.46
vs. BSW 0.62 5.20 13.31 12.47 22.45 22.25 40.96 16.01 42.00 34.93 38.88 59.88 53.43 54.47
vs. VASICEK 1.04 6.86 14.55 13.72 29.73 19.75 50.52 12.68 43.04 35.97 39.50 60.50 56.55 56.13
vs. KAROLY!I 1.04 5.82 15.59 12.89 29.94 30.15 49.69 18.50 43.04 34.93 40.54 57.80 52.39 54.05
vs. HYBRID 0.83 3.53 12.89 13.51 21.21 23.08 21.83 14.97 31.60 31.39 33.89 51.77 48.23 50.94
vs. FAMA-FRENCH 1.46 14.14 18.09 19.33 31.60 30.15 30.15 44.28 46.36 33.89 39.09 63.83 60.71 60.29
vs. LONG-MEMO 0.00 14.97 16.22 17.46 19.33 18.71 20.17 22.04 16.22 21.62 27.23 43.04 40.33 43.04
ML Estimators

vs. LM 3.12 27.65 28.27 30.98 34.72 33.89 34.93 37.21 28.27 40.75 37.63 65.28 54.47 63.83
vs. ELANET 3.33 25.78 26.61 29.73 34.30 34.93 35.55 33.47 27.23 34.10 18.92 56.13 49.69 54.26
vs. RF 0.00 9.77 10.60 12.68 13.31 13.93 14.35 14.55 6.86 10.81 5.82 8.94 18.30 2017
vs. GBRT 0.42 16.22 18.71 18.71 22.04 22.87 22.66 23.70 13.31 19.54 9.77 18.71 39.92 34.93
vs. NN_1 0.00 12.89 13.10 13.72 17.67 17.88 18.09 17.88 11.64 11.02 6.65 13.93 23.70 16.22

t 481 481 481 481 481 481 481 481 481 481 481 481 481 481 481
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FIGURE 1
Relative Forecast Errors over Time

Figure 1 plots the forecast errors for random forests (RF, introduced in Section |V.B) over the sample period relative to those
obtained by 1-year rolling betas (OLS_1Y_D, introduced in Section |V.A) in Graph A and betas obtained from simple linear
regressions (LM, introduced in Section |V.B) in Graph B. We compute the relative forecast error as the percentage difference
between the MSEs of the two models and show both the monthly relative forecast error and the relative average forecast error
within each calendar year of our test sample (MSE_MONTHLY_PD and MSE_TEST_PD, respectively). These percentage
differences are calculated as 1 minus the MSE of the random forests divided by the MSE of the respective benchmark model.
The orange unfilled circles are assigned to the re-estimation dates, thatis, the dates when the forecasts of the stock-level betas
(over the next year) are obtained. The graphs also visualize the NBER recession periods (gray-shaded areas). The sample
includes all firms that were or are listed on the NYSE, AMEX, or NASDAQ in any month during the sample period from Mar. 1970
to Dec. 2020, while the first beta estimates are obtained in Dec. 1979.
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capture nonlinearity and interactive effects. Random forests perform best, with an
average MSE of 7.77%. They reduce the average forecast error relative to the most
commonly used estimation techniques, the OLS 5Y Mand OLS 1Y D models,
by 59% and 20%, respectively. Even relative to the best performing benchmark
approach, the LONG-MEMO model, random forests reduce the forecast error by
more than 6%.

Since, by construction, these numbers only reflect the average predictive
performance of a forecasting model, we also examine the prediction errors over
time to assess when machine learning estimators perform particularly well. First, we
visually examine the differences in MSEs between the forecasting models over the
sample period. For the sake of brevity, we focus on comparing random forests with
1-year rolling betas and simple linear regressions. Figure 1 shows the forecast errors
for random forests over the sample period relative to those achieved by OLS 1Y D
(Graph A) and LM (Graph B). It also contains the recession periods, as defined
by the National Bureau of Economics Research (NBER; gray-shaded areas). We
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compute the relative forecast error as the percentage difference between the
MSEs of the two models and show both the monthly relative forecast error and
the relative average forecast error within each calendar year of our test sample
(MSE_MONTHLY_PD and MSE_TEST PD, respectively).'*

The visualizations indicate that random forests reduce the forecast errors
relative to the OLS 1Y _D and LM models most of the time over the sample period,
suggesting that random forests are generally able to provide more precise stock
market beta forecasts. In addition, larger-than-average positive differences during
or after most recessions (recognizing that MSEs are computed based on a 1-year
forecast horizon) imply that the RF model outperforms the two benchmarks even
more strongly in distressed economic environments, when it is particularly difficult
to accurately predict market betas.

Second, to statistically assess the differences in prediction errors, Panel B of
Table 2 reports the fraction of months in the out-of-sample period for which the
column model is i) in the Hansen et al. (2011) MCS and ii) significantly better than
the row model in a pairwise comparison (according to the Diebold and Mariano
(DM) (1995) test statistics).'> The MCS approach incorporates an adjustment for
multiple testing and includes the best forecast model(s) based on a certain confi-
dence level. The DM tests of equal predictive ability examine the differences in
stock-level squared forecast errors (SEs):

. LN\2
) SEC = (B =Bl ) with k=12.
The DM test statistic in month ¢ for comparing model j with a competing model
N D A .
[ is DMS”Z) =4 where dgf) = SEf.ft) ke SE,(IZ)+ w18 the difference in SEs,

o)

=il i) . . .
dﬁ’ )= S 1w,',,d£’;l) is the value-weighted cross-sectional average of these differ-
ences, and 330-,/) is the heteroscedasticity and autocorrelation consistent standard

error of EE’ ’1). We use the Newey and West (1987) estimator with 4 lags for
calculating these standard errors.

We find that regression trees and neural networks are in the MCS for most of
the 481 sample months, with fractions ranging from 68.19% for GBRT to 82.54%
for RF. Therefore, we can reject the null hypothesis that random forests are the best
model in only about 17% of the sample months, which is only slightly higher than
the expected proportion of false positives at the 10% significance level. This

“These percentage differences are calculated as 1 minus the MSE of the random forests divided by
the MSE of the respective benchmark model. We follow the convention that positive differences indicate
superior predictive performance, that is, reduced prediction errors, of the random forest relative to the
OLS 1Y_D and LM models, respectively.

>We follow Becker et al. (2021) in testing statistical significance at the 10% level, which corre-
sponds to 90% model confidence sets. As a robustness test, we also use the Giacomini and White (2006)
test to assess the relative conditional predictive performance of each model in pairwise comparisons in
Section C of the Supplementary Material (see Table C2 in the Supplementary Material). Consistent with
the results shown here, we find that the machine learning-based beta estimators outperform all other
methods not only in terms of their unconditional predictive ability but also in terms of their conditional
predictive ability.
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overwhelmingly suggests that the RF model in particular, but also other machine
learning techniques, provides very accurate predictions for stock market betas. The
machine learning methods are in the MCS more than twice as often as the 1-year
rolling betas (32.64%). Therefore, we can reject the null hypothesis that 1-year
rolling betas, which are the most commonly used estimators, provide the best beta
forecasts in more than 67% of the months. The fractions with which the machine
learning estimators are in the MCS are also considerably larger than those of the best
performing benchmark approaches (e.g., slope-winsorized betas, 49.69%; hybrid
betas, 52.81%; and long-memory betas, 67.15%). Overall, the machine learning-
based models are predominantly among the top performers.

The results of the monthly DM tests confirm this observation. Both tree-based
models and neural networks dominate most established approaches and linear
regressions. In up to 96% of the months, they produce a significantly lower MSE
than the respective benchmark models. For almost all benchmark models, this
fraction is well above or close to 50%, at least for the RF, GBRT, and NN 1 models.
The machine learning estimators even significantly outperform the best performing
benchmark model, long-memory betas, for at least 40.33% of the sample months.
Conversely, the benchmark models rarely produce significantly lower MSEs than
the machine learning-based approaches. Even the best benchmark, the LONG-
MEMORY model, significantly outperforms the RF, GBRT, and NN 1 models
in less than 20% of the sample months.

Taken together, these results indicate a clear outperformance of regression
trees and neural networks over established beta estimators.'® When comparing the
machine learning techniques with each other, the RF model appears to be slightly
superior to the GBRT and NN _1 models. Random forests have the largest MCS
fraction, and as shown in Panel B of Table 2, they outperform GBRT and neural
networks more often than they are dominated by them.

One could argue that machine learning methods have an inherent advantage
when evaluated on the basis of MSE. This is because they are explicitly trained to
predict the MSE as accurately as possible, while most benchmark models are not.
To account for this aspect, we also analyze the predictive performance of the models
using an alternative evaluation metric, the mean squared hedging error (MSHE).
For each stock, we compute the squared hedging error as the squared difference
between the realized return and the return implied by the market model along with
the beta forecast: (Ri,,+k — ,BI.F RM,,Jrk)z. R; s+ 1s the excess return of stock 7, and
Rys.+« 1s the market excess return. Consistent with the previous analysis, we set k to
12 months.

Table 3 shows the results, which are qualitatively similar to those based on the
MSE metric. The RF, GBRT, and NN 1 models produce the lowest average MSHEs

'%In Section C of the Supplementary Material, we use Mincer and Zarnowitz (1969) regressions to
test the unbiasedness of the different forecasting models. The results are shown in Table C6 in the
Supplementary Material. As expected, we find that the best performing machine learning models are the
least biased. In an additional robustness test, we extend our beta forecasting approach to the size and
value factors of Fama and French (1993). The results in Table C11 in the Supplementary Material
provide first and preliminary evidence that machine learning methods are also useful for the prediction of
factor betas. In particular, the machine learning-based models produce smaller forecast errors than the
benchmarks for both size (SMB) and value (HML) betas.
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TABLE 3
Forecast Errors (Value-Weighted MSHES)

Table 3 shows the differences in forecast errors obtained from the forecasting models presented in Section V. Panel A reports the time series averages of the monthly value-weighted MSHEs:
2
MSHEEQM, Z,‘Aiy W,‘,(R,“Hk —/ift(fk“FiM‘w) , with k=12, where N; is the number of stocks in the sample at the end of month ¢, and w;; is the market capitalization-based weight of stock i. Panel B reports the
fraction of months during the out-of-sample period for which the column model is i) in the Hansen et al. (2011) model confidence set (MCS) and ii) significantly better than the row model in a pairwise comparison
2
(according to the Diebold and Mariano (1995) test statistics). The DM tests of equal predictive ability examine the differences in stock-level squared forecast errors (SEs): SHE, kit = (Fx‘, ik —/ff(‘i”k“RM‘,,k) , with
=)

k =12.The DM test statistic in month t for comparing the model under investigation j with a competing model i is DM“ h= where d(f —SHEY) SHE, ++x¢ 1S the difference in SEs, d; ZN' wi, (dU " the value-

itk

3

weighted cross-sectional average of these differences, and a. 300 the Newey and West (1987) standard error of d(/ h (with 4 lags to account for possible heteroscedasticity and autocorrelation). Statistical tests are based

on the 10% significance level. The sample includes all firms 1hat were or are listed on the NYSE, AMEX, or NASDAQ in any month during the sample period from Mar. 1970 to Dec. 2020. The first beta estimates are
obtained in Dec. 1979.

sIsAjeuy 8AlBIIUBNY PUE [BIOUBUI JO [BUINOP 8L

Benchmark Estimators ML Estimators
FAMA- LONG-
OLS_5Y_ M OLS_1Y.D EWMAS EWMAL BSW VASICEK KAROLYl HYBRID FRENCH MEMO LM ELANET RF GBRT  NN_1
Panel A. Average Forecast Errors
MSHE, value-weighted 7.74 7.62 7.61 7.61 7.55 7.56 7.57 7.53 7.55 7.52 7.54 7.53 7.47 7.49 7.48
(%)
Panel B. Forecast Errors over Time
In MCS 57.17 56.13 60.29 58.63 65.49 67.15 66.53 62.16 69.44 60.71 73.60 74.84 7277 7297 71.31
Benchmark Estimators
vs. OLS_5Y_M 42.00 40.33 42.41 46.15 44.70 44.49 46.36 45.32 47.19 50.31 49.69 50.31 50.31 51.77
vs. OLS_1Y_D 19.75 20.58 22.66 49.06 56.55 55.72 43.04 4158 35.14 34.10 37.84 46.78 38.46 39.09
vs. EWMA_S 18.92 22.04 25.57 39.09 42.00 40.12 37.84 37.01 33.68 33.47 38.88 47.19 36.59 38.25
vs. EWMA_L 19.96 19.96 16.84 4491 46.15 43.87 37.21 37.84 34.30 32.64 38.25 47.61 37.63 37.01
vs. BSW 18.30 15.18 13.72 12.68 20.17 21.83 30.98 20.58 26.82 25.16 30.77 40.12 31.81 29.94
vs. VASICEK 18.50 16.63 14.35 13.72 18.09 17.05 33.47 21.83 28.07 23.91 30.98 39.92 31.60 29.11
vs. KAROLY! 20.17 12.27 14.97 12.47 23.08 28.07 33.89 26.20 30.35 24.53 33.06 40.12 32.64 30.56
vs. HYBRID 16.01 12.27 13.93 12.68 22.66 2412 23.49 22.66 2225 2557 28.69 38.25 28.48 27.65
vs. FAMA-FRENCH 17.67 14.97 13.93 14.76 14.55 17.88 18.71 25.57 28.27 21.00 24.95 33.06 27.03 27.23
vs. LONG-MEMO 16.22 20.37 20.79 21.21 2557 25.36 24.95 29.73 32.02 27.03 35.76 40.96 35.55 33.68
ML Estimators
vs. LM 19.96 18.92 17.26 18.71 20.17 20.37 21.21 23.49 20.79 18.09 29.73 30.77 25.16 2453
vs. ELANET 18.92 17.26 16.22 17.26 17.46 17.67 17.88 20.37 16.63 20.37 18.30 28.27 22.87 25.16
vs. RF 15.59 16.01 15.80 17.46 15.80 17.46 18.92 20.79 14.97 20.37 11.85 17.05 14.35 17.67
vs. GBRT 16.63 16.01 18.09 17.67 18.30 18.09 18.50 21.62 18.71 20.37 17.46 22.66 28.27 20.17
vs. NN_1 15.59 13.31 14.97 14.35 17.46 18.09 17.67 19.33 21.21 15.18 16.84 28.48 30.98 19.96
T 481 481 481 481 481 481 481 481 481 481 481 481 481 481 481
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and are in the MCS more often than the benchmark models. In addition, these
models produce significantly lower average MSHEs than the benchmarks consid-
erably more often than vice versa. Again, the RF model performs best overall.

B. Forecast Errors of Cross-Sectional Portfolio Sorts

In the next step, we provide more insight into when machine learning methods
outperform traditional estimators. To do so, we identify types of stocks, for exam-
ple, high or low beta stocks, large or small stocks, etc., for which differences in
prediction errors between beta estimators are particularly large. Following the study
by Cosemans et al. (2016), we first examine the extent to which the different
abilities to predict future market betas can be attributed to underestimating the
betas of low-beta stocks and overestimating those of high-beta stocks. We sort the
stocks into decile portfolios based on their predicted betas at the end of month ¢. In
each month, we compute the value-weighted MSE between the predicted betas and
the realized betas over the next year within each portfolio. To gain insight into the
direction of measurement errors, we also compute the fraction of stocks within each
decile portfolio for which the difference between the predicted and realized betas is
positive. Ratios below 0.5 indicate that an estimator, on average, underestimates
realized betas, while figures above 0.5 indicate an average overestimation.

Figure 2 plots the time series averages of the monthly forecast errors within each
decile portfolio (gray bars). To keep the presentation focused, we henceforth omit the
OLS 5Y M, EWMA S, EWMA L, VASICEK, and KAROLYI models. The
results of these models are generally worse than those of the competing forecasting
model(s) within the same family shown in Figure 2, that is, the OLS 1Y D, BSW,
and HYBRID models. For all approaches, the extreme portfolios generate the largest
average forecast errors. Rolling-beta estimates perform the worst; winsorizing or
shrinking them to a well-defined prior, assigning portfolio beta estimates to individ-
ual stocks, or exploiting the long-memory properties of beta time series reduce the
average forecast error in the extreme beta deciles. The machine learning approaches
reduce the forecast errors for (almost) all decile portfolios. In addition, the forecast
error distributions are more uniform compared to the classical estimators.

Figure 2 also illustrates the average overestimation fractions (black unfilled
squares). The problem of underestimating the betas of stocks in low-beta deciles
and overestimating those in high-beta deciles is evident for all benchmark
approaches (albeit to varying degrees). This problem is less pronounced for some
of the better performing models (e.g., the FAMA-FRENCH and LONG-MEMO
models), although they cannot avoid it entirely. In contrast, the machine learning
techniques show no evidence of systematic underestimation in the low-beta deciles
or systematic overestimation in the high-beta deciles. This pattern can be explained
by less extreme beta estimates, as indicated by the lower cross-sectional forecast
dispersions (as shown in Table C1 of the Supplementary Material).

In the next step, we analyze how differences in forecast errors across beta
estimators are related to other firm characteristics or industry classifications. For the
sake of brevity, we focus on the comparison of RF with OLS 1Y D and LM. We
repeat the procedure outlined in Figure 2, but now sort the stocks into decile
portfolios based on firm size (ME), book-to-market (BM), momentum (MOM),

ssaud Aissaaun abplguied Aq auluo payslignd 9£000072060122005/£101°01/610°10p//:sdny


https://doi.org/10.1017/S0022109024000036

20 Journal of Financial and Quantitative Analysis

FIGURE 2
Average Forecast Errors of Portfolio Sorts Based on Beta Estimates

Figure 2 shows the time series averages of the monthly forecast errors of the portfolios sorted on the basis of beta estimates
(gray bars). Stocks are sorted into decile portfolios based on their predicted betas at the end of each month t, separately for
each of the selected forecasting models introduced in Section V. The forecast error in this test is defined as the value-
weighted MSE between beta forecasts and realized betas over the next year within each portfolio. Added to these visuali-
zations are the time series averages of the overestimation fractions (black unfilled squares). They are computed at the end of
each month t as the fraction of stocks within each decile portfolio for which the difference between beta forecasts and realized
betas is positive. The sample includes all firms that were or are listed on the NYSE, AMEX, or NASDAQ in any month during the
sample period from Mar. 1970 to Dec. 2020, while the first beta estimates are obtained in Dec. 1979.
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illiquidity (ILLIQ), and industry classification (IND).!” Figure 3 plots the time
series averages of the forecast errors within each decile portfolio for the RF model
(gray bars) and the corresponding benchmark model (red bars). To these visuali-
zations, we add the percentage differences in the average forecast errors relative to

"For these visualizations, we consider only 10 rather than 47 dummies, corresponding to the
industry classification of Fama and French (1997).
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FIGURE 3

Average Forecast Errors of Portfolio Sorts Based on Firm Characteristics
and Industry Classification

Figure 3 shows the time series averages of the monthly forecast errors of portfolio sorts based on firm characteristics and
industry classifications. To do so, the procedure outlined in Figure 2 is repeated, but the stocks are sorted into decile portfolios
based on firm size (ME), book-to-market (BM), momentum (MOM), illiquidity (ILLIQ), and Fama and French'’s (1997) industry
classification, that is, consumer nondurables (CND), consumer durables (CD), manufacturing (M), oil, gas, and coal extraction
and products (OGC), business equipment (B), telephone and television transmission (TTT), wholesale, retail, and some
services (WRS), healthcare, medical equipment, and drugs (HMD), utilities (U), and other (O). The graphs plot the time series
averages of the forecast errors within each decile portfolio for the RF model (gray bars) and the respective benchmark model
(red bars), thatis, the OLS_1Y_D (Graphs A, C, E, G, I) and LM (Graphs B, D, F, H, J) models. The monthly forecast error in this
testis defined as the value-weighted mean squared error (MSE) between beta forecasts and realized betas over the next year
within each portfolio. These visualizations are complemented by the percentage differences in average forecast errors relative
to the respective benchmark model (black unfilled triangles), calculated as 1 minus the average MSE of the random forests
divided by the average MSE of the respective benchmark model. The sample includes all firms that were or are listed on the
NYSE, AMEX, or NASDAQ in any month during the sample period from Mar. 1970 to Dec. 2020, while the first beta estimates
are obtained in Dec. 1979.
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the respective benchmark model (black unfilled triangles), calculated as 1 minus the
average MSE of the random forests divided by the average MSE of the respective
benchmark model.

Taken together, the graphs of Figure 3 suggest that random forests reduce the
forecast errors relative to the OLS 1Y D (Graphs A, C, E, G, and I) and LM (Graphs
B, D, F, H, and J) models for almost all decile portfolios, as indicated by percentage
differences greater than O (triangles above the dashed line). Consistent with Figure 2,
random forests generally provide more accurate beta estimates. The higher average
MSE:s for 1-year rolling betas and simple linear regressions are not predominantly
driven by high forecast errors for just a few stocks with specific firm characteristics.
However, compared to the OLS 1Y D model, random forests reduce the forecast
errors even more within the extreme decile portfolios, both in absolute and relative
terms.

Especially for small and illiquid stocks, the RF model provides more accurate
beta estimates than those obtained from the OLS 1Y D model. In addition,
although less pronounced, we observe improvements in random forests for value
and loser stocks. Because the outperformance of random forests over simple linear
regressions is marginal for these stocks, we attribute this observation to the inclu-
sion of slow-moving firm fundamentals as predictors rather than to the RF model’s
ability to capture nonlinearity and interactions. Finally, we observe that the random
forests outperform the two benchmarks in every single industry. Compared to the
OLS_1Y_D model, their value-added is greatest for “consumer durables” (CD),
“wholesale, retail, and some services” (WRS), and “healthcare, medical equipment,
and drugs” (HMD), while the RF model is most beneficial relative to simple linear
regressions for “telephone and television transmission” (TTT) and “wholesale,
retail, and some services” (WRS).

In summary, for traditional approaches, very small and very large beta fore-
casts as well as beta forecasts for stocks with extreme firm characteristics or within
specific industries should be used with caution. In contrast, machine learning-based
beta forecasts appear to be uniformly useful for all types of stocks.

VI. Economic Value of Market Beta Forecasts

Since accurate beta estimates are critical for several applications in academia
and industry, we now examine whether statistically more accurate forecasts lead to
economic gains in portfolio construction. In this section, we focus our analysis only
on applications that derive economic value directly from the beta estimates. There-
fore, we assess hedging approaches, market-neutral anomaly portfolios, and MVPs.
For many other portfolio optimization applications, however, beta estimates are not
sufficient and must be supplemented with forecasts for expected returns. We do not
consider these approaches in this article.

A. Anomaly Portfolio Hedging

In a first step, we analyze the hedging performance of different beta estimators
for anomaly portfolios. Specifically, we consider a typical hedge fund strategy,
where an investor attempts to exploit an anomaly without taking any market risk.
We examine the average ex post realized betas of ex ante market-neutral long—short
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anomaly portfolios. We consider commonly used anomaly variables, such as size
(ME), book-to-market (BM), and illiquidity (ILLIQ). Note that we separate this pure
hedging objective from strategies to enhance the performance of anomaly portfolios
in Section VI.B.

The portfolio optimization we use extends the procedure described in the study
by Hollstein et al. (2019). At the end of each month #, we first sort the stocks into
decile portfolios based on the respective anomaly variables. We then use the out-of-
sample beta forecasts of the stocks in the top and bottom deciles to construct the
long and short portfolios, respectively. We require that the ex ante predicted
portfolio beta is 1 for both decile portfolios. To achieve this, we choose portfolio
weights in the top and bottom decile portfolios that solve the following optimization
problem, separately for each beta estimator:

2
. *
%) min (w,-,, - wi’,) s.t.
i

Wi,zZO
N,
F —
§ :Wiatﬂi,t+]|t_ 1.
i=1

The optimization algorithm aims to minimize the sum of the squared devia-
tions from the original market capitalization-based weights w}, of the stocks in the
respective portfolios. This approach helps ensure that the resulting long and short
portfolios are indeed investable for a hedge fund. The first constraint implies that
each decile portfolio must be long-only, while the second implies that the ex ante-
predicted portfolio betas must be 1. Combining the long and short portfolios
(by multiplying the computed weights for the short portfolio by —1) yields a
long—short (HML) anomaly portfolio that is ex ante market neutral. Alternatively,
investors can use the long-only portfolios, which can then be made market neutral
by taking a short position in exchange-traded index funds or futures written on a
market proxy as the underlying. Consistent with the ex ante portfolio betas, the ex
post portfolio betas are the weighted averages of the realized betas over the
next year.

Table 4 reports the time series averages of the ex post portfolio betas (f) of the
long (H), short (L), and long—short (HML) anomaly portfolios. The z-statistics in
parentheses are based on Newey and West (1987) robust standard errors with
11 lags. The null hypotheses for the H and L portfolios are that the ex post betas
are 1 and for the HML portfolio that the ex post beta is 0.

We find that only the RF, GBRT, and NN _1 approaches produce long—short
portfolios that are truly market neutral ex post for all stock market anomalies. For
example, the RF model yields realized portfolio betas ranging from —0.03 for the
illiquidity anomaly to 0.08 for the size anomaly. According to #-statistics ranging
from —0.49 to 0.66, these betas are insignificantly different from 0. In contrast, the
ex post betas of market-neutral strategies derived from the benchmark estimators
are economically large and statistically significant in most cases. For example,
the OLS 1Y D estimator fails to generate market-neutral size and illiquidity
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TABLE 4
Anomaly Portfolio Hedging

Table 4 reports the properties of market-neutral anomaly portfolios constructed using beta estimates from the forecasting
models introduced in Section |V. The anomaly variables are size (ME), book-to-market (BM), and illiquidity (ILLIQ). The
portfolio optimization is described in Section VI.A. The table presents the time series averages of the ex post portfolio betas (5)
for the long (H), short (L), and long-short (HML) anomaly portfolios constructed from decile sorts. The t-statistics in
parentheses are based on Newey and West (1987) robust standard errors with 11 lags. The null hypotheses for the H and
L portfolios are that the ex post betas are 1 and for the HML portfolio that the ex post beta is 0. The sample includes all firms that
were or are listed on the NYSE, AMEX, or NASDAQ in any month during the sample period from Mar. 1970 to Dec. 2020. The
first beta estimates are obtained in Dec. 1979.

ME BM ILLIQ
Model Bram B B Srm P B Brm Br B
Benchmark Estimators
OLS_1Y_D 0.34 0.99 0.66 -0.04 0.96 1.00 -0.30 0.68 0.99
(3.564) (-0.14) (—4.29) (-0.81) (-0.94) (0.13)  (—4.80) (-6.26)  (—0.80)
BSW 0.33 1.01 0.68 —0.04 0.98 1.02 -0.30 0.70 1.00
(3.27) (0.17)  (-3.94) (-0.74)  (-0.46) (0.63)  (—4.60) (-5.95) (-0.15)
HYBRID 0.45 1.01 0.56 —-0.05 0.96 1.02 —0.40 0.59 0.99
(5.33) (0.14)  (-6.98) (=1.10) (-1.07) (0.48)  (=7.71)  (-1057)  (~0.38)
FAMA-FRENCH 0.19 0.99 0.80 -0.02 1.00 1.02 -0.18 0.81 0.98
(2.29) (-0.33) (-2.78) (-0.33) (0.05) (0.78)  (-3.36) (—4.54) (-1.39)
LONG-MEMO 0.25 0.98 0.73 —-0.01 0.99 0.99 -0.22 0.74 0.97

(3.88) (-0.49) (-4.71) (-0.10) (—0.35) (-0.24)  (-5.38) (—6.90) (-2.38)

ML Estimators

LM 0.18 0.95 077  —004 0.94 098  -0.14 0.79 0.94
(258) (-1.74) (=8.75) (-093) (-162) (-051) (=3.28)  (-5.65) (—3.44)
ELANET 0.20 0.96 076  —0.01 0.97 098  -0.17 0.78 0.95
(2.45) (-1.24) (-364) (-023) (-070) (-0.66) (-3.41)  (~5.80) (-2.83)
RF 0.08 1.00 092  -002 0.99 1.01 -0.03 0.95 0.98
(0.66) (-007) (=0.77) (-029) (-0.22) (0.28) (-0.49)  (-0.83) (~1.17)
GBRT 0.09 1.01 0.92 0.00 1.02 102 -006 0.93 0.99
(0.93) (0.44)  (-090) (-0.02) (0.37) (0.71)  (-094)  (=1.09) (-0.48)
NN_1 0.04 1.01 0.97 ~0.02 1.00 1.01 —0.04 0.95 0.99

(0.29) (0.24) (-0.28)  (-0.31) (—0.04) (0.54) (-0.62) (—0.89) (-0.87)

portfolios. Moreover, the machine learning-based models perform well for the long-
only portfolios, with ex post betas close to 1.

In summary, the results of this simple portfolio hedging exercise illustrate the
practical consequences of inaccurate beta estimates. An investment strategy that is
supposed to be market neutral ex ante may still have significant market risk ex post.
We find that traditional estimation techniques fail to produce truly market-neutral
portfolios ex post, while the machine learning-based approaches perform signifi-
cantly better.

B. Anomaly Portfolio Performance

Market betas can be used not only for pure hedging but also to improve the
performance of anomaly investments. Grundy and Martin (2001) and Daniel and
Moskowitz (2016) consider market-neutral momentum strategies that attempt to
improve performance by hedging the dynamic market exposure. Frazzini and
Pedersen (2014) and Novy-Marx and Velikov (2022) consider different specifica-
tions of betting-against-beta anomalies. Finally, idiosyncratic volatility is also
related to beta estimates. Therefore, the use of better beta estimates can potentially
help to improve the investment performance of these anomalies.

In this section, we consider the abnormal returns of market-neutral momen-
tum, idiosyncratic volatility, and betting-against-beta strategies based on the
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different beta estimators. Each month, we construct decile portfolios by sorting the
stocks based on their momentum (MOM), idiosyncratic volatility (IVOL), and beta
estimates (BAB). For the latter, we use the predicted beta of each forecasting model.
The anomaly portfolios go long and short in the extreme deciles. For momentum,
the resulting portfolio goes long in decile 10 and short in decile 1, while those for the
other 2 anomalies go long in decile 1 and short in decile 10. Finally, the portfolios
are hedged each month with a position in the market portfolio equal to the negative
of the portfolio beta predicted by the forecasting models.

For all analyses of portfolio performance in this section and the subsequent
Section VI.C, we follow Chan, Karceski, and Lakonishok (1999) and Cosemans et al.
(2016) and focus on liquid and investable stocks with market capitalizations above
the 20th percentile of NYSE stocks.'® We report the annualized alphas of the returns
over the next month of these strategies with respect to the CAPM and the Fama and
French (2015) 5-factor model (FF5). Finally, we also report the ex post betas of the
strategies (ff). The t-statistics (in parentheses) are based on Newey and West (1987)
robust standard errors, with 4 lags for the alpha tests and 11 lags for the beta tests.

Table 5 shows the results. We start with the market-neutral momentum strat-
egies. The strategies based on all the different beta estimators produce positive
alphas that are statistically significant, but it is the machine learning-based
approaches that produce the largest alphas. For example, for the main benchmark
model, OLS 1Y D, the Fama and French (2015) 5-factor alpha for the market-
neutral momentum strategy is 8.62%. Those for the other benchmarks are of a
similar magnitude below 9%, and only the LONG-MEMO model achieves a higher
Fama and French (2015) 5-factor alpha of 9.44%. The corresponding alphas for the
RF, GBRT, and NN_1 models are 9.79%, 9.74%, and 9.49%, respectively. In
addition, only the machine learning-based estimators generate truly market-neutral
portfolios. For all benchmarks, the realized betas of the supposedly market-neutral
portfolios are significantly negative, while they are insignificantly different from
0 for the machine learning models. Therefore, market-neutral momentum portfolios
based on machine learning clearly outperform those based on the benchmarks.

Next, we consider market-neutral idiosyncratic volatility portfolios. For these,
we also find that the machine learning-based estimators perform well. They gen-
erate the largest alphas. For example, the Fama and French (2015) 5-factor alphas
are 9.46% for RF, 9.65% for GBRT, and 9.69% for NN _ 1, compared to only 8.93%
forthe OLS_1Y_D estimator. While the portfolios are ex post market neutral for the
GBRT and NN_1 models, this is not the case for the RF model.

Finally, we turn to the betting-against-beta strategies. Again, the estimated
alphas are largest for the machine learning-based estimators.'® The Fama and
French (2015) 5-factor alpha for the OLS 1Y D estimator is 6.95%. The alphas

"8 Therefore, we focus on the economically most important stocks (Hou, Xue, and Zhang (2020)). As
shown in Section V.B, the machine learning-based methods outperform the benchmarks even more for
microcap stocks, which we exclude from this analysis.

Consistent with the higher betting-against-beta portfolio returns, we find that the CAPM cannot be
saved even with machine learning-based betas. A Fama and MacBeth (1973) regression test of the model
(untabulated) shows that the intercepts are similarly large and significantly positive for all beta estima-
tors, and the slope coefficients are generally insignificant and negative. Therefore, the rejection of the
CAPM does not seem to be due to inaccurate beta forecasts.
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TABLE 5

Anomaly Portfolio Performance

Table 5 shows the investment performance of market-neutral anomaly portfolios. Each month, we construct decile portfolios
by sorting the stocks by their momentum (MOM), idiosyncratic volatility (IVOL), and beta estimates (BAB). For the latter, we use
the predicted beta of each forecasting model. The anomaly portfolios go long and short in the extreme deciles. For momentum,
the resulting portfolio goes long in decile 10 and shortin decile 1, while those for the other two anomalies go long in decile 1 and
short in decile 10. Finally, the portfolios are hedged each month with a position in the market portfolio equal to the negative of
the portfolio beta predicted by the forecasting models. The table reports the annualized alphas of the returns over the next
month of these strategies with respect to the CAPM and the Fama and French (2015) 5-factor model (FF5). Finally, the ex post
betas of the strategies () are shown. The t-statistics in parentheses are based on Newey and West (1987) robust standard
errors, with 4 lags for the alpha tests and 11 lags for the beta tests. The sample includes all firms that were or are listed on
the NYSE, AMEX, or NASDAQ in any month during the sample period from Mar. 1970 to Dec. 2020 and have a market
capitalization above the 20th percentile of NYSE stocks. The first beta estimates are obtained in Dec. 1979.

MOM IVOL BAB
OCAPM OFF5 OCAPM OFFs OCAPM OFF5
Model 01 N ) O N ) ) Uy A /) ) B A
Benchmark Estimators
OLS_1Y_D 5.95 8.62 -0.09 10.94 8.93 0.05 8.13 6.95 0.41
(1.67) (2.46)  (—2.40) (4.25) (4.19) (1.12) (2.68) (2.32) (3.37)
BSW 6.20 8.89 -0.10 10.93 8.87 —0.05 6.91 5.64 0.23
(1.74) (2.57)  (-2.07) (4.31) (4.24) (—1.20) (2.31) (1.93) (2.33)
HYBRID 6.06 8.67 -0.11 10.84 8.81 0.01 9.54 7.89 0.23
(1.70) (2.48)  (-2.77) (4.28) (4.20) (0.29) (3.15) (2.71) (1.81)
FAMA-FRENCH 6.01 8.76 -0.12 10.91 8.86 —0.06 8.05 6.74 0.20
(1.68) (2.55)  (—2.48) (4.18) (411)  (-1.50) (2.83) (2.46) (1.86)
LONG-MEMO 6.62 9.44 -0.11 11.46 9.45 —0.04 8.95 7.64 0.19

(1.86) (2.82) (=2.17) (4.52) (4.45) (-1.27) (8.11) (2.67) (2.47)

ML Estimators

LM 6.84 932  -009 1168 954  -008 9.00 7.01 0.03
(1.88)  (258) (~1.34)  (459) (447) (-191)  (268)  (2.30) (0.39)
ELANET 6.26 866  -009 1161 935  -0.09 9.03 719 -003
(1.70)  (2.34) (~1.30)  (4.48)  (4.34) (-210) (283) (251) (-0.33)
RF 7.05 979 007 1154 9.46  -0.09 9.31 7.81 ~0.05
(1.97)  (291) (-1.13)  (454)  (4.49) (-223) (291) (257) (-0.55)
GBRT 6.98 974  —004 1174 965  -007  10.13 869  —002
(1.95)  (2.90) (-0.70)  (4.60)  (453) (-157) (3.13) (2.82) (-0.26)
NN_1 6.79 949  —004  11.80 969  —001 10.01 8.45 0.03

(1.89) (2.79)  (-0.66) (4.63) (4.58)  (=0.31) (3.13) (2.71) (0.31)

for the RF, GBRT, and NN 1 models are clearly larger at 7.81%, 8.69%, and 8.45%,
respectively. Finally, all machine learning approaches produce portfolios that are ex
post market neutral, while the betting-against-beta portfolios generated by the
benchmark models are generally not.?%-!

2"Novy-Marx and Velikov (2022) argue that, in addition to unconditional market neutrality, condi-
tional market neutrality is important for betting-against-beta portfolios. In Section C of the Supplemen-
tary Material, we apply their regression approach to confirm that all machine learning-based betting-
against-beta strategies are also conditionally market neutral (see Table C10 in the Supplementary
Material).

2'In Table C12 in the Supplementary Material, we report the z-statistics of pairwise tests on the
differences in alphas between the different estimators. The statistically strongest differences are observ-
able for the momentum portfolios. For these portfolios, the RF and GBRT forecast models generate
significantly larger FF5 alphas than the OLS 1Y D, BSW, HYBRID, and FAMA-FRENCH models.
For the IVOL and BAB portfolios, most of the z-statistics for the alpha comparisons between the machine
learning and benchmark models are not statistically significant. However, to put this result in perspec-
tive, note that all of these anomaly strategies have two inputs: (i) the anomaly signal and (ii) the beta
estimates. Because (i) is the same for all strategies, it seems natural that not all differences in alphas are
statistically significant.
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C. Minimum Variance Portfolios

The previous subsections demonstrate that machine learning-based estimators
produce better market-neutral anomaly portfolios. However, market betas can also
be used to construct portfolios of particular interest to investors that are not based on
a single anomaly. MVPs are a prominent example. Since expected returns do not
enter the MVP optimization, differences in stock weights in the optimized portfolio
result solely from differences in the estimated covariance matrices. As in Cosemans
et al. (2016), we assume a single-factor structure for the high-dimensional covari-
ance matrix of the stocks. Therefore, the stock market beta forecasts can be used to
obtain covariance matrix forecasts. Ultimately, differences in beta estimates are the
only source of differences in stock weights in the MVP.

At the end of each month 7, we predict the out-of-sample covariance matrix as
Qe :S%l,t+l|tBt+1|tB;+1|t + Dy411, Where By is the N, x 1 vector of out-of-
sample beta forecasts, sﬁm +1)¢ 1s the out-of-sample forecast of the market variance
(variance of market excess returns), and Dy 1, is the diagonal matrix containing the
out-of-sample forecasts of the idiosyncratic variances dit +1.- The idiosyncratic
returns are computed as the differences between realized and estimated stock
returns: r;; — ,Bf,rM,,. Both market and idiosyncratic variances are obtained from
daily returns over the past year ending in month ¢, so that these historical values are
used as predictions for month 7+ 1. We use these out-of-sample covariance fore-
casts to construct the MVP by selecting portfolio weights that solve the following
problem, separately for each beta estimator:

: /
©6) min W QW s.t.
1

0<w;;<0.05

The first constraint implies that the portfolio weights must be within a rea-
sonable range (due to short selling restrictions and industry maximum weight
rules), while the second implies that the portfolio must be fully invested. Since a
hedge fund typically has a short investment horizon, we rebalance the portfolio at
the end of each month ¢ and record the realized return in the next month ¢+ 1. To
evaluate the performance of the resulting MVP, we obtain return and risk measures
based on the monthly portfolio returns.??

Panel A of Table 6 reports the results for the different MVPs. We observe that
the machine learning-based approaches produce better MVPs than all the bench-
mark models. Most importantly, the ex post standard deviations of the MVPs are
substantially lower for the machine learning-based estimators. For example, the ex
post MVP standard deviation of the RF estimator is 11.42%, while that of the

22We use monthly returns to be consistent with industry practice and the previous academic literature
(e.g., Ghysels and Jacquier (2006), Cosemans et al. (2016)). The results are qualitatively similar when
using daily returns. Therefore, the differences in beta estimates based on daily and monthly returns
documented by Gilbert, Hrdlicka, Kalodimos, and Siegel (2014) do not seem to play a major role in this
application.
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TABLE 6

Minimum Variance Portfolios

Table 6 reports the properties of the MVPs constructed based on beta estimates obtained from the forecasting models
introduced in Section |V. For the portfolio optimization, we impose a single-factor structure on the covariance matrix of stock
returns. Therefore, the market betas are the primary determinants of the stock weights in the MVP. The approach is described
in detail in Section VI.C. Each month, we compute the weights that minimize the expected portfolio variance, subject to the
constraints that the weights are positive, that each individual weight is less than 5%, and that the weights sum to 1. The
forecasts for the market and idiosyncratic variances are based on daily returns over the previous year. Panel A presents the
annualized risk and return measures of the resulting MVPs. Std. Dev. reports the ex post time series standard deviation and
DWND the ex post downside standard deviation (of negative returns). Min is the lowest monthly excess return and MaxDD is
the maximum drawdown of the MVP from peak to trough over multimonth periods. TV is the terminal value in Dec. 2019 of a $1
investmentin the MVP in Dec. 1979. Mean is the average portfolio return, and SR is the Sharpe ratio. Panel B reports the ex post
market betas of the MVPs (,,,) as well as the beta of a market-neutral MVP that hedges the expected market risk (depending
on the portfolio beta forecast) each month with an additional investment in the market portfolio (8,). The t-statistics in
parentheses are based on Newey and West (1987) robust standard errors with 11 lags. The sample includes all firms that
were or are listed on the NYSE, AMEX, or NASDAQ in any month during the sample period from Mar. 1970 to Dec. 2020 and
have a market capitalization above the 20th percentile of NYSE stocks. The first beta estimates are obtained in Dec
1979.

Panel B. Market

Panel A. Minimum Variance Neurtrality
Std. Dev. DWND Min MaxDD TV Mean
Model (%) (%) (%) (%) (%) (%) SR Bov Sron

Benchmark Estimators

OLS_1Y_D 12.40 9.94 —24.24 43.55 27.98 9.12 0.74 0.39 -0.22
(5.19) (-6.41)

BSW 12.06 9.29 —21.91 43.07 27.29 9.01 0.75 0.37 -0.16
(4.41)  (-4.01)

HYBRID 12.20 9.36 —21.88 4112 26.24 8.93 0.73 0.36 -0.15
(4.30) (—2.96)

FAMA-FRENCH 12.02 9.562 —23.04 37.08 25.62 8.85 0.74 0.40 -0.07
(7.95)  (—1.99)

LONG-MEMO 11.93 9.04 —20.35 34.73 28.96 9.15 0.77 0.36 -0.12

(4.64) (-3.23)
ML Estimators

LM 11.71 8.75 1298 5015 3535 962 082 041  -0.13
(4.36)  (—2.63)
ELANET 11.91 9.98 2234 4934 3094 932 078 041  -0.10
(4.28)  (~1.96)
RF 11.42 8.31 -19.32 3912 3307 942 082 035 0.01
(423)  (0.15)
GBRT 11.10 8.42 -1882 8885 4241 1001 090 036 0.00
(4.24)  (-0.01)
NN_1 11.16 8.11 —16.28 3508  37.51 970 087 035  —003

(4.42)  (~0.61)

OLS 1Y_D estimator is 12.40%. Even for the best benchmark estimator, the ex
post standard deviation is higher than for all machine learning-based approaches.
While minimum variance is the sole objective of the optimization, investors may
also care about other portfolio performance metrics. The machine learning-based
estimators perform well on each of them. They produce the smallest downward
variations, the least negative minimum returns, small maximum drawdowns, as
well as the highest average returns, terminal values (based on an initial investment
of $1 in Dec. 1979), and Sharpe ratios. Taken together, machine learning methods
can be used to generate better MVPs.>*

Hedge funds may also be interested in making these MVPs market neutral.
Therefore, we analyze the realized betas of the pure MVPs as well as their

Zn Section C of the Supplementary Material, we show results separately for the first and second
halves of the sample period. These results are qualitatively similar, implying that the performance of the
MVPs is stable over time (see Tables C8 and C9 in the Supplementary Material).
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market-neutral versions. First, one might suspect that the machine learning-based
estimators outperform the benchmarks simply because their MVPs have different
ex post betas. As shown in Panel B of Table 6, this is not the case. For all estimators,
the ex post MVP betas (8,,) are of similar magnitude. Second, we analyze the
performance of a strategy that uses long or short positions in the market portfolio to
hedge the predicted beta of the MVP. For example, if the expected beta is 0.2, the
hedging strategy adds an additional short position of 0.2 times the portfolio value in
the market portfolio. We report the ex post beta (5, ) of this strategy, examining the
ability of the different estimators to hedge the market risk. The machine learning-
based estimators, in particular RF, GBRT, and NN _1, also excel at this task and
generate truly market-neutral MVPs. In contrast, the ex post realized betas of the
hedging strategy are significantly different from O for all benchmarks.

We conclude that machine learning-based beta estimates are not only statis-
tically superior to their more traditional benchmarks, but they also contain superior
economic information that can be exploited to arrive at better portfolio decisions.

VIl. Properties and Operating Scheme of Machine Learning
Estimators

The previous sections show that machine learning-based estimators outper-
form the established beta estimators both statistically and economically. In a final
step, we focus on determining how these techniques, often referred to as “black
boxes,” achieve this outperformance. We address the black box issue in market beta
estimation by examining the properties and operating scheme of random forests
because, on balance, random forests outperform both GBRT and neural networks.>*
In particular, we examine changes in the inherent model complexity over time and
decompose predictions into the contributions of individual variables using relative
variable importance metrics. Moreover, in Section C of the Supplementary Mate-
rial, we discuss examples that illustrate the patterns of nonlinear and interactive
effects in the relationship between predictor variables and beta estimates.

A. Model Complexity

Since we reestimate the random forests on an annual basis, it is interesting to
measure whether the model complexity changes over time or rather remains stable.
Since the RF model is nonparametric and tree-based, we use the number of trees
added to the ensemble prediction (MC) to measure model complexity. For example,
a large number of trees indicates high model complexity, that is, the respective
random forest needs information from several different bootstrap-replicated trees to
optimally explain the cross-sectional variation in realized betas within the valida-
tion sample. A smaller number of trees, on the other hand, indicates that a less
complex model is sufficient to meet the goal of minimizing the validation error. To
contextualize the model complexity measure, we compute the time series mean of
the monthly MSEs within the validation sample (MSE VALI) and the test sample

2*In results not reported, we observe that the patterns identified for both the GBRT and the NN_1
model, as well as their implications, are qualitatively similar.
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(MSE_TEST) for each annual reestimation cycle. We also relate the MSE TEST
metrics of the RF model to those obtained for the standard benchmark model
(OLS_1Y_D) and compute the monthly percentage difference in test sample MSEs
(MSE_TEST PD).2%

Figure 4 illustrates the model complexity of random forests over the sample
period and its association with MSE VALI (Graph A), MSE_TEST (Graph B), and
MSE TEST PD (Graph C). Again, it also contains the NBER recession periods
(gray-shaded areas). Consistent with Gu et al. (2020) and Drobetz and Otto (2021),
the graphs suggest that the complexity of the RF model varies significantly over
time. For example, many trees are required at multiple reestimation dates during the
period between 2000 and 2009 (with a global peak in Dec. 2001). In contrast,
the complexity of the RF model is much lower in the following years, that is, in the
period 2010-2019.

In Graph A of Figure 4, we find co-movement between MC and MSE VAL,
as indicated by a time series correlation of 0.90. A #-test significantly rejects the null
hypothesis that the correlation coefficient is 0 (untabulated). Consequently, the
model complexity varies substantially over time depending on the stock market
conditions. In particular, we find that the complexity of the RF model is high during
periods that are difficult to predict (large validation errors). When future betas are
easier to predict, a smaller number of trees is sufficient for the ensemble forecast to
minimize the validation error.

It is interesting to note that we do not find any synchronicity between the MC
and MSE TEST metrics (time series correlation of —0.06) in Graph B of Figure 4.
According to an insignificant ¢-statistic, we cannot reject the null hypothesis that
this correlation is 0 and conclude that neither high- nor low-complexity forecasts
systematically coincide with high or low forecast errors within the test samples.
This result highlights the need to adaptively determine the hyperparameters gov-
erning model complexity from the sample data rather than forcing them to remain
constant. Finally, there is no significant co-movement between MC and
MSE TEST PD in Graph C, with a time series correlation of only 0.17. Random
forests reduce the test sample forecast error relative to the OLS 1Y D model for
most of the sample period (as shown in Figure 1). However, the relative out-
performance appears to be only weakly related to the complexity of the RF model.

B. Variable Importance

Since the degree of model complexity is time-varying, it is instructive to
examine whether the contribution of each predictor to the overall predictive ability
of random forests also changes over time.?® We compute the variable importance
using a 2-step approach, separately for each reestimation date: First, we compute the

2t is defined as 1 minus the random forest MSE divided by that of the benchmark model. Again, we
follow the convention that positive differences indicate superior predictive performance of random
forests relative to the OLS 1Y D model.

Z5For the sake of brevity, we exclude the industry classifiers throughout the variable importance tests
because they are among the least informative predictors. Note that the patterns identified and their
implications are qualitatively similar when they are included.
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FIGURE 4
Model Complexity over Time

Figure 4 illustrates the model complexity of random forests (RF, introduced in Section |V.B) over the sample period and its
association with forecast errors. Since the RF model is nonparametric and tree-based, the number of trees added to the
ensemble prediction (MC) is used to measure model complexity. Forecast errors are computed as the time series mean of the
monthly mean squared errors (MSEs) within each validation sample (MSE_VALI) and test sample (MSE_TEST), respectively.
The relative MSE difference (between random forests and 1-year rolling betas (OLS_1Y_D, introduced in Section |V.A)) is the
percentage difference in test-sample average MSEs during each calendar year (MSE_TEST_PD), calculated as 1 minus the
MSE of the random forests model divided by the MSE of the benchmark model. In particular, this figure plots MC over time,
along with MSE_VALI (Graph A), MSE_TEST (Graph B), and MSE_TEST_PD (Graph C), respectively. The black and orange
unfilled circles are assigned to the re-estimation dates, that is, the dates at which the forecasts of the stock-level betas (over
the next year) are obtained. The graphs also visualize the NBER recession periods (gray-shaded areas). The sample includes
all firms that were or are listed on the NYSE, AMEX, or NASDAQ in any month during the sample period from Mar. 1970 to Dec.
2020, while the first beta estimates are obtained in Dec. 1979.

Graph A. Model Complexity vs. MSE in the Validation Sample
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absolute variable importance as the increase in the value-weighted MSE from
setting all values of a given predictor to its uninformative median within the training
sample. Second, we normalize the absolute variable importance measures to sum to
1, indicating the relative contribution of each variable to the RF model.
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Graph A of Figure 5 plots time series averages of the relative variable impor-
tance measures for the predictor categories introduced in Section I11.>7 Historical
betas are the most informative variables, together accounting for more than 60% of
the variable importance. This is as expected, since realized betas are highly persis-
tent and have long-memory properties. Technical indicators and accounting-based
predictors are also important, while macroeconomic indicators seem to have only
little impact on the betas. Therefore, time variation in market betas is driven more by
changes in the firm fundamentals than by changes in the underlying economic
conditions.?®

Graph B of Figure 5 presents the time series averages of the relative variable
importance measures for the 10 most influential predictors. Random forests place
most of their weights on only five variables, leaving 29 variables of significantly
lower importance (ignoring industry classifications). Consistent with the above, the
most influential predictors are the 3 sample estimates of beta, with the largest weight
placed on the rolling betas using a 1-year window of daily returns (OLS 1Y D),
followed by those using a 3-month window of daily returns (OLS 3M D) and a
5-year window of monthly returns (OLS_5Y_ M), respectively. In addition, a firm’s
turnover (TO) and size (ME) are also important. Overall, the average relative
contribution of the top five variables to the RF model is 82.99%.%°

Interestingly, the variables that are most important in predicting future market
betas are different from those that are most helpful in predicting returns, as docu-
mented by Gu et al. (2020). For example, both market betas and turnover are not
among the top 10 return predictors in their analysis. Only firm size appears in the list
of the top predictors for both market betas and returns. In contrast, several of the
major return predictors, such as short-term reversal, value, and momentum, have
little relevance in predicting future market beta.

Because the overall relative variable importance measures reflect only the
average contribution of a predictor to the predictive performance of the random
forests, we also examine the relative variable importance metrics over time. Volatile
metrics indicate that all covariates in the predictor set are essential; stable numbers
would imply that we can permanently remove uninformative predictors, as they
may reduce the signal-to-noise ratio of the RF model. Therefore, we next focus on
the 29 least important predictors for which removal can be considered.

To identify the time variability in the relative importance measures only within
this subset of predictors, we drop the remaining variables before normalizing the
absolute variable importance measures to sum to 1 at each reestimation date. Graph
C of Figure 5 presents the resulting relative variable importance over the sample
period. Although we still observe substantial differences, the graph shows that the

?TWe simultaneously set all values of all predictors within each category to their uninformative
median values within the training sample before computing the absolute and relative variable importance
metrics as described in the text.

28As shown in Section C of the Supplementary Material (see Table C3 in the Supplementary
Material), our results are robust when we include a set of other macroeconomic variables in addition
to the default spread.

2Using a smaller and different set of predictor variables, Jourovski et al. (2020) also find that a
lagged beta is the most influential variable. However, they do not include historical betas with different
horizons, which turns out to be important in our empirical analysis.
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FIGURE 5
Relative Variable Importance in Aggregate and over Time

Figure 5 shows the relative importance of the variables included as predictors in the random forests (RF, introduced in
Section IV.B). For this purpose, the variable importance matrix is computed based on a 2-step approach, separately for each
re-estimation date: First, the absolute variable importance is computed as the increase in value-weighted mean squared error
(MSE) from setting all values of a given predictor to its uninformative median within the training sample. Second, the absolute
variable importance measures are normalized to sumto 1, indicating the relative contribution of each variable to the RF model.
Graphs A and B show the time series averages of the relative variable importance measures for the predictor categories
introduced in Section IIl and the 10 most influential predictors, respectively. Focusing on the 29 least important predictors,
Graph C presents the resulting relative variable importance metrics over the sample period. For this purpose, the remaining
variables are omitted before the absolute variable importance measures are normalized to sumto 1 at each re-estimation date.
Graph D visualizes the fraction of the aggregate absolute variable importance (i.e., the sum of the increases in value-weighted
MSE across all variables) attributable to the 29 least important predictors over the sample period, along with the NBER
recession periods (gray-shaded areas). The sample includes all firms that were or are listed on the NYSE, AMEX, or NASDAQ
in any month during the period Mar. 1970-Dec. 2020, while the first beta estimates are obtained in Dec. 1979.
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relative variable importance metrics change significantly over time. Therefore, we
conclude that each predictor variable is an important contributor to the random
forests (albeit to time-varying degrees).

In addition, we evaluate the overall contribution of the 29 least important
covariates to the predictive performance of the RF model. To do so, at each re-
estimation date, we compute the fraction of the total absolute variable importance
attributable to this subset of predictors. Graph D of Figure 5 plots this fraction over
the sample period, along with the NBER recession periods (gray-shaded areas). At
times, the aggregate contribution is exceptionally low, such as during the global
financial crisis (Dec. 2008). In contrast, it is high in the subsequent period, reaching
almost 30% at its peak. As a result, even the unconditionally unimportant covariates
can conditionally play an important role in the performance of the RF model. These
results justify the use of our comprehensive set of predictors. While using infor-
mation from multiple different sources seems to be essential for the predictive
performance of machine learning-based prediction models, it also makes them
prone to potential misspecification. Therefore, we only include those covariates
that have been shown theoretically or empirically to explain and predict time-
varying market betas. This partially explains our finding that we should nof remove
certain predictors: We refrain from including too many predictors that are likely
irrelevant in the first place.

VIIl. Conclusion

Using a large universe of U.S. stocks and a long sample period, we compare
the predictive performance of machine learning-based beta estimators (linear
regression, tree-based models, and neural networks) with that of established bench-
marks. Machine learning techniques outperform established approaches both sta-
tistically and economically. Random forests perform best, but GBRT and neural
networks also work well. In particular, machine learning methods produce the
lowest forecast and hedging errors. In addition, they outperform the benchmark
models in hedging anomaly portfolios and constructing MVPs.

An important economic reason for the outperformance of machine learning
methods is their ability to capture the joint information content of a large set of firm
characteristics that appear to affect betas. However, random forests, GBRT, and
neural networks outperform linear regression, while incorporating the same cov-
ariates. We conclude that much of this outperformance is further attributable to the
machine learning methods’ ability to exploit nonlinear and interactive patterns.

Supplementary material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S0022109024000036.
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