

Modification of selectively acid-etched halloysite by mucoadhesive chitosan derivatives: new bionanocomposites with improved functional properties

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Jauković, V., Čalija, B., Ivković, B., Khutoryanskiy, V. V.
ORCID: <https://orcid.org/0000-0002-7221-2630>, Abu Elella, M. H., Kurčubić, I., Medarević, Đ., Stojanović, J., Damjanović, A. and Krajišnik, D. (2024) Modification of selectively acid-etched halloysite by mucoadhesive chitosan derivatives: new bionanocomposites with improved functional properties. *Materials Chemistry and Physics*, 325. 129756. ISSN 1879-3312 doi: 10.1016/j.matchemphys.2024.129756 Available at <https://centaur.reading.ac.uk/117463/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1016/j.matchemphys.2024.129756>

Publisher: Elsevier

copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 MODIFICATION OF SELECTIVELY ACID-ETCHED HALLOYSITE BY
2 MUCOADHESIVE CHITOSAN DERIVATIVES: NEW BIONANOCOMPOSITES WITH
3 IMPROVED FUNCTIONAL PROPERTIES

4 Valentina Jauković¹, Bojan Čalija¹, Branka Ivković², Vitaliy V. Khutoryanskiy³, Mahmoud H.
5 Abu Elella^{3,4}, Ivana Kurćubić¹, Đorđe Medarević¹, Jovica Stojanović⁵, Ana Damjanović⁶, Danina
6 Krajnišnik^{1*}

*7 ¹Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of
8 Pharmacy, 11221 Belgrade, Serbia*

9 ² Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, 11221
10 Belgrade, Serbia

11 ³Reading School of Pharmacy, University of Reading, Reading RG6 6DX, United Kingdom

12 ⁴*Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt*
13 ⁵*Institute for the Technology of Nuclear and Other Mineral Raw Materials, Franše d'Epere 86,*
14 *11000 Belgrade, Serbia*

15 ⁶*Institute of Oncology and Radiology of Serbia, Pasterova 14, Belgrade, Serbia*

16 *E-mail: danina.krajisnik@pharmacy.bg.ac.rs

18 **ABSTRACT**

19 In this study, the modification of selectively acid-etched halloysite (eHal) by low molecular weight
20 chitosan (LChi) and its methacrylated derivative (MeLChi) is investigated to form new
21 bionanocomposites with improved functional properties. The formation of nanocomposites was
22 confirmed by various instrumental techniques (ζ -potential measurements, SEM, FT-IR, DSC,
23 XRD and $^1\text{H-NMR}$). Both nanocomposites exhibited improved functional properties while
24 preserving the tubular structure of halloysite. The cytotoxic activity of eHal and eHal-polycation
25 nanocomposites against normal human lung fibroblasts (MRC5) was determined using MTT
26 assay. The results showed good biocompatibility of the prepared nanocomposites, with a cell
27 survival rate of more than 90%. The mucoadhesive properties of eHal and the corresponding
28 chitosan nanocomposites were investigated *in vitro*. Primarily, ζ -potential measurements revealed
29 electrostatic interactions between the eHal-polycation nanocomposites and mucin. The absorption
30 study showed that the eHal-MeLChi nanocomposites could adsorb a greater amount of mucin
31 ($\approx 82\%$) than the eHal-LChi nanocomposites ($\approx 72\%$) and eHal ($\approx 58\%$) after 8 hours of incubation.
32 Furthermore, the compacts of the tested samples were prepared by direct compression, and the
33 detachment force against the mucin compact was measured using a texture analyzer. A
34 significantly higher detachment force of the eHal-MeLChi nanocomposite compact (1.59 ± 0.07
35 N) from the mucin compact was determined compared to the eHal-LChi (1.35 ± 0.08 N) and eHal
36 (0.98 ± 0.08 N) samples, demonstrating their improved mucoadhesive potential. In summary, this
37 study demonstrates that functionalization of eHal with MeLChi may be a useful approach for the
38 preparation of nanocomposites as potential carriers for mucoadhesive dosage forms.

39 **Keywords:** acid-etched; halloysite; chitosan; methacrylated chitosan; mucoadhesive properties.

40 **1. Introduction**

41 In recent decades, mucoadhesive drug delivery systems have received much attention because they
42 can prolong the residence time of the dosage form at the site of absorption, allowing controlled
43 drug release and improving therapeutic effect [1-3]. Various polymers have been used to develop
44 mucoadhesive formulations [4-7]. Among them, chitosan is widely used due to its remarkable
45 properties, such as nontoxicity, low cost, biocompatibility, biodegradability, and excellent
46 mucoadhesive properties [8-10]. Chitosan is a naturally occurring cationic polysaccharide
47 produced by the deacetylation of chitin. This polymer exhibits significant mucoadhesive
48 properties, mainly due to electrostatic interactions between positively charged amino groups in
49 chitosan and negatively charged groups in the mucin layer, at low pH<6.5 [11]. The mucoadhesive
50 properties of chitosan can be further improved by chemical modification through interaction with
51 methacrylic anhydride. Methacrylated chitosan is able to form covalent bonds with the thiol groups
52 of mucin, resulting in improved adhesion [12], [13].

53 The preparation of new drug delivery systems based on the combination of chitosan and clay
54 minerals has evoked intense research in recent years. Clay minerals can be considered naturally
55 available materials that can be used as drug carriers because of their high retention capacity and
56 colloidal properties [14], [15]. Among them, halloysite (Hal) is of particular interest due to its
57 biocompatibility, hollow tubular structure, large specific surface area, tunable surface chemistry,
58 positive lumen, and negative external surface charge [16-18].

59 The Hal nanotubes are two-layered aluminosilicate clay minerals, consisting of silica tetrahedral
60 layer situated on the outside and an octahedral layer of alumina on the inside of the tubes [19].
61 Despite numerous advances, the use of Hal as a drug carrier is limited by its low loading capacity
62 (5–10 wt%) [18] and mucoadhesiveness [20], [21]. This can be overcome by various approaches

63 such as selective etching of alumina from the lumen [22-25] and functionalization of Hal with
64 mucoadhesive polymers [21].

65 Owing to their excellent biological and mechanical properties, Hal-chitosan nanocomposites have
66 been used in various biomedical applications including wound healing [26], drug delivery [27-30],
67 implant coatings [31] and as scaffolds for tissue engineering [32-34]. Our previous study showed
68 that a combined strategy of Hal etching under mild acidic conditions and functionalization with
69 medium molecular weight chitosan had a significant effect on increasing drug loading ($\approx 81\%$) and
70 sustained release of aceclofenac ($\approx 87\%$ of the drug after 12 h) [23]. Low molecular weight chitosan
71 has more flexible chains than medium and high molecular weight chitosans, which facilitates its
72 efficient binding to the external surface of halloysite. The simultaneous effect of acid etching of
73 Hal and functionalization with LChi on the mucoadhesive properties of nanocomposites has not
74 yet been investigated. To fill this knowledge gap, the present study investigated the effect of these
75 two approaches, which represent a significant contribution to the understanding of the interactions
76 within these systems and their importance for the development of novel drug delivery
77 systems. Hence, this study contributes to the understanding of the effects of methacrylation of LChi
78 on the mucoadhesive properties of eHal-LChi nanocomposites. The combination of acid etching
79 of halloysite and modification with low molecular weight chitosan and its methacrylate derivative
80 represents a novel approach to improve the mucoadhesive properties of halloysite which may
81 prolong the therapeutic effect of loaded drugs. Primarily, lumen enlargement was performed under
82 mild acidic conditions [23]. Moreover, the obtained eHal was modified with LChi and MeLChi by
83 stirring in the acidic polymer solution. Considering that drugs can be loaded into the lumen of Hal
84 by vacuum suction (e.g., aceclofenac [23], curcumin [28]), the drugs entrapped in the lumen were

85 not expected to affect the mucoadhesive properties of eHal-polycation nanocomposites.
86 Accordingly, mucoadhesive properties evaluation was performed using drug-free samples.

87 **2. Experimental**

88 **2.1. Materials**

89 Hal clay ($\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4 \cdot 2\text{H}_2\text{O}$) was purchased from Sigma-Aldrich Chemie GmbH (Germany).
90 Low molecular weight chitosan (50-190 kDa; degree of deacetylation 75-85%) was obtained from
91 Sigma-Aldrich (UK). Methacrylated low molecular weight chitosan (degree of methacrylation
92 27%) was synthesized according to the method described in [12]. Mucin from the porcine stomach,
93 type II (Sigma-Aldrich Co., USA) was used to evaluate mucoadhesive properties. Deuterated
94 trifluoroacetic acid and deuterated water were acquired from Sigma-Aldrich Chemie GmbH
95 (Germany). Methylthiazolyl diphenyl-tetrazolium bromide (MTT), sodium dodecyl sulphate
96 (SDS) and culture medium (RPMI-1640) were also purchased from Sigma-Aldrich Chemie GmbH
97 (Germany). The human lung fibroblast cell line (MRC5) was obtained from the American Type
98 Culture Collection (Manassas, VA, USA). Ultrapure water from a GenPure apparatus (TKA
99 Wasseranfbereitungssysteme GmbH, Germany) was used for all experiments. All other chemicals
100 and reagents used were of analytical grade.

101 **2.2. Preparation of nanoclay-polymer composites**

102 To increase the surface area and inner lumen diameter, Hal was treated with acetic acid according
103 to a previously described protocol [23]. The final sample was a white solid that was easily crushed
104 to powder with a mortar and pestle, sieved through a 125 μm sieve and labeled as eHal. In addition,
105 eHal was coated with LChi and MeLChi. The preparation of nanocomposites is described in detail
106 in the Supplementary material.

107 2.3. Characterization of eHal and eHal-polycation composites

108 2.3.1. Scanning electron microscopy (SEM)

109 The surface morphology of all samples was examined by scanning electron microscopy (SEM)
110 (JSM-6390LV, JEOL, Japan) at 20 kV. To avoid electrostatic charging during imaging, all samples
111 were coated with a thin conductive gold layer using SCD 005 Cool Sputter Coater (Bal-Tec,
112 Germany) at 30 mA for 100 s before analysis. SEM images were acquired at two different
113 magnifications (30000 \times and 8000 \times). ImageJ software, version 1.52a (National Institutes of Health,
114 USA) was used to evaluate particle size. For each sample captured on SEM micrographs, one
115 hundred tubes were randomly selected, and their external diameter and length were measured. The
116 dimensions of the samples were expressed as the mean of length and external diameter.

117 2.3.2. Fourier transform infrared (FT-IR) spectroscopy

118 The Nicolet iS10 FT-IR spectrometer (Thermo Fisher Scientific, USA) was used to obtain the
119 attenuated total reflectance FT-IR spectra of the prepared nanocomposites and their individual
120 components. The measurements were performed in a wavelength range between 4000 and 400
121 cm $^{-1}$ with a resolution of 2 cm $^{-1}$.

122 2.3.3. Thermal analysis

123 Differential scanning calorimetry (DSC) / Thermogravimetry (TG) utilised a STA 449 F5 Jupiter
124 Simultaneous Thermal Analyzer with Proteus[®] software produced by Netzsch, Germany. Samples
125 were heated at a rate of 10 °C min $^{-1}$ from 25 to 1000 °C using Pt80Rh20 thermocouples and
126 Pt80Rh20 crucibles with lids. An empty crucible with lid was used as reference. The oven gas was
127 streaming with 70 ml min $^{-1}$ (20 ml min $^{-1}$ protective gas - synthetic air and 50 ml min $^{-1}$ purge gas -

128 synthetic air). Prior to analyses, samples were kept in a dessicator over a saturated solution of
129 NH₄Cl (a relative humidity of 75%) for 24 h.

130 2.3.4. X-ray powder diffraction analysis

131 X-ray powder diffraction (XRD) was performed using the Philips PW-1710 automatic
132 diffractometer (Philips, The Netherlands) with a Cu tube at 40 kV and a current of 30 mA. The
133 instrument was equipped with a graphite monochromator with a curved diffracted beam and a
134 proportional counter filled with Xe. The XRD patterns were recorded in a 2θ range from 4 to 65°
135 with a step of 0.02° and a sampling time of 1 s per step. The divergence and reception gap were
136 set to 1 and 0.1, respectively. All XRD measurements were performed at room temperature in a
137 stationary sample holder. The Joint Committee on Powder Diffraction Standards (JCPDS)
138 database was used for sample identification.

139 2.3.5. Nuclear magnetic resonance (NMR) spectroscopy

140 ¹H-NMR spectra were recorded using a Bruker Avance III spectrometer (Bruker Biospin GmbH,
141 Germany) at 400 MHz. Samples of LChi and MeLChi were prepared by stirring in a solution of
142 deuterated water acidified with 0.1% deuterated trifluoroacetic acid. The solutions were heated to
143 70-80 °C for 2-3 min and then left at room temperature for half an hour. The ¹H-NMR spectra
144 were recorded after the complete dissolution of LChi and MeLChi. The same procedure was used
145 for the composites eHal-LChi and eHal-MeLChi as well as for physical mixtures (prepared by
146 geometric dilution with mortar and pestle) of eHal and LChi, i.e. eHal and MeLChi (in a ratio of
147 2:0.5). The ¹H-NMR spectra were recorded after good dispersion of the above physical mixtures
148 and composite samples.

149 2.4. Assessment of mucoadhesive properties

150 To evaluate potential interactions between Hal (and its derivatives, such as eHal and eHal-
151 polycation nanocomposites) with mucin, mucoadhesive studies were performed using three *in*
152 *vitro* methods.

153 The first method was based on zeta potential measurements (ζ) of the mixture at 20 °C using a
154 Zetasizer Nano ZS90 (Malvern Instruments, UK). The ζ measurements can provide insight into
155 the mechanism of interaction between Hal (and its derivatives, such as eHal, eHal-polycation
156 nanocomposites), and mucin. The ζ -potential of mucin free dispersions of the samples in deionized
157 water at a certain concentration was used as a reference. Any changes in their ζ -potential values
158 during incubation with mucin could be considered as an indication of their interaction [35]. The
159 pH of mucin dispersion was measured using a HI 2223 pH meter (Hanna Instruments, USA).

160 For the test, a mucin stock dispersion was prepared by adding mucin powder at a concentration of
161 0.1% (w/v) to deionized water. The mucin dispersion was ultrasonically homogenized for 30 min
162 at room temperature. Then, the accurately weighed Hal, eHal, eHal-LChi, and eHal-MeLChi (from
163 each 25 mg) were added to 25 mL of aqueous mucin dispersion (0.1% w/v) and shaken for 4 h at
164 300 rpm and 20 ± 1 °C. The ζ -potential of the mixture was measured at specific time intervals (1
165 and 4 h) and compared with the ζ -potential of the mucin-free aqueous dispersions under the same
166 conditions. Each measurement was repeated three times at room temperature and the data are
167 presented as mean ± standard deviation (SD).

168 The mucoadhesiveness of the samples was additionally assessed by measuring their ability to
169 adsorb mucin, using a method previously reported in [36] with a slight modification
170 (Supplementary material, Fig. S1).

171 The interactions between the samples and mucin were also studied using a Shimadzu Texture
172 Analyzer EZ-LX (Shimadzu Corporation, Japan) operated in a compression mode. A detailed
173 description of the method is provided in the Supplementary material, Fig. S2.

174 2.5. Cell viability assay

175 The cytotoxic effect of eHal, eHal-LChi, and eHal-MeLChi against MRC-5 normal human lung
176 fibroblasts was determined by MTT assay. The procedure is described in the Supplementary
177 material.

178 **3. Results and discussion**

179 3.1. Scanning electron microscopy (SEM)

180 The SEM images of all samples at different magnifications (8000 \times and 30000 \times) are shown in Fig.
181 1. It can be clearly seen that the pristine Hal (Figs. 1a and 1e) has a tubular structure with a smooth
182 and flat surface, which is consistent with the results of Murphy et al. [37]. No significant change
183 in the particle morphology of Hal was observed after etching with acetic acid (Figs. 1b and 1f).
184 This observation is consistent with previous results on the morphology of Hal etched in 0.01 M
185 sulfuric acid [38]. The average characteristic size (external diameter of 50-100 nm and 300-700 nm
186 in length) was maintained for pristine Hal and eHal. Similar results were previously reported for
187 hydrochloric and sulfuric acid-activated Hal, showing that acid treatment selectively affects the
188 inner octahedral layers of Hal, while the external diameter and length of the tubes remain
189 unchanged [25].

190 The morphology of the composite particles at 30000 \times magnification (Figs. 1c and 1d) shows that
191 the tubular shape of the nanotubes has been preserved. The tubular structure of the composite
192 particles can also be seen at 8000 \times magnification (Figs. 1g and 1h). There were no significant

193 differences in the SEM images of the composites compared to eHal, clearly indicating the presence
194 of the polymer on the nanoclay surface. This can be explained by the low concentration of the
195 polymer on the surface of the etched halloysite, which is not clearly visible in the SEM analysis.
196 Using data from ImageJ (National Institutes of Health, USA), an average external diameter of \approx 82
197 nm was determined for the eHal tubes. In contrast, the eHal-LChi and eHal-MeLChi
198 nanocomposites had external diameters of \approx 106 nm and \approx 115 nm, respectively. The increase in
199 external diameter supports the adsorption of the polymers on the external surface of the eHal
200 nanotubes.

201 **[Figure 1.]** SEM images at 30 000 \times magnification of (a) pristine Hal; (b) eHal; (c) eHal-LChi; and
202 (d) eHal-MeLChi, and SEM images at 8 000 \times magnification of e) pristine Hal; (f) eHal; (g) eHal-
203 LChi; and (h) eHal-MeLChi

204 3.2. Fourier transform infrared (FT-IR) spectroscopy

205 The functional groups on the surface of the eHal and eHal-polycation nanocomposites were further
206 analyzed by FTIR analysis (Fig. 2). Fig.-2 shows the FT-IR spectra of LChi, MeLChi, and eHal-
207 polycation nanocomposites. The FT-IR spectrum of eHal has been discussed previously [23]. Pure
208 LChi showed a peak at 3354 cm $^{-1}$ representing the stretching of the hydroxyl groups and the
209 symmetric stretching of the amine groups at 2871 cm $^{-1}$ (Fig. 2). The peak observed at 1374 cm $^{-1}$
210 corresponds to -CH₃ stretching, while the absorption bands at 1026 cm $^{-1}$ and 1150 cm $^{-1}$ can be
211 assigned to C-O stretching. The signal at 1651 cm $^{-1}$ is attributed to the C=O stretching of the amide
212 group. The FTIR spectrum of LChi is consistent with previous reports [39], [40].

213 According to Fig. 2, the largest differences between LChi and MeLChi were observed in the range
214 (1538-1652 cm $^{-1}$). The coupling of the methacrylated groups to the LChi backbone led to the

215 appearance of a characteristic double bond peak in this region, indicating the C=C stretching of
216 the alkenyl group. The absorption band at 1621 cm⁻¹ can be assigned to the C=O stretching of the
217 amide in the methacrylate moiety of MeLChi, confirming the chemical modification of LChi.
218 Moreover, the increased intensity of the absorption band at 2921 cm⁻¹, corresponding to the C-H
219 stretching of the alkyl groups, proves the successful methacrylation of LChi, which was also
220 confirmed by DSC, XRD, and ¹H-NMR analyses. These results are consistent with previous
221 reports on methacrylated chitosan [12], [41].

222 **[Figure 2.]**

223 Comparing the FT-IR spectral details of LChi and eHal-LChi, it was found that after the interaction
224 of LChi with eHal in the nanocomposites (eHal-LChi), the stretching vibration of the protonated
225 amino group observed in LChi at 1564 cm⁻¹ was shifted to 1559 cm⁻¹ in the nanocomposites.
226 Similar results have been previously reported for nanocomposites of eHal and medium molecular
227 weight chitosan [23]. In the eHal-MeLChi nanocomposites, the C=C stretching vibration of the
228 alkenyl group was shifted from 1538 cm⁻¹ in MeLChi to 1558 cm⁻¹ in the composite sample. The
229 shift of these absorption bands confirmed that both polymers were effectively linked to eHal in the
230 prepared nanocomposite samples.

231 3.3. Thermal analysis

232

233 At DSC curve (Fig. 3), the dehydration of eHal is described by the endothermic peaks at 77 and
234 148 °C related to the removal of the physically adsorbed water and the interlayer water during the
235 transformation from Hal-10 Å to Hal-7 Å, followed by the high intensity endothermic peak
236 centered at and 505 °C originated from dehydroxylation of the structural aluminol groups.

237 Exothermic peak at 996 °C of eHal is attributed to the formation of γ -Al₂O₃ [42]. From TG curve,
238 the total mass loss of eHal is 17.15 % up to 1000 °C, which emphasizes its inherent stability as an
239 inorganic material (Fig. 4).

240 For the LChi, in the interval between 20 and 200 °C, at DSC curve, endothermic peak at 75 °C is
241 visible attributed to the water evaporation, while in the temperature region from 200 to 650 °C
242 exothermic peaks at 299, 323 and 510 °C originated from the degradation of polymer due to the
243 rupture the anhydrous glycoside ring and deamination process (Fig. 3a) [43]. The DSC curve of
244 eHal-LChi nanocomposite shows slightly visible changes in the endothermic and exothermic peaks
245 compared to pure LChi, only in the temperature region from 20 to 650 °C, the mass loss of eHal
246 increased from 13.66 % after modification with LChi to 14.87 % indicating the chitosan
247 functionalization on the surface of eHal (Fig. 4) [44].

248 **[Figure 3.]**

249 At DSC curve of MeLChi, the attached methacrylated groups to the LChi are confirmed with the
250 change of the intensities and with the shift of the characteristic exothermic peaks of LChi. For
251 MeLChi, exothermic peaks are visible at 237, 314 and 492 °C. After modification of eHal with
252 MeLChi, changes in the thermal behavior of composite eHal-MeLChi are more visible. The
253 endothermic peaks of eHal visible at 77 and 148 °C were shifted toward higher temperatures (85
254 and 154 °C) and were more pronounced in the eHal-MeLChi composites (Fig. 3b). The mass loss
255 in the temperature region from 20-200 °C increased from 2.96 % for eHal to 5.70 % for eHal-
256 MeLChi composite (Fig. 4). In the temperature region 200-650 °C, at DSC curve of
257 nanocomposite, high intensity exothermic peak originated from MeLChi appeared at 315 °C, while
258 mass loss increased from 13.66 % (eHal) to 25.10 % (eHal-MeLChi). Also, the intensity of the

259 dehydroxilation peak of eHal decreased after modification with MeLChi probably due to the
260 overlapping with the exothermic peak of MeLChi and peak is slightly shifted toward lower
261 temperature (from 505 °C for eHal to 499 °C for nanocomposite). These results are another
262 confirmation of the successful modification of eHal with MeLChi.

263 **[Figure 4.]**

264 3.4. X-ray powder diffraction method (XRD)

265 The effect of polymer functionalization on the crystalline structure of eHal was analyzed using
266 XRD. The XRD patterns of eHal showed diffraction patterns at $2\theta = 12.02^\circ, 19.96^\circ, 24.72^\circ,$
267 $35.98^\circ, 38.4^\circ, 54.98^\circ$, and 62.5° (Fig. 5). All observed diffraction peaks are indexed with the
268 diffraction of the halloysite powder (JCPDS 29-1487). These results agree well with our previous
269 report that the crystalline structure of pristine Hal was not affected by acetic acid treatment. After
270 functionalization with LChi and MeLChi, the reflections of eHal remain unchanged, indicating
271 that functionalization with these polymers does not affect the structure of eHal. This is in
272 accordance with the observation that LChi and MeLChi adsorb only on the external surface of
273 eHal nanotubes.

274 In addition, the XRD patterns were used to study the effects of methacrylation on the crystalline
275 structure of LChi. Two intense crystalline peaks (2θ) at 12.06° and 20.28° were observed in pure
276 chitosan previously reported in [45]. The change in the XRD pattern of MeLChi, characterized by
277 a broadening of the peak at 20.28° due to the destruction of the intermolecular hydrogen bonds,
278 indicates successful methacrylation of LChi. Kolawole et al. [12] reported lower crystallinity of
279 methacrylated chitosan (degree of methacrylation, 34.3%) compared to pure chitosan, with
280 broadening of the peak around 20° and disappearance of the peak around 10° . In this study, the

281 characteristic peak at 12.06° did not disappear, which can be explained by the lower degree of
282 methacrylation of chitosan (27%).

283 **[Figure 5.]**

284 3.5. Nuclear magnetic resonance (NMR) spectroscopy

285 The ^1H -NMR spectra of LCh and MeLChi are shown in Fig. 6. The ^1H -NMR spectrum of LChi
286 (Fig.6a) shows a peak at 1.98 ppm attributable to methyl groups and peaks at 3.1-3.81 ppm
287 attributable to hydrogen atoms of the glucosamine ring. In the ^1H -NMR spectrum of MeLChi (Fig.
288 6b), new peaks appeared at 5.60 and 5.99 ppm, which were due to the presence of hydrogen atoms
289 of the methylene group. These peaks indicated the successful methacrylation of chitosan. The
290 physical mixtures of eHal and LChi (Fig. 6c), and eHal and MeLChi (Fig. 6d) showed the same
291 peaks characteristic for LChi and MeLChi, respectively. The presence of hydrogen atoms was not
292 detected in the ^1H -NMR spectra of eHal-LChi and eHal-MeLChi nanocomposites (Figs. 6e and6f).
293 The peak of the methyl group, which is not involved in the interaction of LChi and MeLChi with
294 eHal, was preserved, confirming that the interaction between the polymers and eHal occurred.

295 **[Figure 6.]**

296 3.6. Assessment of mucoadhesive properties

297 The mucoadhesive properties of the Hal, eHal, eHal-LChi, and eHal-MeLChi nanocomposites
298 were evaluated by measuring the changes in their ζ -potential upon interaction with negatively
299 charged mucin; the results are shown in Fig. 7. The ζ -potential value of the mucin particles was -
300 12.2 mV, confirming their negative charge due to the presence of sialic acid. In several studies,
301 the negative ζ -potential of mucin was reported to be about -10 mV [46], [47]. This slight difference
302 in surface charge can be explained by the different conductivity and pH of water used for

303 preparation of mucin dispersion, as well as by the different concentration and pH of the mucin
304 dispersion.

305 Pristine Hal and eHal nanotubes initially exhibited a negative ζ -potential due to the negatively
306 charged silanol groups located mainly on their external surface [48]. After incubation with mucin
307 at 20 ± 1 °C for 1 h, ζ -potentials of pristine Hal and eHal increased from (-25.9 ± 0.9) mV to $(-$
308 $14.2 \pm 0.8)$ mV and from (-28.3 ± 1.1) mV to (-13.1 ± 0.8) mV, respectively. The values obtained
309 were close to the ζ -potential of pure mucin (-12.2 mV), indicating that the surface of the complexes
310 formed between mucin and nanotubes has a similar charge density to mucin. The interaction arises
311 from hydrogen bonds between the hydroxyl groups of mucin and the silanol groups of nanotubes
312 and from hydrogen bonds between the thiol groups of mucin and the silanol groups of nanotubes.
313 With increasing incubation time with mucin, the ζ -potential of the nanotubes slightly decreased.

314 The ζ -potential measurements are also used to evaluate polymer adsorption on the eHal surface.
315 The ζ -potentials for eHal-LChi and eHal-MeLChi nanocomposites were $+25.9 \pm 0.9$ mV and $+24.4$
316 ± 0.8 mV, respectively, indicating successful binding of the cationic polymers to the external
317 surface of the eHal nanotubes. In aqueous mucin dispersion ($\text{pH} \approx 4.5$), the sialic acid residues of
318 mucin ($\text{pKa} 2.6$) are present in ionized form, indicating an overall negative charge of the
319 glycoprotein [49]. At the same pH, the amine groups of chitosan are protonated, and given the
320 strength of electrostatic interactions, positively charged species of the nanocomposite particles
321 may interact with mucin. Indeed, the positive charge of eHal-LChi and eHal-MeLChi
322 nanocomposites decreased significantly from $+25.9 \pm 0.9$ mV to -13.3 ± 0.5 mV and from $+24.4$
323 ± 0.8 mV to -12.6 ± 0.4 mV, respectively, after 1 h incubation with mucin. This change in the
324 surface charge of the nanocomposite particles strongly suggests that their interaction with mucin
325 is electrostatic in nature. The complexes formed between mucin and nanocomposites exhibited a

326 lower ζ -potential value compared to mucin itself, which can be explained by the different
327 conformation of adsorbed mucin [50], [51].

328 **[Figure 7.]**

329 The mucoadhesive properties of the samples were further determined by measuring their ability to
330 adsorb mucin. The results of the mucoadhesion measurements followed the trend eHal-MeLChi >
331 eHal-LChi > eHal > Hal. As shown in Fig. 8, pristine Hal exhibited the lowest mucoadhesive
332 potential: 49 ± 0.7 % of the initially added mucin was adsorbed onto the nanotubes after 1 h of
333 incubation. These results are consistent with a previous study showing that Hal has mucoadhesive
334 potential [21]. Acetic acid treatment increased the specific surface area of nanotubes from 51.6
335 m^2/g to $57.2 \text{ m}^2/\text{g}$ [23] for Hal and eHal, respectively. Due to the larger surface area, eHal was able
336 to adsorb a higher percentage of mucin than the pristine Hal, with 54 ± 0.7 % of mucin adsorbed
337 on the eHal surface after 1 h of incubation. For all samples tested, most of the mucin was bound
338 to the nanotubes within the first hour of incubation and did not differ according to the duration of
339 incubation. This could be due to the saturation of the nanotube surface by mucin chains.

340 After functionalization of eHal with LChi, the amount of mucin adsorbed on the composite surface
341 increased to 66.8 ± 0.8 % after 1h of incubation. This was expected since chitosan itself has good
342 mucoadhesive properties [52], [53]. The ~~strong~~ binding of eHal-LChi nanocomposites to mucin
343 can be attributed to electrostatic interactions between the positively charged amines of LChi and
344 the negatively charged sialic acid residue of mucin, as well as hydrogen bonds between the
345 hydroxyl groups of LChi and the hydroxyl groups of mucin. Similar behavior was reported in [21],
346 where the functionalization of pristine Hal with chitosan had a positive effect on mucoadhesive
347 properties.

348 [Figure 8.]

349 The introduction of methacrylate groups into MeLChi provides an opportunity for formation of
350 covalent bonds with mucin in addition to the previously mentioned interactions (Fig. 9). The
351 interactions between the alkenyl groups of MeLChi and the thiol groups of mucin are likely
352 responsible for a greater percentage of adsorbed mucin by eHal-MeLChi nanocomposites ($77.7 \pm$
353 0.9 %) compared to eHal-LChi nanocomposites (66.8 ± 0.8 %) after 1 h of incubation. These
354 results were expected based on the findings of Kolawole et al. [12], who reported better
355 mucoadhesivity of methacrylated chitosan compared with pure chitosan.

356 [Figure 9.]

357 The mucoadhesiveness of the samples was additionally evaluated with a texture analyzer. Table 1
358 shows the Fadh values of all tested samples after detachment from the mucin compact.

359 **Table 1.** Values of Fadh of sample compacts to the porcine mucin compact (mean \pm SD; n = 4).
360

Samples	Fadh (N)
Hal	0.78 ± 0.06
eHal	0.98 ± 0.08
eHal-LChi	1.35 ± 0.08
eHal-MeLChi	1.59 ± 0.07

361
362 In the present study, the eHal-MeLChi nanocomposite compacts showed the strongest adhesive
363 properties to the mucin compacts, whereas the halloysite compacts showed the weakest interaction
364 with mucin. Pristine Hal showed limited interactions with mucin due to its negative surface charge,
365 which inhibits adhesion to negatively charged mucin. This study showed that Fadh, which is
366 required for the detachment of the eHal compact from the mucin compact, was greater than the

367 Hal compact, with values of 0.98 ± 0.08 N (eHal) and 0.78 ± 0.06 N (Hal), respectively. The better
368 mucoadhesive properties of eHal compared with the pristine nanotubes could be explained by the
369 larger specific surface area of eHal, which contributes to a stronger interaction with mucin.
370 In addition, the force required to break the mucoadhesive bonds between eHal-LChi and mucin
371 compacts was 1.35 ± 0.08 N, greater than for eHal compacts. This suggests that noncovalent
372 modification of eHal with LChi significantly improves mucoadhesive properties. Such results are
373 expected due to the presence of positively charged amino groups in the structure of LChi, which
374 can interact electrostatically with negatively charged mucin. Furthermore, this study revealed
375 significant differences in the detachment force of eHal-LChi and eHal-MeLChi nanocomposite
376 compacts from mucin compacts. The better mucoadhesive behavior of the eHal-MeLChi
377 nanocomposites, with a mean detachment force (1.59 ± 0.07) N is probably due to the presence of
378 methacrylate groups that form covalent bonds with the thiols of mucin. These results support our
379 hypothesis that LChi and MeLChi have a marked effect on the mucoadhesiveness of eHal, and
380 among the tested samples, eHal-MeLChi stands out as the composite with the best mucoadhesive
381 properties.

382 3.7. Cell viability assay

383 The cytotoxic effect of eHal, eHal-LChi, and eHal-MeLChi nanocomposites on MRC-5 cells was
384 determined by the MTT assay; the results are shown in Table S1 (Supplementary material).
385 According to the standard ISO 10993-5 [54], a cell viability more than 70% is acceptable for a
386 biocompatible nanocarrier (ISO 10993-5:2009). The results showed that eHal and eHal-polycation
387 nanocomposites were biocompatible as the resulting percentage of viability in MRC-5 cells was
388 more than 70% within investigated concentration range, even after prolonged exposure. The cell
389 survival rate of eHal-LChi ($90.7 \pm 3\%$) and eHal-MeLChi ($96.3 \pm 3\%$) nanocomposites at a

390 concentration 1000 $\mu\text{g}/\text{mL}$, indicated that functionalization with LChi and MeLChi did not affect
391 cytocompatibility of eHal. Comparable values of cell survival rates of eHal-LChi and eHal-
392 MeLChi confirmed that methacrylation of LChi does not affect cytocompatibility. This result was
393 expected since Zanon et al. [55] showed that methacrylation did not affect the good
394 biocompatibility of chitosan when tumor cell lines (H1299 and A549 GFP) were studied. These
395 data suggest good biocompatibility of the new eHal-polycation composites under the cell culture
396 conditions.

397 **4. Conclusion**

398 Selectively etched halloysite and corresponding composites with polycationic polymers (low
399 molecular weight chitosan (LChi) and its methacrylated derivative (MeLChi)) were studied. The
400 successful functionalization of eHal with the polycationic polymers was confirmed by ζ -potential
401 measurements, SEM, FT-IR, DSC, XRD, and $^1\text{H-NMR}$. The results of *in vitro* mucoadhesion
402 studies showed that the mucoadhesive properties of eHal were improved by functionalization with
403 LChi and MeLChi. Overall, the eHal-MeLChi nanocomposite exhibited remarkable mucin-
404 binding properties, which were attributed to the presence of methacrylate groups that interact with
405 thiol groups of mucin. The enhanced mucoadhesive properties of the eHal-MeLChi
406 nanocomposites were confirmed by ζ -potential measurements, mucin adsorption capacity, and
407 mucoadhesion studies using a texture analyzer. The MRC5 cell cytotoxicity assay showed
408 excellent cytocompatibility of the halloysite-polycation composites, even after prolonged exposure
409 over 72 hours, while the cell survival rate for the eHal-MeLChi nanocomposite at a concentration
410 of 1000 $\mu\text{g}/\text{ml}$ was more than 90% and the IC50 values were above 1000 $\mu\text{g}/\text{ml}$.

411 These results suggest that modification of selectively etched halloysite with MeLChi may be a
412 promising approach to improve the functional properties of these nanocarriers. The improved

413 mucosal adhesion of halloysite-chitosan nanocomposites and good biocompatibility make them
414 promising materials for drug delivery application.

415 **Acknowledgements**

416 This research was funded by the Ministry of Science, Technological Development and Innovation,
417 Republic of Serbia through two Grant Agreements with University of Belgrade-Faculty of
418 Pharmacy No 451-03-65/2024-03/200161 and No 451-03-66/2024-03/200161) and by the Science
419 Fund of the Republic of Serbia, #GRANT No 7748088, Project title: Composite clays as advanced
420 materials in animal nutrition and biomedicine – AniNutBiomedCLAYs. We are thankful to Mrs.
421 Biljana Mihailović (Department of Pharmaceutical Chemistry, University of Belgrade - Faculty of
422 Pharmacy) for excellent technical assistance. The authors would like to thank Prof. Miloš Petković
423 (Department of Organic Chemistry, University of Belgrade - Faculty of Pharmacy) for help with
424 ^1H -NMR spectroscopy. We thank Dr Aleksandra Daković and Dr Marija Marković (Institute for
425 the Technology of Nuclear and Other Mineral Raw Materials, Belgrade, Serbia) for their help with
426 DSC-TG analysis.

427 **Declaration of conflicting interests**

428 The authors declare that they have no known competing financial interests or personal
429 relationships that could have appeared to influence the work reported in this paper.

430 **5. References**

431 [1] B.M. Boddupalli, Z.N. Mohammed, R.A. Nath, D. Banji, Mucoadhesive drug delivery system:
432 An overview, *J. Adv. Pharm. Technol. Res.* 1 (2010) 381-387. <https://doi.org/10.4103/0110-5558.76436>

434 [2] P. Gao, X. Nie, M. Zou, Y. Shi, G. Cheng, Recent advances in materials for extended-release
435 antibiotic delivery system, *J. Antibiot.* 64 (2011) 625-634. <https://doi.org/10.1038/ja.2011.58>.

436 [3] R. Shaikh, T.R. Raj Singh, M.J. Garland, A.D. Woolfson, R.F. Donnelly, Mucoadhesive drug
437 delivery systems, *J. Pharm. Bioallied Sci.*, 3 (2011) 89-100. <https://doi.org/10.4103/0975-7406.76478>.

439 [4] M.M. Issa, M. Köping-Höggård, P. Artursson, Chitosan and the mucosal delivery of
440 biotechnology drugs, *Drug Discov. Today* 2 (2005) 1-6.
441 <https://doi.org/10.1016/j.ddtec.2005.05.008>.

442 [5] M. Mishra, B. Mishra, Mucoadhesive microparticles as potential carriers in inhalation delivery
443 of doxycycline hydrate: a comparative study, *Acta Pharm. Sin. B.* 2 (2012) 518-526.
444 <https://doi.org/10.1016/j.apsb.2012.05.001>.

445 [6] R. Surya, M.D. Mullassery, N.B. Fernandez, D. Thomas, Synthesis and characterization of a
446 clay-alginate nanocomposite for the controlled release of 5-Fluorouracil, *J. Sci. Adv. Mater. Dev.* 4
447 (2019) 432-441. <https://doi.org/10.1016/j.jsamd.2019.08.001>.

448 [7] S.N. Zadeh, S. Rajabnezhad, M. Zandkarimi, S. Dahmardeh, L. Mir, M.A. Darbandi, M.R.
449 Rajabnejad, Mucoadhesive microspheres of chitosan and polyvinyl alcohol as a carrier for
450 intranasal delivery of insulin: in vitro and in vivo studies, *MOJ Bioequiv. Availab.* 3 (2017) 39-
451 45. <https://doi.org/10.15406/mojbb.2017.03.00030>

452 [8] D. Zhao, S. Yu, B. Sun, S. Gao, S. Guo, K. Zhao, Biomedical Applications of Chitosan and Its
453 Derivative Nanoparticles, *Polymers*, 10 (2018) 462. <https://doi.org/10.3390/polym10040462>.

454 [9] S. Mansuri, P. Kesharwani, K. Jain, R.K. Tekade, N.K. Jain, Mucoadhesion: A promising
455 approach in drug delivery system, *React. Funct. Polym.*, 100 (2016) 151-172.
456 <https://doi.org/10.1016/j.reactfunctpolym.2016.01.011>.

457 [10] S. Murugesan, T. Scheibel, Chitosan-based nanocomposites for medical applications, *J.*
458 *Polym. Sci.* 59 (2021) 1610-1642. <https://doi.org/10.1002/pol.20210251>.

459 [11] I.A. Sogias, A.C. Williams, V.V. Khutoryanskiy, Why is Chitosan Mucoadhesive?
460 *Biomacromolecules* 9 (2008) 1837-1842. <https://doi.org/10.1021/bm800276d>.

461 [12] O.M. Kolawole, W.M. Lau, V.V. Khutoryanskiy, Methacrylated chitosan as a polymer with
462 enhanced mucoadhesive properties for transmucosal drug delivery, *Int. J. Pharm.* 550 (2018) 123-
463 129. <https://doi.org/10.1016/j.ijpharm.2018.08.034>

464 [13] Y. Shitrit, H. Bianco-Peled, Acrylated chitosan for mucoadhesive drug delivery systems. *Int.*
465 *J. Pharm.*, 517 (2017), 247-255. <https://doi.org/10.1016/j.ijpharm.2016.12.023>

466 -[14] C. Aguzzi, P. Cerezo, C. Viseras, C. Caramella, Use of clays as drug delivery systems:
467 Possibilities and limitations, *Appl. Clay Sci.* 36 (2007) 22-36.
468 <https://doi.org/10.1016/j.clay.2006.06.015>

469 [15] W. Chrzanowski, S.Y. Kim, E.A.A. Neel, Biomedical applications of clay, *Aust. J. Chem.* 66
470 (2013) 1315-1322. <https://doi.org/10.1071/CH13361>.

471 [16] P. Yuan, D. Tan, F. Annabi-Bergaya, Properties and applications of halloysite nanotubes:
472 recent research advances and future prospects, *Appl. Clay Sci.* 112-113 (2015) 75-93.
473 <https://doi.org/10.1016/j.clay.2015.05.001>

474 [17] V. Bertolino, G. Cavallaro, S. Milioto, G. Lazzara, Polysaccharides/Halloysite nanotubes for
475 smart bionanocomposite materials, *Carbohydr. Polym.* 245 (2020) 116502.
476 <https://doi.org/10.1016/j.carbpol.2020.116502>

477 [18] Y.M. Lvov, M.M. DeVilliers, R.F. Fakhrullin, The application of halloysite
478 tubule nanoclay in drug delivery, *Expert Opin. Drug Del.* 13 (2016) 977-986.
479 <https://doi.org/10.1517/17425247.2016.1169271>.

480 [19] X. Zhang, M. Cresswell, Alternative Inorganic Systems for Controlled Release Applications,
481 in X. Zhang, M. Cresswell (Eds), Inorganic Controlled Release Technology, Elsevier, 2016,
482 pp.189-219.

483 [20] N. Kerdsakundee, W. Li, J.P. Martins, Z. Liu, F. Zhang, M. Kemell, A. Correia, Y. Ding, M.
484 Airavaara, J. Hirvonen, R. Wiwattanapatapee, H.A. Santos, Multifunctional nanotube–
485 mucoadhesive poly (methyl vinyl ether-co-maleic acid)@ hydroxypropyl methylcellulose acetate
486 succinate composite for site-specific oral drug delivery, *Adv. Healthc. Mater.* 6 (2017) 1700629.
487 <https://doi.org/10.1002/adhm.201700629>

488 [21] S. Sharif, G. Abbas, M. Hanif, A. Bernkop-Schnürch, A. Jalil, M. Yaqoob, Mucoadhesive
489 micro-composites: Chitosan coated halloysite nanotubes for sustained drug delivery, *Colloids*
490 *Surf. B.* 184 (2019) 110527. <https://doi.org/10.1016/j.colsurfb.2019.110527>.

491 [22] E. Abdullayev, A. Joshi, W. Wei, Y. Zhao, Y. Lvov, Enlargement of Halloysite Clay
492 Nanotube Lumen by Selective Etching of Aluminum Oxide, *ACS Nano.* 6 (2012) 7216-7226.
493 <https://doi.org/10.1021/nn302328x>.

494 [23] V. Jauković, D. Krajišnik, A. Daković, A. Damjanović, J. Krstić, J. Stojanović, B. Čalija,
495 Influence of selective acid-etching on functionality of halloysite-chitosan nanocontainers for
496 sustained drug release, *Mater. Sci. Eng. C.* 123 (2021) 112029.
497 <https://doi.org/10.1016/j.msec.2021.112029>

498 [24] X. Xing, J. Wang, Q. Li, W. Hu, Influence of acid treatment on the loading and release
499 behavior of halloysite with 2-Mercaptobenzothiazole, *J. Nanosci. Nanotechnol.* 19 (2019) 7178-
500 7184. <https://doi.org/10.1166/jnn.2019.16616>.

501 [25] Y. Lvov, W. Wang, L. Zhang, R. Fakhrullin, Halloysite Clay Nanotubes for Loading and
502 Sustained Release of Functional Compounds, *Adv. Mater.* 28 (2016) 1227-1250.
503 <https://doi.org/10.1002/adma.201502341>

504 [26] G. Sandri, C. Aguzzi, S. Rossi, M.C. Bonferoni, G. Bruni, C. Boselli, A.I. Cornaglia, F. Riva,
505 C. Viseras, C. Caramella, F. Ferrari, Halloysite and chitosan oligosaccharide nanocomposite for
506 wound healing, *Acta Biomater.* 57 (2017) 216-224.
507 <http://dx.doi.org/10.1016/j.actbio.2017.05.032>.

508 [27] A. Paul, R. Augustine, A. Hasan, A.A. Zahid, S. Thomas, C. Agatemor, K. Ghosa, Halloysite
509 nanotube and chitosan polymer composites: Physicochemical and drug delivery properties, *J. Drug*
510 *Deliv. Sci. Tecnol.* 72 (2022) 103380. <https://doi.org/10.1016/j.jddst.2022.103380>

511 [28] E. Nyankson, S.O. Aboagye, J.K. Efavi, B. Agyei-Tuffour, L. Paemka, B.O. Asimeng, S.
512 Balapangu, P.K. Arthur, E.K. Tiburu, Chitosan-Coated Halloysite Nanotubes As Vehicle for
513 Controlled Drug Delivery to MCF-7 Cancer Cells In Vitro, *Materials.* 14 (2021) 2837.
514 <https://doi.org/10.3390/ma14112837>.

515 [29] L. Lisuzzo, G. Cavallaro, S. Milioto, G. Lazzara, Halloysite Nanotubes Coated by Chitosan
516 for the Controlled Release of Khellin, *Polymers.* 12 (2020) 1766.
517 <https://doi.org/10.3390/polym12081766>

518 [30] M. Barman, S. Mahmood, R. Augustine, A. Hasan, S. Thomas, K. Ghosal, Natural halloysite
519 nanotubes/chitosan based bio-nanocomposite for delivering norfloxacin, an anti-microbial agent
520 in sustained release manner, *Int. J. Biol. Macromol.* 162 (2020) 1849-1861.
521 <https://doi.org/10.1016/j.ijbiomac.2020.08.060>.

522 [31] M. Chozhanathmisra, K. Pandian, D. Govindaraj, P. Karthikeyan, L. Mitu, R. Rajavel,
523 Halloysite Nanotube-Reinforced Ion-Incorporated Hydroxyapatite-Chitosan Composite Coating

524 on Ti-6Al-4 V Alloy for Implant Application, J. Chem-NY. (2019) 1-12.
525 <https://doi.org/10.1155/2019/7472058>.

526 [32] K. Govindasamy, C. Fernandopulle, P. Pasbakhsh, K. Goh, Synthesis
527 and characterisation of electrospun chitosan membranes reinforced by halloysite nanotubes, J.
528 Mech. Med. Biol. 14 (2014) 1450058. <https://doi.org/10.1142/s0219519414500584>

529 [33] M.P. Krishnapur, N. Sushma, K.B. Revathi, K.G. Shinomol, Chitosan-Halloysite Nano-
530 Composite for Scaffolds for Tissue Engineering, in: A. Al-Ahmed, Inamuddin (Eds.), Advanced
531 Applications of Micro and Nano Clay, Mater. Sci. Eng, 2022, pp.103-123.

532 [34] M. Liu, C. Wu, Y. Jiao, S. Xiong, C. Zhou, Chitosan-Halloysite Nanotubes Nanocomposite
533 Scaffolds for Tissue Engineering, J. Mater. Chem. B. 1 (2013) 2078-2089.
534 <https://doi.org/10.1039/c3tb20084a>

535 [35] V.N. Boya, R. Lovett, S. Setua, V. Gandhi, P.K.B. Nagesh, S. Khan, M. Jaggi, M.M. Yallapu,
536 S.C. Chauhan, Probing mucin interaction behavior of magnetic nanoparticles, J. Colloid. Interf.
537 Sci. 488 (2017) 258-268. <https://doi.org/10.1016/j.jcis.2016.10.090>

538 [36] S. Sunoqrot, L. Hasan, A. Alsadi, R. Hamed, O. Tarawneh, Interactions of mussel-inspired
539 polymeric nanoparticles with gastric mucin: Implications for gastro-retentive drug delivery,
540 Colloids Surf. B. 156 (2017) 1-8. <https://doi.org/10.1016/j.colsurfb.2017.05.005>

541 [37] Z. Murphy, M. Kent, C. Freeman, S. Landge, E. Koricho, Halloysite nanotubes
542 functionalized with epoxy and thiol organosilane groups to improve fracture toughness in
543 nanocomposites, SN Appl. Sci. 2 (2020) 2130. <https://doi.org/10.1007/s42452-020-03909-2>.

544 [38] E.G. Bediako, E. Nyankson, D. Dodoo-Arhin, B. Agyei-Tuffour, D. Łukoweic, B. Tomiczek,
545 A. Yaya, J.K. Efavi, 2018. Modified halloysite nanoclay as a vehicle for sustained drug delivery,
546 Heliyon, 4, e00689. <https://doi.org/10.1016/j.heliyon.2018.e00689>.

547 [39] X. Zheng, Y. Yin, W. Jiang, L. Xing, J. Pu, Synthesis and characterization of low molecular
548 weight chitosan, BioRes, 10 (2015), 2338-2349. <https://doi.org/10.15376/biores.10.2.2338-2349>.

549 [40] S. Suryani, A.Y. Chaerunisaa, I.M. Jonim R. Ruslin, L.O.A.N. Ramadhan, Y.W. Wardhana,
550 S.H. Sabarwati, Production of low molecular weight chitosan using a combination of weak acid
551 and ultrasonication methods, Polymers. 14 (2022), 3417. <https://doi.org/10.3390/polym14163417>.

552 [41] T. Cebe, N. Ahuja, F. Monte, K. Awad, K. Vyavhare, P. Aswath, J. Huang, M. Brotto, V.
553 Varansi, Novel 3D-printed methacrylated chitosan-laponite nanosilicate composite scaffolds
554 enhance cell growth and biomineral formation in MC3T3 pre-osteoblasts, J. Mater. Res 35 (2018)
555 58-75. <https://doi.org/10.1557/jmr.2018.260>

556 [42] P. Yuan, D. Tan, F. Annabi-Bergaya, W. Yan, M. Fan, D. Liu, H. He. Changes in structure,
557 morphology, porosity and surface activity of mesoporous halloysite nanotubes under heating,
558 Clays and Clays Miner. 6 (2012) 561-573. <https://doi.org/10.1346/CCMN.2012.0600602>

559 [43] Y. Villegas-Peralta, J. López-Cervantes, T.J.M. Santana, R.G. Sánchez-Duarte, D.I.
560 Sánchez-Machado, M.R. Martínez-Macías, M.A. Correa-Murrieta. Impact of the molecular weight
561 on the size of chitosan nanoparticles: characterization and its solid-state application, Polymer
562 Bulletin 78 (2021) 813-832, <https://doi.org/10.1007/s00289-020-03139-x>

563 [44] S. Kouuser, A. Prabhu, S. Sheik, K. Prashantha, G.K. Nagaraja, J.N.D'souza, K.M. Navada,
564 D.J. Manasa. Chitosan functionalized halloysite nanotube/poly (caprolactone) nanocomposites for
565 wound healing application, Chitosan functionalized halloysite nanotube/poly (caprolactone)
566 nanocomposites for wound healing application, Appl. Surf. Sci. Adv. 6 (2021) 100158.
567 <https://doi.org/10.1016/j.apsadv.2021.100158>

568 [45] M.E.I. Badawy, T.M.R. Lotfy, S.M.S. Shawir, Preparation and antibacterial activity of
569 chitosan-silver nanoparticles for application in preservation of minced meat, Bull. Natl. Res. Cent.
570 43 (2019) 83. <https://doi.org/10.1186/s42269-019-0124-8>

571 [46] A. Graça, L.M. Gonçalves, S. Raposo, H.M. Ribeiro, J. Marto, Useful In Vitro Techniques
572 to Evaluate the Mucoadhesive Properties of Hyaluronic Acid-Based Ocular Delivery Systems,
573 Pharmaceutics. 10 (2018) 110. <https://doi.org/10.3390/pharmaceutics10030110>

574 [47] B.A. Szilágyi, A. Mammadova, B. Gyarmati, A. Szilágyi, Mucoadhesive interactions
575 between synthetic polyaspartamides and porcine gastric mucin on the colloid size scale. Colloids
576 Surf. B. 194 (2020) 111219. <https://doi.org/10.1016/j.colsurfb.2020.111219>

577 [48] A.C. Santos, I. Pereira, S. Reis, F. Veiga, M. Saleh, Y. Lvov, Biomedical potential of clay
578 nanotube formulations and their toxicity assessment, Expert Opin. Drug Del. 16 (2019) 1169-
579 1182. <https://doi.org/10.1080/17425247.2019.1665020>

580 [49] E.R. Vimir, K.A. Kalivoda, E.L. Deszo, S.M. Steenbergen, Diversity of Microbial Sialic
581 Acid Metabolism, Microbiol. Mol. Biol. R. 68 (2004) 132-153.
582 <https://doi.org/10.1128/mmbr.68.1.132-153.2004>

583 [50] J.M. Coles, D.P. Chang, S. Zauscher, Molecular mechanisms of aqueous boundary
584 lubrication by mucinous glycoproteins, Curr. Opin. Colloid Interface Sci. 15 (2010) 406-416.
585 <https://doi.org/10.1016/j.cocis.2010.07.002>

586 [51] M. Collado-González, Y.G. Espinosa, F.M. Goycoolea, Interaction Between Chitosan and
587 Mucin: Fundamentals and Applications, Biomimetics 4 (2019) 32.
588 <https://doi.org/10.3390/biomimetics4020032>

589 [52] T.M.M. Ways, W.M. Lau, V.V. Khutoryanskiy, Chitosan and Its Derivatives for
590 Application in Mucoadhesive Drug Delivery Systems, Polymers. 10 (2018) 267.
591 <https://doi.org/10.3390/polym10030267>

592 [53] M. Konovalova, B. Shagdarova, A. Zubareva, A. Generalov, M. Grechikhina, E.
593 Svirshchevskaya, Development of mucoadhesive chitosan-based drug delivery system, Prog.
594 Chem. Appl. Chitin Deriv, 23 (2018) 103-113. <https://doi.org/10.15259.PCACD.23.10>.

595 [54] International Organization for Standardization, ISO 10993-5:2009. Biological evaluation of
596 medical devices - Part 5: Tests for in vitro cytotoxicity

597 [55] M. Zanon, A. Chiappone, N. Garino, M. Canta, F. Frascella, M. Hakkarainen, C. F. Pirri, M.
598 Sangermano, Microwave-assisted methacrylation of chitosan for 3D printable hydrogels in tissue
599 engineering, Mater. Adv., 3 (2022) 514-525. <https://doi.org/10.1039/D1MA00765C>.