

*Genomic and metagenomic analyses of
the domestic mite *Tyrophagus
Putrescentiae* identify it as a widespread
environmental contaminant and a host of a
basal, mite-specific *Wolbachia* lineage
(super-group Q)*

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Klimov, P. B., Hubert, J., Erban, T., Perotti, M. A. ORCID:
<https://orcid.org/0000-0002-3769-7126>, Braig, H. R., Flynt, A.,
He, Q. and Cui, Y. (2024) Genomic and metagenomic analyses
of the domestic mite *Tyrophagus Putrescentiae* identify it as a
widespread environmental contaminant and a host of a basal,
mite-specific *Wolbachia* lineage (super-group Q). International
Journal of Parasitology, 54 (13). pp. 661-674. ISSN 1879-0135
doi: 10.1016/j.ijpara.2024.07.001 Available at
<https://centaur.reading.ac.uk/117426/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1016/j.ijpara.2024.07.001>

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 **Genomic and metagenomic analyses of a domestic mite *Tyrophagus***
2 ***putrescentiae* identify it as a widespread environmental contaminant and a**
3 **host of a basal, mite-specific *Wolbachia* lineage**
4

5 **Abstract**

6 **Background**

7 *Tyrophagus putrescentiae* (mold mite) is a global, generalist species that commonly occurs
8 in various human-created habitats, causing allergies and damaging stored food; but it has not been
9 found in healthcare settings so far. The mite's properties as a ubiquitous trophic generalist are
10 attributed to symbiotic bacteria housed in specialized internal mite structures; however, a recent
11 work suggests that horizontal transfer of bacterial/fungal genes may be also involved. Bacterial
12 associations of *T. putrescentiae* include an uncharacterized and genetically divergent Gram-
13 negative bacterium (*Wolbachia*) displaying blocking / microbiome modifying effects. The
14 phylogenomic position and supergroup assignment of this bacterial species are unknown.

15 **Results**

16 An extensive analysis of GenBank data shows that (i) *T. putrescentiae* DNA is a substantial
17 source of contamination in public sequence databases and (ii) the mite occurs in the lab and
18 healthcare settings. Our phylogenomic analysis of *Wolbachia* recovered a basal, mite-specific
19 lineage (supergroup Q) represented by two *Wolbachia* species associated with the mold mite and
20 a gall-inducing plant mite (*Fragariocoptes setiger*). Fluorescence *in situ* hybridization confirmed
21 the presence of *Wolbachia* inside the mold mite. *T. putrescentiae* also forms associations with
22 bacteria implicated in healthcare-acquired infections that can rapidly develop antibiotic resistance
23 (*Pseudomonas aeruginosa*, *Escherichia coli*, and *Stenotrophomonas maltophilia*). Despite the
24 presence of diverse bacterial communities in *T. putrescentiae*, we did not detect any recent
25 horizontal gene transfers in this mite species and/or in astigmatid (domestic) mites in general.

26 **Conclusions**

27 Our data will assist future research in elucidating the nature of the mite bacterial
28 communities and the mite's ability to spread bacteria involved in healthcare-acquired infections
29 The discovery of an early-derivative *Wolbachia* lineage (supergroup Q) in two phylogenetically
30 unrelated and ecologically dissimilar mite species indicates that this endosymbiotic bacterial
31 lineage formed long-term association with mites and provides a unique insight into the early
32 evolution and host associations of this bacterial genus. Further discoveries of the *Wolbachia*
33 diversity in acariform mites are anticipated.

34

35 **Key words:** Domestic mites, mite-bacteria trophic symbiosis, phylogenomic tree of *Wolbachia*,
36 basal mite-specific supergroup of *Wolbachia*, environmental genomics, healthcare-acquired
37 infection.

38

39 **Introduction**

40 The mold mite, *Tyrophagus putrescentiae*, is a common, microscopic, and globally distributed
41 species of domestic mites [1, 2]. It is a generalist species, living in nearly every terrestrial habitat
42 with relative humidity >65% [3, 4]. It frequently infests stored products, resulting in economic
43 loss, and it also causes anaphylaxis in sensitized individuals consuming mite-contaminated food
44 [5]. After pyroglyphid house dust mites, *T. putrescentiae* is the second most medically important
45 species responsible for indoor allergies in humans [6-8] and domesticated animals [9]. Thanks to
46 its long body setae it can disperse via air currents, or by attaching to human clothing and household
47 items, or it can rapidly move on its own [10, 11]. *T. putrescentiae* is arguably the first known
48 animal space hitchhiker found onboard a human-inhabited spacecraft in low Earth orbit [12]. The
49 ubiquity of *T. putrescentiae* is well documented by a large body of literature [13], however, its
50 reliable identification was only possible after 2007-2009, when accurate methods based on
51 morphology and DNA sequences were developed [1, 13]. Even though the mite has been
52 previously reported to infest fungal, insect, and plant tissue cultures in laboratory and industrial
53 settings [14, 15], its role as a significant factor in DNA sequence contamination is currently
54 underappreciated. Since most bioinformatics tools focus on bacterial and human DNA
55 contamination, DNA of a microscopic eukaryote may evade the NCBI GenBank standard quality
56 check procedure and be inadvertently incorporated into public sequence databases. A whole
57 genome sequence of *T. putrescentiae* would alleviate this situation.

58 The mold mite is a vector of various bacterial and fungal microorganisms in human-related
59 habitats and agricultural settings [10, 16]. The presence of bacteriocytes, large, compartmentalized
60 bacterial colonies in the mite parenchymal tissues, is one of the most distinctive anatomical
61 features of *T. putrescentiae* [17]. Bacteria may be very important in the mite's nutritional ecology,

62 cooperating with their acarine hosts to use nutrients from different sources. Associated bacteria
63 may provide chitinolytic enzymes digesting fungal cell walls [18], making this system ecologically
64 important for mobilizing nitrogen from chitin [19]. However, a recent work suggests that bacterial
65 or fungal genes may have been incorporated into the mite genome, and thus extend the mite'
66 nutritional functionality [20]. For example, the horizontally transferred genes encoding UDP
67 glucuronosyltransferases and several fungal cell wall lytic enzymes could enable detoxification
68 and digestive functions of their acarine hosts [20].

69 Bacterial associations of *T. putrescentiae* include an uncharacterized Gram-negative
70 bacterium (*Wolbachia*) found in several *T. putrescentiae* populations based on previous 16S rRNA
71 and protein sequencing [8, 21]. *Wolbachia* is an intracellular endosymbiont associated with various
72 arthropods and nematodes. This bacterium may form nutritional symbiosis with several hosts [22],
73 and it has been demonstrated to be a useful agent to control human pathogens, such as dengue
74 virus vectored by mosquitoes [23]. A blocking / microbiome modifying effect has been recently
75 shown for the *Wolbachia* from *T. putrescentiae* [8], suggesting that this *Wolbachia* may be
76 potentially useful for disease/pest control applications.

77 Here we sequenced the whole genome of *T. putrescentiae* from North America and use
78 transcriptomes previously generated by us for several mite populations from Europe and USA. We
79 present a genomic assembly of the mite and metagenomic analyses of its microbiome. Based on
80 these genomic and metagenomic analyses, we answer the following questions: 1) Can the mite be
81 a significant source of DNA contamination in the laboratory, industrial and healthcare settings? 2)
82 Are there recent horizontal gene transfers from bacteria/fungi that can account for the mite'
83 extended nutritional functionality? 3) What are the phylogenomic affinities of the previously
84 uncharacterized mite-specific *Wolbachia*?

85

86 **Results**

87 **Genome of *Tyrophagus putrescentiae***

88 We conducted a series of independent metagenomic assemblies in metaSpades and
89 Megahit (**Supplementary Tables S1-S4 online**). Based on different metrics, most importantly,
90 transcriptome mapping statistics (**Supplementary Table S1 online**), we selected a metaSpades
91 ($k=21,33,55$) assembly as our preferred assembly, consisting of 176,943 scaffolds, with the total
92 length of 151,679,586 bp and average coverage of 518.3. Of them, 9,303 scaffolds (79.5 Mb)
93 matched the transcriptomic assembly (**Supplementary Fig. S1 online**). Of the 176,943 initial
94 scaffolds, BLAST searches were able to identify 125,524 scaffolds (136,606,678 bp, average
95 coverage = 440.4) (**Supplementary Fig. S2a online**). This analysis revealed that our metagenomic
96 assembly had a substantial portion of non-mite sequences, mostly bacterial DNA. Most of the non-
97 mite scaffolds had low coverage, i.e. below 100x, with the notable exception of the bacterium
98 *Alcaligenes faecalis*, which had a coverage of slightly above 100x (**Supplementary Fig. S2a**
99 **online**). Many scaffolds lacking BLAST hits, therefore, still could be confidently classified as
100 belonging to the mite based on their higher coverages, i.e. >600 (**Supplementary Fig. S2a online**:
101 **grey color**). After filtering scaffolds using a combination of the BLAST classification result and/or
102 coverage information (detailed in the section "Metagenomic decontamination"), our final
103 decontaminated mite assembly had a total of 19,731 scaffolds, with the length of 95,135,691 bp
104 and average coverage of 1024.7 (**Fig. 1a,b, Supplementary Table S1, Fig. S2b online**). Busco
105 statistic using the arachnida_odb10 database (2934 genes) was compatible to that of a recent long
106 + short read assembly of a Hong Kong population: Complete:89.5% [Single-
107 copy:83.4%, Duplicated:6.1%], Fragmented:3.2%, Missing:7.3% vs Complete:89.8% [Single-

108 copy:85.1%, Duplicated:4.7%, Fragmented:3.1%, Missing:7.1%, (Hong Kong:
109 GCA_021730765.1) (**Supplementary Fig. S3 online**). The mitochondrial genome has the typical
110 gene order of Astigmata [24, 25] (**Fig. 1b**). Top gene ontologies summarized for three sub-
111 ontologies were as follows: membrane and membrane part (cellular component), catalytic activity
112 and binding (molecular function), and metabolic and cellular processes (biological process)
113 (**Supplementary Fig. S4 online**). Our phylogenomic analysis inferred *T. putrescentiae* within the
114 Astigmata, a major general mite lineage (**Fig. 1c**). Astigmata evolved within soil mites (Oribatida)
115 with absolute support (**Fig. 1c**), while other high-level relationships were similar to those inferred
116 previously [20, 26].

117

118 **Extensive contamination of GenBank databases by *T. putrescentiae* sequences**

119 Our BLAST searches detected extensive contamination of public sequence databases with *T.*
120 *putrescentiae* sequences (**Table 1**). The GenBank reference genome database contained a
121 '*Rhagoletis zephyria*' genome GCF_001687245 [27] heavily contaminated with *T. putrescentiae*
122 DNA, 4901 scaffolds (**Table 1**). Another important example, is the mite sequence reported as a
123 bacterium "*Shinella* sp." from healthcare settings [28] (**Table 1**). Other contaminated GenBank
124 sequences include many species of insects and fungi, as well as vertebrates, round worms, bacteria,
125 and plants (**Table 1**); these sequences also have matches on the '*Rhagoletis zephyria*' genome,
126 which offers an independent confirmation of contamination. We also run BlobTools analyses
127 based on the GenBank nucleotide database and our clean assembly of *T. putrescentiae* as a query
128 (**Supplementary Fig. S2b online**). The BlobTools analysis largely agrees with our results, and
129 identifying about 96.5 Mb of *T. putrescentiae* DNA in the '*R. zephyria*' genome (**Supplementary**
130 **Fig. S2a online**). However, except for five GenBank sequences of *Drosophila melanogaster*

131 classified as contaminants. However, these hits had either low bitscore or identity, or included hits
132 on ultraconservative regions (i.e. nuclear rRNA). We therefore, do not consider these *D.*
133 *melanogaster* sequences as contaminated (not included in Table 1). A similar situation occurred
134 when a BlobTools analysis was run on a custom BLAST database, including the GenBank
135 nucleotide collection and the '*R. zephyria*' genome. The following taxa were identified by
136 BlobTools as 'contaminants': *Ixodes scapularis*, *Drosophila biramipes*, *Plutella xylostella*,
137 *Cyprinodon variegatus* (**Supplementary Fig. S2b online**), again with low score/low identity, and
138 probably representing false positives.

139

140 **Mold mite harbors diverse bacterial communities**

141 We profiled our metatranscriptome (Europe) and metagenome (Mexico) NGS datasets using (i)
142 Kraken to classify raw reads and (ii) BLAST to assign a taxonomic classification to scaffolds
143 (assembled reads). For the two classification strategies, we used standard databases plus our clean
144 genomic assembly of *T. putrescentiae* (GCA_012066115) to avoid false positive hits, i.e. incorrect
145 classifications of *T. putrescentiae* sequences as different eukaryotic organisms. Kraken identified
146 the following bacterial species having 2% or more reads classified as Bacteria (**Table 2**):
147 *Alcaligenes faecalis* (58%), *Pseudomonas aeruginosa* (9%), and others (all 3-4%):
148 *Stenotrophomonas maltophilia*, *Stenotrophomonas* sp. PAMC25021, *Advenella kashmirensis*, and
149 *Achromobacter denitrificans* (**Fig. 2a**). Kraken identified the yeast *Candida dubliniensis* as the
150 most abundant fungal species (99% of all fungi, magnitude 245,252). However, the BLAST search
151 did not find this OTU at all; instead, a different species, *Candida parapsilosis*, was detected in
152 trace amounts (1,717 bp assembly, 42 mapped reads) (**Table 2**). We also detected trace amounts
153 of low-scoring reads for Apicomplexa (**Table 3**), which are known internal parasites of mites [29].

154 The metatranscriptomic dataset contained *Escherichia coli*, *Wolbachia* (unidentified
155 divergent species, see below), and *Bacillus* (including *Bacillus thuringiensis*, *Bacillus cereus*) with
156 high abundance, 15-36% of all bacterial reads (**Table 2**). Fungi were represented by *Fusarium*;
157 and apicomplexans were represented by an unidentified coccidian taxon (different from the
158 Apicomplexa from the metagenomic dataset), whose nuclear rRNA was similar to that of *Adelina*
159 (92%) (**Table 2**). Here, many species reported by the Kraken software in the transcriptome
160 (European mite populations) could not be confirmed by BLAST searches (**Table 2**). This is an
161 expected outcome, as Kraken's use of short k-mers inherently leads to lower accuracy.

162 Based on the intersection of the DNA and RNA samples by BLAST, only one species was
163 found to occur in both samples, *Cutibacterium acnes* (**Table 2**). However, this bacterium is a
164 widespread contaminant of DNA extraction kits [30] and we consider its presence as a probable
165 artefact, but see [31].

166 Fluorescence *in situ* hybridization detected *Wolbachia* (**Fig. 3a**), *Rickettsia* (**Fig. 3b**), in
167 the mite's parenchymal tissue bacteriocytes; Eubacteria were mostly associated with the digestive
168 track and parenchymal tissue (**Fig. 3e, d**); *Wolbachia* was also found in ovaries and eggs (**Fig. 3a,**
169 **g**).

170

171 **No recent horizontal gene transfers in the mold mite or Astigmata**

172 We detected eight putative HGT events from the following lineages: Bacteria (5), Fungi (2), and
173 Amoebozoa (1) (**Table 3**, **Figs 3b-d, Supplementary Figs. S5-11 online, Supplementary**
174 **Dataset S1 online**). Among them, was the D-Ala-D-Ala dipeptidase gene previously suggested to
175 be laterally transferred to Astigmatid mites. However, all these putative HGTs had very low amino
176 acid similarity (40.3-60.71%) to the corresponding proteins of *T. putrescentiae* (**Table 3**) and also

177 had significant matches to Oribatida, Endeostigmata, or Trombidiformes, which are major early-
178 derivative acariform mite lineages as compared to Astigmata (**Table 3**). This evidence strongly
179 indicates that no HGT events occurred at the origin and during the evolution of Astigmata, a major
180 lineage that includes the mold mite and other domestic mites.

181

182 **An early derivative, mite-specific supergroup of *Wolbachia***

183 Our phylogenomic analysis recovered two species of *Wolbachia* associated with mites (the
184 mold mite *T. putrescentiae* and the gall mite *Fragariocoptes setiger*) forming a monophyletic
185 group in a basal portion of the tree (**Fig. 4**). As genomic-scale data are not available for many
186 *Wolbachia*, we attempted to identify this lineage through the use 16S or multi-locus analyses
187 (many taxa, few loci). These analyses can demonstrate the affinity of an unknown sequence, but
188 generally they cannot resolve phylogenetic relationships among the *Wolbachia* supergroups. In the
189 5-gene analyses, *Wolbachia* from *T. putrescentiae* (wTp) was grouped with *Wolbachia* from the
190 quill mite, *Torotroglia cardueli* classified previously in supergroup Q [32] (**Supplementary Fig.**
191 **S12 online**). 16S also placed wTp within a general grouping that includes *Wolbachia* associated
192 with pratylenchid nematodes, *T. cardueli*, and *Bryobia* (a plant-feeding mite) (**Supplementary**
193 **Fig. S13 online**). We therefore identify genomic sequences of wTp as part of supergroup Q, which
194 was proposed previously based on a 5-locus sequence data and a different set of mite hosts [32].

195 Supergroup Q was sister to supergroup M (*Wolbachia* from the banana aphid *Pentalonia*
196 *nigronervosa*). The lineage representing supergroups Q+M was recovered as sistergroup to
197 supergroup L from the lesion pratylenchid nematode *Pratylenchus penetrans* (plus an
198 environmental soil sample). The entire lineage L(Q+M) was recovered as sistergroup to the

199 remaining diversity of *Wolbachia*. In addition, our genomic-scale analysis showed that previously
200 proposed *Wolbachia* supergroup O [32, 33] is nested within supergroup B (**Fig. 3**).

201

202 **Discussion**

203 The common domestic mite, *Tyrophagus putrescentiae* is a ubiquitous generalist species
204 associated with human-created habitats, such as houses, retail stores, storehouses, food-processing
205 facilities, and research laboratories. Here we discuss several questions related to whether it can be
206 a source of significant DNA contamination in public databases, and whether its microbial trophic
207 symbiosis and/or horizontal gene transfers can contribute to its remarkable ability of being a broad
208 dietary generalist. As our GenBank analysis identified it in hospital settings, we briefly discuss
209 whether the mite could be one of the factors influencing the spread of bacteria responsible for
210 hospital acquired infection. Furthermore, we elucidate the phylogenetic relationship of a novel
211 *Wolbachia* bacterium associated with this mite.

212 Bacteria and microscopic fungi are expected to introduce sequence contamination into
213 eukaryotic whole genome sequences because they can be symbionts, and/or originate from the
214 environment, laboratory equipment, DNA extraction kits or reagents [34, 35]. Non-fungal
215 eukaryotic DNA usually is not considered a significant source of contamination, except for human
216 DNA, particularly its repetitive elements [36]. Here we show that the mold mite, *T. putrescentiae*,
217 is an important environmental contaminant that can make its way inside various DNA samples
218 (Table 1), and its contaminating DNA can evade detection by metagenomic methods as commonly
219 used in practice [35, 36]. The most conspicuous example of contamination is the GenBank
220 reference genome of a fly *Rhagoletis zephyria* GCF_001687245 [27] containing 4901 scaffolds
221 and about of 100 MB of *T. putrescentiae* DNA (**Table 1**). For the sequences deposited into

222 GenBank as insects and fungi, it is very likely that laboratory cultures of these organisms were
223 infested by the mite, and this was unnoticed by the researchers. Suspect sequences of other
224 organisms may result from inadvertent lab contamination. For example, the lab that deposited
225 sequences of *T. putrescentiae* as sequences of a tree (*Intsia palembanica*), also published
226 sequences of *T. putrescentiae*, so spill-over contamination from mite cultures maintained in the
227 same lab is possible. Sequences deposited as a mouse, bird, and worm (**Table 1**) may have resulted
228 from environmental contaminations as the mite is ubiquitous and readily reproduces in many
229 humid environments [37]. This contamination is not surprising because fungal/insect/cell culture
230 infestation by the mite was well known from the literature prior to the advent of molecular
231 techniques [38]. In addition, the case of the phytoseiid *Neoseiulus cucumeris* (**Table 1**), a predatory
232 mite used for biological control, may be attributable to *T. putrescentiae* being used as the food for
233 the predatory mite, which is a common practice in mass production of phytoseiids [39].

234 Our metagenomic profiling of two independent mite samples indicate that in the Mexican
235 sample, the most abundant bacterial species were *Alcaligenes faecalis* (58% of all Bacteria) and
236 *Pseudomonas aeruginosa* (9%) (**Table 2, Fig. 2a**); in the European sample, *Escherichia coli*
237 (36%), *Bacillus* spp. (18%), and *Wolbachia* (15%) were dominant (**Table 2**). The fact that the two
238 mite microbiomes were completely different across the two samples suggests the importance of
239 local factors (such as food type, habitat, and available bacterial communities) in forming the
240 microbiomes of this globally distributed mite species. The same effect was observed previously in
241 local mite populations that harbored different microbiomes, although only a single taxon, a
242 *Solitalea*-like bacterium, was shared across mite populations [17, 40]. Because our two
243 microbiomes do not display commonalities in taxonomic composition, it is likely that the mite can
244 opportunistically recruit available local bacterial species having a chitinolytic activity and/or other

useful properties rather than form permanent specialized associations with a fixed set of bacterial species. Several bacteria identified by us do display chitinolytic properties, i.e. *Stenotrophomonas maltophilia* (abundance: 3% of all bacterial species) and *Serratia liquefaciens* (2%) from the Mexican sample; and *Bacillus cereus* (5%) from the European sample [19, 41, 42]. These bacteria were isolated from *T. putrescentiae* previously and their chitinolytic properties were demonstrated experimentally [19, 42]. Furthermore, *Alcaligenes faecalis*, the most common bacterium in the Mexican sample, was also found to be an effective chitinase producing bacterium on marine waste [43]. These bacterial chitinolytic features allow metabolizing chitin from fungal cell walls; when their acarine hosts feed on fungus-rich diets, these bacteria probably cooperate with the mites, forming a nutritional symbiosis [19]. In this system, the mite, through its normal feeding activities, shreds the fungal mycelium (thus making it available for the microorganisms) and disperses both bacteria and fungi [18, 19, 44], possibly promoting the spread of genetic variants and increasing recombination rates of these microorganisms on a local scale [45]. Several bacteria associated with *T. putrescentiae* are implicated in hospital acquired infections [46, 47]: *Pseudomonas aeruginosa*, *Escherichia coli*, and *Stenotrophomonas maltophilia* (Table 2). These bacterial taxa are the first, second, and eighth bacterial species most frequently isolated in hospital settings in the US [48]. All these bacteria can rapidly develop resistance to multiple classes of antibiotics [46, 49-51], leading to high morbidity and mortality among hospitalized patients, particularly in intensive care units [46, 47, 49, 52]. The mite itself has been reported in healthcare settings as the bacterium "Shinella sp." [28]. Given the known ability of *T. putrescentiae* to vector various microorganisms (see above), it is possible that in hospital settings, the mite could be one of the factors influencing the spread of pathogenic bacteria and promoting exchange of bacterial genetic elements

267 responsible for antibiotic resistance. Further studies on the role of this mite in dispersing antibiotic-
268 resistant bacteria are needed.

269 We did not detect any recent horizontal gene transfer events in the *Tyrophagus*
270 *putrescentiae* genome. All HGT events occurred prior to the origin of Astigmata, in the common
271 ancestor of either acariform or oribatid mites (**Table 3**). This includes D-alanyl-D-alanine
272 dipeptidase, which was previously suggested to occur within Astigmata [20], however, we found
273 this gene in Endeostigmata and Oribatida (**Table 3, id=9**), indicating an earlier origin. Given that
274 all detected HGTs were ancient, we suggest that they do not have immediate relevance to the mite
275 abilities to be a widespread nutritional generalist.

276 A very divergent *Wolbachia* species (wTp) was found in the European sample and in the
277 contaminated '*Rhagoletis zephyria*' genome originated from the USA. On our tree, wTp and
278 *Wolbachia* from the gall mite *Fragariocoptes setiger* formed a basal monophyletic lineage
279 (supergroup Q), indicating that this lineage may be specific to acariform mites (**Fig. 4**). It is
280 possible that wTp may cause cytoplasmic incompatibility in its host, explaining the results of early
281 breeding experiments that demonstrated large-scale reproductive incompatibility between
282 morphologically similar populations of *T. putrescentiae* [53]. However, an alternative explanation
283 of these experiments could be the presence of two sibling mite species, *T. putrescentiae* and *T.*
284 *fanetzhangorum*, which are separated by large genetic distances and probably cannot interbreed
285 [1, 13, 54]. *Wolbachia* has recently gained medical relevance because of their ability to affect
286 transmission of human pathogens such as dengue virus vectored by mosquitoes [23]. This
287 bacterium can manipulate its hosts via pathogen blocking, which limits the ability of many
288 pathogenic viruses, bacteria and nematodes to grow in the host [55, 56]. Several hypotheses have
289 been proposed to explain the mechanism of pathogen blocking . Among them, the lipid

290 perturbations hypothesis, suggesting that *Wolbachia* may outcompete pathogens for lipids, a
291 critical nutritional resource, seems to be better supported by experimental evidence [57]. A strong
292 pathogen blocking effect has been observed when naturally uninfected mosquitoes were
293 transinfected with *Drosophila*-specific strains of *Wolbachia* [23, 58, 59]. wTp has also been
294 observed to affect the associated microbiomes in its own mite host, *T. putrescentiae* [8]. Here, by
295 analogy with the *Drosophila*-specific *Wolbachia* exhibiting a strong pathogen blocking effect in
296 an unnatural host (mosquitoes), coupled with the ability of wTp to modulate the host's
297 microbiomes, we suggest that further research needs to be done to elucidate whether wTp can be
298 used control pathogens vectored by ticks and other parasitic Acari.

299 Our mold mite assembly was used to conduct phylogenomic analysis of acariform mites
300 using all available genomes of acariform mites. This analysis inferred Astigmata within soil mites
301 (Oribatida) with absolute support (Fig. 1c). This result is consistent with the leading morphological
302 hypothesis suggesting a single origin of opisthosomal glands within the Oribatida+Astigmata
303 lineage [60] and relationships inferred in several multilocus molecular studies based on Sanger
304 sequencing [61, 62], but contrasts with sister group relationships of Astigmata and Oribatida
305 inferred in recent phylogenomic analyses [20, 26, 63, 64].

306

307 **Conclusion**

308 We assembled a whole genome of the mold mite, *Tyrophagus putrescentiae*, and showed that this
309 mite species is a significant contaminant in laboratory, hospital, and industrial settings. Our
310 genomic assembly was used to detect contamination in GenBank, and should be employed, as a
311 common practice, to prevent further contamination. Microbiome profiles of the samples from
312 Europe and Mexico were completely different, suggesting that mite-bacterial symbiotic

313 associations are formed via opportunistic recruitment of locally available bacterial species by the
314 acarine host. We also found that the mold mite is a potential carrier of several bacteria associated
315 with hospital-acquired infections, most importantly *Pseudomonas aeruginosa*. Finally, based on
316 whole transcriptome sequence of a novel, mite-specific *Wolbachia* from *T. putrescentiae*, we
317 identified it as part of a basal, mite-specific *Wolbachia* lineage (supergroup Q). These findings
318 provide a unique insight into the early evolution and host associations of this bacterial genus. Based
319 on the previously known blocking / microbiome modifying effect of the *Wolbachia* from *T.*
320 *putrescentiae*, we believe that this bacterium may be potentially useful for disease/pest control
321 applications. We expect further discoveries of the *Wolbachia* diversity associated with acariform
322 mites.

323

324 **Methods**

325 **Sample, library preparation, sequencing, and metagenomic assembly**

326 Genomic sequencing was done from a single female reared in a culture maintained at the
327 University of Michigan Museum of Zoology, Ann Arbor, MI, USA, at room temperature, relative
328 humidity 75-100%, using Tetra® TetraMin Large Tropical Flakes as the food source. This culture
329 was started from specimens with the following collecting data: MEXICO: Ciudad de México,
330 Parque Ecológico de Xochimilco, nr. Lago Acitlalin, 19.297115 -99.092799, rotten reed stalk
331 (*Typha*), 03 Jan 2017, P. Klimov (coll.), UMMZ accession BMOC 17-0108-002.

332 Genomic DNA was extracted from a single female specimen using a QIAamp DNA Micro
333 kit (Qiagen). An Illumina sequencing library was generated from a single mite female using the
334 KAPA HyperPlus Kit. The insert size was 322 bp. Sequencing was done on an Illumina HiSeq-
335 4000 instrument, generating 755,504,138 (377,752,069x2) 150x2 bp paired-end reads. Read

336 quality was evaluated in FastQC [65]. Quality filtering and adaptor content removal was done in
337 bbtools v. 38.23 (<https://sourceforge.net/projects/bbmap/>) as detailed in Supplementary Material
338 online: section 1. Four metagenomic assemblies were run (**Table 1**), in Megahit [66] and
339 MetaSPAdes 3.12.0 [67] with three different sets of kmer sizes ("k"): 21,33,55; 21,33,55,77;
340 21,33,55,111. For assembly evaluation, the following three statistics were used: (i) basic,
341 reference-free statistics, e.g., N50, L50 in QUAST v.5.0.0 [68] (**Supplementary Table S2 online**);
342 (ii) alignment against the transcriptome using HISAT2 v.2.1.0 [69] and RNAquast v.1.5.1 [70]
343 (**Supplementary Table S1 online**), and (iii) alignment against the "*Rhagoletis zephyria*" genome
344 in QUAST (**Supplementary Table S3 online**). These programs were run using Unix shell scripts,
345 for detail see **Supplementary Material online**: section 2. In addition, our final decontaminated
346 assembly (see below) was evaluated by finding sets of single-copy, orthologous genes specific to
347 Arachnida in BUSCO v.5.3.0 [71]. Our transcriptome assembly (GenBank TSA accession
348 GIFTQ00000000.1) was described earlier [8].

349

350 **Assembly annotation**

351 Gene prediction and annotation was done in the maker genome annotation pipeline v2.31.10 [72]
352 in three steps: (i) we directly used our transcriptome and non-redundant GenBank proteins from
353 Ecdysozoa as the annotation evidence (est=transcriptome.fas; protein=Ecdysozoa_prot.fa;
354 est2genome=1; protein2genome=1 in the configuration file maker_opts.ctl); these imperfect gene
355 models (ii) were then used to train the gene prediction program SNAP [73] bundled with maker
356 (snaphmm=snap1.hmm; est2genome=0; protein2genome=0); a new set of gene annotations
357 generated in this step (iii) was then used to train the gene predictor yet again
358 (snaphmm=snap2.hmm). For conserved protein domains, gene ontologies were determined in

359 InterProScan v.5.38-76.0 [74]. These ontologies and standardized gene names, were assigned to
360 maker annotations using maker accessory scripts. Top gene ontologies were summarized in
361 WEGO v2.0 [75] using the InterProScan output.

362 *D. farinae* miRNAs were annotated by miRDeep2 [76] software and curation of miRNAs
363 based on standard miRNA features. *T. putrescentiae* miRNAs were found using BLAST to identify
364 regions homologous to *D. farinae* miRNAs as well as those deposited for chelicerate arthropods
365 in miRbase. Ago/Piwi homologs were likewise found with BLAST. Each putative Ago/Piwi
366 protein was verified to encode a PAZ and PIWI domain.

367 Mitochondrial genome annotation was done using multiple lines of evidence: sequence
368 similarity with two related species, *Sancassania berlesei* (KF499016) and *Aleuroglyphus ovatus*
369 (NC_023778.1) [25, 77]; *T. putrescentiae* EST data (GenBank accession: SAMN00174981 ID:
370 174981); ARWEN [78] with minimal tRNA search methodology as described previously [24]; and
371 the Mitos Web Server for automatic prediction of all mitochondrial genes [79].

372

373 **Mite phylogenomics**

374 We analyzed 48 genomes of acariform mites (n=34), including our *T. putrescentiae* assembly,
375 parasitiform mites (outgroups, n=13) and *Limulus polyphemus* (distant outgroup, n=1). BUSCO
376 v5.3.0 [71, 80] analyses was run to identify phylogenetically conserved, single-copy genes using
377 the arachnida_odb10 database. Alignments were done in mafft v7.490 [81]: mafft --thread \$proc -
378 -inputorder --bl 62 \$i > \$i.mafft. Alignment quality trimming was done in trimAl v.1.4.1 [82]:
379 trimal -in \$i -out \$i.trimal -automated1 -resoverlap 0.75 -seqoverlap 80. A subset of 415 protein
380 alignments (occupancy \geq 0.8 and length \geq 200) were used for a partitioned analyses in IQ-TREE

381 v.2.2.0 with automatic protein model selection and partition merging [83]: iqtree2 -s \$ipf -p \$ipf -
382 -seqtype AA -T AUTO --merge -rclusterf 10 -m MFP -alrt 1000 -bb 1000 -safe --prefix \$ipr.

383

384 **Metagenomic decontamination**

385 Detailed decontamination procedure is described in Supplementary Material online: section 3.
386 Briefly, to classify the 176,943 initial metagenomic scaffolds, we ran a local BLAST v.2.7.1 [84].
387 Hits on contaminated GenBank assemblies, Illumina technical sequences (PhiX), and *Homo*
388 *sapiens* contamination were removed; high-scoring hits on Bacteria and other non-eukaryotic
389 organisms were filtered out; then high-scoring hits on "*Rhagoletis zephyria*" and *Tyrophagus*
390 (bitscore >=300 or identity >=95%) were filtered and their coverages were noted. Entries
391 unclassified by BLAST were classified as mite sequences based on their coverages >600; all
392 sequences shorter than 300 bp were removed. The mitochondrial DNA and ribosomal RNA
393 scaffolds were identified, annotated manually and trimmed. The final assembly, named here P3F6,
394 had a total of 19,731 scaffolds (length 95,135,691 bp). This Whole Genome Shotgun project has
395 been deposited at DDBJ/ENA/GenBank under the accession JAAALH000000000 (BioSample
396 SAMN13712654, BioProject PRJNA598686, assembly GCA_012066115.1).

397

398 **Metagenomic profiling**

399 Detailed methodology is given in Supplementary Material online: section 4. Briefly, raw Illumina
400 reads were processed to remove adapter sequences, low quality data, and artefacts in bbmap 38.51.
401 For these processed reads, we assigned taxonomic classifications in Kraken2 v2.0.8-beta [85] with
402 the confidence parameter of 0.1, followed by abundance estimation in Bracken [86]. Three
403 analyses were run each using a separate Kraken library: (i) Basic with standard Kraken databases:

404 archaea, bacteria, viral, human, plant, fungi, protozoa; (ii) Custom1 (basic plus the '*Rhagoletis*
405 *zephyria*' genome); Custom2 (basic plus the *T. putrescentiae* P3.F6 assembly).

406 To classify scaffolds, we used BLAST searches with the nucleotide blastdb5 database
407 (downloaded May 16 2019). We also constructed several custom BLAST databases using our
408 metagenome, metatranscriptome, *T. putrescentiae* assembly (P3.F6), and the '*Rhagoletis zephyria*'
409 genome. Intersection between the DNA and RNA assemblies was determined using the following
410 criteria to classify sequences as belonging the same species/OTU: bitscore \geq 500 and
411 identity \geq 95%. Full taxonomic lineage information was added to blast/diamond outputs using a
412 custom script (Supplementary Material online: section 6). For metagenomic profiling of
413 assemblies, we used BlobTools [87], an analysis which uses three lines of evidence: coverage, GC
414 content, and BLAST or DIAMOND classification. For assigning a unique classification to multiple
415 nt BLAST hits, we used the BlobTools' 'bestsum' algorithm. Because this and other BlobTools
416 classification algorithms may return false positives, we did not BlobTools to automatically remove
417 contaminants.

418

419 **Horizontal gene transfer (HGT)**

420 Previously described methodology was used [88]. Using the Unix command awk, we parsed the
421 Uniref50 proteins (downloaded Jul 11 2022) into two groups: (1) no Metazoa; and (2) Metazoa
422 minus Arthropoda. TaxIds were extracted from the Uniref50 fasta headers. Blacklisted TaxId
423 (178133=plant+phytophagous eriophyoid mite) and 46 TaxIds not found in GenBank taxonomy
424 were removed. Diamond v0.9.14.115 were used to run the mite coding sequences (see the section
425 Assembly annotation) against two databases build from the two sets of proteins. Using bitscores
426 from the two diamond searches, HGT indices were calculated for each coding sequence as

427 described previously [88]. Our entire HGT discovery pipeline was documented as a Unix shell
428 script in Supplementary Material online 12: section 7. Because UniRef50 protein clusters (50%
429 sequence similarity) are labelled by common taxonomy of the cluster (rather than by the
430 representative taxon) [89], we considered protein clusters having a high taxonomic rank as
431 conserved. For example, regardless of its HGT score, a cluster labelled as "cellular
432 organisms|Eukaryota|" was deemed as conserved across Eukaryota, rather than being result of
433 HGTs.

434

435 ***Wolbachia* endosymbiont: Metatranscriptomic assembly and phylogenetics**

436 We sequenced a metatranscriptome of *T. putrescentiae* from Europe (GIFQ00000000) and
437 assembled it in CLC Genomics Workbench v11 (Qiagen). Collection detail and bioinformatics
438 methodology for this sample were described previously [8]. *Wolbachia* contigs were identified
439 using BLAST and DIAMOND v0.9.24.125 [90]. Because the rRNA fraction was depleted in the
440 transcriptome, the 16S rRNA gene was recovered separately by mapping adaptor-free, artefact-
441 free, quality trimmed and filtered reads onto the known 16S *Wolbachia* sequence
442 (GCA_000829315.1) following assembly in rnaSPAdes v3.13.0. The final *Wolbachia*
443 transcriptomic assembly had 280 contigs with a total length of 925,767 bp (average coverage
444 742.8), approaching the typical *Wolbachia* genome size range, 1.3-1.6 Mb [91]. Phylogenetic
445 inferences were done for four datasets: genomic, five standard phylogenetic loci [32], five MLST
446 loci [92], and 16S rRNA (see supplementary table S4 online: standard phylogenetic loci accession
447 ids; **Supplementary Datasets S2-4 online**: nexus alignments). For the former analysis, we used
448 169 GenBank genomes downloaded from GenBank plus our assembly: 31 outgroups (*Ehrlichia*,
449 *Anaplasma*) and 139 *Wolbachia* ingroups. BUSCO5 analyses was run to identify phylogenetically

450 conserved, single-copy proteins at the level of Rickettsiales. A Maximum Likelihood tree was
451 inferred in IQ-TREE v.2.2.0 using a partitioned analysis and automatic model selection [83]. Our
452 entire workflow is described in detail in **Supplementary Material online: section 5**.

453

454 **Fluorescence in situ hybridization (FISH)**

455 FISH was performed using universal and specific bacterial probes. *T. putrescentiae* adults were
456 first fixed in 4% formaldehyde. For the hybridizations we followed the FISH protocol described
457 in Perotti et al. [93], then mounted as whole-specimens. Samples were incubated at 45°C in
458 darkness for up to 20 h, washed for 1 h in hybridization buffer followed by PBTA (phosphate
459 buffer with Triton X-100 plus sodium azide) at room temperature. Then, mites were mounted in
460 PBS/ glycerol and photographed under the confocal microscope. A number of bacterial probes
461 were used in different observations: EUB-338 [94] and EUB-338 II and III [95], *Rickettsia* [96]
462 and *Wolbachia* [97] (equimolar mixed in the hybridization buffer (following remarks of ProBase)).
463 No probe and competition suppression controls were performed. A Confocal Zeiss LSM510
464 microscope with Coherent Multiphoton laser was used. For these experiments, we used cultures
465 originating from the Crop Research Institute, Prague (Czech Republic) [8] and the University of
466 Reading lab, UK (maintained since 2008, stock colony received from the Food and Environment
467 Research Agency, UK).

468

469 **Data Availability Statement**

470 The data underlying this article are available in GenBank: assembled genome of *Tyrophagus*
471 *putrescentiae* (GCA_012066115.1, WGS project JAAALH000000000), assembled metagenome
472 of *T. putrescentiae* (GCA_013316015.1, JAALOO000000000) and the source short Illumina reads

473 (SRA accession: PRJNA598686; SRA run: SRR11069688); assembled metatranscriptome of *T.*
474 *putrescentiae* (GIFQ00000000) and the source short Illumina reads (SRR7903714-SRR7903734);
475 assembled transcriptome of *Wolbachia* endosymbiont of *T. putrescentiae* (GIJY01000000).

476

477 **Supplementary Material**

478 Supplementary data are available at BMC Genomics online.

479

480

481 **Acknowledgements**

482 Datasets were processed on the Tyumen University high-performance computing computer cluster
483 (Tyumen State University, Russia), Sagarana cluster CEPAD-ICB-UFMG (Federal University of
484 Minas Gerais, Brazil), and the Bell community cluster at Purdue University (West Lafayette,
485 USA). José Miguel Ortega (Federal University of Minas Gerais, Brazil) made the Sagarana cluster
486 available to us and gave related technical advice. This work was supported by the Ministry of
487 Science and Higher Education of the Russian Federation within the framework of the Federal
488 Scientific and Technical Program for the Development of Genetic Technologies for 2019-2027
489 (agreement №075-15-2021-1345, unique identifier RF---193021X0012) to A. V. Lisitsa.

490

491 **Author contributions**

492 All authors contributed to data analysis and all approved the final version of the manuscript. P.B.K
493 designed the study, collected the Mexican sample, and performed all analyses. J.H. provided the
494 metatranscriptomic dataset and assembly. M.A.P and H.R.B. provided the FISH data. P.B.K, J.H.,
495 T.E., Y.C., M.A.P., H.R.B., A.F., and Q.H. interpreted the data and wrote the manuscript.

496 **Literature Cited**

497 1. Klimov PB, OConnor BM. Conservation of the name *Tyrophagus putrescentiae*, a
498 medically and economically important mite species (Acari: Acaridae). *International*
499 *Journal of Acarology*. 2009; 35(2):95-114.

500 2. Hughes AM. The mites of stored food and houses, 2 edn. London: Her Majesty's Stationery
501 Office; 1976.

502 3. Canfield MS, Wrenn WJ. *Tyrophagus putrescentiae* mites grown in dog food cultures and
503 the effect mould growth has on mite survival and reproduction. *Vet Dermatol*.
504 2010;21(1):58-63.

505 4. Erban T, Rybanska D, Hubert J. Population Growth of the Generalist Mite *Tyrophagus*
506 *putrescentiae* (Acari: Acaridida) Following Adaptation to High- or Low-Fat and High- or
507 Low-Protein Diets and the Effect of Dietary Switch. *Environ Entomol*. 2015;44(6):1599-
508 1604.

509 5. Sánchez-Borges M, Fernandez-Caldas E. Hidden allergens and oral mite anaphylaxis: the
510 pancake syndrome revisited. *Curr Opin Allergy Clin Immunol*. 2015;15(4):337-343.

511 6. Arlian LG, Geis DP, Vyszenski-Moher DL, Bernstein IL, Gallagher JS. Antigenic and
512 allergenic properties of the storage mite *Tyrophagus putrescentiae*. *J Allergy Clin*
513 *Immunol*. 1984;74(2):166-171.

514 7. Cui Y, Yu L, Teng F, Zhang C, Wang N, Yang L, Zhou Y. Transcriptomic/proteomic
515 identification of allergens in the mite *Tyrophagus putrescentiae*. *Allergy*.
516 2016;71(11):1635-1639.

517 8. Hubert J, Nesvorna M, Klimov P, Dowd SE, Sopko B, Erban T. Differential allergen
518 expression in three *Tyrophagus putrescentiae* strains inhabited by distinct microbiome.
519 *Allergy*. 2019; 74(12):2502-2508.

520 9. Mueller RS, Janda J, Jensen-Jarolim E, Rhyner C, Marti E. Allergens in veterinary
521 medicine. *Allergy*. 2016;71(1):27-35.

522 10. Hubert J, Nesvorna M, Sopko B, Smrz J, Klimov P, Erban T. Two Populations of Mites
523 (*Tyrophagus putrescentiae*) Differ in Response to Feeding on Feces-Containing Diets.
524 *Front Microbiol*. 2018;9:2590. Published 2018 Oct 30.

525 11. Freitag JA, Kells SA. Efficacy and application considerations of selected residual
526 acaricides against the mold mite *Tyrophagus putrescentiae* (Acari: Acaridae) in simulated
527 retail habitats. *J Econ Entomol*. 2013;106(4):1920-1926.

528 12. Ott CM, Bruce RJ, Pierson DL. Microbial characterization of free floating condensate
529 aboard the Mir space station. *Microb Ecol*. 2004;47(2):133-136.

530 13. Fan Q-H, Zhang Z-Q. *Tyrophagus* (Acari: Astigmata: Acaridae). Fauna of New Zealand =
531 Ko te Aitanga Pepeke o Aotearoa (no. 56). Lincoln, New Zealand: Manaaki Whenua Press;
532 2007.

533 14. Duek L, Kaufman G, Palevsky E, Berdicevsky I. Mites in fungal cultures. *Mycoses*.
534 2001;44(9-10):390-394.

535 15. Walter DE, Hudgens RA, Freckman DW. Consumption of nematodes by fungivorous
536 mites, *Tyrophagus* spp. (Acarina: Astigmata: Acaridae). *Oecologia*. 1986;70(3):357-361.

537 16. Hubert J, Stejskal V, Kubátová A, Munzbergová Z, Vánová M, Zd'áková E. Mites as
538 selective fungal carriers in stored grain habitats. *Exp Appl Acarol*. 2003;29(1-2):69-87.

539 17. Erban T, Klimov PB, Smrz J, Phillips TW, Nesvorna M, Kopecky J, Hubert J. Populations
540 of Stored Product Mite *Tyrophagus putrescentiae* Differ in Their Bacterial Communities.
541 *Front Microbiol.* 2016;7:1046.

542 18. Smrž J, Soukalová H, Čatská V, Hubert J. Feeding Patterns of *Tyrophagus putrescentiae*
543 (Sarcoptiformes: Acaridae) Indicate That Mycophagy Is Not a Single and Homogeneous
544 Category of Nutritional Biology. *J Insect Sci.* 2016;16(1):94.

545 19. Smrz J, Catska V. Mycophagous mites and their internal associated bacteria cooperate to
546 digest chitin in soil. *Symbiosis.* 2010, 52(1):33-40.

547 20. Xiong Q, Wan ATY, Liu XY, Fung CSH, Xiao XJ, Malainual N, Hou JP, Wang LY, Wang
548 MQ, Yang KY *et al.* Comparative Genomics Reveals Insights into the Divergent Evolution
549 of Astigmatic Mites and Household Pest Adaptations. *Mol Biol Evol.* 2022;39(5):msac097.

550 21. Erban T, Klimov PB, Harant K, Talacko P, Nesvorna M, Hubert J. Label-free proteomic
551 analysis reveals differentially expressed Wolbachia proteins in *Tyrophagus putrescentiae*:
552 Mite allergens and markers reflecting population-related proteome differences. *J
553 Proteomics.* 2021;249:104356.

554 22. Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T. Evolutionary origin
555 of insect-Wolbachia nutritional mutualism. *Proc Natl Acad Sci U S A.*
556 2014;111(28):10257-10262.

557 23. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ,
558 Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL, Hoffmann
559 AA. The wMel Wolbachia strain blocks dengue and invades caged *Aedes aegypti*
560 populations. *Nature.* 2011;476(7361):450-453.

561 24. Klimov PB, OConnor BM. Improved tRNA prediction in the American house dust mite
562 reveals widespread occurrence of extremely short minimal tRNAs in acariform mites.
563 *BMC Genomics.* 2009;10:598.

564 25. Sun ET, Li CP, Nie LW, Jiang YX. The complete mitochondrial genome of the brown leg
565 mite, *Aleuroglyphus ovatus* (Acari: Sarcoptiformes): evaluation of largest non-coding
566 region and unique tRNAs. *Exp Appl Acarol.* 2014;64(2):141-157.

567 26. Klimov PB, Chetverikov PE, Dodueva IE, Vishnyakov AE, Bolton SJ, Paponova SS,
568 Lutova LA, Tolstikov AV. Symbiotic bacteria of the gall-inducing mite *Fragariocoptes
569 setiger* (Eriophyoidea) and phylogenomic resolution of the eriophyoid position among
570 Acari. *Sci Rep.* 2022;12(1):3811.

571 27. Dowle EJ, Powell THQ, Doellman MM, Meyers PJ, Calvert MB, Walden KKO, Robertson
572 HM, Berlocher SH, Feder JL, Hahn DA, Ragland GJ. Genome-wide variation and
573 transcriptional changes in diverse developmental processes underlie the rapid evolution of
574 seasonal adaptation. *Proc Natl Acad Sci U S A.* 2020;117(38):23960-23969.

575 28. Brooks B, Olm MR, Firek BA, Baker R, Thomas BC, Morowitz MJ, Banfield JF. Strain-
576 resolved analysis of hospital rooms and infants reveals overlap between the human and
577 room microbiome. *Nat Commun.* 2017;8(1):1814.

578 29. Poinar G Jr, Poinar R. Parasites and pathogens of mites. *Annu Rev Entomol.* 1998;43:449-
579 469.

580 30. Glassing A, Dowd SE, Galandiuk S, Davis B, Chiodini RJ. Inherent bacterial DNA
581 contamination of extraction and sequencing reagents may affect interpretation of
582 microbiota in low bacterial biomass samples. *Gut Pathog.* 2016;8:24.

583 31. Campisano A, Ometto L, Compart S, Pancher M, Antonielli L, Yousaf S, Varotto C,
584 Anfora G, Pertot I, Sessitsch A, Rota-Stabelli O. Interkingdom transfer of the acne-causing

585 agent, *Propionibacterium acnes*, from human to grapevine. *Mol Biol Evol*.
586 2014;31(5):1059-1065.

587 32. Glowska E, Dragun-Damian A, Dabert M, Gerth M. New Wolbachia supergroups detected
588 in quill mites (Acari: Syringophilidae). *Infect Genet Evol*. 2015;30:140-146.

589 33. Bing XL, Xia WQ, Gui JD, Yan GH, Wang XW, Liu SS. Diversity and evolution of the
590 Wolbachia endosymbionts of *Bemisia* (Hemiptera: Aleyrodidae) whiteflies. *Ecol Evol*.
591 2014;4(13):2714-2737.

592 34. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J,
593 Loman NJ, Walker AW. Reagent and laboratory contamination can critically impact
594 sequence-based microbiome analyses. *BMC Biol*. 2014;12:87.

595 35. Goodrich JK, Di Rienzi SC, Poole AC, Koren O, Walters WA, Caporaso JG, Knight R,
596 Ley RE. Conducting a microbiome study. *Cell*. 2014;158(2):250-262.

597 36. Breitwieser FP, Pertea M, Zimin AV, Salzberg SL. Human contamination in bacterial
598 genomes has created thousands of spurious proteins. *Genome Res*. 2019;29(6):954-960.

599 37. Barker PS. The effects of high humidity and different temperatures on the biology of
600 *Tyrophagus putrescentiae* (Schrank) (Acarina: Tyrogliphidae). *Can J Zool*. 1967; 45:91-
601 96.

602 38. Amon RB, Hanfin JM, Campbell MC. Contaminated fungal cultures owing to *Tyrophagus*
603 *putrescentiae*. *Arch Dermatol*. 1977;113(11):1614-1615.

604 39. Pekas A, Palevsky E, Sumner JC, Perotti MA, Nesvorna M, Hubert J. Comparison of
605 bacterial microbiota of the predatory mite *Neoseiulus cucumeris* (Acari: Phytoseiidae) and
606 its factitious prey *Tyrophagus putrescentiae* (Acari: Acaridae). *Sci Rep*. 2017; 7(1):2.

607 40. Lee J, Kim JY, Yi MH, Hwang Y, Lee IY, Nam SH, Yong D, Yong TS. Comparative
608 microbiome analysis of *Dermatophagooides farinae*, *Dermatophagooides pteronyssinus*, and
609 *Tyrophagus putrescentiae*. *J Allergy Clin Immunol*. 2019;143(4):1620-1623.

610 41. Swiontek Brzezinska M, Jankiewicz U, Burkowska A, Walczak M. Chitinolytic
611 microorganisms and their possible application in environmental protection. *Curr
612 Microbiol*. 2014;68(1):71-81.

613 42. Erban T, Rybanska D, Harant K, Hortova B, Hubert J. Feces Derived Allergens of
614 *Tyrophagus putrescentiae* Reared on Dried Dog Food and Evidence of the Strong
615 Nutritional Interaction between the Mite and *Bacillus cereus* Producing Protease
616 Bacillolysins and Exo-chitinases. *Front Physiol*. 2016;7:53.

617 43. Annamalai N, Veeramuthu Rajeswari M, Vijayalakshmi S, Balasubramanian T.
618 Purification and characterization of chitinase from *Alcaligenes faecalis* AU02 by utilizing
619 marine wastes and its antioxidant activity. *Ann Microbiol*. 2011;61(4):801-807.

620 44. Van Asselt L. Interactions between domestic mites and fungi. *Indoor and Built
621 Environment*. 1999;8(4):216-220.

622 45. Brasier CM. Mites and reproduction in *Ceratocystis ulmi* and other fungi. *Transactions of
623 the British Mycological Society*. 1978;70(Feb):81-89.

624 46. Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. *N Engl
625 J Med*. 2010;362(19):1804-1813.

626 47. Brooke JS. *Stenotrophomonas maltophilia*: an emerging global opportunistic pathogen.
627 *Clin Microbiol Rev*. 2012; 25(1):2-41.

628 48. Lockhart SR, Abramson MA, Beekmann SE, Gallagher G, Riedel S, Diekema DJ, Quinn
629 JP, Doern GV. Antimicrobial resistance among gram-negative bacilli causing infections in

630 intensive care unit patients in the united states between 1993 and 2004. *J Clin*
631 *Microbiol*.2007, 45(10):3352-3359.

632 49. Lambert ML, Suetens C, Savey A, Palomar M, Hiesmayr M, Morales I, Agodi A, Frank
633 U, Mertens K, Schumacher M, Wolkewitz M. Clinical outcomes of health-care-associated
634 infections and antimicrobial resistance in patients admitted to European intensive-care
635 units: a cohort study. *Lancet Infect Dis*. 2011;11(1):30-38.

636 50. Nathwani D, Raman G, Sulham K, Gavaghan M, Menon V. Clinical and economic
637 consequences of hospital-acquired resistant and multidrug-resistant *Pseudomonas*
638 *aeruginosa* infections: a systematic review and meta-analysis. *Antimicrob Resist Infect*
639 *Control*. 2014;3(1):32.

640 51. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant *Pseudomonas aeruginosa*:
641 clinical impact and complex regulation of chromosomally encoded resistance mechanisms.
642 *Clin Microbiol Rev*. 2009;22(4):582-610.

643 52. Giske CG, Monnet DL, Cars O, Carmeli Y; ReAct-Action on Antibiotic Resistance.
644 Clinical and economic impact of common multidrug-resistant gram-negative bacilli.
645 *Antimicrob Agents Chemother*. 2008;52(3):813-821.

646 53. Griffiths DA. The morpho-species and its relationship to the biological species in the genus
647 *Tyrophagus* (Acaridae, Acarina). In: *Recent Advances in Acarology Proceeding of the V*
648 *International Congress of Acarology*. Edited by Rodrigues JG, vol. 1. New York:
649 Academic Press. 1979: 199-212.

650 54. Murillo P, Klimov PB, Hubert J, OConnor BM. Investigating species boundaries using
651 DNA and morphology in the mite *Tyrophagus curvipenis* (Acari: Acaridae), an emerging
652 invasive pest, with a molecular phylogeny of the genus *Tyrophagus*. *Exp Appl Acarol*.
653 2018;75(2):167-189.

654 55. Hedges LM, Brownlie JC, O'Neill SL, Johnson KN. *Wolbachia* and virus protection in
655 insects. *Science*. 2008;322(5902):702-702.

656 56. Kambris Z, Cook PE, Phuc HK, Sinkins SP. Immune activation by life-shortening
657 *Wolbachia* and reduced filarial competence in mosquitoes. *Science*. 2009;326(5949):134-
658 136.

659 57. Geoghegan V, Stainton K, Rainey SM, Ant TH, Dowle AA, Larson T, Hester S, Charles
660 PD, Thomas B, Sinkins SP. Perturbed cholesterol and vesicular trafficking associated with
661 dengue blocking in *Wolbachia*-infected *Aedes aegypti* cells. *Nature Communications*.
662 2017, 8.

663 58. McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang YF, O'Neill SL. Stable
664 introduction of a life-shortening *Wolbachia* infection into the mosquito *Aedes aegypti*.
665 *Science*. 2009;323(5910):141-144.

666 59. Diaz-Nieto LM, Gil MF, Lazarte JN, Perotti MA, Beron CM. *Culex quinquefasciatus*
667 carrying *Wolbachia* is less susceptible to entomopathogenic bacteria. *Sci Rep*.
668 2021;11(1):1094

669 60. Pepato AR, Klimov PB. Origin and higher-level diversification of acariform mites -
670 evidence from nuclear ribosomal genes, extensive taxon sampling, and secondary structure
671 alignment. *BMC Evol Biol*. 2015;15:178.

672 61. Klimov PB, OConnor BM, Chetverikov PE, Bolton SJ, Pepato AR, Mortazavi AL,
673 Tolstikov AV, Bauchan GR, Ochoa R. Comprehensive phylogeny of acariform mites
674 (Acariformes) provides insights on the origin of the four-legged mites (Eriophyoidea), a
675 long branch. *Mol Phylogenet Evol*. 2018;119:105-117.

676 62. Pepato AR, Klimov PB. Origin and higher-level diversification of acariform mites -
677 evidence from nuclear ribosomal genes, extensive taxon sampling, and secondary structure
678 alignment. *BMC Evol Biol.* 2015;15:178.

679 63. Van Dam MH, Trautwein M, Spicer GS, Esposito L. Advancing mite phylogenomics:
680 Designing ultraconserved elements for Acari phylogeny. *Mol Ecol Resour.*
681 2019;19(2):465-475.

682 64. Liu Q, Deng Y, Song A, Xiang Y, Chen D, Wei L. Comparative analysis of mite genomes
683 reveals positive selection for diet adaptation. *Commun Biol.* 2021;4(1):668.

684 65. Andrews S. FastQC: a quality control tool for high throughput sequence data. Available
685 online at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>. 2018.

686 66. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution
687 for large and complex metagenomics assembly via succinct de Bruijn graph. *Bioinformatics.*
688 2015;31(10):1674-1676.

689 67. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile
690 metagenomic assembler. *Genome Res.* 2017;27(5):824-834.

691 68. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome
692 assemblies. *Bioinformatics.* 2013;29(8):1072-1075.

693 69. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and
694 genotyping with HISAT2 and HISAT-genotype. *Nat Biotechnol.* 2019;37(8):907-915.

695 70. Bushmanova E, Antipov D, Lapidus A, Suvorov V, Prjibelski AD. rnaQUAST: a quality
696 assessment tool for de novo transcriptome assemblies. *Bioinformatics.* 2016;32(14):2210-
697 2212.

698 71. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO:
699 assessing genome assembly and annotation completeness with single-copy orthologs.
700 *Bioinformatics.* 2015;31(19):3210-3212.

701 72. Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Sanchez Alvarado A,
702 Yandell M. MAKER: an easy-to-use annotation pipeline designed for emerging model
703 organism genomes. *Genome Res.* 2008;18(1):188-196.

704 73. Korf I. Gene finding in novel genomes. *BMC Bioinformatics.* 2004;5:59.

705 74. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J,
706 Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong
707 SY, Lopez R, Hunter S. InterProScan 5: genome-scale protein function classification.
708 *Bioinformatics.* 2014;30(9):1236-1240.

709 75. Ye J, Zhang Y, Cui H, Liu J, Wu Y, Cheng Y, Xu H, Huang X, Li S, Zhou A, Zhang X,
710 Bolund L, Chen Q, Wang J, Yang H, Fang L, Shi C. WEGO 2.0: a web tool for analyzing
711 and plotting GO annotations, 2018 update. *Nucleic Acids Res.* 2018;46(W1):W71-W75.

712 76. An J, Lai J, Lehman ML, Nelson CC. miRDeep*: an integrated application tool for miRNA
713 identification from RNA sequencing data. *Nucleic Acids Res.* 2013;41(2):727-737.

714 77. Sun ET, Li CP, Li S, Gu SL, Nie LW. Complete mitochondrial genome of *Caloglyphus*
715 *berlesei* (Acaridae: Astigmata): The first representative of the genus *Caloglyphus*. *Journal*
716 *of Stored Products Research.* 2014; 59:282-284.

717 78. Laslett D, Canbäck B. ARWEN: a program to detect tRNA genes in metazoan
718 mitochondrial nucleotide sequences. *Bioinformatics.* 2008;24(2):172-175.

719 79. ernt M, Donath A, Jühling F, et al. MITOS: improved de novo metazoan mitochondrial
720 genome annotation. *Mol Phylogenet Evol.* 2013;69(2):313-319.

721 80. Seppey M, Manni M, Zdobnov EM. BUSCO: Assessing Genome Assembly and
722 Annotation Completeness. *Methods Mol Biol.* 2019;1962:227-245.

723 81. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:
724 improvements in performance and usability. *Mol Biol Evol.* 2013;30(4):772-780.

725 82. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated
726 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics.*
727 2009;25(15):1972-1973.

728 83. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective
729 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol.*
730 2015;32(1):268-274.

731 84. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool.
732 *J Mol Biol.* 1990;215(3):403-410.

733 85. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact
734 alignments. *Genome Biol.* 2014;15(3):R46.

735 86. Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in
736 metagenomics data. *PeerJ Computer Science.* 2017.

737 87. Laetsch DR, Blaxter ML. BlobTools: Interrogation of genome assemblies [version 1; peer
738 review: 2 approved with reservations]. *F1000Research.* 2017;6(1287):1-16.

739 88. Crisp A, Boschetti C, Perry M, Tunnacliffe A, Micklem G. Expression of multiple
740 horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes.
741 *Genome Biol.* 2015;16(1):50.

742 89. Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH; UniProt Consortium. UniRef
743 clusters: a comprehensive and scalable alternative for improving sequence similarity
744 searches. *Bioinformatics.* 2015;31(6):926-932.

745 90. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND.
746 *Nat Methods.* 2015;12(1):59-60.

747 91. Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin
748 W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty
749 SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB,
750 Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Tettelin H, O'Neill SL,
751 Eisen JA. . Phylogenomics of the reproductive parasite Wolbachia pipiensis wMel: a
752 streamlined genome overrun by mobile genetic elements. *PLoS Biol.* 2004;2(3):E69.

753 92. Baldo L, Dunning Hotopp JC, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR,
754 Hayashi C, Maiden MC, Tettelin H, Werren JH. Multilocus sequence typing system for the
755 endosymbiont Wolbachia pipiensis. *Appl Environ Microbiol.* 2006;72(11):7098-7110.

756 93. Perotti MA, Allen JM, Reed DL, Braig HR. Host-symbiont interactions of the primary
757 endosymbiont of human head and body lice. *FASEB J.* 2007;21(4):1058-1066.

758 94. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of
759 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed
760 microbial populations. *Appl Environ Microbiol.* 1990;56(6):1919-1925.

761 95. Daims H, Brühl A, Amann R, Schleifer KH, Wagner M. The domain-specific probe
762 EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a
763 more comprehensive probe set. *Syst Appl Microbiol.* 1999;22(3):434-444.

764 96. Perotti MA, Clarke HK, Turner BD, Braig HR. Rickettsia as obligate and mycoplasmic
765 bacteria. *FASEB J.* 2006;20(13):2372-2374.

766 97. Balmand S, Lohs C, Aksoy S, Heddi A. Tissue distribution and transmission routes for the
767 tsetse fly endosymbionts. *J Invertebr Pathol.* 2013;112 Suppl(0):S116-S122.
768

769

770 **Table 1. Select GenBank sequences attributable to *Tyrophagus putrescentiae* contamination**
 771 **based on NCBI BLAST search.** Bitscore shows quality and significance of alignment between
 772 query and subject sequences. Low bitscore matches represent short, full-length GenBank
 773 sequences. **TP**=match with our decontaminated T3F6 assembly of *T. putrescentiae* (scaffold ids
 774 are given). **RZ**=match with GenBank "*Rhagoletis zephyria*" genome (contaminated with *T.*
 775 *putrescentiae* DNA); this information offers independent validation of our data. *=values
 776 averaged; **=the GenBank "*Rhagoletis*" genome does not have the mite mitochondrial DNA;
 777 this sequence matches GenBank *T. putrescentiae* mitochondrial genome (from China); ***=the
 778 lab that produced these sequences is known to maintain *T. putrescentiae* cultures; ****=hospital
 779 surfaces and sink.

GenBank title	GenBank id	Identity (%)	bitscore	TP scaffold id	RZ	Country
Insects						
<i>Rhagoletis zephyria</i> genome	GCF_001687245.1	94.0*	909*	4901 scaffolds total	y	USA
<i>Ostrinia nubilalis</i>	AF398406.1	99.1	623	947	y	USA
<i>Simulium damnosum</i> sp.complex	KY631747.1	99.0	695	3270	y	Nigeria
Predatory mites						
<i>Neoseiulus cucumeris</i>	AY099366	98	678	692	**	USA
<i>Cheyletus malaccensis</i>	KP938898.1	98.7	689	692	**	China
Vertebrates						
<i>Mus musculus</i>	AK041295.1, AK041150.1	97.5-99.4	1118-1308	2104,6946,10139	y	Japan
<i>Ardea herodias</i>	AF447969.1	99.02	366	4160	y	USA
Round worms						
<i>Ancylostoma caninum</i>	DQ841142.1, DQ841148.1	98.5-99.1	580-963	1820,7390	y	USA
Fungi						
<i>Colletotrichum gloeosporioides</i>	JQ862580.1	99.0	1317	905	y	Colombia
<i>Parastagonospora forlicesenica</i>	KY769662.1	100	1905	3270	y	Italy
<i>Fusarium equiseti</i>	MG751111.1, MG751119.1, MG751114.1	99.1-100	327-545	43,57,3166	y(first)	USA
<i>Fusarium graminearum</i>	MG751125.1, MG751131.1	97.2-97.8	388-424	273,6583	y	USA
Plants						
<i>Intsia palembanica</i>	FJ448223.2, FJ448461.2, FJ448035.2	97	407-749	650, 3618, 4637	y(first two)***	Singapore
Bacteria						
<i>Shinella</i> sp.	QFOR01000162	100	2353	6121	y	USA****

780
 781
 782

783

784 **Table 2. Metagenomic profiles of two geographically isolated samples of *Tyrophagus***
 785 ***putrescentiae* based on next-generation sequencing datasets.** We analyzed our genomic dataset
 786 (from Mexico) and transcriptomic dataset (from Europe) using both unassembled reads
 787 (Kraken/Bracken analyses) and metagenomic scaffolds (megablast/blobtools analyses). We only
 788 present high-scoring Operational Taxonomic Units (OTUs). The bacterium *Cutibacterium acnes*
 789 was found in both datasets; however, it is considered a contaminant. a=not found by BLAST,
 790 values given for *Candida parapsilosis*; b=for *Babesia bigemina*; c=for *Babesia ovata*; d= *Bacillus*
 791 *thuringiensis* and *Bacillus cereus*; e=for *Fusarium proliferatum*; f=high abundance in the
 792 transcriptome because of the presence of highly expressed mitochondrial genes; g=for *Klossiella*
 793 *equi* (mitochondrion) and *Adelina bambooniae* (18S rRNA), respectively; * = found in both
 794 samples; []=spurious Kraken result, not confirmed by BLAST.

Species	Kraken % of bacterial/fungal/eukaryotic reads	Kraken Magnitude	Blob Reads mapped on assembly	Blob assembly size (bp)	BLAST best hit (bistcore)	Identity for BLAST best hit
<u>Metagenome (Mexico)</u>						
Bacteria						
<i>Alcaligenes faecalis</i>	58	1,154,214	2,450,807	4,220,682	370,900	98.881
<i>Pseudomonas aeruginosa</i>	9	186,466	2,129,316	4,743,839	10,405	100.000
<i>Stenotrophomonas</i> sp.	4	76,490	1,191	9,969	5,317	99.286
PAMC25021						
<i>Achromobacter denitrificans</i>	4	74,386	94,154	1,554,668	2,248	99.043
<i>Advenella kashmirensis</i>	3	67,222	331,132	3,470,439	6,248	98.477
<i>Stenotrophomonas maltophilia</i>	3	63,477	307,833	3,505,590	5,345	99.456
* <i>Cutibacterium acnes</i>	2	36,049	54,577	1,060,224	2,830	99.677
Fungi (Dikarya)						
[<i>Candida dubliniensis</i>]	96	221,846	42 ^a	1,717 ^a	713 ^a	100 ^a
Apicomplexa						
Low-scoring OTU(s)	0.0002	592	10 ^c	101 ^c	556 ^b	98.418 ^b
<u>Metatranscriptome</u> (Europe)						
Viruses						
<i>Wolbachia</i> phage	not recovered	not recovered	507	2,573	1908	81.732
Bacteria						
<i>Escherichia coli</i>	36	130,213	14,451,554	119,701	9,356	99.98

<i>Bacillus</i> spp	18	63,648	83,438	122,804	12,412 ^d	99.911 ^d
<i>Wolbachia</i>	15	54,356	1,592,451	622,805	10,035	80.264
[<i>Salmonella enterica</i>]	8	30,667	not recovered	not recovered	2,564	99.434
[<i>Yersinia pestis</i>]	6	22,138	not recovered	not recovered	not recovered	not recovered
* <i>Cutibacterium acnes</i>	0.7	2,675	13,221	1,361	2,071	94.635
Fungi (Dikarya)						
[<i>Zymoseptoria tritici</i>]	40	11,594	not recovered	not recovered	187	78.84
<i>Fusarium</i>	8	2,423	18,016,619 ^f	58,270 ^f	11,753 ^e	99.597 ^e
[<i>Botrytis cinerea</i>]	8	2,224	not recovered	not recovered	not recovered	not recovered
[<i>Colletotrichum higginsianum</i>]	7	1,980	n/a	n/a	87.9	85.714
[<i>Sporisorium graminicola</i>]	7	1,941	not recovered	not recovered	not recovered	not recovered
Apicomplexa						
Low-scoring OTU(s)	0.05	104,121	9,053,673	434,697	2857, 1890 ^g	82.403, 92.528 ^g

795
796

797

798 **Table 3. Horizontal gene transfers detected in acariform mites detected in the *Tyrophagus***
 799 ***putrescentiae* genome (GCA_012066115).** HGT analyses were run using two protein subsets
 800 extracted from the Uniref50 database (all_no_Metazoa vs Metazoa_no_Arthropoda). For the
 801 source, best tblastx matches for the NCBI nr database (no Metazoa) are given; for the target, best
 802 tblastx matches for the NCBI wgs database (Endeostigmata+Trombidiformes+Oribatida) are
 803 given. Per. Ident= percent identity; Total score =total bitscore. More detail is given in
 804 supplementary dataset S1 online.

id	Locus	Query (TP)	Source	Total	Per.	Accession	Target	Total	Per.	Accession
				Scor	Ident			Scor	Ident	
				e	e			e	e	
1	Nitroreductase	GMOD_00004316-RA	Bacteria: Verrucomicrobia	180	45.05	MBS0604115.1	Acariformes/ Parasitiformes	589	50.92	JAEMBT020000006.1
2	NADPH dehydrogenase/NADH:flavin oxidoreductase	GMOD_00003087-RA	Bacteria: Cyanobacteria	373	53.37	WP_250121213.1	Acariformes/P arasitiformes	1945	65.65	JAEMBT020000008.1
3	Glycoside hydrolase family 28/ polygalacturonase	GMOD_00002110-RA	Bacteria: Bacteroidetes	275	43.96	WP_130856424.1	Acariformes/ Parasitiformes	2232	54.81	JAEMBT020000008.1
4	Glucan endo-1,3-beta-glucosidase A1-like/ Glycoside hydrolase family 16	GMOD_00001330-RA	Eukaryota: Amoebozoa	259	51.38	PRP81173.1	Oribatida	2032	57.71	JAEMBT020000001.1
5a	Discoidin domain-containing protein / mycodextranase	GMOD_00003189-RA	Bacteria: Actinobacteria	631	58.61	WP_067367716.1	Oribatida	2877	69.95	CAJPVJ010009338.1
5b	copy 2	GMOD_00003959-RA	Bacteria: Actinobacteria	504	60.71	MBD0736812.1	Oribatida	2445	65.84	JAEMBT020000001.1
7a	Heparinase II/III-like protein	GMOD_00002564-RA	Bacteria: Bacteroidetes	291	42.33	WP_168862112.1	Acariformes	2179	66	JAEMBT020000009.1
7b	copy 2	GMOD_00003781-RA	Bacteria: Bacteroidetes	169	44.20	WP_113615130.1	Acariformes	1405	65.82	JAEMBT020000009.1
8a	NAD-dependent 5,10-methylenetetrahydrafolate dehydrogenase	GMOD_00004475-RA	Eukaryota: Glomeromycetes	277	54.47	CAG8533486.1	Acariformes	942	65.25	CAEY01000550.1
8b	copy 2	GMOD_00003902-RA	Eukaryota: Glomeromycetes	278	54.47	CAG8533486.1	Acariformes	950	65.25	CAEY01000550.1
9	D-Ala-D-Ala dipeptidase	JAAALH010000366.1: 11632-12279	Bacteria: Alphaproteobacteria	134	40.30	WP_231555892.1	Acariformes/ Parasitiformes	323	59.09	LBFO01075982.1

805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818

819
820

Figure legends

821 **Figure 1. Decontaminated genomic assembly of *Tyrophagus putrescentiae* and phylogenomic**

822 **tree of acariform mites.** Basic assembly statistics (a). Mitochondrial genome (for each strand,

823 arrows show direction of transcription; inner circle shows GC content) (b). Phylogenomic

824 maximum likelihood analysis of acariform mites (c). Genomes of acariform mites and outgroups

825 (parasitiform mites, *Limulus*) were downloaded from GenBank, single-copy orthologs were

826 extracted using the BUSCO arachnida_odb10 database, and then aligned and trimmed; 415 protein

827 alignments (occupancy ≥ 0.8 and length ≥ 200) were used for a partitioned analyses in IQ-TREE with

828 automatic partition merging. For each branch, SH-aLRT and ultrafast bootstrap support values are

829 given (in that order) unless both measures are equal 100%.

830

831 **Figure 2. Bacterial metagenomic profile of *Tyrophagus putrescentiae* from Mexico and**

832 **ancient horizontal transfer events.** Bacterial metagenomic profile of *Tyrophagus putrescentiae*

833 from Mexico; abundance was estimated by Kraken2/Bracken analyses based on Illumina short

834 reads (a). Ancient horizontal transfer events from bacteria (b, c) or fungi to mites (d):

835 Nitroreductase (b), Heparinase II/III-like protein (c), NAD-dependent 5,10-

836 methylenetetrahydrafolate dehydrogenase (d); for detail, see Table 3 and supplementary dataset

837 S1 online.

838

839 **Figure 3. Bacterial endosymbionts of *Tyrophagus putrescentiae* visualized by different FISH**

840 **probes:** *Wolbachia*-specific (a, g) (red channel), *Rickettsia*-specific (b) (yellow channel),

841 *Wolbachia+ Rickettsia* (c), Eubacterial (e,f) (green channel), and control (d). *Wolbachia* and

842 *Rickettsia* are localized (a, b, arrowheads), while *Wolbachia* is also found in the area of the ovaries

843 (a, arrowhead), female from the UK culture; much of eubacterial signal is associated with the
844 digestive track (e) and parenchymal tissue bacteriocytes (e,f), two food boluses show
845 autofluorescence (e), female from the Czech culture; *Wolbachia* (arrowheads) in egg, from UK
846 culture (egg membranes showing autofluorescence and not signal in the red and green channels).

847

848 **Figure 4. Maximum likelihood phylogenomic tree of endosymbiotic bacterial genus**
849 ***Wolbachia*.** This inference is based on 276 orthologous loci, 112,298 amino acid alignment
850 positions, 139 *Wolbachia* ingroups, 31 outgroups. *Wolbachia* supergroups and hosts are shown.
851 Previously recognized supergroup O was recovered as part of supergroup B.