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Genomic and metagenomic analyses of a domestic mite Tyrophagus
putrescentiae identify it as a widespread environmental contaminant and a

host of a basal, mite-specific Wolbachia lineage
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Abstract
Background

Tyrophagus putrescentiae (mold mite) is a global, generalist species that commonly occurs
in various human-created habitats, causing allergies and damaging stored food; but it has not been
found in healthcare settings so far. The mite’s properties as a ubiquitous trophic generalist are
attributed to symbiotic bacteria housed in specialized internal mite structures; however, a recent
work suggests that horizontal transfer of bacterial/fungal genes may be also involved. Bacterial
associations of T. putrescentiae include an uncharacterized and genetically divergent Gram-
negative bacterium (Wolbachia) displaying blocking / microbiome modifying effects. The
phylogenomic position and supergroup assignment of this bacterial species are unknown.
Results

An extensive analysis of GenBank data shows that (i) T. putrescentiae DNA is a substantial
source of contamination in public sequence databases and (ii) the mite occurs in the lab and
healthcare settings. Our phylogenomic analysis of Wolbachia recovered a basal, mite-specific
lineage (supergroup Q) represented by two Wolbachia species associated with the mold mite and
a gall-inducing plant mite (Fragariocoptes setiger). Fluorescence in situ hybridization confirmed
the presence of Wolbachia inside the mold mite. T. putrescentiae also forms associations with
bacteria implicated in healthcare-acquired infections that can rapidly develop antibiotic resistance
(Pseudomonas aeruginosa, Escherichia coli, and Stenotrophomonas maltophilia). Despite the
presence of diverse bacterial communities in T. putrescentiae, we did not detect any recent
horizontal gene transfers in this mite species and/or in astigmatid (domestic) mites in general.

Conclusions
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Our data will assist future research in elucidating the nature of the mite bacterial
communities and the mite’s ability to spread bacteria involved in healthcare-acquired infections
The discovery of an early-derivative Wolbachia lineage (supergroup Q) in two phylogenetically
unrelated and ecologically dissimilar mite species indicates that this endosymbiotic bacterial
lineage formed long-term association with mites and provides a unique insight into the early
evolution and host associations of this bacterial genus. Further discoveries of the Wolbachia

diversity in acariform mites are anticipated.

Key words: Domestic mites, mite-bacteria trophic symbiosis, phylogenomic tree of Wolbachia,
basal mite-specific supergroup of Wolbachia, environmental genomics, healthcare-acquired

infection.
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Introduction
The mold mite, Tyrophagus putrescentiae, is a common, microscopic, and globally distributed
species of domestic mites [1, 2]. It is a generalist species, living in nearly every terrestrial habitat
with relative humidity >65% [3, 4]. It frequently infests stored products, resulting in economic
loss, and it also causes anaphylaxis in sensitized individuals consuming mite-contaminated food
[5]. After pyroglyphid house dust mites, T. putrescentiae is the second most medically important
species responsible for indoor allergies in humans [6-8] and domesticated animals [9]. Thanks to
its long body setae it can disperse via air currents, or by attaching to human clothing and household
items, or it can rapidly move on its own [10, 11]. T. putrescentiae is arguably the first known
animal space hitchhiker found onboard a human-inhabited spacecraft in low Earth orbit [12]. The
ubiquity of T. putrescentiae is well documented by a large body of literature [13], however, its
reliable identification was only possible after 2007-2009, when accurate methods based on
morphology and DNA sequences were developed [1, 13]. Even though the mite has been
previously reported to infest fungal, insect, and plant tissue cultures in laboratory and industrial
settings [14, 15], its role as a significant factor in DNA sequence contamination is currently
underappreciated. Since most bioinformatics tools focus on bacterial and human DNA
contamination, DNA of a microscopic eukaryote may evade the NCBI GenBank standard quality
check procedure and be inadvertently incorporated into public sequence databases. A whole
genome sequence of T. putrescentiae would alleviate this situation.

The mold mite is a vector of various bacterial and fungal microorganisms in human-related
habitats and agricultural settings [10, 16]. The presence of bacteriocytes, large, compartmentalized
bacterial colonies in the mite parenchymal tissues, is one of the most distinctive anatomical

features of T. putrescentiae [17]. Bacteria may be very important in the mite's nutritional ecology,
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cooperating with their acarine hosts to use nutrients from different sources. Associated bacteria
may provide chitinolytic enzymes digesting fungal cell walls [18], making this system ecologically
important for mobilizing nitrogen from chitin [19]. However, a recent work suggests that bacterial
or fungal genes may have been incorporated into the mite genome, and thus extend the mite’
nutritional functionality [20]. For example, the horizontally transferred genes encoding UDP
glucuronosyltransferases and several fungal cell wall lytic enzymes could enable detoxification
and digestive functions of their acarine hosts [20].

Bacterial associations of T. putrescentiae include an uncharacterized Gram-negative
bacterium (Wolbachia) found in several T. putrescentiae populations based on previous 16S rRNA
and protein sequencing [8, 21]. Wolbachia is an intracellular endosymbiont associated with various
arthropods and nematodes. This bacterium may form nutritional symbiosis with several hosts [22],
and it has been demonstrated to be a useful agent to control human pathogens, such as dengue
virus vectored by mosquitoes [23]. A blocking / microbiome modifying effect has been recently
shown for the Wolbachia from T. putrescentiae [8], suggesting that this Wolbachia may be
potentially useful for disease/pest control applications.

Here we sequenced the whole genome of T. putrescentiae from North America and use
transcriptomes previously generated by us for several mite populations from Europe and USA. We
present a genomic assembly of the mite and metagenomic analyses of its microbiome. Based on
these genomic and metagenomic analyses, we answer the following questions: 1) Can the mite be
a significant source of DNA contamination in the laboratory, industrial and healthcare settings? 2)
Are there recent horizontal gene transfers from bacteria/fungi that can account for the mite’
extended nutritional functionality? 3) What are the phylogenomic affinities of the previously

uncharacterized mite-specific Wolbachia?
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Results

Genome of Tyrophagus putrescentiae

We conducted a series of independent metagenomic assemblies in metaSpades and
Megahit (Supplementary Tables S1-S4 online). Based on different metrics, most importantly,
transcriptome mapping statistics (Supplementary Table S1 online), we selected a metaSpades
(k=21,33,55) assembly as our preferred assembly, consisting of 176,943 scaffolds, with the total
length of 151,679,586 bp and average coverage of 518.3. Of them, 9,303 scaffolds (79.5 Mb)
matched the transcriptomic assembly (Supplementary Fig. S1 online). Of the 176,943 initial
scaffolds, BLAST searches were able to identify 125,524 scaffolds (136,606,678 bp, average
coverage = 440.4) (Supplementary Fig. S2a online). This analysis revealed that our metagenomic
assembly had a substantial portion of non-mite sequences, mostly bacterial DNA. Most of the non-
mite scaffolds had low coverage, i.e. below 100x, with the notable exception of the bacterium
Alcaligenes faecalis, which had a coverage of slightly above 100x (Supplementary Fig. S2a
online). Many scaffolds lacking BLAST hits, therefore, still could be confidently classified as
belonging to the mite based on their higher coverages, i.e. >600 (Supplementary Fig. S2a online:
grey color). After filtering scaffolds using a combination of the BLAST classification result and/or
coverage information (detailed in the section "Metagenomic decontamination™), our final
decontaminated mite assembly had a total of 19,731 scaffolds, with the length of 95,135,691 bp
and average coverage of 1024.7 (Fig. 1la,b, Supplementary Table S1, Fig. S2b online). Busco
statistic using the arachnida_odb10 database (2934 genes) was compatible to that of a recent long
+ short read assembly of a Hong Kong population: Complete:89.5%[Single-

copy:83.4%,Duplicated:6.1%], Fragmented:3.2%, Missing:7.3% vs Complete:89.8%[Single-
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copy:85.1%, Duplicated:4.7%],  Fragmented:3.1%,  Missing:7.1%, (Hong  Kong:
GCA _021730765.1) (Supplementary Fig. S3 online). The mitochondrial genome has the typical
gene order of Astigmata [24, 25] (Fig. 1b). Top gene ontologies summarized for three sub-
ontologies were as follows: membrane and membrane part (cellular component), catalytic activity
and binding (molecular function), and metabolic and cellular processes (biological process)
(Supplementary Fig. S4 online). Our phylogenomic analysis inferred T. putrescentiae within the
Astigmata, a major general mite lineage (Fig. 1c). Astigmata evolved within soil mites (Oribatida)
with absolute support (Fig. 1c), while other high-level relationships were similar to those inferred

previously [20, 26].

Extensive contamination of GenBank databases by T. putrescentiae sequences

Our BLAST searches detected extensive contamination of public sequence databases with T.
putrescentiae sequences (Table 1). The GenBank reference genome database contained a
'Rhagoletis zephyria' genome GCF_001687245 [27] heavily contaminated with T. putrescentiae
DNA, 4901 scaffolds (Table 1). Another important example, is the mite sequence reported as a
bacterium "Shinella sp." from healthcare settings [28] (Table 1). Other contaminated GenBank
sequences include many species of insects and fungi, as well as vertebrates, round worms, bacteria,
and plants (Table 1); these sequences also have matches on the 'Rhagoletis zephyria' genome,
which offers an independent confirmation of contamination. We also run BlobTools analyses
based on the GenBank nucleotide database and our clean assembly of T. putrescentiae as a query
(Supplementary Fig. S2b online). The BlobTools analysis largely agrees with our results, and
identifying about 96.5 Mb of T. putrescentiae DNA in the 'R. zephyria' genome (Supplementary

Fig. S2a online). However, except for five GenBank sequences of Drosophila melanogaster
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classified as contaminants. However, these hits had either low bitscore or identity, or included hits
on ultraconservative regions (i.e. nuclear rRNA). We therefore, do not consider these D.
melanogaster sequences as contaminated (not included in Table 1). A similar situation occurred
when a BlobTools analysis was run on a custom BLAST database, including the GenBank
nucleotide collection and the 'R. zephyria' genome. The following taxa were identified by
BlobTools as ‘contaminants: Ixodes scapularis, Drosophila biramipes, Plutella xylostella,
Cyprinodon variegatus (Supplementary Fig. S2b online), again with low score/low identity, and

probably representing false positives.

Mold mite harbors diverse bacterial communities

We profiled our metatranscriptome (Europe) and metagenome (Mexico) NGS datasets using (i)
Kraken to classify raw reads and (ii) BLAST to assign a taxonomic classification to scaffolds
(assembled reads). For the two classification strategies, we used standard databases plus our clean
genomic assembly of T. putrescentiae (GCA_012066115) to avoid false positive hits, i.e. incorrect
classifications of T. putrescentiae sequences as different eukaryotic organisms. Kraken identified
the following bacterial species having 2% or more reads classified as Bacteria (Table 2):
Alcaligenes faecalis (58%), Pseudomonas aeruginosa (9%), and others (all 3-4%):
Stenotrophomonas maltophilia, Stenotrophomonas sp. PAMC25021, Advenella kashmirensis, and
Achromobacter denitrificans(Fig. 2a). Kraken identified the yeast Candida dubliniensis as the
most abundant fungal species (99% of all fungi, magnitude 245,252). However, the BLAST search
did not find this OTU at all; instead, a different species, Candida parapsilosis, was detected in
trace amounts (1,717 bp assembly, 42 mapped reads) (Table 2). We also detected trace amounts

of low-scoring reads for Apicomplexa (Table 3), which are known internal parasites of mites [29].
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The metatranscriptomic dataset contained Escherichia coli, Wolbachia (unidentified
divergent species, see below), and Bacillus (including Bacillus thuringiensis, Bacillus cereus) with
high abundance, 15-36% of all bacterial reads (Table 2). Fungi were represented by Fusarium;
and apicomplexans were represented by an unidentified coccidian taxon (different from the
Apicomplexa from the metagenomic dataset), whose nuclear rRNA was similar to that of Adelina
(92%) (Table 2). Here, many species reported by the Kraken software in the transcriptome
(European mite populations) could not be confirmed by BLAST searches (Table 2). This is an
expected outcome, as Kraken's use of short k-mers inherently leads to lower accuracy.

Based on the intersection of the DNA and RNA samples by BLAST, only one species was
found to occur in both samples, Cutibacterium acnes (Table 2). However, this bacterium is a
widespread contaminant of DNA extraction kits [30] and we consider its presence as a probable
artefact, but see [31].

Fluorescence in situ hybridization detected Wolbachia (Fig. 3a), Rickettsia (Fig. 3b), in
the mite’s parenchymal tissue bacteriocytes; Eubacteria were mostly associated with the digestive

track and parenchymal tissue (Fig. 3e, d); Wolbachia was also found in ovaries and eggs (Fig. 3a,

9).

No recent horizontal gene transfers in the mold mite or Astigmata

We detected eight putative HGT events from the following lineages: Bacteria (5), Fungi (2), and
Amoebozoa (1) (Table 3, Figs 3b-d, Supplementary Figs. S5-11 online, Supplementary
Dataset S1 online). Among them, was the D-Ala-D-Ala dipeptidase gene previously suggested to
be laterally transferred to Astigmatid mites. However, all these putative HGTs had very low amino

acid similarity (40.3-60.71%) to the corresponding proteins of T. putrescentiae (Table 3) and also
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had significant matches to Oribatida, Endeostigmata, or Trombidiformes, which are major early-
derivative acariform mite lineages as compared to Astigmata (Table 3). This evidence strongly
indicates that no HGT events occurred at the origin and during the evolution of Astigmata, a major

lineage that includes the mold mite and other domestic mites.

An early derivative, mite-specific supergroup of Wolbachia

Our phylogenomic analysis recovered two species of Wolbachia associated with mites (the
mold mite T. putrescentiae and the gall mite Fragariocoptes setiger) forming a monophyletic
group in a basal portion of the tree (Fig. 4). As genomic-scale data are not available for many
Wolbachia, we attempted to identify this lineage through the use 16S or multi-locus analyses
(many taxa, few loci). These analyses can demonstrate the affinity of an unknown sequence, but
generally they cannot resolve phylogenetic relationships among the Wolbachia supergroups. In the
5-gene analyses, Wolbachia from T. putrescentiae (wTp) was grouped with Wolbachia from the
quill mite, Torotrogla cardueli classified previously in supergroup Q [32] (Supplementary Fig.
S12 online). 16S also placed wTp within a general grouping that includes Wolbachia associated
with pratylenchid nematodes, T. cardueli, and Bryobia (a plant-feeding mite) (Supplementary
Fig. S13 online). We therefore identify genomic sequences of wTp as part of supergroup Q, which
was proposed previously based on a 5-locus sequence data and a different set of mite hosts [32].

Supergroup Q was sister to supergroup M (Wolbachia from the banana aphid Pentalonia
nigronervosa). The lineage representing supergroups Q+M was recovered as sistergroup to
supergroup L from the lesion pratylenchid nematode Pratylenchus penetrans (plus an

environmental soil sample). The entire lineage L(Q+M) was recovered as sistergroup to the
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remaining diversity of Wolbachia. In addition, our genomic-scale analysis showed that previously

proposed Wolbachia supergroup O [32, 33] is nested within supergroup B (Fig. 3).

Discussion

The common domestic mite, Tyrophagus putrescentiae is a ubiquitous generalist species
associated with human-created habitats, such as houses, retail stores, storehouses, food-processing
facilities, and research laboratories. Here we discuss several questions related to whether it can be
a source of significant DNA contamination in public databases, and whether its microbial trophic
symbiosis and/or horizontal gene transfers can contribute to its remarkable ability of being a broad
dietary generalist. As our GenBank analysis identified it in hospital settings, we briefly discuss
whether the mite could be one of the factors influencing the spread of bacteria responsible for
hospital acquired infection. Furthermore, we elucidate the phylogenetic relationship of a novel
Wolbachia bacterium associated with this mite.

Bacteria and microscopic fungi are expected to introduce sequence contamination into
eukaryotic whole genome sequences because they can be symbionts, and/or originate from the
environment, laboratory equipment, DNA extraction kits or reagents [34, 35]. Non-fungal
eukaryotic DNA usually is not considered a significant source of contamination, except for human
DNA, particularly its repetitive elements [36]. Here we show that the mold mite, T. putrescentiae,
is an important environmental contaminant that can make its way inside various DNA samples
(Table 1), and its contaminating DNA can evade detection by metagenomic methods as commonly
used in practice [35, 36]. The most conspicuous example of contamination is the GenBank
reference genome of a fly Rhagoletis zephyria GCF_001687245 [27] containing 4901 scaffolds

and about of 100 MB of T. putrescentiae DNA (Table 1). For the sequences deposited into

11
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GenBank as insects and fungi, it is very likely that laboratory cultures of these organisms were
infested by the mite, and this was unnoticed by the researchers. Suspect sequences of other
organisms may result from inadvertent lab contamination. For example, the lab that deposited
sequences of T. putrescentiae as sequences of a tree (Intsia palembanica), also published
sequences of T. putrescentiae, so spill-over contamination from mite cultures maintained in the
same lab is possible. Sequences deposited as a mouse, bird, and worm (Table 1) may have resulted
from environmental contaminations as the mite is ubiquitous and readily reproduces in many
humid environments [37]. This contamination is not surprising because fungal/insect/cell culture
infestation by the mite was well known from the literature prior to the advent of molecular
techniques [38]. In addition, the case of the phytoseiid Neoseiulus cucumeris (Table 1), a predatory
mite used for biological control, may be attributable to T. putrescentiae being used as the food for
the predatory mite, which is a common practice in mass production of phytoseiids [39].

Our metagenomic profiling of two independent mite samples indicate that in the Mexican
sample, the most abundant bacterial species were Alcaligenes faecalis (58% of all Bacteria) and
Pseudomonas aeruginosa (9%) (Table 2, Fig. 2a); in the European sample, Escherichia coli
(36%), Bacillus spp. (18%), and Wolbachia (15%) were dominant (Table 2). The fact that the two
mite microbiomes were completely different across the two samples suggests the importance of
local factors (such as food type, habitat, and available bacterial communities) in forming the
microbiomes of this globally distributed mite species. The same effect was observed previously in
local mite populations that harbored different microbiomes, although only a single taxon, a
Solitalea-like bacterium, was shared across mite populations [17, 40]. Because our two
microbiomes do not display commonalities in taxonomic composition, it is likely that the mite can

opportunistically recruit available local bacterial species having a chitinolytic activity and/or other

12



245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

useful properties rather than form permanent specialized associations with a fixed set of bacterial
species. Several bacteria identified by us do display chitinolytic properties, i.e. Stenotrophomonas
maltophilia (abundance: 3% of all bacterial species) and Serratia liquefaciens (2%) from the
Mexican sample; and Bacillus cereus (5%) from the European sample [19, 41, 42]. These bacteria
were isolated from T. putrescentiae previously and their chitinolytic properties were demonstrated
experimentally [19, 42]. Furthermore, Alcaligenes faecalis, the most common bacterium in the
Mexican sample, was also found to be an effective chitinase producing bacterium on marine waste
[43]. These bacterial chitinolytic features allow metabolizing chitin from fungal cell walls; when
their acarine hosts feed on fungus-rich diets, these bacteria probably cooperate with the mites,
forming a nutritional symbiosis [19]. In this system, the mite, through its normal feeding activities,
shreds the fungal mycelium (thus making it available for the microorganisms) and disperses both
bacteria and fungi [18, 19, 44], possibly promoting the spread of genetic variants and increasing
recombination rates of these microorganisms on a local scale [45]. Several bacteria associated with
T. putrescentiae are implicated in hospital acquired infections [46, 47]: Pseudomonas aeruginosa,
Escherichia coli, and Stenotrophomonas maltophilia (Table 2). These bacterial taxa are the first,
second, and eighth bacterial species most frequently isolated in hospital settings in the US [48].
All these bacteria can rapidly develop resistance to multiple classes of antibiotics [46, 49-51],
leading to high morbidity and mortality among hospitalized patients, particularly in intensive care
units [46, 47, 49, 52]. The mite itself has been reported in healthcare settings as the bacterium
"Shinella sp." [28]. Given the known ability of T. putrescentiae to vector various microorganisms
(see above), it is possible that in hospital settings, the mite could be one of the factors influencing

the spread of pathogenic bacteria and promoting exchange of bacterial genetic elements
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responsible for antibiotic resistance. Further studies on the role of this mite in dispersing antibiotic-
resistant bacteria are needed.

We did not detect any recent horizontal gene transfer events in the Tyrophagus
putrescentiae genome. All HGT events occurred prior to the origin of Astigmata, in the common
ancestor of either acariform or oribatid mites (Table 3). This includes D-alanyl-D-alanine
dipeptidase, which was previously suggested to occur within Astigmata [20], however, we found
this gene in Endeostigmata and Oribatida (Table 3, id=9), indicating an earlier origin. Given that
all detected HGTs were ancient, we suggest that they do not have immediate relevance to the mite
abilities to be a widespread nutritional generalist.

A very divergent Wolbachia species (wTp) was found in the European sample and in the
contaminated 'Rhagoletis zephyria' genome originated from the USA. On our tree, wTp and
Wolbachia from the gall mite Fragariocoptes setiger formed a basal monophyletic lineage
(supergroup Q), indicating that this lineage may be specific to acariform mites (Fig. 4). It is
possible that wTp may cause cytoplasmic incompatibility in its host, explaining the results of early
breeding experiments that demonstrated large-scale reproductive incompatibility between
morphologically similar populations of T. putrescentiae [53]. However, an alternative explanation
of these experiments could be the presence of two sibling mite species, T. putrescentiae and T.
fanetzhangorum, which are separated by large genetic distances and probably cannot interbreed
[1, 13, 54]. Wolbachia has recently gained medical relevance because of their ability to affect
transmission of human pathogens such as dengue virus vectored by mosquitoes [23]. This
bacterium can manipulate its hosts via pathogen blocking, which limits the ability of many
pathogenic viruses, bacteria and nematodes to grow in the host [55, 56]. Several hypotheses have

been proposed to explain the mechanism of pathogen blocking . Among them, the lipid
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perturbations hypothesis, suggesting that Wolbachia may outcompete pathogens for lipids, a
critical nutritional resource, seems to be better supported by experimental evidence [57]. A strong
pathogen blocking effect has been observed when naturally uninfected mosquitoes were
transinfected with Drosophila-specific strains of Wolbachia [23, 58, 59]. wTp has also been
observed to affect the associated microbiomes in its own mite host, T. putrescentiae [8]. Here, by
analogy with the Drosophila-specific Wolbachia exhibiting a strong pathogen blocking effect in
an unnatural host (mosquitoes), coupled with the ability of wTp to modulate the host's
microbiomes, we suggest that further research needs to be done to elucidate whether wTp can be
used control pathogens vectored by ticks and other parasitic Acari.

Our mold mite assembly was used to conduct phylogenomic analysis of acariform mites
using all available genomes of acariform mites. This analysis nferred Astigmata within soil mites
(Oribatida) with absolute support (Fig. 1c). This result is consistent with the leading morphological
hypothesis suggesting a single origin of opisthosomal glands within the Oribatida+Astigmata
lineage [60] and relationships inferred in several multilocus molecular studies based on Sanger
sequencing [61, 62], but contrasts with sister group relationships of Astigmata and Oribatida

inferred in recent phylogenomic analyses [20, 26, 63, 64].

Conclusion

We assembled a whole genome of the mold mite, Tyrophagus putrescentiae, and showed that this
mite species is a significant contaminant in laboratory, hospital, and industrial settings. Our
genomic assembly was used to detect contamination in GenBank, and should be employed, as a
common practice, to prevent further contamination. Microbiome profiles of the samples from

Europe and Mexico were completely different, suggesting that mite-bacterial symbiotic
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associations are formed via opportunistic recruitment of locally available bacterial species by the
acarine host. We also found that the mold mite is a potential carrier of several bacteria associated
with hospital-acquired infections, most importantly Pseudomonas aeruginosa. Finally, based on
whole transcriptome sequence of a novel, mite-specific Wolbachia from T. putrescentiae, we
identified it as part of a basal, mite-specific Wolbachia lineage (supergroup Q). These findings
provide a unique insight into the early evolution and host associations of this bacterial genus. Based
on the previously known blocking / microbiome modifying effect of the Wolbachia from T.
putrescentiae, we believe that this bacterium may be potentially useful for disease/pest control
applications. We expect further discoveries of the Wolbachia diversity associated with acariform

mites.

Methods

Sample, library preparation, sequencing, and metagenomic assembly

Genomic sequencing was done from a single female reared in a culture maintained at the
University of Michigan Museum of Zoology, Ann Arbor, MI, USA, at room temperature, relative
humidity 75-100%, using Tetra® TetraMin Large Tropical Flakes as the food source. This culture
was started from specimens with the following collecting data: MEXICO: Ciudad de México,
Parque Ecologico de Xochimilco, nr. Lago Acitlalin, 19.297115 -99.092799, rotten reed stalk
(Typha), 03 Jan 2017, P. Klimov (coll.), UMMZ accession BMOC 17-0108-002.

Genomic DNA was extracted from a single female specimen using a QIAamp DNA Micro
kit (Qiagen). An Illlumina sequencing library was generated from a single mite female using the
KAPA HyperPlus Kit. The insert size was 322 bp. Sequencing was done on an lllumina HiSeq-

4000 instrument, generating 755,504,138 (377,752,069x2) 150x2 bp paired-end reads. Read
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quality was evaluated in FastQC [65]. Quality filtering and adaptor content removal was done in
bbtools v. 38.23 (https://sourceforge.net/projects/bbmap/) as detailed in Supplementary Material
online: section 1. Four metagenomic assemblies were run (Table 1), in Megahit [66] and
MetaSPAdes 3.12.0 [67] with three different sets of kmer sizes ("-k™): 21,33,55; 21,33,55,77;
21,33,55,111. For assembly evaluation, the following three statistics were used: (i) basic,
reference-free statistics, e.g., N50, L50 in QUAST v.5.0.0 [68] (Supplementary Table S2 online);
(i) alignment against the transcriptome using HISAT2 v.2.1.0 [69] and RNAquast v.1.5.1 [70]
(Supplementary Table S1 online), and (iii) alignment against the "Rhagoletis zephyria" genome
in QUAST (Supplementary Table S3 online). These programs were run using Unix shell scripts,
for detail see Supplementary Material online: section 2. In addition, our final decontaminated
assembly (see below) was evaluated by finding sets of single-copy, orthologous genes specific to
Arachnida in BUSCO v.5.3.0 [71]. Our transcriptome assembly (GenBank TSA accession

GIFQ00000000.1) was described earlier [8].

Assembly annotation

Gene prediction and annotation was done in the maker genome annotation pipeline v2.31.10 [72]
in three steps: (i) we directly used our transcriptome and non-redundant GenBank proteins from
Ecdysozoa as the annotation evidence (est=transcriptome.fas; protein=Ecdysozoa_ prot.fa;
est2genome=1; protein2genome=1 in the configuration file maker_opts.ctl); these imperfect gene
models (ii) were then used to train the gene prediction program SNAP [73] bundled with maker
(snaphmms=snapl.hmm; est2genome=0; protein2genome=0); a new set of gene annotations
generated in this step (iii) was then used to train the gene predictor yet again

(snaphmm=snap2.hmm). For conserved protein domains, gene ontologies were determined in
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InterProScan v.5.38-76.0 [74]. These ontologies and standardized gene names, were assigned to
maker annotations using maker accessory scripts. Top gene ontologies were summarized in
WEGO v2.0 [75] using the InterProScan output.

D. farinae miRNAs were annotated by miRDeep2 [76] software and curation of miRNAs
based on standard miRNA features. T. putrescentiae miRNAs were found using BLAST to identify
regions homologous to D. farinae miRNAs as well as those deposited for chelicerate arthropods
in miRbase. Ago/Piwi homologs were likewise found with BLAST. Each putative Ago/Piwi
protein was verified to encode a PAZ and PIWI domain.

Mitochondrial genome annotation was done using multiple lines of evidence: sequence
similarity with two related species, Sancassania berlesei (KF499016) and Aleuroglyphus ovatus
(NC_023778.1) [25, 77]; T. putrescentiae EST data (GenBank accession: SAMNO00174981 ID:
174981); ARWEN [78] with minimal tRNA search methodology as described previously [24]; and

the Mitos Web Server for automatic prediction of all mitochondrial genes [79].

Mite phylogenomics

We analyzed 48 genomes of acariform mites (n=34), including our T. putrescentiae assembly,
parasitiform mites (outgroups, n=13) and Limulus polyphemus (distant outgroup, n=1). BUSCO
v5.3.0 [71, 80] analyses was run to identify phylogenetically conserved, single-copy genes using
the arachnida_odb10 database. Alignments were done in mafft v7.490 [81]: mafft --thread $proc -
-inputorder --bl 62 $i > $i.mafft. Alignment quality trimming was done in trimAl v.1.4.1 [82]:
trimal -in $i -out $i.trimal -automatedl -resoverlap 0.75 -seqoverlap 80. A subset of 415 protein

alignments (occupancy>0.8 and length>200) were used for a partitioned analyses in IQ-TREE
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v.2.2.0 with automatic protein model selection and partition merging [83]: iqtree2 -s Sipf -p $ipf -

-segtype AA -T AUTO --merge -rclusterf 10 -m MFP -alrt 1000 -bb 1000 -safe --prefix $ipr.

Metagenomic decontamination

Detailed decontamination procedure is described in Supplementary Material online: section 3.
Briefly, to classify the 176,943 initial metagenomic scaffolds, we ran a local BLAST v.2.7.1 [84].
Hits on contaminated GenBank assemblies, Illumina technical sequences (PhiX), and Homo
sapiens contamination were removed; high-scoring hits on Bacteria and other non-eukaryotic
organisms were filtered out; then high-scoring hits on "Rhagoletis zephyria™ and Tyrophagus
(bitscore >=300 or identity >=95%) were filtered and their coverages were noted. Entries
unclassified by BLAST were classified as mite sequences based on their coverages >600; all
sequences shorter than 300 bp were removed. The mitochondrial DNA and ribosomal RNA
scaffolds were identified, annotated manually and trimmed. The final assembly, named here P3F6,
had a total of 19,731 scaffolds (length 95,135,691 bp). This Whole Genome Shotgun project has
been deposited at DDBJ/ENA/GenBank under the accession JAAALHO000000000 (BioSample

SAMN13712654, BioProject PRINA598686, assembly GCA_012066115.1).

Metagenomic profiling

Detailed methodology is given in Supplementary Material online: section 4. Briefly, raw Illumina
reads were processed to remove adapter sequences, low quality data, and artefacts in bbmap 38.51.
For these processed reads, we assigned taxonomic classifications in Kraken2 v2.0.8-beta [85] with
the confidence parameter of 0.1, followed by abundance estimation in Bracken [86]. Three

analyses were run each using a separate Kraken library: (i) Basic with standard Kraken databases:
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archaea, bacteria, viral, human, plant, fungi, protozoa; (ii) Customl (basic plus the 'Rhagoletis
zephyria' genome); Custom2 (basic plus the T. putrescentiae P3.F6 assembly).

To classify scaffolds, we used BLAST searches with the nucleotide blastdb5 database
(downloaded May 16 2019). We also constructed several custom BLAST databases using our
metagenome, metatranscriptome, T. putrescentiae assembly (P3.F6), and the 'Rhagoletis zephyria'
genome. Intersection between the DNA and RNA assemblies was determined using the following
criteria to classify sequences as belonging the same species/OTU: bitscore > 500 and
identity>95%. Full taxonomic lineage information was added to blast/diamond outputs using a
custom script (Supplementary Material online: section 6). For metagenomic profiling of
assemblies, we used BlobTools [87], an analysis which uses three lines of evidence: coverage, GC
content, and BLAST or DIAMOND classification. For assigning a unique classification to multiple
nt BLAST hits, we used the BlobTools’ 'bestsum' algorithm. Because this and other BlobTools
classification algorithms may return false positives, we did not BlobTools to automatically remove

contaminants.

Horizontal gene transfer (HGT)

Previously described methodology was used [88]. Using the Unix command awk, we parsed the
Uniref50 proteins (downloaded Jul 11 2022) into two groups: (1) no Metazoa; and (2) Metazoa
minus Arthropoda. Taxlds were extracted from the Uniref50 fasta headers. Blacklisted Taxld
(178133=plant+phytophagous eriophyoid mite) and 46 Taxlds not found in GenBank taxonomy
were removed. Diamond v0.9.14.115 were used to run the mite coding sequences (see the section
Assembly annotation) against two databases build from the two sets of proteins. Using bitscores

from the two diamond searches, HGT indices were calculated for each coding sequence as
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described previously [88]. Our entire HGT discovery pipeline was documented as a Unix shell
script in Supplementary Material online 12: section 7. Because UniRef50 protein clusters (50%
sequence similarity) are labelled by common taxonomy of the cluster (rather than by the
representative taxon) [89], we considered protein clusters having a high taxonomic rank as
conserved. For example, regardless of its HGT score, a cluster labelled as "cellular
organisms|Eukaryota|” was deemed as conserved across Eukaryota, rather than being result of

HGTSs.

Wolbachia endosymbiont: Metatranscriptomic assembly and phylogenetics

We sequenced a metatranscriptome of T. putrescentiae from Europe (GIFQ00000000) and
assembled it in CLC Genomics Workbench v11 (Qiagen). Collection detail and bioinformatics
methodology for this sample were described previously [8]. Wolbachia contigs were identified
using BLAST and DIAMOND v0.9.24.125 [90]. Because the rRNA fraction was depleted in the
transcriptome, the 16S rRNA gene was recovered separately by mapping adaptor-free, artefact-
free, quality trimmed and filtered reads onto the known 16S Wolbachia sequence
(GCA _000829315.1) following assembly in rnaSPAdes v3.13.0. The final Wolbachia
transcriptomic assembly had 280 contigs with a total length of 925,767 bp (average coverage
742.8), approaching the typical Wolbachia genome size range, 1.3-1.6 Mb [91]. Phylogenetic
inferences were done for four datasets: genomic, five standard phylogenetic loci [32], five MLST
loci [92], and 16S rRNA (see supplementary table S4 online: standard phylogenetic loci accession
ids; Supplementary Datasets S2-4 online: nexus alignments). For the former analysis, we used
169 GenBank genomes downloaded from GenBank plus our assembly: 31 outgroups (Ehrlichia,

Anaplasma) and 139 Wolbachia ingroups. BUSCOS5 analyses was run to identify phylogenetically
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conserved, single-copy proteins at the level of Rickettsiales. A Maximum Likelihood tree was
inferred in IQ-TREE v.2.2.0 using a partitioned analysis and automatic model selection [83]. Our

entire workflow is described in detail in Supplementary Material online: section 5.

Fluorescence in situ hybridization (FISH)

FISH was performed using universal and specific bacterial probes. T. putrescentiae adults were
first fixed in 4% formaldehyde. For the hybridizations we followed the FISH protocol described
in Perotti et al. [93], then mounted as whole-specimens. Samples were incubated at 45°C in
darkness for up to 20 h, washed for 1 h in hybridization buffer followed by PBTA (phosphate
buffer with Triton X-100 plus sodium azide) at room temperature. Then, mites were mounted in
PBS/ glycerol and photographed under the confocal microscope. A number of bacterial probes
were used in different observations: EUB-338 [94] and EUB-338 Il and 11l [95], Rickettsia [96]
and Wolbachia [97] (equimolar mixed in the hybridization buffer (following remarks of ProBase)).
No probe and competition suppression controls were performed. A Confocal Zeiss LSM510
microscope with Coherent Multiphoton laser was used. For these experiments, we used cultures
originating from the Crop Research Institute, Prague (Czech Republic) [8] and the University of
Reading lab, UK (maintained since 2008, stock colony received from the Food and Environment

Research Agency, UK).

Data Availability Statement

The data underlying this article are available in GenBank: assembled genome of Tyrophagus
putrescentiae (GCA _012066115.1, WGS project JAAALHO000000000), assembled metagenome

of T. putrescentiae (GCA_013316015.1, JAALOO000000000) and the source short Illumina reads
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(SRA accession: PRINA598686; SRA run: SRR11069688); assembled metatranscriptome of T.
putrescentiae (GIFQ00000000) and the source short Illumina reads (SRR7903714-SRR7903734);

assembled transcriptome of Wolbachia endosymbiont of T. putrescentiae (G1JY01000000).

Supplementary Material

Supplementary data are available at BMC Genomics online.
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Table 1. Select GenBank sequences attributable to Tyrophagus putrescentiae contamination

based on NCBI BLAST search. Bitscore shows quality and significance of alignment between

query and subject sequences. Low bitscore matches represent short, full-length GenBank

sequences. TP=match with our decontaminated T3F6 assembly of T. putrescentiae (scaffold ids

are given). RZ=match with GenBank "Rhagoletis zephyria" genome (contaminated with T.

putrescentiae DNA); this information offers independent validation of our data. *=values

averaged; **=the GenBank "Rhagoletis" genome does not have the mite mitochondrial DNA;

this sequence matches GenBank T. putrescentiae mitochondrial genome (from China); ***=the

lab that produced these sequences is known to maintain T. putrescentiae cultures; ****=hospital

surfaces and sink.

GenBank title GenBank id Identity (%) bitscore TP scaffold id Rz Country
Insects

Rhagoletis zephyria genome GCF_001687245.1 94.0* 909* 4901 scaffolds total 'y USA
Ostrinia nubilalis AF398406.1 99.1 623 947 y USA
Simulium damnosum sp.complex KY631747.1 99.0 695 3270 Nigeria
Predatory mites

Neoseiulus cucumeris AY099366 98 678 692 el USA
Cheyletus malaccensis KP938898.1 98.7 689 692 ol China
Vertebrates

Mus musculus AKO041295.1, AK041150.1 97.5-99.4  1118-1308 2104,6946,10139 vy Japan
Ardea herodias AF447969.1 99.02 366 4160 y USA
Round worms

Ancylostoma caninum DQ841142.1, DQ841148.1 98.5-99.1 580-963  1820,7390 y USA
Fungi

Colletotrichum gloeosporioides JQ862580.1 99.0 1317 905 y Colombia
Parastagonospora forlicesenica KY769662.1 100 1905 3270 y Italy
Fusarium equiseti MG751111.1,MG751119.1,MG751114.1 99.1-100 327-545  43,57,3166 y(first) USA
Fusarium graminearum MG751125.1,MG751131.1 97.2-97.8 388-424  273,6583 y USA
Plants

Intsia palembanica FJ448223.2,F1448461.2,FJ448035.2 97 407-749 650, 3618, 4637 y(first two)***  Singapore
Bacteria

Shinella sp. QFOR01000162 100 2353 6121 y USA****
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Table 2. Metagenomic profiles of two geographically isolated samples of Tyrophagus
putrescentiae based on next-generation sequencing datasets. We analyzed our genomic dataset
(from Mexico) and transcriptomic dataset (from Europe) using both unassembled reads
(Kraken/Bracken analyses) and metagenomic scaffolds (megablast/blobtools analyses). We only
present high-scoring Operational Taxonomic Units (OTUs). The bacterium Cutibacterium acnes
was found in both datasets; however, it is considered a contaminant. a=not found by BLAST,
values given for Candida parapsilosis; b=for Babesia bigemina; c=for Babesia ovata; d= Bacillus
thuringiensis and Bacillus cereus; e=for Fusarium proliferatum; f=high abundance in the
transcriptome because of the presence of highly expressed mitochondrial genes; g=for Klossiella
equi (mitochondrion) and Adelina bambarooniae (18S rRNA), respectively; * = found in both

samples; []=spurious Kraken result, not confirmed by BLAST.

Species Kraken % of Kraken Magnitude Blob Reads Blob assembly BLAST best  Identity for
bacterial/fungal/eukaryotic reads mapped on size (bp) hit (bistcore) ~ BLAST best hit
assembly

Metagenome (Mexico)

Bacteria
Alcaligenes faecalis 58 1,154,214 2,450,807 4,220,682 370,900 98.881
Pseudomonas 9 186,466 2,129,316 4,743,839 10,405 100.000
aeruginosa
Stenotrophomonas sp. 4 76,490 1,191 9,969 5,317 99.286
PAMC25021
Achromobacter 4 74,386 94,154 1,554,668 2,248 99.043
denitrificans
Advenella kashmirensis 3 67,222 331,132 3,470,439 6,248 98.477
Stenotrophomonas 3 63,477 307,833 3,505,590 5,345 99.456
maltophilia
*Cutibacterium acnes 2 36,049 54,577 1,060,224 2,830 99.677
Fungi (Dikarya)
[Candida dubliniensis] 96 221,846 422 17172 7132 1002
Apicomplexa
Low-scoring OTU(s)  0.0002 592 10¢ 101° 556° 98.418°
Metatranscriptome
(Europe)
Viruses
Wolbachia phage not recovered not recovered 507 2,573 1908 81.732
Bacteria
Escherichia coli 36 130,213 14,451,554 119,701 9,356 99.98
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Bacillus spp
Wolbachia
[Salmonella enterica)
[Yersinia pestis]

*Cutibacterium acnes

[Zymoseptoria tritici]
Fusarium

[Botrytis cinerea]
[Colletotrichum
higginsianum]
[Sporisorium

graminicola]

Low-scoring OTU(s)

18

15

8

6

0.7

Fungi (Dikarya)
40

8

8

Apicomplexa
0.05

63,648
54,356
30,667
22,138
2,675

11,594
2,423
2,224

1,980

1,941

104,121

83,438
1,592,451
not recovered
not recovered
13,221

not recovered
18,016,619F
not recovered

n/a

not recovered

9,053,673

122,804
622,805

not recovered
not recovered
1,361

not recovered
58,270F
not recovered

n/a

not recovered

434,697

12,4124
10,035

2,564

not recovered
2,071

187
11,753¢
not recovered

87.9

not recovered

2857,18909

99.91149
80.264
99.434

not recovered
94.635

78.84
99.597¢
not recovered

85.714

not recovered

82.403, 92.5289
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Table 3. Horizontal gene transfers detected in acariform mites detected in the Tyrophagus
putrescentiae genome (GCA _012066115). HGT analyses were run using two protein subsets
extracted from the Uniref50 database (all_no_Metazoa vs Metazoa no_Arthropoda). For the
source, best thlastx matches for the NCBI nr database (no Metazoa) are given; for the target, best
tblastx matches for the NCBI wgs database (Endeostigmata+Trombidiformes+QOribatida) are
given. Per. ldent= percent identity; Total score =total bitscore. More detail is given in

supplementary dataset S1 online.

id Locus Query (TP) Source Total Per. Accession Target Total Per.  Accession
Scor Ident Scor Ident
e e
1 Nitroreductase GMOD_00004316-RA Bacteria: 180 45.05 MBS0604115.1 Acariformes/ 589 50.92 JAEMBT020000006.1
Verrucomicrobia Parasitiformes
2 NADPH GMOD_00003087-RA Bacteria: Cyanobacteria 373  53.37 WP_250121213.1 Acariformes/P 1945 65.65 JAEMBT020000008.1
dehydrogenase/NADH:flavin arasitiformes

oxidoreductase

3 Glycoside hydrolase family GMOD_00002110-RA Bacteria: Bacteroidetes 275 43.96 WP_130856424.1 Acariformes/ 2232 54.81 JAEMBT020000008.1
28/ polygalacturonase Parasitiformes

4 Glucan endo-1,3-beta- GMOD_00001330-RA Eukaryota: Amoebozoa 259 51.38 PRP81173.1 Oribatida 2032 57.71 JAEMBT020000001.1
glucosidase Al-like/
Glycoside hydrolase family

16
5a Discoidin domain-containing GMOD_00003189-RA Bacteria: Actinobacteria 631 58.61 WP_067367716.1 Oribatida 2877 69.95 CAJPVJ010009338.1
protein / mycodextranase
5b copy 2 GMOD_00003959-RA Bacteria: Actinobacteria 504 60.71 MBDO0736812.1 Oribatida 2445 65.84 JAEMBT020000001.1
7a Heparinase 11/111-like protein GMOD_00002564-RA Bacteria: Bacteroidetes 291  42.33 WP_168862112.1 Acariformes 2179 66 JAEMBT020000009.1
7b copy 2 GMOD_00003781-RA Bacteria: Bacteroidetes 169 44.20 WP_113615130.1 Acariformes 1405 65.82 JAEMBT020000009.1
8a NAD-dependent 5,10- GMOD_00004475-RA Eukaryota: 277 5447 CAGB533486.1 Acariformes 942 6525 CAEY01000550.1
methylenetetrahydrafolate Glomeromycetes
dehydrogenase
8b copy 2 GMOD_00003902-RA Eukaryota: 278 54.47 CAG8533486.1 Acariformes 950 65.25 CAEY01000550.1
Glomeromycetes
9 D-Ala-D-Ala dipeptidase JAAALHO010000366.1: Bacteria: 134  40.30 WP_231555892.1 Acariformes/ 323 59.09 LBF001075982.1
11632-12279 Alphaproteobacteria Parasitiformes
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Figure legends

Figure 1. Decontaminated genomic assembly of Tyrophagus putrescentiae and phylogenomic
tree of acariform mites. Basic assembly statistics (a). Mitochondrial genome (for each strand,
arrows show direction of transcription; inner circle shows GC content) (b). Phylogenomic
maximum likelihood analysis of acariform mites (c). Genomes of acariform mites and outgroups
(parasitiform mites, Limulus) were downloaded from GenBank, single-copy orthologs were
extracted using the BUSCO arachnida_odb10 database, and then aligned and trimmed; 415 protein
alignments (occupancy>0.8 and length>200) were used for a partitioned analyses in IQ-TREE with
automatic partition merging. For each branch, SH-aLRT and ultrafast bootstrap support values are

given (in that order) unless both measures are equal 100%.

Figure 2. Bacterial metagenomic profile of Tyrophagus putrescentiae from Mexico and
ancient horizontal transfer events. Bacterial metagenomic profile of Tyrophagus putrescentiae
from Mexico; abundance was estimated by Kraken2/Bracken analyses based on Illumina short
reads (a). Ancient horizontal transfer events from bacteria (b, ¢) or fungi to mites (d):
Nitroreductase  (b), Heparinase  II/lll-like  protein  (c), NAD-dependent 5,10-
methylenetetrahydrafolate dehydrogenase (d); for detail, see Table 3 and supplementary dataset

S1 online.

Figure 3. Bacterial endosymbionts of Tyrophagus putrescentiae visualized by different FISH
probes: Wolbachia-specific (a, g) (red channel), Rickettsia-specific (b) (yellow channel),
Wolbachia+ Rickettsia (c), Eubacterial (e,f) (green channel), and control (d). Wolbachia and

Ricketsia are localized (a, b, arrowheads), while Wolbachia is also found in the area of the ovaries
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(a, arrowhead), female from the UK culture; much of eubacterial signal is associated with the
digestive track (e) and parenchymal tissue bacteriocytes (e,f), two food boluses show
autofluorescence (e), female from the Czech culture; Wolbachia (arrowheads) in egg, from UK

culture (egg membranes showing autofluorescence and not signal in the red and green channels).

Figure 4. Maximum likelihood phylogenomic tree of endosymbiotic bacterial genus
Wolbachia. This inference is based on 276 orthologous loci, 112,298 amino acid alignment
positions, 139 Wolbachia ingroups, 31 outgroups. Wolbachia supergroups and hosts are shown.

Previously recognized supergroup O was recovered as part of supergroup B.
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