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Abstract
We determine the asymptotics of the block Toeplitz deter-
minants detT,(¢) as n — oo for N X N matrix-valued
piecewise continuous functions ¢ with a finitely many
jumps under mild additional conditions. In particular, we
prove that

detT,(¢) ~ G"n®E asn — oo,

where G, E, and Q are constants that depend on the
matrix symbol ¢ and are described in our main results.
Our approach is based on a new localization theorem
for Toeplitz determinants, a new method of computing
the Fredholm index of Toeplitz operators with piecewise

Mathematics SQuaRE
continuous matrix-valued symbols, and other operator
theoretic methods. As an application of our results, we con-
sider piecewise continuous symbols that arise in the study
of entanglement entropy in quantum spin chain models.
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1 | INTRODUCTION

For a matrix-valued function ¢ € L®(T)N*N defined on the unitcircle T ={z € C : |z| = 1}with
Fourier coefficients ¢;, define the Toeplitz determinants D,[¢] of the finite block Toeplitz matrix

T,.(¢) by

Dy[¢] = detT,,(¢) = det(¢;_ ;l,;io’ neN.
The asymptotic behavior of D,,[¢] as n — oo is well understood when ¢ is sufficiently nice and
it is given by the well-known Szeg6-Widom limit theorem, see [11, 32]. For symbols possessing
zeros, certain kinds of singularities, jump discontinuities, or having a nonzero winding number,
the large n behavior of Toeplitz determinants is nearly completely understood only when N =1
and given by the Fisher-Hartwig asymptotics. For details we refer to [14, 16] and also to [10, 15]
for more general information.

This paper is concerned with the asymptotic behavior of block Toeplitz determinants with
Fisher-Hartwig symbols. Specifically we deal with the case of symbols with jump discontinu-
ities. Our approach is based in part on the localization or separation theorem [6] which states that
when the symbols ¢ and ¥ do not have common singularities and satisfy certain invertibility and
smoothness criteria off the singularites, then

. Dn [¢¢] — -1 -1 ) ( —1/ X TNT—17.7 )

lim o = det (T @T@pT @) (1 @TERTT @) ).

In the above, T(¢) is the semi-infinite Toeplitz operator defined on ¢2(Z, )N, Z, ={0,1,...} with
matrix entry ¢;_; and $(e®) = p(e~°). The localization theorem proved useful because if one
could find a canonical symbol that possessed one jump singularity and such that the determinant
asymptotics were known for the canonical symbol, then the asymptotics could be constructed for
an arbitrary symbol with a finite number of jumps by applying it to a pair of symbols with disjoint
singularities and then by repeatedly adding another canonical factor.

It might seem that this idea should easily transform to the matrix-valued symbol case. How-
ever, the localization theorem requires at each step that certain semi-infinite Toeplitz operators
be invertible. In the scalar case this is not an issue. This is because in the scalar case, if two invert-
ible Toeplitz operators have bounded symbols that have disjoint singularities, then the Toeplitz
operator with the product symbol is also invertible. However in the block case, one can only say
that the resulting operator is Fredholm with index zero.

Thus a new version of the localization theorem needs to be proved that does not require the
same invertibility conditions. This is what will be done in this paper. With the new version and
under appropriate conditions on ¢ we prove that

D,[¢] ~ G"n“E, asn — oo, 1.1
where G, E, and Q are constants that depend on ¢ and can be described. Our main results

require some preparations and will be stated Section 2, where we also provide some comments
on the constant E. Some auxiliary results and their proofs, definitions such as I-regularity and
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122 | BASOR ET AL.

I-winding number, and operator theoretic preliminaries will be given in Section 3. The proofs of
the main results are given in Sections 4 and 5, which is followed by a brief discussion of a possible
alternate approach based on Widom’s perturbation result [30] and some open problems in
Section 5.4. Examples that illustrate our results will be given in Section 6.

In order to put our result into context, let us first recall a version of the Szeg6—-Widom theorem.
Therein F = W N F¢ i/zz 12 stands for the set of all functions a € L'(T) with Fourier coefficients
a,, satisfying ’

. . 1/2
lallp 1= )] |an|+< > |n|-|an|2> < oo.

n=—0oo n=—0oo

Theorem 1.1 (Szeg6-Widom). Let ¢ € FN*N be such that the determinant det ¢(t) does not vanish
on all of T and has winding number zero. Then

. detT,(¢) _
V}LIEO e det T($)T (™),

where the right hand side is a well-defined operator determinant and

27
G[¢] = exp (i / (log det ¢)(e™) dx) 1.2)
2r J,
in which log det ¢ is continuous on T.

Besides the original references of [29, 31, 32] a slightly different operator-theoretic proof can be
found in [11, sect. 10.25-10.32]. We remark that if both T(¢) and T(¢~') are invertible, the proof
is easier than in the general case where the stated assumption on det ¢(t) is equivalent to both
T(¢) and T(¢~') being Fredholm operators with index zero (see also Theorem 2.1 below). Notice
also that under the stronger assumption the Szeg6-Widom theorem follows immediately from
the Geronimo-Case-Borodin-Okounkov formula (see [11, sect. 10.40] and the references therein).
Another proof based on a different approach which uses Banach algebras is given in [17]. We
remark that the class F' considered above can be replaced by more general classes such as Krein
algebras. Furthermore, in the scalar case (N = 1) a multitude of different proofs of the classical
Szeg6 Limit Theorem exist.

Let us now briefly recall what is known about the asymptotics of the determinants det T,,(¢)
for scalar (N = 1) symbols ¢ with jump discontinuities. We assume that the symbol is represented
as a product

R
(1) = po(®) [ [ g, () (13)
k=1

where ¢, is a sufficiently smooth nonvanishing function on T with winding number zero, and the
functions ug ; having a single jump at t = 7 are defined by

ug () = (—t/r)ﬁ = exp(ip arg(—t /1)), teT, (1.4)
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with |arg(-)| < 7. The numbers 7y, ..., 7 € T are distinct, and 31, ..., S € C are the jump param-
eters. The Fisher-Hartwig type asymptotics for the determinants det T, (¢) is given by (1.1) with
the constant G = G[¢,] defined in (1.2),

R
a--35
k=1

and a more complicated but explicit constant E # 0. More specifically, in the case of multiple
jumps these asymptotics were first proved [5] under the assumption

(a) RefBy=0foralll <k <R.

This condition was soon replaced [6, 8, 9] by the weaker assumption

(b) |ReBi| <1/2foralll <k <R.

Finally, it was proved [16] that the asymptotics are valid even under the condition
(©) IRefr —Refj| <landfy ¢ Z\{0}foralll < j,k <R

This last condition on the parameters is sharp. Indeed, if merely |[Re 5 — Re ;| <1 is assumed
and equality is attained for at least some j, k, then the Fisher—-Hartwig asymptotics breaks down
and a generalized asymptotic formula has been proved [14]. Let us also remark that before the
general case (c) was established, the following modifications of (b),

(bl) 0<Refy <1foralll <k <R,
(b2) =1 < Ref, <0foralll1 <k <R,

have been dealt with by similar techniques [7].

Our main results concern the block case of Fisher-Hartwig symbols with jump discontinu-
ities. The assumptions we need to impose correspond in the scalar case to condition (b) above.
Therefore, while this covers a broad situation, it is not the most general case for which the
results can be expected to hold. Perhaps cases corresponding to (bl) or (b2) can be established
by slightly modifying our method, but what corresponds to case (c) or to the generalized Fisher—
Hartwig asymptotics (aka the Basor-Tracy asymptotics) is considerably more challenging and
seems currently out of reach.

As far as the authors are aware of, no general results for Fisher-Hartwig type symbols in the
block case are known up to now. It is possible that for very specific block symbols some results
have been obtained in the literature. For instance, the work of [2, 3] to be discussed below con-
tains non-rigorous results for particular block jump symbols. There are some cases that be can be
trivially reduced to the scalar case, for example, if the symbol can be transformed into to block
triangular matrix functions by (left/right) multiplication with nonsingular constant matrices.
Let us also note that for piecewise continuous symbols, it is quite obvious what kind of sym-
bols are their generalization to the block case. However, it is less clear what should constitute
the block analogue of general Fisher-Hartwig type symbols or even symbols that only involve
zero/pole-type singularities.
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1.1 | Application: Entanglement entropy

In many instances entanglement entropy of various quantum spin chain models, such as the
XX, XY and Ising chains, can be computed using the Szeg6-Widom limit theorem or determi-
nants involving Toeplitz matrices generated by 2 X 2 matrix-valued symbols that possess jump
discontinuities. The former, when the smooth symbol is matrix-valued, still requires the com-
putation of the constant in the expansion that is known only in rare cases, such as those of Its
etal. [24], in which the authors compute the von Neumann entropy of entanglement of the ground
state of a wide family of one-dimensional quantum spin chain models (incl. the XX and the XY
models).

Jin and Korepin [25] were the first to rigorously compute the von Neumann entropy of the
ground state of the XX model, and in particular showed that the entropy grows like % log L (where
L is the length of the chain) at a phase transition using the asymptotics of Toeplitz determi-
nants with piecewise continuous scalar-valued symbols. Toeplitz determinants with non-singular
matrix-valued symbols first appeared in the computation of the entropy of the XY model in [23]
and other more general one-dimensional models in [24].

The basic idea of how Toeplitz determinants enter the study of entanglement is as follows.
Consider the Hamiltonian

k

Hoc = —— Z ((Ajk + )/B]k)O';CO';{C + (A]k — }/B]k)O'j)O'i>
1

-1 M-1
alz - Z O']Z., (1.5)
0<j<k<M—1 j+1 j=0

where 0%, 0", o7 stand for the Pauli matrices which describe spin operators on the jth lattice site

of a chain with M sites, A is symmetric, B is antisymmetric, and both are translation-invariant.
We note that this generalizes the XY model whose Hamiltonian is given by

HYY = -

N

M-1 M-1
X X y_y z

Z) <(1 + y)aj Ot 1- y)aj ajﬂ) - ;) ol (1.6)

Jj= Jj=

where y € [0, 1]. Further, when y = 0, (1.6) provides the Hamiltonian of the XX model. We also
remark that at the critical value a = 1, the XY model undergoes a phase transition. Going back to
the Hamiltonian in (1.5), if we divide the system into two subchains, denoting the part containing
the first L spins by A and the second part containing the remaining M — L spins by B with 1 «
L <« M, then the von Neumann entropy S(p,) is given by

S(pa) = —trace py log p 4, 1.7

where p4 = traceg pap and pap = |Wg)(W,|. It turns out that (see, e.g., [24])

dlogD; (A
0g L()d/1

m , 1.8)

. 1
S(oa) = lim L /F GRS

where I'(¢) is the contour depicted in Figure 1 and oriented counterclockwise,
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{ AW
X it

FIGURE 1 The contour I'(e) of the integral in (1.8).

= g (T2) 5 (55,

and Dy (1) is the Toeplitz determinant of some symbol ¢ depending on the model.
In the XX model, ¢ is a scalar symbol and the standard theory of Toeplitz determinants apply.
In the XY model, the symbol is matrix-valued and given by

_ i1 g©)
$(0) = <_g(9)_1 i1 ) (1.9)

where

acos6—1—iysinf

80) = lacos® —1—iysinf|’

In [23] and [24], the entropy of the XY model and its generalization, respectively, is computed
using the Szegé-Widom limit theorem (1.1) when ¢ in (1.9) is sufficiently nice. However, in crit-
ical cases, such as when a = 1, the matrix-valued symbol ¢ has jumps and the Szeg6-Widom
limit theorem no longer applies. This motivates the study of the asymptotics of Toeplitz determi-
nants with piecewise continuous matrix-valued symbols, which we have initiated in this work
and in particular we discuss the specific results in the next section. Further, as will be dis-
cussed in Section 6, our results cover the critical case a = 1, providing the asymptotics of Dy (1)
in (1.8) when 4 ¢ [—1,1], and pave the way for further study in this direction. It is also worth
noting that when the chain is non-contiguous, as in [12], for example, it is no longer possi-
ble to deduce the study of the asymptotics of Toeplitz determinants directly and instead one
needs to deal with certain block structures where, nevertheless, Toeplitz matrices with piece-
wise continuous matrix-valued symbols still appear but they are not in the scope of our present
work.

In a related work of Ares et al. [2] the authors consider the Rényi entanglement entropy for
quadratic spinless fermionic chains with complex finite-range interactions, which leads to the
asymptotic study of Toeplitz determinants with piecewise continuous matrix-valued symbols.
More precisely, their work includes the study of quantum spin chain models with Dzyaloshinski-
Moriya coupling and a Kitaev fermionic chain with long-range pairing. As in the previous works
discussed above, a formula similar to (1.8) is used to compute the entropy S, (X) of the subsystem
X with a particular choice of the Toeplitz determinant Dx (1), where o € [0, 1) and the limita — 1
provides the von Neumann entropy discussed above. More precisely, in [2], it is argued that the
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126 | BASOR ET AL.

entropy is given by

e 1 dlog Dy (1)

where

e = [ (£42)" 4 (552

1—a

and I'is similar to the contour of integration in (1.8)—we omit the full details and instead focus our
attention on the block Toeplitz matrix Dx(4) that appear in (1.10). Indeed, in Section 6, we write
down the matrix symbol in (6.2) and then proceed to analyze the corresponding asymptotics using
our main results. It turns out that our findings are indeed in agreement with those obtained less
rigorously in [2].

2 | BASIC DEFINITIONS AND STATEMENT OF THE MAIN RESULTS

We denote by (¢2)N = ¢%(Z, )" the space of all C"-valued sequences {x,,}°> ; equipped with
the usual 2-norm, which can be identified with direct sum of N copies of £%(Z.). Likewise,
L®(T)N*N stands for the space of all essentially bounded CV*N-valued functions on T, which
can be identified with the space of all N X N matrices with entries from L*(T).

Given a bounded symbol a € L= (T)N*N, the Toeplitz operator T(a) and Hankel operator H(a)
are the bounded linear operators defined on (¢2)" via the matrix representations

T(a)=(aj_x), 0<j,k < oo,
and
H(a) = (@jk41), 0= j,k < oo.

Therein,

27

ax a(e®)e=k0 dg, k ez,

271'0

are the (matrix) Fourier coefficients a; € CN*N of the function a.

Throughout this paper, let I’ = {ry,..., 7z} C T be set of R distinct points taken from the unit
circle. We allow the case of R = 0, that is, ' = @.

Let PC(T;T) stand for the set of piecewise continuous functions ¢ : T — C which are contin-
uous on T \ I'. In other words, ¢ can have only jump discontinuities at the finitely many points
71,...,Tg € T. For the one-sided limits at the jumps we will use the notation

— 1 +i6
Pt +0) = SIEEO P(te*®).

LetI C R be a subset with the property that it does not contain two numbers whose difference
is a nonzero integer. In this paper, only the case of the open interval I = (—1/2,1/2) is of interest
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to us. The consideration of the general setting here comes with no extra effort and might prove
useful in dealing with other cases of the determinant asymptotics elsewhere.
We call the function ¢ € PC(T; T)N*N I-regular if

(a) ¢(¢)isinvertible forallt € T\ T,
(b) foreach 1 < k < R, both ¢(7), + 0) and ¢(z), — 0) are invertible matrices,
(c) foreach 1 < k < R, one can choose the matrix logarithm

1
Ly = 5~ log (¢(zrc +0) "' p(ri — 0)) (2.1)
such that the real parts of all of its eigenvalues lie in I.

The above condition on I guarantees that the L;’s are uniquely determined. Therefore, it is possible
to define the I-winding number of an I-regular function ¢,

R

R
1
wind(¢p; 1) = — ) trace(Ly) + — Alogdet ¢(t)
= k 27i kz::l [ ]

Tk41—0
. 2.2)
t=1,+0

Here, 73,1 = 71, and A(...) denotes the continuous increment of the (continuous) logarithm of
the determinant on the arc (zy, Tr.41). Only for the sake of this definition we assume that 7y, ..., 7
appear in this order on the unit circle, that is, 7; = €1, ..., 73 = ¢®r with0 < 8, < --- < 6 < 271.

For a continuous non-vaninishing scalar function ¢ € C(T), the (usual) winding number is
defined by

T

wind(c) = Zim [aloge(e®) 2.3)

2

6=0

In the case R = 0 (i.e., I' = @) the definition (2.2) comes down to
wind(¢;I) = wind(det ¢),

that is, the I-winding number of the (continuous and invertible) matrix function ¢(t) equals the
winding number of its determinant det ¢(¢).

Basic properties regarding the notions of I-regularity and the I-winding number will be
established in Section 3.1.

The following theorem, which will be proved in Section 3.2, establishes the equivalence of four
conditions. These conditions (with »x = 0) will appear as the regularity assumption in our main
results.

Theorem 2.1. Let I = (—1/2,1/2), x € Z, and ¢ € PC(T;T)V*N. Then the following conditions
are equivalent:

(i) T(¢) is Fredholm on (¢*)N with index ind T(¢) = —x.
(ii) T(@) is Fredholm on (¢*)N with index ind T(¢) = x.
(iii) ¢ is I-regular and x = wind(¢;I).
(iv) ¢ isI-regular and x = wind(c).
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128 | BASOR ET AL.

Therein, c is the continuous and nonvanishing function on T defined by

det ¢(¢)

c(t) = —
Hk:l Ug, i ()

(24)

with ). = trace Ly and the L;’s given by (2.1), and the functions ug . are defined in (1.4).

Let us remark that if ¢ is invertible in L*(T)V*V, then in condition (ii) the operator T(¢) can
be replaced by the operator T(¢~!) (see Proposition 3.10).

This theorem rephrases the well-known criteria for Fredholmness of block Toeplitz operators
on (¢2)N with piecewise continuous symbols in terms of I-regularity in the case of finitely many
jump discontinuities. More importantly, it provides an explicit way to determine the Fredholm
index either via the I-winding number in (iii) or via the winding number of a scalar function in
@iv).

We are aware of two further, but different approaches to compute the Fredholm index
of the block Toeplitz operator with piecewise continuous matrix symbol. One, which is
somewhat similar, can be found in the monograph by Gohberg, Goldberg, Kaashoek [20,
sect. XXV.3]. Another one, which can be applied to to a much larger class of symbols but
is perhaps less explicit, is based on approximate identities. It can be found in the mono-
graph by Béttcher and Silbermann [11, sect. 4.27-4.31] (see also the references and comments
therein).

To specify the smoothness condition in our main results we introduce two classes of functions,
which generalize the familiar class C'*¢(T) of differentiable functions with a Hélder-Lipschitz
continuous derivative of order 0 < € < 1.

Definition 2.2. Let PC'*¢(T;T) stand for the set of all functions a € PC(T;T) for which a is
continuously differentiable on T \ T and has a derivative satisfying a Holder-Lipschitz condi-
tion of order € > 0 on each arc (ty, Tr41), 1 < k < R with t;,; = 7;. Here, as before, 74, ..., 73
appear in this order on the unit circle, thatis, 7; = €1, ..., 7z = ¢®r with0 < 8, < --- < 6 < 271.
Furthermore, let

Cpur(T;1) = PCT(T; 1) n C(T), @5)
which is the class of continuous functions with a piecewise Holder-Lipschitz derivative.

Both PC*¢(T;T) and Cllj;f(T; I') are Banach algebras with the norm

R . .
lall = lallo + Y, sup 12—l
® =1 Ok <x<y<Op11 lx — yl¢

k]

where 9R+1 = 61 + 27.
For a matrix B € CV*V introduce the piecewise continuous matrix function with a single jump
discontinuity at T € T by

up . (t) = (—t/7)? = exp(iB arg(—t /7)), teT. (2.6)
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Here |arg(-)| < 7. The function up ; is the matrix analogue of the scalar function ug ; defined in
(1.4).

Our main results concerning the asymptotics of det T,,(¢) for piecewise continuous matrix sym-
bols ¢ are as follows. Note that the description of the asymptotics requires a product representation
of the symbol ¢ which is the matrix analogue of (1.3). The existence of this representation will
therefore be part of the theorem.

Theorem 2.3. Let ¢ € PC(T; I)V*XN. Assume that one (hence all) of the equivalent conditions
(D)-(iv) in Theorem 2.1 hold with »x = 0. Then ¢ admits a unique representation of the form

$(t) = o(O)p1(2) - pr(2) (2.7)
where ¢y € Cpt*(T; DMV is an invertible function with wind(det ¢) = 0 and
¢r(t) = up, -, (1), 1<k <R,

with the matrices B, € CN*N having the property that the real parts of all their eigenvalues
) N) are contained in the interval I = (=1/2,1/2).

i oo By
Moreover,
. detT,(¢)
where
1 2 )
G =exp <E /0 (log det ¢g)(e™) dx), (2.9)
R N '
Q=-3% > @ " (210)
k=1 j=1
R N . _
E=[][]ca+s"ca-8")
k=1 j=1
xdet (T@T() "+ TG TG+ T TE™). 211

As will be seen below (see Proposition 3.2 and formula (3.2)) the matrices By, are similar to the
matrices L. However, due to non-commutativity in the block case, they are in general not equal
to each other except for the last ones, By = Lp.

Note that the first part of the constant E features the Barnes G-function, an entire function
defined by

i k
G(l+z)= (27r)z/ze—(z+1)z/2—y5z2/2 H <<1 + %) e—z+z2/(zk)> 2.12)
k=1

with yg being Euler’s constant. Note that this part of the constant E is always nonzero under
our assumptions.
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The second part of the constant E is a well-defined operator determinant, that is, it is the deter-
minant of an operator of the form identity plus a trace class operator. In particular, the Toeplitz
operators T(¢;) and T(¢I:1), 1 <k <R, appearing therein are invertible. Note that T(¢,) and
T(¢, 1Y do not occur in the product. In fact, it need not be the case that T(¢,), T(¢, D, T(¢), or
T(¢~1) are invertible. Our assumptions only imply that these four operators are Fredholm oper-
ators with index zero. To see this we can refer to Theorem 2.1 and Proposition 3.10 below. It is
therefore possible that the operator-determinant (and hence the constant E) is zero, namely when
T(¢) or T(¢~') is not invertible.

In the case of no jump discontinuities (i.e., R = 0 and T’ = @) the previous theorem comes of
course down to the Szeg6-Widom limit theorem. Already in this case, no other general explicit
expression is known for the operator determinant in the constant E in the block case (N > 2).
For certain very special classes the computation of E can be done, such as for the smooth matrix-
valued symbol discussed above in (1.9) with o < 1 an expression was found using rather involved
computations and Riemann-Hilbert analysis in [24]. See also [15, sect. 10] for a review of some
situations where effective evaluations have been obtained.

If one is not interested in the description of E, the formulation of the main result can be sim-
plified. One does not need the product representation (2.7) and the expressions for the constants
G and Q can be stated differently.

Corollary 2.4. Let ¢ € PC'(T; T)N*N. Assume that one (hence all) of the equivalent conditions
(D)-(iv) in Theorem 2.1 hold with x = 0. Then the asymptotics (2.8) holds with the constants

2
G =exp (% / (log c)(e™) dx>, (2.13)
0
R
Q=- 2 trace ((Ly)?), (2.14)
k=1

where the Ly ’s are given by (2.1) and the function c is defined in (2.4).
Moreover, the constant E is nonzero if and only if both operators T(¢) and T(¢~") are invertible
on (EHN.

Remark 2.5. 1t is clearly desirable to know whether the constant E vanishes or not, since only if it
is nonzero the actual asymptotic behavior of det T, (¢) is given by (2.8). We will mention here two
sufficient conditions for the invertibility of T(¢) on (¢2)N.

If¢p € (L®(T))VN*N is sectorial, then T(¢) is invertible on (¢2)V. The function ¢(t) being sectorial
means that there exist invertible matrices B, C € CN*N and some & > 0 such that

Re (B(t)Cx, x) > 8||x]|?

forall x € CN and fora.e. t € T. Here the Euclidean inner product and norm in CV are used. This
condition is equivalent to the existence of (possibly different) invertible B,C € CN*N and & > 0
such that

Iy —Bo(Clleny <1 =86

for a.e. t € T. For details on the notion of sectoriality and its generalizations we refer to [11,
sect. 3.1]. Notice that for instance, strictly positive definite matrix functions ¢ are sectorial.
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The other, somewhat peculiar sufficient condition we want to mention is the following. If the
symbol ¢ € (L®(T))N*N satisfies the condition

(@) ¢t~ = Iy, forae.teT,

then the kernel of both T(¢) and its adjoint (T(¢))* on (¢2)N are trivial. Here (¢(1))* = (¢(1)) is
the complex adjoint function. This result is due to Voronin [28] (see also [18] for further details and
generalizations). If, in addition, T(¢) is Fredholm, then we can conclude that T(¢) is invertible
on (£2)N. Note that Fredholm criteria are known for piecewise continuous functions ¢.

3 | PRELIMINARIES AND AUXILIARY RESULTS
3.1 | Properties of I-regularity and I-winding number

Recall that the notions of I-regularity and the I-winding number have been defined in Section 2
for functions ¢ € PC(T;T)V*N, see in particular (2.1) and (2.2). Here I C R is a subset with the
property that it does not contain any two numbers whose difference is a nonzero integer. In this
paper, only I = (—1/2,1/2) is of interest. The basic result about these notions are stated next.

Proposition 3.1. Let ¢ € PC(T;I)V*N. Then

(1) wind(¢;I) is a well-defined integer for any I-regular function ¢.

IfIis an open set, then

(ii) wind(¢;I) is invariant under continuous deformations of I-regular functions.
If0 € 1, then

(iii) wind(¢,¢,;I) = wind(¢;;I) + wind(¢,; I) provided ¢, and ¢, are I-regular functions having
no discontinuities in common,
(iv) every invertible ¢ € C(T)N*N is I-regular and

wind(¢; I) = wind(det ¢),

that is, the [-winding number of ¢ coincides with the usual winding number (2.3) of the scalar
function det ¢.

Proof. (i): It is straightforward to show that the exponential of 27zi times (2.2) evaluates to one.
Note that the matrix logarithms and the continuous increments are uniquely defined.

(ii): All quantities entering (2.2), in particular the matrix logarithms, depend continuously on
¢ in the L*-norm if I is open. Notice that this is no longer the case if we consider, for example,
the half-open interval [—-1/2,1/2).

(iii): The second term in (2.2) obviously splits additively if we apply it to the }groduct $1¢,. In
view of the first term, let L, be the matrix (2.1) for the product ¢;¢,, and let L and L ) be the

corresponding matrices for ¢; and ¢,. Assume that, say, ¢; is continuous at 7). Then L(l) =0
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because 0 € I and the matrices L, and LI({Z) are similar to each other. This implies that trace L, =

trace LI({D + trace L(kz).

(iv): Note that the corresponding L, = 0 because 0 € I.

Notice that statements (iii)-(iv) may no longer be true if one considers, for example, an open
interval I not containing 0. O

For B € CMN and 7 € T we have introduced the functions ug; in (2.6) as a generalization of
the scalar functions ug . defined in (1.4). The functions are smooth on T \ {r} and have a possible
jump at ¢t = 7. In fact, they belong to PC(T, {t)hN*N and the definition can be restated as

ug (™) = exp((x — 7)iB), 0<x<2m,
and
ug () = up;(t/7), teT.
In particular the one-sided limits at the jump ¢ = 7 evaluate to
up ;(t + 0) = exp(—7iB), upg (t — 0) = exp(wiB).

In the scalar case, representations of ¢ as a product (1.3) play a role for the description of the
asymptotics of det T, (¢). We will now generalize this product representation to the matrix case.

Proposition 3.2. LetI C R bean open interval of length at most one and assume that 0 € I. Suppose
¢ € PC(T; D)N*N is I-regular. Then ¢ admits a representation of the form

$(1) = po(Dup, 7, (1) -+ Upy 7, (1) (E€RY

where ¢, € C(T)VN is an invertible function and the real parts of all the eigenvalues of By lie in the
interval I. Moreover,

wind(¢;I) = wind(det ¢).
The matrices By, ..., B and the function ¢, are uniquely determined by ¢ and I.

Notice that due to the non-commutativity in the matrix case, the order of the factors in the
product (3.1) matters. As already noted, the B,’s are matrices similar to the L;’s defined in (2.1).

Proof. We prove the proposition by induction on the number R of jump discontinuities 74, ..., 7.
In case R = 0 there is nothing to prove. We just take ¢, = ¢ and observe Proposition 3.1(iv).

Now let R > 1 and assume that the statement has been proven for R — 1. Assume that ¢ has
discontinuities at T = {ry, ..., Tg}. We are going to show that we can write

$(t) = p(Oupy 7, (1)

where ¢ € PC(T; T \ {rg}) is I-regular and wind(¥;I) = wind(¢; I). This is all that is needed to
apply the induction hypothesis to 3 and finish the proof.

85UB017 SUOWIWOD SAIERID 3(edt|dde auy Ag peuienob ase sojoiie O ‘8sn J0 Sa|nJ 10} Aiq1T 8UIUO A8]1A UO (SUONIPUOD-pUe-SWLB) /WD A3 1M AeIq 1 U1 |UD//:Sty) SUONIpUoD pue swie | 8y 88s *[6202/20/50] U0 Akeiqiauliuo AB|IM ‘1591 Ad £2222edd/200T 0T/10p/woo A3 (1m AeIq 1 uljuo//sdny wouy pepeojumod ‘T ‘SZ0Z 'ZTE0L60T



BLOCK TOEPLITZ DETERMINANTS WITH PIECEWISE CONTINUOUS FUNCTIONS 133

By assumption of ¢ being I-regular, we can find a matrix logarithm

L = % log (¢(z + 0)~¢(1z — 0))
with the real parts of all of its eigenvalues lying in I. We put Bz = Ly and observe
U, o (Tr + 0)tup, -, (tg — 0) = exp(27iBy).
Hence,
¢(tg + 0)'p(tg — 0) = exp(27iLg) = up, ;,(tg +0)'ug, -, (tg — 0)
and therefore
¢(tr — O)up, (TR — 0) ' = ¢(tg + O)up, -, (1 +0)7".

Introduce ¥(t) = ¢(t)ug, -, (1)'. By the preceding equality, this function is continuous at ¢ = 7.
In fact, € PC(T;T \ {rx})V*N. Evaluating the corresponding “jump ratios” for ¢ and 3 at the
points 74, ..., Tg_; one notices that they are similar to each other,

Pt +0) Pt — 0) = T 'ty + 0) 7 '9p(z)c = )T, T = up, -, (i),

which is due to the fact that ug, . (¢) is continuous at 7y, ..., 7g_;. As a consequence the matrix
logarithm of ¢(z; + 0)~'9(t; — 0) can be chosen to be similar to the matrix logarithm of

¢z +0) "' P(ry - 0),

1 < k < R. This proves that ¢ is I-regular as well.

Finally, we claim that wind(ug, .,;I) = 0. Indeed, use Proposition 3.1(i)-(ii) and employ a
deformation argument to show that the map 1 € [0, 1] = wind(u;, -, ; I) is constant. Now Propo-
sition 3.1(iii) implies wind(¢; I) = wind(¢; I). Thus we have shown all that was needed to apply
the induction hypothesis. O

In principle, given ¢ and the corresponding matrix logarithms L;, one can derive formulas
expressing the By’s in terms of the L;’s (and vice versa). These formulas show the similarity of
these matrices explicitly. Indeed, starting with the product representation (3.1) and using the
underlying definitions, we see that

el = ¢(t) + 0) (7 — 0) = S i (Tic + 0) 'y Ty — 0)Sy = S; e BrS,
for 1 < k <R, thus
Ly = S 'BiSk (3.2)
with
Sk = Prs1(Tr) -+ Pr(Ti) = (=Tp [Th )Pt - (=1 fTR) .

While this shows that By = Lg, the relationship between all other terms becomes increasingly
complicated and may be of little use practically.
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It is also possible to prove the existence of product representations of similar kinds in which the
order of the “jump functions” up, ., is permuted and/or where the continuous function ¢, occurs
on the right instead of on the left. Due to non-commutativity, the B,’s may have to be replaced by
similar ones and ¢, may be different as well. For instance, under the same assumptions one can
prove the existence of a product representation

$(1) = ug . () up . (DPo()

with By = L, = By. For the purpose of this paper, we could have worked with any such
representation, but for sake of definiteness we will focus on (3.1).

Corollary 3.3. Suppose ¢ € PC'<(T; T)N*N admits a product representation (3.1). Then the factor
$o € Cpu(T; DN,

Proof. The issue is only the smoothness of ¢,. By assumption, ¢, in the product representation
(3.1) is continuous. On the other hand, ¢, can be expressed as a product of ¢ and the functions
(up, )" = u_p, -, Since each of these factors is in PC'*¢(T; )"V and since PC**(T;T) is an
algebra, it follows that ¢, belongs to PC'+¢(T; I)V*V as well. Now it remains to apply (2.5). []

3.2 | Proofof Theorem 2.1

We will now give the proof of Theorem 2.1. For the issue of Fredholmness we rely on the known
criteria as presented, for instance, in [20, sect. XXV.3], Theorem 3.1, in particular.
Indeed, for ¢ € PC(T;T)N*N the Fredholmness of T(¢) on (¢2)V is equivalent to

det ®(t, 1) # 0
forallt € T and u € [0,1] where
B(t, u) = pg(t +0) + (1 — We(t — 0)

is an auxiliary function. For t € T\ T, the function ®(t, ) = ¢(t) and the above condition
amounts to the invertibility of ¢(¢) forallt € T \ I'. On the other hand, for t € T, we have d(t,0) =
$(t + 0) and B(t,1) = ¢(t — 0), which both have to be invertible. Furthermore, det (¢, w) # 0 for
all u € (0,1) ifand only if det(uly + (1 — u)S) # O for all u € (0,1) where S = ¢(t + 0)~'p(t — 0).
This means that none of the eigenvalues of S can be a negative real number. However, this is
equivalent to saying that one can choose a matrix logarithm of S such that all of the eigenvalues
of L = il log S are contained in the interval I = (—1/2,1/2). Combining all this shows that the
Fredholmness of T(¢) is equivalent to ¢ being I-regular.

It is straightforward to check that in the case of I = (—1/2,1/2), the I-regularity of ¢ is
equivalent to the I-regularity of ¢ where $(t) = ¢(¢t71).

Thus the equivalence of (i)—(iv) in Theorem 2.1 regarding Fredholmness is established.

Now we turn to the formula for the Fredholm index. One possiblity to prove this quickly is to
use the product representation (3.1) along with a deformation argument. As shown in Proposi-
tion 3.2 such a product representation exist for every I-regular function ¢. We use it here with
I=(-1/2,1/2).
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Given that product representation, consider a parameter A € [0, 1] and introduce the family of
functions

$a(t) = po(Duzp, 7, (1) - Uppy ()

Note that for 1 = 0 we obtain indeed the function ¢, € C(T)N*N appearing in the original product
representation, while for A = 1 we have ¢; = ¢. The map 1 € [0,1] = L®(T)N*¥ is continuous.
Furthermore, due to the conditions on the B’s that the real parts of their eigenvalues lie in I, it
follows that the same holds for the AB’s. From this it follows that the functions ¢, are I-regular.
By what have shown above that means that all Toeplitz operators T(¢;) are Fredholm on (£2)V.
Therefore, when we deform T(¢;) along 1 € [0, 1], the Fredholm index remains constant and this
implies that

ind T(¢) = ind T(¢,) = ind T(¢,).

Furthermore, by Proposition 3.1(ii) the I-winding number remains invariant under continuous
deformation of I-regular functions, which implies that

wind(¢;I) = wind(¢;;I) = wind(¢,; 1) = wind(det ¢),

where the latter is inferred from Proposition 3.1(iv). To complete the argument we remark that for
every continuous and invertible function ¢, € C(T)V*N the Fredholm index is given by

ind T(¢y) = — wind(det ¢,),
the proof of which is not completely trivial (see [20, sect. XXIII.5]). This proves that
ind T(¢) = —wind(¢; I).

The equality of wind(¢; I) = wind(c) follows because the definition of ¢ implies that ¢ = det ¢.
Finally, we can conclude by analogy that ind T(¢) = wind(¢; I) noting that

ind T(¢) = —wind(¢;I) = —wind(det §,) = wind(det ¢,) = wind(¢; I).

In summary we have seen that all the expressions for x in (i)—-(iv) of Theorem 2.1 coincide. This
concludes the proof.

3.3 | Operator-theoretic preliminaries

It is well-known and not difficult to prove that Toeplitz and Hankel operators satisfy the
fundamental identities

T(ab) = T(a)T(b) + H(a)H(b) (3.3)
and

H(ab) = T(a)H(b) + H(a)T(b). (3.4)

85UB017 SUOWIWOD SAIERID 3(edt|dde auy Ag peuienob ase sojoiie O ‘8sn J0 Sa|nJ 10} Aiq1T 8UIUO A8]1A UO (SUONIPUOD-pUe-SWLB) /WD A3 1M AeIq 1 U1 |UD//:Sty) SUONIpUoD pue swie | 8y 88s *[6202/20/50] U0 Akeiqiauliuo AB|IM ‘1591 Ad £2222edd/200T 0T/10p/woo A3 (1m AeIq 1 uljuo//sdny wouy pepeojumod ‘T ‘SZ0Z 'ZTE0L60T



136 | BASOR ET AL.

In the last two identities and in what follows
b(e®) = b(e™™®). (3.5)
It is worthwhile to point out that these identities imply that
T(abc) = T(a)T(b)T(c), H(abé) = T(a)H(b)T(c) (3.6)

fora,b,c,e L®(T)MN ifq, =c_, =0foralln > 0.
We define the projection P, by

Xk ifk<n

Py {2, € @ = il €@, w= { 0 ifk>n,

and put Q, = I — P,,. We remark that the image of P,, can be identified with (C")V = (CN)" x
C™N. Below we will identify operators of the form P,AP, with nN X nN matrices. On the other
hand, we will also think of nN X nN matrices A,, as linear operators on (£2)".

In addition to the projections P,, and Q,, we need

Xp_1— ifk<n
W, {2 e ()N ®° e ()N, ="
Note that W2 = P,, and
W Tn(@W,, = T (). (3.7)

The following useful lemmas will be needed in what follows.

Lemma 3.4 [32, Prop. 2.1]. Let B be a trace class operator and suppose that A, and C,, are sequences
such that A, — A and C;; - C* strongly. Then A, BC,, - ABC in the trace class norm.

Lemma 3.5 [17, Lemma 9.3]. Let A, = P,, + P,KP, + W, LW, + C,, be a sequence of nN X nN
matrices where K and L are trace class operators, and C,, tends to zero in the trace class norm. Then
lim det A, = det(I + K)det(I + L).

n—oo

Lemma 3.6 [32, formula (1.4)]. For bounded symbols a,b € L®(T)V*N,
T,(ab) = T, ()T, (b) + P,H@H®B)P, + W, H@HDBW,,.

We say that a sequence of matrices A,, € £L(ImP,,) C (£2)V is stable if and only if there is an n,
such that A,, is invertible whenever n > n, and

sup |14, | 2amp,) < +00. (3.9)

n>ng

We will use stability in connection with the following basic facts.
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Lemma 3.7 [10, sect. 6.2]. Let a € L®(T)N*N and assume that T,,(a) is stable on (¢*)N. Then T(a)
is invertible on (¢2)N and

T, > T@™, (T.@™") = (T@™)
strongly on (¢%)N.

Proposition 3.8 see, e.g., [11, Thm. 7.20], [10, Thm. 6.9], or [19]. Given a € C(T)V*N, the stability
of T,,(a) is equivalent to the invertibility of both T(a) and T(a) on (¢%)N.

The previous result can be generalized to a € PCM*N (see [10, Cor. 6.12]). For completeness’
sake, we mention also the following criterion, which is related to Theorem 2.1.

Proposition 3.9 see [10, Thm. 6.5] or [11, sect. 2.41-42, 2.94]. Given a € C(T)N*N, the Toeplitz
operator T(a) is Fredholm on (¢*)" if and only if det a does not vanish on T. In this case, ind T(a) =
—wind(det a).

The following result about Fredholmness is probably known, but we could not find a reference
that pertains in particular to the index equality.

Proposition 3.10. Let a € L*(T)V*N be invertible. Then T(a) is Fredholm on (¢%)" if and only if
T(a™1) is Fredholm on (¢2)N. Moreover, in this case,

ind T(d) = ind T(a™).

Proof. The statements follow from the fact that the two operators T(d@) and T(a™') are equivalent
after extension. By this it is meant [4] that there exist Banach spaces Z; and Z, and invertible
bounded linear operators E; and E, between the appropriate direct sum spaces such that

@ @1, =F (T@) @17, )Ex.
Indeed, consider the following extensions of T(&) and T(a™!) onto (¢%(Z))V,
T(d) (43} I(gZ(Z_))N = PL(d)P +Q, T(a‘l) (%3] I(fZ(Z_))N = PL(a‘l)P + Q.
Here L(b) ~ (b j_k);?° __,Stands for the Laurent operator on (£2(Z))V, P stands for the orthogonal
projection from (¢2(Z))N onto (¢2(Z,.))N = (¢*)N, Q =1 — P is the complementary projection,
and J : {x,}2 _ o P~ {x_1_,J _ is a flip operator on (¢2(Z))N. We have the relations J? = I,
JQJ = P, JL(b)J = L(b). These extended operators can be written as
7(PL@P +Q)J = QL@Q + P
- (L(a)Q + P> (1 _ PL(a)Q),
PL@ P +Q = (L@ P +Q)(I - QL@ )P)

- L(a—1)<L(a)Q + P) (1 _ QL(a—l)P),
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from which the equivalence is easily seen by noting that the operators J, L(a™1), as well as
I-PL(a)Q and I-QL(a )P

are invertible. O

3.4 | Invertibility, stability, and determinant asymptotics for pure
jump symbols

For pure matrix jump symbols ¢ = ug, we are going to state the invertibility of T(¢) and T($)
on (£%)V, and the stability of the sequence T, (¢) under certain conditions on B. In addition, we
describe the asymptotics of the determinant det T,,(¢) as n — oo.

As we will see, the matrix case completely reduces to the scalar case, for which these results
are known. We refer to [11, Thm. 5.62] for invertibility, to [10, Cor. 2.19] for stability, and to [11,
Cor. 10.60] for the determinants. Actually, the results about the pure scalar symbols ug . can also
be seen directly. Indeed, if [Re 8| < 1/2, then the symbol is sectorial, that is, Re (ug .(t)) > ¢ for
some ¢ > 0, which implies invertibility of T(ug ) and T(iiz ;) and stability of T,,(ug ). The matrix
T, (ug ) is basically a Cauchy matrix and its determinant can be evaluated explicitly forany 8 € C.
Proposition 3.11. Assume that the eigenvalues BV, ..., N) of an N x N matrix B have real parts
inI = (—=1/2,1/2). Then the operators T(ug ;) and T (@1 ;) are invertible on (¢*)N and the sequence
T, (up ;) is stable. Furthermore,

detT,(ug,) = En*(1+0(1)), asn— oo

with
N N
Q=-3@E"?2  E=[[ca+p"60-p"),
k=1 k=1

where G(z) stands for the Barnes G-function (2.12).

Proof. First notice that T(éig ;) = T(u_p ;). Hence the invertibility for T(fip ;) will follow once it
is proven for T(up ;).
If B = SJS~! where S is an invertible matrix and J is another matrix (such as the Jordan normal
form of B), then ug () = Su; .(¢)S™! and
T(“—B,r) = (S ® I)T(uj,r)(s_l ® I)’ Tn(uB,r) = (S ® In)Tn(u],T)(S_l ® In)-

Here S ® I and S ® I, stand for the linear operators on (£2)N ~ CN ® ¢? and (C")N ~ CN @ C"
defined by

S®I : (XO, X15X2, ... ) = (SXO, le, sz, )
and

S 02 In . (xO, X15 X2y eee xn_l) = (SxO, le, SXZ, . an—l)
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where x; € CN.On amore formal level, S@ I and S ® I ,, are the block Toeplitz operator and the
nN X nN block Toeplitz matrix, resp., with symbol equal to S, a constant N X N matrix function.

Hence, all issues can be reduced to the case where B is of Jordan normal form. Notice first that
things become particularly simple if B is of diagonal form, say,

B = diag(8W, ..., g,
Then

up. = diag(ug 7, .., g 1),

and a corresponding “diagonal representation” holds for the block Toeplitz operators and matri-
ces. By assumption the real parts of all 3)’s are in (—=1/2,1/2), and therefore the known scalar
results mentioned above imply the assertions.

Using a similar decomposition, it is easy to see that the general case where B is of Jordan form
can be reduced to the case where B is a simple Jordan block, say,

B 1 .. 0
s-| P

1

4

with the real part of 8 in I = (—1/2,1/2). For the function ug;, which is defined via a matrix
exponential, we get

up1(€%) = exp(i(x — m)B) = ug 1 (€) exp(i(x — 7))

(where J is the simple Jordan block with eigenvalue zero) and

uﬁ,r % *
. Ug r
ixy — g
uB,T(e ) - "
uﬁ,r

[Tk

where “x” stands for certain piecewise continuous functions. A similar upper-triangular block
matrix representation is obtained for T'(up ;) and T,(up ). From there it is seen that for the
issues of invertibility, stability, and for the determinants, only the entries on the diagonals matter.
Therefore, again, everything reduces to the scalar case. [

4 | DETERMINANT ASYMPTOTICS: FIRST RESULTS
4.1 | Basiclocalization results

In [6], the following result about the product of Hankel operators was established. Suppose a and
b are bounded functions on T for which there exists a smooth partition of unity, f + g = 1, such that
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both af and bg have derivatives satisfying a Lipschitz condition with order greater than 1/2. Then
H(a)H(b) and H(a)H(b) are trace class.

Using the same idea but specializing to piecewise continuous symbols we can somewhat
improve on the exponent in the Holder-Lipschitz condition.

The following result on the decay of the Fourier coefficients of functions in the two classes
PC™&(T;T) and C;;rf(T; I') (see Definition 2.2) can be established easily. We will assume
throughout what follows that 0 < ¢ < 1.

Lemma 4.1. The Fourier coefficients of f € PC'*¢(T;T) have the asymptotics
fn=00n"h, |n] = +oo,

while those of f € C;‘;E(T; ') have the asymptotics
fn=0(n|7179), In| = +oo.

Lemma 4.2. Suppose a,b € PC'*¢(T;T) with € > 0 such that a and b do not have discontinuities
in common. Then H(a)H(b) and H(a@)H(b) are trace class.

Proof. By assumption a is continuous on T \ T';, and b is continuous on T \ I', where I'; UT}, C
I' and I'; and I’y are disjoint. Hence there exists a partition of unity, f + g = 1, with both f, g
sufficiently smooth such that af and bg are continuous and thus belong to C;;rf (T;T) (see also
(2.5)). Consider the first Hankel product (the other one can be dealt with in the same way):

H(a)H(b) = H(@T())H () + H(@)T(H(b)
= (T@H() - H(af) ) H(B) + H(@)(H@T®) - H(gh) ).

Here we used the identity (3.4). Each of the operators appearing therein is bounded and the Hankel
operators H(f) and H(g) are trace class. Therefore it suffices to show that the products H(a f)H(b)
and H(a)H(gb) are trace class. Consider the first product (again the second one can be dealt with
analogously). We write

H(@p)H®B) = (H@fD. ) (D_H(®))

where D, = diag; So(@+ j)¥/?) is a diagonal operator on ¢2(Z,). We claim that both factors
are Hilbert- Schrmdt hence their product is trace class, as desired. Indeed, the Hilbert-Schmidt
norms can be estimated as follows:

IH(@f)D N3 <C Y (1 +j+ k)22 + k) < +oo,
jok>0

ID_HBIZ<C Y A+ )D=A+j+k)2 < +oo.
jk>0

Therein we used the estimates on the Fourier coefficients foraf € CI%:VE(T; Iandb € PC*E(T;T)
stated in Lemma 4.1. N
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In anticipation of using the previous trace class condition, we state first a general result. We
may think of the functions ¢, ..., ¢ as having discontinuities at different locations and being
sufficiently smooth away from the discontinuities.

Proposition 4.3. Assume ¢ = ¢y, - pg such that H(a)H(b) and H(a)H(b) are trace class
whenever a = ¢q -+ pr_1and b = ¢, 1 <k <R. Then

Ky =T(@) = T(@)T($1) -+ T($r)
Ky = T($) = T($)T($1) -+ T($r)
are trace class and
Tp($) = Tn($0)Tn($1) - Tu($g) + PoKi Py + W, Ko W, + Cyy

where C,, tends to zero in the trace norm.

Proof. For R = 0 there is nothing to prove. The case R =1 is settled by the Widom’s formula
(Lemma 3.6),

T,(ab) = T,(a)T,(b) + P,H(a)H(b)P, + W,H(A)H(b)W,,.
In view of (3.3) notice that
H(a)H(b) = T(ab) — T(a)T(b), H(@)H(b) = T(ab) — T(a)T(b),

which proves the trace class property of K; and K, by invoking the assumption with a = ¢, and

b = ¢1.
By way of induction, assume that we have established

Tp($o - Pr—1) = Tn(Po) - Tp(Pr—1) + PnK{Pn + WnKQWn + Cll’l

with K{Ké being trace class. Applying Widom’s formula with a = ¢ --- ¢pr_; and b = ¢p it
follows that with K|' = H(¢y - ¢r_1)H($r), K = H(¢y -+ pr—1)H($zr),

Ty($) = Tp(¢o -+ $r-1)Tn(¢r) + P,KP, + W, KW,
= (Tal@0) + Ta@r1) + PuK{ Py + WoKs W, + Ch ) To($r)
+P,K!'P, + W,K!'W,,
= T($0) + Ta($r) + ChT (@) + PuK{ Py + W, KJ W,
+ PaK{T@R)Py = PaK|QuT S0P
F W KT GOW,, = WoK5QuT@W,

In the last two lines we used P,, = I — Q,, and also (3.7). The terms containing Q,, and C/, converge
to zero in the trace norm by Lemma 3.4, so they will make up the term C,,. The operators K{’ and
K;’ are trace class by assumption. Consequently we obtain

Tn(¢) = Tn(¢0)Tn(¢1) Tn(¢R) + P, K\ P, + W, K, W, +Cy,
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with
K, =K + K!T(¢r)
= T(#) = T(@o -+ dr-)T(@R) + (T(@o -+ dr_1) = T(@0) -+ T(br-1) ) T($x)
= T($) = T(¢0) -+ T$p)

as desired. The trace class property for K; follows since K{ and K{’ are trace class. An analogous
argument yields the results for K. O

Applying Lemma 4.2 to the previous proposition we obtain the following result, which is our
first step towards the Toeplitz determinants with a symbol ¢ given by a representation (3.1).

Proposition 4.4. Assume ¢ = ¢y, -+ g where ¢ = up, . 1 <k <R, and ¢, € Cpif(T; NN
with € > 0. Then the operators

Ky = T($) = T($o)T(¢1) - T(¢r)
Ky = T() = T($o)T($1) -~ T(¢z)
are trace class and
To($) = Tu($)Tn($1) - Tn(pr) + PuK1 Py + W, Ko Wy, + Cy
where C,, tends to zero in the trace norm.

We proceed with the general case and obtain, under certain assumptions, a localization result
for Toeplitz determinants.

Theorem 4.5. Assume ¢ = ¢y, -+ pg such that H(a)H(b) and H(a@)H(b) are trace class whenever
a=¢y-pr_1 and b = ¢, 1 < k < R. Suppose in addition that the sequence T,(¢y) is stable for
each0 <k <R. Then

lim M -E (4.1)
e Hk:O det Tn(¢k)

where E = EE, and
Ey = detT($)T(pr)~" -+ T(¢o) ",
E, = detT(P)T(Pr) ™" - T(do) ",

and the operator determinants are well-defined.

Proof. Using Lemma 3.7 and noting that both T,,(¢) and T,,(¢) = W, T,,(¢)W,, are stable (see (3.7))
it follows that we have strong convergence on (¢2)N of

T = TP TP = T

and of the corresponding adjoints. The invertibility of T(¢,) and T(¢y) is guaranteed as well.
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Noting that the inverses exist for sufficiently large n, we can consider the sequence
Ap = T @T(@R) ™" - Tulgo) ™.
From Proposition 4.3 (and again (3.7)) we can write this as
Ap =Py + PPy T(@R) ™ - Tu(@0) ™ P+ WiKo Py (@)™ - Tul@0) ' Wy + C,

with a certain C}, — 0 in trace norm and the trace class operators K; and K, taken from Propo-
sition 4.3. Using the strong convergence of the inverses (and their adjoints), it follows from
Lemma 3.4 that

A, =P, +P,LiP,+ W, L,W,+C,
with certain C,, — 0 in trace norm and

Ly =K T(¢p) ™" T(¢o) ™! = T(DT($p) ™" -+ T(¢o) ™" — 1,

L, =K,T(@r) 7+ T(o) ™ = T(PT(Pp) ™ -+ T(go) ™! -1,

which are both trace class operators. Taking the determinant of A, and then passing to the limit
gives the left hand side of (4.1). Invoking Lemma 3.5 it follows that the limit equals the product of
two well-defined operator determinants,

lim det A, = det(I + L;)det(I + L,).

n—o0o

Using the previous expressions for L; and L, we arrive at (4.1). O

Theorem 4.6. Assume ¢ = ¢, -+ pr where ¢ = up, ,, 1 < k <R, and such that the eigen-
values of B; € CN*N have real parts in the interval I = (—1/2,1/2). Moreover, suppose also that
¢ € Crl,;'f(T; D)YN*N is such that both T(¢,) and T($,) are invertible on (¢>)N. Then

lim de;T"(qs) =E (4.2)
e G[¢0]n Hk=1 det Tn(¢k)

where E = E|E,E; and

Ey = detT(P)T(pp)~" -+ T(dp) ",
E; = detT(H)T(Pr) " -+ T(Po) 7,
E3 = det T(¢o)T (¢, "),

and G[¢,] is defined in (1.2).

Proof. Applying Lemma 4.2 and noting that ¢;, € PC'*¢(T; I)*V, we conclude that the assump-
tion about the product of the Hankel operators in Theorem 4.5 are fulfilled. Moreover, the
assumption on B; implies that the sequence T, (¢;) is stable by Proposition 3.11. On the other
hand, the stability of the sequence T, (¢,) is due to Proposition 3.8.
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Applying the Szeg6-Widom limit theorem (Theorem 1.1) gives the asymptotics

detT,(¢o) ~ Gl¢o]"E;.

Notice that C 1+E(T I') C F and therefore the smoothness conditions are fulfilled. O

The asymptotics of the product term in the denominator of (4.2) can be stated explicitly using
Proposition 3.11. Indeed, for 1 < k <R, let ,6’1({1 ) (1 £ j £ N) be the eigenvalues of B, multiplicities
taken into account. Then

R
H detT,(¢) ~ nE, (4.3)
k=1
with

Z Z(ﬁ(” (4.4)

k=1 j=1

Ey = H H 6 +p e -g0). (45)

k=1 j=1

In the asymptotic formulas below, we will keep the determinant product on the left hand side
of (4.3) for sake of simplicity.

4.2 | An operator determinant identity

Our next goal is to express the operator determinant E, in a different way in order to be able to
combine it with the expressions for E; and E; and write E as a single operator determinant.

As a lemma we need a relationship between the inverses of T(a) and T(a™!), which is in some
sense already suggested by Proposition 3.10 and its proof.

Lemma 4.7. Let a € L®(T)N*N be invertible. Then T(a) is invertible on (¢%) ifand only if T(a™')
is invertible on (¢2)N. Moreover,

0=T(a@) 'H@)+H@ HT(a H! (4.6)
and
T(a Y™ =T(a) — H(a)T(a)"'H(a). 4.7
Proof. By (3.4) we have the identity
0=T(@H(@ "+ H@T(a™).

Assuming invertibility of both T(@) and T(a™?), the first identity (4.6) follows. Now assume that
only T(a) is invertible. Then, using (3.3) and what we just stated,

(T(a) - H(a)T(a)—lH(a)>T(a—1) =T(a)T(a™ ") + H(a)T(a)"'T(a)H(a™")

=T(a)T(a )+ H(a)H@E ") =L
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In a similar manner, multiplication from the other side gives the identity. We conclude that if
T(@) is invertible, then T(a™?!) is invertible and its inverse is given by (4.7). Finally, we can make
an analogous argument that the invertibility of T(a~!) implies the invertibility of T(a). O

Proposition 4.8. Let a,b € L*(T)V*N be such that the operators T(d) and T(b) are invertible on
(€¢*)N. Assume moreover that H(@)H(b) and H(b~")H(a™") are trace class. Then the following two
operator determinants are well-defined and coincide:

detT(ab)T(6)1T(a)~! = detT(a V) 1T(B~H"IT(b~1a™). (4.8)

Proof. Note that the invertibility of the operators T(&) and T(b) implies the invertibility of the
symbols @ and b. Hence a1, b~! € L®(T)"*N as well. Lemma 4.7 now implies that the operators
T(a™') and T(b~') are invertible. Applying (3.3) yields

T(ab) = T(a)T(b) + H(a)H(b),
T la)=T(bHT(a )+ HbHH(@G™),

and multiplying with the appropriate inverses we conclude that the operator products in (4.8) are
of the form identity plus trace class. Hence both determinants are well-defined. As we can move
invertible operators from one side to the other we see that

det T(@h)T(h) 1T (a)~" = det (1 + T(a)—lH(a)H(b)T(B)—l),
det T(a= )" 'T(b~")"'T(b~'a™") = det (1 + T(b—l)—1H(b—1)H(a—1)T(a—1)—1).

In order to verify that the last two determinants are the same, use formula (4.6) twice and also
employ the general formula det(I + AB) = det(I + BA), which holds for bounded Hilbert space
operators A and B whenever both AB and BA are trace class. [

Our next goal is to obtain the following generalization of the previous determinant identity,
det T($)T(Gr) ™" -+ T(go) ™" = det T(¢7")~" - T(¢) ' T($7H), (4.9)

where ¢ = Py, --- pg. Unfortunately, we are only able to prove this identity under assumptions
which are stronger than those one would suspect to be necessary. This raises the question on the
range of validity of this identity and makes further investigations desirable.

Despite its limitations and its cumbersome formulation, the following result will be just suf-
ficient for our purpose of dealing with the piecewise continuous case and applying it to the
determinants that occur in Theorem 4.6.

Theorem 4.9. Let ¢, € L°(T)YNV, gy, ...,0x € LX(T)YNV, and put
¢k,/1 = exp(/lak), 1< k < R.
Let Uy, ..., Ug C C be open connected subsets containing the origin and assume that

(i) T($,) is invertible on (£>)N;
(i) T(¢; ) are invertible on (¢*)N for A € U and each 1 < j < R;
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(iii) the operators H(@)H(b) and H(b~')H(a™") are trace class whenever

a=¢o-bi1a, P21, " P14 0 b=¢r,,

whered; € Ujfor1 < j<k <R
Then the following two operator determinants,

FRGs e, AR) = det T(Goby g, -+ PrAIT(Prag) ™ - T(Pr12, ) ' T(o) Y,
8r(A1, -, AR) = det T(¢g )T T(@7; )7+ T(¢ V7' T(bp -1, 850

are well-defined (for ; € Uj, 1 < j < R) and coincide.

Proof. Let us first note that there is nothing to prove for R = 0. Moreover, for R = 1, the assertions
follow directly from Proposition 4.8.

Next notice that the inverse involved in these two operator determinants exist. This is due to
assumptions (i) and (ii) and the application of Lemma 4.7.

In order to see that the determinants are well defined we need to confirm that the underlying
operators are of the form identity plus trace class. Equivalently, for the first determinant,

T($odrz, *+ Frag) = T(@0)T($1,) + T($rz,) + trace class.

This can be shown by induction on R, where the case R =1 is settled by assumption (iii) with
k = 1. Assuming R > 2, we can pass from R — 1 to R by writing

T( P14, - Prag) = T@ob1a, - Prap )T (Br1p) + H(GoP1 1, -+ PrAp VH (PR 2,)

where we used (3.3). The product of the Hankel operators is trace class by assumption (iii)
with k = R. Now apply the induction hypothesis to the term T(¢o@1 1, -+ $r 1,_,) to see that it
is T(¢o)T(¢b1,2,) -+ T(Pr,1,_,) Plus trace class. This concludes the proof that the first operator
determinant is well-defined, and the arguments for the second one are similar.

It remains to show that

R, AR) = 8r(A1, ., AR)

for (44,...,4g) € Uy X --- X Ug. We notice that the functions fr(4y,...,4g) and gr(4;,...,4g)
depend analytically on each of the variables A; € Uy, ..., 4g € Uy. More specifically we have ana-
lyticity in any one of these variables while keeping the others fixed. Because the sets Uy, ..., Uy are
open and connected and contain the origin, it is sufficient to show that the two functions coincide
when (44, ...,Ag) € D, X --- X D, where D, = {1 € C : |z| < ¢} and € > 0 can be arbitrarily small.

Under the assumption that |4;| < ¢ (and having chosen ¢ sufficiently small) we can assume
that the operators

T($ob14, -+ Prca,)

and

TG, =9} 9"
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(with 1 < k < R) are invertible since they are sufficiently close to the operators T(¢,) and T(¢, D
in operator norm, and the latter are assumed to be invertible. This enables us to prove the identity
via induction. Indeed, we can split

det T(Podb1 4, -+ Pra )T (Pre) ™" -+ T(P1.0,) ' T(Po) !
= detT(od1 1, - Pra)TPr) ' T(PoPra, -+ Pro14p )"
X det T(od1 1, -+ Pr1,45_ )T (Pr-1,25-1)"" - T(P12,) " T($o) ",
det T(pg ) ' T(@7; )"+ T(@p )7 T(r #7585
_ —1y— -1 y— -1 - -1 -1 41
- detT(¢0 ) 1T(¢1,/11) ! ”‘T(¢R—1,/1R_1) 1T(¢R—1,/1R_1 “.¢1’/11¢0 )
-1 -1 g—1\—1p(p—1 Y—1p(s—1 -1 -1
XdetT(@p g, P80 ) TWra)” T(Ppa,  ¢11,%0 )
Invoking Proposition 4.8 and the induction hypothesis proves the identity. [l
Corollary 4.10. Assume ¢ = ¢y, --- g where ¢, = up, , , 1 <k <R, and such that the eigen-

values of B; € CN*N have real parts in the interval I = (—=1/2,1/2). Moreover, suppose also that
¢ € CE,;’,E(T; D)N*N is such that both T(¢,) and T($,) are invertible on (¢>)N. Then

lim deLT"(@ =E (4.10)
e G[¢0]n Hk=1 det Tn(¢k)
where
E =detT($)T (¢r) - T Hp)T 1@, ") -+ T~ H DT ($7). (4.11)

Proof. We have the same assumptions as in Theorem 4.6. Below we will argue that we can apply
Theorem 4.9 and conclude that the constant

E, = detT(H)T(Pr) " - T($o) 7",
evaluates to
Ey =detT(¢; )7 ' T(¢7 )"+ T(¢g ' T(P7).

Taking this for granted we can combine the constants E1, E,, and E3 in the proper order, observe
the cancellation of T(¢,) and T (¢, 1Y, and arrive at the expression for E.
In order to see that Theorem 4.9 can be applied we put

¢y = exp(doy) with oy (t) = By log(—t/7y)

where o, is a piecewise continuous matrix function, which is continuous on T \ {r;} with
normalization o, (—7)) = 0. It follows that

®ra = UiB, 7,
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so that for 4 = 1 this function coincides with ¢;, 1 < k < R. Using Lemma 4.2 we see that the
Hankel conditions in (iii) of Theorem 4.9 are fulfilled.

We also note that besides (i), also (ii) is satisfied, that is, the operators T(¢y ;) are invertible for
A € U, when we choose Uy, to be a sufficiently small open neighborhood of the interval [0,1] C C.
Indeed, for A € [0, 1], the eigenvalues of AB; have real parts also lying in (—1/2,1/2) and therefore
T(cﬁk’ 1) = T(ip, ;) is invertible by Proposition 3.11. Clearly, invertibility is guaranteed in a small
neighborhood of [0,1] as well. Thus all assumptions in Theorem 4.9 are fulfilled. O

Notice that the operator determinant E is well-defined even if T(¢,) or T(¢ 1y are not invertible
(however, still assuming all other assumptions in the corollary). Indeed, it follows from the first
part of Proposition 4.4 that

T(P)T(pg)~" -~ T(¢1)~! = T(¢,) + trace class,

T(¢H)™! - T(p ) T(¢™") = T(¢, ") + trace class.

Hence the product is identity plus trace class since also T(¢o)T (¢, 1Y, the operator featuring in E5,
is identity plus trace class.

It is the goal of the next section to remove the extra assumption that T(¢,) and T(¢, 1) be
invertible and replace it by a weaker condition on ¢,. Once this is accomplished our main results,
Theorem 2.3 and Corollary 2.4, can be proved.

5 | THE FINAL DERIVATION OF THE ASYMPTOTICS
5.1 | Some auxilliary results

We will need an auxiliary result which provides a product representation for ¢, € CII,\J{,E(T; NN
in terms of exponentials. To prove this result some information about the commutative Banach

algebra C;fo (T;T) is required.

Lemma5.1. B = Crl,:rf(T; I') is a commutative Banach algebra with the following properties:

(a) B is continuously embedded and inverse closed in C(T),
(b) B contains all functions in C*(T),
(c) the maximal ideal space of B is (naturally) homeomorphic to T.

Proof. Properties (a) and (b) are obvious from the definition. Hence we will focus on proving
(c). We note that (c) implies that the Gelfand transform B — C(M(/3)) amounts to the natural
embedding of B into C(T).

To prove (c), consider the map

Aty €T & € M(B)

where @, is the multiplicative linear functional defined by @, (b) = b(ty), b € B. This map
is well-defined.

We claim that A is surjective. Indeed, let ® be a multiplicative linear functional on B. Apply it
to the function y,(t) =t to determine a number ¢, : = ®(y;). By Gelfand theory, the value ¢ is
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contained in the spectrum of y; considered as an element in /3. Hence ¢, € T. We will show that
D =D, .

Consider an arbitray b € B. For ¢ > 0, choose a C*®-function f, : T — [0, 1] which is equal to
one in an e-neighborhood of ¢, and vanishes outside a 2e-neighborhood of ¢,. Write

b(t) — blto) = FOBW) - bto) + =Dt _ 1)(b(6)  bto)).

t—t,

All functions involved in the product on the right hand side belong to B. In particular, ®(t — t;) =
D(y1) — tr®(1) = 0, and thus we get

(b) =y, (b) = &( fo(b ~ bits)) ) € b5 folb = (ko)) = im (£o(b — bi(to)))-

Notice that the spectrum of a function considered as an element in /3 is equal to the image of this
function due to the inverse closedness stated in part (a). As we can make € > 0 as small as desired
it follows from the continuity of b(¢) that ®(b) = ®; (b). This holds for all b € B, and therefore
® = @, and A is surjective.

The injectivity of A can be seen by applying @, = @, to the function y;(t) = ¢ to conclude that
to = 1.

Finally, let us prove that A is a homeomorphism. The standard local base for the topology of
M(B) at an element ® € M() consists of all neighborhoods

.....

.....

which contains a small §-neighborhood of t, € T. With this, the continuity of A ateach t, € T is
proved. To see that A is an open map, one could either use the particular neighborhood U, . [®],
or invoke the compactness and Hausdorff properties of the underlying spaces. Thus it is proved
that A is a homeomorphism. [l

Lemma 5.2. Let ¢, € CII,\J{,E(T; D)NXN be an invertible function and suppose that wind(det ¢,)) = 0.
Then, for each € > 0, the function ¢, admits a product representation

¢0 = elloe ... enS’ (51)

where n;. € Cotf(T; DNV and ||ni || < e forall0 <k < S.

W

In the last condition, the norm of C;\Tf (T; D)N*N can be considered.

Because of its importance we will give two proofs of this lemma. One is based on Wiener-Hopf
factorization and is in principle constructive, while the other is based on Gelfand theory and uses
Arens Theorem (a generalization of the Arens—Royden Theorem) and a homotopy argument. For
the notion of Wiener-Hopf factorization, we refer to the monographs [13, 22], the survey paper

[21], and the references therein.
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Proof. Let us first notice that the norm condition |||l < € can be disregarded. Indeed, if this
condition is not fulfilled we can replace a single exponential e’ in the product representation by
a product of M exponentials

enk — enk/M enk/M

and choose M sufficiently large. This comes only at the expense of the number of factors involved
in the product representation.

From now on we will use the notation B = C;\TVE(T; I'). It is easy to see that inverse closedness
of B in C(T) immediately implies the inverse closedness of BN*N in C(T)V*N. Therefore, the
assumption that ¢, € BNV is invertible implies that ¢, € BVN.

First argument:

The continuous matrix function ¢, can be approximated as closely as desired in the L*-norm
by a matrix Laurent polynomial, for example, by one that is obtained from the Fourier series of
¢o- Considering a sufficiently close approximation by a matrix Laurent polynomial b(t), one for
which

1
l$o — bl < ———,
2l1¢5 Ml

we will obtain a representation
¢po = eob. (5.2)
Indeed, to see this put

o=(b—¢o)p," =bs;' —1Iy

and notice that ¢ is a continuous matrix function with ||¢||;~ < 1/2. Therefore Iy + ¢ has a
continuous logarithm and we can define

Ny = —log(Iy +¢).

Combining this we obtain e™ = Iy + p = bg ! and the representation (5.2) follows.
From the definition of ¢ it is immediate that ¢ € BN*N. Because of the inverse closedness of
BN in C(T)N*N (and thus in L®(T)N*N) we see that the spectrum

Sp gvxn (9) = sme(T)NxN(e) C{zeC: |z| <1/2}L
Hence the above logarithm can also be expressed using Riesz functional calculus,

N = —i, (zIy —¢) 'log(1 + z) dz,
27l |z]=1/2

and this entails that 7, € BNV,
To summarize, at this point we have extracted the first factor in the desired product
representation (5.1), and we are left with representing b as a finite product of exponentials.
Before we are going to do this we notice that taking the determinants in (5.2) gives

det ¢o(t) = etracem(® det b(t),
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where the exponential is a function with winding number zero. Therefore, we conclude that the
matrix Laurent polynomial b(¢) not only takes invertible values on T (and thus on some open
neighborhood of T), but that the winding number of det b(¢) is zero.

A well-known factorization result for matrix functions (see [11, Thm. 5.5 and its remark], [13], or
[22]) implies that under these conditions on b, the function admits a Wiener-Hopf factorization

b(t) = b_(t)d(t)b ., (t), teT,

not necessarily canonical, but with d(t) = diag[t™1, ..., t*N] where x, ..., xy € Z are the partial
indices of the factorization. The winding number condition implies that »; + --- + x5 = 0. The
factors b, (t) and b_(¢) are also matrix Laurent polynomials, which along with their inverses are
analytic on the sets{z € C : |z| <1+ 6}and {0} U{z € C : |z| > 1 — &} for some sufficiently
small § > 0.

By continuously deforming b (¢) to b, (0) we can represent b (¢) as a finite product involving
factors which are close to the identity Iy in some sense,

M .
by(1) = by [[ b4(rj) by (i), 1y = AJ—/[ teT,
j=1

where M is chosen sufficiently large. The constant invertible matrix b, (0) has a matrix logarithm
and thus itself is an exponential. The factors

fi®) = by (rj )by (rjt)

are analytic (and close to I;) on some neighborhood of T. Therefore they have an analytic matrix
logarithm log f;(¢), which when considered as function on T belongs to BN*N_We have proved
that b, (t) is the finite product of exponentials of functions in BN*V,

The deformation argument can be applied in the similar manner to the factor b_(t) by deform-
ing it to the constant invertible matrix b_(oo0). Thus also b_(t) admits a representation as a finite
product of exponentials of functions in BNV,

It remains to show that d(t) also has such a product representation. In case all x;, are equal to
zero nothing needs to be done since d(¢) = Iy. Otherwise, using the condition x; + --- + 3y = 0t
follows easily by induction that d(t) can be written as a finite product of diagonal matrices, where
each of these diagonal matrices has t and ¢! precisely once as an entry and otherwise 1 on the
remaining diagonal entries. We can formally write

d(t) = dy (1) - dp (1)

with
t 0 0
d@=PJo = o [P!
0 0 Iy,
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and Pj being permutation matrices. Focusing on the 2 X 2 part of the term in the middle, we

decompose it into
t 0 1 0 0 1\/1 o0\/1 -t
o ) \¢rt 1/\=1 o/\t 1/\o 1 /)

Each of these factors is the exponential of either a constant matrix or a very simple matrix Lau-
rent polynomial. This gives rise to a corresponding product representation of each of the matrix
functions di(t) by making an obvious extension to the full N X N matrices and taking the permu-
tation matrices into account. It follows that the factor d(t) also has a representation as a product
of exponentials. This concludes our first proof.

Second argument:

Asshown in Lemma 5.1, the maximal ideal space of the commutative Banach algebra /3 is home-
omorphic to T. In fact, the Gelfand transform a € B —» 4 € C(M(J3)) amounts to the natural
embedding of B into C(T).

Let G;(BY*N) stand for the connected component of the group of all invertible elements in
the Banach algebra BN containing the identity. It is known [26, Thm. 10.34] that ¢, admits a
representation (5.1) if and only if ¢, belongs to G,(BY*N). Furthermore, using Gelfand theory,
Arens Theorem [1, 27] implies that ¢, € G;(BYNN) if and only if ¢, € G;(C(T)V*N).

Since by assumption we know that ¢, is a continuous matrix function on T taking invertible
values, it follows that the last condition ¢, € G,(C(T)V*V) can be rephrased by saying that the

mapping
¢o : T - GL(N;C)

is homotopic to the constant mapping (with value Iy). Here we use the notation GL(N; C) for the
general linear group of order N over C, that is, the group of nonsingular N X N complex matri-
ces. From homotopy theory it is well-known that GL(N; C) is (path) connected and that its first
homotopy group 71 (GL(N; C)) is isomorphic to Z by means of the mapping

[b].. € m;(GL(N;C)) » wind(detb) € Z.

Therefore, since the wind(det ¢,)) = 0 is assumed, we can conclude that ¢, is homotopic to the
constant map. In other words, ¢, € G;(C(T)MN). Due to the equivalencies stated above, we thus
have proved that ¢, admits the product representation (5.1). O

5.2 | Relaxation of the invertibility assumption
We can now use the previous lemma to prove the following theorem, which is almost identical
to Corollary 4.10 except that the assumption about the invertibility of T(¢,) and T(¢,) has been

replaced by the weaker condition on winding number of det ¢.

Theorem 5.3. Assume ¢ = ¢, -+ pg where ¢, = up, ,, 1 < k <R, and such that the eigenval-
ues of B, € CN*N have real parts in the interval I = (—1/2,1/2). Moreover, suppose that the factor
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$o € Cp(T; NN is invertible and wind(det ¢) = 0. Then

lim de;T”(d’) = E, (5.3)
" Glpol [, det T, (¢y)

where

E =detT($)T(pr) " - T(p) ' T(¢7 D" T(g ) ' T($™)

is a well-defined operator determinant.

Proof. The proof goes along the lines of the proofs of Theorem 4.6 and Corollary 4.10 except that
we refine the given product representation ¢ = ¢y¢; --- pr to

¢ =Potpy - Pspr -+ Pr-

This is justified by Lemma 5.2, which allows us to write ¢g = Pop; --- s with 3; = eli e
CII,\J{,E(T; DM and 7; € C;;“VE(T; DNV for 0 < j < S. We may also assume that |7 || e < 112.
The latter condition implies that ||, — Iy[lz~ < 1, and therefore the operators T(%;) and T(3;)
are invertible and the sequences T,,(3;) are stable (0 < j < S).

In the proof of Theorem 4.6 we have used Theorem 4.5. We will also use it here and apply it to

the larger product. To be specific, we consider

An = Tn(¢)Tn(¢R)_1 e Tn(¢1)_1Tn(¢S)_l o Tn(zpl)_lTn(llbO)_l’

which leads us to

: detT,(¢)
Jim — R =E
Hj:() G[lpj]n Hk:1 det Tn(¢k)

with E = EE,E; and the constants

E; = detT($)T(¢r) ™" - T(¢) " T@s)™L - T T (%) ™
E, =detT(HT ()" -+ T(@) ' T@s) ™ -+ T@) ' T(ho) "

S
By = [ [ detTpT (7).
j=0

Here E; and the G[y;]’s arise from the Szeg6-Widom limit theorem applied to each of the
determinants det T, ().
We notice that the definition (1.2) of the constants G| - | implies that

G[‘Ibo] = G[ZPO]G[ZPI] G[zps]-

Indeed, this is deduced from ¢y = g3y -+ Pg = e™e .- 7s.
The next step is to rewrite E, as

By =det Ty )M T )™ - T ) T(@ )™ -+ T¢I,
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This follows directly from Theorem 4.9. To make the connection, we proceed similarly as in
Corollary 4.10, but modify the notation used in denoting the appropriate products to the following,

¢0¢1,M1 sz,ﬂz o ¢S,u5 ¢1,ll b ¢R,AR ’

where

;. () = eF®), bra(t) = e = yyp

In other words we introduce the parameters uq, ..., Ug, 41, ... , Ag. Note that it is not necessary to
parameterize 3. As before, the assumption |||l .~ < 1/2 implies that ||9; , — Iy|l .~ < 1 for all
u € [0,1], and hence for all 1 in a small neighborhood U of [0,1]. Therefore, all the Toeplitz oper-
ators T (1,3 j,) are invertible whenever u € U;. With this we see that Theorem 4.9 can be applied
and the above expression for E, follows.

By a simple computation it can be seen that E = E; E,E; evaluates to the constant given in the
theorem. Indeed, we write E1 E, as single operator determinant as follows

det (T T -+ T )@ )™ - T@ ) T@ ™)
XT@T@R) ™ -+ T TWs) ™+ T TWo) ™)

and combine it recursively with the other operator determinants det T(¢ j)T(zpj_l) for0<j<S.

All we have to use here are the general formulas det TAT ! = det A and det(AB) = (det A)(det B)
where A and B are identity plus trace class and T is an invertible operator. [l

5.3 | Proof of the main results

We are now going to prove our main results, Theorem 2.3 and Corollary 2.4.

We first remark that we have already proved Theorem 2.1 (see Section 3.2), which states the
equivalence of the assumptions (i)-(iv). Therefore, let us assume that ¢ € PC*¢(T; )NV is
I-regular and wind(¢;I) = 0 where I = (—1/2,1/2). We now apply Proposition 3.2 and Corol-
lary 3.3 to see that ¢ admits a representation (3.1). That means we can write ¢ = ¢y, -+ g With
¢k = up, r, for1 <k <R,and ¢, € Cpi(T; )™ is an invertible function with wind(det ¢) =
0. The real parts of the eigenvalues of By lie in I. This proves the first part of Theorem 2.3.

The conditions which we just stated are the assumptions in Theorem 5.3. Therefore, we can
apply this theorem and conclude the asymptotics (5.3). In this connection we will also use what
we stated in (4.3)-(4.5) (which in turn followed from Proposition 3.11). Combining all this we
arrive at the asymptotic formula (2.8) with the constants given by (2.9), (2.10), and (2.11). Hence
Theorem 2.3 is proved.

Corollary 2.4 is a direct conclusion of Theorem 2.3. In view of the product representation ¢ =
Pod1 -+ Pr and the definition of the function ¢ in (2.4), we see that ¢ = det ¢, and thus (2.13)
follows. On the other hand, the matrices B; are similar to the matrices L; defined in (2.1). This
can been seen directly, but has already been noted in the paragraphs following Proposition 3.2 and
its proof. This similarity implies formula (2.14).
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Finally, the constant E is nonzero if and only if the corresponding operator determinant is
nonzero. Notice that the Barnes G-functions are all nonzero since the ’s have real parts in
(—=1/2,1/2) and thus are not nonzero integers. Our assumptions imply that both T(¢) and T(¢~")
are Fredholm operators with index zero (see Theorem 2.1 and Proposition 3.10). The inverses of
T(¢i) and T(¢l:1) exist. Note that an operator determinant is nonzero if and only if the underlying
operator has a trivial kernel and a trivial cokernel. Therefore, it is easily seen that this amounts to
the invertibility of both T(¢) and T(¢~!). This concludes the proof of Corollary 2.4.

5.4 | An alternate approach using perturbation results and further
open problems

As we have mentioned before, many of the difficulties in our work arise because the invertibility
of block Toeplitz operators cannot be guaranteed. The proof of the Szeg6—-Widom limit theorem
given in [32] gets around this problem by using an elegant perturbation result [30]. Indeed, if T(¢)
is a Fredholm operator with index zero one can find a matrix Laurent polynomial g such that
T(¢ + Aq) is invertible whenever 0 < || < €. It would be interesting to know whether a proof of
our result could also be given using this type of perturbation. This is very likely possible, but notice
that because it has been used in connection with localization results, it is probably not as simple
as in [32]. In particular, it seems that one would need a result to simultaneously perturb T(¢) and
T(¢) with the same g to make them both invertible. Such a result has not yet been established.

Let us mention some open questions that naturally come up. The first one is about the validity
of the “duality” formula (4.9). Clearly, this formula can be proved if all “intermediate” Toeplitz
operators are invertible. It can also be proved if the various symbols can be continuously deformed
to ones for which the identity holds as long as the Toeplitz operators with the deformed symbols
are invertible. However, results such as [17, Prop. 10.5] suggest that the deformation argument has
its limitations. Perhaps a perturbation argument could work again, but it seems that if (4.9) turns
out to be generally true, its proof is not simply algebraic like the one for (4.8).

Another question of further interest is about the precise smoothness (on ¢,) that is required
to ensure that the stated Toeplitz determinant asymptotics (2.8) is valid in the case of piece-
wise continuous symbols ¢. As far as we are know, this has not yet been examined even in the
scalar case (N = 1). However, in the case of continuous selfadjoint symbols (i.e., for the Szego-
Widom theorem) results of this kind are available. We refer to [11, sect. 10.8] for more details
and references.

6 | EXAMPLES
In this section we study six examples of matrix-valued discontinuous symbols using our results.
We first present two examples that illustrate some of the subtleties of considering matrix-valued

symbols.

Example 6.1. Observe that the finite Toeplitz matrices with symbols of the simple form

(60 )
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have exactly the same determinant asymptotics. This can be easily seen by simply rearranging
rows and columns. Thus, even if g is piecewise continuous, the discontinuity will not contribute
to the asymptotics.

Example 6.2. For a second example, consider

u 1 b
C MB’I

where b,c € C and 8 € (—1/2,1/2) are constants chosen so that ¢ is invertible. Using our recipe
for finding the appropriate ug in our canonical representation, we need to compute Jordan form
of

(¢(1 +0))~'p(1 - 0).

A simple computation shows that the eigenvalues of the above are given by

1-bc N 2iv/bcsinfr
a = a

with a = e=27 — pc. Thus the “new” B-parameters that determine the asymptotics are given by

1Og(1—Tbc + 2i\/b_c;sinﬁ7r)

27i
The point of this example is that one cannot simply read off the asymptotics without doing the

appropriate linear algebra.

Example 6.3. Another example of a matrix-valued discontinuous symbol can be found in [23,
24], which is related to entanglement in quantum spin chains. As in (1.9), consider the symbol

o[ g®
() = (—g(e)—l 2 (6.1)
where

acos —1—iyasin®

80 = |acos® —1—iyasinf|

When a = 1 this symbol has a jump at 8 = 0. We will also assume that the parameter y is positive.
If we compute the appropriate “jump ratio matrix” we find that it is

1 A2+1 22
A2—-1\ 22 22+1)

The eigenvalues of the above are
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and thus when 1 is real and in the interval (—1, 1) the corresponding 3-parameters have real parts
+1/2. This is a situation not covered by our theorem, although it is possible the results still hold.
At A = +1, the symbol is not invertible and thus also not covered by our theorem. For other values
of 1 the asymptotics of the determinants are covered by our results. Note that det¢ =1 — A% isa
constant, and it is readily verified that the I-winding number of ¢ is zero. We have now obtained
the following result:

Theorem 6.4. Let ¢ be given by (6.1) and suppose that 1 & [—1,1]. Then
D,[¢] ~ (A =2*)" n® E
where Q = =22, E isgivenin (2.11), and § = 2%1 log(%) with the appropriately chosen logarithms.

Since in applications, one takes the logarithm of the above expression and then integrates, it is
useful to know that the constant E is not zero. This is not difficult to check in this case. We need
to know that the operators T(¢) and T(¢) are both invertible. Consider first T(¢).

Notice the symbol is of the form

0 ig(6
p=ill +p=i(Al —9), = <_ig(9)_1 zg(() )>'

Because |g(0)|?> = 1 we can conclude that the operator T'() is self-adjoint, while at the same time
it has norm equal to one. Therefore the spectrum of T(3) is contained in the interval [—1, 1]. Thus
for A not in this interval, the operator T(¢) is invertible. The same argument holds for T($) and
thus the constant E does not vanish.

Example 6.5. Another example where the jump discontinuities occur can be found in [2, 3] where
similar entanglement problems are also discussed. There the symbol in question is of the form

$(e®) = AI - @M(e), ©62)

where

M(@) = <h *t2cos0 GO ) A®) = V(h + 2c030)? + [GO))?
—-G(6) —h —2cos6

—i(r+6), —mT<0<-6,
G(@) = —19, —60 <0< 60
i(r—06), 6y<6<rm
and h € R, h # +2 and 1 € T (see (1.10)) are certain parameters. While not rigorously proving

the asymptotics, the authors do compute the eigenvalues of the jump ratio matrix to find that the
eigenvalues at both jumps (i.e., at 6 = +6,,) are given by

o ( VA2 = Cos?(AE/2) + sin(AE/2) >2

A2 -1

(6.3)
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where A§ = £t — £~ and

cosEt = h +2cos 8,
\/(h +2cos6y)? + (6 — )2
sinét = -7
\/(h +2cos6)? + (6, — )?
and
cosE- = h + 2cos8,
\/ 0+ 200560 + 62
6
sin~ = 0 .
\/(h +2c0s6))2 + 6]

Our results are in agreement with these. To see where our theorem applies, we note once again that
the determinant of the symbol ¢ is constant in 4. In addition, it is also straightforward to see that
the two eigenvalues ¢, for each point of discontinuity are algebraic inverses of each other. Thus
the only difficulty can occur when the logarithms of the eigenvalues do not satisfy the appropriate
condition, that is, when

A & [-1,—|cos(A§/2)[TU [| cos(A§/2)], 1]. (6.4)

We have now derived the following result, which was stated in sect. IV of [3] and then used to
compute the entanglement entropy for Kitaev chains with long-range pairing.

Theorem 6.6. Let ¢ be given by (6.2) and suppose that (6.4) holds. Then
D,l¢] ~ (4> = 1)"n®E,
where Q = —4p? and the logarithm 8 = i% log v, is appropriately chosen.
The operator for this theorem is of the form AI — T(3) with T(¥) self-adjoint and norm one.
Hence the same argument applies as before, for A not in [—1, 1], the relevant operators are invert-

ible and the constant E is nonzero. We have not yet determined whether E is nonzero in the case
A is in the interval

(=l cos(a/2)|, | cos(A§/2))).

Example 6.7. The final class of examples that we consider consists of piecewise constant
matrices. We let

©) = I 0<6<¢
ve)= M ¢<06<2m
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a—1 b
c d-—1

10+ a b
0o 1) e\ g4

where x4 57 is the indicator function of the interval [¢, 27]. Then it is known [22, Theorem 4.12]
that the block matrix factors as

-1 b b A0 —(a-d)/2—v -b
2bv\ —(a—=d)/2+v —(a-d)/2—v)\ 0 L)\ (@=d)/2—v b
where v = y/cb + i(a — d)?2, and the functions

A

where M is a constant invertible matrix. Suppose M = < > Then we can write our

symbol as

=1+ (a+ad)/2+V)x2m)

—

and

L=1+a+d)/2 =)0

Thus the asymptotics reduce to the scalar Fisher-Hartwig case and are completely describable.
We should note that the above holds if b and v are not zero, and if so, other factorizations are
described by the referenced theorem.
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