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Leaf mass per area (Ma), nitrogen content per unit leaf area (Narea), maximum carboxylation capacity (Vcmax) and the
ratio of leaf-internal to ambient CO2 partial pressure (χ ) are important traits related to photosynthetic function, and they
show systematic variation along climatic and elevational gradients. Separating the effects of air pressure and climate
along elevational gradients is challenging due to the covariation of elevation, pressure and climate. However, recently
developed models based on optimality theory offer an independent way to predict leaf traits and thus to separate the
contributions of different controls. We apply optimality theory to predict variation in leaf traits across 18 sites in the
Gongga Mountain region. We show that the models explain 59% of trait variability on average, without site- or region-
specific calibration. Temperature, photosynthetically active radiation, vapor pressure deficit, soil moisture and growing
season length are all necessary to explain the observed patterns. The direct effect of air pressure is shown to have a
relatively minor impact. These findings contribute to a growing body of research indicating that leaf-level traits vary
with the physical environment in predictable ways, suggesting a promising direction for the improvement of terrestrial
ecosystem models.

Keywords:: deciduous LMA prediction, elevation gradients, leaf functional traits, leaf nitrogen prediction, optimality-based
models, trait–climate relationships.

Introduction

A number of leaf traits are diagnostic of photosynthetic pro-
cesses. The ratio of leaf-internal to external CO2 (χ) reflects the
stomatal regulation of CO2 uptake, which has to be balanced
against water loss (Wang et al. 2017b). The maintenance of
transpiration involves a carbon cost, in the form of respiration
by living parenchyma cells, to maintain active water transport
tissues. The maximum capacity of carboxylation at a standard
temperature of 25 ◦C, Vcmax25, is a measure of the control of
photosynthesis by the amount of the enzyme (Rubisco) respon-
sible for carbon fixation (Wang et al. 2020). The maintenance

of photosynthetic capacity also incurs a substantial carbon cost
in the form of leaf respiration to support protein synthesis.
Leaf mass per unit area (Ma) determines the total carbon cost
of leaf construction (Wright et al. 2004). Nitrogen is required
for both metabolic processes and leaf construction (Lambers
and Poorter 1992, Onoda et al. 2004). Leaf nitrogen content
per unit area (Narea) thus provides a combined measure of the
metabolic and structural costs.

Empirical analyses of large trait data sets have shown that
variation in each of these traits is related to climate, and indeed
specific climate variables can be shown to influence individual
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Predictability of leaf traits with climate and elevation 1337

processes (Wright et al. 2005, Ordoñez et al. 2009, Meng
et al. 2015). The Vcmax25 is primarily determined by the amount
of Rubisco, while the activity of Rubisco varies with the leaf
temperature (Devos et al. 1998, Rokka et al. 2010). Vapor
pressure deficit represents the atmospheric moisture demand: it
is the difference between the saturated vapor pressure of water
(a function of temperature) and the actual vapor pressure, which
depends on the atmospheric pressure and moisture content.
Vapor pressure deficit influences stomatal behavior and thereby
induces variation in χ (Wang et al. 2017b). The amount of
light reaching the leaves influences Ma and Narea within the
canopy (Werger and Hirose 1991, Peltoniemi et al. 2012). Both
also vary with latitude because this determines total incident
radiation and day length (Forsythe et al. 1995). Analyses have
shown that the variability in each of these traits is largely
independent of variability in the others (Yang et al. 2019).

Elevational transects provide examples of trait variability
along environmental gradients (Jian et al. 2009, Asner and
Martin 2016, Asner et al. 2017, Pfennigwerth et al. 2017).
Although this variability is partly related to the changes in climate
with elevation, the impact of changing elevation on air pressure
is also thought to be significant (Gale 1972, Terashima et al.
1995, Wang et al. 2014, Wang et al. 2017a). Reduction in
air pressure at higher elevations lowers the partial pressure of
oxygen. All else being equal, it also decreases the water vapor
pressure and increases the atmospheric transmissivity to solar
radiation. The reduction in partial pressure of oxygen increases
the affinity of Rubisco for CO2, which reduces photorespiration.
The effects of decreasing water vapor pressure and increasing
transmissivity are often countered by decreasing temperature
and increasing cloudiness. Nonetheless, their contribution (com-
pared with the situation at constant elevation) is to increase the
vapor pressure deficit—because atmospheric pressure automat-
ically declines with elevation, while the saturated vapor pressure
does not—resulting in higher water transport costs and lower χ ,
and to increase absorbed light, resulting in increased Vcmax25,
Ma and Narea (Wang et al. 2017a).

It is difficult to disentangle the effects of air pressure and
climate along elevation gradients because of their covariation.
Attempts to separate out climate and elevation empirically by
comparing low-elevation sites at higher latitude with high-
elevation sites at lower latitude (Körner et al. 1991) have
distinguished the impacts of temperature from air pressure
but have not addressed specific climate influences. However,
understanding the relative importance of air pressure effects
on photosynthesis could be important in the face of projected
climate changes, in particular, given the apparent sensitivity of
high-elevation sites to these changes (Stocker et al. 2013,
Settele et al. 2015).

Recent progress in the application of optimality theory to
predict trait variation (Prentice et al. 2014, Dong et al. 2017,
Wang et al. 2017b) offers an alternative way to examine the

impacts of climate and elevation on photosynthesis. Optimal-
ity theory is predicated on the idea that through evolution-
ary processes (including selection for plasticity as well as
environmental filtering of lineages) plants are adapted to the
environmental conditions under which they live. The values
of photosynthetic parameters are then predicted as the result
of trade-offs between competing requirements, such as the
need to balance CO2 uptake against water loss. The balance
between maintaining carboxylation capacity and transpiration
capacity can be described in terms of the least-cost hypothesis
(Wright et al. 2003, Prentice et al. 2014), which states that
plants minimize the combined costs of maintaining these capac-
ities. This hypothesis allows us to predict χ . The coordination
hypothesis (Chen and Reynolds 1997, Maire et al. 2012, Wang
et al. 2017b) indicates that carbon gain is maximized through
balancing light and Rubisco limitations on photosynthesis. This
hypothesis allows us to predict Vcmax25 (Smith et al. 2019). The
need to allocate nitrogen to structural and metabolic processes
allows us to predict Narea as a function of Vcmax25 and Ma

(Dong et al. 2017). According to the optimal leaf longevity
(LL) hypothesis (Kikuzawa 1991), plants maximize the time-
averaged net carbon gain of leaves, taking into account the con-
struction costs (amortized over the leaf lifetime) and the decline
in photosynthetic capacity with increasing age. This hypothesis
allows Ma to be predicted from LL. The LL of deciduous species
is constrained by growing season length (gsl); thus, Ma of
deciduous species should be predictable fromgsl.

In this study, we draw on these theoretical developments
to predict trait variability in response to climate and elevation
gradients in the Gongga Mountain region, China. We develop a
new optimality model to predict Ma of deciduous species and a
simplified optimality approach to predict Narea. These optimality
models were developed independently of the observations used
in this study and require no calibration. We show that these
models capture observed variations in photosynthetic traits at
sites in the Gongga Mountain region. We then use these models
to quantify the relative contribution of different factors to the
observed changes in trait values at these sites.

Materials and methods

Study sites

We collected photosynthetic trait data from 18 sites in
the Gongga Mountain region of Sichuan Province, China
(Figure 1a and b). The study area extends from 29◦ 22′ to 29◦
55′ N and from 101◦ 1′ to 102◦ 9′ E. The sampled sites span an
elevation gradient from 1143 to 4361 m, and as a result, there
is a considerable gradient in growing season temperature (see
Table S1 available as Supplementary data at Tree Physiology
online). Sites from the western part of the Gongga Mountain
region tend to be drier than the sites at a corresponding
elevation in the eastern part, and thus, our data set also
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1338 Xu et al.

Figure 1. The study area. (a) The location of the Gongga Mountain region in China, (b) spatial distributions of the sampled sites in the Gongga
Mountain region, shown by red dots, and (c) the daytime temperature in July (TdJ) and the ratio of annul actual evapotranspiration to annual potential
evapotranspiration (αp) at the sampled sites. The background to plots (a) and (b) shows elevation.

samples a large moisture gradient (see Table S1 available as
Supplementary data at Tree Physiology online). The vegetation
at lower elevations is deciduous broad-leaved forest dominated
by Betulaceae, Urticaceae, Caprifoliaceae and Rosaceae, and it is
replaced by evergreen needle-leaved forest and subsequently by
deciduous shrubland dominated by Pinaceae and/or Rosaceae
and Ericaceae (see Table S2 available as Supplementary data at
Tree Physiology online) with increasing elevation. Although ever-
green woody species are present at all of the sites (see Table S2
available as Supplementary data at Tree Physiology online), and
trait measurements were made on these species, our subse-
quent analyses of photosynthetic traits focused entirely on the
deciduous species because of the difficulty of obtaining reliable
estimates of leaf age based on a single sampling of a site.

Sample collection and analysis

Trait data were measured in late July 2018 and early August
2019 during the active growing season in the Gongga Mountain
region. We used a stratified sampling strategy at each site in
order to sample the dominant species in each canopy stratum.
In forest sites, we sampled a minimum of five tree, five shrub
and five forb species at each site and also sampled graminoids,
lianas and climbers, and pteridophytes when present (see
Table S2 available as Supplementary data at Tree Physiology
online). At the highest elevation sites (3794, 3943, 4081
and 4361 m), where shrubs form the upper canopy, we only
sampled shrubs and forbs (and at the highest site one pteri-
dophyte), but again, we sampled a minimum of five species in
each category. All samples were taken from the outer canopy.

Measurements were made on the young but fully expanded
leaves attached to the cut branch.

Our analyses focus on four leaf traits: (i) leaf mass per
unit area (Ma, g biomass m−2), (ii) the maximum capacity of
carboxylation at 25 ◦C (Vcmax25, μmolC m−2 s−1), (iii) the ratio
of leaf-internal to ambient CO2 partial pressure (χ , unitless)
and (iv) leaf nitrogen content per unit area (Narea, g m−2). (see
Table 1 for definitions of parameters and other abbreviations
frequently used in the text.) The Ma was obtained from the
measurements of leaf area and dry weight following standard
protocols (Cornelissen et al. 2003). Leaf area was taken as the
projected area of a leaf, or leaflet for compound leaves, using
a LiDE 220 Scanner (Canon Inc., Huntington, NY, USA). Dry
weight was obtained after air-drying for several days and then
after oven-drying at 75 ◦C for 48 h to constant weight. The
Ma value of one species at each site was the average of three
measurements made on leaves from multiple individuals. Leaf
nitrogen content was measured using an Isotope Ratio Mass
Spectrometer (Thermo Fisher Scientific Inc., Carlsbad, CA, USA).
The Narea was calculated from Ma and leaf nitrogen content. Leaf
nitrogen content (for Narea) and stable carbon isotope (δ13C, for
χ) measurements were made on pooled samples of leaves from
multiple individuals.

We used a portable infrared gas analyzer system (LI-6400;
Li-Cor Inc., Lincoln, NE, USA) to make the leaf gas-exchange
measurements. Sunlit terminal branches from the upper canopy
were collected and re-cut under water immediately prior to mea-
surement. Measurements were made in the field with relative
humidity and chamber block temperature close to that of the

Tree Physiology Volume 41, 2021
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Table 1. Parameters and abbreviations frequently used in the text. The table provides information on the meaning and units

Parameters and abbreviations Unit Description

χ Pa Pa−1 The ratio of leaf-internal to ambient CO2 partial pressures
Ma g biomass m−2 Leaf mass per area
Narea g m−2 Leaf nitrogen content per area
Vcmax μmolC m−2 s−1 The maximum capacity of carboxylation
Vcmax25 μmolC m−2 s−1

molC m−2 day−1

The maximum capacity of carboxylation at standard 25 ◦C
Used when calculating b in Ma section

Tg
◦C Mean temperature during the growing season (mean daily

temperature above a baseline of 0 ◦C)
D0 kPa Mean vapor pressure deficit during the growing season
R0 μmol photon m−2 s−1 Mean photosynthetically active radiation during the growing

season
RLAI mol photon m−2 day−1 Mean leaf-area-index-weighted photosynthetically active

radiation during the growing season
f day day−1 The ratio of gsl to the number of days in the year
MAP mm Mean annual precipitation
αp mm mm−1 The ratio of annual actual evapotranspiration to annual

potential evapotranspiration
TdJ

◦C Mean daytime temperature of July
�∗ Pa The photorespiratory compensation point
ca Pa Ambient CO2 partial pressure
ci Pa Internal CO2 partial pressure
β unitless The ratio at 25 ◦C of the unit costs of maintaining

carboxylation and transpiration capacities (estimated as 146)
K Pa The effective Michaelis–Menten coefficient of Rubisco
Kc Pa The Michaelis–Menten coefficients of Rubisco for carboxylation
c unitless A constant proportional to the unit carbon cost for the

maintenance of electron transport capacity (0.41)
LL day Leaf longevity
b day The potential age when leaves can no longer photosynthesize

and assimilate CO2

k g biomass mol C−1 Scaling factor
Iabs mol photon m−2 day−1 The photosynthetically active radiation absorbed by leaves
CC gC gC−1 A constant representing the construction carbon cost per unit

leaf mass carbon
Aa g biomass m−2 day−1 Daily carbon assimilation rate per unit leaf area
ϕ0 μmol C μmol−1 photon The intrinsic quantum efficiency of photosynthesis

mol C mol−1 photon Used in Eq. (12) of the Ma section
Nrubisco g m−2 Nitrogen content in Rubisco enzymes
Nstructure g m−2 Nitrogen content in leaf structure

ambient air at the time of measurement and with a constant
airflow rate (500 μmol s−1). The Vcmax was calculated from the
light-saturated rate of net CO2 fixation at ambient CO2 using the
one-point method (De Kauwe et al. 2016) and was adjusted to
a standard temperature of 25 ◦C (Vcmax25) using the method
of Bernacchi et al. (2003). The Vcmax value of one species
at each site was obtained from one individual only due to the
time-consuming nature of the measurement.

Carbon isotopic values (δ13C) were measured using an Iso-
tope Ratio Mass Spectrometer (Thermo Fisher Scientific Inc.,
Carlsbad, CA, USA). Estimates of χ were made using the sim-
plified method of Ubierna and Farquhar (2014) to calculate iso-
topic discrimination (�) from δ13C by considering discrimination
during stomatal diffusion, carboxylation and photorespiration,
thus following the relationship:

χ = � + f ′�∗
ca

– as

b′ – as
, (1)

where as, b′ and f ′ are the fractionations associated with
diffusion in air (4.4‰), Rubisco carboxylation (30‰) and pho-
torespiration (16‰), respectively. �∗ is the photorespiratory
compensation point and ca is the ambient CO2 partial pressure.

Climate data

In situ climate data were only available for five (1785, 2782,
2993, 3251 and 3943 m) of the 18 sampled sites. We
therefore estimated the climate at each site consistently by
interpolation between a larger set of weather stations in the
region (17 stations, see Figure S1 available as Supplementary

Tree Physiology Online at http://www.treephys.oxfordjournals.org
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data at Tree Physiology online) for the period from January
2017 to December 2019 (http://data.cma.cn/data/cdcdetail/
dataCode/SURF_CLI_CHN_MUL_MON.html) to create seasonal
climatologies of monthly maximum and minimum temperatures,
fraction of sunshine hours, water vapor pressure and pre-
cipitation. These 17 stations range in elevation from 422 to
3951 m. We then used the elevationally sensitive ANUSPLIN
interpolation scheme (Hutchinson and Xu 2004) to provide
estimates of these meteorological variables at each of the sites.
The monthly estimates at each site were converted to daily
values by linear interpolation in order to calculate the bioclimatic
variables required as inputs to our models, specifically, growing
season mean daytime temperature (Tg), growing season mean
vapor pressure deficit (D0) and growing season mean photo-
synthetically active radiation (R0), where the growing season
was defined as the period when the daily temperature is above
0 ◦C. We also calculated the ratio of gsl to the number of days
in the year (f) and the leaf-area-index-weighted R0 (RLAI) to
represent the effect of light interception by different layers in the
canopy (Dong et al. 2017). The average leaf area index during
July and August (i.e., the months the trait data were collected)
in 2018 and 2019 was derived from the MODIS leaf area index
product (MCD15A3H: https://modis.gsfc.nasa.gov/). An annual
moisture index (αp, an estimate of the ratio of annual actual
evapotranspiration to annual potential evapotranspiration) was
calculated from the monthly temperature, precipitation and
fraction of sunshine hours at each site using the simple process-
led algorithms for simulating habitats (SPLASH) model (Davis
et al. 2017). Given the large difference between daytime and
night-time temperatures at high elevations, we also calculated
the mean daytime temperature of July (TdJ) by approximating
the daily temperature cycle with a sine curve:

TdJ = Tmax

⎧⎨
⎩1

2
+

(
1 – x2

) 1
2

2 cos – 1x

⎫⎬
⎭ + Tmin

⎧⎨
⎩1

2
–

(
1 – x2

) 1
2

2 cos – 1x

⎫⎬
⎭ ,

(2)

where Tmax is the mean daily maximum air temperature, Tmin is
the mean daily minimum air temperature and x = − tan ϕ tan
δ, where ϕ is site latitude and δ is the average solar declination
in July.

Comparison of the interpolated bioclimate variables with the
values calculated using in situ data at the five sites where such
data are available (see Figure S2 available as Supplementary
data at Tree Physiology online) suggests that the ANUSPLIN
interpolation provides robust estimates of the patterns of varia-
tion in climate across sites although, except for July temperature,
the absolute values differ.

Trait data analysis

Analyses of the trait data focused on the predominant deciduous
component of each community. We used redundancy analysis

(RDA: Legendre and Legendre 2012) to determine the main
patterns of trait variation using species average values from
each site, assess how much of this variation is explained by
environmental factors and determine the correlations between
traits and environment. The RDA was performed using the vegan
package in R (Oksanen et al. 2017). In order to compare the trait
variability within and across sites, we calculated the coefficient
of variation (CV: Brown 1998), a standardized measure of the
dispersion of a frequency distribution, for the data set as a whole
and at each site, for each of the traits independently.

We used generalized additive models (GAMs) to analyze
trait variability with αp and elevation. The GAMs (Hastie and
Tibshirani 1990) allow flexible relationships between response
and predictor variables to be fitted to the data, avoiding the
need to assume the form of the function in advance. Convex
hulls were used to exclude areas of the fitted surface that were
not well constrained by observations. The GAMs were fitted
using the mgcv package (Wood 2001), and α-convex hull was
produced using alphahull package in R (Rodríguez Casal and
Pateiro López 2010).

Trait prediction

We used existing optimality based models of χ and Vcmax25 and
new models of Ma and Narea to predict the distribution of traits
with climate and elevation across the sites. We used gsl as a
proxy for the LL of deciduous plants. Specific photosynthetic
traits adjust to the environmental conditions over different
timeframes (Xu and Baldocchi 2003, Jiang et al. 2020), so
we tried two alternative measures of temperature (Tg and TdJ)
as predictors. The models for χ and Vcmax25 apply for both
deciduous and evergreen species.

The model for χ This model is based on the assumption of
evolutionary optimality in the trade-off between the costs of
transpiration and carbon gain. The least-cost hypothesis predicts
that plants minimize the total costs of photosynthesis, i.e.,
the requirement to maintain capacities for both carboxylation
and transpiration (Wright et al. 2003, Prentice et al. 2014).
Using the standard photosynthesis model due to Farquhar et al.
(1980), Wang et al. (2017b) showed that χ could be predicted
by:

χ = �∗

ca
+

ξ
(
1 – �∗

ca

)
ξ + √

D0
, (3)

where

ξ =
√

β (K + �∗)
1.6η

, (4)

and

K = Kc

(
1 + Po

Ko

)
. (5)
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Here �∗ is the photorespiratory compensation point, and
ca is the ambient CO2 partial pressure. The η is the viscosity
of water relative to its value at 25 ◦C. The β is the ratio at
25 ◦C of the unit costs of maintaining carboxylation and tran-
spiration capacities. Based on a global compilation of leaf 13C
measurements, Wang et al. (2017b) estimated β = 146. The
K is the effective Michaelis–Menten coefficient of Rubisco. The
Kc and Ko are the temperature-dependent Michaelis–Menten
coefficients for carboxylation and oxygenation, with reference
values at 25 ◦C of 39.97 Pa and 27.48 kPa, respectively
(Bernacchi et al. 2001). The Po is the ambient partial pressure
of O2. The composite variable ξ determines the sensitivity of χ

to D0. This dependence is influenced by temperature (via �∗, K
and η) and O2 pressure (via K) according to Eqs (4) and (5).

The model for Vcmax25 The coordination hypothesis states that
plants coordinate light-limited and Rubisco-limited photosynthe-
sis rates so as to be equal under average daytime conditions
(Chen et al. 1993). This coordination ensures that the use
of absorbed light is maximized without incurring additional
maintenance costs for Vcmax. The Vcmax acclimated to growth
temperature can be predicted from the universal model of
carbon uptake proposed by Wang et al. (2017b):

Vcmax = ϕ0R0

(
ci + K

ci + 2�∗

)√
1 –

( c

m

) 2
3
, (6)

m =
(

ci – �∗

ci + 2�∗

)
, (7)

where ϕ0 is the intrinsic quantum efficiency of photosynthesis
(0.085 μmol C μmol−1 photon), and ci is the leaf-internal
CO2 partial pressure, which is the product of observed χ and
ca. The c is a constant proportional to the unit carbon cost
for the maintenance of electron transport capacity (a value
of 0.41 was estimated from an independent global data set
on photosynthetic capacities). The m represents the effect of
subsaturating CO2 on the light-limited rate of photosynthesis.

The kinetic response of Rubisco to temperature allows
Vcmax25 to be estimated from Vcmax at growth temperature
(Tg), by the following relationship:

Vcmax = Vcmax25fv, (8)

fv = eHa(Tg – 298.15/(298.15TgR))×
[
1 + e(298.15�S – Hd)/(298.15R)

]
[
1 + e(Tg�S – Hd)/(TgR)

] ,

(9)

where Ha is the activation energy (71,513 J mol−1), R is the
universal gas constant (8.314 J mol−1 K−1), Hd is the deacti-
vation energy (200,000 J mol−1) and �S is an entropy term
(J mol−1 K−1) calculated using a linear relationship with Tg, with
a slope of 1.07 J mol−1 K−2 and intercept of 668.39 J mol−1 K−1

(Kattge and Knorr 2007).

A new model for Ma The Ma contributes to determining how
much leaf area can be displayed for a given amount of carbon
allocated to above-ground tissues (Cui et al. 2019). There is
a universal trade-off between Ma and LL across growth forms,
plant functional types (PFTs) and biomes, known as the ‘leaf
economics spectrum’ (Wright et al. 2004). The spectrum runs
from a ‘fast’ to a ‘slow’ economic strategy. Plants adopting a fast
economic strategy have rapid returns on investment (low Ma)
and short longevity (low LL), while plants adopting the slow
strategy have high Ma and high LL.

Here we propose a novel model for Ma, which combines
three optimality-based predictions. We start from the model
proposed by Kikuzawa (1991). By assuming that the average
net carbon gain by a leaf during its lifetime is maximized, this
model provides an optimality-based prediction of the trade-off
between Ma and LL:

LL =
√

2b ∗ CC ∗ Ma

Aa
. (10)

Here b (day) is the potential age at which leaves can no longer
photosynthesize, CC (gC gC−1) is the construction cost per unit
mass of leaf carbon and Aa (g biomass m−2 day−1) is the daily
carbon assimilation rate per unit leaf area. The Ma can be written
as a function of LL, b and Aa from Eq. (10). Consequently,
understanding the environmental responses of these three traits
is the key to predicting Ma.

Second, Xu et al. (2017) showed that b is approximately
proportional to Ma and inversely proportional to Vcmax25:

b = u Ma

k Vcmax25
. (11)

Here u ≈ 8889 (dimensionless), estimated from a meta-
analysis of data on 49 species across temperate and tropical
biomes (Xu et al. 2017), and k is a scaling factor (30 g biomass
mol C−1).

Third, the coordination hypothesis allows optimal values of
Vcmax to be predicted by equating the Rubisco-limited assimila-
tion rate with the electron transport limited rate under typical
daytime conditions that include temperature, vapor pressure
deficit, ambient CO2 and the photosynthetically active radiation
absorbed by leaves (Iabs). The model has the mathematical
form of a ‘light–use efficiency model’: that is, modeled total
photosynthesis over any period is proportional to the total light
absorbed during that period, which is consistent with classical
studies on crop growth (Wang et al. 2017b). For this derivation,
we made the simplifying assumption that the maximum rate of
electron transport (Jmax) is large enough that the square-root
term in Eq. (6) can be neglected. We substituted Eqs (8) and
(9) into (11) to predict b from Ma and Vcmax, which is then
predictable from ϕ0, Iabs, ci, �∗ and K . In this way, we obtained

Tree Physiology Online at http://www.treephys.oxfordjournals.org

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/article/41/8/1336/6094892 by guest on 08 July 2024



1342 Xu et al.

a theoretical prediction of Ma:

Ma = ϕ0Iabs LL k

√
(ci – �∗) (ci + K)

(2uCCfv) (ci + 2�∗)2 . (12)

In addition to the implied proportionality of Ma with both
absorbed light and LL, Eq. (12) indicates the existence of a
composite temperature effect due to the temperature depen-
dencies of χ , �∗, K and f v. In order to separate these depen-
dencies, estimate the net effect of temperature more easily and
account for the moisture effect detected in the China Plant Trait
database (Wang et al. 2018), we obtained the partial derivative
of ln(Ma) in Eq. (12) with respect to temperature (Tg) and
evaluated the result under standard environmental conditions.
This predicts a decline in ln(Ma), for a given LL and Iabs, of ≈3%
per degree increase in growth temperature (Tg). In addition, all
the constants (ϕ0, u, k, CC and reference values of f v, K , ci and
�∗ at 25 ◦C) are combined into a single parameter C1 to reduce
the complexity of the model. A linearized equation for predicted
Ma can then be derived as:

ln (Ma) = ln (Iabs) – 0.03 Tg + ln (LL) + ln (C1) , (13)

where C1 is a free parameter. For deciduous species, there is an
additional constraint on LL by gsl in Eq. (13), thus we obtained
the equation for deciduous species:

ln (Ma) = ln (Iabs) – 0.03 Tg + ln(f) + ln (C2) , (14)

where f is the ratio of gsl to the number of days in the year.
Thus, information on the number of days in a year is considered
in the free parameter (ln(C2) = ln(C1) + ln(365)), resulting in
changing of C1 to C2. The C1 and C2 are unknown a priori but
could be estimated from observations.

Although not included in this theoretical derivation, a strong
negative effect of increasing moisture availability on Ma has
been reported (Meng et al. 2015). We used the ratio of actual
to potential evapotranspiration (αp) as an index of moisture
availability in order to estimate this effect from the data. Thus,
parameter C2 is further replaced by C3 to denote the parameter
difference in Eq. (14) and Eq. (15) after the moisture effect is
included.

We used an independent data set of ln(Ma) for 621 decid-
uous species from the China Plant Trait database (Wang et al.
2018) to estimate the parameter C3. Using RLAI to represent
the averaged light absorbed by leaves, we regressed the obser-
vations of ln(Ma) against ln(RLAI), Tg, ln(f) and ln(αp) and
obtained an estimate of ln(C3) of 1.70. The predictors in this
analysis explained 53% of the variation in Ma, and the fitted
slopes of RLAI, Tg and ln(f) were quantitatively consistent with
their theoretical values as given in Eq. (14). Thus, the final model

for Ma was:

ln (Ma) = 1.22 ln (RLAI) + 0.78 ln(f) – 0.06 Tg – 0.60 ln (αp)

+ 1.70. (15)

A simple model for Narea The Narea represents the sum of
nitrogen in both metabolic and structural components of a leaf.
Dong et al. (2017) proposed a model to predict Narea from
Ma and Vcmax25 by assuming (based on previously published
analyses) that (i) Vcmax25 is proportional to nitrogen in Rubisco
and (ii) non-photosynthetic nitrogen is almost proportional to
Ma. The model of Dong et al. (2017) is as follows:

Narea = 9.5Nrubisco + Nstructure, (16)

Nstructure = 10 – 2.67Ma
0.99 (17)

and

Nrubisco = 0.003135Vcmax25. (18)

The coefficient of Nrubisco in Eq. (16) reflects the allocation
of total metabolic nitrogen to Rubisco, which however, varies
among species. We used the observed Ma and Vcmax25 in this
study to estimate Nstructure and Nrubisco in Eqs (17) and (18),
then fitted a regression of metabolic nitrogen (estimated as
the difference between Narea and Nstructure) against Nrubisco to
estimate this coefficient for the deciduous species from the
Gongga sites. We obtained a value for the coefficient of Nrubisco

of 7.2, which is within the predicted range given in Dong et al.
(2017).

However, there is considerable uncertainty in Eq. (18), which
describes the maximal catalytic turnover rate of Rubisco at
25 ◦C (von Caemmerer et al. 1994, Harrison et al. 2009) as
well as in Eqs (16) and (17). To simplify the calculations and
avoid these uncertainties, we adopted an alternative method to
estimate Narea directly by regression as a linear combination of
all observed Ma and Vcmax25 (without intercept) in this study,
yielding a simpler model that applies to non-nitrogen-fixing
plants:

Narea = 0.02Ma + 0.003Vcmax25 (19)

.

We used this simple model to predict Narea first from
observed—and then from predicted—Vcmax25 and Ma. In this
way, we could first test whether Narea is indeed predictable from
Vcmax25 and Ma in our data set and then test whether Narea is
predictable from the climate data alone. In order to examine the
impact of nitrogen fixation on this relationship, we also included
‘N-fixer’ as a factor in this linear model. Partial residuals from
the regression model for Narea were plotted using the visreg
package (Breheny and Burchett 2017).
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Estimating the contribution of individual predictor
variables The contribution of each predictor variable to trait
variation was calculated in three steps. At Step 1, we created
a baseline by averaging the values of each predictor variable
across the 18 sites to create a data set for an ‘average’ site.
We used this average site data to calculate baseline trait values.
At Step 2, we changed one predictor variable at a time to the
actual value at that site, keeping all the other variables constant
at the average site value. We then calculated trait values using
these new inputs. At Step 3, the contribution of each predictor
variable was calculated as the difference between the traits
simulated at Step 2 and the baseline value of the traits from
Step 1. This procedure allowed us to separate out the individual
influences of changes in air pressure with elevation, TdJ and D0

on χ , the influence of changes in air pressure with elevation, TdJ

and R0 on Vcmax25, as well as the impact of χ itself on Vcmax25.
It also allowed us to separate the effects of Tg and RLAI on Ma

and the effects of LL (indexed by gsl) and moisture (indexed by
the ratio of annual actual evapotranspiration to annual potential
evapotranspiration) on Ma.

Uncertainty of the model predictions The uncertainty of trait
prediction can come from two sources: parameter values and
input data. To evaluate the parameter uncertainty, we calculated
the uncertainty of each parameter separately and combined
them using the standard error propagation formula:

u2(y) =
∑

i

(
∂m

∂ni

)2

u2 (ni) , (20)

where u(y) is the standard uncertainty of the trait, ∂m/∂ni is
the sensitivity to variable ni (obtained by differentiating the
individual equations) and u(ni) is the standard uncertainty of ni.
The uncertainty of predicted Ma and Narea values arises from
the uncertainties in the coefficients fitted by regression and
additional observed Ma and Vcmax25 for Narea. The uncertainty of
χ and Vcmax25 arises from the values of the various ecophys-
iological quantities in the prediction equations and additional
observed χ for Vcmax25, which show some degree of variation
among species.

Model evaluation

We evaluated model performance by comparing the observed
mean trait value at each site with predictions of each trait, using
r and root mean square error (RMSE) between the observed
and predicted values across the sites. We compared the R2

explained by the optimality models and statistical models. To test
whether the optimality-based models can capture the climate
variability, we also fitted multiple linear regressions of the site-
mean trait values against the driving climate data which serve
as a statistical benchmark. All statistics were performed in
R3.1.3.

Figure 2. Climate-related trait dimensions from redundancy analysis
(RDA). The climate variables (shown by blue arrows) are mean tem-
perature during the growing season, defined as days above a baseline
of 0 ◦C (Tg), mean vapor pressure deficit (D0), mean photosynthetically
active radiation (R0) and a moisture index (αp) defined as the ratio of
annual actual evapotranspiration to annual potential evapotranspiration.
The traits (shown by red arrows) are leaf mass per area (Ma), leaf
nitrogen content per area (Narea), the maximum capacity of carboxylation
standardized to 25 ◦C (Vcmax25) and the ratio of leaf-internal to ambient
CO2 partial pressures (χ). The gray circles are species average values
from each site.

Results

Trait variation related to climate

The four climate variables together accounted for 22.2% of the
trait variation as shown in the RDA. The first axis explained
16.9% of the variability in the observations. On this axis,
variability was negatively related with temperature and positively
related with R0 (Figure 2). The second axis reflected gradients
in moisture (αp and vapor pressure deficit). Variability in χ

was shown to be controlled by moisture, although with a small
influence from temperature. The Vcmax25 varied positively with
radiation, and negatively with temperature and moisture, in the
opposite direction from χ . Temperature had a small positive
influence on Ma but moisture had a negative impact, reflecting
the fact that leaves were thicker in hotter and drier environments.
The Narea was mainly controlled by radiation and moisture and
covaried with Ma and Vcmax25.

Observed and predicted trait variation with elevation

All observed traits showed non-linear relationships with eleva-
tion (Figure 3). Trait distributions in climate space also showed
non-linear relationships. (Figure 4). These non-linear relation-
ships arose because although temperature (as measured by
either Tg or TdJ) decreased monotonically with elevation, the
moisture-related variables in the Gongga Mountain region had
non-linear relationships with elevation (Figure 1c): the lowest
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1344 Xu et al.

Figure 3. The observed and predicted values of traits along the altitudinal gradient. The traits are leaf mass per area (Ma), leaf nitrogen content
per unit area (Narea), the maximum capacity of carboxylation standardized to 25 ◦C (Vcmax25) and the ratio of leaf-internal to ambient CO2 partial
pressure (χ). Only the observed trait values of deciduous plants are shown in black with box plots. The best versions of each predicted trait are
shown as red dots: predicted Ma using mean temperature during the growing season, defined as days above a baseline of 0 ◦C (Tg), predicted
Vcmax25 and χ driven by daily temperature in July (TdJ) and predicted Narea using observed Ma and Vcmax25.

and uppermost sites had lower mean annual precipitation (MAP)
and αp than the sites at intermediate elevations (see Table S1
available as Supplementary data at Tree Physiology online).
The combination of these different trends in individual climate
variables led to a complex pattern of trait variability. The Ma

and Narea were large under dry conditions and high elevation.
The Vcmax25 increased along elevation and moisture gradients.
The χ was lower under dry conditions and low elevation.
Nevertheless, Ma, Vcmax25 and Narea tended to increase over-
all with elevation, while χ showed an overall decrease with
elevation. There was no trend in the CV of any of the traits
with elevation (see Figure S3 available as Supplementary data
at Tree Physiology online). Within-site CV values were larger
than across-site CV values at nearly half of the sites for Ma, χ

and Narea, while most of the within-site CV values were smaller
than across-site CV values for Vcmax25. However, within-site
variability differed between the traits. The Vcmax25 was the most
and χ was the least variable trait.

The models captured the overall patterns of variability of the
four traits between sites, with most of predicted values falling
within the range of the observed values. The observed and
predicted site-mean values followed the 1:1 line (Figure 5), and
the average of the r values for the four traits was 0.75. Mean
RMSE values showed that differences between observations
and predictions accounted for close to 30% of the mean trait
values. The R2 values produced by the optimality models were
generally higher, except for Ma, due to its underestimation at low

elevation (Table 2). The models also captured χ and Vcmax25

variations for evergreen species, with r values of 0.68 and 0.67,
respectively (see Figure S4 available as Supplementary data at
Tree Physiology online). However, predicted Ma using TdJ, χ

using Tg and predicted Narea using Nstructure and Nrubisco were
underestimated, and Vcmax25 using Tg was overestimated (see
Figure S5 available as Supplementary data at Tree Physiology
online). Using TdJ instead of Tg improved the predictions of
Vcmax25 and χ but degraded the prediction for Ma (Figure 5, see
Figure S6 available as Supplementary data at Tree Physiology
online). The predicted χ values using TdJ were better than
those using Tg, and the best-fit model could predict the values
across the sites with r = 0.71 and RMSE = 0.06 despite the
bias, with median values of χ underpredicted at most sites
(Figure 3). The uncertainties of predicted Vcmax25 and Narea

were much narrower than the observed ranges. All parameters
in the Narea models contributed almost equally to the uncertainty,
while the parameter c was the major source of uncertainty for
Vcmax25. The large uncertainty of Ma and χ mainly resulted
from the intercept and the parameter β , respectively (see
Figure S7 available as Supplementary data at Tree Physiology
online).

The Narea was shown to be strongly correlated with both Ma

and Vcmax25 (P < 0.001) (Figure 6, see Figure S8 available as
Supplementary data at Tree Physiology online). However, there
was a significant effect of including nitrogen fixation (‘N-fixer’)
as a factor. At any given Ma or Vcmax25, Narea was slightly higher
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Figure 4. The distribution of predicted trait values in a climate space defined by elevation and a moisture index (αp) using GAMs. The traits are (a)
leaf mass per area (Ma), (b) the maximum capacity of carboxylation standardized to 25 ◦C (Vcmax25), (c) the ratio of leaf-internal to ambient CO2
partial pressure (χ) and (d) leaf nitrogen content per unit area (Narea). Trait values are indicated by the color scale.

Table 2. The comparison between R2 of statistical models (multiple
linear regressions of the site-mean trait values against the driving
climate data) and optimality models. For Ma, Vcmax25 and χ , ‘Tg’ in
parentheses represents the predicted traits using mean temperature
during growing season, ‘TdJ’ represents the predicted traits using
daytime temperature in July. For Narea, ‘Ma + Vcmax25’ represents the
predicted Narea using observed Ma and Vcmax25 in Eq. (19).

Traits Statistical model Optimality model

Ma (Tg) 0.55 0.33
Vcmax25 (TdJ) 0.45 0.60
χ (TdJ) 0.49 0.51
Narea (Ma + Vcmax25) 0.65 0.84

in the nitrogen-fixing species. The prediction of Narea directly
from Ma and Vcmax25 with our simple method (Eq. 19) was
marginally closer to the data than the prediction from Ma and
Vcmax25 via Nstructure and Nrubisco (see Figure S5 available as
Supplementary data at Tree Physiology online). The predicted
site-mean Narea with our new method but from predicted Ma and
Vcmax25 was also not significantly different from the observed
Narea (P = 0.08). These ‘fully predicted’ Narea values were within
the range of observations at most sites but were underestimated
at low elevation due to the underestimation of predicted Ma (see
Figure S5 available as Supplementary data at Tree Physiology
online).

Contribution of climate and elevation to trait variations

Vapor pressure deficit and temperature were shown to be the
most important factors influencing the variation in χ between
sites at different elevations in the Gongga Mountain region,
but with opposing effects. Elevation made little contribution
to the variation of χ . The Vcmax25 was influenced most by
temperature and radiation, but elevation also had a small impact
on Vcmax25. The effects of all the predictors were important for
Ma (Figure 7).

Discussion

Optimality models have shown skill in predicting the trait
variations along the elevation gradient in the Gongga Mountain
region, without site- or region-specific calibration of parameters.
The r of optimality models was generally higher than statistical
models (Table 2). The r of the optimal Ma model was 0.73
when four predictions at low elevation were excluded. This
finding suggests that the optimality models considering the
underlying mechanisms are better than the statistical models
and supports the general validity of these models. The
new model for Ma—calibrated using an independent set of
measurements—correctly predicted patterns in the community-
mean Ma of deciduous plants at the Gongga Mountain sites.
When the coefficients of Iabs, f , Tg and αp were calibrated
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Figure 5. Site-mean values of traits. The traits are (a) leaf mass per area (Ma), (b) the maximum capacity of carboxylation standardized to 25 ◦C
(Vcmax25), (c) the ratio of leaf-internal to ambient CO2 partial pressure (χ) and (d) leaf nitrogen content per unit area (Narea). Observations are
site-mean values and predictions are the best versions of different driven data at each site: predicted Ma using mean temperature during the growing
season (Tg), predicted Vcmax25 and χ driven by daily temperature in July (TdJ) and predicted Narea using observed Ma and Vcmax25. The solid line is
the 1:1 line.

Figure 6. Partial residual plots showing leaf nitrogen content per unit area (Narea) as a function of leaf mass per area (Ma) and the maximum capacity
of carboxylation standardized to 25 ◦C (Vcmax25) with nitrogen-fixer as an interaction term. (a) The Narea as a function of Ma and (b) Narea as a
function of Vcmax25. Blue, nitrogen-fixing plants (N-fixer); red, non-nitrogen-fixing plants (non-N-fixer).
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Figure 7. The modeled contributions of individual climate variables for each trait at each site. The traits are (a) the ratio of leaf-internal to ambient CO2
partial pressures (χ), (b) the maximum capacity of carboxylation standardized to 25 ◦C (Vcmax25) and (c) leaf mass per area (Ma). The gray bars
show the changes in predicted trait values compared with the reference level driven by site-mean environment. The green bars show the elevation
effect on χ and Vcmax25 due to the changes in air pressure. The red bars show the effects of average daytime temperature in July on χ and Vcmax25
and the effect of growing season mean temperature on Ma, respectively. The blue bars show the effect of vapor pressure deficit (D0) on χ and
then the effect of χ on Vcmax25. The yellow bars show the effect of growing season mean radiation on Vcmax25 and the effect of leaf-area-index-
weighted growing season mean radiation on Ma, respectively. The effects of LL (indexed by gsl) and moisture (indexed by the ratio of annual actual
evapotranspiration to annual potential evapotranspiration) on Ma are shown in purple and blue.

with the sampled data, the values obtained were 0.99, 0.52,
−0.03 and − 0.75, which were not significantly different from
the values obtained using the China Plant Trait database but
were closer to the values for Iabs and Tg deduced from the
theory. We did not apply the new model to evergreen species
because we had no information about their LL. Leaf longevity
is strongly related to Ma (Kikuzawa 1991, Reich et al. 1997,
Wright and Westoby 2002, Wright et al. 2004). According to
the leaf economics spectrum, the LL and Ma of deciduous plants
are smaller than those of evergreen plants (Wright et al. 2004).
However, LL cannot be reliably estimated in the field without
monitoring over a long period (Cornelissen et al. 2003). If such
data were available, it would be possible to extend the Ma model
to evergreen species.

We have developed a simplified approach to predict Narea.
This approach produced results close to those obtained using
the two-step approach put forward by Dong et al. (2017). The
agreement between predictions using the two methods sug-
gests that the hypothesis underpinning both, namely that Narea

can be predicted as the sum of a photosynthetic component
related to Vcmax25 and a non-photosynthetic component propor-
tional to Ma (Evans 1989, Lambers and Poorter 1992, Onoda
et al. 2004), is reasonable. However, our simpler approach
does not require explicit specification of the relative allocation to
the metabolic and structural components and, by removing the
intermediate steps, reduces the uncertainties and improves the
predictions. We have shown that Ma and Vcmax25 are predictable
from climate and that fully predicted Narea values lie within the
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range of observations at most sites (see Figure S5 available as
Supplementary data at Tree Physiology online). This interpreta-
tion differs from some previous studies in which leaf nitrogen
availability, implicitly assumed to be related to soil nitrogen
availability, is used to predict Vcmax25 (Luo et al. 2004). There
is evidence that soil nutrients, particularly phosphorus rather
than nitrogen, can influence Narea and Vcmax25 (He et al. 2014,
Gvozdevaite et al. 2018). However, there is growing evidence
(i) that LMA exerts a major control on Narea (Dong et al. 2017)
and (ii) that climate variables are the dominant drivers of Vcmax.
Smith et al. (2019) found that climate variables accounted for
about two-thirds of global variation in Vcmax; soil fertility indices
accounted for about one-third. Liang et al. (2020), in a meta-
analysis of soil nitrogen enhancement experiments, showed a 2–
4 times greater effect on the leaf area and biomass (i.e., whole-
plant carbon allocation responses) than on leaf-level Narea and
Vcmax. In other words, consistent with optimality theory, plants
react to nutrient deficiency more by reducing leaf area, and
increasing below-ground carbon investment, than by developing
suboptimal leaves. Thus, a key implication of our results is that
leaf nitrogen content can be predicted from climate alone. No
global analysis of Narea is yet available, but the consistency
of results for Australia (Dong et al. 2017), Peru (Peng et al.
2020) and this study strongly supports the idea. Moreover,
further work should focus on improving Ma prediction since fully
predicted Narea is underestimated at low elevation due to the
underestimation of Ma. We have also shown that R0 is positively
related to Narea—consistent with widespread observations that
leaf nitrogen is higher at the top of the canopy (Hirose and
Werger 1987, Chen et al. 1993) and the optimality hypothesis
that nitrogen is unequally allocated within the canopy so as
to maximize photosynthesis at each canopy level (Werger and
Hirose 1991, Peltoniemi et al. 2012).

Our analyses provide insights into the timescales on which
leaf trait acclimation and adaptation operate. Since optimality
models implicitly consider acclimation and adaptation in physi-
ological processes, the use of climate inputs at the appropriate
timescale—which resulted in better predictions—might provide
insight on the corresponding adaptation/acclimation timescale
of a trait. We showed that Tg was a better predictor than
TdJ for Ma, suggesting that Ma adapts to the whole growing
season environment. The adaptation of Ma to long-term tem-
perature is consistent with the fact that deciduous leaves are
built at the beginning of the growing season with one-time
carbon investment from the previous year and maximize average
carbon gain per day, and in turn, net carbon gain during the
whole growing season (Kikuzawa 1991). However, although
predictions of Vcmax25 have commonly been made using long-
term temperature inputs such as Tg (Wang et al. 2017a, Smith
et al. 2019), our results show this can lead to a mis-estimation
of Vcmax25. Using TdJ (i.e., daytime during the month the
plants were sampled) gives a better prediction, suggesting that

Vcmax25 adapts to environmental conditions during the previous
few weeks. Several studies have shown that photosynthetic traits
can acclimate quickly to temperature changes (Smith and Dukes
2017, Smith et al. 2017) by regulating intrinsic biochemical
characteristics, such as Rubisco content or catalytic turnover
rate (Cavanagh and Kubien 2014). Our model data comparison
also suggests that χ acclimates to TdJ rather than Tg. The
least-cost hypothesis underlying the model of χ considers the
total cost of maintaining plant carboxylation and transpiration.
Both metabolic processes function mainly in the daytime and
can be adjusted rapidly. Therefore, the regulation of χ is also
expected to acclimate to daytime temperature at a weekly
to monthly scale, consistent with our finding that χ is better
predicted using TdJ than Tg. The χ is highly plastic compared
with Ma (Dong et al. 2017), and seasonal variations in χ for
deciduous species have been observed in many studies (Chen
and Chen 2007, Ma et al. 2010, McKown et al. 2013); however,
the correlation of leaf phenology with seasonal changes in
the growth environment of deciduous leaves indicates a need
to disentangle their effects in the future. Given that different
processes have different timescales for acclimation/adaptation,
model inputs should be selected to reflect this.

We have focused on predicting community-mean trait values.
Although between-site variation is larger than within-site varia-
tion for all traits, nevertheless, there is considerable variability
at each site. This variability presumably reflects the within-
canopy heterogeneity in bioclimate and in particular in radiation.
There are large differences in the photosynthetic traits between
sunlit and shaded leaves, and it has also been shown that
sunflecks contribute greatly to the photosynthesis of shaded
leaves. Our model for Ma is sensitive to radiation inputs. By
using RLAI to estimate the average light level absorbed by the
leaves within the canopy to drive the Ma model, we were able
to obtain relatively good predictions of the community-mean
values except at the lowest sites, which may be attributable
to disturbance, since many people live at lower elevations in
this region. This approach would be insufficient to model within-
canopy variability. However, site-based radiation measurements
could be used in order to test whether this optimality-based
model could predict within-site variation, given appropriate
inputs. The within-canopy heterogeneity of other bioclimatic
factors may also be important in the choice of appropriate
model inputs (Blonder et al. 2018) and for testing the appli-
cability of optimality-based models to explain the within-site
variability.

The comparison between the observed and simulated traits
allows us to identify mechanisms that are missing from the
current optimality framework. For example, our analysis empha-
sizes the importance of soil moisture constraints. The RDA
showed that Vcmax25 was positively associated with soil mois-
ture, indexed by αp. We found significant relationships between
αp and the residuals of predicted χ and Vcmax25. Some hydraulic
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traits, including the ratio of leaf-to-sapwood area and spe-
cific sapwood hydraulic conductance, also showed significant
correlations with photosynthetic traits (see Figure S9 available
as Supplementary data at Tree Physiology online), suggesting
coordination between photosynthesis and water transport. Many
studies have shown a strong coordination between hydraulic and
photosynthetic traits across species (Brodribb 2009, Scoffoni
et al. 2016, Zhu et al. 2018), especially when the hydraulic
structure plays a crucial role in limiting the photosynthesis
process under water stress (Tyree and Sperry 1989). Lin et al.
(2015) analyzed a large global data set and found a positive
relationship between wood density and carbon cost per unit
water use. We have detected a significant positive effect of
wood density on Vcmax25. Further empirical analysis on the
coordination between photosynthetic and hydraulic traits over
a larger environmental gradient is required. The coordination of
photosynthesis and hydraulic traits has already been considered
in models to predict stomatal response (Sperry et al. 2017)
and vegetation response to drought (Eller et al. 2018), and
has been shown to produce improved predictions under water-
limited conditions. Our results underline the need to consider
aspects of water limitation, in addition to the stomatal response
to vapor pressure deficit, in order to predict key plant traits.

Empirical analyses have shown that LL is positively related to
potential evapotranspiration and vapor pressure deficit (Wright
et al. 2004). In our model, to predict Ma, the effect of αp

was based on an empirical analysis of an independent global
trait data set because there is currently no theory to explain
the impact of moisture on optimal LL. Using local data to
calibrate the parameters for the theoretical model of Ma showed
that the estimated effect of αp is stronger than that indicated
by the China Plant Trait database. The RMSE of predictions
using the two different sets of calibrated parameters showed
larger differences in the lowest values, where the soil moisture
constraint is more severe. Given that the effects of other climate
variables on Ma are well captured by the model, it would be
worthwhile to try to identify and incorporate the mechanism of
moisture impact on optimal LL.

The large functional diversity within sites may result from
species attributes, biotic factors or microenvironment (Violle
et al. 2014, Pappas et al. 2016). The model uncertainty analysis
may provide a new way to estimate the functional diversity.
Uncertainty analysis showed that the parameters β and c,
representing unit costs for the maintenance of carboxylation,
electron transport and transpiration, are the main contributors
to uncertainty in χ and Vcmax25, respectively (see Figure S7
available as Supplementary data at Tree Physiology online).
Empirical analysis has shown substantial interspecific variation
in β , but the current model of χ uses a single value of β for
all species (Wang et al. 2017b). Using a single value estimated
from the published values of photosynthetic capacity (Kattge
and Knorr 2007, Wang et al. 2017b) for the parameter c

in the model of Vcmax25, similarly, cannot fully represent its
variation among species. Predictions using average values of β

and c estimated from published data could cause mismatches
with observed values, such as the predicted χ being lower
than median observed value at many sites (Figure 3). At the
same time, parameter uncertainty due to species variation also
represents functional diversity in the community, which could
in principle be considered in ecosystem models by specifying
a realistic range of values for each parameter. Meanwhile,
modeling functional diversity still needs further work both in
theory and application.

Implications for terrestrial ecosystem models

Optimality theory relies on the concept that natural selection
requires plants to acclimate or adapt to prevailing environmental
conditions. The development of optimality-based models there-
fore focuses on identifying the trade-offs between competing
requirements. We have shown that optimality-based models
for four key traits related to photosynthesis, Ma, Narea, Vcmax

and χ , predict community-level variability with elevation and
climate in the Gongga region, with no need for site- or regional-
scale calibration. This finding adds to the growing number of
studies showing that patterns of variation in these traits along
climate gradients are predictable (Meng et al. 2015, Wang et al.
2017a).

Optimality-based models could be beneficially incorporated
into vegetation- or land-surface models since they provide
a natural way of accounting for trait variability within PFTs,
or across vegetation types, as a function of environmental
gradients. The prediction of continuous trait variation with
environment would obviate the need to specify parameter values
separately for different PFTs (Kucharik et al. 2000, Sitch et al.
2003, Kim et al. 2018) or to account for within-PFT variability
probabilistically (see e.g., Kelley et al. 2014). Moving from
PFT-based parameters to optimality-based formulations would
have the desirable effect of reducing the number of parameters
that have to be specified. Moreover, models should improve in
realism if the parameter values are allowed to adjust to changing
environmental conditions.

However, some issues need to be addressed before imple-
menting optimality-based trait models into vegetation mod-
els. First, the timescales of acclimation and adaptation differ
between traits. Thus, it is important to ensure that the variability
of a given trait is predicted using the appropriate climate
information, for example, daytime temperature over a week or
month (rather than a climatological growing season average)
in the case of Vcmax25. Second, although soil moisture can limit
photosynthesis, we lack theoretical understanding of the coordi-
nation between plant photosynthesis and hydraulics required to
account for this constraint within the current optimality-based
modeling framework. Third, the current framework does not
account for within-site trait variability and thus does not account
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for functional diversity within communities. Nevertheless, our
study suggests a promising way forward to improve both the
robustness (with fewer parameters) and realism (considering
the acclimation and adaptation of traits) of terrestrial ecosystem
models through the prediction of continuous trait variation along
environmental gradients.

Supplementary data

Supplementary data for this article are available at Tree
Physiology Online.

Data availability

The trait and climate data are available from Zenodo (Xu et al.
2020). The codes to produce the predicted trait values along
with a readme file can be found on GitHub (https://github.com/
Huiying-Xu/PTG).
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