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Abstract. The seasonal and longer-term dynamics of fuel ac-
cumulation affect fire seasonality and the occurrence of ex-
treme wildfires. Failure to account for their influence may
help to explain why state-of-the-art fire models do not sim-
ulate the length and timing of the fire season or interan-
nual variability in burnt area well. We investigated the im-
pact of accounting for different timescales of fuel produc-
tion and accumulation on burnt area using a suite of ran-
dom forest regression models that included the immediate
impact of climate, vegetation, and human influences in a
given month and tested the impact of various combinations
of antecedent conditions in four productivity-related vege-
tation indices and in antecedent moisture conditions. Anal-
yses were conducted for the period from 2010 to 2015 in-
clusive. Inclusion of antecedent vegetation conditions rep-
resenting fuel build-up led to an improvement of the global,
climatological out-of-sample R? from 0.579 to 0.701, but the
inclusion of antecedent vegetation conditions on timescales
> 1 year had no impact on simulated burnt area. Current
moisture levels were the dominant influence on fuel dry-
ing. Additionally, antecedent moisture levels were important
for fuel build-up. The models also enabled the visualisation
of interactions between variables, such as the importance
of antecedent productivity coupled with instantaneous dry-

ing. The length of the period which needs to be considered
varies across biomes; fuel-limited regions are sensitive to an-
tecedent conditions that determine fuel build-up over longer
time periods (~ 4 months), while moisture-limited regions
are more sensitive to current conditions that regulate fuel dry-
ing.

1 Introduction

Wildfires are an important natural disturbance of the Earth
system. They have extensive socio-economic impacts as well
as profound effects on vegetation, atmospheric composi-
tion, and climate (Bowman et al., 2011; Voulgarakis and
Field, 2015; Andela et al., 2017; Lasslop et al., 2019). How
fire regimes may change in the future and how fire-related
feedbacks may influence climate and global environmental
changes are growing concerns.

The factors that influence the occurrence and intensity of
fire are well known: the presence of an ignition source, veg-
etation properties that determine the availability of fuel, and
weather conditions that promote fuel drying and thereby the
rate of fire spread. However, these factors are strongly cou-
pled to one another. Climate conditions influence the inci-
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dence of lightning and the nature of the vegetation, while
wind strength and the impact of atmospheric conditions on
drying are modulated by vegetation cover. Furthermore, the
relationships among ignitions, vegetation, and climate may
depend on the timescales involved; short-term drought pro-
motes fuel drying and hence increases fire risk, but in the
longer term, drought conditions reduce vegetation cover and
fuel loads. This complexity makes it challenging to disentan-
gle the causes of observed changes in fire activity.

Furthermore, recent declines in burnt area (BA) in some
regions have been explained as a consequence of human
activity, through indirect and direct intervention (Martinez
et al., 2009; Andela et al., 2017), albeit modulated by cli-
mate and vegetation (Forkel et al., 2019b). Such human in-
tervention can promote or suppress fire through ignitions,
fuel management, and landscape modification. A mainly-
temperature-driven increase in conditions conducive to wild-
fires was suggested by a number of regional studies (e.g.
Westerling, 2006; van Oldenborgh et al., 2021; Goss et al.,
2020; Barbero et al., 2015). At the global scale, Abatzoglou
et al. (2019) showed that anthropogenic climate change had
led to an increase in fire weather over 22 % of the global
burnable area by 2019, while Jolly et al. (2015) found that
anthropogenic climate change has led to a lengthening of
the fire season across more than a quarter of global vege-
tated land in recent decades. Increases in fire weather are
predicted under different assumptions about levels of future
warming (e.g. Burton et al., 2018; Turco et al., 2018; Bedia
et al., 2015).

Understanding the interplay among the different present-
day controls of fire is also a key requirement for the predic-
tion of future fire-regime shifts and impacts on the land bio-
sphere and human activities. Coupled fire-vegetation models
can be used to predict changes in large-scale fire regimes in
response to future climate change scenarios (see e.g. Knorr
et al., 2016; Kloster et al., 2012) and to explore how these
changes are affected by and will affect regional vegetation
patterns and climate. Although these models are reasonably
good at simulating modern geographical fire patterns in BA,
they are poor at reproducing observed fire-season length
and inter-annual variability (IAV) in BA (Hantson et al.,
2020). Furthermore, there are large differences in their pre-
dictions of both historical (Teckentrup et al., 2019) and fu-
ture (Kloster and Lasslop, 2017; Sanderson and Fisher, 2020)
trends.

Studies have pinpointed the relationship between sim-
ulated vegetation properties and BA as a cause for con-
cern (e.g. Forkel et al., 2019a; Kelley et al., 2019; Tecken-
trup et al., 2019; Hantson et al., 2020). Forkel et al. (2019a)
analysed satellite data to show that while state-of-the-art fire—
vegetation models reproduce the emergent relationships with
climatic variables, they do not correctly represent the rela-
tionship between vegetation and BA. Hantson et al. (2020)
highlighted the need for improved understanding of vegeta-
tion drivers of fire-season length and IAV of BA. Both Forkel
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et al. (2019a) and Hantson et al. (2020) argued for a bet-
ter understanding of how vegetation properties control fuel
build-up and therefore fire occurrence and intensity.

Fuel is organic matter that is available for ignition (Keane
et al., 2001). The type, amount, and spatial arrangement of
fuel affect its tendency to burn (Archibald et al., 2009). These
properties, dictated by vegetation, in turn affect fuel connec-
tivity and hence fire spread in addition to how rapidly fuel
dries out and becomes combustible. Antecedent weather con-
ditions in the weeks to years before fire events can determine
fuel availability (van Oldenborgh et al., 2021) and hence fire
occurrence. The effect of antecedent weather conditions on
BA may depend on the types of vegetation present (which
influences whether fuel drying or accumulation is most im-
portant): antecedent precipitation will increase BA in fuel-
limited regions, for example, but decrease BA in regions
where fuel drying is the major control (Alvarado et al., 2020;
Abatzoglou and Kolden, 2013; Littell et al., 2009).

A number of regional and global studies have indicated the
importance of antecedent fuel build-up for BA. For exam-
ple, links between fire activity and antecedent productivity
have been found in South Africa (Van Wilgen et al., 2000),
central Australia (Griffin et al., 1983), grass and shrublands
in the western United States (Littell et al., 2009; Westerling
et al., 2003; Swetnam and Betancourt, 1998), New South
Wales, Australia, for bushfire fuel (Jenkins et al., 2020), and
southern Africa (Archibald et al., 2009). Global studies have
identified similar relationships (a positive relationship be-
tween pre-season productivity and fire activity in the follow-
ing dry season) in some dry areas. By studying the correla-
tion between growing period (i.e. antecedent) soil moisture
and fire activity, Krawchuk and Moritz (2011) found fire ac-
tivity in dry regions to be related to antecedent productivity.
Similarly, van der Werf et al. (2008) found a similar rela-
tionship for arid ecosystem (e.g. northern Australia), where
antecedent wet conditions coupled with instantaneous dry-
ing were found to be important. Other global studies have
also identified northern Australia as obeying this relation-
ship (Randerson et al., 2005; Spessa et al., 2005). In a more
recent global analysis, O et al. (2020) found that for arid re-
gions, wet anomalies (soil moisture) led to increased fire later
in the year by increasing fuel loads and biomass. Thus, it is
clear that a better understanding of the timescales of fuel ac-
cumulation, the interaction between biophysical drivers and
fuel build-up, and the effects of antecedent weather condi-
tions on both fuel loads and fuel drying is needed in order to
improve predictions of BA.

While other studies have used machine learning to ex-
plore fire drivers including the effect of antecedent productiv-
ity (e.g. Archibald et al., 2009; Forkel et al., 2017; Joshi and
Sukumar, 2021), they have not explored the relationship be-
tween antecedent conditions (fuel load and drying) and fire in
detail. Here we quantify the roles that antecedent vegetation
productivity and aridity play relative to instantaneous condi-
tions, the critical number of months that are most important
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for each, the shape of their relationships to BA, and the inter-
actions between them. While the (relative) importance of an-
tecedent variables has been investigated before (Bessie and
Johnson, 1995), we aim to quantify this on a global scale.
Since other climate factors, ignitions, and human activities
also influence BA, we necessarily include these factors in
our analysis. The use of a machine-learning approach en-
ables us to identify non-linear relationships and interactions
between the drivers. This is then combined with analysis and
visualisation techniques that provide insights into the mod-
elled relationships while mitigating the effects of correlations
among variables. Such insights include the effect of a par-
ticular driver on BA and the interactions between pairs of
drivers.

2 Methods
2.1 Data

The predictor and BA datasets are available for different
but overlapping time periods (Table 1). We pre-processed
each dataset separately and conducted random forest anal-
yses based on the common period from January 2010 to
April 2015. Monthly fractional BA for this period was
obtained from the GFED4 dataset (Giglio et al., 2013)
(data were retrieved from https://www.globalfiredata.org/
data.html, last access: 1 February 2021). A longer time pe-
riod from November 2000 to December 2019 was also con-
sidered in an analysis using fewer variables.

Diurnal temperature range (DTR), maximum temperature
(MaxT), dry-day period (DD), and soil moisture are impor-
tant climate factors influencing BA (Archibald et al., 2009;
Bistinas et al., 2014; Forkel et al., 2017, 2019a; Abatzoglou
et al., 2018; Kelley et al., 2019) and are thus considered as
predictors in our analyses. DTR was calculated by taking the
monthly average of the difference between the daily maxi-
mum and minimum ERAS (Copernicus Climate Change Ser-
vice (C35), 2017) 2m temperatures.

The dry-day period was defined as the longest contiguous
period of ERA5 mean daily precipitation below 0.1 mmd~!
(wetting rainfall; Harris et al., 2014; Jolly et al., 2015) within
each month. A period contiguous with the previous month’s
dry-day period was concatenated such that the sum of both
(number of days) was used to determine the longest period.
For example, consider a 30d long month with a 10d long
dry-day period at the beginning of the month, followed by a
wetting precipitation event on day 11, and then a dry-day pe-
riod for the following 19 d. This month has a dry-day period
of 19d. However, if the previous month were to terminate
in a 10d long dry-day period, these 10d would be added to
the initial 10d dry-day period of the current month, thereby
making this combined dry-day period the longest.

Soil moisture was taken from the Copernicus soil wa-
ter index (SWI) dataset (Albergel et al., 2008; Wagner
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et al., 1999). We used the WGLC dataset (Kaplan and Lau,
2019), which provides counts of monthly lightning strikes.
It is based on the World Wide Lightning Location Network
(WWLLN) dataset, which mainly detects cloud-to-ground
strikes (Rodger et al., 2004; Abarca et al., 2010), as opposed
to LIS lightning data (Biirgesser, 2017).

Land cover was shown in previous studies to be another
important influence on BA. We included several alternative
representations of land cover including above-ground tree
biomass (AGB) and the fractional cover of trees (TREE),
shrubs (SHRUB), herbaceous vegetation (HERB), and crops
(CROP) in our predictor set. AGB was obtained by mosaick-
ing AGB datasets for the tropics (Avitabile et al., 2016, 1 km
resolution) and northern forests (Thurner et al., 2014, 0.01°
resolution) using the mean after resampling each to a com-
mon spatial resolution of 0.25°. Yearly land cover values
were obtained from the ESA CCI Land Cover dataset (Li
et al., 2018). Land cover types were converted to fractional
cover according to Poulter et al. (2015) using the conver-
sion table as in Forkel et al. (2017). Global population den-
sity (POPD) from an updated version of the HYDE 3.2
dataset (Klein Goldewijk, 2017, Kees Klein Goldewijk, per-
sonal communication, February 2021) was used as a measure
of human influence on vegetation and fire regimes.

Field data on fuel loads are sparse, and the only global
dataset (Pettinari and Chuvieco, 2016) is based on extrapo-
lating scattered field measurements by biome. We therefore
used four remotely sensed vegetation properties related to to-
tal biomass or leaf cover that could be regarded as indices
for fuel load in our predictor set: solar-induced fluorescence
(SIF), vegetation optical depth (VOD), fraction of absorbed
photosynthetically active radiation (FAPAR), and leaf area
index (LAI). All four properties have previously been used as
productivity indices (e.g. Mohammed et al., 2019; Ryu et al.,
2019; Teubner et al., 2018; Ogutu et al., 2014), and we use
all four because it is uncertain which would be most closely
related to fuel loads. Monthly SIF was obtained from the
GlobFluo SIF dataset (Kohler et al., 2015). Ku-band VOD
was obtained from the VODCA dataset (Moesinger et al.,
2020). FAPAR and LAI were obtained from the MOD15A2H
dataset (Myneni et al., 2015). To pre-process data for the pe-
riod from January 2010 to April 2015, we used data from
January 2008 to April 2015, for which period all four datasets
are available. Similarly, relevant data from February 2000 to
December 2019 were pre-processed to enable analysis of the
period from November 2000 to December 2019.

2.2 Data processing

2.2.1 Gap filling

There are gaps in the SWI, FAPAR, LAI, SIF, and VOD
datasets in winter months at latitudes above ~ 60° N and in

the austral winter for southern South America, due to high
solar zenith angles for FAPAR, LAI, and SIF and because
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Table 1. Characteristics of the datasets. End times as applicable to the processed data are indicated in brackets.

Variable Abbreviation Dataset Start End Time Reference
(mm-yyyy) (mm-yyyy)

Burnt area BA GFED4 06-1995 12-2016 monthly  Giglio et al. (2013)
Diurnal temperature DTR ERA5 1950 present monthly  Copernicus Climate Change Service (C3S)
range (12-2020) (2017)
Maximum temperature ~ MaxT ERAS 1950 present monthly  Copernicus Climate Change Service (C3S)

(12-2020) (2017)
Dry-day period DD ERAS 1950 present monthly  Copernicus Climate Change Service (C3S)

(11-2020) (2017)
Soil moisture SWI Copernicus SWI 01-2007 11-2018 monthly  Albergel et al. (2008); Wagner et al. (1999)
Lightning Lightning WGLC Lightning 01-2010 12-2018 monthly  Kaplan and Lau (2019)
Above-ground tree AGB Tropical AGB: static static static Avitabile et al. (2016); Thurner et al. (2014)
biomass Avitabile, Northern

AGB: Thurner

Land cover (fractional CROP, SHRUB, ESA CCI Land Cover 1992 present yearly Li et al. (2018)
cover per grid cell) TREE, HERB (2019)
Solar-induced SIF GlobFluo SIF 01-2007 04-2015 monthly  Kohler et al. (2015)
fluorescence
Vegetation optical VOD VODCA (Ku-band) 12-1997 12-2018 monthly  Moesinger et al. (2019)
depth
Fraction of absorbed FAPAR MODI15A2H 02-2000 present monthly  Myneni et al. (2015)
photosynthetically (03-2021)
active radiation
Leaf area index LAI MOD15A2H 02-2000 present monthly  Myneni et al. (2015)

(11-2018)
Population density POPD HYDE 3.2 (updated) 2000 present yearly Klein Goldewijk (2017),

(2020) Kees Klein Goldewijk,

personal communication, February 2021

MCD64CMQ burnt MCD64 BA MCD64CMQ 11-2000 present monthly  Giglio et al. (2018)
area (06-2020)
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of snow cover and frozen soil for SWI and VOD (see e.g.
Moesinger et al., 2020). There are also sporadic missing val-
ues in these datasets caused by for example cloud cover. Un-
fortunately, simple exclusion of the times lacking data is not
possible for our analysis because we commonly rely on an-
tecedent samples throughout. Thus, data gaps were filled us-
ing a two-step approach as in Forkel et al. (2017) in order to
allow analysis of summer months at the affected locations.
This approach differentiates between two gap types based on
the amount of missing information for a specific month at
each location.

First, “persistent” gaps, defined as months for which 50 %
or more of the observations across all years are missing, were
filled using the minimum value observed at that location for
the given predictor variable. We assume that this indicates
missing data during the winter, since other causes for data
gaps (e.g. cloud cover) are predominantly “transient”. For ex-
ample, if a certain grid cell was missing data for more than
50% of all Decembers in the record, these gaps in Decem-
ber would be treated as persistent and therefore filled using
minima.

Second, the remaining transient gaps were filled using
season-trend regression models with four harmonic terms
(k =4) and without breakpoints. These models were fitted
using ordinary least squares regression to the entire time
series obtained during the first step, as mentioned before
using data from January 2008 to April 2015 (or Febru-
ary 2000 to December 2019 for the monthly analysis). Cloud
cover, which also affects detection in tropical and subtropi-
cal regions, is usually transient and therefore filled using the
regression models. Locations where no observations were
available for > 52 months out of the total 88 months (re-
gardless of whether such data gaps always occurred in the
same month, as for persistent gaps, or at any point through-
out the year) were discarded in a trade-off between data qual-
ity and geographic extent. For the monthly analysis, loca-
tions were discarded given > 138 unavailable months (out of
239 months).

Use of a different gap-filling mechanism (Fig. S1b; tempo-
ral nearest-neighbour gap filling) yielded very similar results.
This simple nearest-neighbour gap-filling approach used for
the eventual ALL_NN model processes time series at a given
location, filling gaps by using the temporally closest avail-
able samples at that location. Of the two approaches, we de-
cided to use the season-trend model with minima filling be-
cause it represents a more physical solution; it is based on an
approach previously used for vegetation variables (see Beck
et al., 2006), for which one would expect minima to occur
during winter. Indeed, as can be seen in Fig. S2, virtually
no samples are being filled with minima outside of winter
and predominantly in the northern extreme latitudes. While
our gap-filling methodology may yield unphysical values for
non-vegetation variables like SWI, we do not expect the fill-
ing of SWI to have a big influence on the final results because
we do not use antecedent values of SWI. Since we do not an-
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ticipate fires during the winter, having (by necessity of gap
filling) potentially unphysical values of SWI in the winter
should not affect results where relevant for our analysis.

2.2.2 Interpolation

All datasets were interpolated to a common 0.25° spa-
tial grid. Datasets where the original spatial resolution was
higher than this were averaged; the other datasets were
interpolated using nearest-neighbour interpolation to avoid
smoothing local extrema (Forkel et al., 2017). Datasets that
were only available at yearly time resolution (i.e. land cover,
POPD) were linearly interpolated to monthly intervals. Tem-
porally static data (i.e. AGB) were recycled. Processing was
carried out before averaging to provide monthly climatolog-
ical time series where applicable.

2.2.3 Antecedent predictor variables

The influence of antecedent conditions that might affect fuel
loads or fuel dryness, specifically vegetation properties and
DD, on BA was investigated by using antecedent FAPAR,
LAI VOD, SIF, and DD data from up to 2 years before
any given month (1, 3, 6, 9, 12, 18, 24 M, where M denotes
months). The large autocorrelation between predictor vari-
ables could impede the visual interpretation of the impacts
of antecedent periods > 1 year. Thus, anomalies were com-
puted by subtracting the seasonal cycle relative to the desig-
nated month, resulting in the following transformations:

(X12M) — (XOM) - X AI2M,
(X 18M) — (X6 M) — X AI8M,
and (X24M) — (XOM) — X A24 M,

where X € {FAPAR, LAI, VOD, SIF, DD} and X O0M refers
to the variable X in the current month. For example, the 12-
month antecedent X 12M was transformed by subtracting
the instantaneous (month 0) value of X, thereby yielding the
anomaly in X, X A12M, which may be easier to interpret.

2.3 Machine-learning experiments

We used random forest (RF) regression to model the rela-
tionships between BA and the driver variables (predictors).
RF is an ensemble learning approach in which multiple de-
cision trees are constructed using a randomly sampled sub-
set of training observations. The final model is the aver-
age result from all of the individual decision trees. RF re-
gression is highly suited to investigating the emergent con-
trols on fire because it is able to learn non-linear relation-
ships in high-dimensional space (Archibald et al., 2009).
By averaging over multiple decision trees, RFs also miti-
gate overfitting (Breiman, 2001). We used the scikit-learn
version 0.24.1 (Pedregosa et al., 2011) RF regression im-
plementation in Python, with hyperparameters determined
using 5-fold random cross-validation (CV) of the eventual
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ALL model — n_estimators: 500, max_depth: 18 —
and default values for all other parameters. The number
of estimators (n_estimators) determines the number of
trees whose predictions are averaged. The maximum depth
(max_depth) limits the number of split levels, which can
reduce overfitting. We also found that a limited number of
split levels was necessary for the computation of SHapley
Additive exPlanations (SHAP) values, although we expect
this to be a limitation of the specific software we used as op-
posed to the SHAP method itself. The hyperparameters were
only estimated once for the model containing all variables
due to computational constraints.

The validation dataset was randomly sampled across space
and time and comprised 30 % of the data. To estimate how the
model will perform on unseen data, the out-of-bag (OOB) R?
for the training dataset can be used (Fox et al., 2017). How-
ever, since these data still belong to the training dataset, the
R? for the validation dataset, which has not been used for
variable selection or hyperparameter tuning, is also used to
provide an alternative, independent, measure of the general-
isability of a given model.

However, this is only valid if there is no autocorrelation be-
tween the samples. We investigated the degree of spatial au-
tocorrelation using a variogram of global GFED4 BA, which
informed a buffered leave-one-out (B-LOO) CV procedure
following Ploton et al. (2020). This was carried out to deter-
mine how much the autocorrelation that may be present influ-
ences the amount of potential overfitting. We did not employ
the extrapolation-prevention procedure used in Ploton et al.
(2020) because it led to the exclusion of significant areas like
northern Australia and west Africa. The B-LOO CV was ex-
ecuted as follows, where rp,x = 50 pixels and N; was chosen
such that the number of potential training samples was guar-
anteed to be equal to or above N, for all 7 < ryax.

1. Randomly choose a single location. The 12 monthly
samples at this test location constitute the test set.

2. Exclude samples from the potential training set in a cir-
cular region of radius r pixels around the test location,
such that no potential training sample is closer than r
pixels to the test location. This limits the influence of
spatial autocorrelation.

3. Randomly choose N training samples from all remain-
ing potential training samples.

4. Using a model trained on the above training samples,
predict BA for the test location.

5. Increment r and repeat steps 1-4 until » has reached

max-

This process was repeated 4000 times for each of the eight
linearly spaced investigated radii, with the lowest radius be-
ing equal to 0. Due to computational constraints, the B-LOO
CV was only carried out for a single set of variables.
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We trained a number of different RF regression models to
test explicit hypotheses about the importance of antecedent
conditions on BA (see Table 2) using the defined hyperpa-
rameters on the climatological time series. The initial exper-
iment (ALL) was run using the basic set of 15 predictor vari-
ables related to climate, vegetation, and human influences on
fire (Table 1) and included both current and antecedent val-
ues of the four vegetation indices and DD, giving 50 predic-
tor variables. A second experiment (TOP15) used only the 15
most important predictors from the ALL model, as a way of
testing whether all the predictors were necessary and whether
including so many predictors resulted in overfitting.

The choice of 15 predictors was heuristically based on the
slope of the feature importance plots (see Fig. S3), where, by
inspection, the importance change is minimal after 15 vari-
ables. Thereafter, no additional information was being con-
veyed, so we decided to use this as our threshold. While use
of the more rigorous recursive feature elimination with cross-
validation (RFECV) would be possible in principle, this com-
monly makes use of the Gini importance owing to its ease
of calculation, as it only considers data already seen during
training. Unfortunately, this also means that RFECV fails to
account for overfitting, as it only considers the training data
when calculating feature importance (Meyer et al., 2019). In
contrast, the different approaches we jointly utilised to calcu-
late a more robust feature importance metric are much more
computationally demanding, making RFECV infeasible.

All of the remaining experiments used combinations of
15 predictor variables. The CURR experiment only used
current-month values of each predictor. Therefore, compar-
ison of the CURR and ALL experiments allowed the im-
pact of including antecedent vegetation and moisture con-
ditions to be evaluated. However, some of the vegetation
predictors are highly correlated with one another, which
could artificially decrease their importance. To test this, we
ran four further experiments (15VEG_FAPAR, 15VEG_LALI,
15VEG_VOD, 15VEG_SIF) that included the 10 most im-
portant non-vegetation predictors from the ALL model, po-
tentially including current and antecedent values of DD.
In addition, each of these experiments contained one of
the four vegetation predictors represented by both current
(month 0) and antecedent values (1, 3, 6, and 9 months).
To disentangle the effects of antecedent DD and antecedent
vegetation properties, we ran a second set of vegetation
experiments (CURRDD_FAPAR, CURRDD_LAI, CUR-
RDD_VOD, CURRDD_SIF) where each vegetation predic-
tor was represented by both current (month 0) and antecedent
values (1, 3, 6, and 9 months) but only using current DD and
the next nine most important non-vegetation factors from the
CURR model. Finally, 5-fold random CV was used to iso-
late the best combination of the vegetation predictors under
the constraint that each of the five states (09 months) must
be represented exactly once (using any of the four vegetation
predictors), resulting in the BEST15 model.
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In addition to the above climatological experiments,
we also investigated monthly data for the time period
November 2000-December 2029 (230 months) using the
15VEG_FAPAR_MON model. To avoid the temporal lim-
its of the GFED4 dataset (see Table 1) the MODIS
MCD64CMQ (Giglio et al., 2018) BA dataset was used.
Otherwise, this experiment uses the same variables as the
I15VEG_FAPAR experiment with the exception of lightning,
which was replaced with the similarly significant variable
AGB (see Fig. S3) in order to enable processing of a longer
time period. In addition to 5-fold random CV as for the other
models, the performance and generalisability of this model
was also measured using temporal CV. Here, the model was
trained on all samples excluding either all months within the
years 2009-2012 (including 2012) or 2016-2019 (includ-
ing 2019). Thereafter, the R? was measured on whichever
years were excluded for training. Note that unless explic-
itly specified, all following methodological descriptions will
relate to the climatological experiments as opposed to the
monthly ISVEG_FAPAR_MON experiment.

2.4 Measuring predictor importance and relationships

Our goal is to determine the contribution of individual pre-
dictors (including antecedent states of these predictors) to
model skill at predicting BA and to examine the relation-
ships between predictors and BA. There is no unique way
to measure the importance of a given predictor on model
skill in predicting BA, and it is particularly difficult to as-
sign importance to individual predictors when there is a high
degree of collinearity between them (Dormann et al., 2013;
Nowack et al., 2018; Mansfield et al., 2020). We use four
techniques to infer the importance of individual predictors:
Gini impurity, permutation feature importance (PFI), leave-
one-column-out (LOCO), and SHAP values. The Gini impor-
tance aggregates the decrease in mean squared error (MSE)
for each split involving a given predictor variable over the in-
dividual decision trees making up the RF. The PFI was calcu-
lated from five permutations of each predictor variable (val-
idation set) using the ELI5 0.11.0 Permutation Importance
(https://eli5.readthedocs.io/en/latest/index.html, last access:
4 March 2021). While this provides an alternative assess-
ment of the prediction score, the permutations may result in
unlikely or impossible combinations of predictors, and thus
the PFI approach has a known tendency to overemphasise
the importance of individual variables (Hooker and Mentch,
2019). The LOCO importance measure is estimated by re-
peatedly retraining the RF models, each time without one
particular predictor variable. The relative importance of this
predictor variable is then measured as the change in MSE
on the validation dataset, where a larger drop in MSE signi-
fies a larger significance for the variable within the dataset.
The importance of correlated predictor variables may be un-
deremphasised in this approach since the model is retrained,
and thus some of the importance associated with the removed
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variable may be transferred to the correlated variables during
the re-training process. The SHAP value (Lundberg and Lee,
2017; Lundberg et al., 2020) is the average of the marginal
contributions from a series of perturbations of the predictor
variables. In a similar way to the PFI, this method shares
the importance amongst correlated predictor variables, which
may make them appear less significant than if they were in-
cluded on their own. SHAP values were computed for all val-
idation samples. In order to create a robust composite impor-
tance metric for each predictor variable, we divided the Gini,
PFI, LOCO, and SHAP metrics by the sum of their absolute
values and then summed them.

Maximally significant timescales were calculated by
weighting antecedent months using the largest SHAP value
magnitude out of all 12 months in the climatological data.
The maximum SHAP value magnitudes were calculated for
a predictor variable x at location ¢ on the latitude—longitude
grid as follows:

SHAPx,e = SHAPx.e,mmax’

where mpax = argmax;¢(1,2

.....

12)[SHAP. . M

These were then used to calculate the maximally significant
timescales for the basis predictor variable X (e.g. FAPAR)
using an average over antecedent months, a, weighted by
maximum SHAP value magnitudes:

Daxd
Dax
for a,x € {(O,XOM), (1, X 1M), (3, X 3M),

SHAP, ‘

tmax,X,Z =

SHAP, ‘

(6,X6M),(9,X9M)}. )

Locations with too many significant antecedent months
were ignored in order to visualise resulting relation-
ships more reliably; for example, if both the current
(|ISHAPx oM. ¢|) and 9-month antecedent (|]SHAPxom ¢|)
magnitudes are dominant, the weighted mean month (accord-
ing to Eq. 2) would lie in between, which is physically mean-
ingless. We designed an algorithm to detect SHAP values
that differ significantly from the baseline in order to miti-
gate this. Additionally, we also applied a range-based thresh-
old, whereby locations were ignored if the variability of the
SHAP values at location £ was below a threshold heuristi-
cally related to the mean BA, BA; (based on all BA samples):

max (SHAPx’g) — min (SHAPx’g) <0.12 x BAy. 3)
X X

We further used accumulated local effect (ALE) plots (Ap-
ley and Zhu, 2020) to examine and interpret the coupled re-
lationships fitted by the RF models. ALE plots are a more
robust alternative to partial dependence plots (PDPs) or indi-
vidual conditional expectation (ICE) plots (Apley and Zhu,
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Table 2. The modelling experiments. Except for the ALL experiments, the other experiments included 15 predictor variables for compara-
bility. Differences in number of antecedent variables included in each experiment meant that different numbers of variables from the basic
set were used in these experiments. For the TOP15, ISVEG_X(_MON), and BEST15 models we used the most important variables from the
ALL experiment up to the required number of 15. For the CURRDD_X models, we used the most important non-vegetation variables from
the CURR model. Table S1 provides a detailed list of the variables included in each experiment.

Name No. Variables

ALL and ALL_NN 50 Basic set of current variables + current month and antecedent (1, 3, 6, 12, 18,
24 months) values for dry days and vegetation indices (FAPAR, LAI, VOD, SIF)

TOP15 15  Top 15 predictors from the ALL model

CURR 15  Only current values of the basic set of 15 variables

15VEG_X (e.g. ISVEG_FAPAR) 15 Top 10 non-vegetation variables from the ALL experiment, plus current and an-

tecedent (1, 3, 6, 9 months) vegetation index X (e.g. FAPAR)

CURRDD_X (e.g. CURRDD_FAPAR ) 15  Current and antecedent (1, 3, 6, 9 months) versions of the vegetation index X (e.g.

FAPAR), current DD, top nine other variables from the CURR experiment

BEST15 15  Current and antecedent DD, one current, 1, 3, 6, 9 months vegetation index (drawn
from the four potential vegetation indices) and five most important other variables
from the basic set

15VEG_FAPAR_MON 15 Same as the 15VEG_FAPAR experiment with monthly data instead of climatolog-

ical data and lightning data replaced by the next-most important non-vegetation

variable

2020; Molnar, 2020). We assessed the impact of each of
the predictor variables on BA in isolation using first-order
ALEs which take into account the effect of all other predic-
tor variables. However, underlying inhomogeneities may ap-
pear when the model fits different relationships for different
locations or times. We therefore tested for inhomogeneities
by subsampling the dataset prior to ALE plotting to enable
the visualisation of underlying relationships for a subset of
locations and times. The causes of these inhomogeneities
were explored using second-order ALE plots, which show
the combined effect of two predictor variables on BA.

3 Results and discussion

In general, all models are able to predict BA using the given
biophysical predictors. However, the inclusion of antecedent
predictors significantly improves model performance. Below,
we discuss the performance of the different models, the im-
portance of the different predictor variables, and their rela-
tionships with BA.

3.1 Model performance

The ALL model, which includes all 50 variables, achieves
an in-the-bag R? of 0.919 and out-of-bag (OOB) R? of
0.701 for the training dataset and an R? of 0.701 for the
validation dataset (Fig. 1). Predictions on the validation set
(Fig. 2b) show a similar geographic pattern to observed BA
(Fig. 2a). However, overprediction in the validation set rel-
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Figure 1. Global climatological R? scores for the different ex-
periments. The CURR model is the only model that does not in-
clude antecedent conditions, and it performs much worse as a re-
sult. Despite the fact that the ALL model contains 50 predictors,
while all other models contain just 15, it does not perform signifi-
cantly better than the best models containing just 15 predictors (e.g.
15VEG_FAPAR). Note that although train R? scores are shown
here, they are not indicative of model performance on unseen data,
for which the shown train OOB scores should be used instead.

ative to observed BA is more widespread than underpredic-
tion (Fig. 2¢). Nonetheless, there is no bias; the ALL model
predicts a mean out-of-sample BA of 2.54 x 10~ compared
to the expected 2.48 x 1073, The apparent overprediction is
the result of plotting relative (as opposed to absolute) errors,
which amplifies the fact that the ALL model does not predict
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Figure 2. (a) Average observed (Ob.) BA derived from the GFED4
BA dataset (Giglio et al., 2013). (b) Out-of-sample predictions (Pr.)
by the ALL model on the validation dataset. (c) Relative prediction
error of the ALL model calculated by taking the mean of the differ-
ence between observations and predictions divided by the mean ob-
servations. While the predictions in panel (b) are qualitatively very
similar to the observations in panel (a), there is an overestimation of
low BA. Areas with very low or 0 observed BA (a) are omitted from
panel (c) to avoid division by (nearly) 0. Despite the visual exag-
geration of the errors, which are generally small, there is no overall
pattern. Note that sharp data availability boundaries (e.g. in western
Asia, southern Australia) are introduced by the AGB dataset. Grey
shading indicates regions with fire data availability, but where one
or more of the other datasets is not available. Light grey indicates
regions where mean BA is 0, with dark grey representing regions
with non-zero mean BA.

very low BA accurately; out-of-sample BA predictions are
no lower than 7.39 x 10’7, while the observed BA is O for
85.7 % of samples. Generally, the model captures intermedi-
ate BA better than extreme BA, leading to overprediction at
low and underprediction at high BA values. Thus, more sam-
ples are over-predicted because there are more values with
low BA than high BA, leading to many instances of slight
overprediction balanced by few instances of comparatively
large underprediction (Figs. S4, S5). The model may strug-
gle to predict 0 BA because the random forest model consists
of many smaller decision trees. All 500 individual models
would have to predict O to yield this value overall, which does
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not appear to occur given the stochastic nature of the training
process. Failure to capture extreme events well is likely due
to their rarity, resulting in the absence of comparable training
data (see also e.g. Joshi and Sukumar, 2021).

Using a combination of regional neural networks trained
on fewer variables at a coarser spatial resolution of 1° x 1°,
Joshi and Sukumar (2021) found a global R? score for BA
prediction of 0.36. An earlier study by Thomas et al. (2014)
considered an R? score of 0.6 as indicating a robust pre-
diction. Our results compare favourably to both. To further
ensure model robustness, we also compared the PFI impor-
tances computed separately on the training and validation
sets in Fig. S6. There is no appreciable difference between
the two, which is indicative of a lack of overfitting, since
the model training has not unduly prioritised certain vari-
ables based on the training set (Dankers and Pfisterer, 2020).
Additionally, using the variogram shown in Fig. S7, we car-
ried out the B-LOO CV as detailed in Sect. 2.3 in order
to investigate the influence of spatial autocorrelation on the
I5VEG_FAPAR model (see Fig. S8). The performance of
the model drops as a larger region around the test samples
is excluded (with 30 pixels corresponding to ~ 900km at
the Equator, which is the scale of autocorrelation identified
using Fig. S7). However, as opposed to the case study in Plo-
ton et al. (2020), the R? score plateaus at around 0.1-0.4
beyond ~ 900 km instead of dropping to 0O, thereby indicat-
ing the robustness of our model. Certain regions and extreme
events are poorly captured by the model, accounting for the
lower end of this range. Furthermore, the model is potentially
forced to extrapolate to a larger extent as the exclusion radius
is increased, leading to an overly pessimistic performance
estimate. The extrapolation-prevention procedure in Ploton
et al. (2020) was not used here because it led to the exclusion
of certain key regions.

3.2 Importance of predictors

Climate variables and fuel-related vegetation indices have
the strongest influence on BA in the ALL model (Table S2).
Both current and antecedent conditions are important. Cur-
rent DD and MaxT are ranked first and fifth respectively,
but antecedent DD also has a moderate influence (DD 1M
and DD 3 M are ranked 10th and 13th in importance, respec-
tively). Similarly, although current FAPAR is the most im-
portant vegetation index (second), with both current SIF and
VOD occurring in the top 15 predictors, antecedent vegeta-
tion state also has a strong influence on BA. However, an-
tecedent conditions > 9 months are unimportant in the ALL
model. Vegetation characteristics such as the cover of spe-
cific plant types (TREE, SHRUB, HERB) and AGB are only
moderately important in determining BA (all ranked below
the top 15 predictors). Human impacts, as represented by
CROP and POPD, are also only moderately important glob-
ally for BA, ranked respectively 8th and 15th. Natural igni-
tions as represented by lightning are only ranked 21st, sug-
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gesting that at a global climatological scale burning is not
limited by lightning.

The finding that fuel build-up on timescales longer than
a year is not an important predictor of BA may initially be
surprising given that fuel build-up as a result of fire suppres-
sion has been linked to large and catastrophic fires (e.g. in
the USA; Marlon et al., 2012; Parks et al., 2015; Higuera
et al., 2015). The failure to detect an influence of longer-
term fuel build-up on BA probably reflects the short time
interval (1-2 years) considered for antecedent fuel build-
up, far shorter than the timescales of coarse fuel build-up
in these ecosystems. The seasonal differences captured by
our analyses may also be unimportant in regions where long
fire-return times (or fire suppression) allow fuel build-up
over longer periods. Wetter forests with long fire-return in-
tervals may also be more affected by longer-term moisture
deficits (Abatzoglou and Kolden, 2013) that are not captured
in the limited time period analysed. However, van der Werf
et al. (2008) used 13 months of fuel accumulation before
the peak of the fire season to investigate herbaceous fuels,
which supports our findings somewhat. It would be worth-
while to re-examine the influence of longer timescales on
BA when longer datasets are available, as, even when con-
sidering the ~ 20-year long MODIS record (which we do
using the 15VEG_FAPAR_MON model), we are strongly
limited by the data available to us. Predictability in boreal
ecosystems is expected to remain very limited because the
return times are many times longer than the time series, so
there is a very large stochastic component. The lower perfor-
mance of our monthly 15VEG_FAPAR_MON model with
over 19 years of data, presented further below, in addition
to the limited predictability of boreal regions found by Joshi
and Sukumar (2021) despite their use of 14 years of data,
both support this.

Our analyses are also impacted by the influence of previ-
ous fires on current vegetation conditions. Burnt grid cells
could have a lower FAPAR, for example, as a result of prior
burning within the current month. This is a problem because
we are solely interested in how pre-fire vegetation conditions
affect BA. The temporal and spatial scales of the analysis are
responsible for this: a monthly analysis cannot resolve pro-
cesses that occur on the order of days. Further, the impact
of previous fires on spatially averaged vegetation properties
is expected to be proportional to the burnt fraction of the af-
fected grid cell. In savannah regions of Africa and northern
Australia, where on the order of 10% of a 0.25° grid cell
may burn in a given month, this could have a significant ef-
fect on the averaged values of vegetation properties used in
our analyses. Analysis using a finer spatial scale would coun-
teract this spatial smoothing by allowing burnt pixels to be
ignored so that predictor values may be estimated only from
unburnt cells. Using a finer temporal resolution would al-
low the calculation of predictor variables only up to the time
of burning. In practice, however, while many variables (e.g.
MODIS-based vegetation variables) are available at finer res-
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Figure 3. Mean change in out-of-sample prediction error be-
tween the CURR and ALL models, relative to mean observations
(<Ob.>). Green regions have decreased prediction error using the
ALL model compared to the CURR model, and vice versa for the
purple regions. Areas with high BA (see Fig. 2a) tend to experience
lower changes in relative prediction error. Areas with very low or 0
observed BA (see Fig. 2a) are omitted to avoid division by (nearly)
0. Note that sharp data availability boundaries (e.g. in western Asia,
southern Australia) are introduced by the AGB dataset. Grey shad-
ing indicates regions with fire data availability, but where one or
more of the other datasets is not available. Light grey indicates re-
gions where mean BA is 0, with dark grey representing regions with
non-zero mean BA.

<|Err(CURRY)|

olutions, the lack of accurate, reliable fire statistics at finer
scales (Abatzoglou and Kolden, 2013) limits the temporal
and spatial resolution that can usefully be achieved.

Although the limitation of the spatial (and temporal) res-
olution of the observations could impact the realism of
our models, as could the omission of variables that affect
fuel build-up, the consistency of the vegetation relationships
shown by all the models (as detailed below) including an-
tecedent conditions indicates that processes related to fuel
build-up are adequately represented by the chosen set of pre-
dictors. The different importance metrics used are also in
broad agreement, especially regarding the most important
predictors like FAPAR and DD (see Fig. S1).

3.3 Models with fewer predictors

The model using the top 15 predictors from the ALL model
(TOP15) performs only marginally worse than the ALL
model, with an in-the-bag R? of 0.919 and out-of-bag (OOB)
R? of 0.688 for the training dataset and an R? of 0.685 for
the validation dataset. This nearly equivalent performance re-
flects the fact that there is a high degree of correlation be-
tween several of the variables (Fig. S9) included in the ALL
model, while also implying that the inclusion of extra predic-
tors in the ALL model does not improve predictive capabil-
ity. Therefore, this shows that it is not necessary to include
multiple fuel-related vegetation variables in order to predict
BA, provided that both current and antecedent conditions are
taken into consideration. The removal of predictor variables
is however likely to reduce overfitting in the TOP15 model
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Figure 4. First-order ALEs for different antecedent (0 M, 1 M, 3 M, 6 M, and 9 M, where M denotes months) relationships with (a) FAPAR
and (b) DD in the 15VEG_FAPAR model, showing the underlying relationships with BA after accounting for all other variables. The shaded
regions represent the standard deviation around the mean of 100 ALEs each using 122567 random samples of the training data (~ 10 %).
Evenly spaced quantiles were used in the construction of the plots. Labels were calculated using the averaged quantiles of all the variables
used. A clear difference between instantaneous and antecedent relationships can be seen in both cases, with instantaneous FAPAR limiting
BA while antecedent FAPAR promotes BA, and vice versa for the dry-day period. Note that the enhancement of BA due to extreme droughts

(extreme dry-day period) is apparent across time periods.

compared to the ALL model (Runge et al., 2019; Nowack
et al., 2020; Joshi and Sukumar, 2021).

3.3.1 Importance of antecedent fuel-related predictors

The importance of antecedent fuel-related vegetation indices
for predicting BA is corroborated by the results from the
model that only includes predictors for the current month
(CURR), where there is a large decrease in the R? for the
validation dataset compared to either the ALL (—0.123) or
TOP15 (—0.107) model. The decrease in the R? for the
training dataset is smaller (—0.042) than for the validation
dataset, indicating that overfitting may be more of a prob-
lem in the CURR model than the ALL model. Analysis of
the mean out-of-sample prediction error shows that 54.7 %
of grid cells are better predicted in the ALL model compared
to the CURR model (Fig. 3). The performance improvements
(from the CURR to the ALL model) also tend to have a larger
magnitude than the performance decreases, contributing to
the improvement in the global R? score. Compared to the
ALL model, fuel-related vegetation properties are less im-
portant in the CURR model: VOD is the highest-ranked veg-
etation variable but is only fourth in importance (Table S2).
The four fuel-related vegetation variables included in the
TOP15 model are correlated with one another (Fig. S9), es-
pecially on specific antecedent timescales. This suggests it
may be unnecessary to include all these variables to cap-
ture the influence of fuel build-up on BA. Comparison of the
models which only include current and antecedent conditions
for one fuel-related vegetation variable (15VEG_FAPAR,
ISVEG_LAI 15VEG_VOD, 15VEG_SIF) confirms this.
However, while all these models perform better than the
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CURR model (Fig. 1), only the I5VEG_FAPAR model per-
forms similarly to the TOP15, BEST15, and ALL models.
Thus, considered on its own, FAPAR is the best fuel-related
vegetation predictor, followed by LAI, SIF, and then VOD
(Fig. 1). However, all four fuel-related vegetation predictors
produce reasonable results, and other predictors (e.g. VOD)
have been found to be important in other studies (e.g. Forkel
et al., 2017).

The importance of including antecedent DD is borne out
by the comparison of these four experiments and the experi-
ments which only included current DD (CURRDD_FAPAR,
CURRDD_LAI, CURRDD_VOD, CURRDD_SIF). In each
case, the predictions for the same vegetation predictor vari-
able are worse (Fig. 1).

The BEST15 model contains the best combination of the
fuel-related vegetation predictors (current FAPAR, FAPAR
1M, LAI 3M, SIF 6 M, SIF 9 M), determined by optimising
their timescales. This suggests that FAPAR is most important
on short timescales (current, 1 month) with the other vegeta-
tion properties appearing to be more useful on longer time
frames. The performance of this model, with a training R? of
0.925 and a validation R? of 0.691, is only bettered by the
ALL model. The good performance of models including FA-
PAR is due to the fact that the parts of the world responding
most strongly to FAPAR 0 M and FAPAR 1 M tend to be fuel-
limited, dry biomes accounting for the majority of global
BA (Giglio et al., 2013). Therefore, globally averaged model
performance metrics will tend to favour predictor variables
which best represent these dominant fire regimes. This is sup-
ported by previous analyses which have found predictability
in regions with infrequent fires like boreal regions or Europe
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Figure 5. First-order ALEs for different lags (< 1 year) from all relevant modelling experiments for the relationships between BA and
FAPAR (left-hand column) and LAI (right-hand column). Evenly spaced quantiles were used in the construction of the plots. Notably, the
relationship between LAI and BA is not modelled consistently by the CURR model (b), but relationships with BA are generally consistent

across models otherwise.

to be poor in contrast to regions with more frequent fires (e.g.
Joshi and Sukumar, 2021).

3.4 Current and antecedent relationships with BA

Current and antecedent states of both fuel-related vegetation
properties and DD have different impacts on BA (Fig. 4).
Current FAPAR has a negative effect on BA, while an-
tecedent FAPAR has a positive effect on BA (Fig. 4a). The
importance of current FAPAR changes most rapidly at in-
termediate levels of FAPAR. The impact of antecedent FA-
PAR is strongest for the preceding 1 month but persists for
up to 6 months; longer lags tend to produce results more sim-
ilar to the current relationship because of autocorrelation at
the yearly scale. These relationships make intuitive sense:
whereas high antecedent levels of FAPAR suggest that fuel
availability is not a limiting factor, high FAPAR in the current
month indicates that the vegetation has sufficient moisture to
be actively growing and is therefore less likely to burn.
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Current DD has a positive effect on BA (Fig. 4b), while
antecedent DD has a generally negative effect except if DD
is very high when the effect becomes positive again. Whereas
the positive antecedent effect of FAPAR on BA is strongest
for the preceding 1-month relationship and then gets weaker,
the negative impact of antecedent DD becomes gradually
stronger up to 9 months. In contrast to FAPAR, dry condi-
tions in the current month promote fire, whereas dry con-
ditions in preceding months reduce vegetation growth and
hence fuel build-up. Although prolonged droughts might be
expected to reduce the availability of fuel, the (on average)
positive relationship between BA and DD at very high lev-
els of DD across all antecedent states does not support this
expectation. The positive impact of drought in the current
month becomes apparent for dry days >~ 10d, whereas the
threshold is higher for antecedent months: BA only increases
when the number of dry days is >~ 20d for the preceding
month (DD 1M) and requires >~ 40d for DD 9 M. This
suggests that positive large antecedent DD may reflect pro-
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Figure 6. Second-order ALE plot showing the combined zeroth-
order (mean), first-order, and second-order modelled effects of FA-
PAR and FAPAR 1M on BA from the 15VEG_FAPAR model, tak-
ing into account all other variables. Grey boxes indicate missing
data. See Fig. S13 for the sample count matrix which demonstrates
the correlation between the variables and thus shows that samples
are unlikely to fall into the top-left or bottom-right bins. Evenly
spaced quantiles were used in the construction and labelling of the
plots. It can be seen that the combined effect of FAPAR and FAPAR
1 M on BA is positive if FAPAR is low while FAPAR 1M is high.

longed droughts extending into the current month, thereby
increasing fuel flammability and promoting fire.

From Fig. 7a it can be seen that the negative effects of
current FAPAR are most important in wet biomes, where
limitation of fire activity due to instantaneous moisture con-
ditions would also be expected to be strongest. This panel
also has strong similarities with the results of Boer et al.
(2021), with moisture-limited (dryness-limited) regions they
identified corresponding broadly to the regions where instan-
taneous FAPAR is dominant due to the limitation imposed
by high FAPAR on BA (see Fig. S10a). In these regions, in-
stantaneous conditions reduce fuel available to burn due to
moisture, and antecedent conditions are less important due
to the lack of a seasonal fuel build-up pattern. This then
shows that in moisture-limited regions, dry events are impor-
tant for enabling fire. From Fig. 7b it is apparent that, on av-
erage, antecedent FAPAR is most important on a ~ 4 month
timescale.

3.4.1 Consistency of relationships

Consistent relationships between current or antecedent con-
ditions and BA are generally reproduced in all of the RF
models (Figs. 4, 5, S11). However, exclusion of antecedent
vegetation predictors can lead to counter-intuitive relation-
ships between the current vegetation state and BA. Although
the CURR model produces the expected relationship with
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current FAPAR (and SIF; Figs. 5a, S11a), the relationship
between current LAI (and VOD) and BA is initially positive
and then flat (Figs. 5b, S11b); this model does not show the
expected strong negative relationship between current LAI
and BA that occurs when antecedent moisture and vegetation
conditions are included.

Relationships between predictors and BA were also sta-
ble when considering the 15VEG_FAPAR_MON model
(Fig. S12), which not only uses monthly instead of clima-
tological data, but also a different BA dataset. Using ran-
dom CV, a validation R? of 0.501 and an OOB train R2
of 0.498 were measured. Excluding the years 2009-2012, a
validation R? of 0.402 and an OOB train R* of 0.507 were
measured. Excluding the final years 2016-2019, a validation
R? of 0.435 and an OOB train R? of 0.505 were measured.
While these R? scores are lower than those observed for the
previously discussed climatological analyses, they demon-
strate that the model is able to robustly predict BA under
multiple CV scenarios. Lower R? scores are also expected
given the higher variance of these data. Additionally, the re-
lationships identified by the model are highly consistent with
the previous climatological analyses, showing that there is no
temporal change that is important. The spatial patterns are
dominant as the models behave very similarly when fit on
climatological and monthly data; and the main commonality
between those data is the geographical pattern. Note also that
while lightning is omitted from this experiment in contrast to
the climatological 15VEG_FAPAR experiment, lightning is
also not present in the TOP15 model, which performs simi-
larly to the ALL and BEST15 models. Furthermore, as shown
in Fig. S3, the importance of lightning and its replacement,
AGB, is very similar.

3.4.2 Interactions

Although it is informative to consider the impact of individ-
ual predictor variables on BA, the expression of these re-
lationships in the real world is likely to be conditioned by
interactions with other variables. For example, low values
of current FAPAR are associated with high BA (Fig. 4a),
but this association occurs only when antecedent FAPAR
is high (Fig. 6). Low FAPAR in the current month reflects
unsuitable conditions for plant growth, for example during
the dry season. Therefore, fuel build-up during the preced-
ing months is a prerequisite for fire to occur. The strong
autocorrelation between current and preceding FAPAR val-
ues means that the occurrence of low current FAPAR cou-
pled with high antecedent FAPAR is not widespread, being
largely confined to shrublands in Africa. However, there is a
significant interaction between current DD and current FA-
PAR (Fig. S14), with positive reinforcement of their mutual
influence on BA when DD is high and FAPAR is low and
a negative influence on BA when DD is high and FAPAR
is high. Increased BA for high DD and low FAPAR is con-
sistent with strong drought-induced fire in low-productivity
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Figure 7. Timescales of influence of FAPAR and DD on BA. The plots show the period that is most important for determining BA from the
15VEG_FAPAR model for (a) FAPAR and (c¢) DD. Plots (b) and (d) show which antecedent period is most important by disregarding the
influence of current conditions during plotting. Moister biomes are seen to be more influenced by current FAPAR (a), while current DD has
a large influence globally (c). Note that the maps give no indication about the sign of the influence of the predictor on BA (see Fig. S10).
Note also that sharp data availability boundaries (e.g. in western Asia, southern Australia) are introduced by the AGB dataset. Grey shading
indicates regions with fire data availability but where one or more of the other datasets is not available. Light grey indicates regions where
mean BA is 0, with dark grey representing regions with non-zero mean BA.

environments of sub-Saharan Africa, northern Australia, and
isolated regions bordering the African tropical rainforests.
These findings therefore support previous results, e.g. by
van der Werf et al. (2008) for Australia, where it was found
that antecedent precipitation coupled with instantaneous dry-
ing was important for fire activity. Decreased BA as a result
of increased DD and increased FAPAR is likely a sign of
high-productivity environments that are not fire-prone, de-
spite occasional drought.

3.43 Geographically varying timescales of importance

The timescales of both fuel build-up and fuel drying are influ-
enced by fuel type and are therefore expected to vary across
biomes. Current fuel-related vegetation properties, such as
FAPAR (Fig. 7a), have an important effect in tropical re-
gions, particularly dry tropical regions, but are less important
in temperate forest regions. Antecedent FAPAR (Fig. 7b) is
important in most regions, with the strongest influence from
the antecedent 3—6 months. Current DD (Fig. 7c) is gener-
ally more important than antecedent DD, although the im-
pact on BA varies geographically: tropical and boreal regions
show decreased BA as a result of low current DD, while
northwestern Australia, extra-tropical Africa, the Cerrado of
Brazil, and the western USA experience increased burning
as a result of high current DD (Fig. S10c). The timescale
on which antecedent drought affects BA (Fig. 7d) is more
variable than that for fuel-related vegetation properties, rang-
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ing from 1-3 months in boreal forests, parts of sub-Saharan
Africa, and northern Australia to ~ 4 months in the tropics
and ~ 6 months or longer in more arid regions.

4 Conclusions

By using random forest algorithms to model the dependence
of BA on multiple climatic and biophysical variables, we
have shown that antecedent vegetation conditions that influ-
ence fuel build-up and antecedent conditions that influence
fuel drying significantly improved model performance when
predicting BA in a given month. FAPAR was shown to be the
most significant vegetation variable, and only a single vege-
tation variable is required for accurate BA prediction if an-
tecedent conditions are included. Dry-day period and max-
imum temperature were the most significant climatic vari-
ables influencing BA. This supports previous studies which
have shown that current climate and vegetation properties are
important overall determinants of BA (e.g. Aldersley et al.,
2011; Bistinas et al., 2014; Forkel et al., 2017, 2019a; Joshi
and Sukumar, 2021). The influence of antecedent climate
conditions on both fuel build-up and fuel drying has also
been identified as crucial in many regions (e.g. Van Wilgen
etal., 2000; Griffin et al., 1983; Westerling et al., 2003; Swet-
nam and Betancourt, 1998; Jenkins et al., 2020; Archibald
et al., 2009; Krawchuk and Moritz, 2011; van der Werf et al.,
2008; Randerson et al., 2005; Spessa et al., 2005). Indeed,
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the geographical patterning of BA can be linked to the spatial
variability of fuel loads and fuel moisture (Archibald et al.,
2009; Boer et al., 2021).

Our model-based analyses allowed us to distinguish be-
tween the immediate and antecedent impacts of fuel loads
and fuel dryness on BA, while also allowing their relative
contributions to be determined. We have further shown that
current and antecedent conditions can influence BA in op-
posite but intuitively understandable ways: for example, wet
conditions in antecedent months lead to more fuel build-up in
fuel-limited regions and promote increased BA, whereas wet
conditions during any given month reduce fuel dryness and
thus limit BA. Furthermore, we have demonstrated that an-
tecedent conditions > 1 year are not important on a global
scale. A similar conclusion was reached by Forkel et al.
(2017). Important and intuitive interactions between instanta-
neous and antecedent variables were captured by the models,
for example supporting previous findings that increased an-
tecedent productivity (FAPAR) coupled with instantaneous
drying (dry days) promotes fire activity (e.g. van der Werf
et al., 2008).

A clear contrast between fuel- and moisture-limited re-
gions was also identified using the spatial variation of the
relationship between antecedent FAPAR and BA. The criti-
cal timescales involved varied with vegetation type; longer
timescales (~ 4 months) were more important for fuel build-
up in temperate regions, while recent conditions were more
important for fuel drying in the tropics. The effect of vege-
tation variables is also biome-dependent because of differing
climatic constraints. The length of the dry-day period in the
current month had the largest impact on BA, but antecedent
DD was also important, particularly in temperate regions.

Future work could re-calibrate the models for each set
of variables to potentially improve their performance. Ap-
proaches like B-LOO CV or our combined variable impor-
tance metric could also be used more extensively to select
the predictor variables and potentially tune the model hyper-
parameters, given that these methods are currently very com-
putationally intensive. Finally, the findings presented herein
have the potential to improve the modelling of fire at a global
scale in order to improve the way that Earth system models
depict the interactions between climate, vegetation, and fire.

Code availability. Computer code can be found in the empirical-
fire-modelling package (Kuhn-Régnier, 2021a). ALE plots
were generated using the ALEPython package (Kuhn-Régnier
et al,, 2021). Data analysis was carried out using the Python
3.7 (Van Rossum and Drake, 2009) packages SciPy (Virtanen
et al., 2020), Matplotlib (Hunter, 2007), NumPy (Oliphant, 2006),
Iris (Met Office, 2010), Dask (Dask Development Team, 2016),
Jupyter notebooks (Kluyver et al., 2016), wildfires (Kuhn-Régnier,
2021b), and eraSanalysis (Kuhn-Régnier, 2020). GFED4 data
were read using pyhdf (https://github.com/fhs/pyhdf (last access:
4 March 2021), wraps NCSA HDF version 4).
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