

Test of the negative feedback hypothesis of colony size sensing in social insects

Article

Accepted Version

Kikuchi, T., Hayashi, Y. ORCID: <https://orcid.org/0000-0002-9207-6322>, Fujito, Y., Fujiwara-Tsujii, N., Kawabata, K., Sugawara, K., Yamaoka, R. and Tsuji, K. (2024) Test of the negative feedback hypothesis of colony size sensing in social insects. *Biology Letters*, 20 (6). ISSN 1744-957X doi: 10.1098/rsbl.2024.0102 Available at <https://centaur.reading.ac.uk/117037/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1098/rsbl.2024.0102>

Publisher: The Royal Society

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading
Reading's research outputs online

**Test of the negative feedback hypothesis of colony-size
sensing in social insects**

Journal:	<i>Biology Letters</i>
Manuscript ID	RSBL-2024-0102.R1
Article Type:	Research
Date Submitted by the Author:	n/a
Complete List of Authors:	Kikuchi, Tomonori; Chiba University, Marine Biosystems Research Center Hayashi, Yoshikatsu; University of Reading, School of Systems Engineering Fujito, Yuka; Shimadzu Corporation, Division of Analytical and Measuring Instruments Fujiwara-Tsujii, Nao; NARO, Institute for Plant Protection Kawabata, Shun-ichi; Toyama University, Department of Biology Sugawara, K.; Tohoku Gakuin University, Department of Information Science Yamaoka, Ryohei; Kyoto Institute of Technology, Department of Applied Biology, Graduate school of Science and Technology Tsugi, Kazuki; University of the Ryukyus, Department of Subtropical Agro-Environmental Sciences; Kagoshima University, The United Graduate School of Agricultural Sciences
Categories:	Animal Behaviour
Subject:	Evolution < BIOLOGY, Ecology < BIOLOGY, Behaviour < BIOLOGY
Keywords:	self-organisation, contact, fertility, worker reproduction, queen pheromone

SCHOLARONE™
 Manuscripts

Author-supplied statements

Relevant information will appear here if provided.

Ethics

Does your article include research that required ethical approval or permits?:

This article does not present research with ethical considerations

Statement (if applicable):

CUST_IF_YES_ETHICS :No data available.

Data

It is a condition of publication that data, code and materials supporting your paper are made publicly available. Does your paper present new data?:

Yes

Statement (if applicable):

https://datadryad.org/stash/share/yKuOrNWgkp5moaylR-Z1L1ZwtnwKDWRdCIL_tGh9Ljg

Conflict of interest

I/We declare we have no competing interests

Statement (if applicable):

CUST_STATE_CONFLICT :No data available.

Use of AI

Please provide a statement of any use of AI technology in the preparation of the paper.

No, we have not used AI-assisted technologies in creating this article

CUST_IF_YES_DECLARATION_OF_AI_USE :No data available.

1 Test of the negative feedback hypothesis of colony-size sensing in social
2 insects

3

4 T. Kikuchi¹, Y. Hayashi², Y. Fujito³, N. Fujiwara-Tsuji⁴, S. Kawabata⁵, K. Sugawara⁶,
5 R. Yamaoka⁷, K. Tsuji*^{8,9}

6

7 Affiliations

8 ¹Marine Biosystems Research Center, Chiba University, Tokawa 1, Choshi City, Chiba
9 288-0014, Japan

10 ²School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6AH,
11 United Kingdom

12 ³Division of Analytical and Measuring Instruments, Shimadzu Corporation, 1
13 Kuwabaracho Nishinokyo Nakagyo-ku, Kyoto 604-8511, Japan

14 ⁴Institute for Plant Protection, National Agriculture and Food Research Organization,
15 Tsukuba 305-8666, Ibaraki, Japan

16 ⁵Department of Biology, Toyama University, Toyama 930-8555, Japan

17 ⁶Department of Information Science, Faculty of Liberal Arts, Tohoku-gakuin
18 University, 2-1-1, Tenjinzawa, Izumi, Sendai, Miyagi 981-3193, Japan

19 ⁷Kyoto Institute of Technology (Emeritus), Kyoto 606-8287, Japan

20 ⁸Department of Subtropical Agro-Environmental Sciences, University of the Ryukyus,
21 Nishihara, Okinawa 903-0123, Japan

22 ⁹The United Graduate School of Agricultural Sciences, Kagoshima University,
23 Kagoshima 890-0065 Japan

24

25 * Corresponding author: Kazuki Tsuji, Department of Subtropical Agro-Environmental
26 Sciences, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan

27 E-mail: tsujik@agr.u-ryukyus.ac.jp

28 Phone number: +81-098-895-8797

29

30 **Abstract**

31 Social insects can sense colony size—even without visual information in a dark
32 environment. How they achieve this is yet largely unknown. We empirically tested a
33 hypothesis on the proximate mechanism using ant colonies. In *Diacamma* colonies the
34 monogynous queen is known to increase the effort devoted to queen pheromone—
35 transmission behaviour (patrolling) as the colony grows, as if she perceives colony size.
36 The negative feedback hypothesis assumes that through repeated physical contacts with

37 workers the queen monitors the physiological state (fertility) of workers and increases
38 her patrolling effort when she encounters more fertile workers. Supporting this
39 hypothesis, we found that queens increased patrol effort in response to a higher ratio of
40 fertile workers under the experimental condition of constant colony size. Furthermore,
41 chemical analyses and bioassays suggested that cuticular hydrocarbons have queen
42 pheromone activity and can mediate the observed queen–worker communication of
43 fertility state. Such a self-organising mechanism of sensing colony size may also
44 operate in other social insects living in small colonies.

45

46 **Keywords:** self-organisation, contact, fertility, worker reproduction, queen pheromone,
47 eusociality

48

49 **Background**

50 Colony size is related to social complexity, and is important for understanding the
51 evolution of sociality in social insects [1,2]. Phylogenetic analysis indicates that in
52 eusocial insects, large complex colonies are derived from small simple colonies [2,3].
53 From an ontogenetic perspective, various individual and group traits change as the
54 colony grows. For example, in eusocial taxa of Hymenoptera and Isoptera, reproductive
55 castes are generally produced when colony size (worker number) exceeds a certain level
56 [4]. Also in some eusocial insects, individual body size, foraging strategy,
57 aggressiveness, response to stress, sex ratio, and policing behaviour also change with
58 colony size [5–9]. Many of these trait changes are considered adaptive and are therefore
59 likely to be controlled in a colony size–dependent manner [4,10,11]. However, the
60 proximate mechanisms by which colony size controls these traits are not yet well
61 understood.

62 Colony size–dependent behaviour is observed in queens of the ant *Diacamma cf.*
63 *indicum* from Japan. (In this article we use the functional definition of queen caste [12],
64 though queens of *Diacamma* are called gamergates, i.e. mated workers, in other
65 contexts [13–15] since all females are morphologically identical) In this monogynous
66 species, queens mate once (sometimes twice) and worker reproduction is inhibited via
67 queen pheromone and policing behaviours [13–15]. Queen pheromone has only a short-
68 term effect, and the frequency of aggressive dominance interactions among workers
69 competing for oviposition rights significantly increases by 3 hours after queen removal
70 [13,14]. Queen pheromone is transmitted to workers by direct physical contact [15]. The
71 queen distributes her pheromone by regularly walking around the nest and touching
72 workers with her antennae and other body parts (patrol behaviour) [13,16]. Queens

73 devote more effort to this pheromone-transmission behaviour in large colonies than in
74 small colonies by patrolling more frequently [13,16]. However, it is not known how the
75 queen perceives colony size and is triggered to switch her behaviour.

76 Adejumo and co-workers [16] created a computer model to test whether this
77 phenomenon can be self-organising, controlled by a feedback mechanism through
78 repeated interactions between the queen and workers (see also [17]). Their model was
79 based on the following four assumptions. First, when a worker has lost contact with the
80 queen for a long time, the worker's physiological state becomes more prone to self-
81 reproduction (i.e., more fertile). This has been empirically established [13,14,18].
82 Second, if the queen encounters fertile workers during her patrols, she devotes more
83 effort to pheromone-transmission behaviour. This behaviour generates negative
84 feedback, because encounters with fertile workers promote the queen's pheromone
85 transmission behaviour, which suppresses worker fertility. Note that the queen is
86 assumed to respond only to local information, that is, recent contact with fertile
87 workers. Third, the queen can perceive the fertility of workers that she contacts. Last,
88 the presence of queen pheromone. We assume cuticular hydrocarbons (CHCs) can play
89 the role, since queens and workers have markedly different CHC profiles (Electronic
90 Supplementary Material 1). However, the second to last assumptions underlying the
91 feedback hypothesis have not been empirically tested. Here, we tested those
92 assumptions in *D. cf. indicum*. This is a rare rigorous empirical test of an explicit colony
93 size-related feedback mechanism in social insects.

94

95 **Methods**

96 *Study materials*

97 We used colonies of *D. cf. indicum* collected on Okinawa Island, Okinawa Prefecture,
98 Japan, during 2001–2022. Each colony was kept in a plastic container (26.5 cm length ×
99 18.5 cm width × 5 cm height) with a plaster floor (1.5 cm thick). In the middle of the
100 floor a 13 cm × 9 cm depression (1 cm deep) covered with a glass plate acted as an
101 artificial nest. Ants were kept in the laboratory at $25 \pm 1^\circ\text{C}$ with a light:dark cycle of 12
102 h:12 h and fed honey water and mealworms ad libitum three or four times a week. Field
103 colonies contain 20–300 workers [19,20]. We used medium to large colonies containing
104 more than 100 workers.

105

106 *Effect of fertile workers on queen patrol behaviour (negative feedback test)*

107 We investigated whether the proportion of fertile workers in a colony influenced the
108 queen's patrol behaviour. First, we created nine queen-right colonies of equal size (100

109 workers) by removing workers at random. After an acclimation period of 1 month, we
110 divided each colony into an orphan subcolony (40 workers) and a queen-right
111 subcolony (60 workers) that were maintained for the subsequent 2 weeks. Then, after
112 eliminating all brood (non-adults), the queen-right subcolony was transferred to a new
113 observation nest of the above-mentioned design. Two days later we recorded the
114 queen's behaviour for 12 h with a digital video camera. Then a portion of the workers
115 were replaced with workers from the orphan subcolony at an exchange ratio of 0% (0
116 workers), 25% (15 workers), or 50% (30 workers). The majority of orphan workers
117 become fertile within 2 weeks after queen removal [17]. One hour after this worker
118 exchange, we resumed recording the queen's behaviour for 12 h. The queen and all
119 workers were then combined into a single colony and maintained in the nest for at least
120 3 weeks to ensure the restoration of queen-right physiological conditions in both
121 workers and the queen. After the restoration period, the same colonies underwent this
122 procedure two more times until each queen had undergone all treatments (0%, 25%, and
123 50%); treatment order was randomly assigned. For analysis, we regarded each queen as
124 a block, because there was large individual variation in queen patrol behaviour for
125 unknown reasons. The queen's activity mostly consists of simple repeats of patrolling
126 and resting, with occasional rare oviposition and feeding events [13]. Patrol behaviour
127 was defined as either walking or antennating a worker while not walking. Resting
128 behaviour was defined as either remaining motionless or self-grooming in the same
129 location for longer than 5 sec.

130 We focused on four behavioural metrics: total patrol time per 12 h, patrol frequency
131 (number of patrol bouts per 12 h), mean patrol duration and mean rest duration. We
132 analysed the effect of treatments on each of the above behavioural metrics by using
133 generalised linear mixed models (GLMMs) with likelihood ratio tests. We set the
134 exchange ratio as the fixed factor, the colony (or queen) as a random factor, the
135 behavioural metric (such as patrol frequency) before the worker exchange as an offset,
136 and that after the worker exchange as the response variable. A negative binomial
137 distribution was assumed for total patrol time per 12 h, and a gamma distribution was
138 assumed for the remaining behavioural performances.

139

140 *Queen's ability to discriminate fertile workers*

141 To examine whether queens can discriminate fertile from non-fertile workers, we video-
142 recorded colonies ($N = 6$) in which all adults were individually marked in advance
143 with enamel paint; recordings lasted 4–5 h. We identified the most dominant alpha
144 worker (showed aggression to others but had never received aggression) and low-rank

145 workers (never engaged in dominance interactions). Alpha workers occasionally lay
146 male eggs even if a queen is present [18,20]. We then put the queen and three low-rank
147 workers into a plastic Petri dish (12 cm in diameter) for 1 h to acclimatise the queen.
148 Then we introduced an additional worker (either the alpha or a randomly selected low-
149 rank worker) into the Petri dish and video-recorded the behavioural interaction between
150 the focal worker and the queen for 15 min. Immediately after this trial the focal worker
151 was dissected to examine her ovarian condition. To minimise the impact of handling,
152 the queen and the three low-rank workers were returned to the original nest, and 1 or 2
153 days were allowed to pass before conducting another trial. Trial order was randomised.
154 We defined an encounter as any physical contact between queen and worker. We
155 counted the number of encounters that caused the queen to respond, either by
156 antennation or by orientation (turning her body to orient her head toward the worker).
157 We compared the ratio of response to non-response encounters between alpha and low-
158 rank workers by using a generalised linear mixed model (GLMM) with a Poisson
159 distribution. We set worker rank (alpha or low-rank) as the fixed factor, colony as a
160 random factor, the total number of encounters as an offset, and the number of
161 encounters that led to a queen response (antennation or orientation) as the response
162 variable. Similarly, we compared focal workers' ovarian condition (the number of
163 oocytes in ovaries) between alpha and low-rank workers by Wilcoxon singed rank test
164 regarding colony as the block.

165

166 *Bioassay on CHCs' queen pheromone activity*

167 Using another four colonies we tested if the queen CHCs have a suppressive effect on
168 worker reproduction. We used the dominance behaviour as a proxy of a worker's
169 tendency to perform self-reproduction [13-15, 18]. First, more than 2 days before the
170 experiment, we standardized all colonies to have the same size of 80 workers and a
171 queen. Then each colony was randomly divided into two orphan groups (each with 40
172 workers), each of which was placed in a plastic container (6 × 4.7 × 2.5 cm). During this
173 procedure, we killed the queen and quickly extracted the CHCs in the following way.
174 To retrieve the crude extract, the queen was immersed in 1.5 ml of *n*-hexane. Then the
175 solvent was evaporated and re-dissolved in 70 µl of *n*-hexane. This total crude hexane
176 extract was separated into HC fraction (HC fr.) and non-HC fraction (non-HC fr.) on a
177 silica-gel column (0.04–0.063 mm mesh silica-gel) by stepwise solution with 3 ml of *n*-
178 hexane and dichloromethane. This *n*-hexane fluid extract was applied to 1/8 of a piece
179 of a glass-fibre filter paper (2.1 mm in diameter, 1 mm width) by a microsyringe (0.5
180 individual equivalent amount). At 30 min after the orphaning, we gently used tweezers

181 to place the filter on one of the two orphan groups and exposed workers to it for 5 min.
182 It is known that *D. cf. indicum* workers are attracted and exposed to the queen's HC fr.
183 soaked in the filter paper (Electronic Supplementary Material 2). We then gently
184 removed the filter from the nest container, allowed 5 min to lapse so the colony could
185 calm down, and counted the incidence of worker–worker dominance behaviour for 20
186 min. This procedure (one cycle = 30 min) was repeated nine times. As the control
187 treatment, the other orphan groups were exposed to n-hexane in the same way. Finally,
188 we analyzed the effect of queen HC fr. on dominance behaviour by using a GLMM with
189 likelihood ratio tests, in which the fixed factors were treatment (queen HC fr. or *n*-
190 hexane), time after orphaning, and treatment \times time after orphaning, the random factor
191 was colony, and the response variable was assumed to show a gamma distribution.

192 All statistical tests were performed using R statistical software version 4.2.2 (20).

193

194 **Results**

195 *Test of the negative feedback loop*

196 The key assumption of the negative feedback hypothesis is that queens invest more
197 effort in patrol behaviour after contact with fertile workers. This assumption was
198 empirically supported; when a portion of workers were swapped for orphan workers
199 while keeping the colony size constant (60 workers), queens significantly increased the
200 total patrol time per 12 h (GLMM with likelihood ratio tests, $\chi^2 = 13.91, p = 0.0009$).
201 More precisely, this was achieved by more frequent switches in queen behaviour; when
202 workers were replaced by orphan workers, queens significantly increased their patrol
203 frequency ($\chi^2 = 14.10, p < 0.0001$, figure 1a) and decreased both the average duration of
204 resting ($\chi^2 = 17.06, p = 0.0002$, figure 1b) and that of patrolling ($\chi^2 = 5.621, p = 0.060$).
205 For the effect size of each treatment (each exchange ratio) see also Table 1.

206

207 *Queens can recognise fertile workers*

208 Queens responded (by antennation or by orientation) more frequently to alpha workers
209 than to low-rank workers ($\chi^2 = 34.1, p < 0.001$; figure 2a). Dissections showed alpha
210 workers had more developed ovaries than low-rank workers ($z = 2.29, p = 0.022$; figure
211 2b).

212

213 *CHCs show queen pheromone activity*

214 The queen CHC extract suppressed dominance behaviour of orphan workers. The
215 frequency of dominance behaviour among workers steadily increased with time after the
216 queen removal in the control treatment (exposed to n-hexane), whereas workers'

217 dominance behaviour remained at a low level when orphan workers were exposed to the
218 HC fraction of queen extract (GLMM with likelihood ratio tests, time: $\chi^2 = 19.41$, $P <$
219 0.001 ; treatment: $\chi^2 = 52.52$, $P < 0.001$; time \times treatment: time \times treatment: $\chi^2 =$
220 4.067 , $P = 0.0437$; figure 3). For details see also Electronic Supplementary Material 3.
221

222 Discussion

223 The negative feedback hypothesis for the colony size-dependent patrol behaviour of
224 *Diacamma* queens [16,17] assumes that a queen can sense the reproductive state of
225 workers through physical contact. It also assumes that the queen changes her patrol
226 behaviour to reflect this information; thus, her colony size-dependent behaviour
227 emerges without direct knowledge of colony size. Our experiments empirically support
228 this hypothesis. This queen behaviour is adaptive because it effectively prevents worker
229 reproduction until it is constrained by the high cost of patrol in very large colonies [16].
230

231 There are other hypotheses regarding the mechanisms of ant colony size sensing,
232 including an increase in the frequency of worker-worker encounters [22–24] or an
233 increase in the concentration of carbon dioxide [25] or other chemicals [26] in the nest.
234 Those hypothetical mechanisms differ from the negative feedback hypothesis in that the
235 former implicitly assume an increase in individual density per nest space with colony
236 growth. However, the relevant factor in the negative feedback hypothesis is not worker
237 density or frequency of queen-worker encounters, but the ratio of fertile to infertile
238 workers that the queen encounters. In our experiment, colony size was kept constant and
239 only the ratio of fertile workers was manipulated. Furthermore, in *Diacamma* the
240 density of individuals per nest area appears to be controlled by the ants themselves, with
241 the number of individuals per floor area in the centre of the nest (near the queen)
242 remaining almost constant regardless of colony size [16]. This observation makes sense
243 for ants that nest in soil, because they are highly likely to dig to expand nest space as
244 colony size increases [27] to prevent overcrowding, which would hinder colony
245 efficiency. In addition, under crowded conditions ants are known to change behaviour
246 and keep the worker-worker encounter rate low [28].

247 A series of our chemical analyses and bioassays suggested that cuticular
248 hydrocarbons (CHCs) underpin the communication between workers and queens. CHC
249 profiles were associated with fertility and differed between fertile and sterile workers as
250 well as between queens and workers (Electronic Supplementary Materials). Most
251 importantly, queen CHCs suppressed orphan workers' dominance behaviour (figure 3)
252 that reflects competition over egg-laying opportunities. A wide range of social insects
use CHCs as the queen pheromone [29–32]. This also appears to be the case in *D. cf.*

253 *indicum* from Japan, although the specific CHC component that shows queen
254 pheromone activity has yet to be specified.

255 Insect CHCs are a mixture of various hydrocarbon molecules, the primary function
256 of which is considered dehydration prevention. The queen pheromone activity of some
257 long-chain linear and methyl-branched saturated CHCs is conserved across a broad
258 array of social taxa [31]. The phylogenetic conservation of CHCs as queen pheromones
259 may support the honest fertility signature hypothesis [31–33] rather than the chemical
260 weapon hypothesis (but see [34,35]). Provided that the honest fertility signature
261 hypothesis is also valid in *Diacamma*, a single CHC may allow workers to sense the
262 queen and for the queen to sense fertile workers. In this scenario, the individual bearing
263 a large amount of the pheromone on its cuticle would be identified as the queen,
264 whereas an individual bearing a small amount of the pheromone would be identified as
265 an ovary-developing worker. Future studies should test this hypothesis.

266 We believe that the mechanism of colony-size sensing via queen–worker contact
267 that we suggest here may be generally operative in other social insects, at least in those
268 with small colony sizes. Indeed, the importance of combination of physical interaction
269 and pheromone for suppression of reproduction has been suggested in a polistine wasp
270 [36]. More studies, including studies in other taxa, are needed.

271

272 **Table caption**

273

274 Table 1. GLMM results of four behavioural metrics of the queens: total patrol time per
275 12 h, patrol frequency (number of patrol bouts per 12 h), mean patrol duration and mean
276 rest duration. Different exchange ratios were regarded as different treatments
277 (categorical variables and fixed effects) and their effects on each of the above
278 behavioural metrics in comparison to the control (0% swapping) were analysed. One
279 can also see some non-linear effects.

280

281 **Figure legends**

282

283 Figure 1. Queen responses when a proportion of workers were swapped with orphan
284 workers ($N = 9$). (a) Frequency of queen patrol per 12 h after the worker swap divided
285 by that before the swap. (b) Mean resting duration after the worker swap divided by that
286 before the swap. Box boundaries reflect the inter-quartile range (IQR), the vertical range
287 is the maximum value in $Q3 + 1.5 \times IQR$ and the minimum value in $Q1 + 1.5 \times IQR$, and the
288 horizontal bar is the median.

289
290 Figure 2. (a) Proportion of encounters that led to a queen response (either by
291 antennation or by orientation) to alpha ($N = 6$) and low-rank workers ($N = 6$). (b)
292 Number of oocytes in the ovaries of each worker. Circles represent individual colony
293 values. For an explanation of the components of the box plots, see figure 1.
294

295 Figure 3. Frequency of dominance behaviour of workers under repeated exposure to
296 queen's cuticular hydrocarbon extract (red circles, $N = 4$) or to n-hexane (black circles,
297 $N = 4$).
298
299

300 **Acknowledgments**

301 We thank Toshiharu Akino for helping with the bioassay and Ryo Hosomi, Mieko Okai,
302 and Nao Shigenari of Toyama University for collecting preliminary data.
303

304 **Funding statements**

305 This study was supported in part by Japan Society for the Promotion of Science
306 KAKENHI (grant nos. 17657029, 18047017, 20033015, 23870003, 26249024,
307 15H02652, 16F16794, 17H01249, 22H02702, 23K18155).
308

309 **References**

- 310 1. Bonner JT. 2004 Perspective: the size complexity rule. *Evolution* **58**, 1883–1990.
- 311 2. Bourke AFG. 2011 Principles of Social Evolution. (Oxford University Press).
- 312 3. Wilson EO. 1971 The Insect Societies (The Belknap Press of Harvard University
313 Press).
- 314 4. Oster GF, Wilson EO. 1978 Caste and Ecology in the Social Insects (Princeton
315 University Press).
- 316 5. Houston A, Schmid-Hempel P, Kacelnik A. 1988 Foraging strategy, worker
317 mortality, and the growth of the colony in social insects. *Am. Nat.* **131**, 107–114.
- 318 6. Karsai I, Wenzel W. 1998 Productivity, individual-level and colony-level
319 flexibility, and organization of work as consequences of colony size. *Proc. Natl.
320 Acad. Sci. USA*. **95**, 8665–8669
- 321 7. Matsuura K, Kobayashi N. 2010 Termite queens adjust egg size according to
322 colony development. *Behav. Ecol.* **21**, 1018–1023.
- 323 8. Shimoji H, Kikuchi T, Ohnishi H, Kikuta N, Tsuji K. 2018 Social enforcement
324 depending on the stage of colony growth in an ant. *Proc. R. Soc. Lond. B.* **285**,

325 20172548.

326 9. Gal A, Kronauer D. 2022 The emergence of a collective sensory response threshold
327 in ant colonies. *Proc. Natl. Acad. Sci. USA.* **119**, e2123076119

328 10. Ohtsuki H, Tsuji K. 2009 Adaptive reproduction schedule as a cause of worker
329 policing in social Hymenoptera: a dynamic game analysis. *Am. Nat.* **173**, 747–758.

330 11. Hou C, Kaspari M, Vander Zanden HB, Gillooly JF. 2009 Energetic basis of
331 colonial living in social insects. *Proc. Natl. Acad. Sci. USA.* **107**, 3634–3638.

332 12. Buschinger A, Heinze J. 1992 Polymorphism of female reproductives in ants.
333 *Biology and evolution of social insects* (ed Billen J), pp.21-23, Leuven: Leuven
334 University Press.

335 13. Kikuchi T, Nakagawa T, Tsuji K. 2008 Changes in relative importance of multiple
336 social regulatory forces with colony size in the ant *Diacamma* sp. from Japan.
337 *Anim. Behav.* **76**, 2069–2077.

338 14. Kikuchi T, Suwabe M, Tsuji K. 2010 Durability of information concerning the
339 presence of a gamergate in *Diacamma* sp. from Japan. *Physiol. Entomol.* **35**, 93–97.

340 15. Tsuji K, Egashira K, Hölldobler B. 1999 Regulation of worker reproduction by
341 direct physical contact in the ant *Diacamma* sp. from Japan. *Anim. Behav.* **58**, 337–
342 343.

343 16. Adejumo S, Kikuchi T, Tsuji K, Maruyama-Onda K, Sugawara K, Hayashi Y. 2023
344 A real-time feedback system stabilises the regulation of worker reproduction under
345 various colony sizes. *PLoS Computational Biology*, doi:
346 10.1371/journal.pcbi.1010840.

347 17. Sugawara K, Yaegashi K, Hayashi Y, Kikuchi T, Tsuji K. 2009 Modeling of patrol
348 behavior of *Diacamma*'s gamergate. *Artif. Life. Robot.* **14**, 318–320.

349 18. Peeters C, Tsuji K. 1993 Reproductive conflict among ant workers in *Diacamma*
350 sp. from Japan: dominance and oviposition in the absence of the gamergate. *Insect.*
351 *Soc.* **40**, 119–136.

352 19. Fukumoto Y, Abe T, Taki A. 1989 A novel form of colony organization in the
353 'queenless' ant *Diacamma rugosum*. *Physiol. Ecol. Jpn.* **26**, 55–61.

354 20. Nakata K, Tsuji K. 1996 The effect of colony size on conflict over male-production
355 between gameragte and dominant workers in the ponerine ant *Diacamma* sp. *Ethol.*
356 *Ecol. Evol.* **8**, 147–156.

357 21. R Core Team. 2022 R: A Language and Environment for Statistical Computing
358 (version 4.2.2). R Foundation for Statistical Computing, Vienna, Austria.
359 <http://www.R-project.org/>

360 22. Pratt SC. 2005 Quorum sensing by encounter rates in the ant *Temnothorax*

361 *albipennis*. *Behav. Ecol.* **16**, 488–496.

362 23. Musco C, Su H-H, Lynch NA. 2017 Ant-inspired density estimation via random
363 walks. *Proc. Natl. Acad. Sci. USA.* **114**, 10534–10541.

364 24. Gordon DM. 2021 Movement, encounter rate, and collective behavior in ant
365 colonies. *Ann. Entomol. Soc. Am.* **114**, 541–546.

366 25. Tschinkel WR. 1999 Sociometry and sociogenesis of colonies of the Florida
367 harvester ant (Hymenoptera: Formicidae). *Ann. Entomol. Soc. Am.* **92**, 80–89.

368 26. Smith ML, Kingwell CJ, Boroczky K, Kessler A. 2020 Colony-level chemical
369 profiles do not provide reliable information about colony size in the honey bee.
370 *Ecol. Entomol.* **3**, 679–687.

371 27. Franks NR, Wilby A, Silverman B, Toft C. 1992 Self-organizing nest construction
372 in ants: Sophisticated building by blind bulldozing. *Anim. Behav.* **44**, 357–375.

373 28. Gordon DM, Paul RE, Thorpe K. 1993 What is the function of encounter patterns
374 in ant colonies? *Anim. Behav.* **45**, 1083–1100.

375 29. Holman L, Jorgensen CG, Nielsen J, d’Ettorre P. 2010 Identification of an ant
376 queen pheromone regulating worker sterility. *Proc. R. Soc. Lond. B.* **27**, 3793–
377 3800.

378 30. Van Oystaeyen A, Oliveria RC, Holman L, van Zweden JS, Romero C, Oi CA,
379 d’Ettorre P, Khalesi M, Billen J, Wackers F, Millar JG, Wenseleers T. 2014
380 Conserved class of queen pheromones stops social insect workers from
381 reproducing. *Science* **343**, 287–290.

382 31. Smith AA, Liebig J. 2017 The evolution of cuticular fertility signals in eusocial
383 insects. *Curr. Opin. Insect. Sci.* **22**, 79–84.

384 32. Holman L. 2018 Queen pheromones and reproductive division of labor: a meta-
385 analysis. *Behav. Ecol.* **29**, 1199–1209.

386 33. Keller L, Nonacs P. 1993 The role of queen pheromones in social insects: queen
387 control or queen signal? *Anim. Behav.* **45**, 787–794.

388 34. Olejarz J, Veller C, Nowak MA. 2017 The evolution of queen control over worker
389 reproduction in the social Hymenoptera. *Ecol. Evol.* **7**, 8427–8441.

390 35. Villalta I, Abril S, Cerdá X, Boulay R. 2018 Queen control or queen signal in ants:
391 What remains of the controversy 25 years after Keller and Nonacs’ seminal paper?
392 *J. Chem. Ecol.* **44**, SI 805–817.

393 36. Oi CA, Oliveira RC, van Zweden JS, Mateus S, Millar JG, Nascimento FS,
394 Wenseleers T. 2019 Do primitively eusocial wasps use queen pheromones to
395 regulate reproduction? A case study of the paper wasp *Polistes satan*. *Front. Ecol.*
396 *Evol.* **7**, 7199.

Average duration
of patrolling

fixed effects	estimate \pm SE	t value	P
Intercept	0.074 \pm 0.077	0.963	0.336
25% introduction	-0.226 \pm 0.095	-7.453	0.016
50% introduction	-0.049 \pm 0.095	-3.069	0.605

Average duration
of resting

fixed effects	estimate \pm SE	t value	P
Intercept	-0.041 \pm 0.114	-0.364	0.716
25% introduction	-0.052 \pm 0.071	-0.736	0.462
50% introduction	-0.341 \pm 0.071	-4.760	< 0.001

Total patotorl time

fixed effects	estimate \pm SE	t value	P
Intercept	0.077 \pm 0.116	0.668	0.504
25% introduction	-0.125 \pm 0.087	-1.439	0.150
50% introduction	0.242 \pm 0.087	2.780	0.005

Patrol frquency

fixed effects	estimate \pm SE	t value	P
Intercept	0.029 \pm 0.102	0.287	0.774
25% introduction	0.099 \pm 0.083	1.199	0.230
50% introduction	0.353 \pm 0.082	4.252	< 0.001

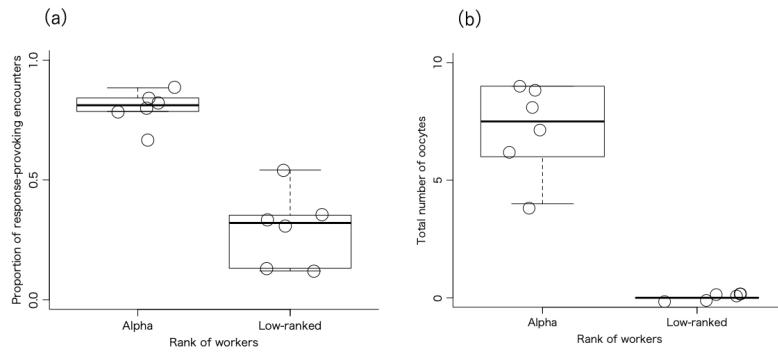


Figure 2. (a) Proportion of encounters that led to a queen response (either by antennation or by orientation) to alpha ($N = 6$) and low-rank workers ($N = 6$). (b) Number of oocytes in the ovaries of each worker. Circles represent individual colony values. For an explanation of the components of the box plots, see figure 1.

338x190mm (108 x 108 DPI)

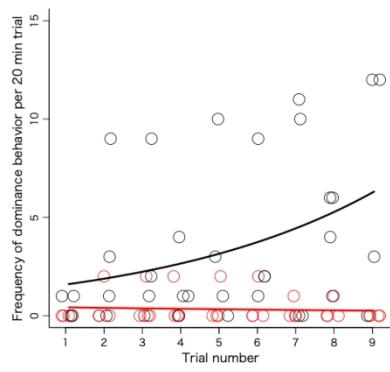


Figure 3. Frequency of dominance behaviour of workers under repeated exposure to queen's cuticular hydrocarbon extract (red circles, $N = 4$) or to n-hexane (black circles, $N = 4$).

338x190mm (108 x 108 DPI)