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Scientific computing

We introduce parasweep, a free and open-source utility for facilitating parallel parameter sweeps with
computational models. Instead of requiring parameters to be passed by command-line, which can be
error-prone and time-consuming, parasweep leverages the model’s existing configuration files using a
template system, requiring minimal code changes. parasweep supports a variety different sweep types,
generating parameter sets accordingly and dispatching a parallel job for each set, with support for local
execution as well as common high-performance computing (HPC) job schedulers. Post-processing is
facilitated by providing a mapping between the parameter sets and the simulations. We demonstrate
the usage of parasweep with an example.

© 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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1. Motivation and significance

Parameter sweeps, whereby computational models are run
repeatedly with different sets of parameters, are widely used in
a plethora of scientific fields [4,5]. They can be done for a variety
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of reasons, such as testing sensitivity of a model to its param-
eters [6], exploring the qualitative changes in the behavior of a
model as parameters are varied (for example, bifurcations) [7], or
to find values of parameters that optimize some criterion [5]. The
latter use is often employed for hyper-parameter optimization in
machine learning [8]. Parameter sweeps are a classic example of
an “embarrassingly parallel” problem, in that the set of simula-
tions can easily be run in parallel because each simulation does
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not have to exchange information with the other simulations.
However, most model software does not have built-in parameter
sweep functionality that allows for generating parameter sets and
running each instance in parallel.

We present parasweep, a free and open-source utility for
easily carrying out parallel parameter sweeps for any compu-
tational model, with support for individual multi-core comput-
ers, clusters, and grids. It is written in Python, an interpreted,
cross-platform language widely used for scientific applications;
however, parasweep can work with models in any language.
It makes use of configuration file templates in order to easily
dispatch simulations with different parameter sets. The process
of executing a parameter sweep and the full set of features of
parasweep is discussed in Section 2.

Previous papers have focused on how to efficiently allocate re-
sources for large parameter sweeps on various infrastructures [9-
11]. parasweep does not incorporate any special scheduling
strategies, but supports a number of cluster and grid schedulers
through the Distributed Resource Management Application API
(DRMAA), a standardized interface for communicating with job
schedulers. Several tools have also been developed specifically for
parameter sweep applications. One such tool, Nimrod [10], is only
available for grid systems. ILab [12,13] used a similar concept of
input file templates for parameter sweeping. Besides not being
publicly available, this tool was less general than parasweep in
the types of sweeps and the schedulers supported. The more
recent preconfig [14] is a tool for generating configuration files,
but does not handle dispatching or post-processing. Tools such as
GNU parallel [15] and Slurm or PBS job arrays, while not designed
solely for parameter sweeps, are sometimes used to facilitate
them by automating the process of running the simulations with
the different parameter values in parallel. However, these tools
require the parameters to be passed through command-line ar-
guments, which necessitates parsing within the model software.
Moreover, those relying on job arrays only work with their
respective schedulers. None of the tools in the latter group sup-
ports different types of parameter sweeps, keeps records of the
parameters used, or facilitates post-processing. Thus parasweep,
unlike previous tools, provides a complete cross-platform solu-
tion for generating, dispatching in parallel, and post-processing
parameter sweeps, relying on a simple template-based system.

Throughout the paper, we refer to the program on which we
run a parameter sweep as the model, a particular assignment of
values to each of the parameters as a parameter set, a single run
of the model with a particular parameter set as a simulation, and
the collection of all the simulations as the sweep.

2. Software description
2.1. Software architecture

parasweep is written in Python, a cross-platform, general-
purpose language widely used for scientific applications. Al-
though Python is an interpreted language and generally slower
than compiled languages such as C or C++, this is not likely to be a
bottleneck since the time for generating parameter sets and filling
out a template is insignificant compared to the simulation time
for the vast majority of applications. An object-oriented struc-
ture makes the sweep type, dispatching, template engine, and
generation of simulation identifiers entirely modular, allowing
parasweep to be easily extensible. All features are documented
and tested with a test suite.

The idea of parasweep is to leverage the existing configuration
files of the given model. These files have a single value for each
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parameter, but parasweep allows parameter values to be swept
over with little effort. This is done by providing parasweep with a
configuration file template, which is identical to the configuration
file, except with placeholders where the parameters to be swept
over will be inserted. The user specifies the parameter sweep,
which produces sets of parameters to be given to the model.
Using the template, parasweep generates a configuration file for
each parameter set, and assigns this set of parameter values a
unique identifier (the simulation ID). (This is explained in more
detail below.) The only modification that needs to be made to
the model is to receive the simulation ID as a command-line
argument, read the generated configuration file corresponding
to that ID, and write the output to a file also corresponding
to that ID. This approach thus requires no major changes to
the configuration system of the model, no parsing of parameter
values through the command-line (which can be time-consuming
and must be modified for every parameter added), and is easy to
set up in whatever language the model is written. The simulation
ID provides a way to associate the parameter set with the output
for every simulation in the sweep.

The basic sequence for running parameter sweeps with
parasweep is:

1. Generate the sets of parameter values.
2. For each set of parameter values:

(a) Assign a simulation ID.

(b) Using the configuration template, fill in the parame-
ter values into a configuration file with the simula-
tion ID in the name.

(c) Dispatch a simulation with the simulation ID as a
command-line argument.

(d) In the model program, open the configuration file
with the given simulation ID, read the parameters,
and run the simulation. Output to a file correspond-
ing to the same ID.

3. Return a mapping between the sets of parameter values
and the simulation IDs.

The sweep type, assignment of simulation IDs, template engine,
dispatching, and mapping type are all configurable and several
options are provided for each within parasweep. We discuss the
options for sweep types, dispatching, and mapping below. As
mentioned above, parasweep’s modular structure makes it easy
to extend.

2.2. Software functionalities

The implemented sweeps are Cartesian product sweeps, fil-
tered Cartesian product sweeps, set sweeps, and random sweeps.
In Cartesian product sweeps (sometimes known as grid sweeps),
all the possible combinations of the given parameter values are
run. Filtered Cartesian product sweeps allow the user to specify
in addition a filtering function of the parameters, and only those
parameter sets that meet the condition of the filter are run.
This can be used, for example, to run a parameter sweep of a
model that takes parameters x and y, but with the condition that
x > y. Set sweeps run only the parameter sets specified by the
user. Random sweeps sample each variable as an independent
probability distribution, with a wide variety of distributions from
which to select.

Simulations can be dispatched by spawning processes locally,
a useful option for multi-core computers. Alternatively, a large
number of job schedulers typically found on high-performance
computing (HPC) systems, both cluster and grid, are supported
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using the Distributed Resource Management Application API (DR-
MAA) [16] if it is installed on the system. This includes Slurm and
PBS/Torque among a number of others.

For post-processing, parasweep keeps track of the simulation
IDs assigned to each parameter set. For a Cartesian sweep, this
mapping can be naturally represented as an n-dimensional array,
where n is the number of parameters in the sweep. The map-
ping for Cartesian sweeps is thus a labeled array provided by
xarray, a powerful library for handling multidimensional labeled
data [1]. This array can be saved to disk as a netCDF file for future
reference. For the other types of sweeps, since a multidimen-
sional array is not a parsimonious representation, the mapping
is a dictionary (hash map) between the simulation IDs and the
parameter sets used. This can be saved to disk as a JSON file.

3. Illustrative example

We present the following example of the usage of parasweep.
More examples, showing all the major features of parasweep, are
available in the documentation.

3.1. The model

Our model in this case is a Fortran program lorenz, which
simulates the Lorenz '63 model of convection [17] and outputs
its largest Lyapunov exponent. The Lorenz model takes three
parameters, 3, o, and p, and it is known that it is chaotic (ex-
hibits sensitive dependence on initial conditions) for some values
of these parameters and not for others. We wish to know for
which parameter sets it is chaotic, and we can determine this by
checking whether the largest Lyapunov exponent of the system is
positive. The definition and algorithm' for computing the largest
Lyapunov exponent is not important for our purposes. The full
code for this example is provided in the parasweep code reposi-
tory, but in this section we discuss only the necessary changes to
be able to conduct parameter sweeps with it.

The model reads a configuration file params.nml which con-
tains the values of 8, o, and p; we now modify it to instead
use the file params_{sim_id}.nml, where the simulation ID
sim_id is provided as a command-line argument.

It suffices to change

namelist /params/ beta, sigma, rho

open(1l, file="params.nml")
read(1l, nml=params)

to

namelist /params/ beta, sigma, rho
character(30) sim_id

call get_command_argument(1l, sim_id)

open(1l, file="params_" // trim(sim_id) // ".nml")
read (1, nml=params)

We also modify the model to output to the filename
results_{sim_id}.txt instead of results.txt. We change

open(2, file="results.txt", action="write")
write(2, *) lyap

T The algorithm tracks two points close to each other on the attractor and
rescales the vector that connects them [18].
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to

open(2, file="results_" // trim(sim_id) // ".txt",
action="write") write(2, *) lyap

3.2. The configuration template

Suppose the options.txt looked like the following:

&params
beta = 2.67,
sigma = 10,
rho = 28
/

Here 8, o, and p are hard-coded. To make the parameters able
to be swept over, we simply need to indicate where they must go
and give them an identifier surrounded by curly braces:

&params

beta = {betal},
sigma = {sigmal},
rho = {rho}

/

This is the template, into which the parameter values will
be substituted for every simulation in the sweep. We save it as
template.txt. Note that this is the format of the configuration
file for this particular model, and a different template has to be
created for every model in order to run a parameter sweep on it.

3.3. The command

We can now run a parameter sweep. Suppose we want to try
3 evenly spaced values of 8 between 2 and 4, 10 values of o
between 2 and 20, and 10 values of p between 2 and 30. Then
the sweep can be run as follows:

import numpy
import xarray

from parasweep import run_sweep, CartesianSweep

sweep_params = {'beta': numpy.linspace(2, 4, 3),
'sigma': numpy.linspace(2, 20, 10),
'rho': numpy.linspace(2, 30, 10)}

sweep = CartesianSweep(sweep_params)

mapping = run_sweep(command='./lorenz {sim_id}',

configs=['params_{sim_id}.nml'],
templates=['template.txt'],

sweep=sweep)

This means the following:

e command: specifies the command to run a simulation with
the model. Note that {sim_id} indicates where the simula-
tion ID for each simulation in the sweep is to be substituted
in the command; sim_id is a special keyword that must be
used in both the command and the configs arguments.
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e configs: sets the name of the configuration file that will be
created for each simulation in the sweep, where {sim_id}
indicates where the simulation ID is to be substituted in the
filename.

e templates: specifies the location of the configuration file
template.

e sweep: specifies the sweep type. In this case, we select a
Cartesian product sweep and provide the parameter values
for each parameter we would like to sweep over. Since there
are 3 possible values of 8, 10 possible values of o, and 10
possible values of p, 300 simulations will be run.

e wait: indicates whether to wait for the completion of all
simulations before returning. Since the post-processing in
the following section requires the results of all the simu-
lations, we set this to True.

Descriptions of all the arguments to run_sweep is available in
the documentation.

3.4. Post-processing

We now want to extract the results of the simulations and
plot them. We use the mapping object returned after calling the
run_sweep function. It is an xarray DataArray object, a labeled
N-dimensional array. The coordinates are the sweep parameters
and the “data” is the simulation IDs. This makes it easy for
programs to retrieve the simulation output by the parameter
values rather than having to specify the simulation IDs manually.
The example below, executed after the code in Section 3.3, selects
the first B (in this case, 8 = 2) and plots the largest Lyapunov
exponent as a function of p and o.

def get_output(sim_id):
filename = f'results_{sim_id}.txt'
return numpy.loadtxt(filename)

lyap = xarray.apply_ufunc(get_output, mapping, vectorize=True)
lyap = lyap.rename('Largest Lyapunov exponent')

lyap.isel(beta=0) .plot ()

This will produce Fig. 1. The chaotic regime of the parameter
space can then be easily read off as those parameter sets which
result in a positive largest Lyapunov exponent (the red regions of
the plot). This is just one example of the types of post-processing
that can be done.

4. Impact

parasweep considerably simplifies the process of running par-
allel parameter sweeps, with applications to many scientific
fields. As of January 2021, parasweep has had over 8500 down-
loads from PyPi (the official Python package repository) alone,
not counting downloads from GitHub, which are not tracked. The
author is aware of parasweep being used for running parameter
sweeps of a coupled atmosphere-ocean model, a mathematical
model of epithelial cells, electronic circuit simulations, and an
ensemble forecasting method for dynamical systems [19].

5. Conclusions

We present parasweep, a Python utility for generating, dis-
patching, and post-processing of parameter sweeps. parasweep
allows for easy generation of parameter sweeps with existing
models by using a template-based system. We discuss its poten-
tial to be useful in a wide variety of scientific applications, and
present an illustrative example.
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Fig. 1. The largest Lyapunov exponent of the Lorenz model as a function of p
and o, with fixed g = 2.

Although designed for parameter sweeps, parasweep can be
useful for any application that requires generation of configu-
ration files, dispatching tasks in parallel, and post-processing.
The sweep type, assignment of simulation IDs, template engine,
dispatching, and mapping type are all modular within parasweep,
making it easily extensible beyond its current capabilities.
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