University of
< Reading

parasweep: a template-based utility for
generating, dispatching, and post-
processing of parameter sweeps

Article
Published Version
Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Open Access

Bach, E. ORCID: https://orcid.org/0000-0002-9725-0203
(2021) parasweep: a template-based utility for generating,
dispatching, and post-processing of parameter sweeps.
SoftwareX, 13. 100631. ISSN 2352-7110 doi:
10.1016/j.s0ftx.2020.100631 Available at
https://centaur.reading.ac.uk/116998/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1016/j.s0ftx.2020.100631

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur



http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

University of
< Reading
CentAUR

Central Archive at the University of Reading

Reading’s research outputs online



SoftwareX 13 (2021) 100631

journal homepage: www.elsevier.com/locate/softx

Contents lists available at ScienceDirect

SoftwareX

Original software publication

parasweep: A template-based utility for generating, dispatching, and R

post-processing of parameter sweeps
Eviatar Bach

Check for
updates

Department of Atmospheric and Oceanic Science and the Institute for Physical Science and Technology, University of Maryland, College

Park, MD, United States of America

ARTICLE INFO ABSTRACT

Article history:

Received 16 November 2019

Received in revised form 31 March 2020
Accepted 16 November 2020

Keywords:

Parameter sweeps
Parallel computing
Distributed computing
Parametric modeling
Python

Scientific computing

We introduce parasweep, a free and open-source utility for facilitating parallel parameter sweeps with
computational models. Instead of requiring parameters to be passed by command-line, which can be
error-prone and time-consuming, parasweep leverages the model’s existing configuration files using a
template system, requiring minimal code changes. parasweep supports a variety different sweep types,
generating parameter sets accordingly and dispatching a parallel job for each set, with support for local
execution as well as common high-performance computing (HPC) job schedulers. Post-processing is
facilitated by providing a mapping between the parameter sets and the simulations. We demonstrate
the usage of parasweep with an example.

© 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version

Permanent link to code/repository used for this code version

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies

Link to developer documentation/manual
Support email for questions

2021.01

https://github.com/ElsevierSoftwareX/SOFTX_2019_356

MIT License

git

Python

xarray [1] version 0.9+, NumPy [2], and SciPy [3]. To use the optional DRMAA
functionality, DRMAA Python, DRMAA, and a DRMAA-compatible job scheduler
and its DRMAA interface are required. To use the optional advanced template
language, Mako is required.

http://www.parasweep.io/en/latest/

eviatarbach@protonmail.com

Software metadata

Current software version
Permanent link to this version
Computing platforms/Operating systems

2021.01

https://github.com/eviatarbach/parasweep/releases/tag/2021.01

Operating systems with a Python interpreter (Linux, Microsoft Windows, and
macOS, for example)

1. Motivation and significance

Parameter sweeps, whereby computational models are run
repeatedly with different sets of parameters, are widely used in
a plethora of scientific fields [4,5]. They can be done for a variety

E-mail address: eviatarbach@protonmail.com.

https://doi.org/10.1016/j.s0ftx.2020.100631

of reasons, such as testing sensitivity of a model to its param-
eters [6], exploring the qualitative changes in the behavior of a
model as parameters are varied (for example, bifurcations) [7], or
to find values of parameters that optimize some criterion [5]. The
latter use is often employed for hyper-parameter optimization in
machine learning [8]. Parameter sweeps are a classic example of
an “embarrassingly parallel” problem, in that the set of simula-
tions can easily be run in parallel because each simulation does

2352-7110/© 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


https://doi.org/10.1016/j.softx.2020.100631
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2020.100631&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_356
http://www.parasweep.io/en/latest/
mailto:eviatarbach@protonmail.com
https://github.com/eviatarbach/parasweep/releases/tag/2021.01
mailto:eviatarbach@protonmail.com
https://doi.org/10.1016/j.softx.2020.100631
http://creativecommons.org/licenses/by-nc-nd/4.0/

Eviatar Bach

not have to exchange information with the other simulations.
However, most model software does not have built-in parameter
sweep functionality that allows for generating parameter sets and
running each instance in parallel.

We present parasweep, a free and open-source utility for
easily carrying out parallel parameter sweeps for any compu-
tational model, with support for individual multi-core comput-
ers, clusters, and grids. It is written in Python, an interpreted,
cross-platform language widely used for scientific applications;
however, parasweep can work with models in any language.
It makes use of configuration file templates in order to easily
dispatch simulations with different parameter sets. The process
of executing a parameter sweep and the full set of features of
parasweep is discussed in Section 2.

Previous papers have focused on how to efficiently allocate re-
sources for large parameter sweeps on various infrastructures [9-
11]. parasweep does not incorporate any special scheduling
strategies, but supports a number of cluster and grid schedulers
through the Distributed Resource Management Application API
(DRMAA), a standardized interface for communicating with job
schedulers. Several tools have also been developed specifically for
parameter sweep applications. One such tool, Nimrod [10], is only
available for grid systems. ILab [12,13] used a similar concept of
input file templates for parameter sweeping. Besides not being
publicly available, this tool was less general than parasweep in
the types of sweeps and the schedulers supported. The more
recent preconfig [14] is a tool for generating configuration files,
but does not handle dispatching or post-processing. Tools such as
GNU parallel [15] and Slurm or PBS job arrays, while not designed
solely for parameter sweeps, are sometimes used to facilitate
them by automating the process of running the simulations with
the different parameter values in parallel. However, these tools
require the parameters to be passed through command-line ar-
guments, which necessitates parsing within the model software.
Moreover, those relying on job arrays only work with their
respective schedulers. None of the tools in the latter group sup-
ports different types of parameter sweeps, keeps records of the
parameters used, or facilitates post-processing. Thus parasweep,
unlike previous tools, provides a complete cross-platform solu-
tion for generating, dispatching in parallel, and post-processing
parameter sweeps, relying on a simple template-based system.

Throughout the paper, we refer to the program on which we
run a parameter sweep as the model, a particular assignment of
values to each of the parameters as a parameter set, a single run
of the model with a particular parameter set as a simulation, and
the collection of all the simulations as the sweep.

2. Software description
2.1. Software architecture

parasweep is written in Python, a cross-platform, general-
purpose language widely used for scientific applications. Al-
though Python is an interpreted language and generally slower
than compiled languages such as C or C++, this is not likely to be a
bottleneck since the time for generating parameter sets and filling
out a template is insignificant compared to the simulation time
for the vast majority of applications. An object-oriented struc-
ture makes the sweep type, dispatching, template engine, and
generation of simulation identifiers entirely modular, allowing
parasweep to be easily extensible. All features are documented
and tested with a test suite.

The idea of parasweep is to leverage the existing configuration
files of the given model. These files have a single value for each

SoftwareX 13 (2021) 100631

parameter, but parasweep allows parameter values to be swept
over with little effort. This is done by providing parasweep with a
configuration file template, which is identical to the configuration
file, except with placeholders where the parameters to be swept
over will be inserted. The user specifies the parameter sweep,
which produces sets of parameters to be given to the model.
Using the template, parasweep generates a configuration file for
each parameter set, and assigns this set of parameter values a
unique identifier (the simulation ID). (This is explained in more
detail below.) The only modification that needs to be made to
the model is to receive the simulation ID as a command-line
argument, read the generated configuration file corresponding
to that ID, and write the output to a file also corresponding
to that ID. This approach thus requires no major changes to
the configuration system of the model, no parsing of parameter
values through the command-line (which can be time-consuming
and must be modified for every parameter added), and is easy to
set up in whatever language the model is written. The simulation
ID provides a way to associate the parameter set with the output
for every simulation in the sweep.

The basic sequence for running parameter sweeps with
parasweep is:

1. Generate the sets of parameter values.
2. For each set of parameter values:

(a) Assign a simulation ID.

(b) Using the configuration template, fill in the parame-
ter values into a configuration file with the simula-
tion ID in the name.

(c) Dispatch a simulation with the simulation ID as a
command-line argument.

(d) In the model program, open the configuration file
with the given simulation ID, read the parameters,
and run the simulation. Output to a file correspond-
ing to the same ID.

3. Return a mapping between the sets of parameter values
and the simulation IDs.

The sweep type, assignment of simulation IDs, template engine,
dispatching, and mapping type are all configurable and several
options are provided for each within parasweep. We discuss the
options for sweep types, dispatching, and mapping below. As
mentioned above, parasweep’s modular structure makes it easy
to extend.

2.2. Software functionalities

The implemented sweeps are Cartesian product sweeps, fil-
tered Cartesian product sweeps, set sweeps, and random sweeps.
In Cartesian product sweeps (sometimes known as grid sweeps),
all the possible combinations of the given parameter values are
run. Filtered Cartesian product sweeps allow the user to specify
in addition a filtering function of the parameters, and only those
parameter sets that meet the condition of the filter are run.
This can be used, for example, to run a parameter sweep of a
model that takes parameters x and y, but with the condition that
x > y. Set sweeps run only the parameter sets specified by the
user. Random sweeps sample each variable as an independent
probability distribution, with a wide variety of distributions from
which to select.

Simulations can be dispatched by spawning processes locally,
a useful option for multi-core computers. Alternatively, a large
number of job schedulers typically found on high-performance
computing (HPC) systems, both cluster and grid, are supported



Eviatar Bach

using the Distributed Resource Management Application API (DR-
MAA) [16] if it is installed on the system. This includes Slurm and
PBS/Torque among a number of others.

For post-processing, parasweep keeps track of the simulation
IDs assigned to each parameter set. For a Cartesian sweep, this
mapping can be naturally represented as an n-dimensional array,
where n is the number of parameters in the sweep. The map-
ping for Cartesian sweeps is thus a labeled array provided by
xarray, a powerful library for handling multidimensional labeled
data [1]. This array can be saved to disk as a netCDF file for future
reference. For the other types of sweeps, since a multidimen-
sional array is not a parsimonious representation, the mapping
is a dictionary (hash map) between the simulation IDs and the
parameter sets used. This can be saved to disk as a JSON file.

3. Illustrative example

We present the following example of the usage of parasweep.
More examples, showing all the major features of parasweep, are
available in the documentation.

3.1. The model

Our model in this case is a Fortran program lorenz, which
simulates the Lorenz '63 model of convection [17] and outputs
its largest Lyapunov exponent. The Lorenz model takes three
parameters, 3, o, and p, and it is known that it is chaotic (ex-
hibits sensitive dependence on initial conditions) for some values
of these parameters and not for others. We wish to know for
which parameter sets it is chaotic, and we can determine this by
checking whether the largest Lyapunov exponent of the system is
positive. The definition and algorithm' for computing the largest
Lyapunov exponent is not important for our purposes. The full
code for this example is provided in the parasweep code reposi-
tory, but in this section we discuss only the necessary changes to
be able to conduct parameter sweeps with it.

The model reads a configuration file params.nml which con-
tains the values of 8, o, and p; we now modify it to instead
use the file params_{sim_id}.nml, where the simulation ID
sim_id is provided as a command-line argument.

It suffices to change

namelist /params/ beta, sigma, rho

open(1l, file="params.nml")
read(1l, nml=params)

to

namelist /params/ beta, sigma, rho
character(30) sim_id

call get_command_argument(1l, sim_id)

open(1l, file="params_" // trim(sim_id) // ".nml")
read (1, nml=params)

We also modify the model to output to the filename
results_{sim_id}.txt instead of results.txt. We change

open(2, file="results.txt", action="write")
write(2, *) lyap

T The algorithm tracks two points close to each other on the attractor and
rescales the vector that connects them [18].

SoftwareX 13 (2021) 100631

to

open(2, file="results_" // trim(sim_id) // ".txt",
action="write") write(2, *) lyap

3.2. The configuration template

Suppose the options.txt looked like the following:

&params
beta = 2.67,
sigma = 10,
rho = 28
/

Here 8, o, and p are hard-coded. To make the parameters able
to be swept over, we simply need to indicate where they must go
and give them an identifier surrounded by curly braces:

&params

beta = {betal},
sigma = {sigmal},
rho = {rho}

/

This is the template, into which the parameter values will
be substituted for every simulation in the sweep. We save it as
template.txt. Note that this is the format of the configuration
file for this particular model, and a different template has to be
created for every model in order to run a parameter sweep on it.

3.3. The command

We can now run a parameter sweep. Suppose we want to try
3 evenly spaced values of 8 between 2 and 4, 10 values of o
between 2 and 20, and 10 values of p between 2 and 30. Then
the sweep can be run as follows:

import numpy
import xarray

from parasweep import run_sweep, CartesianSweep

sweep_params = {'beta': numpy.linspace(2, 4, 3),
'sigma': numpy.linspace(2, 20, 10),
'rho': numpy.linspace(2, 30, 10)}

sweep = CartesianSweep(sweep_params)

mapping = run_sweep(command='./lorenz {sim_id}',

configs=['params_{sim_id}.nml'],
templates=['template.txt'],

sweep=sweep)

This means the following:

e command: specifies the command to run a simulation with
the model. Note that {sim_id} indicates where the simula-
tion ID for each simulation in the sweep is to be substituted
in the command; sim_id is a special keyword that must be
used in both the command and the configs arguments.



Eviatar Bach

e configs: sets the name of the configuration file that will be
created for each simulation in the sweep, where {sim_id}
indicates where the simulation ID is to be substituted in the
filename.

e templates: specifies the location of the configuration file
template.

e sweep: specifies the sweep type. In this case, we select a
Cartesian product sweep and provide the parameter values
for each parameter we would like to sweep over. Since there
are 3 possible values of 8, 10 possible values of o, and 10
possible values of p, 300 simulations will be run.

e wait: indicates whether to wait for the completion of all
simulations before returning. Since the post-processing in
the following section requires the results of all the simu-
lations, we set this to True.

Descriptions of all the arguments to run_sweep is available in
the documentation.

3.4. Post-processing

We now want to extract the results of the simulations and
plot them. We use the mapping object returned after calling the
run_sweep function. It is an xarray DataArray object, a labeled
N-dimensional array. The coordinates are the sweep parameters
and the “data” is the simulation IDs. This makes it easy for
programs to retrieve the simulation output by the parameter
values rather than having to specify the simulation IDs manually.
The example below, executed after the code in Section 3.3, selects
the first B (in this case, 8 = 2) and plots the largest Lyapunov
exponent as a function of p and o.

def get_output(sim_id):
filename = f'results_{sim_id}.txt'
return numpy.loadtxt(filename)

lyap = xarray.apply_ufunc(get_output, mapping, vectorize=True)
lyap = lyap.rename('Largest Lyapunov exponent')

lyap.isel(beta=0) .plot ()

This will produce Fig. 1. The chaotic regime of the parameter
space can then be easily read off as those parameter sets which
result in a positive largest Lyapunov exponent (the red regions of
the plot). This is just one example of the types of post-processing
that can be done.

4. Impact

parasweep considerably simplifies the process of running par-
allel parameter sweeps, with applications to many scientific
fields. As of January 2021, parasweep has had over 8500 down-
loads from PyPi (the official Python package repository) alone,
not counting downloads from GitHub, which are not tracked. The
author is aware of parasweep being used for running parameter
sweeps of a coupled atmosphere-ocean model, a mathematical
model of epithelial cells, electronic circuit simulations, and an
ensemble forecasting method for dynamical systems [19].

5. Conclusions

We present parasweep, a Python utility for generating, dis-
patching, and post-processing of parameter sweeps. parasweep
allows for easy generation of parameter sweeps with existing
models by using a template-based system. We discuss its poten-
tial to be useful in a wide variety of scientific applications, and
present an illustrative example.

SoftwareX 13 (2021) 100631

beta = 2.0
0.75

0.50
c
[
C
o
025 £
[}
>
© o
£ F0.00 5
= o
© ©
>
-
- —0.25 4
[
=
©
-0.50

-0.75

5 10 15 20 25 30
rho

Fig. 1. The largest Lyapunov exponent of the Lorenz model as a function of p
and o, with fixed g = 2.

Although designed for parameter sweeps, parasweep can be
useful for any application that requires generation of configu-
ration files, dispatching tasks in parallel, and post-processing.
The sweep type, assignment of simulation IDs, template engine,
dispatching, and mapping type are all modular within parasweep,
making it easily extensible beyond its current capabilities.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgments

The author thanks Eugenia Kalnay for helpful comments. The
author acknowledges the University of Maryland supercomputing
resources (http://hpcc.umd.edu) made available for conducting

the research reported in this paper.

References

[1

Hoyer S, Hamman J. Xarray: N-D labeled arrays and datasets in Python. |
Open Res Software 2017;5(1). http://dx.doi.org/10.5334/jors.148.

van der Walt S, Colbert SC, Varoquaux G. The NumPy array: A structure
for efficient numerical computation. Comput Sci Eng 2011;13(2):22-30.
http://dx.doi.org/10.1109/MCSE.2011.37.

Jones E, Oliphant T, Peterson P, et al. SciPy: Open source scientific tools
for Python. 2001.

Wilkinson B. Grid computing: techniques and applications. CRC Press;
20009.

Sudholt W, Baldridge KK, Abramson D, Enticott C, Garic S, Kondric C, et
al. Application of grid computing to parameter sweeps and optimizations
in molecular modeling. Future Gener Comput Syst 2005;21(1):27-35. http:
//dx.doi.org/10.1016/j.future.2004.09.010.

Edwards NR, Marsh R. Uncertainties due to transport-parameter sensitivity
in an efficient 3-D ocean-climate model. Clim Dynam 2005;24(4):415-33.
http://dx.doi.org/10.1007/s00382-004-0508-8.

Marsh R, Yool A, Lenton TM, Gulamali MY, Edwards NR, Shepherd ]G, et
al. Bistability of the thermohaline circulation identified through compre-
hensive 2-parameter sweeps of an efficient climate model. Clim Dynam
2004;23(7):761-77. http://dx.doi.org/10.1007/s00382-004-0474-1.
Goodfellow 1, Bengio Y, Courville A. Deep learning. Cambridge,
Massachusetts: The MIT Press; 2016.

Casanova H, Obertelli G, Berman F, Wolski R. The AppLeS parameter
sweep template: User-level middleware for the grid. In: Proceedings of
the 2000 ACM/IEEE conference on supercomputing. Washington, DC, USA:
IEEE Computer Society; 2000.

[2

3

[4

5

[6

(7

8

[9


http://hpcc.umd.edu
http://dx.doi.org/10.5334/jors.148
http://dx.doi.org/10.1109/MCSE.2011.37
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb3
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb3
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb3
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb4
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb4
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb4
http://dx.doi.org/10.1016/j.future.2004.09.010
http://dx.doi.org/10.1016/j.future.2004.09.010
http://dx.doi.org/10.1016/j.future.2004.09.010
http://dx.doi.org/10.1007/s00382-004-0508-8
http://dx.doi.org/10.1007/s00382-004-0474-1
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb8
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb8
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb8
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb9
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb9
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb9
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb9
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb9
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb9
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb9

Eviatar Bach

[10]

[11]

[12]

[13]

Abramson D, Giddy ], Kotler L. High performance parametric modeling
with Nimrod/G: Killer application for the global grid?. In: Proceedings
14th international parallel and distributed processing symposium. 2000,
p. 520-8. http://dx.doi.org/10.1109/IPDPS.2000.846030.

Wilson LA, Fonner JM. Launcher: A shell-based framework for rapid devel-
opment of parallel parametric studies. In: Proceedings of the 2014 annual
conference on extreme science and engineering discovery environment.
New York, NY, USA: ACM; 2014, p. 40:1-8. http://dx.doi.org/10.1145/
2616498.2616534.

Yarrow M, McCann KM, Biswas R, Van der Wijngaart RF. An advanced user
interface approach for complex parameter study process specification on
the information power grid. In: Buyya R, Baker M, editors. Grid computing.
Lecture notes in computer science, Springer Berlin Heidelberg; 2000,
p. 146-57.

DeVivo A, Yarrow M, McCann KM. A comparison of parameter study
creation and job submission tools. NASA advanced supercomputing tech-
nical report NAS-01-002, NASA Ames Research Center: Computer Sciences
Corporation; 2001, p. 6.

[14]

[15]

[16]

[17]
[18]

[19]

SoftwareX 13 (2021) 100631

Nedelec F. preconfig: A versatile configuration file generator for varying
parameters. ] Open Res Software 2017;5(1):9. http://dx.doi.org/10.5334/
jors.156.

Tange O. GNU parallel: The command-line power tool. USENIX Mag
2011;36(1):42-7.

Troger P, Rajic H, Haas A, Domagalski P. Standardization of an API for
distributed resource management systems. In: Seventh IEEE international
symposium on cluster computing and the grid. 2007, p. 619-26. http:
//dx.doi.org/10.1109/CCGRID.2007.109.

Lorenz EN. Deterministic nonperiodic flow. ] Atmos Sci 1963;20(2):130-41.
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
Sprott JC. Chaos and time-series analysis. Oxford, UK: Oxford University
Press; 2003.

Bach E, Krishnamurthy V, Mote S, Sharma AS, Ghil M, Kalnay E. ?Ensemble
Oscillation Correction (EnOC): Leveraging oscillatory modes to improve
forecasts of chaotic systems, Under review.


http://dx.doi.org/10.1109/IPDPS.2000.846030
http://dx.doi.org/10.1145/2616498.2616534
http://dx.doi.org/10.1145/2616498.2616534
http://dx.doi.org/10.1145/2616498.2616534
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb12
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb12
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb12
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb12
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb12
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb12
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb12
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb12
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb12
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb13
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb13
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb13
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb13
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb13
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb13
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb13
http://dx.doi.org/10.5334/jors.156
http://dx.doi.org/10.5334/jors.156
http://dx.doi.org/10.5334/jors.156
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb15
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb15
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb15
http://dx.doi.org/10.1109/CCGRID.2007.109
http://dx.doi.org/10.1109/CCGRID.2007.109
http://dx.doi.org/10.1109/CCGRID.2007.109
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb18
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb18
http://refhub.elsevier.com/S2352-7110(20)30344-7/sb18

	parasweep: A template-based utility for generating, dispatching, and post-processing of parameter sweeps
	Motivation and significance
	Software description
	Software architecture
	Software functionalities

	Illustrative example
	The model
	The configuration template
	The command
	Post-processing

	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


