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ABSTRACT

Due to the physical coupling between atmosphere and ocean, information about the ocean helps to better predict the
future of the atmosphere, and in turn, information about the atmosphere helps to better predict the ocean. Here, we
investigate the spatial and temporal nature of this predictability: where, for how long, and at what frequencies does the
ocean significantly improve prediction of the atmosphere, and vice versa? We apply Granger causality, a statistical test
to measure whether a variable improves prediction of another, to local time series of sea surface temperature (SST) and
low-level atmospheric variables. We calculate the detailed spatial structure of the atmosphere-to-ocean and ocean-to-
atmosphere predictability. We find that the atmosphere improves prediction of the ocean most in the extratropics,
especially in regions of large SST gradients. This atmosphere-to-ocean predictability is weaker but longer-lived in the
tropics, where it can last for several months in some regions. On the other hand, the ocean improves prediction of the
atmosphere most significantly in the tropics, where this predictability lasts for months to over a year. However, we find a
robust signature of the ocean on the atmosphere almost everywhere in the extratropics, an influence that has been
difficult to demonstrate with model studies. We find that both the atmosphere-to-ocean and ocean-to-atmosphere
predictability are maximal at low frequencies, and both are larger in the summer hemisphere. The patterns we observe
generally agree with dynamical understanding and the results of the Kalnay dynamical rule, which diagnoses the
direction of forcing between the atmosphere and ocean by considering the local phase relationship between simul-
taneous sea surface temperature and vorticity anomaly signals. We discuss applications to coupled data assimilation.

1. Introduction
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The ocean and atmosphere are coupled by numerous
processes involving exchange of mass, heat, and mo-
mentum (Frankignoul 1985; Kushnir et al. 2002; Sobel
2007). This implies that knowing the state of the atmo-
sphere helps to better predict the future state of the
ocean, and vice versa. This fact has motivated the im-
provement of ocean observing systems, as well as cou-
pled atmosphere—ocean models and data assimilation
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(Sluka et al. 2016; Penny et al. 2019). In this study, we
employ a model-independent approach to investigate
the improvement in prediction of the atmosphere and
ocean by including information from the other compo-
nent. To later interpret the predictability results, we
briefly review the literature on the dynamic coupling
and predictability of the atmosphere and ocean.

Climate and its variability are strongly influenced by
the ocean, and in particular by SSTs, which also play a key
role as a source of potential predictability for climate
fluctuations. The large-scale structure of SST anomalies
depends not only on large-scale atmospheric circulation
and its ensuing heat fluxes but also on heat transport by
currents and vertical mixing (Ekman currents and
pumping). Ekman pumping is especially energetic at
subsynoptic scales (Frankignoul 1985; Deser et al. 2010).
The coupling between SST anomalies and the overlying
atmospheric circulation varies geographically. It is known
that in the extratropics, it is primarily the atmosphere that
drives SST rather than vice versa (Frankignoul 1985).
This atmosphere-forced variability is an important source
of low-frequency variability in the climate system
(Hasselmann 1976; Frankignoul and Hasselmann 1977).
In modeling studies, Luksch and von Storch (1992),
Luksch (1996) found that much of the low-frequency SST
variability in the North Pacific and the North Atlantic
could be explained by wind anomalies, mainly through
anomalous heat fluxes and Ekman transport. Several
studies have examined how predictable SST is from at-
mospheric forcing, including Scott (2003) with an ideal-
ized stochastic model. Model results have also shown that
tropical SSTs are highly predictable when atmospheric
fluxes are prescribed (Shukla and Kinter 2006).

On the other hand, SSTs substantially drive low-level
atmospheric flow in the tropics. Two major classes of
models exist for low-level tropical flow (Sobel 2007).
Matsuno—Webster—Gill models assert that the heating due
to deep convection drives the surface winds (Gill 1980).
Lindzen-Nigam models, on the other hand, assert that the
lower troposphere in the tropics is well mixed due to
convection below the trade inversion, such that low-level
atmospheric temperature gradients strongly resemble the
temperature gradients at the ocean surface (Lindzen and
Nigam 1987). Contemporary evidence suggests that zonal
surface winds are well explained by convective heating, but
that in regions of strong meridional SST gradients the
Lindzen—-Nigam model is successful (Sobel 2007).

SST gradients and their associated turbulent fluxes
also affect the pattern of moisture convergence, and thus
the pattern of diabatic heating anomalies, which can
have significant effects on large-scale circulation. This
effect is more pronounced in the tropics, because di-
vergent flow grows larger compared to rotational flow

JOURNAL OF CLIMATE

VOLUME 32

closer to the equator (Shukla and Kinter 2006). The fact
that baroclinic instability is less significant in the tropics
implies that longer-range predictability can be obtained
from boundary conditions such as SST (Charney and
Shukla 1981). Shukla (1998) showed that the tropical
atmospheric flow and rainfall is so strongly determined
by SST that it can be forecast as long as SST can be
forecast, unlike the extratropical atmosphere. In the
extratropics, the influence of SST anomalies on the at-
mosphere is more difficult to identify, but a large num-
ber of studies have shown that there are small, yet
discernible, effects (Kushnir et al. 2002). A reason for
the weaker extratropical response is that in the tropics
vertical advection dominates in the atmospheric re-
sponse to heating, while horizontal advection dominates
in the extratropics (Hoskins and Karoly 1981); thus it is
easier for heating to influence the free atmosphere in the
tropics (Thomson and Vallis 2018a).

Additional studies of the spatial structure of atmosphere—
ocean coupling have been done using a dynamical rule,
first proposed by Kalnay et al. (1986). This rule determines
whether the atmosphere or ocean is the dominant local
driver based on the phase relationship between SST and
850-hPa vorticity anomalies (see Fig. 1). Using this rule,
Peiia et al. (2003) showed that the ocean generally drives
the atmosphere in the tropics, and the atmosphere drives
the ocean in the extratropics. By testing the Kalnay rule on
different reanalyses and CMIP5 models, Ruiz-Barradas
et al. (2017) found that it was robust and that it can be used
for identifying model deficiencies. Other studies have used
the relationship between SST and rainfall to determine the
local driver (Wu and Kirtman 2007; Kumar et al. 2013a).
Kumar et al. (2013a) found that the SST drives the at-
mosphere most strongly in the tropical eastern Pacific.

There is substantial regional variation in predictability,
especially between the tropics and extratropics, but also
on smaller scales. Analyses that group different regions
together can thus miss the detailed spatial structure of
predictability (DelSole and Tippett 2007). In this paper,
we study the predictability of SST from the low-level at-
mosphere, and vice versa. We investigate the spatial var-
iation of predictability, maximum lead times, seasonality,
and frequency decomposition, and provide dynamical
interpretations. We believe this to be the first work to
provide a global picture of the predictability of the at-
mosphere from the ocean and the predictability of the
ocean from the atmosphere. We also use it to determine
where the atmosphere and ocean are driving and compare
it to the Kalnay dynamical rule. The dynamical rule is
based only on Ekman pumping and the direct, linear
(Kushnir et al. 2002) impact of ocean temperature
anomalies on the atmosphere. Here, we study the pre-
dictability of SST and the atmosphere using a more
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FIG. 1. Schematic of the Kalnay dynamical rule of the local phase
relationship between SST and vorticity. This rule identifies the
driver in the local coupling via the sign of vorticity and SST
anomalies. (top) If the atmosphere drives the ocean, a cyclonic
atmospheric anomaly will induce upwelling of a cold SST anomaly
in the oceanic mixed layer driven by Ekman suction, while an an-
ticyclonic circulation anomaly will induce downwelling of warm
SST anomalies in the oceanic mixed layer.! At the same time, the
anomalous cyclonic circulation is associated with cloudy skies that
reduce insolation of the surface and cool the ocean surface further.
Under an anticyclonic circulation, on the other hand, clear skies
enhance insolation and warming of the ocean surface. (bottom)
When the ocean drives the atmosphere, warm ocean anomalies will
drive upward motion in the lower atmosphere by creating a low
pressure zone and low-level cyclonic circulation. Cold ocean
anomalies will drive downward motion in the lower atmosphere by
creating a high pressure zone and low-level air divergence, and
hence an anticyclonic circulation. For more details on the dy-
namical rule see Kalnay et al. (1986), Mo and Kalnay (1991), Pefia
et al. (2003, 2004), and Ruiz-Barradas et al. (2017). For more de-
tails on the atmospheric response to SST anomalies in the tropics
see Sobel (2007), and for the extratropics see Kushnir et al. (2002).

general statistical method, which allows the identification
of coupling through other mechanisms as well. Further-
more, this work has possible applications to coupled data
assimilation, which we will discuss.

2. Methods and data
a. Granger causality

Granger causality is based on modeling two sets of
time series as stochastic autoregressive processes, and
quantifying the improvement of prediction skill beyond

! Although it is the curl of the surface wind stress that induces
Ekman suction and pumping, the anomalies of (surface) vorticity
and curl of the surface wind stress are usually in the same direction.
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what could be obtained from only the historical record
of the one signal by including the information from the
other. Granger causality has been applied to some cli-
mate phenomena, serving as a more robust alternative
to more commonly used lagged correlation analyses
(McGraw and Barnes 2018).

According to the Wiener—Granger definition of cau-
sality, given variables X and Y, “X causes Y’ if, in an
appropriate statistical sense, X assists in predicting the
future of Y beyond the degree to which Y already pre-
dicts its own future (Wiener 1956; Barnett and Seth
2014). Granger (1969) formalized this definition in terms
of linear autoregression.

A p-order vector autoregressive model, VAR(p), for
an n-dimensional stationary stochastic process U, sam-
pled at discrete time indices ¢, is defined as

P
U, = 21 AU, . +e, (1)

i=
where the n X n matrices A; are the optimal regression
coefficients, and ¢ is the independent and identically dis-
tributed (iid) residual noise vector for time 7. Assuming that

U is split into two jointly distributed multivariate processes
X, and Y,, the VAR(p) model (1) can be written as

U = X, :i A, Axy X, + Ses )
! Yt i=1 Ayx Ayy i Yt—i sy,t

@)

The Y component from the full regression model (2) is
P P

Y, = ; A X  + ; ALY,  te,, ?3)

Here, the state of Y depends on the past data of both
itself and X, provided A, # 0 and A,, # 0.

One can investigate the influence of X on Y by using a
reduced model where X is removed from the set of in-
formation and Y is solely predicted by its own past,

P

Y, = 21 ALY,  +E,. 4)

The terms A/yy’,- and g, are the reduced (optimal) re-

gression coefficients and reduced residual, respectively.

Recalling the Wiener—Granger definition, if the full re-

gression model (3) yields a significantly better prediction

than the reduced regression model (4), then the null

hypothesis (i.e., no Granger causality) is rejected and X
is identified as a Granger cause of Y.

One way to quantify the changes in prediction error of

Y between the full (3) and reduced (4) VAR models is the
log-likelihood ratio
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T = 10gi %)
X-Y ’
1%,

where 3, = cov(g,,) and ¥/ =cov(g,,) (Barnett and
Seth 2014). In the case that Y is one-dimensional, %,
and E;Y are the mean-square (prediction) errors of their
respective VAR models, a measure of forecast skill
(Barnett and Seth 2017). In the case that Y is multidi-
mensional, the determinants of the covariance matrices
are used, called the ‘“‘generalized variance” (Barrett
et al. 2010), and .7 can be expressed as a sum over
combinations of the univariate ‘“‘cause” and ‘“‘effect”
variables (Barrett et al. 2010). Note that.7 can be tested
for statistical significance using the F or y” tests (Barnett
and Seth 2014).

Similarly, one can investigate the other direction,. 7y x,
for a Granger causal effect of Y on X; unlike correlations,
Fy-x#Fx-y in general. Note that .77 is always non-
negative, since the inclusion of additional explanatory
variables in the full linear model can only decrease the
prediction error. A larger value of .7 indicates a larger
relative improvement of prediction skill of Y by including
X. A comparison of the magnitude of different.” values is
meaningful because of their asymptotic equivalence to
transfer entropy for a large class of processes (Barnett and
Seth 2014; Barnett et al. 2009).

In this paper, we will use Granger causality in order to
determine whether including information from the at-
mosphere or ocean significantly improves prediction of
the other component. We will refer to the Granger cau-
sality from the atmosphere to the ocean, .7aimos—ssT, @S
‘“atmosphere-to-ocean predictability” (and vice versa).
Although we cannot rigorously infer physical causality
from statistical predictability, the predictability in the
system does have physical origins, which we endeavor to
explain in section 3.

b. Lead times

To determine the dependence of Granger causality on
lead time, we consider shifted signals. By backshifting
the predictor (‘“‘cause’) signal by a time 7 > 0, the fitting
procedure for the full model does not “‘know’’ about the
T most recent data points of the predictor available at
any given time. This corresponds to fitting a modified
version of (3), where the indices of the predictor variable
are shifted:

p+T p
Yoo i:%TAyx“'X”" * Z{ A, Y te, (6)

If introducing this shift of 7 days diminishes the im-
provement in prediction due to a certain variable to the
point where it loses statistical significance, we say that
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this variable does not improve prediction at a lead time
of 7 + 1 days (the extra 1 day appears because we are
considering one-step-ahead prediction). If there is still
significance, we can infer that the predictor variable pro-
vides improved prediction of the predictand (“effect”)
7 + 1 days in advance.

We will present results for the maximum lead time
at which atmosphere-to-ocean and ocean-to-atmosphere
predictability is significant in each grid cell. This is de-
termined by evaluating whether the predictability is sig-
nificant at a sequence of lead times, and then taking the
maximum lead time for which all the previous lead times
are also significant. For example, if the predictability is
significant at a lead time of 15 days and at 30 days but not
at 45 days, we take 30 days as the maximum lead time.

c. Frequency decomposition

Granger causality can also be decomposed by fre-
quency w, yielding a function fx _, y(w). The latter can be
interpreted as the proportion of spectral power of Y at
frequency w that can be attributed to interaction with X
(Barrett and Barnett 2013). We can then consider the
Granger causality limited to the band of frequencies
between wg and wq:

T xoy (@)=

[ Mhes@do. @)

W~y )y,

1
When oy = 0 and w; is the Nyquist frequency (half of
the sampling rate of the signal), this is equal to the
regular Granger causality.7x _,y. Thus, the time-domain
Granger causality can be considered an average over all
frequencies of the frequency-domain Granger causality
(Barnett and Seth 2014).

d. Implementation

In this study, we consider the Granger causality be-
tween SST and a five-dimensional signal composed of
SST anomalies and five atmospheric variables that
characterize the low-level atmosphere (Atmos): surface
pressure anomalies and vorticity, divergence, air tem-
perature, and specific humidity anomalies at 850 hPa.
The five atmospheric time series are treated as a single
signal representing the atmospheric state; that is, we
look at whether the SST improves prediction of the
multidimensional atmospheric state, and whether the
multidimensional atmospheric state improves predic-
tion of SST. We choose 850hPa since it is in the free
atmosphere (above the boundary layer), more likely to
be useful for prediction (Thomson and Vallis 2018a).
We calculate the Granger causality measure in both
directions, (Atmos— SST) and (SST — Atmos), at every
grid cell of the global oceans. We also calculate the
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statistical significance at all grid cells. If the statistical
significance level at a grid cell is less than the chosen
threshold, we cannot reject the null hypothesis of no
improvement in prediction. In the subsequent figures,
regions where the null hypothesis cannot be rejected are
shown in white. When multiple significance tests are
done at different lead times, in order to account for the
problem of multiple testing we use the Benjamini-—
Hochberg procedure (Benjamini and Hochberg 1995).
We use the Multivariate Granger Causality (MVGC)
Toolbox for Matlab to carry out the Granger causality
analysis (Barnett and Seth 2014). We provide our results
in NetCDF format, as well as the open-source code for
our analysis and associated plots.”

We assign each grid cell a lag order p for computing
the Granger causality in that cell. We do this by fitting
the full VAR model with lag orders from p = 1 day to
p = 45 days, and select the order that minimizes the
Akaike information criterion (AIC) (Akaike 1974). The
most common p selected by AIC is 4 days, and tends to
be higher in the tropical oceans (typically between 4 and
8 days). We keep these same lag orders for each cell
when considering the dependence of predictability on
lead times in section 2b. AIC is commonly used in se-
lecting the order of AR processes (von Storch and
Zwiers 2002), achieving a compromise between under-
fitting the model by using too low an order and over-
fitting by using too high an order. The AIC can be
understood as a comparative measure of the model’s
prediction error, compensating for the fact that the
training error will be a biased estimate of the prediction
error (Efron and Hastie 2016). However, the pre-
dictability estimates are not very sensitive to the lag
order selection; we have tested selection of lag orders
with the Bayesian information criterion (which gener-
ally picks more parsimonious models than AIC) as well
as a fixed lag order p = 5. Both of these give very similar
results of Granger causality.

For the analysis by season, the same season in differ-
ent years is assumed to be an independent realization of
the same VAR process. Each VAR model is thus fit
once based on the set of time series of that season in the
years available.

e. Data

We perform the analysis at daily average temporal
resolutions over the oceans. The SST and atmospheric
fields are obtained from the ERA-Interim reanalysis
(Dee et al. 2011) for 1979-2017. Due to the spatial scale
dependence of predictability (see section 2f), we use the

2 See https:/github.com/eviatarbach/predictability.
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reduced N128 Gaussian grid. The Gaussian grid has cells
with almost equal areas, about 80km X 80km, as op-
posed to a regular latitude-longitude grid whose cell
areas vary with a factor of cos(latitude) due to the
spherical geometry. We use the full length of the dataset,
meaning that the calculated predictability represents the
overall behavior of the coupled atmosphere—ocean sys-
tem over the entire time period. Note that although the
reanalysis of the atmospheric fields is carried out in an
uncoupled mode in ERA-Interim, the coupled dynamics
of the real-world system are reflected in the time series
through the atmospheric data assimilation and the use of
observed SSTs (Kumar et al. 2013b; Ruiz-Barradas et al.
2017). Penny et al. (2019) have shown explicitly that data
assimilation can cause an uncoupled atmosphere to
synchronize to coupled dynamics.

Note that with smoothing methods (such as 4D-Var,
used in ERA-Interim) information flows from the future
to the past within the assimilation window (Carrassi
et al. 2018), so it is important to ensure that the assimi-
lation window does not overlap over multiple points in
the time series used for the Granger analysis. Here, we
use 24-h temporal resolution while ERA-Interim’s as-
similation window is 12h (starting at 0000 and 1200
UTC), and we average from 0000 UTC to the next 0000
UTC; thus, there is no overlap.

The anomaly time series are obtained by subtracting
the first two harmonics (annual and semiannual cycles)
from the daily time series as computed in each grid cell,
as in Peiia et al. (2004) and Ruiz-Barradas et al. (2017).
We use the anomaly time series since otherwise there
is a trivial component of predictability due to the regu-
larity of the seasonal and subseasonal cycles.

f- Methodological notes

We briefly address the use of Granger causality to
measure predictability of the atmosphere and ocean.
Linear autoregressive processes, especially AR(1) and
AR(2), are widely used to model climatic time series
(von Storch and Zwiers 2002). In particular, it has been
suggested that many features of the atmosphere—ocean
system at time scales from months to several years can
be understood by modeling atmospheric time series as
white noise and SST as an AR(1) process (Frankignoul
and Hasselmann 1977). Moreover, a fairly general class
of discrete-time stochastic processes, including non-
linear ones, can be approximated as VAR processes
with sufficiently high lag order, even if this is not the
most parsimonious model (Poskitt 2007; Barnett and
Seth 2014, 2017). Additionally, Granger causality is
theoretically invariant under a wide class of invertible
digital filters (Barnett and Seth 2011), an important
property for predictability measures (DelSole and
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Tippett 2007). The fact that this is a data-driven method,
independent of model representations of physical pro-
cesses except insofar as they are reflected in the re-
analysis, is an advantage over GCM-based predictability
studies (National Academies of Sciences, Engineering,
and Medicine 2016).

Predictability depends on spatial scale, as larger
structures tend to be more persistent than smaller ones
(DelSole and Tippett 2007). For example, longer waves in
the atmosphere are more predictable than shorter ones
(Shukla 1985; Dalcher and Kalnay 1987), and large-scale
SST anomalies are generally more persistent than those
at smaller scales (Frankignoul 1985). Because we calcu-
late predictability locally in each grid cell, at higher grid
resolutions the forecasts should lose skill sooner due to
the time taken for wave propagation and the advection of
structures. Recent studies have also shown the signifi-
cance of atmosphere—ocean interactions due to meso-
scale ocean eddies, in which forcing can sometimes have
the opposite direction than that observed on larger scales
(Bishop et al. 2017; Hewitt et al. 2017). We have repeated
our calculations with the same ERA-Interim reanalysis
but on the reduced N48 Gaussian grid, which has cells of
about 210km X 210km, or about 7 times coarser than
N128, which we use for the main analysis. The results for
predictability and maximum lead times are almost iden-
tical, except for isolated regions that have slightly longer
maximum lead times, as expected from the above dis-
cussion. Thus, even though there is spatial scale de-
pendence of predictability, it is not very strong at this
range of resolutions. Last, our method is inherently local,
as the Granger test is carried out individually in every grid
cell. It thus cannot account for interactions between re-
mote regions, such as those between the tropics and ex-
tratropics, as well as other teleconnections.

Globally averaged over the full time series of daily
anomalies, and with no lead time, 94 % of the variance in
the SST anomalies is explained by the full VAR model
for SST: 1 — [Zss1/Var(SST)] =~ 0.94, where Xggr is the
mean-square error of the full VAR model for SST. A
total of 93% of the generalized variance in the atmo-
spheric variables is explained by the full VAR model for
the atmosphere: 1 — [|2amos//Var(Atmos)] ~ 0.93,
where Var(Atmos) is the generalized variance of the
atmospheric variables.

For interpretations in terms of physical causality, cor-
relation analyses are more liable to capture spurious
correlations than methods that take into account the
autocorrelation of time series, such as the Granger
method (Dean and Dunsmuir 2016; Cryer and Chan 2008;
BozorgMagham et al. 2015); examples of the advantages
of Granger causality over lagged regressions in the cli-
mate context are given in McGraw and Barnes (2018).

JOURNAL OF CLIMATE

VOLUME 32
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Atmosphere-to-ocean predictability (Fatmos—ssT)
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Ocean-to-atmosphere predictability (Fsst- atmos)

(b)

FIG. 2. (a) Atmosphere-to-ocean and (b) ocean-to-atmosphere
predictability. White grid cells indicate that the null hypothesis of
no gain in predictability could not be rejected at the 95% signif-
icance level.

3. Results

a. Atmosphere-to-ocean and ocean-to-atmosphere
predictability

The atmosphere-to-ocean predictability .Zames—ssT 1S
shown in Fig. 2a. We observe that the atmosphere improves
prediction of the ocean almost everywhere. Furthermore,
there is a pronounced pattern of increase of atmosphere-to-
ocean predictability along regions of large SST gradients.
As per Frankignoul (1985), the wind-driven current con-
tribution to the rate of change of an SST anomaly 7" is

—(@ xn)-V(T+T)
pfh

where 7' is the anomalous wind stress, T and 7" are the
mean and anomalous SST, p is the density, f is the
Coriolis parameter, and £ is the mean mixed layer depth.
Thus, regions of higher climatological SST gradients
(see Fig. S1 in the online supplemental material) should

; ®)
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display more of an atmospheric influence, reflected in
the predictability. This is indeed seen in the regions
of high SST gradients associated with the warm Gulf
Stream, Kuroshio, Agulhas/Agulhas Return, and Brazil
Currents. Along the currents themselves, where the SST
is substantially driven by advection, .Zames—sst 1S rela-
tively small. This may be the reason for the small
atmosphere-to-ocean predictability in the Antarctic
Circumpolar Current region as well. Other features,
such as the fact that the highest atmosphere-to-ocean
predictability is seen south of the Kuroshio, even though
the region of highest SST gradients is to its north, may be
due to atmospheric forcing of SST anomalies through
anomalous heat fluxes. Frankignoul and Reynolds
(1983) found that the heat flux term is larger than the
Ekman transport term in the North Pacific, and the sum
of these two terms is larger south of the Kuroshio.
Bishop et al. (2017) found that SST variability is pri-
marily ocean-driven in regions of high climatological
SST gradients;®> however, they only included the sen-
sible heat flux contribution to the ocean mixed layer
temperature, while we consider also other terms that
can contribute to SST anomalies, such as Ekman
transport.

At very high latitudes (in the Arctic Circle, and some
parts of the Southern Ocean) both the atmosphere-
to-ocean and ocean-to-atmosphere predictability lose
significance. This may be due to the presence of sea
ice, which complicates atmosphere—ocean interactions
(Zhang et al. 2018). It may also be caused by the poor
predictability in the polar regions due to the scarcity of
in situ observations and inadequate understanding and
modeling of polar processes (Spengler et al. 2016), which
in turn is reflected in the reanalysis fields.

Figure 2b shows the ocean-to-atmosphere predict-
ability .Zsst— amos- Lhis type of predictability, arising
due to the boundary conditions of the atmosphere, is
often termed ‘‘boundary-forced predictability”” (Shukla
1985). The ocean improves prediction of the atmosphere
most in the tropical Pacific, but also over nearly all of the
extratropical ocean. The statistically significant results
over almost all of the extratropics is notable, as such an
effect is notoriously difficult to isolate using GCM
studies; in these studies, even when unrealistically
large SST anomalies are imposed, the signal-to-noise
ratio is often too low to make out a response (Thomson
and Vallis 2018a). Our results are consistent with the

3In that paper, the regions of highest gradients were identified
with the location of the currents; however, the currents correspond
to local maxima of SST, so along the currents themselves the
gradients vanish.
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FI1G. 3. Median zonal atmosphere-to-ocean (Zamos—sst) and
ocean-to-atmosphere (Zsst— amos) predictability.

results summarized in Kushnir et al. (2002), which con-
clude that SST anomalies do have a small effect on at-
mospheric circulation in the extratropics.

Figure 3 shows the zonal median Granger causality.
Comparing the magnitudes of .Zamos—sst 10 .7 ssT- Atmos»
we see that the atmosphere improves prediction of
the ocean more than vice versa, except in a small band
of latitudes around the equator. The large degree of
hemispheric symmetry suggests that the continents are
not critical in determining the large-scale patterns of
predictability, except for the location of SST gradients,
which appears to influence the atmosphere-to-ocean
predictability, as described above.

b. Dependence of predictability on lead times

Next, we investigate the dependence of atmosphere-
to-ocean and ocean-to-atmosphere predictability on
lead times (see section 2b). A time limit for pre-
dictability is inevitable in a chaotic system due to the
sensitivity on initial conditions. The extratropical at-
mosphere is particularly chaotic, while some regions of
the tropical atmosphere are so strongly dependent on
SST that they do not behave chaotically given the SST as
boundary condition (Shukla 1998).

Figure 4a shows the maximum lead time for which there
is significant atmosphere-to-ocean predictability. The
predictability is short-lived in most regions of the extra-
tropical oceans, generally lasting fewer than 16 days. In
the tropical oceans (between about 20°N and 20°S) there
are regions with longer-lived atmosphere-to-ocean pre-
dictability of a few months. Thus, although the magnitude
of the atmosphere-to-ocean predictability in the tropics is
relatively small compared to the extratropics (see Fig. 2a),
it is longer-lived. This is consistent with the finding that
tropical SSTs are highly predictable when atmospheric
fluxes are prescribed (Shukla and Kinter 2006).
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FIG. 4. Maximum time for which predictability is significant (at 90% significance, with the Benjamini-Hochberg
method to account for multiple comparisons). White indicates nonsignificance for one-step-ahead prediction.

Figure 4b shows the maximum lead time for ocean-to-
atmosphere predictability. There is long-lived predict-
ability in the tropical oceans, lasting several months almost
everywhere between about 30°N and 30°S. In the tropical
Pacific and the western tropical Atlantic there are regions
of predictability longer than a year. The longer predict-
ability in these regions is likely due to the longer decor-
relation times of SST anomalies in these regions (see
Fig. S2). This is consistent with Pefia et al. (2003), who
found a long-lived correlation between leading SST and
vorticity in the tropical Pacific. It is also consistent with
Shukla (1998), who found that the tropical atmosphere is
highly predictable from SST, especially over the Pacific.
Furthermore, due to the slower time scale of the ocean
compared to the atmosphere, SST signals have higher
autocorrelation (Frankignoul and Hasselmann 1977) and
we should expect SST-driven regions to have longer pre-
dictability from SST than atmosphere-driven regions from
atmospheric variables. There are, in addition, large parts of

the subtropics that exhibit ocean-to-atmosphere predict-
ability longer than two weeks, which could have implica-
tions for subseasonal-to-seasonal prediction (National
Academies of Sciences, Engineering, and Medicine 2016).

Figure 5 shows the global mean atmosphere-to-ocean
and ocean-to-atmosphere predictability at lead times up to
one month, demonstrating that both generally decay
monotonically with increasing lead time. Initially, the at-
mosphere provides more predictability to the ocean than
vice versa, but this predictability also decays faster. By five
days the ocean-to-atmosphere predictability becomes
dominant, largely owing to the long-term predictability in
the tropics.

c. Spectral analysis

Figure 6 shows the frequency decomposition of the
Granger causality (see section 2c). The atmosphere-to-
ocean predictability is almost white at periods longer
than a few months, and smaller for shorter periods. The

0.025 A —— Fs5T - Atmos 0301 fatmos—ssT
—— Fatmos —SST ) I fSST-»Atmos
0.020 A 0.25 1
0.20 A
0.015 A
0.15 A
0.010 A
0.10 -
0.005 A 0.05 A
0.00 1
0.000 T T T T T T T

1 6 1 16 21 26 31
Lead time (days)

FIG. 5. Global mean atmosphere-to-ocean and ocean-to-atmo-
sphere predictability as a function of lead time.

0 100 200 300 400 500 600
Period (days)

FIG. 6. Globally averaged spectral atmosphere-to-ocean
(f AlmosHSST) and ocean—to—atmosphere (fSSTﬂ Almos) prediCtabﬂjtY'
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ocean-to-atmosphere predictability is stronger at longer
periods. Thus, the most predictable frequencies of the at-
mosphere from the ocean are low frequencies, and the
most predictable frequencies of the ocean from the atmo-
sphere are also low frequencies. To quantify the “average”
frequency for the predictability, we define the mean fre-
quency weighted by the spectral Granger causality:

1
XY %fxw(‘")g‘ fxoy(@) )

The inverse of the weighted-mean frequency of the
atmosphere-to-ocean predictability averaged over all grid
cells is 8.6 days, while the inverse of the weighted-mean
frequency of ocean-to-atmosphere predictability is
13.6 days. Figure S3 shows the spatial variation of the
weighted-mean frequency of predictability. The weighted-
mean frequency of atmosphere-to-ocean predictability is
higher in the tropics (particularly in the tropical Pacific and
Atlantic) and in the Southern Ocean, and lowest in the
midlatitudes. On the other hand, the weighted-mean fre-
quency of ocean-to-atmosphere predictability is lowest in
the tropics and generally increases with latitude from the
equator, except in the tropical Atlantic.

The low-frequency maximum of the atmosphere-to-
ocean predictability is consistent with Hasselmann (1976)
and Frankignoul and Hasselmann (1977), who found
that a slow climate variable (such as SST) stochastically
driven by a fast weather variable (such as the atmospheric
variables) is most affected by the low-frequency part of
the weather spectrum. It is also consistent with Ruiz-
Barradas et al. (2017), who found that there is a greater
proportion of coupled anomalies of vorticity and SST
(indicating atmosphere-ocean interactions as per the
dynamical rule; see Fig. 1) at lower temporal resolution.
The near whiteness of the atmosphere-to-ocean forcing
low frequencies has also been noted in previous studies
(Frankignoul 1985). The strong ocean-to-atmosphere
predictability at low frequencies can be understood
from the ocean’s slower time scale and confirms the
ocean’s role as a source of predictability of low-frequency
variability of the atmosphere.

d. Seasonality

We see a strong seasonality in the predictability. Both
atmosphere-to-ocean and ocean-to-atmosphere predict-
ability are stronger in the summer hemisphere, although
the seasonality is more striking in atmosphere-to-
ocean predictability. Figure 7 shows the summer and
winter atmosphere-to-ocean and ocean-to-atmosphere
predictability.

SST is more predictable from its own past in the
winter than in the summer, with the reduced model
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FI1G. 7. Seasonality in the (a) atmosphere-to-ocean predictability
and (b) ocean-to-atmosphere predictability.

having a root mean-square error of 0.13 K in the winter
hemisphere and 0.17 K in the summer hemisphere with
no lead time. This is likely because the decay of SST
anomalies due to negative heat flux feedbacks takes
longer in the winter due to a deeper mixed layer
(Frankignoul 1985; Park et al. 2005). Thus, there is
more ‘“‘room to improve’’ by including the atmosphere
in predicting the SST in the summer, which explains
the higher atmosphere-to-ocean predictability. Simi-
larly, the atmosphere is also more predictable in the
winter (Shukla 1985), providing a possible explana-
tion of the seasonality of the ocean-to-atmosphere
predictability. We see that the ocean-to-atmosphere
predictability in the tropical Pacific does not vary sig-
nificantly by season, consistent with Thomson and
Vallis (2018b). There are features of high ocean-to-
atmosphere predictability around 20°S that are present
only in DJF.

Note that in the seasonal analysis some regions lose
statistical significance of ocean-to-atmosphere pre-
dictability; this is due to having fewer data (25% as many
data points) to establish significance. This reinforces the
weakness of the ocean-to-atmosphere forcing in these
regions.

e. Local driver

In each grid cell we compute the logarithm of the ratio
of the Granger causalities:
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7
10g<r~Atmos—>SST> . (10)

'%SSTHAtmos
A positive value indicates that the atmosphere is pre-
dominantly driving the ocean, and vice versa.

We compute (10) at daily resolution, and also for
frequencies lower than 1 month ™! [i.e., withwy =0, 0, =
1 month™! in (7)]. The statistical significance is not
considered since the frequency-limited Granger cau-
sality cannot be tested with the standard significance
tests. Figure 8a shows the results for daily resolution,
showing that the atmosphere is the local driver over
almost all of the extratropics, except in currents where
the SST is mostly advection driven, as described in sec-
tion 3a. The ocean is the main driver in the eastern
tropical Pacific, and in smaller regions in the Indian and
Atlantic Oceans. Figure 8b shows the results for fre-
quencies lower than a month, showing that the ocean-
driven regions greatly expand in the tropical oceans (and
also in the Southern Ocean, but this is uncertain due to
the weak significance here, as discussed in section 3a).

We now compare the results of the Granger analysis
to those of Ruiz-Barradas et al. (2017), which provides
an indication of whether the ocean or atmosphere is
driving using the Kalnay dynamical rule (Fig. 1). Since
the dynamical rule uses only the vorticity, to compare
the two methods we use only vorticity at 850hPa
with the Granger method, instead of the set of five at-
mospheric variables used in Fig. 8 and in the rest of the
paper. For the dynamical rule, we compute the log of the
ratio of the anomaly counts where atmospheric forcing
was dominant to that where oceanic forcing was domi-
nant [see Ruiz-Barradas et al. (2017) for details].

Figure 9 displays comparisons between the two results at
5-day resolution. We do not consider statistical significance
for the dynamical rule, since it is not clear how to de-
termine it. There is general agreement that atmosphere-to-
ocean predictability/forcing is dominant in most of the
extratropics, while ocean-to-atmosphere predictability/
forcing is dominant in the tropics between about 30°N and
30°S, and especially in the Pacific. The direction of the
predominant forcing agrees in 77% of the grid cells.

4. Summary and discussion

We employ Granger causality analysis to determine
the local atmosphere-to-ocean and ocean-to-atmosphere
predictability between time series of SST and low-level
atmospheric variables over the global oceans. We find
that the atmosphere improves prediction of the ocean
and the ocean improves prediction of the atmosphere
in both the tropics and extratropics. Our finding of a
statistically significant signature of the ocean on the
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FI1G. 8. Equation (7) at (a) daily resolution and (b) for frequen-
cies lower than a month. Statistical significance is not considered
for this figure.

atmosphere nearly everywhere in the extratropics
is notable because it is difficult to demonstrate
with GCMs. The atmosphere-to-ocean predictability is
stronger in regions of high SST gradients, and lasts a
few days in the extratropics, but up to several months in
regions of the tropical Pacific and Indian Oceans. The
ocean-to-atmosphere predictability is strongest in the
tropical Pacific, and is long-lived across the tropical
oceans, in many regions lasting longer than a year. Both
the atmosphere-to-ocean and ocean-to-atmosphere
predictability are larger at low frequencies, the latter
more so. Both the atmosphere-to-ocean and ocean-to-
atmosphere predictability are stronger in the summer
hemisphere. We find that at daily resolution the ocean
predominantly drives the atmosphere in the tropical
Pacific, and the atmosphere is the primary driver in the
extratropics. At frequencies lower than a month, the
ocean is the driver across most of the tropical oceans.
The patterns are broadly similar to the patterns of
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(a) Log of ratio of atmosphere-to-ocean to ocean-to-
atmosphere predictability using the Granger method, 5-day
resolution
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(b) Log of ratio of number of atmosphere-driving to ocean-
driving coupled anomalies using dynamical rule, 5-day reso-
lution
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FIG. 9. (a) The log(#vort—sst/-Fsst—vort) for the Granger method and (b) the log of the ratio of anomaly counts for the dynamical rule.

forcing determined by the Kalnay dynamical rule
(Ruiz-Barradas et al. 2017).

The results highlight the regions where predictability
can be obtained from the atmosphere and the ocean,
which could be useful for identifying the regions where
forecasts, especially at subseasonal-to-seasonal time scales,
could be improved (National Academies of Sciences,
Engineering, and Medicine 2016). This should also have
applications for coupled atmosphere—ocean data assimi-
lation, in particular for guiding variable localization.
Variable localization is the problem of determining when
to use the cross-covariance between variables in the at-
mosphere and ocean in the analysis. In some cases, in-
cluding this cross-covariance may degrade the analysis
due to spurious correlations. In other cases it should
improve the analysis by employing more information
about the relationship between the variables in the as-
similation process, as in strongly coupled data assimila-
tion (Sluka et al. 2016; Penny and Hamill 2017; Penny
etal. 2019). Itis thus important to localize variables based
on their physical relevance or on their background error
correlation (Yoshida and Kalnay 2018). Furthermore,
the benefit (or detriment) of using the cross-covariance
can be highly regionally dependent. Several studies have
shown that assimilating the atmosphere into the ocean
benefits the tropical oceans the most (Lu et al. 2015;
Sluka 2018; Storto et al. 2018) and that assimilating the
ocean into the atmosphere benefits the extratropics most
(Sluka 2018). This may be due to the fact that in the
weakly coupled case information is flowing from one
component to the other through the dynamics (primarily
from the atmosphere to the ocean in the extratropics, and
vice versa), so that the additional information gained
through the strongly coupled assimilation benefits pri-
marily the other direction of information flow (Sluka
2018). However, other studies have shown the opposite

or mixed results (Liu et al. 2013; Sluka et al. 2016),
highlighting the need for more research.

Besides the applications to data assimilation, several
other extensions of the current work could be under-
taken. To more closely examine the processes that pro-
duce the atmosphere-to-ocean predictability, different
terms of the SST anomaly equation as in Frankignoul
(1985) could be regressed onto the atmosphere-to-ocean
predictability. To isolate the effect of El Nifio/La
Nifla, years in the different phases of ENSO could
be analyzed separately, and similarly for other climate
oscillations. Interactions between other parts of the
Earth system could also be explored using this method,
such as stratosphere—troposphere and land—atmosphere
processes—for example, the relationship between sur-
face temperature on land and rainfall (Trenberth and
Shea 2005). A similar predictability analysis could be
undertaken for the design of observing systems, as a
model-independent and inexpensive alternative to ob-
servation system simulation experiments (OSSEs).
Convergent cross mapping, which is designed for sys-
tems where separability of “cause” and ‘‘effect” vari-
ables is difficult (Sugihara et al. 2012; BozorgMagham
et al. 2015), could also be used.
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