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Key Points:

e The performance of several existing solar wind propagation models at the orbit
of Jupiter is measured for multiple spacecraft epochs.

« A flexible system is developed to generate an ensemble of multiple propagation
models in order to best leverage each input model’s strengths.

« Over the epoch tested, the multi-model ensemble outperforms individual input mod-
els by 7% — 110% in forecasting the solar wind flow speed.
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Abstract

How the solar wind influences the magnetospheres of the outer planets is a fundamen-
tally important question, but is difficult to answer due to the lack of consistent upstream
monitoring of the interplanetary medium (IPM) and the large-scale dynamics internal

to the magnetosphere. This makes it very challenging to link external drivers with the
magnetospheric dynamics measured by a single orbiting spacecraft. To compensate for

the relative lack of in-situ data, solar wind propagation models are often used to esti-
mate the ambient IPM conditions at the outer planets for comparison to remote obser-
vations or in-situ measurements. This introduces another complication: the propaga-
tion of near-Earth measurements of the solar wind introduces uncertainties in both tim-
ing and magnitude which are themselves difficult to assess. Here, we present the Multi-
Model Ensemble System for the outer Heliosphere (MMESH) to begin to address these
issues, along with the resultant multi-model ensemble (MME) of the solar wind condi-
tions near Jupiter as a means to assess the system. MMESH accepts as input any num-
ber of solar wind models together with contemporaneous in-situ spacecraft data. From
these, the system characterizes typical uncertainties in model timing, quantifies how these
uncertainties vary under different conditions and time periods, attempts to correct for
systematic biases in the input model timing, and composes a multi-model ensemble (MME)
with uncertainties from the results. For the case of the Jupiter-MME here, three solar
wind propagation models were compared to in-situ measurements from near-Jupiter space-
craft spanning diverse spacecraft-Sun-Earth alignments and phases of the solar cycle, amount-
ing to more than 23,000 hours over four decades. The resulting MME produces the most-
probable near-Jupiter IPM conditions for times within the tested epoch. Finally, we will
discuss how the work presented here can be extended towards more robust character-
ization of solar wind parameters and time-dependent propagation of solar wind condi-
tions at other planetary magnetospheres.

1 Background

The solar wind is a continuous stream of plasma emanating from the Sun in all di-
rectionswhich evolves as it travels through the heliosphere, interacting with every plan-
etary magnetosphere in the solar system along the way. Near the Earth, the typical val-
ues of the solar wind flow speed U,q4,6(324—584 km/s), proton density ng(2.2—12.7 cm™3),
dynamic (ram) pressure pgyn(0.86—3.92 nPa), and interplanetary magnetic field (IMF)
magnitude B,qg,6(3.1—9.7) nT have all been statistically characterized by the expan-
sive OMNI dataset (King & Papitashvili, 2005; Papitashvili & King, 2020), with values
here spanning the start of OMNI2 to the start of 2023 (1963/11/27 — 2023/01/01) and
characterizing 80% (10" — 90*" percentiles) of all measurements. The OMNI dataset
is a composite of many near-Earth observations encompassing some 19 total spacecraft
over its full time domain, including most recently Wind (Lepping et al., 1995; Kasper,
2002; King & Papitashvili, 2005) and ACE (D. J. McComas et al., 1998; Smith et al.,
1998; King & Papitashvili, 2005).

While fewer in-situ heliospheric data are available in the outer solar system, the
average solar wind conditions have still been constrained by the various spacecraft to visit
the outer planets, whether during planetary flyby or approach. At Jupiter, the most-visited
of the outer planets, the solar wind has been characterized during the flybys of Pioneers
10 and 11, Voyagers 1 and 2, Ulysses, Cassini, and New Horizons (e.g. Slavin et al., 1985;
J. D. Richardson et al., 1995; Ebert et al., 2014; Hanlon et al., 2004; Ebert et al., 2010).
Compared to flybys, orbiter missions, including Galileo and Juno at Jupiter, generally
provide fewer in-situ data: these missions have close-in orbits to best study the planet
itself, thus setting them deep inside the planet’s magnetosphere and shielding them from
the solar wind. As a result, they only sample the wind during the planetary approach
phase prior to orbital insertion and occasional excursions into the solar wind near apoap-
sis. The polar solar orbiter Ulysses gives the best single-spacecraft characterization of
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the average near-Jupiter solar wind owing to its 18-year lifetime: 80% of Ulysses mea-
surements span 380—520 km/s in solar wind flow speed umqg, 0.05—0.55 cm ™3 in plasma
density n, 0.02 —0.20 nPa in dynamic pressure pgyn,, and 0.22 —1.5nT in IMF magni-

tude Bryr (Ebert et al., 2014). Despite a large number of measurements, these reported
distributions are only approximate due to the polar orbit of the Ulysses spacecraft; Ulysses
samples the solar wind in the ecliptic plane periodically, and these numbers were drawn
from two non-consecutive spans at different phases of the solar cycle— one with a slower,
cooler, and denser average solar wind than the other (Ebert et al., 2014).

The highly dynamic nature of the solar wind is not captured by these average val-
ues. Singular events, such as the eruption of coronal mass ejections (CMEs), and their
propagation through the heliosphere as interplanetary coronal mass ejections (ICMEs),
are a major source of short timescale variation in the measured solar wind (Palmerio et
al., 2021, and references therein). In terms of the quantities already discussed, interplan-
etary coronal mass ejections (ICMEs) show expansion, which manifests in measurements
as an increase in um,qg at the leading edge and a decrease at the trailing edge, large drops
in n, and an enhancement in By r magnitude but decrease in By p variance (Zurbuchen
& Richardson, 2006; M. J. Owens, 2018). Beyond these events, the ambient solar wind
is dynamic due to the presence of two different streaming plasma populations originat-
ing in different regions of the solar corona: a comparatively fast, hot, and tenuous stream
and a comparatively slow, cool, and dense stream (Crooker et al., 1999). These streams
are essentially bimodal during solar minimum, with fast streams originating at high he-
liolatitude and slow streams originating nearer the solar equator (D. J. McComas et al.,
1998, 2000); during solar maximum, these streams are markedly less ordered (D. J. Mc-
Comas et al., 2003). From solar cycle to solar cycle, the bulk parameters of the fast stream
in particular can change dramatically (D. McComas et al., 2008; Ebert et al., 2009; D. J. Mc-
Comas et al., 2013; Ebert et al., 2014). As different regions of the sun rotate underneath,
corotating interacting regions (CIRs) are formed where a fast flow catches up to a slow
flow; this process is common throughout the heliosphere (I. G. Richardson, 2018) and

drives significant interactions with planetary magnetospheres, including at the Earth (Crooker

et al., 1999; Gosling & Pizzo, 1999; Tsurutani et al., 2006; Borovsky & Denton, 2010)
and at Jupiter (D. J. McComas et al., 2003; Hanlon et al., 2004; Ebert et al., 2014).

In-situ-data-driven statistical studies of the time variable solar wind at specific lo-
cations within the outer heliosphere (e.g. at Jupiter) are hampered by the limited tem-
poral coverage of visiting spacecraft; there is no continuous composite model like OMNI
for any outer planet. Such statistical studies often instead have solar wind data supple-
mented by solar wind propagation models, which attempt to reproduce the time-varying
solar wind at one location from measurements at another location at which the solar wind
is known. Many of these models have been employed in the outer heliosphere, includ-
ing, but not limited to, the model of Tao et al. (2005) (“Tao+”, hereafter), ENLIL (Odstrcil,
2003), mSWiM (Zieger & Hansen, 2008), HUXt (Barnard & Owens, 2022; M. Owens et
al., 2020), and MSWIM2D (Keebler et al., 2022). These models all differ in their dimen-
sionality, the simplifications made to the magnetohydrodynamics (MHD) equations un-
derlying them, and the source of the input solar wind conditions used to initialize the
model. By virtue of modelling solar wind conditions for times and locations where no
in-situ spacecraft measurements are available, the outputs of these models cannot be di-
rectly compared to data in typical usage scenarios. Generally, solar wind propagation
models are instead compared to in-situ spacecraft measurements at times and locations
where they are available in order to approximate the model errors— generally, shock ar-
rival time (or “timing”) errors— prior to being used to supplement the data (Tao et al.,
2005; Zieger & Hansen, 2008; Keebler et al., 2022). Measured timing uncertainties can
be as high as £4 days and often trends with other physical parameters of the system,
such as with Target-Sun-Observer (TSO) angle (Tao et al., 2005; Zieger & Hansen, 2008;
Keebler et al., 2022) or with phase of the solar cycle (Zieger & Hansen, 2008).
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123 These resulting time-varying timing uncertainties introduce a challenge in inter-

124 preting the results of these models and performing statistical analyses, particularly be-

125 cause the characterizations of timing uncertainty in each propagation model are often

126 not measured by the same methods, and thus are not directly comparable to one another.
127 Timing uncertainties can be measured by manually identifying shocks and shock-like struc-
128 tures in both modeled and measured solar wind time series and comparing their occur-

129 rence times (e.g. Tao et al., 2005) or by offsetting one time series relative to the other

130 and maximizing the resulting prediction efficiency, or Pearson correlation coefficient (e.g.
131 Zieger & Hansen, 2008). Measuring uncertainties with the latter method implies that

132 a single timing uncertainty characterizes the model over the full time period inspected.

133 An alternative to this is to employ dynamic time warping to explicitly allow for time-

134 varying timing uncertainties (e.g. Samara et al., 2022). If these model uncertainties

135 were quantified in a cross-model-consistent manner, the time-varying uncertainties could
136 be accounted for and partially mitigated. For instance, as propagation model output un-
137 certainties are known to trend with physical quantities, each individual model’s outputs

138 could be de-trended with sufficient characterization of the uncertainties. Alternatively,

139 a multi-model ensemble (MME) could be composed by cross-comparison of the models

140 in order to mitigate uncertainties. An MME is, in essence, a weighted average of differ-

141 ent model outputs (Murray, 2018); the weighting scheme can be adjusted based on met-
142 rics of the models performance (or “skill”) during intervals where in-situ data are avail-

143 able (Murray, 2018; Elvidge et al., 2023). Ideally, fully-independent models would be used
144 in an MME, so that they would be expected to have independent random errors which

145 would thus tend to cancel, rather than add (Hagedorn et al., 2005; Riley et al., 2018).

146 If all input models capture the same physics, outperform one another in different param-
147 eter spaces, and have independent errors, a MME of these models should describe the

148 underlying physical system more accurately than any individual input.

149 Here we present the Multi-Model Ensemble System for the outer Heliosphere (MMESH):
150 a framework to quantify and mitigate timing uncertainties in solar wind propagation mod-
151 els and produce a single prediction by combining all of these approaches. This system

152 allows for the automatic quantification of model timing uncertainties, trending of tim-

153 ing uncertainties with physically relevant parameters, de-trending of the original model

154 timing, and combination of distinct models into a single MME. MMESH is designed to

155 flexibly compare any combination of input solar wind propagation models and contem-

156 poraneous in-situ data in order to create an MME. To demonstrate this concretely, here
157 we construct an MME of the solar wind conditions at Jupiter during the Juno era.

158 Thus prior to discussing MMESH itself, we first discuss the in-situ spacecraft datasets
159 to be used for comparison (Section 2.1) and give some introduction to the specific so-

160 lar wind propagation models considered here (Section 2.2). We then introduce the MMESH
161 framework in Section 3, beginning with a description of the statistical techniques and

162 tools used to compare models, including the MME, to contemporaneous data and mea-

163 sure their performance (Section 3.1. In Section 3.2 we discuss the methods available to

164 characterize the model timing uncertainties relative to the in-situ time series: constant

165 time offsetting (Section 3.2.1) and dynamic time warping (DTW, Section 3.2.2). We then
166 proceed to describe how trends in the empirical timing uncertainties are characterized

167 and estimated for epochs without contemporaneous in-situ data (Section 3.3) before dis-
168 cussing the composition (Section 3.4) and performance (Section 3.4.1) of the multi-epoch

169 MME composed of the de-trended models. Having described MMESH, we then present
170 the MME of the solar wind conditions at Jupiter for the first 7 years of the Juno mis-
n sion, spanning 2016/7/4 — 2023/7/4, for use in future statistical analyses (Section 4),
172 prior to concluding.



Table 1. In-situ measurements of solar wind parameters near Jupiter’s orbit.

Mission | Coverage Range Heliolatitude | Measurements
[yyyy/mm/dd] [AU] [deg] [hr]

Ulysses | 1991/12/08 — 1992/02/02 | 4.90 — 5.41 | —6.10 — +6.10 1,344
1997/08/14 — 1998/04/16 | 4.90 — 5.41 | —6.10 — +6.10 5,878
2003/10/24 — 2004/06/22 | 4.90 — 5.41 | —6.10 — +6.10 5,801

Juno 2016/05/15 — 2016/06/29 | 5.27 —5.44 | —5.76 — —5.23 1,080

173 2 Inputs

174 2.1 Solar Wind Data

175 The present aim for the MME framework discussed here is to find the most accu-

176 rate combination of solar wind models in the near-Jupiter region of the outer heliosphere.
177 As such, limiting the data included for comparison to the input and ensemble models

178 to that which is representative of conditions at Jupiter is essential. Including too large

179 a range of radial or helio-latitudinal in-situ measurements risks including different regimes
180 of solar wind properties which the models are not, and should not be, expected to re-

181 produce. This is particularly an issue in choosing a useful range of heliolatitude— too nar-
182 row a range and the amount of data available shrinks, but too large a range and the faster
183 solar wind flows at higher heliolatitudes are included erroneously. This issue primarily

184 relates to data acquired by the Ulysses spacecraft, which is a solar polar orbiter. Pre-

185 vious Ulysses measurements show that, during solar minimum when the latitudinal struc-
186 ture of the solar wind is well-ordered, the equatorial slow solar wind zone may extend

187 to £20°—+30° about the solar equator (D. J. McComas et al., 2003). Ebert et al. (2014)
188 further restricts this range in surveying near-Jupiter solar wind conditions measured with
180 Ulysses and selects for data £10° about the solar equator

19 Here, the near-Jupiter outer heliosphere is defined as tne region of the heliosphere

101 spanning 4.9 AU < r < 5.5 AU for spherical distance from the Sun r and —6.1° <
102 6 < 6.1° for heliolatitude 6. Jupiter’s perihelion and aphelion (5.04 and 5.37 AU, re-
103 spectively) fit entirely within this range, which includes padding of ~ 0.15 AU, or ap-

104 proximately 50%, on either end to increase the number of observations included. The

105 heliolatitude range selected represents the maximal range of Jupiter’s location in heli-

196 olatitude without any padding in order to avoid unrealistic sampling of the high latitude
197 fast solar wind flows.

198 Several spacecraft have transited this region, including Pioneers 10 and 11, Voy-

199 agers 1 and 2, Ulysses, Galileo, Cassini, New Horizons and Juno. Here, just data from

200 just the Ulysses and Juno missions are used; the remaining spacecraft are not used in

201 this analysis either due to being discontinuous at temporal resolutions of 1 hour (Galileo,Cassini,
202 and New Horizons) or due to a lack of coverage in all or some of the models to be dis-

203 cussed in Section 2.2 (Pioneers 10 and 11 and Voyagers 1 and 2). A brief overview of

204 the used spacecraft trajectories and data is included in Table 1 and the durations of the

205 visits of these spacecraft to the near-Jupiter outer heliosphere is illustrated in Figure 1

206 relative to the solar cycle, as measured by F10.7 radio flux derived from observations at

207 the Dominion Radio Astrophysical Observatory (DRAQO) and adjusted to account for

208 variations in the Earth’s distance from the Sun. While the majority of these spacecraft

200 passed near Jupiter, the Ulysses spacecraft, as a polar orbiter, transits through the near-
210 Jovian outer heliosphere away from the planet itself after its initial Jupiter flyby. The

m relevant orbital components for all the spacecraft in Table 1 are shown in Figure 2, which
212 highlights the rarity of near-Jupiter outer heliosphere measurements made far from Jupiter
213 itself and the comparative evenness of coverage in Target-Sun-Earth angle.
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Figure 1. The (a) spans during which each spacecraft used in this analysis was measuring the
near-Jupiter solar wind compared with the (b) solar F10.7 cm radio flux, a proxy for the phase of
the solar cycle, over the period 1990-2023. Spacecraft coverage spans the ascending and descend-
ing phases of the solar cycle, but largely excludes solar minimum and solar maximum. These
spacecraft have been selected for the frequency of their plasma and magnetic field measurements,

which are generally hourly or better.

All of the spacecraft referenced in Table 1 have both magnetometers and plasma
instruments, and thus provide sampling of the interplanetary magnetic field (IMF) By,
the solar wind ion number density n, and the magnitude of the solar wind flow speed
Umag, Which is itself dominated by the radial component of the outward flow of the so-
lar wind. As the proton density n, is measured in all cases and protons are the domi-
nant ion component of the solar wind (Ebert et al., 2014, e.g.), the total density of the
solar wind is approximately equal to the proton density (n ~ n,) and is assumed to
be exactly equal in calculating the solar wind dynamic pressure pgyn, = mpnufnag, where
m,, is the proton mass. Detailed descriptions of these instruments, including their her-
itages, limitations, and data products, are discussed in their respective instrument pa-
pers (Balogh et al., 1992; Bame et al., 1992; Connerney et al., 2017; D. J. McComas et
al., 2017). Pre-processed data was obtained from the Goddard Space Flight Center (GSFC)
Space Physics Data Facility (SPDF) COHOWeb archives, with the exception of Juno
plasma data which was instead obtained from Wilson et al. (2018).

2.2 Solar Wind Models

While several solar wind propagation models for the outer heliosphere are avail-
able, three were chosen for detailed study and inclusion in the MME: the Tao+ (Tao et
al., 2005), ENLIL (Odstrcil, 2003), and HUXt (M. Owens et al., 2020; Barnard & Owens,
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Figure 2. Histograms showing the spatial coverage of all the spacecraft used here, including
the (a) Target-Sun (TS) distance, (b) Target-Sun-Jupiter (TSJ) longitude angle, (c) TSJ latitude
angle, (d) Target-Earth (TE) distance, (e) Target-Sun-Earth (TSE) longitude angle, and (f) TSE
latitude angle. The angles are measured in the Sun’s inertial reference frame, such that longi-
tude measures distance along the solar equator and latitude measures perpendicular distances
along the sphere of the Sun. The majority of spacecraft measurements occur very near Jupiter,
with minimal separation in TSJ longitude or latitude angles. The unique coverage of the polar-
orbiting Ulysses spacecraft stands out, and provides even coverage across TSJ, and to a lesser
extent TSE, latitudes. Taking all spacecraft into consideration, the spatial coverage relative to

the Earth’s location is fairly even.

2022) models. These models in particular are ideal for inclusion in a MME due to their
differing input parameters, dimensionality, and approaches to propagating the solar wind
beyond the Earth, as is summarized in Table 2 and will be discussed further here.

Fundamentally, most models propagate solar wind conditions outwards by solving
the system of equations which constitute MHD, these being: the continuity equation, the
momentum equation, the equation of state, and several physical laws necessary to close
the system (Faraday’s, Ohm’s, and Ampere’s laws). Propagation models differ primar-
ily in their treatment of the momentum equation. For a single-species plasma composed
of protons, this is:

d(mpni . . - GM.p. B
M‘kp(ﬁ'v)“:_ Vp +jx B -2y vVl (1)
ot —— o r2 <~
pressure  Lorentz H/_/ collision
gravity

where my, is the proton mass, n is the plasma number density, @ is the plasma flow ve-
locity, p is the total plasma pressure, j is the plasma current density, B is the ambient
magnetic field, G is the gravitational constant, Mg is a solar mass, r is the radial dis-
tance in a heliocentric spherical frame with the 7 direction pointing radially outward,
and v is a collisional frequency. In Equation 1, the right-hand-side terms are labelled cor-


vy902033
Highlight
mass


240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

Table 2. Descriptive parameters of solar wind propagation models as used in this study.

Model  Type Inner Boundary® MHD Terms® Input® Output®

[AU] (Pa Lv Gv C) type (SOU]."CG) (nvumagvpdynv BIMF)
ENLIL 3D MHD ~0.1 (P, L, G) remote (WSA) (7, Umag, Pdyn, Brmr)
HUXt 1D HD ~1 - in-situ (OMNI)  (¥maqg)
Tao+ 1D MHD ~1 (P, L, G) in-situ (OMNI) (R, Umags Pdyn, Brar)

@ Inner boundaries and input types are reported for the versions of the models used here. The
models are not necessarily limited to these inner boundaries and input types only, as described
in the text.

b The (P)ressure, (L)orentz, (G)ravitational, and (C)ollisional terms of the governing MHD
momentum equation (Eqn. 1).

¢ Components of the solar wind: plasma density (n), plasma flow speed (umqq), plasma
dyamic pressure (payn), or IMF (Brar).

responding to the physical forces they represent, these being the (gradient) pressure, Lorentz,
gravitational, and collisional forces, respectively. As summarized in Table 2, solar wind
propagation models differ in which terms of the momentum equation they assume are
insignificant in the solar wind. Most propagation models, including all those discussed

here, do not consider collisional forces within the solar wind plasma. Both ENLIL and

Tao+ keep all the remaining terms shown in Equation 1 (Tao et al., 2005; Odstrcil, 2003).
HUXt assumes that all forces are negligible compared to the magnitude of the left-hand-

side momentum terms in Equation 1, and thus does not consider any force terms (M. Owens
et al., 2020).

The variables propagated by each model are directly related to the force terms that
they consider in Equation 1, and are listed in Table 2 for the three models discussed here.
The dimensionality of each model changes which components of the vector terms in Equa-
tion 1 can be propagated; for cross-model consistency, we therefore compare solar wind
parameter magnitudes rather than vector components, where each magnitude is calcu-
lated as the root-sum-square of available components. The solar wind flow speed ua4
is thus available from all three propagation models considered here. This is the only pa-
rameter available from HUX¢t; none of the solar wind density n, temperature 7', or IMF
strength Bjj/r are propagated as these variables are eliminated from the version of the
momentum equation used. These parameters— density n, temperature T, and IMF strength
Biyr of the propagated solar wind— are available from both ENLIL and Tao+.

Each of these models has an inner boundary at which the conditions of the solar
wind are input and continuously updated over the course of the model run. The loca-
tion of this inner boundary and the sources from which the input solar wind conditions
are drawn vary between models and are summarized in Table 2. ENLIL takes as input
a 3-dimensional description of the solar corona and near-sun environment, here supplied
by the Wang-Sheeley-Arge (WAS) model (Arge & Pizzo, 2000) which itself takes remote
observations of the sun as input. For this study, solar magnetograms from the Kitt Peak
Observatory are used, with gaps in observations filled in by those from the Mount Wil-
son Observatory. This sort of boundary is unique amongst the models considered here:
HUX¢t and Tao+ instead take in-situ spacecraft measurements, or proxies thereof, as in-
puts. In this study, both models take OMNI measurements at ~1 AU as inputs, although
they both have the functionality to be run at any other location in the solar system, pro-
vided there are sufficient in-situ solar wind data available (e.g. Sanchez-Diaz et al., 2016;
Barnard & Owens, 2022). Accuracy in these input solar wind conditions are the single
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largest factor in determining the propagated solar wind accuracy (Riley et al., 2018), and
as such including a variety of inputs is beneficial to the final MME.

The input solar wind conditions used here are assumed to be sampled from the back-
ground solar wind. This means that coronal mass ejections (CMEs) sampled at the model
inner boundary are not propagated using the standard cone model (Zhao et al., 2002;

Xie et al., 2004) but are instead interpreted as fast solar wind flows; rather than prop-
agate CMEs as radially-expanding regions of constant angular size, they are treated by
the same fluid description used by each model to describe the rest of the solar wind flow.
This introduces an intrinsic error into the background solar wind parameters in all of
the models. Future studies could mitigate this additional source of error by subtracting
CMEs from the input data prior to propagation, then simultaneously propagating the
quiescent solar wind and the CME using the cone model, but such an involved change
to the modeling is ultimately beyond the current scope of this project.

These three models each run at different spatial and temporal resolutions which
are directly related to their dimensionality and domains within the heliosphere, and which
directly impact the small-scale shape of their output propagated solar wind estimates.
ENLIL covers three spatial dimensions, spanning 0.1—10 AU radially at 0.02 AU res-
olution, 360° in longitude at 2° resolution, and +60° in latitude at 2° resolution, with
a temporal resolution of 1 hour. HUXt is physically a one-dimensional radial model, but
in practice here it is run in its two-dimensional form in order to more easily sample the
model at the spacecraft position. Functionally, the two-dimensional form of HUXt is a
series of independent one-dimensional models spanning 1—6 AU radially with a reso-
lution of 0.007 AU, 360° in longitude at ~2.8° resolution, and an intrinsic temporal res-
olution of 17.4 minutes in the version of the model used here. Tao+ spatial dimension,
ranging from 1—8 AU at a resolution of 1/300 AU, with an intrinsic temporal resolu-
tion of 10 s. The outputs of both HUXt and Tao+ have been downsampled to a reso-
lution of 1 hour to better match the spacecraft data and other models for use in this study.

Figure 3 shows the model-propagated solar wind flow speed t,q4 during the Juno
cruise towards Jupiter compared with contemporaneous JADE in-situ measurements from
Wilson et al. (2018) for each of the models detailed here. While these models are all able
to propagate solar wind conditions during the other spacecraft epochs shown in Table
1, and both ENLIL and Tao+ are able to propagate parameters other than t,,q4, here
we have chosen to show just a single-spacecraft and single-parameter comparison for il-
lustrative purposes. The agreement between each model and the data in general form
is clear, but significant deviations in the arrival time of large-scale shocks and smaller-
scale increases in flow speed between the models and data are evident. These temporal
lags, which represent single measurements of the full distribution of model timing un-
certainties, appear to be of the same sign for Tao+ and HUXt but are substantially dif-
ferent for ENLIL. Characterizing these differences in arrival time is critically important
to understanding the accuracy of these models in propagating the solar wind, and will
be further explored here.

3 Description of MMESH

The clear disagreements between the propagation models and in-situ data in both
the modeled arrival time and magnitude, as illustrated in Figure 3, makes the need for
careful consideration of uncertainties and new statistical approaches in solar wind prop-
agation modeling evident. MMESH has been designed as a framework to tackle these
issues. After briefly introducing the statistical metrics used in quantifying model per-
formance (Section 3.1), the MMESH framework will be described. This system allows
any number of solar wind propagation models to be compared to simultaneous in-situ
data; from this comparison, timing uncertainties are characterized either as a constant
value over the full duration of each model (i.e. as a bias, as explored in Section 3.2.1)
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Figure 3. Measured solar wind flow speed tmag from Juno JADE moments (Wilson et al.,
2018) with the same from the (a) ENLIL, (b) HUXt, and (c) Tao+ models, as labeled, with (d)
a Taylor diagram illustrating the performance of each model relative to the data, as discussed
in Section 3.1 The flow speed is referenced as the root-mean-square of all velocity components,
where components are available. Temporal lags in the timing of the modeled solar wind flow

speed Umag are apparent in all models, and are made evident by the Taylor diagram.

or as a dynamic value (Section 3.2.2). This framework fundamentally supports a multi-
epoch analysis, in which the same timing uncertainties are quantified over multiple space-
craft epochs, each with one set of in-situ data and multiple models, in order to better
characterize the model timing uncertainties, including any timing biases (Section 3.3).
From this characterization, the solar wind propagation models can then have any iden-
tified biases in timing removed before being assemble into an MME (Section 3.4).

3.1 Performance Metrics

The correlation coefficientr, as a robust measure of model goodness-of-fit, is a good
metric to be maximized in optimizing the alignment of solar wind model to data, as will
be discussed in Section 3.2.1. For simple methods of aligning the model and data, the
correlation coefficient r is sufficient alone as a metric. More complex methods of align-

ment, such as discussed in Section 3.2.2, are better optimized while considering some penalty

against increasing complexity, in order to maintain physical realism and interpretabil-
ity. In this case, a statistic determined by both the correlation coefficient and some mea-
sure of the width of the distribution of timing uncertainties is preferred for optimization.
Such a statistic is less likely to reach its maximum value when a large range of timin-
ing uncertainties are predicted, thus preventing unphysical alignment of a model with,
for instance, a shock-like structure from a previous Carrington rotation. Within MMESH,
we define o7 to be the half-width containing 34% of the distribution of timing offsets,
such that it would reduce to one standard deviation in a normal distribution. The op-
timization metric for these cases is then defined as r+ (1 —op/AT), where AT repre-
sents half the largest allowed magnitude of a timing uncertainty, such that the statis-

tic varies between 0 —2, with the former corresponding to the worst performance and
the latter corresponding to the best.

Neither the correlation coefficient r nor the statistic r/or as single numbers fully
characterize how closely a model matches data on different scales. Combining the cor-
relation coefficient r with the overall standard deviation of both the time series and the
model residuals forms the basis for a more complete multi-scale comparison of model and
data summarized by the Taylor diagram (Taylor, 2001), illustrated in Figure 6. This type
of plot relates the standard deviation of the modeled time series, the correlation coef-
ficient of the modeled time series relative to the measured time series, and the centered
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root-mean-square difference between the modeled and measured time series to one an-
other by analogy with the law of cosines, allowing all three quantities to be displayed
as a single point on the diagram. This is particularly useful for comparing the perfor-
mance of different models to one another on the same axes. All-around better models—
those with high correlation coefficients, small residuals when compared with the data,
and similar intrinsic variances— appear graphically closer to the point representing the
data time series along the x-axis.

3.2 Characterization of Propagation Model Performance

The arrival time of shocks is of particular interest in statistical studies both at Jupiter
and elsewhere in the outer heliosphere; the arrival of a shock is expected to compress the
magnetosphere, directly impacting plasma and magentic flux transport and auroral ac-
tivity (Southwood & Kivelson, 2001; Cowley et al., 2003; Vogt et al., 2019; Nichols et
al., 2019; Kita et al., 2019). While individual models typically quote some uncertainty
in modeled arrival times (Tao et al., 2005; Zieger & Hansen, 2008; M. Owens et al., 2020),
these uncertainties are often characterized relative to different standards and using dif-
ferent methods, making cross-model comparisons difficult.

To allow direct comparisons of outer heliosphere solar wind models, independent
quantification of modeled arrival time uncertainty can be performed with MMESH, as
is common for near-Earth solar wind modeling (Gressl et al., 2014; Riley et al., 2018).
The goal in quantifying the arrival time uncertainty is twofold: understanding the er-
ror intrinsic to each model is necessary to give context to its forecasts, and character-
izing these errors can give clues as to which aspects of the solar wind system an individ-
ual model may not be capturing sufficiently. For both of these reasons, here we explore
two methods available in MMESH of quantifying the arrival time uncertainties in the
previously discussed models. These comparisons and uncertainty characterization are
performed identically for every combination of spacecraft and model previously discussed;
to keep illustrations of these informative and uncluttered, the Juno in-situ solar wind
flow speed u;qy measurements will again be used alone.

3.2.1 Constant Time Offsetting

A simple metric to characterize the performance of a propagation model is to cal-
culate the prediction efficiency, or correlation coefficient, between the propagated time
series and an in-situ measurement of the same quantity (Zieger & Hansen, 2008; Kee-
bler et al., 2022, e.g.). This offers a straightforward method to determine systematic, spacecraft-
epoch-wide propagation model errors in the arrival time of shocks and other solar wind
structures. The time span covered by the model can be shifted off that of the measured
data by an offset time At both forward (i.e. later) and backward (i.e. earlier) in time,
then the correlation coefficient between this offset model propagated time series and the
in-situ measurements can be calculated and compared to the original.

Performing this 2n+ 1 times for temporal offsets spanning the values [-n, —n+
At,...,n — At,n] for a realistic maximum offset time of n ~ 4 days (Tao et al., 2005;
Zieger & Hansen, 2008) yields the correlation coefficient as a function of constant tem-
poral offsets, r(At), with positive temporal offsets indicating that the un-offset model
leads the data and negative offsets indicating that the un-offset model lags the data. Max-
imizing the correlation coefficient r(At) thus gives a constant temporal offset which best
aligns the propagation model with the measured time series; equivalently, this offset rep-
resents a systematic error in the arrival time of the original model. There are two draw-
backs to this method of accounting for temporal offsets in the model: first, it can only
account for a constant temporal offset At, rather than a distribution of uncertainties or
a time-varying offset; second, this metric conflates the temporal alignment of the time
series with the magnitudes of their predicted values, and thus does not necessarily char-
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acterize the model lag/lead time alone. Nonetheless, constant temporal offsetting is fre-
quently used as a method to simply and quickly estimate model uncertainties, and as
such remains available in MMESH.

3.2.2 Dynamic Time Warping

The performance of a solar wind propagation model can be decomposed into two
components: the performance in modeling the arrival time and the performance in mod-
eling the magnitude of the solar wind time series. These two are essentially represented
by the abcissa and ordinate pairs of a propagated time series, respectively. Theoretically,
differences between the propagation model and data time series should be decomposable
by first optimizing the alignment of the model relative to the data to characterize the
performance in arrival time, then secondly measuring the residuals between the aligned
model and data time series to characterize the performance in magnitude. Aligning the
model to the data in this way is often done by manually identifying patterns of shocks
in both time series and calculating the difference in their observation times (e.g. Tao et
al., 2005).

In practice, characterizing model performance in arrival time alone is not so straight-
forward, as the identification of patterns of shocks and shock-like structures in the so-
lar wind data is often subjective. To more objectively define such structures, here we have
“binarized” both the in-situ and propagation model time series data to identify extrema
in both. The binarization process developed here involves taking the standard score (z-
score) of the time derivative of a boxcar-smoothed time series and threshholding the re-
sult at a given significance level. This process has the end effect of identifying and iso-
lating steep gradients in the time series of a given parameter, as would be expected in
a shock, and is described in more detail in Appendix A and illustrated in Al. The bi-
narization process was applied to the solar wind flow speed .4 time series in both the
model-propagated and in-situ data sets. The boxcar-smoothing-widths used for each time
series and in each epoch were found dynamically and are listed in Table Al. Here a con-
stant significance level of 30, measured across the full duration of each time series, has
then been used for binarization.

Identifying shocks and shock-like structures in the now-binarized time series is triv-
ial; aligning the patterns of structures found in the model and data time series is not,
and remains subjective if performed manually. For reproducability, an here we employ
an objective, automated method of aligning the two binarized time series based on the
class of algorithms collectively known as dynamic time warping (DTW). Qualitatively,
the aim of DTW is to locally shift, stretch, and compress one time series to better re-
semble another. DTW has only recently been applied to space weather modeling prob-
lems; the calculated net distance has been suggested as a useful, multi-scale metric for
measuring the performance of solar wind models by Samara et al. (2022), and the re-
sulting alignments have been used to create more accurate boundary conditions for so-
lar wind propagation models by M. J. Owens and Nichols (2021). Within MMESH, the
dtw-python package for the Python programming language developed by Giorgino (2009)
is employed to warp the modeled time series to more closely resemble the in-situ data.
The recommended usage, and that which will be followed in this discussion, is to use DTW
to align the binarized model solar wind flow speed to the binarized measured flow speed,
as the flow speed generally shows the clearest signatures of shocks and shock-like struc-
tures after binarization. Both the binarization and DTW methods within MMESH can,
however, be applied independently to any of the propagated solar wind quantities (i.e.

N, Umags Pdyn, OF Brar) at the discretion of the user.

An overview of the two-series implementation of DT'W is illustrated in Figure 4 and
described here. This approach involves calculating the Euclidean distance between ev-
ery permutation of the elements of each series, resulting in a two-dimensional matrix;
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Figure 4. A composite diagram offering an overview of the dynamic time warping (DTW)
process used to characterize model arrival time uncertainties. The (a) binarized model and data
are shown as points representing the calculated extrema, with lines connecting model and data
features which were identified to map to one another in the DTW process. The (b) original
model and data time series are plotted to show the original alignment and may be compared to
the (c) alignment of the warped model to the unchanged data, which demonstrates significantly
reduced arrival time uncertainties. Dashed lines (b-¢) connect the extrema identified in the orig-
inal model to the same in the warped model; the horizontal component of these lines represents
the offsets ot used to warp the model to best match the data. These dt are then taken as the

distribution of arrival time uncertainties for the model.

a path, or alignment curve, through this matrix is then computed which minimizes the

net distance, and this serves to effectively align the input modeled time series to best
match the data by reindexing the former. DTW is here applied to the binarized time se-
ries data (Figure 4a) in order to eliminate the effect that each series’ amplitude may have
on the alignment calculation. From the aligned time series, tie points connecting the model
time series to the data are then chosen from the alignment curve for each matching pair

of model-data extrema (Figure 4a). The original model time series (Figure 4b) is then
warped according to a linear interpolation of these tie points, which represents both the
offsets of the matched extrema and the linear interpolations at each abcissa between these.
The result is a warped time series which is better aligned with the spacecraft data (Fig-
ure 4c). While this process uses the binarized solar wind flow speed to compute the align-
ment, every parameter within a given model can then have the same warping applied

to it. This allows for better alignment between all parameters, not just %mag, by implic-
itly assuming that the input model parameters are aligned correctly with one another,
and misaligned only relative to the measured data.
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For this demonstration of MMESH, DTW was used to align the binarized solar wind
plasma flow speeds from each model to that of the data in each spacecraft epoch. Lim-
its were placed on the DTW algorithm to ensure the resulting warped time series was
physically meaningful: the maximum offsets allowed were +4 days (+£96 hours), chosen
to be representative of the maximum temporal offsets measured in other studies (Tao
et al., 2005; Zieger & Hansen, 2008). The first value of the modeled time series is forced
to align to the first value of the measured time series by the DTW algorithm used here,
as is the final value of the modeled time series to that of the measured. To account for
this, the DTW process was applied to the same 2n + 1 models with constant tempo-
ral offsets in the range [—n,n] and with step size At as was previously discussed in Sec-
tion 3.2.1. The optimal alignment within these 2n+1 DTW results was found by max-
imizing the correlation coefficient of the warped model plasma flow speed Upqg to the
data divided by the quasi-1o half-width of the distribution of total temporal offsets r/op
(i.e., both constant and dynamic temporal offsets combined). The total distributions of
temporal offsets in each model are illustrated in Figure 5 for reference. These distribu-
tions are not normally distributed, suggesting that the uncertainties in the modeled so-
lar wind arrival times are not random, and are not centered at zero, indicating biases
in the modeled arrival times.

ENLIL

ENLIL + Cons.
ENLIL + DTW
HUXt

HUXt + Cons.
HUXt + DTW

Tao+

Tao+ + Cons.

Tao+ + DTW

d4<400ConNnEnm

0 10

20, 30 40
0 of Umag

Figure 6. A Taylor Diagram showing the performance of each model, before and after tempo-
ral shifting, relative to the in-situ Juno solar wind data. The unshifted models (black symbols)
all have correlation coefficient 7 in the range 0.2~0.3. Both constant time offsetting (outlined
symbols) and DTW (full color symbols) improve the correlation coefficients of all models, but
DTW improves the correlation coefficient more (r between 0.3~0.4 compared to r between
0.4~0.6, respectively). Employing time-varying temporal shifts is beneficial to matching the mod-

els to the data more closely.

3.3 Prediction of Time-Varying Model Timing Uncertainties

The cross-model consistent characterization of systematic timing biases and un-
certainties already discussed allows the performance of the solar wind models to be quan-
titatively compared to one another. As the methods discussed in Section 3.2 rely on di-
rect comparison to contemporaneous data, however, the timing biases and uncertainties
cannot be empirically quantified in the absence of in-situ data— the main use case for so-
lar wind modeling. To circumvent this, the distribution of timing uncertainties, as illus-
trated in Figure 5, could be considered invariant in time and propagated as such; this
method of propagating timing uncertainties is supported by MMESH. As these timing
uncertainties and biases are known to vary in time, as can be seen by the different space-
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Figure 7. Plots of the measured temporal offsets (black lines) from DTW for each model-
spacecraft-epoch set (e.g., a-d for ENLIL, e-h for HUXt, and i-l for Tao+), along with the mul-
tiple linear regression (MLR) fit to the temporal offsets found by fitting the offset time series
with the parameters described in the text (red lines). While the independent parameters add
significant variation in time, they nonetheless describe the emprirical timing uncertainties and
systematics fairly well. The 1o prediction uncertainities in the MLR fit (shaded red regions) are

also plotted.

craft epochs covered in Figure 5, this method has the drawback of explicitly overestimat-
ing the uncertainties at any given time.

Alternatively, MMESH also supports a simple- or multiple-linear regression model
description of the timing uncertainties. Multiple linear regression models are simple mod-
els which describe one continuous target variable as a linear combination of multiple con-
tinuous predictor variables; simple linear regression refers to the special case of a single
predictor variable. The coefficients calculated for each predictor variable thus describe
the contributions of each to the target variable. Similarly, the estimated standard de-
viation on these coefficients gives a sense of the relative importance of each predictor:
relative to the coefficient value, a large standard deviation denotes a less significant pre-
dictor, with the opposite being true for a relatively small standard deviation. The lin-
ear regression method thus allows the propagation model timing uncertainties to be es-
timated even in the absence of in-situ data for comparison, provided the values of each
predictor variable are known.

As the input propagation models do not propagate measurement error, the arrival
time uncertainties characterized previously are present due to the limitations of these
MHD-based models, each of which makes different simplifications of the physics describ-
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ing the solar wind. These simplification give rise to correlations between the timing un-
certainties in these models and other physical parameters describing the solar wind en-
vironment. Timing uncertainties in models with an inner boundary set by near-Earth
measurements often trend with target-Sun-observer (TSO) angle in heliolongitude, in

at least magnitude if not also in sign (Tao et al., 2005; Zieger & Hansen, 2008). Phys-
ically, this trend represents increasing uncertainty in the solar wind conditions as sep-
aration in heliolongitude (or Carrington longitude) increases away from the measurement
point. While less commonly used, the offsets are expected to trend with the TSO an-

gle in heliolatitude in a similar way, as the solar wind flow speed is known to be strongly
ordered in heliolatitude during solar minimum (D. J. McComas et al., 2003; D. McCo-
mas et al., 2008). This well-ordered structuring with heliolatitude breaks down during
solar maximum (D. J. McComas et al., 2003), which further suggests a physical connec-
tion between the offsets and the 11-year solar cycle. A final reasonable expectation is
that the timing systematics and uncertainties are related to the models solar wind flow
speed Upmqg. This comes from the assumption that the propagation model is more likely
to lag the data when underestimating the solar wind flow speed and more likely to lead
when overestimating; if the underestimates tend to have lower magnitudes and overes-
timates tend have larger magnitudes, then a trend between modeled solar wind flow speed
and temporal offset is expected.

These physical relationships between total, time-variable model offsets and descrip-
tive parameters about the state of the solar wind can be leveraged to estimate the model
offsets in the absence of simultaneous in-situ data. Here, multiple linear regression has
been employed to use all of these physical parameters (i.e. TSO angle in heliolongitude
and heliolatitude, solar cycle phase, and modeled w,q4) as predictors of the time-variable
timing uncertainties and biases by fitting the predictors to the combined spacecraft epochs
during which simultaneous in-situ measurements are available, as illustrated in Figure
7. Despite its simplicity, the multiple linear regression technique matches the known tem-
poral offsets well. The combination of parameters used here accounts for 12% of the vari-
ation in the measured timings for the ENLIL model (i.e., R? = 0.12), 37% in the HUXt
model, and 20% in the Tao+ model.

3.4 Multi-Model Ensemble

An MME is now created by the combination of the propagation models. MMESH
supports the creation of MMEs from input propagation models alone, from propagation
models with characterized timing uncertainties, whether through constant time offset-
ting or dynamic time warping, and from propagation models de-trended (i.e. warped)
to account for timing biases with propagated uncertainties. Here, this final type of MME
is created from the ENLIL, HUXt, and Tao+ solar wind propagation models warped ac-
cording to the timing biases estimated by multiple linear regression to the multi-epoch
in-situ dataset, and timing uncertainties propagated through.

For simplicity, an equal weights average of the each input model is taken. While
there is some evidence that carefully-chosen weighting schemes may improve model per-
formance (Guerra et al., 2020), more complicated weighting schemes may also decrease
model performance compared to the equal weights, making equal weighting the more ro-
bust choice (Genre et al., 2013). Thus, the only improvement on the simple equal-weights
averaging scheme we impose is to set the weight to 0 when a model does not yield an
output at a given time step, whether due to the model’s design (e.g. the lack of param-
eters other than solar wind flow speed in HUXt) or a lack of access to more recent mod-
els. The resulting MME of solar wind flow speed is shown in Figure 8a, superimposed
on the in-situ measurements of the Juno spacecraft during the missions’s cruise phase
(cf. Figure 3).
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3.4.1 Model Performance

The performance of this multi-model, multi-epoch ensemble is summarized in Fig-
ure 8, which shows that the ensemble has improved prediction efficiency of the solar wind
flow speed upq4 during the Juno cruise epoch compared to any individual input model.
All of the model time series, including that of the ensemble, show decreased standard
deviations in Figure 8. This results from considering the distribution of timing uncer-
tainties in calculating the mean values for each time series: when the distribution of tim-
ing uncertainties is measured or predicted to be large, the shifted fore-shocks in the so-
lar wind appear more ‘smoothed out’.

Despite this decreased standard deviation, the predicted flow speed q4 of the MME
(r = 0.49) outperforms ENLIL by 110% (r = 0.23), HUXt by 7% (r = 0.46), and
Tao+ by 51% (r = 0.32) in correlation coefficient and achieves a centered root-mean-
square difference (RMSD=32.8) 28% lower than ENLIL (RMSD= 45.9), 14% lower
than HUXt (RMSD= 38.1), and 9.1% lower than Tao+ (RMSD= 36.1). As HUXt does
not contribute to parameters in the MME other than 44, and the performance of ENLIL
beyond g is poor here (i.e., ENLIL is evidently anticorrelated with the data in Fig-
ure 8f-h), the MME underperforms Tao+ in nt, Payn, and Brayp by 12%—24% in cor-
relation coefficient with 5% — 8% larger RMSD. These shortcomings of the MME are
thus slight, and would likely be reduced further or eliminated in epochs where ENLIL
performs more similarly to Tao+; alternatively, adding new solar wind propagation mod-
els to the MME discussed here would be expected to have a similar effect.
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Figure 8. The solar wind flow speed wmag, with timing uncertainties characterized by DTW
and MLR applied over all spacecraft epochs, for (a) ENLIL, (b) HUXt, (c¢) Tao, and (d) the
MME, compared to in-situ Juno data in each. The performance of the MME is summarized in
the (e) Taylor diagram for wmag, which illustrates that the MME outperforms all input models
for this parameter; the Taylor diagram includes both the multi-epoch MLR-adjusted input mod-
els (colored symbols) and the original input models (black symbols) for comparison. Additional
Taylor diagrams for (f) the total solar wind density niot, (g) the solar wind dynamic pressure
Ddyn, and (h) the IMF magnitude Brayr are included to show the performance of the MME in
these parameters. As HUXt does not contribute to these parameters, the MME slightly under-

performs Tao+.
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4 Juno-epoch Solar Wind MME for Jupiter

Now that the multi-model epoch system has been fully described, all that remains
is to generate MMESH-propagated solar wind for a useful epoch. Here we have chosen
to run the ensemble for Jupiter contemporaneously with the Juno mission, beginning
before the spacecraft entered the planet’s magnetosphere (2016/05/15) and continuing
seven years through mid-2023 (2023/05/15), in order to provide valuable context for the
upstream conditions near Jupiter during Juno’s mission. A subset of the ensemble model
results are shown in Figure 9, along with the results of the component models, spanning
the first 6 months of coverage provided by this MME. The Juno in-situ measurements
prior to entering Jupiter’s magnetosphere are shown in Figure 9 for context, but as the
MME here is for Jupiter’s location, rather than that of Juno, the two timeseries are not
expected to align as well as in Figure 9. The results of this specific MME are available
at https://zenodo.org/link-to-specific-results; more generally, the results of this
Jupiter MME along with any future updates to improve its predictive power or extend
the temporally coverage will be available, and documented, at https://zenodo.org/
link-to-all-results.
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Figure 9. A 12-month subset of the Juno-era solar wind flow speed umag results, adjusted for
timing biases measured using DTW and characterized using MLR, for the (a) ENLIL, (b) HUXt,
(c) Tao+, and (d) MME, presented here starting during Juno’s approach to Jupiter in May 2016.
The 1o uncertainties in the solar wind flow speed umag are shown in each panel (shaded regions).
Based on the results discussed here, the MME is expected to significantly outperform each of the

component models in predicting the solar wind flow speed umag.
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604 5 Summary and Conclusions

605 Here we have introduced MMESH, a Multi-Model Ensemble System for the He-
606 liosphere, and described one use-case of this system to create a multi-model ensemble
607 of the outer heliosphere solar wind near Jupiter through the first 7 years of Juno mis-

ws  sion, spanning 2016/07/04 — 2023/07/04.

609 MMESH provides a framework with two central objectives: first, to allow easy char-
610 acterization of solar wind propagation model performance; and second, to create multi-

611 model ensembles of the solar wind. The first objective is crucial to statistically evalu-

612 ating the strengths of the various solar wind propagation models available, as the orig-

613 inal discussions of the performance of these models often quote different statistics or span
614 non-overlapping epochs of the solar wind and thus cannot be compared one-to-one. Fur-
615 ther, characterization of model performance yields an estimate of the model uncertainty,
616 a quantity which is not provided internally by any model discussed here but which is es-
617 sential for statistical analyses. With the second objective, we aim to create reliable com-
618 posite models of the solar wind by combining physics-based solar wind propagation mod-
619 els with their estimated variances to be used in statistical analyses of solar-wind-magnetosphere
620 interactions throughout the solar system. The strength of ensemble modeling lies in lever-
621 aging the different strengths of the constituent models, and so these two objectives are

622 closely intertwined.

623 MMESH additionally includes a method to compare biases and variances in the model
624 timing to physical parameters across disparate epochs prior to creating an ensemble. The
625 objective of this multi-epoch method is to de-trend biases in the model timing which may
626 arise from the various assumptions and simplifications made by each model. De-trending
627 is performed here through multiple linear regression (MLR) of the measured model tim-
628 ing biases with a subset of the physically reasonable parameters with which model per-

629 formance is expected to vary. The phase of the solar cycle, difference in heliolongitude

630 and heliolatitude between the model target and the observer, and the modeled solar wind
631 flow speed are all reasonable and considered here. As estimation of the model timing bi-
632 ases and variances is only possible when contemporaneous in-situ data are available for

633 comparison, the spans over which the MLR de-trending can be performed are limited.

634 The MLR de-trending is made more robust by considering multiple disparate epochs dur-
635 ing which spacecraft data are available.

636 Using all of these methods, a multi-model ensemble of the solar wind conditions

637 at Jupiter during the Juno-epoch has been created by combining three physics-based so-
638 lar wind propagation models (ENLIL, HUXt, and Tao+); the version of this ensemble

639 discussed here is available at https://zenodo.org/link-to-specific-results and

640 the latest release of is available at https://zenodo.org/link-to-all-results. Biases
641 and variances in each models timing were characterized for four epochs during which Ulysses

642 or Juno data were available for comparison, spanning in total from 1991/12/08 — 2016/06,/29.
643 The model timing biases were then de-trended using MLR, to the heliolatitude and mod-

644 eled flow speed, which were determined to provide the best balance between describing

645 the timing biases and overfitting. The biases in the three constituent solar wind mod-

646 els were corrected according to the MLR equation for the full MME span of 2016/07/04
647 —2023/07/04 and combined. The resulting ensemble model outperforms all of the con-

648 stituent models relative to the Juno cruise data immediately preceding this epoch; the

649 ensemble has a correlation coefficient of 0.41 (78% increase over ENLIL, 32% increase

650 over HUXt, and 86% increase over Tao+, after accounting for timing offsets in each). The
651 improved upstream solar wind monitoring capabilities demonstrated by this MME are

652 available to be downloaded and used immediately, and should prove crucial to ongoing

653 and future in-situ studies of the Jovian magnetosphere using Galileo, Juno, JUICE, and
654 Europa Clipper, as well as remote sensing studies using observatories such as JWST, HST,

655 and Chandra.
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Appendix A Time Series Binarization

Here, the measured and modeled magnitude of the solar wind flow speed Uaq is
post-processed by first smoothing the series, then taking the standard score of its time
derivative. Smoothing is accomplished by taking a rolling boxcar average of the flow speed
Umag- Smoothing in this way serves as a low-pass filter, allowing the recovery of the large-
scale shape of the time series while ignoring small-scale fluctuations, which may dom-
inate in in-situ spacecraft measurements. The time derivative of the flow speed time se-
ries Umag(t) is chosen in order to better identify the transition of a spacecraft or model
trajectory through a slow-fast wind interface; these increases in solar wind flow speed
occur over timescales less than lhour and are more easily identifiable than changes in
other solar wind parameters, which typically occur over longer timescales. The standard-
score of the time series, or the time series normalized to its own standard deviation, al-
lows for direct comparison of the relative changes between different time series which may
have widely varying mean values.

Binarization requires subjective input of a boxcar-smoothing-width and significance
level for each time series, however these parameters are partially degenerate with one
another— a smaller smoothing window and a higher significance level will yield similar

results to a larger window with lower significance level. To limit subjectivity, boxcar-smoothing-

widths are found for each time series within a given epoch as the smallest width which,
when applied to each time series before the derivative is taken, results in an equal se-
ries standard deviation to the smallest such standard deviation in the epoch. Qualita-

tively, this is the boxcar-smoothing-width required to make each time series look as ”smooth”

as the "smoothest” time series of the epoch. The boxcar-smoothing-widths used for each
time series and in each epoch are listed in Table Al.

Table Al. Boxcar-smoothing widths for binarization, in hours

Source Epoch

Ulysses 1  Ulysses 2 Ulysses 3 Juno
in-situ 5 15 2 7
ENLIL 8 1 4 5
HUXt 1 9 1 1
Tao+ 6 11 2 10
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Figure A1l. Binarized time series of the solar wind flow speed umaq for the (a) ENLIL, (b)

HUX#t, and (¢) Tao+ solar wind propagation models, with the binarized time series of the in-situ
Juno data superimposed on each (black lines). The time-derivatives of all these series have been
binarized at a value of 3o, such that each ‘spike’ represents a change in the time-derivative of 3o

or larger.
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Open Research

The results presented in this document rely on data collected by the Solar Radio
Monitoring Program (https://www.spaceweather.gc.ca/forecast-prevision/solar
-solaire/solarflux/sx-en.php) with additional processing by the NOAA National
Centers for Environmental Information (https://www.ncei.noaa.gov/). These data
were accessed via the LASP Interactive Solar Irradiance Datacenter (LISIRD) (https://
lasp.colorado.edu/lisird/). Ephemeris information was obtained by use of the NASA
Navigation and Ancillary Information Facility (NAID) SPICE toolkit.

Simulation results for the ENLIL solar wind propagation model (version 2.8f) have
been provided by the Community Coordinated Modeling Center (CCMC) at Goddard
Space Flight Center through their publicly available simulation services (https://ccmc
.gsfc.nasa.gov). The ENLIL Model was developed by Dusan Odstrcil at George Ma-
son University. Spacecraft data were acquired from the Goddard Space Flight Center
Space Physics Data Facility (SPDF) COHOWeb service, except for the Juno in-situ data,
which were instead acquired from Wilson et al. (2018) (plasma data) and the Automated
Multi-Dataset Analysis web tool hosted at https://amda.irap.omp.eu/.

The MMESH code is available at https://github.com/mjrutala/MMESH, and in-
cludes the routines used to create the figures shown here. The Juno-epoch MME pre-
sented here is available at https://zenodo.org/link-to-specific-results, and fu-
ture updates to this MME will be accessible from https://zenodo.org/link-to-all
-results.
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