

Innovative use of chitosan/ZnO NPs bio-nanocomposites for sustainable antimicrobial food packaging of poultry meat

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Sasidharan, S., Tey, L.-H., Djearamane, S., Ab Rashid, N. K. M., PA, R., Rajendran, V., Syed, A., Wong, L. S., Santhanakrishnan, V. K. ORCID: <https://orcid.org/0000-0002-8485-8930>, Asirvadam, V. S. and Dhanapal, A. C. T. A. (2024) Innovative use of chitosan/ZnO NPs bio-nanocomposites for sustainable antimicrobial food packaging of poultry meat. *Food Packaging and Shelf Life*, 43. 101298. ISSN 2214-2894 doi: 10.1016/j.fpsl.2024.101298 Available at <https://centaur.reading.ac.uk/116807/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1016/j.fpsl.2024.101298>

Publisher: Elsevier

copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 **Innovative Use of Chitosan/ZnO NPs Bio-nanocomposites for Sustainable**
2 **Antimicrobial Food Packaging of Poultry Meat.**

4 Shivitraloshini Sasidharan^a, Lai-Hock Tey^a, Sinouvassane Djearamane^{b,c}, Nor Khaizura Mahmud Ab
5 Rashid^d, Rajeshwari PA^e, V. Rajendran^f, Asad Syed^g, Ling Shing Wong^h, Vimaleswaran Karani
6 Santhanakrishnanⁱ, Vianth Sagayan Asirvadam^j, Anto Cordelia Tanislaus Antony Dhanapal^{*}

8 ^aDepartment of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900
9 Malaysia

10 ^bDepartment of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar
11 31900, Malaysia

12 ^cBiomedical Research Unit and Lab Animal Research Centre, Saveetha Dental College, Saveetha Institute of
13 Medical and Technical Sciences, Saveetha University, Chennai 602 105, India

14 ^dDepartment of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, 43400
15 UPM Serdang, Selangor, Malaysia

16 ^eDepartment of Food Science and Nutrition, Avinashilingam Institute for Home Science and Higher
17 Education for Women, Coimbatore, Tamil Nadu, India

18 ^fCentre for Nanotechnology, AMET University, 135 ECR, Kannathur, Chennai, Tamil Nadu 603112, India

19 ^gDepartment of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh,
20 11451, Saudi Arabia

21 ^hLife Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai 71800,
22 Malaysia

23 ⁱInstitute for Food, Nutrition and Health, University of Reading, United Kingdom

24 ^j Faculty of Science and Information Technology, Universiti Teknologi Petronas, Seri Iskandar, Tronoh,
25 Perak, Malaysia

26 *Corresponding authors: antoc@utar.edu.my (A.C.T.A.D); lingshing.wong@newinti.edu.my

27

28

29

30

31

32

33

34

35 **Abstract:**

36

37 A novel nanocomposite was developed by integrating zinc oxide nanoparticles (ZnO NPs) into chitosan (CS)
38 matrix and investigated for its impact on the quality and shelf life of refrigerated poultry meat over 11 days.
39 Physicochemical properties including weight, pH, titratable acidity, color, thiobarbituric acid reactive
40 substances assay, microbiological growth studies encompassed total psychotropic and mesophilic aerobic
41 microorganisms, *Enterobacteriaceae* analyses, and zinc migration levels were conducted to determine the
42 optimal nanocomposite concentration. Results revealed that bio-nanocomposite exhibited superior
43 characteristics compared to chemogenic nanocomposite, chitosan, polyvinyl alcohol, and unwrapped
44 meats. Bio-nanocomposite with reduced unsaturated lipid content extends poultry shelf life to 7 days in
45 packaging, outperforming chemogenic-nanocomposites (5 days) and chitosan (4 days). This study proves
46 that CS/ZnO NP nanocomposite is a promising active packaging material for meat, extending their shelf life
47 without deteriorating its physicochemical characteristics and supporting sustainability, though further
48 research on its toxicological properties is warranted.

49

50 **Keywords:** Biogenic Zinc oxide nanoparticles, chitosan, bio-nanocomposite, antimicrobial film, active
51 packaging, Food security

52

53

54

55

56

57

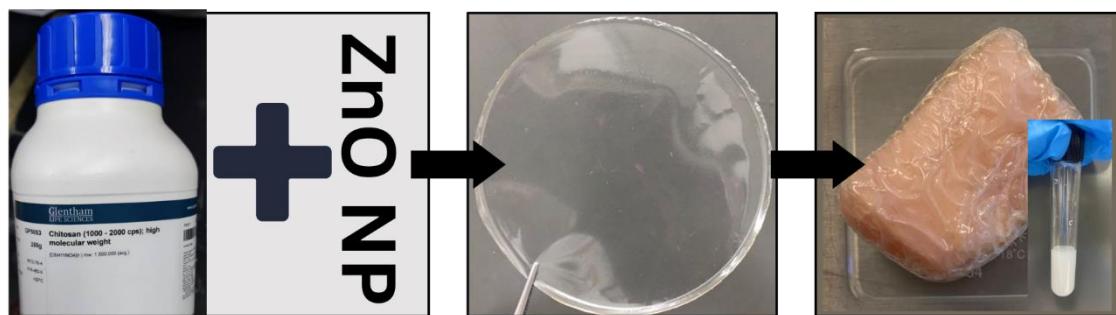
58

59

60

61

62


63

64

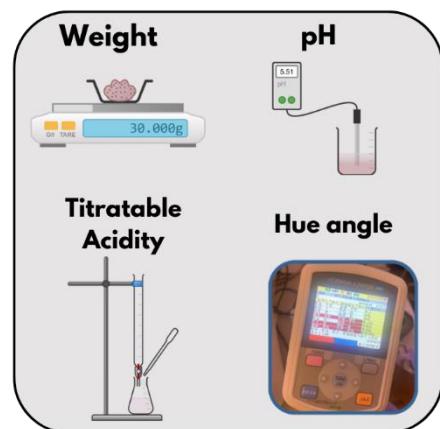
65

67

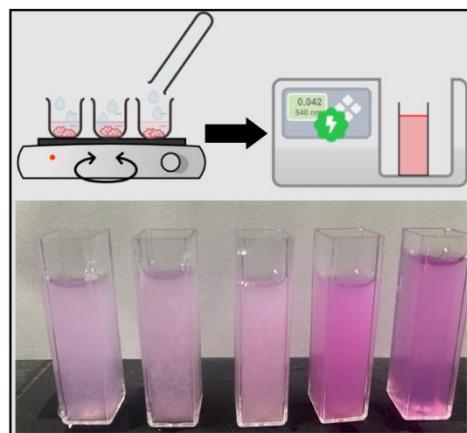
68

69

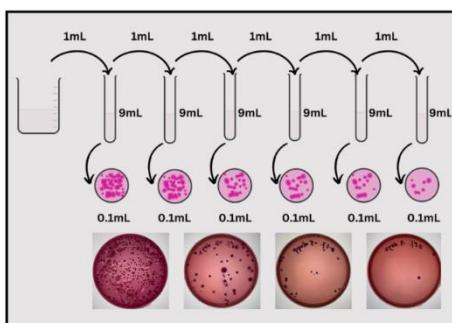
70


71

72


73

74


A Physicochemical Properties of Poultry Meat Wrapped in Bio-nanocomposite

B Lipid Peroxidation

C Microbiological Growth

D Zinc Migration

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98 **1. Introduction**

99

100 Bio-based polymeric films in food packaging are growing rapidly as a sustainable alternative to traditional
101 plastic materials (Marzlan et al., 2022). Biodegradable polymers, the next generation of plastics, have
102 environmental advantages over petroleum-based counterparts (Souza et al., 2019). Biopolymer films, while
103 holding promise as materials suitable for various packaging applications, are constrained by numerous
104 limitations that hinder their widespread adoption and effectiveness (Kaya et al., 2022). These include
105 insufficient mechanical strength, inferior barrier properties, water sensitivity, thermal stability, and shorter
106 shelf life (Sobhan et al., 2021). To add value to these next-generation plastics, incorporating nanotechnology
107 into active packaging is becoming important to improve antimicrobial and antioxidant properties and to
108 enhance food safety and quality preservation (Souza et al., 2018). The combination of bio-based polymers
109 and nanotechnology holds great promise for advancing sustainable food packaging (Montazer & Harifi,
110 2017).

111 Chitosan (CS), derived from chitin, is a widely available biopolymer with properties such as
112 biocompatibility, degradability, non-toxicity, and antimicrobial activity (Freitas et al., 2022). Chitosan-based
113 packaging, incorporating natural antimicrobial agents and metal nanoparticles like ZnO (CS/ZnO NP), is
114 becoming popular in the food industry due to increasing demand for preservative-free options. ZnO NPs
115 are known for their cost-effectiveness and strong antimicrobial properties (Darvishi et al., 2019). Surface
116 modification techniques can address aggregation issues caused by their hydrophilic nature and high surface
117 area, improving compatibility with the polymer matrix (Hajibeygi et al., 2018).

118 The study objective was to fabricate nanocomposites, innovatively synthesized for the first time, by
119 employing chitosan and ZnO NPs utilizing waste banana (*Musa acuminata*) leaves. This novel circular
120 economy approach minimizes waste generation, disconnecting economic growth from natural resource
121 consumption. It utilizes alternative raw materials to produce high-value products like primary packaging
122 for fresh poultry meat (Geueke et al., 2018). Nano-composite packaging by integrating biogenic and
123 chemogenic ZnO NP into a chitosan matrix (B-CS/ZnO NP and C-CS/ZnO NP) separately offers promising
124 potential for enhancing the preservation of poultry meat during storage. Through various physicochemical
125 properties, including weight, pH, titratable acidity, hue angle, thiobarbituric acid reactive substances
126 (TBARS), microbiological activity, and zinc migration. This study aims to identify the most effective
127 combination of CS/ZnO NP active antimicrobial packaging among different concentrations. By storing the
128 poultry meat at 4 ± 2 °C for an extended period of 11 days, insights can be gained into how each combination
129 influences the meat's quality and safety over time. This comprehensive analysis will enable the selection of
130 the optimal concentration of nano-composite packaging that consistently demonstrates superior
131 performance across all evaluated parameters.

132

133

134

135 **2. Materials and Methods**

136

137 Sodium hydroxide (NaOH) was purchased from Labmedical Science (Malaysia), ethanol absolute was
138 obtained from Synertec (Malaysia), trichloroacetic acid (TCA) was procured from Premier Diagnostics
139 (Malaysia), malondialdehyde (MDA) was obtained from Medigene (Malaysia), 1,1,3,3-tetraethoxypropane
140 (TEP) was provided from Synertec (Malaysia), Plate Count Agar (PCA) and Violet Red Bile Glucose (VRBG)
141 were supplied by Fc. Bios Sdn Bhd (Malaysia), and nitric acid (HNO₃) was provided from GaiaScience
142 (Malaysia). All chemicals used were either of analytical or reagent grade.

143

144 *2.1 Brief Methodology on the Synthesis of Biogenic and Chemogenic ZnO NP and Development of*
145 *Nanocomposite*

146

147 In green synthesis, 2 g of zinc nitrate was mixed with 30 mL of *M. acuminata* leaf extract and heated at 60
148 °C on a hotplate until a dark brown paste formed. The paste was then calcinated at 400 °C for 2 hours using
149 a furnace from Nabertherm, Germany, resulting in pale white ZnO NP powder. In chemical synthesis, a
150 solution of 0.2 M zinc nitrate was combined with 0.4 M potassium hydroxide for an hour, followed by
151 centrifugation at 5000 rpm for 20 minutes. After washing, the paste underwent calcination at 400 °C for 2
152 hours using a furnace from Nabertherm, Germany, yielding white ZnO NP powder (Sasidharan et al., 2023).

153 Preparation of CS/ZnO NP bio-nanocomposites involved dissolving 1.5% control film, chitosan (1.5 g in 100
154 mL deionized water from a deionizer (Favorit, Italy) in a 1% solution of glacial acetic acid under stirring for
155 1 hour. Biogenic and chemogenic ZnO NPs at concentrations of 0.5%, 1%, 1.5%, 2%, and 2.5%
156 weight/weight of chitosan were then separately added, followed by degassing in an ultrasound bath (360
157 Watt) (Selecta, Spain) for 15 minutes. The resulting mixture was cast into a petri dish and oven-dried for
158 16 hours (Souza et al., 2020).

159

160 **The detailed description of the methods for the synthesis, characterization, and antimicrobial**
161 **properties of ZnO NPs using waste banana (*Musa acuminata*) leaves and the development of**
162 **nanocomposite incorporating ZnO NP into a chitosan matrix, together with the physicochemical**
163 **properties and antimicrobial efficacy has been reported elsewhere (Sasidharan et al., 2023).**

164

165 *2.2. Detailed Methodology on Shelf Life and Toxicological Studies of Poultry Meat Wrapped in CS/ZnO NP*
166 *Nanocomposite*

167 About 30 g of fresh poultry breast meat procured from a local wet market in Kampar district of Perak was
168 wrapped using bio-nanocomposites (9 cm X 15 cm) prepared from different concentrations of biogenic
169 (produced from waste *M. acuminata* leaves) and chemogenic ZnO NPs. Poultry samples were wrapped in

170 biogenic and chemogenic nanocomposites and stored in plastic containers, meanwhile refrigerated at 4 ± 2
171 °C for 11 days. The meat left unwrapped acted as the experimental control. The experiments were
172 conducted in triplicate. Physicochemical properties including weight loss, pH, titratable acidity, and hue
173 angle using the Association of Official Analytical Chemists method (AOAC, 2016), The thiobarbituric acid
174 reactive substances (TBARS), microbiological growth of total psychrotropic aerobic microorganisms
175 (TPAM), total mesophilic aerobic microorganisms (TMAM), *Enterobacteriaceae* were conducted. Lastly, zinc
176 migration analysis of the poultry meat was carried out at specified intervals (days 0, 2, 4, 7, and 11).

177

178 *2.2.1. pH*

179 2 g of the poultry sample was homogenized in 20 mL of deionized water from a deionizer (Favorit, Italy),
180 then transferred to a beaker for pH measurement using a pH meter (Mettler Toledo, USA) at intervals of 0,
181 2, 4, 7, and 11-days during storage. The buffers used to calibrate pH meters typically included standard
182 solutions at pH 4.00, pH 7.00, and pH 10.00. This procedure was replicated for poultry meats wrapped in
183 C-CS/ZnO NP nanocomposite.

184

185 *2.2.2. Titratable acidity*

186 A 30 mL of homogenized chicken extract was titrated with 0.1 M NaOH to a light pink endpoint using
187 phenolphthalein. The measurement was taken every 0, 2, 4, 7, and 11 days of storage and the experiment
188 was repeated on poultry meats wrapped in C-CS/ZnO NP nanocomposite. The percentage of titratable
189 acidity was expressed as % citric acid on fresh poultry meat.

190

$$191 \text{TAC (\%)} = \frac{0.0064 \times \text{Titre} \times \text{Volume made}}{\text{Volume of fresh chicken pulp} \times \text{Volume of aliquot used for titration}} \times 100\%$$

192

193 *2.2.3. Hue angle*

194 The color of poultry meat was assessed using CIE-Lab* coordinates, where L ranges from 0 (black) to 100
195 (white), -a denotes greenness while +a indicates redness, and -b signifies blueness while +b represents
196 yellowness using a CR 410 colorimeter from Minolta Co., Tokyo, Japan, equipped with a D65 illumination as
197 well as a visual angle set at 10°. Measurements were performed at intervals of 0, 2-, 4-, 7-, and 11-days
198 during storage. This procedure was also conducted for poultry meats wrapped in C-CS/ZnO NP
199 nanocomposite. The hue angle was determined utilizing a specified equation.

200

$$201 \text{Hue angle} = \tan(b/a)^{-1}$$

202

203 2.2.4. TBARS Assay

204 10 g of poultry meat was mixed with 20 mL of 7.5% trichloroacetic Acid (TCA), agitated for 30 minutes, and
205 filtrated. Then, 5 mL of the filtered solution was combined with an equal volume of 0.02 M thiobarbituric
206 Acid (TBA) and subjected to heating in a water bath (Memmert, Büchenbach, Germany) for 30 minutes at
207 80 °C, and the absorbance at 530 nm was measured using GENESYS 180 UV-vis spectrophotometer
208 (Thermo Scientific). The TBARS index was calculated using a calibration curve with known MDA
209 concentrations dissolved in TEP solution (0.2 M, 0.4 M, 0.6 M, 0.8 M, and 1.0 M). Measurements were
210 conducted at intervals of 0, 2, 4, 7, and 11-days during storage, with the experiment repeated for poultry
211 meats wrapped in CS/chemogenic ZnO NP nanocomposite. The findings were presented in terms of mg
212 MDA/kg of meat (Souza et al., 2020).

213

214 2.2.5. Determination of the Microbiological Growth of Poultry meat wrapped in biogenic and chemogenic-
215 nanocomposite using the Viable Cell Colony Count Method

216 1 mL of poultry samples wrapped with different concentrations of ZnO NPs was added into 9 mL of 0.8%
217 NaCl solution and further proceeded for serial dilution. From the serial dilutions, samples of TMAM and
218 TPAM were plated on PCA and incubated at 30 °C for 72 h or 7 °C for 168 h whereas *Enterobacteriaceae* was
219 plated on VRBG and at 30 °C for 24 h. Measurements were conducted at intervals of 0, 2, 4, 7, and 11 days
220 during storage, with the experiment repeated for poultry meats wrapped in C-CS/ZnO NP nanocomposite.
221 The count of viable microbial colonies was determined, and findings were presented as log CFU (colony
222 forming units)/g of meat (Souza et al., 2020).

223

224 2.2.6 Total Migration of Zinc

225 A 50 g sample of poultry meat was subjected to mineralization in a furnace (Nabertherm, Germany) at 550
226 °C for 90 minutes. The resulting 0.3 g of ash residue was then combined with 10 mL of concentrated nitric
227 acid and subjected to acid digestion using a microwave digestor (Milestone Ethos Up, USA). The resulting
228 yellow liquid was diluted by a factor of 100 and subsequently used to determine the zinc concentration in
229 the packaged chicken meat employing atomic absorption spectrometry (Zeenit 700, Analytikjena, Jena,
230 Germany) on both days 0 and 11. The zinc content was initially measured before wrapping the chicken, and
231 then again on the 11th day after wrapping with nanocomposites. This procedure was replicated for poultry
232 meats wrapped in C-CS/ZnO NP nanocomposite. The results were expressed in units of mg Zn/kg fresh
233 meat (A.G. Soares Silva et al., 2023).

234

235 2.3. Statistical Analysis

236 One-way ANOVA analysis was conducted in SPSS 22, and Post hoc analysis was performed using the Tukey
237 test to further examine any significant differences. Statistical significance was defined as p < 0.05.

238 **3. Result and Discussion**

239

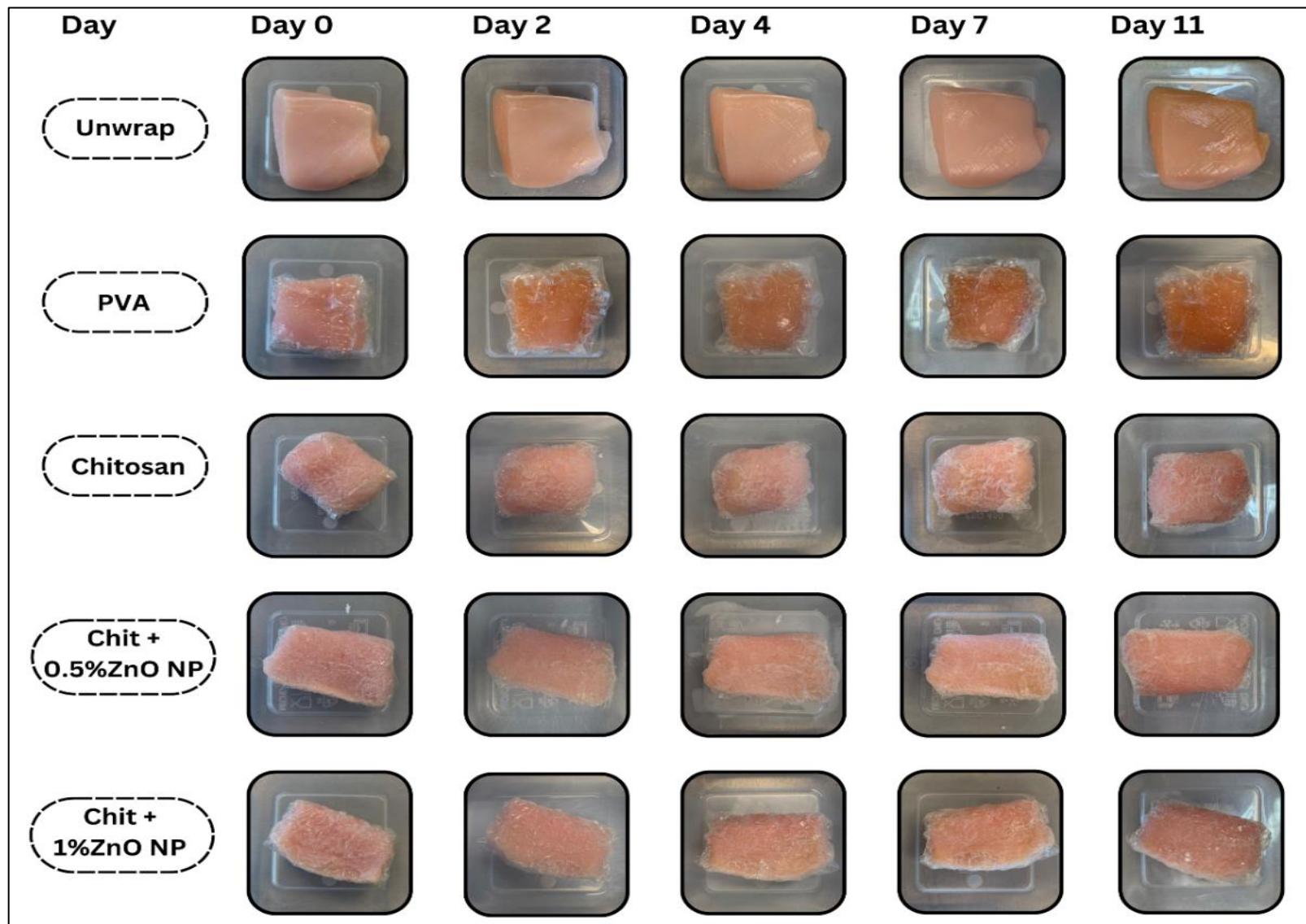
240 The assessed meat exhibited an increase in weight loss, pH levels, and hue angle (H^*) over its shelf life,
241 accompanied by a decline in titratable acidity. The elevated presence of unsaturated fats, which are
242 susceptible to oxidation, along with the proliferation of aerobic spoilage microorganisms (TPAM, TMAM,
243 and *Enterobacteriaceae*), renders poultry meat highly susceptible to spoilage. Meat exposed without
244 packaging exhibited more significant changes compared to biofilm-enclosed meat (Silva et al., 2018). The
245 physical changes of the meat in different packaging for 11 days are shown in **Fig. 1**. The changes in weight
246 loss, pH levels, hue angle (H^*), titratable acidity, and TBARS of B-CS/ZnO NP, C-CS/ZnO NP, chitosan,
247 polyvinyl alcohol (PVA), and unwrapped meat are stated in **Table 1** and **Table 2**.

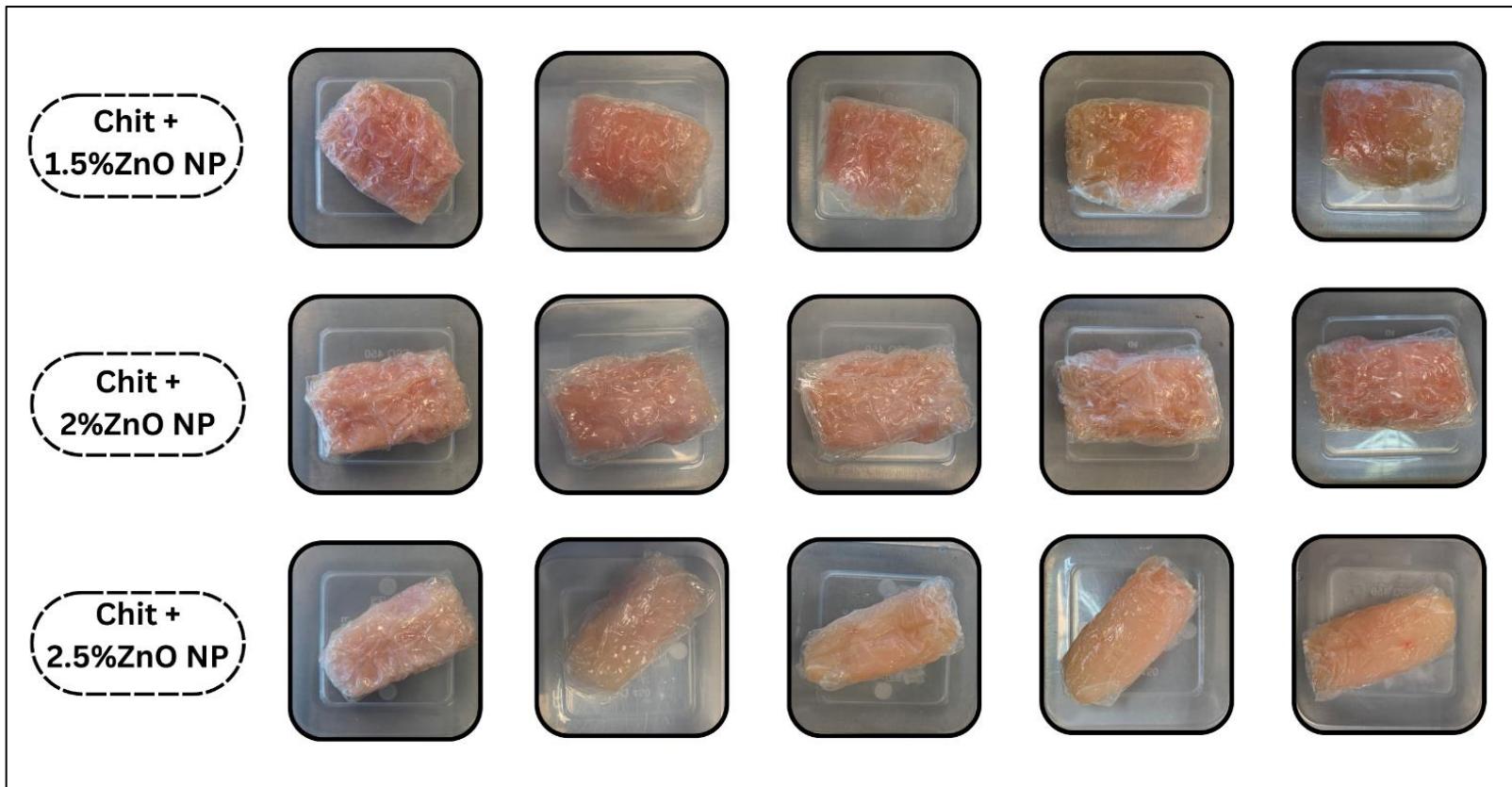
248

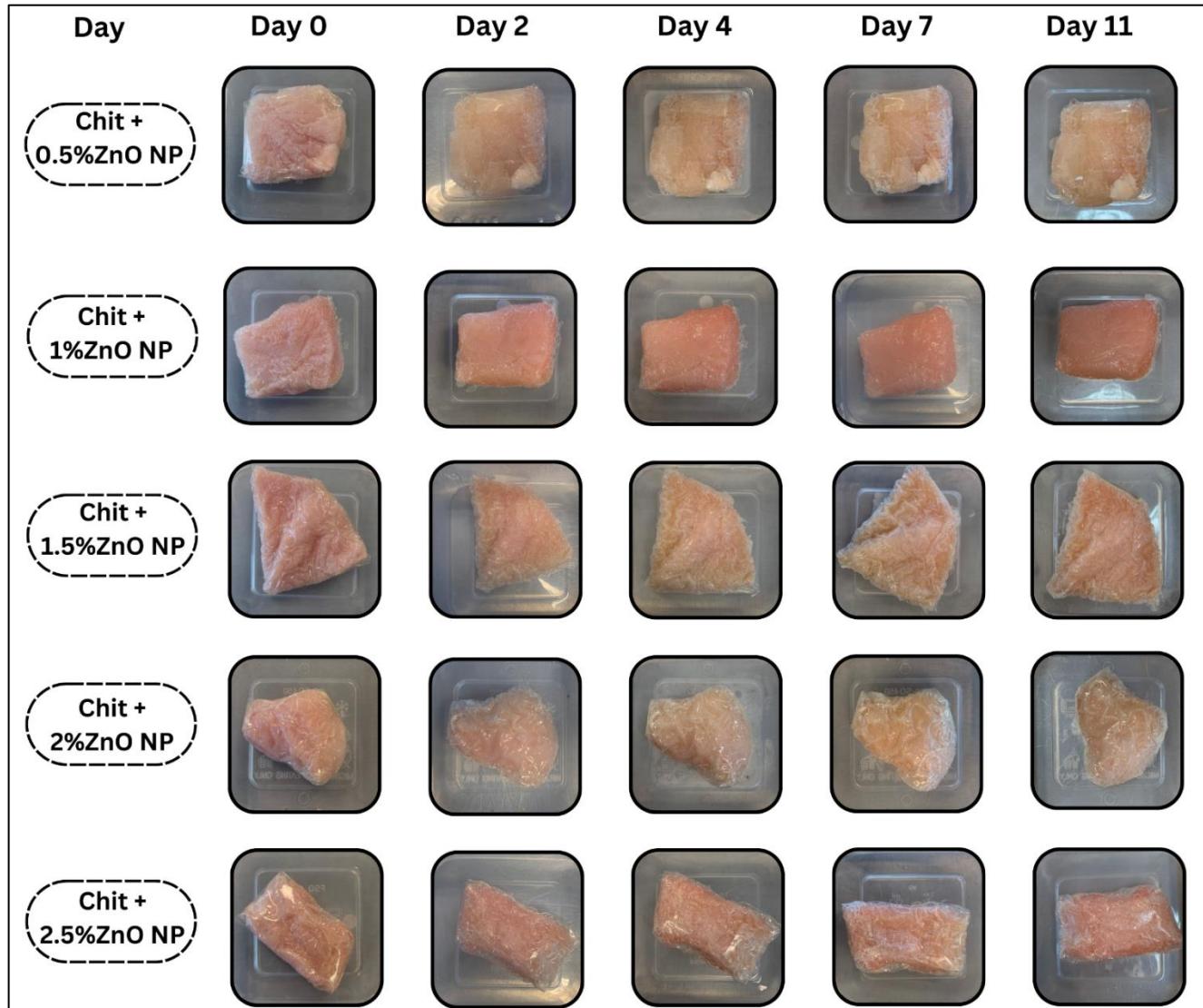
249 *3.1. Weight loss*

250

251 The initial weight of the poultry meat was 30 g. However, after the refrigerated storage period, this value
252 exhibited a significant drop, peaking at 25.619 g for the unwrapped meat, and approximately 28 g and 27 g
253 for samples wrapped with the biogenic and chemogenic films, respectively (**Table 3** and **Table 4**). Weight
254 reduction was the lowest in the bio-nanocomposite, followed by the chemogenic-nanocomposite, chitosan,
255 , and unwrapped samples. The film exhibited excellent water barrier attributes, characterized by its ability
256 to have minimal absorption of moisture and permit the passage of water vapor, limiting moisture uptake by
257 enhancing polymer chain interactions. This resulted in a more rigid and less flexible bio-nanocomposite,
258 leading to significantly lower weight loss. The reduced spaces between polymer chains made it harder for
259 water molecules to infiltrate the film (Song et al., 2022; Souza et al., 2019). Moreover, the interaction
260 between water molecules and zinc ions or functional groups in ZnO NPs within the film structure suggests
261 an interesting mechanism that enhances the mitigation of weight loss in poultry meat samples (Matei et al.,
262 2023). Therefore, it was concluded that the most efficient formulation for reducing weight loss was the bio-
263 nanocomposite with 2.5% ZnO NPs, primarily because of its greatest film thickness, which effectively
264 obstructed the entry of water vapor into the meat.


265


266 *3.2. pH & Titratable Acidity*


267

268 The pH level is associated with multiple aspects of meat quality, like color, texture, flavor, moisture retention
269 ability, and microbial resistance (Souza et al., 2020). Typically, the pH values of poultry meat fall within the
270 range of 5.2 to 7 (Barbut, 2009; Pires et al., 2021). Initially, the pH value was 5.51, peaking at 7.83 for the
271 unwrapped meat. However, the increase was less significant for samples wrapped with bio-based films. For
272 instance, meat shielded with Chit+2.5% ZnO NPs displayed the lowest pH value of 6.29 and 6.50 in both

273 biogenic and chemogenic films, respectively, after 11 days of refrigerated storage, indicating it as the most
274 effective treatment compared to others. The pH values were lowest in the bio-nanocomposite, followed by
275 the chemogenic-nanocomposite, chitosan, PVA, and unwrapped samples (**Table 3** and **Table 4**). Poultry
276 meat typically exhibits pH values between 5.2 and 7.0 (Souza et al., 2018). Over time, titratable acidity
277 declined, corresponding with the rise in pH. Titratable acidity exhibited the highest levels in the bio-
278 nanocomposite, followed by the chemogenic-nanocomposite, chitosan, PVA, and unwrapped samples. This
279 trend is attributed to the alkaline response during the spoilage process, which results in the formation of
280 amines and NH₃ due to the release of free amino acids, as demonstrated by Karabagias et al., (2011). This
281 phenomenon is closely linked to the proliferation of microbes in meat products, as highlighted by Gomes et
282 al., (2019). Previous research has established a relationship between the increase in pH levels in chicken
283 meat and bacterial growth. The rise in pH can be ascribed to the denaturation of proteins and the buildup
284 of amines and ammonia aided by psychotropic bacteria, which are commonly found in chicken meat, as
285 emphasized by Ghollasi-Mood et al. (2017). Similar results were observed with ZnO NPs incorporated into
286 carboxymethyl cellulose (CMC), showing a delay in the pH rise in refrigerated poultry meat (Suo et al.,
287 2016). The initial acidity levels for freshly cut pork meat were approximately 5.70. After a 14-day storage
288 period, the control film showed a pH of 8.85, whereas the meat coated with bio-nanocomposites exhibited
289 a significantly lower pH of 6.12. The authors attributed these findings to the antibacterial properties of the
290 films, which inhibited the generation of alkaline compounds responsible for pH elevation (Suo B. et al.,
291 2016).

Fig. 1. The visual appearance of poultry wrapped with PVA, chitosan, and bio and chemogenic-nanocomposites.

352 **Table 1**

353 Overview of the physicochemical analysis of meat wrapped with bio-nanocomposites for 11 days of storage.

Parameter	Day	Unwrap	Chitosan	PVA	B-CS/0.5%ZnO	B-CS/1%ZnO	B-CS/1.5%ZnO	B-CS/2%ZnO	B-CS/2.5%ZnO
					NP	NP	NP	NP	NP
Weight loss (g)	0	30.000 ± 0.015	30.000 ± 0.015	30.000 ± 0.015	30.000 ± 0.015	30.000 ± 0.015	30.000 ± 0.015	30.000 ± 0.015	30.000 ± 0.015
	2	27.262 ± 0.006	28.148 ± 0.025	27.506 ± 0.035	29.222 ± 0.015	29.403 ± 0.020	29.502 ± 0.025	29.724 ± 0.015	29.843 ± 0.025
	4	26.582 ± 0.025	27.785 ± 0.036	27.352 ± 0.020	29.047 ± 0.031	29.279 ± 0.036	29.447 ± 0.010	29.327 ± 0.020	29.475 ± 0.035
	7	25.835 ± 0.557	27.433 ± 0.006	27.189 ± 0.015	28.953 ± 0.026	28.875 ± 0.015	28.403 ± 0.026	28.819 ± 0.006	28.932 ± 0.042
	11	25.619 ± 0.025	27.369 ± 0.021	26.367 ± 0.020	28.331 ± 0.032	28.563 ± 0.021	28.538 ± 0.025	28.463 ± 0.025	28.326 ± 0.572
pH	0	5.51 ± 0.038	5.51 ± 0.038	5.51 ± 0.038	5.51 ± 0.038	5.51 ± 0.038	5.51 ± 0.038	5.51 ± 0.038	5.51 ± 0.038
	2	6.93 ± 0.070	6.47 ± 0.056	6.81 ± 0.061	6.22 ± 0.096	5.90 ± 0.361	5.83 ± 0.045	5.76 ± 0.118	5.69 ± 0.053
	4	7.32 ± 0.062	6.61 ± 0.047	7.01 ± 0.078	6.33 ± 0.053	6.21 ± 0.053	6.08 ± 0.026	5.93 ± 0.185	5.77 ± 0.071
	7	7.57 ± 0.070	6.99 ± 0.036	7.25 ± 0.070	6.79 ± 0.046	6.63 ± 0.051	6.49 ± 0.165	6.31 ± 0.117	6.16 ± 0.140
	11	7.83 ± 0.060	7.39 ± 0.075	7.61 ± 0.059	7.01 ± 0.085	6.81 ± 0.025	6.55 ± 0.070	6.43 ± 0.017	6.29 ± 0.046
Hue angle (°)	0	63.66 ± 0.010	63.66 ± 0.010	63.66 ± 0.010	63.66 ± 0.010	63.66 ± 0.010	63.66 ± 0.010	63.66 ± 0.010	63.66 ± 0.010
	2	76.21 ± 0.015	71.51 ± 0.020	74.60 ± 0.026	65.99 ± 0.142	66.64 ± 0.010	66.32 ± 0.010	67.78 ± 0.036	68.29 ± 0.015
	4	79.44 ± 0.010	73.16 ± 0.006	76.01 ± 0.061	67.64 ± 0.015	68.43 ± 0.015	69.16 ± 0.006	70.92 ± 0.010	71.96 ± 0.012
	7	81.56 ± 0.017	75.83 ± 0.010	79.39 ± 0.015	68.05 ± 0.041	68.90 ± 0.025	69.55 ± 0.015	71.46 ± 0.012	73.54 ± 0.010
	11	84.21 ± 0.032	79.33 ± 0.020	82.93 ± 0.015	68.93 ± 0.012	70.12 ± 0.031	73.56 ± 0.010	75.34 ± 0.010	76.44 ± 0.024
Titratable Acidity (%) citric acid equivalent)	0	0.924 ± 0.002	0.924 ± 0.002	0.924 ± 0.002	0.924 ± 0.002	0.924 ± 0.002	0.924 ± 0.002	0.924 ± 0.002	0.924 ± 0.002
	2	0.572 ± 0.010	0.594 ± 0.011	0.585 ± 0.004	0.613 ± 0.005	0.622 ± 0.014	0.646 ± 0.012	0.691 ± 0.011	0.704 ± 0.010
	4	0.451 ± 0.013	0.482 ± 0.005	0.472 ± 0.009	0.491 ± 0.011	0.503 ± 0.005	0.512 ± 0.011	0.587 ± 0.010	0.632 ± 0.007
	7	0.412 ± 0.013	0.439 ± 0.008	0.420 ± 0.005	0.451 ± 0.012	0.462 ± 0.010	0.479 ± 0.017	0.531 ± 0.003	0.569 ± 0.004
	11	0.402 ± 0.009	0.413 ± 0.010	0.405 ± 0.013	0.422 ± 0.005	0.427 ± 0.012	0.431 ± 0.006	0.523 ± 0.009	0.526 ± 0.011
	0	0.0591 ± 0.002	0.0591 ± 0.002	0.0591 ± 0.002	0.0591 ± 0.002	0.0591 ± 0.002	0.0591 ± 0.002	0.0591 ± 0.002	0.0591 ± 0.002

TBARS (mg	2	0.351 ± 0.010	0.301 ± 0.008	0.338 ± 0.004	0.282 ± 0.006	0.285 ± 0.007	0.288 ± 0.004	0.286 ± 0.007	0.290 ± 0.026
MDA/kg	4	0.543 ± 0.013	0.391 ± 0.011	0.493 ± 0.009	0.383 ± 0.006	0.392 ± 0.007	0.388 ± 0.004	0.391 ± 0.006	0.397 ± 0.018
meat)	7	0.632 ± 0.013	0.462 ± 0.008	0.521 ± 0.005	0.401 ± 0.003	0.411 ± 0.004	0.414 ± 0.007	0.422 ± 0.065	0.425 ± 0.011
	11	0.704 ± 0.009	0.533 ± 0.010	0.638 ± 0.013	0.423 ± 0.007	0.427 ± 0.003	0.433 ± 0.006	0.437 ± 0.006	0.444 ± 0.007

354

355

356 **Table 2**

357 Overview of the physicochemical analysis of meat wrapped with chemogenic-nanocomposites for 11 days of storage.

Parameter	Days	C-CS/0.5%ZnO NP	C-CS/1%ZnO NP	C-CS/1.5%ZnO NP	C-CS/2%ZnO NP	C-CS/2.5%ZnO NP
Weight loss (g)	0	30.000 ± 0.015				
	2	28.754 ± 0.030	28.881 ± 0.010	29.037 ± 0.021	29.322 ± 0.045	29.431 ± 0.025
	4	28.446 ± 0.040	28.372 ± 0.024	28.529 ± 0.029	28.617 ± 0.103	28.677 ± 0.017
	7	27.821 ± 0.022	27.955 ± 0.046	28.112 ± 0.051	28.255 ± 0.032	28.334 ± 0.033
	11	27.809 ± 0.042	27.813 ± 0.032	27.736 ± 0.043	28.243 ± 0.022	28.162 ± 0.022
pH	0	5.51 ± 0.038				
	2	6.32 ± 0.021	6.11 ± 0.040	6.01 ± 0.552	5.91 ± 0.031	5.89 ± 0.030
	4	6.74 ± 0.025	6.53 ± 0.031	6.40 ± 0.035	6.27 ± 0.040	6.02 ± 0.051
	7	6.95 ± 0.031	6.82 ± 0.033	6.61 ± 0.050	6.45 ± 0.025	6.31 ± 0.036
	11	7.21 ± 0.032	7.15 ± 0.031	6.94 ± 0.015	6.73 ± 0.026	6.50 ± 0.095
Hue angle (°)	0	63.66 ± 0.010				
	2	66.92 ± 0.036	67.43 ± 0.025	68.32 ± 0.022	70.09 ± 0.024	72.04 ± 0.050
	4	67.89 ± 0.041	68.54 ± 0.036	69.74 ± 0.038	71.54 ± 0.032	72.76 ± 0.034
	7	68.61 ± 0.032	68.91 ± 0.015	70.54 ± 0.026	72.65 ± 0.041	74.55 ± 0.048
	11	69.14 ± 0.100	72.31 ± 0.042	75.76 ± 0.021	77.82 ± 0.017	78.09 ± 0.045

	0	0.924 ± 0.002	0.924 ± 0.002	0.924 ± 0.002	0.924 ± 0.002	0.924 ± 0.002
	2	0.613 ± 0.003	0.735 ± 0.003	0.758 ± 0.004	0.791 ± 0.004	0.832 ± 0.003
Titratable acidity (%)	4	0.407 ± 0.003	0.559 ± 0.005	0.623 ± 0.004	0.697 ± 0.002	0.756 ± 0.021
citric acid	7	0.389 ± 0.003	0.502 ± 0.004	0.539 ± 0.003	0.583 ± 0.019	0.628 ± 0.042
equivalent)	11	0.352 ± 0.004	0.417 ± 0.003	0.462 ± 0.003	0.566 ± 0.035	0.582 ± 0.003
	0	0.0591 ± 0.002	0.0591 ± 0.002	0.0591 ± 0.002	0.0591 ± 0.002	0.0591 ± 0.002
	2	0.361 ± 0.004	0.365 ± 0.003	0.371 ± 0.004	0.359 ± 0.002	0.388 ± 0.002
TBARS (mg MDA/kg	4	0.389 ± 0.003	0.374 ± 0.003	0.393 ± 0.004	0.403 ± 0.004	0.408 ± 0.003
meat)	7	0.402 ± 0.002	0.397 ± 0.003	0.412 ± 0.003	0.417 ± 0.003	0.421 ± 0.003
	11	0.441 ± 0.003	0.453 ± 0.002	0.459 ± 0.004	0.481 ± 0.004	0.492 ± 0.004

358

359

360

361 3.3. *Hue angle*

362

363 The hue angle is indicative of the color of the sample. An increase in hue* signifies a discoloration process,
364 as the color shifts towards a more yellowish (90° and above) or greenish tone (Nouri A. et al., 2017). Initially,
365 the H° values were approximately 63.66°, indicating a reddish tone. After 11 days of refrigerated storage,
366 unwrapped meat showed values around 84.21°, signifying a color change. In contrast, the active films
367 maintained the color within the range of 68° to 79° throughout the shelf-life period, effectively preserving
368 the original reddish hue. Unlike the unwrapped sample, the typical red hue associated with poultry meat
369 was absent. The hue angle was lowest in the bio-nanocomposite, followed by the chemogenic-
370 nanocomposite, chitosan, PVA, and unwrapped samples (**Table 3** and **Table 4**). Chitosan's ability to bind
371 and neutralize iron (Fe³⁺) may have slowed down the oxidative process facilitated by this metal (Ghaderi et
372 al., 2014). The bio-nanocomposites had a positive impact on meat color, with protected samples exhibiting
373 higher brightness and redness, thereby enhancing visual appeal, and confirming sensory quality findings
374 (Mulla et al., 2017). Out of the various concentrations tested, the most effective formulation for minimizing
375 color alterations was found to be 0.5% biogenic ZnO NPs.

376 Suo B. et al. (2016) reported that ZnO NPs were integrated into carboxymethylcellulose (CMC) to create
377 coating films applied to fresh pork meat. The bio-nanocomposites positively influenced the meat's color,
378 with the protected samples showing increasing levels of brightness and redness throughout the storage
379 duration. The decrease in the a* value (indicating a loss of redness) during cold storage is attributed to the
380 oxidation process, which transforms oxymyoglobin into metmyoglobin (Ghaderi et al., 2014). In poultry
381 meat, iron mainly exists as heme iron, responsible for the red color, and is a crucial component of
382 hemoglobin, the protein that transports oxygen in red blood cells. The iron in heme is in the form of Fe²⁺
383 ions, with a positive charge of +2, easily absorbed by the human digestive system. Fe³⁺ ions with a charge of
384 +3, are not abundant in chicken meat but may be present in minimal amounts due to factors such as
385 oxidation from prolonged air exposure (Bahja et al., 2022). Chitosan incorporated with 2.5% of ZnO NPs
386 exhibited the highest hue angle, indicating a reduction in a*, resulting in discoloration.

387

388 3.4. *Lipid Peroxidation*

389

390 Lipid oxidation in food causes flavor changes, including off-flavors and rancid odors (Shankar & Rhim,
391 2016). Malondialdehyde (MDA) concentration serves as a biomarker for oxidative stress, indicating lipid
392 peroxidation extent (De Oliveira et al., 2020). These changes lead to consumer dissatisfaction and food
393 rejection (Vilarinho et al., 2018). According to Souza et al. (2018), consumers detect off-odors when the
394 TBARS value reaches 0.5 mg MDA/kg in pork patties. The unwrapped meat exhibited MDA levels of 0.5
395 mg/kg or higher starting from day 4, indicating the onset of rancidity (Souza et al., 2020). PVA surpassed
396 this threshold from day 5 onwards. Conversely, by day 9, the meat preserved with chitosan film had also

397 reached the threshold for off-flavor. The efficacy of chitosan in slowing down the process of oxidation in
398 meat can be credited to its outstanding ability to block oxygen and light (Al-Naamani et al., 2016).
399 Additionally, chitosan's chelating ability, which prevents the initiation of oxidative reactions by interacting
400 with metallic ions, particularly iron ions (Fe^{2+} to Fe^{3+}), effectively slows down the series of reactions
401 responsible for deteriorating the flavor and taste of food (Petrou et al., 2012). Samples protected with both
402 biogenic and chemogenic nanocomposites consistently maintained MDA levels below this threshold
403 throughout the entire assessment period (**Table 3** and **Table 4**). Therefore, it can be concluded that the
404 most effective formulation for reducing the oxidation reaction was found to be biogenic 0.5% ZnO NPs
405 among the various concentrations tested.

406 An evaluation of chicken breast meat stored in LDPE-Ag NP and LDPE-ZnO NP films revealed a quality
407 improvement (Panea et al., 2014). The findings indicated that films containing nanoparticles notably
408 delayed lipid oxidation compared to the control film. Additionally, Baek S.K. et al. (2018) noted that the
409 incorporation of ZnO NPs into films containing *Gracilaria vermiculophylla* extract exhibited antibacterial
410 properties and effectively slowed down the oxidation process in smoked salmon. The researchers suggested
411 that the reduced antimicrobial activity of the nanocomposite impacted lipid oxidation in the treated nano-
412 packaging, consistent with the findings of this study where the 0.5% bio-nanocomposite exhibited the
413 highest log reduction, while the 2.5% bio-nanocomposite exhibited the lowest log reduction (Sasidharan et
414 al., 2023).

415

416

417 **Table 3**

418 Overview of the microbiological study of meat wrapped with bio-nanocomposite throughout the storage period.

Parameter	Days	Unwrap	Chitosan	PVA	B-CS/0.5%ZnO	B-CS/1%ZnO	B-CS/1.5%ZnO	B-CS/2%ZnO	B-CS/2.5%ZnO
					NP	NP	NP	NP	NP
Total psychotropic aerobic microbial count (Log CFU/g meat)	0	3.427 ± 0.003	3.427 ± 0.003	3.427 ± 0.003	3.427 ± 0.003	3.427 ± 0.003	3.427 ± 0.003	3.427 ± 0.003	3.427 ± 0.003
Total mesophilic aerobic microbial count (Log CFU/g meat)	0	3.545 ± 0.004	3.545 ± 0.004	3.545 ± 0.004	3.545 ± 0.004	3.545 ± 0.004	3.545 ± 0.004	3.545 ± 0.004	3.545 ± 0.004
Enterobacteriaceae (Log CFU/g meat)	0	3.545 ± 0.004	3.545 ± 0.004	3.545 ± 0.004	3.545 ± 0.004	3.545 ± 0.004	3.545 ± 0.004	3.545 ± 0.004	3.545 ± 0.004
Total psychotropic aerobic microbial count (Log CFU/g meat)	2	6.172 ± 0.164	5.722 ± 0.127	5.764 ± 0.026	4.492 ± 0.060	5.253 ± 0.043	5.425 ± 0.064	5.842 ± 0.056	5.733 ± 0.018
Total mesophilic aerobic microbial count (Log CFU/g meat)	2	5.283 ± 0.050	4.753 ± 0.040	5.130 ± 0.088	4.744 ± 0.037	4.627 ± 0.009	4.772 ± 0.021	4.749 ± 0.007	4.654 ± 0.045
Enterobacteriaceae (Log CFU/g meat)	2	5.014 ± 0.086	4.517 ± 0.049	4.835 ± 0.057	3.977 ± 0.026	4.172 ± 0.097	4.217 ± 0.010	4.429 ± 0.006	4.326 ± 0.032
Total psychotropic aerobic microbial count (Log CFU/g meat)	4	8.355 ± 0.100	6.354 ± 0.110	7.929 ± 0.081	5.871 ± 0.060	6.834 ± 0.086	6.986 ± 0.050	6.942 ± 0.075	6.882 ± 0.100
Total mesophilic aerobic microbial count (Log CFU/g meat)	4	8.035 ± 0.157	6.848 ± 0.040	7.537 ± 0.072	6.119 ± 0.009	6.185 ± 0.005	6.326 ± 0.006	6.548 ± 0.005	6.767 ± 0.008
Enterobacteriaceae (Log CFU/g meat)	4	8.556 ± 0.055	7.257 ± 0.044	8.013 ± 0.066	7.021 ± 0.082	7.064 ± 0.005	7.258 ± 0.008	7.325 ± 0.070	7.443 ± 0.026
Total psychotropic aerobic microbial count (Log CFU/g meat)	7	8.794 ± 0.100	8.035 ± 0.105	8.207 ± 0.080	7.331 ± 0.056	7.546 ± 0.060	7.813 ± 0.052	7.534 ± 0.069	7.916 ± 0.030
Total mesophilic aerobic microbial count (Log CFU/g meat)	7	8.832 ± 0.054	7.879 ± 0.075	8.194 ± 0.073	7.552 ± 0.030	7.632 ± 0.014	7.913 ± 0.064	8.032 ± 0.061	8.115 ± 0.119
Enterobacteriaceae (Log CFU/g meat)	7	7.557 ± 0.034	6.336 ± 0.078	7.327 ± 0.025	5.198 ± 0.046	5.328 ± 0.016	5.817 ± 0.016	5.923 ± 0.022	6.057 ± 0.075
Total psychotropic aerobic microbial count (Log CFU/g meat)	11	9.317 ± 0.115	8.327 ± 0.076	8.546 ± 0.065	7.576 ± 0.064	7.724 ± 0.075	7.946 ± 0.051	8.037 ± 0.009	8.151 ± 0.041
Total mesophilic aerobic microbial count (Log CFU/g meat)	11	8.832 ± 0.054	7.879 ± 0.075	8.194 ± 0.073	7.552 ± 0.030	7.632 ± 0.014	7.913 ± 0.064	8.032 ± 0.061	8.115 ± 0.119
Enterobacteriaceae (Log CFU/g meat)	11	8.039 ± 0.058	7.419 ± 0.015	7.894 ± 0.029	6.034 ± 0.043	6.113 ± 0.088	6.215 ± 0.030	6.547 ± 0.019	6.834 ± 0.054

419

420

421

422

423 **Table 4**

424 Overview of the microbiological study of meat wrapped with chemogenic-nanocomposite throughout the storage period.

Parameter	Days	C-CS/0.5%ZnO NP	C-CS/1%ZnO NP	C-CS/1.5%ZnO NP	C-CS/2%ZnO NP	C-CS/2.5%ZnO NP
Total psychotropic aerobic microbial count (Log CFU/g meat)	0	3.558 ± 0.003	3.558 ± 0.003	3.558 ± 0.003	3.558 ± 0.003	3.558 ± 0.003
Total mesophilic aerobic microbial count (Log CFU/g meat)	0	3.661 ± 0.004	3.661 ± 0.004	3.661 ± 0.004	3.661 ± 0.004	3.661 ± 0.004
Enterobacteriaceae (Log CFU/g meat)	0	3.661 ± 0.004	3.661 ± 0.004	3.661 ± 0.004	3.661 ± 0.004	3.661 ± 0.004
	2	4.882 ± 0.100	4.903 ± 0.032	5.603 ± 0.040	5.912 ± 0.016	5.501 ± 0.005
	4	6.339 ± 0.047	6.924 ± 0.032	7.201 ± 0.018	7.346 ± 0.055	6.981 ± 0.002
	7	7.329 ± 0.003	7.757 ± 0.045	7.938 ± 0.056	8.071 ± 0.021	8.145 ± 0.085
	11	7.618 ± 0.040	7.991 ± 0.068	8.173 ± 0.032	8.224 ± 0.023	8.367 ± 0.005
	0	4.710 ± 0.014	4.519 ± 0.011	5.132 ± 0.015	5.337 ± 0.019	5.459 ± 0.004
	4	6.032 ± 0.042	6.494 ± 0.050	6.554 ± 0.066	6.735 ± 0.029	7.880 ± 0.017
	7	7.118 ± 0.018	7.382 ± 0.026	7.618 ± 0.087	7.734 ± 0.007	7.923 ± 0.020
	11	7.457 ± 0.021	7.941 ± 0.026	8.119 ± 0.007	7.112 ± 0.007	8.215 ± 0.031
	0	4.032 ± 0.123	4.219 ± 0.153	4.338 ± 0.054	4.719 ± 0.013	4.832 ± 0.100
	4	4.773 ± 0.059	4.923 ± 0.023	5.386 ± 0.009	5.442 ± 0.029	5.892 ± 0.016
	7	5.271 ± 0.040	5.532 ± 0.011	5.905 ± 0.009	6.116 ± 0.010	6.328 ± 0.009
	11	6.242 ± 0.015	6.394 ± 0.023	6.477 ± 0.086	6.648 ± 0.018	6.943 ± 0.015

425

426 3.5. Microbiological Growth (TPAM, TMAM, and Enterobacteriaceae)

427

428 Microbial growth is a key factor influencing the shelf life of perishable items such as meat. The samples
429 exhibited a natural degradation process, as indicated by an increase in bacterial counts for all strains
430 analyzed (Silva et al., 2018). The nanocomposite-packaged poultry meat underwent an assessment for
431 TPAM, TMAM as well as *Enterobacteriaceae* throughout the refrigerated preservation. Further information
432 on the outcomes of microbial growth is provided in **Table 3** and **Table 4**.

433 Unwrapped poultry meat showed higher levels of contamination and more rapid microbial growth, as
434 reported by Gutiérrez et al. (2017). Both total mesophilic and psychotropic aerobic microorganisms
435 exhibited similar patterns, although the count of psychotropic microorganisms slightly exceeded that of
436 mesophilic ones. This observation is attributed to the refrigerated storage conditions, which favor the
437 proliferation of preexisting contaminants. It is essential to assess psychotropic microorganisms in poultry
438 meat samples, especially during refrigerated storage, as many cold-adapted strains are associated with
439 spoilage, and some may pose pathogenic risks (Souza et al., 2020).

440 According to Regulation No. 2073/2005 of the European Commission (EC), food products should not
441 contain microorganisms or their toxins or metabolites in amounts that pose an unacceptable risk to human
442 health. For noncooked minced meat, the maximum limit for aerobic colony counting is set at 6.70 log CFU/g
443 of meat. Exceeding this threshold indicates a need to enhance hygienic production practices and/or select
444 better raw materials (Souza et al., 2020).

445 Psychotropic aerobic microorganism contamination commenced at 3.427 log CFU/g of meat. The highest
446 bacterial growth level recorded after 11 days of storage was 9.317 log CFU/g of meat in unwrapped samples.
447 In contrast, poultry samples wrapped with PVA, and chitosan exhibited lower contamination levels of 8.546
448 and 8.327 log CFU/g of meat, respectively. Samples wrapped with biogenic and chemogenic films
449 experienced a less pronounced increase, ranging from 7.5 to 8.2 and 7.6 to 8.4 log CFU/g of meat,
450 respectively (**Table 3** and **Table 4**). Regarding TPAM, unwrapped and PVA-wrapped meat exceeded 7 log
451 CFU/g by day 3, while meat protected with chitosan film reached this threshold value by day 5. The
452 maximum limit for chemogenic-nanocomposites enveloped in 0.5% was reached by day 6, with 1%
453 achieved by day 5, 1.5% by day 4, 2% by day 4, and 2.5% by day 5 (**Table 4**). However, meats wrapped in
454 bio-nanocomposites reached the maximum limit by day 6 (**Table 3**). Among the concentrations tested, the
455 optimal formulation for minimizing microbiological growth was determined to be biogenic 0.5% of ZnO
456 NPs.

457 A similar pattern was observed in TMAM, with initial bacterial growth recorded at 3.545 log CFU/g of meat.
458 The highest level of bacterial growth attained after 11 days of storage was 8.832 log CFU/g of meat in
459 unwrapped samples. Conversely, poultry samples wrapped with PVA, and chitosan exhibited lower
460 contamination levels of 8.194 and 7.879 log CFU/g of meat, respectively. Samples wrapped with biogenic
461 and chemogenic films experienced a less notable increase, ranging from 7.5 to 8.1 and 7.5 to 8.2 log CFU/g
462 of meat, respectively (**Table 3** and **Table 4**). Unwrapped and PVA-wrapped meats reached the maximum

463 limit by day 3, followed by chitosan-wrapped meats reaching this limit by day 5. The maximum limit for
464 chemogenic-nanocomposites enveloped in concentrations of 0.5% to 1.5% was reached by day 7, while for
465 2% it was achieved by day 5, and for 2.5% by day 4 (**Table 4**). However, meats wrapped in bio-
466 nanocomposites reached the maximum limit by day 7 (**Table 3**).

467 It was noted that 2.5% of biogenic biofilms and 1%, 1.5%, 2%, and 2.5% of chemogenic biofilms exhibited
468 higher microbial growth compared to the chitosan film (**Table 3** and **Table 4**). This could be attributed to
469 a positive interaction between chemogenic ZnO NPs and the chitosan matrix, resulting in a reduction in the
470 availability of active groups, specifically the amino groups of chitosan, for microbial interaction.
471 Consequently, this leads to a decrease in antimicrobial effectiveness (Souza et al., 2019). The film displayed
472 diminished antimicrobial properties with the addition of 2.5% ZnO NPs. This finding is consistent with a
473 prior study where the film containing 2.5% ZnO NP exhibited the lowest log reduction against microbial
474 strains (Sasidharan et al., 2023). In summary, the most effective formulation for minimizing microbial
475 growth was determined to be biogenic 0.5% of ZnO NPs among the various concentrations tested.

476 The initial contamination levels of both biogenic and chemogenic biofilms in mesophilic aerobic
477 microorganisms were recorded at 3.545 and 3.661 log CFU/g, respectively. The initial bacterial growth for
478 both mesophilic and psychotropic strains fell within the upper limits specified by European regulations for
479 ground meat, namely 3.46 log CFU/g of meat and 3.81 log CFU/g of meat, correspondingly. These findings
480 aligned with prior research, which reported contamination levels ranging from 4.0 log CFU/g (Noshirvani
481 et al., 2017) to 4.85 log CFU/g (Petrou et al., 2012) for freshly sourced chicken breast meat.

482 This technology effectively preserves the food item, prolonging its shelf life by a minimum of 1–2 days, as
483 shown in **Table 3** and **Table 4**. Natural polymers delay the growth of microbes in contrast to meat left
484 unwrapped, however, they do not completely prevent it. Microbial proliferation likely occurs near the
485 biofilm inhibition zone, as observed during antibacterial testing, while other microbes nearby continue to
486 multiply. Similar patterns in film behavior have been seen in previous studies (Souza et al., 2019). For
487 instance, Emamifar et al. (2010) noted that the total count of aerobic bacteria in orange juice stored with
488 LDPE-1% ZnO NPs increased after a week, resembling the trend in the control group. Similarly, strawberries
489 wrapped in LDPE containing 3% ZnO NPs showed a decrease in aerobic counts until day 4, followed by an
490 increase on day 8 (Pires et al., 2021).

491 The European Food Safety Authority (EFSA) suggests monitoring and examining *Enterobacteriaceae* in both
492 the production environment and the end food product is mandatory. It is crucial to understand that the
493 *Enterobacteriaceae* family comprises both harmful and harmless species commonly encountered in food
494 production environments. Harmless species in this family do not present health hazards. Consequently,
495 routine monitoring of *Enterobacteriaceae* does not automatically imply a health risk, as it encompasses both
496 harmless and potentially harmful members (Kanatt et al., 2012).

497 In *Enterobacteriaceae*, initial bacterial growth was recorded at 3.545 log CFU/g of meat. The highest
498 contamination level reached after 11 days of storage was 8.039 log CFU/g of meat in unprotected samples.
499 In contrast, poultry samples wrapped with PVA, and chitosan showed lower contamination levels of 7.894

500 and 7.419 log CFU/g of meat, respectively (**Table 3** and **Table 4**). Samples wrapped with biogenic and
501 chemogenic films experienced a notably lesser increase, ranging from 6.0 to 6.8 and 6.2 to 6.9 log CFU/g of
502 meat, respectively. Unwrapped and PVA-wrapped samples reached the maximum limit by day 6, whereas
503 chitosan-wrapped samples reached it by day 10. Chemogenic and bio-nanocomposite-wrapped samples did
504 not exceed the threshold until day 11 of the storage period (**Table 3** and **Table 4**). The protected samples
505 consistently maintained a lower level of contamination compared to the unwrapped meat sample. Overall,
506 the most effective formulation for minimizing microbiological growth was determined to be biogenic 0.5%
507 of ZnO NPs among the various concentrations tested.

508 Petrou et al. (2012) reported a similar quantification of *Enterobacteriaceae* in chicken breast meat,
509 indicating an initial contamination level of approximately 3 log CFU/g of meat. By the end of 12 days of
510 modified atmosphere packaging (MAP) and refrigerated storage, the contamination level reached its peak
511 at 6 log CFU/g of meat. The study investigated the impact of the dipping method on chitosan, either alone
512 or combined with oregano essential oil, and found that both treatments reduced *Enterobacteriaceae* counts
513 by approximately 3–4 logarithmic colony-forming units (CFU) per gram of meat. This discovery is
514 consistent with the results of our study.

515

516 *3.6. Zinc Migration*

517

518 In the assessment of materials designed for direct contact with food, it is crucial to analyze both overall
519 migration and potential toxic effects, as highlighted by Souza et al. (2020). According to the CEF Panel of
520 the European Food Safety Authority (EFSA), responsible for evaluating food contact materials such as
521 enzymes, flavorings, and processing aids, it was concluded by Souza et al. (2018) that nanoscale ZnO is
522 unlikely to undergo migration. Consequently, the primary focus of safety assessment lies in the migration
523 of Zn ions. In 2003, the CEF Panel recommended a maximum threshold of 25 mg per 100 grams per
524 individual daily for food contact materials, enzymes, flavorings, and processing aids, as documented by
525 Souza et al. (2020). Under these recommendations, the collective zinc levels in fresh poultry meat were
526 evaluated both initially and after 11 days of refrigerated storage across all utilized bio-nanocomposites,
527 with detailed results provided in **Table 5**.

528

529

530

531

532

533

534 **Table 5**

535 The migration of Zn of biogenic and chemogenic-nanocomposite into poultry meat.

Sample	Zinc Concentration (mg Zn / kg Fresh Meat)	Percentage of zinc diffused (mg Zn Diffused/ Maximum Limit)
Initial Zinc Content – day 0	15.323 ± 0.004	-
Unwrapped – day 11	15.900 ± 0.003	-
Chitosan – day 11	17.481 ± 0.002	-
Bio-nanocomposite		
B-CS/0.5%ZnO NP – day 11	50.511 ± 0.003	75.69 ± 0.006
B-CS/1%ZnO NP – day 11	59.376 ± 0.004	59.67 ± 0.010
B-CS/1.5%ZnO NP – day 11	67.022 ± 0.003	50.46 ± 0.008
B-CS/2%ZnO NP – day 11	71.556 ± 0.004	46.23 ± 0.021
B-CS/2.5%ZnO NP – day 11	74.328 ± 0.002	43.98 ± 0.020
Chemogenic-nanocomposite		
C-CS/0.5%ZnO NP – day 11	66.581 ± 0.002	50.92 ± 0.007
C-CS/1%ZnO NP – day 11	73.781 ± 0.006	44.41 ± 0.011
C-CS/1.5%ZnO NP – day 11	89.215 ± 0.006	34.85 ± 0.015
C-CS/2%ZnO NP – day 11	99.668 ± 0.006	30.42 ± 0.018
C-CS/2.5%ZnO NP – day 11	103.553 ± 0.005	29.05 ± 0.027

536

537 The initial concentration of zinc ions was at 15.323 mg/kg of meat, which closely corresponds to the official
 538 guideline from the Portuguese database (PortFIR) suggesting 8 mg/kg for chicken breast (INSA PortFIR,
 539 2020). Over time, there was a minimal increase observed in unwrapped meat and chitosan, while poultry
 540 meat enveloped by bio-nanocomposites showed a significant rise in zinc levels (**Table 5**), likely attributed
 541 to the transfer of zinc from the packaging material (ZnO NPs) into the food.

542 An observed concentration effect was noted, as the sample enveloped with CS/2.5% ZnO NP exhibited the
 543 highest zinc content. With increased levels of added zinc, the percentage diffusion of zinc content relative
 544 to the incorporated amount declined. The rise in total zinc content in the bio-nanocomposite varied from
 545 33.030 to 56.847 mg Zn/kg, while in the chemogenic-nanocomposite, it ranged from 49.100 to 86.072 mg
 546 Zn/kg (**Table 5**). Since the suggested maximum daily intake of zinc at 25 mg per individual, a moderate
 547 portion of fresh poultry meat (100g) could contain 0.803 to 3.185 mg Zn/100g, constituting 3.21% to
 548 12.74% of the daily maximum limit in the bio-nanocomposite, whereas the chemogenic-nanocomposite
 549 yields 2.411 to 6.107 mg Zn/100g, equivalent to 9.64% to 24.43% of the maximum limit (**Table 5**). Poultry
 550 meat wrapped in biogenic films contributed to a lower diffusion of zinc compared to chemogenic films.
 551 However, further research is necessary to assess its safety concerning consumer exposure.

552 While numerous studies have examined the antimicrobial characteristics of ZnO and its migration into food
553 simulants, research on its migration into meat products, particularly raw meat, remains scarce (Abu-Thabit
554 et al., 2020). The principal mechanism of zinc migration entails the dissolution of zinc ions from the material
555 into the surrounding medium, with the solubility of zinc compounds like ZnO dictating the degree of ion
556 dissolution. Once zinc ions are liberated into the surrounding medium, they can diffuse through the material
557 matrix, moving from regions of higher concentration to lower concentration.

558 The introduction of ZnO NPs at a concentration of 0.5% led to high water vapor permeability and low tensile
559 strength, facilitating improved processes involving zinc ions (Gasti et al., 2022). This corresponds with the
560 in vitro antimicrobial efficacy of the bio-nanocomposites, where the 0.5% bio-nanocomposite
561 demonstrated the most significant inhibition of bacterial growth due to exceptional diffusion of bioactive
562 components into the medium (**Table 5**) (Rahman et al., 2017). While daily consumption of fresh poultry
563 meat wrapped with these bio-nanocomposites seems safe according to current findings, further
564 investigations into these biobased products are crucial to fully grasp the potential risks associated with
565 consumer exposure.

566 Certainly, the quality of fresh meat is predominantly affected by the existence and proliferation of spoilage
567 and harmful microorganisms, along with oxidation. Inadequate preservation and handling can lead to
568 microbial contamination of these products (Shankar et al., 2015). Therefore, employing preservatives with
569 antimicrobial characteristics and adopting active packaging techniques like thin films or coatings can be
570 beneficial. This strategy aims to enhance both the excellence and security of the food (Khalid et al., 2017).

571

572 **4. Conclusion and Recommendations**

573 The study focused on incorporating ZnO NP into a chitosan matrix as an eco-friendly alternative to non-
574 biodegradable packaging. The bio-nanocomposite showed enhanced physicochemical properties in terms
575 of pH, reduction in titratable acidity, and discoloration process. The chicken sample wrapped with bio-
576 nanocomposite exhibited the lowest colony count in TPAM and TMAM, as well as the decreased level of
577 TBARS, followed by chemogenic-nanocomposites, chitosan, PVA, and unwrapped. Higher Zn concentration
578 increased zinc content in poultry meat, but the percentage diffused relative to the incorporated amount
579 decreased at higher levels. The primary method for assessing the preservation of meat involves measuring
580 TBARS to determine the development of off-flavors and microbiological growth, which determines the
581 shelf-life. Off-flavor begins on day 10 in chitosan-wrapped meat, exceeding the maximum limit of microbial
582 growth on day 4. Additionally, chemogenic and biogenic-wrapped meats maintain the off-flavor limit until
583 day 11; however, they exceed the maximum limit of microbial growth on day 5 and day 6, respectively.
584 Therefore, biogenic nanocomposite showed the best in all parameters including weight, pH, titratable
585 acidity, hue angle, TBARS, microbiological growth, and zinc migration, however, among all the
586 concentrations, it can be chosen that biogenic 0.5% ZnO NP acted as the best formulation. While ZnO is an
587 essential mineral and is listed as generally recognized as safe (GRAS), further studies are required to
588 evaluate its safety concerning consumer exposure. In summary, conducting an MTT assay will reveal the

589 cytotoxic effects of ZnO NPs. Similarly, analyzing the gut microbiome will offer insights into the composition
590 and function of microbial communities in the gastrointestinal tract. Together, these studies will provide
591 valuable data to understand the risks of ZnO exposure for both consumers and the environment.

592

593 **Declaration of Competing Interest**

594 The authors declare that they have no known competing financial interests or personal relationships that
595 could have appeared to influence the work reported in this paper.

596

597 **Acknowledgments**

598 This study was supported by the Fundamental Research Grant Scheme, Ministry of Higher Education
599 (MOHE), Malaysia (FRGS/1/2021/STG02/UTAR/02/2) and Project Funding by King Saud University,
600 Riyadh, Saudi Arabia (RSP2024R367).

601

602 **References**

603 Abu-Thabit, N., Hakeem, A. S., Mezghani, K., Ratemi, E., Elzagheid, M., Umar, Y., Primartomo, A., Batty, S. Al,
604 Azad, A. K., Anazi, S. Al, & Ahmad, A. (2020). Preparation of ph-indicative and flame-retardant
605 nanocomposite films for smart packaging applications. *Sensors (Switzerland)*, 20(19), 1-22.
606 <https://doi.org/10.3390/s20195462>

607 A.G. Soares Silva, F., Bento de Carvalho, T., Dourado, F., Gama, M., Teixeira, P., & Poças, F. (2023).
608 Performance of bacterial nanocellulose packaging film functionalised in situ with zinc oxide:
609 Migration onto chicken skin and antimicrobial activity. *Food Packaging and Shelf Life*, 39, 342-347.
610 <https://doi.org/10.1016/j.fpsl.2023.101140>

611 Al-Naamani, L., Dobretsov, S., & Dutta, J. (2016). Chitosan-zinc oxide nanoparticle composite coating for
612 active food packaging applications. *Innovative Food Science and Emerging Technologies*, 38, 231-237.
613 <https://doi.org/10.1016/j;ifset.2016.10.010>

614 AOAC (2016). Official methods of analysis of the association of official analytical chemists (20th ed.).

615 Bahja, J., Stewart, N. A., & Dymond, M. K. (2022). Oxidative stress is inhibited by plant-based supplements:
616 A quantitative lipidomic analysis of antioxidant activity and lipid compositional change. *Advances in
617 Redox Research*, 6, 100054. <https://doi.org/10.1016/j.arres.2022.100054>

618 Barbut, S. (2009). Pale, soft, and exudative poultry meat-Reviewing ways to manage at the processing
619 plant. *Poultry Science*, 88(7), 1506-1512. <https://doi.org/10.3382/ps.2009-00118>

620 De Oliveira, F. L., Arruda, T. Y. P., Da Silva Lima, R., Casarotti, S. N., & Morzelle, M. C. (2020). Pomegranate as
621 a natural source of phenolic antioxidants. *Journal of Food Bioactives*, 9, 23-25
622 <https://doi.org/10.31665/jfb.2020.9214>

623 Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2010). Evaluation of nanocomposite
624 packaging containing Ag and ZnO on shelf life of fresh orange juice. *Innovative Food Science and
625 Emerging Technologies*, 11(4), 742-748. <https://doi.org/10.1016/j;ifset.2010.06.003>

626 Freitas, D. S., Teixeira, P., Pinheiro, I. B., Castanheira, E. M. S., Coutinho, P. J. G., & Alves, M. J. (2022).
627 Chitosan Nano/Microformulations for Antimicrobial Protection of Leather with a Potential Impact in
628 Tanning Industry. *Materials*, 15(5), 19-21. <https://doi.org/10.3390/ma15051750>

629 Gasti, T., Dixit, S., Hiremani, V. D., Chougale, R. B., Masti, S. P., Vootla, S. K., & Mudigoudra, B. S. (2022).
630 Chitosan/pullulan based films incorporated with clove essential oil loaded chitosan-ZnO hybrid
631 nanoparticles for active food packaging. *Carbohydrate Polymers*, 277, 22-26.
632 <https://doi.org/10.1016/j.carbpol.2021.118866>

633 Geueke, B., Groh, K., & Muncke, J. (2018). Food packaging in the circular economy: Overview of chemical
634 safety aspects for commonly used materials. In *Journal of Cleaner Production* (Vol. 193, pp. 491–
635 505). Elsevier Ltd. <https://doi.org/10.1016/j.jclepro.2018.05.005>

636 Ghaderi, M., Mousavi, M., Yousefi, H., & Labbafi, M. (2014). All-cellulose nanocomposite film made from
637 bagasse cellulose nanofibers for food packaging application. *Carbohydrate Polymers*, 104(1), 59–65.
638 <https://doi.org/10.1016/j.carbpol.2014.01.013>

639 Gutiérrez, T. J., Ponce, A. G., & Alvarez, V. A. (2017). Nano-clays from natural and modified montmorillonite
640 with and without added blueberry extract for active and intelligent food nanopackaging materials.
641 *Materials Chemistry and Physics*, 194, 283–292.
642 <https://doi.org/10.1016/j.matchemphys.2017.03.052>

643 Kanatt, S. R., Rao, M. S., Chawla, S. P., & Sharma, A. (2012). Active chitosan-polyvinyl alcohol films with
644 natural extracts. *Food Hydrocolloids*, 29(2), 290–297.
645 <https://doi.org/10.1016/j.foodhyd.2012.03.005>

646 Kaya, E., Kahyaoglu, L. N., & Sumnu, G. (2022). Development of curcumin incorporated composite films
647 based on chitin and glucan complexes extracted from Agaricus bisporus for active packaging of
648 chicken breast meat. *International Journal of Biological Macromolecules*, 221, 536–546.
649 <https://doi.org/10.1016/j.ijbiomac.2022.09.025>

650 Khalid, A., Khan, R., Ul-Islam, M., Khan, T., & Wahid, F. (2017). Bacterial cellulose-zinc oxide
651 nanocomposites as a novel dressing system for burn wounds. *Carbohydrate Polymers*, 164, 214–221.
652 <https://doi.org/10.1016/j.carbpol.2017.01.061>

653 Liu, J., Huang, J., Hu, Z., Li, G., Hu, L., Chen, X., & Hu, Y. (2021). Chitosan-based films with antioxidant of
654 bamboo leaves and ZnO nanoparticles for application in active food packaging. *International Journal
655 of Biological Macromolecules*, 189, 363–369. <https://doi.org/10.1016/j.ijbiomac.2021.08.136>

656 Marzlan, A. A., Muhialdin, B. J., Zainal Abedin, N. H., Manshoor, N., Ranjith, F. H., Anzian, A., & Meor Hussin,
657 A. S. (2022). Incorporating torch ginger (Etlingera elatior Jack) inflorescence essential oil onto
658 starch-based edible film towards sustainable active packaging for chicken meat. *Industrial Crops and
659 Products*, 184, 412–423. <https://doi.org/10.1016/j.indcrop.2022.115058>

660 Matei, A., Stoian, M., Brincoveanu, O., & Tucureanu, V. (2023). Preparation and characterization of
661 nanocomposites based on chitosan with ZnO-Curcumin. *Ceramics International*, 49(12), 19829–
662 19839. <https://doi.org/10.1016/j.ceramint.2023.03.100>

663 Mirza, S., Hussaini, A. A., Öztürk, G., Turgut, M., Öztürk, T., Tugay, O., Ulukuş, D., & Yıldırım, M. (2023).
664 Photocatalytic and antibacterial activities of ZnO nanoparticles synthesized from Lupinus albus and
665 Lupinus pilosus plant extracts via green synthesis approach. *Inorganic Chemistry Communications*,
666 155, 66–71. <https://doi.org/10.1016/j.inoche.2023.111124>

667 Montazer, M., & Harifi, T. (2017). New approaches and future aspects of antibacterial food packaging: from
668 nanoparticles coating to nanofibers and nanocomposites, with foresight to address the regulatory
669 uncertainty. In *Food Packaging*, (Vol. 54, pp. 533–565). Elsevier. <https://doi.org/10.1016/b978-0-12-804302-8.00016-9>

671 Mulla, M., Ahmed, J., Al-Attar, H., Castro-Aguirre, E., Arfat, Y. A., & Auras, R. (2017). Antimicrobial efficacy of
672 clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. *Food
673 Control*, 73, 663–671. <https://doi.org/10.1016/j.foodcont.2016.09.018>

674 Noshirvani, N., Ghanbarzadeh, B., Rezaei Mokarram, R., & Hashemi, M. (2017). Novel active packaging
675 based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of
676 bread. *Food Packaging and Shelf Life*, 11, 106–114. <https://doi.org/10.1016/j.fpsl.2017.01.010>

677 Panea, B., Ripoll, G., González, J., Fernández-Cuello, Á., & Albertí, P. (2014). Effect of nanocomposite
678 packaging containing different proportions of ZnO and Ag on chicken breast meat quality. *Journal of*
679 *Food Engineering*, 123, 104–112. <https://doi.org/10.1016/j.jfoodeng.2013.09.029>

680 Petrou, S., Tsiraki, M., Gitrakou, V., & Savvaidis, I. N. (2012). Chitosan dipping or oregano oil treatments,
681 singly or combined on modified atmosphere packaged chicken breast meat. *International Journal of*
682 *Food Microbiology*, 156(3), 264–271. <https://doi.org/10.1016/j.ijfoodmicro.2012.04.002>

683 Pires, J., de Paula, C. D., Souza, V. G. L., Fernando, A. L., & Coelhoso, I. (2021). Understanding the barrier and
684 mechanical behavior of different nanofillers in chitosan films for food packaging. In *Polymers* (Vol.
685 13, Issue 5, pp. 1–29). MDPI AG. <https://doi.org/10.3390/polym13050721>

686 Rahman, P. M., Mujeeb, V. M. A., & Muraleedharan, K. (2017). Flexible chitosan-nano ZnO antimicrobial
687 pouches as a new material for extending the shelf life of raw meat. *International Journal of Biological*
688 *Macromolecules*, 97, 382–391. <https://doi.org/10.1016/j.ijbiomac.2017.01.052>

689 Sasidharan, S., Tey, L.-H., Djearamane, S., Khaizura Mahmud Ab Rashid, N., PA, R., Shing Wong, L., &
690 Cordelia Tanislaus Antony Dhanapal, A. (2023). Development of Novel Biofilm using Musa acuminata
691 (Waste Banana Leaves) mediated Biogenic Zinc Oxide Nanoparticles Reinforced with Chitosan
692 Blend. *Journal of King Saud University - Science* 16, 103080.
693 <https://doi.org/10.1016/j.jksus.2023.103080>

694 Shankar, S., & Rhim, J. W. (2016). Polymer Nanocomposites for Food Packaging Applications. In *Functional*
695 *and Physical Properties of Polymer Nanocomposites* 12 (pp. 29–55). Wiley Blackwell.
696 <https://doi.org/10.1002/9781118542316.ch3>

697 Shankar, S., Teng, X., Li, G., & Rhim, J. W. (2015). Preparation, characterization, and antimicrobial activity of
698 gelatin/ZnO nanocomposite films. *Food Hydrocolloids*, 45, 264–271.
699 <https://doi.org/10.1016/j.foodhyd.2014.12.001>

700 Silva, F., Domingues, F. C., & Nerín, C. (2018). Control microbial growth on fresh chicken meat using
701 pinosylvin inclusion complexes based packaging absorbent pads. *LWT*, 89, 148–154.
702 <https://doi.org/10.1016/j.lwt.2017.10.043>

703 Sobhan, A., Muthukumarappan, K., & Wei, L. (2021). Biosensors and biopolymer-based nanocomposites
704 for smart food packaging: Challenges and opportunities. In *Food Packaging and Shelf Life* (Vol. 30,
705 pp. 11–15). Elsevier Ltd. <https://doi.org/10.1016/j.fpsl.2021.100745>

706 Song, T., Qian, S., Lan, T., Wu, Y., Liu, J., & Zhang, H. (2022). Recent Advances in Bio-Based Smart Active
707 Packaging Materials. *Foods*, 11, Article 2228. <https://doi.org/10.3390/foods11152228>

708 Souza, V. G. L., Pires, J. R. A., Rodrigues, P. F., Lopes, A. A. S., Fernandes, F. M. B., Duarte, M. P., Coelhoso, I. M.,
709 & Fernando, A. L. (2018). Bionanocomposites of chitosan/montmorillonite incorporated with
710 Rosmarinus officinalis essential oil: Development and physical characterization. *Food Packaging and*
711 *Shelf Life*, 16, 148–156. <https://doi.org/10.1016/j.fpsl.2018.03.009>

712 Souza, V. G. L., Pires, J. R. A., Vieira, É. T., Coelhoso, I. M., Duarte, M. P., & Fernando, A. L. (2019). Activity of
713 chitosan-montmorillonite bionanocomposites incorporated with rosemary essential oil: From in
714 vitro assays to application in fresh poultry meat. *Food Hydrocolloids*, 89, 241–252.
715 <https://doi.org/10.1016/j.foodhyd.2018.10.049>

716 Souza, V. G. L., Rodrigues, C., Valente, S., Pimenta, C., Pires, J. R. A., Alves, M. M., Santos, C. F., Coelhoso, I. M.,
717 & Fernando, A. L. (2020). Eco-friendly ZnO/chitosan bionanocomposites films for packaging of fresh
718 poultry meat. *Coatings*, 10, Article 110. <https://doi.org/10.3390/coatings10020110>

719