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Abstract:

A novel nanocomposite was developed by integrating zinc oxide nanoparticles (ZnO NPs) into chitosan (CS)
matrix and investigated for its impact on the quality and shelf life of refrigerated poultry meat over 11 days.
Physicochemical properties including weight, pH, titratable acidity, color, thiobarbituric acid reactive
substances assay, microbiological growth studies encompassed total psychotropic and mesophilic aerobic
microorganisms, Enterobacteriaceae analyses, and zinc migration levels were conducted to determine the
optimal nanocomposite concentration. Results revealed that bio-nanocomposite exhibited superior
characteristics compared to chemogenic nanocomposite, chitosan, polyvinyl alcohol, and unwrapped
meats. Bio-nanocomposite with reduced unsaturated lipid content extends poultry shelf life to 7 days in
packaging, outperforming chemogenic-nanocomposites (5 days) and chitosan (4 days). This study proves
that CS/Zn0 NP nanocomposite is a promising active packaging material for meat, extending their shelf life
without deteriorating its physicochemical characteristics and supporting sustainability, though further

research on its toxicological properties is warranted.

Keywords: Biogenic Zinc oxide nanoparticles, chitosan, bio-nanocomposite, antimicrobial film, active

packaging, Food security
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1. Introduction

Bio-based polymeric films in food packaging are growing rapidly as a sustainable alternative to traditional
plastic materials (Marzlan et al., 2022). Biodegradable polymers, the next generation of plastics, have
environmental advantages over petroleum-based counterparts (Souza et al., 2019). Biopolymer films, while
holding promise as materials suitable for various packaging applications, are constrained by numerous
limitations that hinder their widespread adoption and effectiveness (Kaya et al., 2022). These include
insufficient mechanical strength, inferior barrier properties, water sensitivity, thermal stability, and shorter
shelflife (Sobhan etal., 2021). To add value to these next-generation plastics, incorporating nanotechnology
into active packaging is becoming important to improve antimicrobial and antioxidant properties and to
enhance food safety and quality preservation (Souza et al., 2018). The combination of bio-based polymers
and nanotechnology holds great promise for advancing sustainable food packaging (Montazer & Harifi,
2017).

Chitosan (CS), derived from chitin, is a widely available biopolymer with properties such as
biocompatibility, degradability, non-toxicity, and antimicrobial activity (Freitas etal., 2022). Chitosan-based
packaging, incorporating natural antimicrobial agents and metal nanoparticles like ZnO (CS/ZnO NP), is
becoming popular in the food industry due to increasing demand for preservative-free options. ZnO NPs
are known for their cost-effectiveness and strong antimicrobial properties (Darvishi et al., 2019). Surface
modification techniques can address aggregation issues caused by their hydrophilic nature and high surface

area, improving compatibility with the polymer matrix (Hajibeygi et al., 2018).

The study objective was to fabricate nanocomposites, innovatively synthesized for the first time, by
employing chitosan and ZnO NPs utilizing waste banana (Musa acuminata) leaves. This novel circular
economy approach minimizes waste generation, disconnecting economic growth from natural resource
consumption. It utilizes alternative raw materials to produce high-value products like primary packaging
for fresh poultry meat (Geueke et al., 2018). Nano-composite packaging by integrating biogenic and
chemogenic ZnO NP into a chitosan matrix (B-CS/ZnO NP and C-CS/ZnO NP) separately offers promising
potential for enhancing the preservation of poultry meat during storage. Through various physicochemical
properties, including weight, pH, titratable acidity, hue angle, thiobarbituric acid reactive substances
(TBARS), microbiological activity, and zinc migration. This study aims to identify the most effective
combination of CS/Zn0 NP active antimicrobial packaging among different concentrations. By storing the
poultry meat at4 + 2 °C for an extended period of 11 days, insights can be gained into how each combination
influences the meat's quality and safety over time. This comprehensive analysis will enable the selection of
the optimal concentration of nano-composite packaging that consistently demonstrates superior

performance across all evaluated parameters.
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2. Materials and Methods

Sodium hydroxide (NaOH) was purchased from Labmedical Science (Malaysia), ethanol absolute was
obtained from Synertec (Malaysia), trichloroacetic acid (TCA) was procured from Premier Diagnostics
(Malaysia), malondialdehyde (MDA) was obtained from Medigene (Malaysia), 1,1,3,3-tetraethoxypropane
(TEP) was provided from Synertec (Malaysia), Plate Count Agar (PCA) and Violet Red Bile Glucose (VRBG)
were supplied by Fc. Bios Sdn Bhd (Malaysia), and nitric acid (HNO3) was provided from GaiaScience

(Malaysia). All chemicals used were either of analytical or reagent grade.

2.1 Brief Methodology on the Synthesis of Biogenic and Chemogenic ZnO NP and Development of

Nanocomposite

In green synthesis, 2 g of zinc nitrate was mixed with 30 mL of M. acuminata leaf extract and heated at 60
°C on a hotplate until a dark brown paste formed. The paste was then calcinated at 400 °C for 2 hours using
a furnace from Nabertherm, Germany, resulting in pale white ZnO NP powder. In chemical synthesis, a
solution of 0.2 M zinc nitrate was combined with 0.4 M potassium hydroxide for an hour, followed by
centrifugation at 5000 rpm for 20 minutes. After washing, the paste underwent calcination at 400 °C for 2

hours using a furnace from Nabertherm, Germany, yielding white ZnO NP powder (Sasidharan et al., 2023).

Preparation of CS/Zn0O NP bio-nanocomposites involved dissolving 1.5% control film, chitosan (1.5 gin 100
mL deionized water from a deionizer (Favorit, Italy) in a 1% solution of glacial acetic acid under stirring for
1 hour. Biogenic and chemogenic ZnO NPs at concentrations of 0.5%, 1%, 1.5%, 2%, and 2.5%
weight/weight of chitosan were then separately added, followed by degassing in an ultrasound bath (360
Watt) (Selecta, Spain) for 15 minutes. The resulting mixture was cast into a petri dish and oven-dried for

16 hours (Souza et al,, 2020).

The detailed description of the methods for the synthesis, characterization, and antimicrobial
properties of ZnO NPs using waste banana (Musa acuminata) leaves and the development of
nanocomposite incorporating ZnO NP into a chitosan matrix, together with the physicochemical

properties and antimicrobial efficacy has been reported elsewhere (Sasidharan et al., 2023).

2.2. Detailed Methodology on Shelf Life and Toxicological Studies of Poultry Meat Wrapped in CS/ZnO NP

Nanocomposite

About 30 g of fresh poultry breast meat procured from a local wet market in Kampar district of Perak was
wrapped using bio-nanocomposites (9 cm X 15 cm) prepared from different concentrations of biogenic

(produced from waste M. acuminata leaves) and chemogenic ZnO NPs. Poultry samples were wrapped in
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biogenic and chemogenic nanocomposites and stored in plastic containers, meanwhile refrigerated at 4 + 2
°C for 11 days. The meat left unwrapped acted as the experimental control. The experiments were
conducted in triplicate. Physicochemical properties including weight loss, pH, titratable acidity, and hue
angle using the Association of Official Analytical Chemists method (AOAC, 2016), The thiobarbituric acid
reactive substances (TBARS), microbiological growth of total psychotropic aerobic microorganisms
(TPAM), total mesophilic aerobic microorganisms (TMAM), Enterobacteriaceae were conducted. Lastly, zinc

migration analysis of the poultry meat was carried out at specified intervals (days 0, 2, 4, 7, and 11).

2.2.1. pH

2 g of the poultry sample was homogenized in 20 mL of deionized water from a deionizer (Favorit, Italy),

then transferred to a beaker for pH measurement using a pH meter (Mettler Toledo, USA) at intervals of 0,
2, 4, 7, and 11-days during storage. The buffers used to calibrate pH meters typically included standard
solutions at pH 4.00, pH 7.00, and pH 10.00. This procedure was replicated for poultry meats wrapped in
C-CS/Zn0O NP nanocomposite.

2.2.2. Titratable acidity

A 30 mL of homogenized chicken extract was titrated with 0.1 M NaOH to a light pink endpoint using
phenolphthalein The measurement was taken every 0, 2, 4, 7, and 11 days of storage and the experiment
was repeated on poultry meats wrapped in C-CS/ZnO NP nanocomposite. The percentage of titratable

acidity was expressed as % citric acid on fresh poultry meat.

TAC (%) - 0.0064 X Titre x Volume made X100%

Volume of fresh chicken pulp x Volume of aliquot used for titration

2.2.3. Hue angle

The color of poultry meat was assessed using CIE-Lab* coordinates, where L ranges from 0 (black) to 100
(white), —-a denotes greenness while +a indicates redness, and -b signifies blueness while +b represents
yellowness using a CR 410 colorimeter from Minolta Co., Tokyo, Japan, equipped with a D65 illumination as
well as a visual angle set at 10°. Measurements were performed at intervals of 0, 2-, 4-, 7-, and 11-days
during storage. This procedure was also conducted for poultry meats wrapped in C-CS/ZnO NP

nanocomposite. The hue angle was determined utilizing a specified equation.

Hue angle = tan(b/a)™
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2.2.4. TBARS Assay

10 g of poultry meat was mixed with 20 mL of 7.5% trichloroacetic Acid (TCA), agitated for 30 minutes, and
filtrated. Then, 5 mL of the filtered solution was combined with an equal volume of 0.02 M thiobarbituric
Acid (TBA) and subjected to heating in a water bath (Memmert, Blichenbach, Germany) for 30 minutes at
80 °C, and the absorbance at 530 nm was measured using GENESYS 180 UV-vis spectrophotometer
(Thermo Scientific). The TBARS index was calculated using a calibration curve with known MDA
concentrations dissolved in TEP solution (0.2 M, 0.4 M, 0.6 M, 0.8 M, and 1.0 M). Measurements were
conducted at intervals of 0, 2, 4, 7, and 11-days during storage, with the experiment repeated for poultry
meats wrapped in CS/chemogenic ZnO NP nanocomposite. The findings were presented in terms of mg

MDA/kg of meat (Souza et al., 2020).

2.2.5. Determination of the Microbiological Growth of Poultry meat wrapped in biogenic and chemogenic-

nanocomposite using the Viable Cell Colony Count Method

1 mL of poultry samples wrapped with different concentrations of ZnO NPs was added into 9 mL of 0.8%
NaCl solution and further proceeded for serial dilution. From the serial dilutions, samples of TMAM and
TPAM were plated on PCA and incubated at 30 °C for 72 h or 7 °C for 168 h whereas Enterobacteriaceae was
plated on VRBG and at 30 °C for 24 h. Measurements were conducted at intervals of 0, 2, 4, 7, and 11 days
during storage, with the experiment repeated for poultry meats wrapped in C-CS/Zn0O NP nanocomposite.
The count of viable microbial colonies was determined, and findings were presented as log CFU (colony

forming units)/g of meat (Souza et al., 2020).

2.2.6 Total Migration of Zinc

A 50 g sample of poultry meat was subjected to mineralization in a furnace (Nabertherm, Germany) at 550
°C for 90 minutes. The resulting 0.3 g of ash residue was then combined with 10 mL of concentrated nitric
acid and subjected to acid digestion using a microwave digestor (Milestone Ethos Up, USA). The resulting
yellow liquid was diluted by a factor of 100 and subsequently used to determine the zinc concentration in
the packaged chicken meat employing atomic absorption spectrometry (Zeenit 700, Analytikjena, Jena,
Germany) on both days 0 and 11. The zinc content was initially measured before wrapping the chicken, and
then again on the 11th day after wrapping with nanocomposites. This procedure was replicated for poultry
meats wrapped in C-CS/ZnO NP nanocomposite. The results were expressed in units of mg Zn/kg fresh

meat (A.G. Soares Silva et al., 2023).

2.3. Statistical Analysis

One-way ANOVA analysis was conducted in SPSS 22, and Post hoc analysis was performed using the Tukey

test to further examine any significant differences. Statistical significance was defined as p < 0.05.
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3. Result and Discussion

The assessed meat exhibited an increase in weight loss, pH levels, and hue angle (H*) over its shelf life,
accompanied by a decline in titratable acidity. The elevated presence of unsaturated fats, which are
susceptible to oxidation, along with the proliferation of aerobic spoilage microorganisms (TPAM, TMAM,
and Enterobacteriaceae), renders poultry meat highly susceptible to spoilage. Meat exposed without
packaging exhibited more significant changes compared to biofilm-enclosed meat (Silva et al., 2018). The
physical changes of the meat in different packaging for 11 days are shown in Fig. 1. The changes in weight
loss, pH levels, hue angle (H*), titratable acidity, and TBARS of B-CS/ZnO NP, C-CS/ZnO NP, chitosan,
polyvinyl alcohol (PVA), and unwrapped meat are stated in Table 1 and Table 2.

3.1. Weight loss

The initial weight of the poultry meat was 30 g. However, after the refrigerated storage period, this value
exhibited a significant drop, peaking at 25.619 g for the unwrapped meat, and approximately 28 gand 27 g
for samples wrapped with the biogenic and chemogenic films, respectively (Table 3 and Table 4). Weight
reduction was the lowest in the bio-nanocomposite, followed by the chemogenic-nanocomposite, chitosan,
,and unwrapped samples. The film exhibited excellent water barrier attributes, characterized by its ability
to have minimal absorption of moisture and permit the passage of water vapor, limiting moisture uptake by
enhancing polymer chain interactions. This resulted in a more rigid and less flexible bio-nanocomposite,
leading to significantly lower weight loss. The reduced spaces between polymer chains made it harder for
water molecules to infiltrate the film (Song et al, 2022; Souza et al., 2019). Moreover, the interaction
between water molecules and zinc ions or functional groups in ZnO NPs within the film structure suggests
an interesting mechanism that enhances the mitigation of weight loss in poultry meat samples (Matei et al.,
2023). Therefore, it was concluded that the most efficient formulation for reducing weight loss was the bio-
nanocomposite with 2.5% ZnO NPs, primarily because of its greatest film thickness, which effectively

obstructed the entry of water vapor into the meat.

3.2. pH & Titratable Acidity

The pH level is associated with multiple aspects of meat quality, like color, texture, flavor, moisture retention
ability, and microbial resistance (Souza et al., 2020). Typically, the pH values of poultry meat fall within the
range of 5.2 to 7 (Barbut, 2009; Pires et al., 2021). Initially, the pH value was 5.51, peaking at 7.83 for the
unwrapped meat. However, the increase was less significant for samples wrapped with bio-based films. For

instance, meat shielded with Chit+2.5% ZnO NPs displayed the lowest pH value of 6.29 and 6.50 in both
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biogenic and chemogenic films, respectively, after 11 days of refrigerated storage, indicating it as the most
effective treatment compared to others. The pH values were lowest in the bio-nanocomposite, followed by
the chemogenic-nanocomposite, chitosan, PVA, and unwrapped samples (Table 3 and Table 4). Poultry
meat typically exhibits pH values between 5.2 and 7.0 (Souza et al., 2018). Over time, titratable acidity
declined, corresponding with the rise in pH. Titratable acidity exhibited the highest levels in the bio-
nanocomposite, followed by the chemogenic-nanocomposite, chitosan, PVA, and unwrapped samples. This
trend is attributed to the alkaline response during the spoilage process, which results in the formation of
amines and NH3 due to the release of free amino acids, as demonstrated by Karabagias et al., (2011). This
phenomenon is closely linked to the proliferation of microbes in meat products, as highlighted by Gomes et
al,, (2019). Previous research has established a relationship between the increase in pH levels in chicken
meat and bacterial growth. The rise in pH can be ascribed to the denaturation of proteins and the buildup
of amines and ammonia aided by psychotropic bacteria, which are commonly found in chicken meat, as
emphasized by Ghollasi-Mood et al. (2017). Similar results were observed with ZnO NPs incorporated into
carboxymethyl cellulose (CMC), showing a delay in the pH rise in refrigerated poultry meat (Suo et al,,
2016). The initial acidity levels for freshly cut pork meat were approximately 5.70. After a 14-day storage
period, the control film showed a pH of 8.85, whereas the meat coated with bio-nanocomposites exhibited
a significantly lower pH of 6.12. The authors attributed these findings to the antibacterial properties of the
films, which inhibited the generation of alkaline compounds responsible for pH elevation (Suo B. et al,,

2016).
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Table 1

Overview of the physicochemical analysis of meat wrapped with bio-nanocomposites for 11 days of storage.

Parameter Day Unwrap Chitosan PVA B-CS/0.5%Zn0 B-CS/1%Zn0 B-CS/1.5%Zn0 B-CS/2%Zn0 B-CS/2.5%Zn0
NP NP NP NP NP
0 30.000+0.015 30.000+0.015 30.000+0.015 30.000+0.015 30.000+0.015 30.000+0.015 30.000+0.015 30.0000.015
2 27.262 +0.006 28.148+0.025 27.506+0.035 29.222+0.015 29.403+0.020 29.502+0.025 29.724+0.015 29.843 +0.025
Weight loss 4 26.582 +0.025 27.785+0.036 27.352+0.020 29.047 £0.031 29.279+0.036 29.447 +0.010 29.327+0.020 29.475 £ 0.035
(g) 7 25.835+0.557 27.433+0.006 27.189+0.015 28.953+0.026 28.875+0.015 28.403+0.026 28.819+0.006 28.932 +(.042
11 25.619+0.025 27.369+0.021 26.367 £0.020 28.331+0.032 28.563+0.021 28.538+0.025 28.463+0.025 28.326+0.572
0 5.51+0.038 5.51+0.038 5.51+0.038 5.51+0.038 5.51+0.038 5.51+0.038 5.51+0.038 5.51+0.038
6.93 +0.070 6.47 +0.056 6.81+0.061 6.22 +0.096 5.90+0.361 5.83 £0.045 5.76 £0.118 5.69 £0.053
pH 4 7.32+0.062 6.61 + 0.047 7.01 +£0.078 6.33 £0.053 6.21 £ 0.053 6.08 £ 0.026 5.93+0.185 5.77 £0.071
7.57 £0.070 6.99 + 0.036 7.25+0.070 6.79 + 0.046 6.63 £0.051 6.49 £ 0.165 6.31+0.117 6.16 £ 0.140
11 7.83+0.060 7.39+0.075 7.61+0.059 7.01+0.085 6.81 £ 0.025 6.55+0.070 6.43 £0.017 6.29 £ 0.046
0 63.66 +0.010 63.66 +0.010 63.66 +0.010 63.66 +0.010 63.66 +0.010 63.66 +0.010 63.66 +0.010 63.66 +0.010
76.21+0.015 71.51+0.020 74.60 + 0.026 65.99 + 0.142 66.64 +0.010 66.32+0.010 67.78 £ 0.036 68.29 + 0.015
Hue angle 4 79.44 £ 0.010 73.16 £ 0.006 76.01 £ 0.061 67.64 +0.015 68.43 + 0.015 69.16 + 0.006 70.92 +0.010 71.96 £ 0.012
© 81.56 + 0.017 75.83+0.010 79.39 +0.015 68.05 + 0.041 68.90 + 01025 69.55 + 0.015 71.46 £ 0.012 73.54 +£0.010
11 84.21+0.032 79.33 +0.020 82.93£0.015 68.93 +0.012 70.12 +0.031 73.56 + 0.010 75.34+0.010 76.44 + 0.024
0 0.924 +0.002 0.924 +0.002 0.924 + 0.002 0.924 + 0.002 0.924 + 0.002 0.924 + 0.002 0.924 +0.002 0.924 +0.002
Titratable 0.572+0.010 0.594 +0.011 0.585 + 0.004 0.613 + 0.005 0.622 +0.014 0.646 + 0.012 0.691 +0.011 0.704 + 0.010
Acidity (% 4 0.451+0.013 0.482 + 0.005 0.472 +0.009 0.491 +0.011 0.503 + 0.005 0.512+0.011 0.587 £0.010 0.632 +0.007
citric acid 0.412 +0.013 0.439 +0.008 0.420 + 0.005 0.451 +0.012 0.462 +0.010 0.479 +0.017 0.531 +0.003 0.569 + 0.004
equivalent) 11 0.402 +0.009 0.413 +£0.010 0.405 +0.013 0.422 + 0.005 0.427 +0.012 0.431 +0.006 0.523 +0.009 0.526 +0.011
0 0.0591+0.002 0.0591+0.002 0.0591+0.002 0.0591+0.002 0.0591+0.002 0.0591+0.002 0.0591+0.002 0.0591 % 0.002

13
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TBARS (mg 0.351 £0.010 0.301 £ 0.008 0.338 £ 0.004 0.282 + 0.006 0.285 £ 0.007 0.288 + 0.004 0.286 £ 0.007 0.290 £ 0.026
MDA/kg 4 0.543 +£0.013 0.391 +0.011 0.493 + 0.009 0.383 £ 0.006 0.392 +0.007 0.388 + 0.004 0.391 £ 0.006 0.397 £0.018
meat) 0.632 +0.013 0.462 +0.008 0.521 £ 0.005 0.401 +0.003 0.411 + 0.004 0.414 + 0.007 0.422 +0.065 0.425 +£0.011
11 0.704 + 0.009 0.533+£0.010 0.638 £0.013 0.423 £ 0.007 0.427 £ 0.003 0.433 £ 0.006 0.437 £ 0.006 0.444 + 0.007

Table 2

Overview of the physicochemical analysis of meat wrapped with chemogenic-nanocomposites for 11 days of storage.

Parameter Days C-CS/0.5%ZnONP  C-CS/1%ZnONP  C-CS/1.5%ZnONP  C-CS/2%ZnONP  C-CS/2.5%ZnO NP
0 30.000  0.015 30.000 + 0.015 30.000 + 0.015 30.000 + 0.015 30.000 + 0.015
2 28.754 + 0.030 28.881 + 0.010 29.037 +0.021 29.322 +0.045 29.431+0.025
Weight loss (g) 4 28.446 + 0.040 28.372 +0.024 28.529 + 0.029 28.617 + 0.103 28.677 + 0.017
7 27.821+0.022 27.955 + 0.046 28.112 +0.051 28.255 £ 0.032 28.334 +0.033
11 27.809 + 0.042 27.813 +0.032 27.736 + 0.043 28.243 + 0.022 28.162 +0.022
0 5.51+0.038 5.51+0.038 5.51+0.038 5.51+0.038 5.51+0.038
6.32 0.021 6.11 + 0.040 6.01 £ 0.552 5.91 +0.031 5.89 £ 0.030
pH 4 6.74 +0.025 6.53 +0.031 6.40 + 0.035 6.27 + 0.040 6.02 +0.051
6.95 + 0.031 6.82 +0.033 6.61 +0.050 6.45 £ 0.025 6.31+0.036
11 7.21+0.032 7.15 +0.031 6.94 % 0.015 6.73 £0.026 6.50 +0.095
0 63.66 + 0.010 63.66 + 0.010 63.66 + 0.010 63.66 + 0.010 63.66 + 0.010
66.92 + 0.036 67.43 +0.025 68.32 + 0.022 70.09 + 0.024 72.04 + 0.050
Hue angle (°) 4 67.89  0.041 68.54 + 0.036 69.74 + 0.038 71.54 + 0.032 72.76 + 0.034
68.61 + 0.032 68.91+0.015 70.54 + 0.026 72.65 + 0.041 74.55 + 0.048
11 69.14 + 0.100 72.31 % 0.042 75.76 + 0.021 77.82 +0.017 78.09 + 0.045
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0 0.924 +0.002 0.924 +0.002 0.924 + 0.002 0.924 + 0.002 0.924 +0.002
2 0.613 £ 0.003 0.735 £ 0.003 0.758 £ 0.004 0.791 + 0.004 0.832 +0.003
Titratable acidity (% 4 0.407 £ 0.003 0.559 £ 0.005 0.623 + 0.004 0.697 £ 0.002 0.756 £ 0.021
citric acid 7 0.389 + 0.003 0.502 + 0.004 0.539 £ 0.003 0.583 £0.019 0.628 + 0.042
equivalent) 11 0.352 £ 0.004 0.417 +0.003 0.462 +0.003 0.566 £ 0.035 0.582 £ 0.003

0 0.0591 £ 0.002 0.0591 + 0.002 0.0591 £ 0.002 0.0591 £ 0.002 0.0591 £ 0.002
2 0.361 +0.004 0.365 £ 0.003 0.371 +0.004 0.359 £ 0.002 0.388 + 0.002
TBARS (mg MDA/kg 4 0.389 + 0.003 0.374 +0.003 0.393 + 0.004 0.403 + 0.004 0.408 + 0.003
meat) 7 0.402 + 0.002 0.397 £ 0.003 0.412 +0.003 0.417 £ 0.003 0.421 +0.003
11 0.441 + 0.003 0.453 £ 0.002 0.459 £ 0.004 0.481 + 0.004 0.492 + 0.004

358

359
360
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3.3. Hue angle

The hue angle is indicative of the color of the sample. An increase in hue* signifies a discoloration process,
as the color shifts towards a more yellowish (90° and above) or greenish tone (Nouri A. et al,, 2017). Initially,
the H° values were approximately 63.66°, indicating a reddish tone. After 11 days of refrigerated storage,
unwrapped meat showed values around 84.21°, signifying a color change. In contrast, the active films
maintained the color within the range of 68° to 79° throughout the shelf-life period, effectively preserving
the original reddish hue. Unlike the unwrapped sample, the typical red hue associated with poultry meat
was absent. The hue angle was lowest in the bio-nanocomposite, followed by the chemogenic-
nanocomposite, chitosan, PVA, and unwrapped samples (Table 3 and Table 4). Chitosan's ability to bind
and neutralize iron (Fe3*) may have slowed down the oxidative process facilitated by this metal (Ghaderi et
al,, 2014). The bio-nanocomposites had a positive impact on meat color, with protected samples exhibiting
higher brightness and redness, thereby enhancing visual appeal, and confirming sensory quality findings
(Mulla et al,, 2017). Out of the various concentrations tested, the most effective formulation for minimizing

color alterations was found to be 0.5% biogenic ZnO NPs.

Suo B. et al. (2016) reported that ZnO NPs were integrated into carboxymethylcellulose (CMC) to create
coating films applied to fresh pork meat. The bio-nanocomposites positively influenced the meat's color,
with the protected samples showing increasing levels of brightness and redness throughout the storage
duration. The decrease in the a* value (indicating a loss of redness) during cold storage is attributed to the
oxidation process, which transforms oxymyoglobin into metmyoglobin (Ghaderi et al., 2014). In poultry
meat, iron mainly exists as heme iron, responsible for the red color, and is a crucial component of
hemoglobin, the protein that transports oxygen in red blood cells. The iron in heme is in the form of Fe2*
ions, with a positive charge of +2, easily absorbed by the human digestive system. Fe3* ions with a charge of
+3, are not abundant in chicken meat but may be present in minimal amounts due to factors such as
oxidation from prolonged air exposure (Bahja et al., 2022). Chitosan incorporated with 2.5% of ZnO NPs

exhibited the highest hue angle, indicating a reduction in a*, resulting in discoloration.

3.4. Lipid Peroxidation

Lipid oxidation in food causes flavor changes, including off-flavors and rancid odors (Shankar & Rhim,
2016). Malondialdehyde (MDA) concentration serves as a biomarker for oxidative stress, indicating lipid
peroxidation extent (De Oliveira et al.,, 2020). These changes lead to consumer dissatisfaction and food
rejection (Vilarinho et al., 2018). According to Souza et al. (2018), consumers detect off-odors when the
TBARS value reaches 0.5 mg MDA/kg in pork patties. The unwrapped meat exhibited MDA levels of 0.5
mg/kg or higher starting from day 4, indicating the onset of rancidity (Souza et al., 2020). PVA surpassed

this threshold from day 5 onwards. Conversely, by day 9, the meat preserved with chitosan film had also
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reached the threshold for off-flavor. The efficacy of chitosan in slowing down the process of oxidation in
meat can be credited to its outstanding ability to block oxygen and light (Al-Naamani et al, 2016).
Additionally, chitosan's chelating ability, which prevents the initiation of oxidative reactions by interacting
with metallic ions, particularly iron ions (FeZ* to Fe3*), effectively slows down the series of reactions
responsible for deteriorating the flavor and taste of food (Petrou et al., 2012). Samples protected with both
biogenic and chemogenic nanocomposites consistently maintained MDA levels below this threshold
throughout the entire assessment period (Table 3 and Table 4). Therefore, it can be concluded that the
most effective formulation for reducing the oxidation reaction was found to be biogenic 0.5% ZnO NPs

among the various concentrations tested.

An evaluation of chicken breast meat stored in LDPE-Ag NP and LDPE-ZnO NP films revealed a quality
improvement (Panea et al, 2014). The findings indicated that films containing nanoparticles notably
delayed lipid oxidation compared to the control film. Additionally, Baek S.K. et al. (2018) noted that the
incorporation of ZnO NPs into films containing Gracilaria vermiculophylla extract exhibited antibacterial
properties and effectively slowed down the oxidation process in smoked salmon. The researchers suggested
that the reduced antimicrobial activity of the nanocomposite impacted lipid oxidation in the treated nano-
packaging, consistent with the findings of this study where the 0.5% bio-nanocomposite exhibited the
highest log reduction, while the 2.5% bio-nanocomposite exhibited the lowest log reduction (Sasidharan et

al, 2023).
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Table 3

Overview of the microbiological study of meat wrapped with bio-nanocomposite throughout the storage period.

Parameter Days Unwrap Chitosan PVA B-CS/0.5%Zn0 B-CS/1%Zn0 B-CS/1.5%Zn0 B-CS/2%Zn0 B-CS/2.5%Zn0
NP NP NP NP NP

0 3.427 +0.003 3.427 £0.003 3.427 £0.003 3.427 +0.003 3.427 +0.003 3.427 +0.003 3.427 +0.003 3.427 £0.003
Total psychotropic 2 6.172+0.164 5.722+0.127 5.764+0.026 4.492 +0.060 5.253+0.043 5.425+0.064 5.842+0.056 5.733+0.018
aerobic microbial 4 8.355+0.100 6.354+0.110 7.929+0.081 5.871+0.060 6.834+0.086 6.986 +0.050 6.942 +0.075 6.882 +0.100
count (Log CFU/g 7 8.794 +£0.100 8.035+0.105 8.207+0.080 7.331+0.056 7.546 +0.060 7.813 +0.052 7.534+0.069 7.916 £0.030
meat) 11 9.317+0.115 8.327+0.076 8.546+0.065 7.576 +0.064 7.724 £ 0.075 7.946 £ 0.051 8.037£0.009 8.151 +0.041
0 3.545+0.004 3.545+0.004 3.545+0.004 3.545+0.004 3.545+0.004 3.545+0.004 3.545+0.004 3.545+0.004
Total mesophilic 2 5.283+0.050 4.753+0.040 5.130+0.088 4.744 +0.037 4.627 +0.009 4.772+0.021 4.749 + 0.007 4.654 +0.045
aerobic microbial 4 8.035+0.157 6.848+0.040 7.537+0.072 6.119 +0.009 6.185+0.005 6.326 £0.006 6.548 +0.005 6.767 £0.008
count 7 8.556 £ 0.055 7.257 +0.044 8.013+0.066 7.021+0.082 7.064 +0.005 7.258 +0.008 7.325+0.070 7.443+0.026
(Log CFU/g meat) 11 8.832+0.054 7.879+0.075 8.194+0.073 7.552+0.030 7.632+0.014 7.913+0.064 8.032+0.061 8.115%0.119
0 3.545+0.004 3.545+0.004 3.545+0.004 3.545+0.004 3.545+0.004 3.545+0.004 3.545+0.004 3.545+0.004
Enterobacteriaceae 2 5.014+0.086 4.517 £0.049 4.835+0.057 3.977+0.026 4.172+0.097 4.217 £0.010 4429 £0.006 4.326 +0.032
(Log CFU/g meat) 4 6.835+0.021 5.944+0.008 6.514+0.006 4.624+0.007 4817 +0.044 5.034+0.056 5.315+0.018 5.718+0.019
7 7.557 £0.034 6.336+0.078 7.327 £0.025 5.198 + 0.046 5.328+0.016 5.817+0.016 5.923+0.022 6.057 £0.075
11 8.039£0.058 7.419+0.015 7.894+0.029 6.034 +0.043 6.113+0.088 6.215 +0.030 6.547 +0.019 6.834 £ 0.054
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423 Table 4

424 Overview of the microbiological study of meat wrapped with chemogenic-nanocomposite throughout the storage period.

Parameter Days C-CS/0.5%Zn0 NP C-CS/1%Zn0O NP C-CS/1.5%ZnONP  C-CS/2%ZnONP  C-CS/2.5%ZnO NP
0 3.558 + 0.003 3.558+0.003 3.558+0.003 3.558+0.003 3.558+0.003
Total psychotropic 2 4.882 +0.100 4903 £ 0.032 5.603 + 0.040 5912 +0.016 5.501 + 0.005
aerobic microbial 4 6.339 £ 0.047 6.924 + 0.032 7.201+0.018 7.346 + 0.055 6.981 +0.002
count (Log CFU/g 7 7.329 +0.003 7.757 £ 0.045 7.938 + 0.056 8.071+0.021 8.145 + 0.085
meat) 11 7.618 + 0.040 7.991 + 0.068 8.173 +£0.032 8.224 +0.023 8.367 + 0.005
0 3.661 +0.004 3.661 +0.004 3.661 +0.004 3.661 +0.004 3.661 +0.004
Total mesophilic 2 4.710 + 0.014 4519 +0.011 5.132 +0.015 5.337 £0.019 5.459 + 0.004
aerobic microbial 4 6.032 +0.042 6.494 + 0.050 6.554 + 0.066 6.735 +0.029 7.880 +0.017
count 7 7.118+0.018 7.382+0.026 7.618 + 0.087 7.734 + 0.007 7.923 +0.020
(Log CFU/g meat) 11 7.457 £0.021 7.941 +0.026 8.119 + 0.007 7.112 £ 0.007 8.215+0.031
0 3.661 +0.004 3.661 +0.004 3.661 +0.004 3.661 +0.004 3.661 +0.004
Enterobacteriaceae 2 4.032+£0.123 4.219 £ 0.153 4.338 £ 0.054 4.719+0.013 4.832 £0.100
(Log CFU/g meat) 4 4.773 £0.059 4923 +0.023 5.386 + 0.009 5.442 +0.029 5.892 +0.016
7 5.271 +0.040 5.532+0.011 5.905 + 0.009 6.116 +0.010 6.328 + 0.009
11 6.242 +0.015 6.394 + 0.023 6.477 + 0.086 6.648 + 0.018 6.943 +0.015

425
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3.5. Microbiological Growth (TPAM, TMAM, and Enterobacteriaceae)

Microbial growth is a key factor influencing the shelf life of perishable items such as meat. The samples
exhibited a natural degradation process, as indicated by an increase in bacterial counts for all strains
analyzed (Silva et al,, 2018). The nanocomposite-packaged poultry meat underwent an assessment for
TPAM, TMAM as well as Enterobacteriaceae throughout the refrigerated preservation. Further information

on the outcomes of microbial growth is provided in Table 3 and Table 4.

Unwrapped poultry meat showed higher levels of contamination and more rapid microbial growth, as
reported by Gutiérrez et al. (2017). Both total mesophilic and psychotropic aerobic microorganisms
exhibited similar patterns, although the count of psychotropic microorganisms slightly exceeded that of
mesophilic ones. This observation is attributed to the refrigerated storage conditions, which favor the
proliferation of preexisting contaminants. It is essential to assess psychotropic microorganisms in poultry
meat samples, especially during refrigerated storage, as many cold-adapted strains are associated with

spoilage, and some may pose pathogenic risks (Souza et al., 2020).

According to Regulation No. 2073/2005 of the European Commission (EC), food products should not
contain microorganisms or their toxins or metabolites in amounts that pose an unacceptable risk to human
health. For noncooked minced meat, the maximum limit for aerobic colony counting is set at 6.70 log CFU/g
of meat. Exceeding this threshold indicates a need to enhance hygienic production practices and/or select

better raw materials (Souza et al., 2020).

Psychotropic aerobic microorganism contamination commenced at 3.427 log CFU/g of meat. The highest
bacterial growth level recorded after 11 days of storage was 9.317 log CFU/g of meat in unwrapped samples.
In contrast, poultry samples wrapped with PVA, and chitosan exhibited lower contamination levels of 8.546
and 8.327 log CFU/g of meat, respectively. Samples wrapped with biogenic and chemogenic films
experienced a less pronounced increase, ranging from 7.5 to 8.2 and 7.6 to 8.4 log CFU/g of meat,
respectively (Table 3 and Table 4). Regarding TPAM, unwrapped and PVA-wrapped meat exceeded 7 log
CFU/g by day 3, while meat protected with chitosan film reached this threshold value by day 5. The
maximum limit for chemogenic-nanocomposites enveloped in 0.5% was reached by day 6, with 1%
achieved by day 5, 1.5% by day 4, 2% by day 4, and 2.5% by day 5 (Table 4). However, meats wrapped in
bio-nanocomposites reached the maximum limit by day 6 (Table 3). Among the concentrations tested, the
optimal formulation for minimizing microbiological growth was determined to be biogenic 0.5% of ZnO

NPs.

A similar pattern was observed in TMAM, with initial bacterial growth recorded at 3.545 log CFU/g of meat.
The highest level of bacterial growth attained after 11 days of storage was 8.832 log CFU/g of meat in
unwrapped samples. Conversely, poultry samples wrapped with PVA, and chitosan exhibited lower
contamination levels of 8.194 and 7.879 log CFU/g of meat, respectively. Samples wrapped with biogenic
and chemogenic films experienced a less notable increase, ranging from 7.5 to 8.1 and 7.5 to 8.2 log CFU/g

of meat, respectively (Table 3 and Table 4). Unwrapped and PVA-wrapped meats reached the maximum
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limit by day 3, followed by chitosan-wrapped meats reaching this limit by day 5. The maximum limit for
chemogenic-nanocomposites enveloped in concentrations of 0.5% to 1.5% was reached by day 7, while for
2% it was achieved by day 5, and for 2.5% by day 4 (Table 4). However, meats wrapped in bio-

nanocomposites reached the maximum limit by day 7 (Table 3).

It was noted that 2.5% of biogenic biofilms and 1%, 1.5%, 2%, and 2.5% of chemogenic biofilms exhibited
higher microbial growth compared to the chitosan film (Table 3 and Table 4). This could be attributed to
a positive interaction between chemogenic ZnO NPs and the chitosan matrix, resulting in a reduction in the
availability of active groups, specifically the amino groups of chitosan, for microbial interaction.
Consequently, this leads to a decrease in antimicrobial effectiveness (Souza et al.,, 2019). The film displayed
diminished antimicrobial properties with the addition of 2.5% ZnO NPs. This finding is consistent with a
prior study where the film containing 2.5% ZnO NP exhibited the lowest log reduction against microbial
strains (Sasidharan et al.,, 2023). In summary, the most effective formulation for minimizing microbial

growth was determined to be biogenic 0.5% of ZnO NPs among the various concentrations tested.

The initial contamination levels of both biogenic and chemogenic biofilms in mesophilic aerobic
microorganisms were recorded at 3.545 and 3.661 log CFU/g, respectively. The initial bacterial growth for
both mesophilic and psychotropic strains fell within the upper limits specified by European regulations for
ground meat, namely 3.46 log CFU/g of meat and 3.81 log CFU/g of meat, correspondingly. These findings
aligned with prior research, which reported contamination levels ranging from 4.0 log CFU/g (Noshirvani

etal, 2017) to 4.85 log CFU/g (Petrou et al., 2012) for freshly sourced chicken breast meat.

This technology effectively preserves the food item, prolonging its shelf life by a minimum of 1-2 days, as
shown in Table 3 and Table 4. Natural polymers delay the growth of microbes in contrast to meat left
unwrapped, however, they do not completely prevent it. Microbial proliferation likely occurs near the
biofilm inhibition zone, as observed during antibacterial testing, while other microbes nearby continue to
multiply. Similar patterns in film behavior have been seen in previous studies (Souza et al., 2019). For
instance, Emamifar et al. (2010) noted that the total count of aerobic bacteria in orange juice stored with
LDPE-1% ZnO NPs increased after a week, resembling the trend in the control group. Similarly, strawberries
wrapped in LDPE containing 3% ZnO NPs showed a decrease in aerobic counts until day 4, followed by an

increase on day 8 (Pires et al,, 2021).

The European Food Safety Authority (EFSA) suggests monitoring and examining Enterobacteriaceae in both
the production environment and the end food product is mandatory. It is crucial to understand that the
Enterobacteriaceae family comprises both harmful and harmless species commonly encountered in food
production environments. Harmless species in this family do not present health hazards. Consequently,
routine monitoring of Enterobacteriaceae does not automatically imply a health risk, as it encompasses both

harmless and potentially harmful members (Kanatt et al.,, 2012).

In Enterobacteriaceae, initial bacterial growth was recorded at 3.545 log CFU/g of meat. The highest
contamination level reached after 11 days of storage was 8.039 log CFU/g of meat in unprotected samples.

In contrast, poultry samples wrapped with PVA, and chitosan showed lower contamination levels of 7.894
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and 7.419 log CFU/g of meat, respectively (Table 3 and Table 4). Samples wrapped with biogenic and
chemogenic films experienced a notably lesser increase, ranging from 6.0 to 6.8 and 6.2 to 6.9 log CFU/g of
meat, respectively. Unwrapped and PVA-wrapped samples reached the maximum limit by day 6, whereas
chitosan-wrapped samples reached it by day 10. Chemogenic and bio-nanocomposite-wrapped samples did
not exceed the threshold until day 11 of the storage period (Table 3 and Table 4). The protected samples
consistently maintained a lower level of contamination compared to the unwrapped meat sample. Overall,
the most effective formulation for minimizing microbiological growth was determined to be biogenic 0.5%

of ZnO NPs among the various concentrations tested.

Petrou et al. (2012) reported a similar quantification of Enterobacteriaceae in chicken breast meat,
indicating an initial contamination level of approximately 3 log CFU/g of meat. By the end of 12 days of
modified atmosphere packaging (MAP) and refrigerated storage, the contamination level reached its peak
at 6 log CFU/g of meat. The study investigated the impact of the dipping method on chitosan, either alone
or combined with oregano essential oil, and found that both treatments reduced Enterobacteriaceae counts
by approximately 3-4 logarithmic colony-forming units (CFU) per gram of meat. This discovery is

consistent with the results of our study.

3.6. Zinc Migration

In the assessment of materials designed for direct contact with food, it is crucial to analyze both overall
migration and potential toxic effects, as highlighted by Souza et al. (2020). According to the CEF Panel of
the European Food Safety Authority (EFSA), responsible for evaluating food contact materials such as
enzymes, flavorings, and processing aids, it was concluded by Souza et al. (2018) that nanoscale ZnO is
unlikely to undergo migration. Consequently, the primary focus of safety assessment lies in the migration
of Zn ions. In 2003, the CEF Panel recommended a maximum threshold of 25 mg per 100 grams per
individual daily for food contact materials, enzymes, flavorings, and processing aids, as documented by
Souza et al. (2020). Under these recommendations, the collective zinc levels in fresh poultry meat were
evaluated both initially and after 11 days of refrigerated storage across all utilized bio-nanocomposites,

with detailed results provided in Table 5.
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534 Table 5

535 The migration of Zn of biogenic and chemogenic-nanocomposite into poultry meat.

Sample Zinc Concentration (mg

Zn/ kg Fresh Meat)

Percentage of zinc
diffused (mg Zn

Diffused/ Maximum

536

537
538
539
540
541

542
543
544
545
546
547
548
549
550
551

Limit)

Initial Zinc Content — day 0
Unwrapped - day 11
Chitosan - day 11

B-CS/0.5%Zn0 NP - day 11
B-CS/1%Zn0 NP - day 11
B-CS/1.5%Zn0 NP - day 11
B-CS/2%Zn0 NP - day 11
B-CS/2.5%2Zn0 NP - day 11

C-CS/0.5%Zn0 NP - day 11
C-CS/1%Zn0O NP - day 11
C-CS/1.5%Zn0 NP - day 11
C-CS/2%Zn0O NP - day 11
C-CS/2.5%Zn0 NP - day 11

15.323 + 008
15.900 + HI00E
17.481 + 008

Bio-nanocomposite

50.511 + (08
59.376 + [H00E
67.022 + 008
71.556 + [0
74.328 + 08

Chemogenic-nanocomposite

66.581 + [HII0E
73.781 + 08
89.215 + [H0E
99.668 + I8

103.553 + [(i008

75.69 + (08
59.67 + [0
50.46 + 008
46.23 + B
43.98 + 20

50.92 + [0
44.41 + (G
34.85 + (I8
30.42 + 0B
29.05 + [I0EH

to the transfer of zinc from the packaging material (ZnO NPs) into the food.

23

The initial concentration of zinc ions was at 15.323 mg/kg of meat, which closely corresponds to the official
guideline from the Portuguese database (PortFIR) suggesting 8 mg/kg for chicken breast (INSA PortFIR,
2020). Over time, there was a minimal increase observed in unwrapped meat and chitosan, while poultry

meat enveloped by bio-nanocomposites showed a significant rise in zinc levels (Table 5), likely attributed

An observed concentration effect was noted, as the sample enveloped with CS/2.5% ZnO NP exhibited the
highest zinc content. With increased levels of added zinc, the percentage diffusion of zinc content relative
to the incorporated amount declined. The rise in total zinc content in the bio-nanocomposite varied from
33.030 to 56.847 mg Zn/kg, while in the chemogenic-nanocomposite, it ranged from 49.100 to 86.072 mg
Zn/kg (Table 5). Since the suggested maximum daily intake of zinc at 25 mg per individual, a moderate
portion of fresh poultry meat (100g) could contain 0.803 to 3.185 mg Zn/100g, constituting 3.21% to
12.74% of the daily maximum limit in the bio-nanocomposite, whereas the chemogenic-nanocomposite
yields 2.411 to 6.107 mg Zn/100g, equivalent to 9.64% to 24.43% of the maximum limit (Table 5). Poultry
meat wrapped in biogenic films contributed to a lower diffusion of zinc compared to chemogenic films.

However, further research is necessary to assess its safety concerning consumer exposure.
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While numerous studies have examined the antimicrobial characteristics of ZnO and its migration into food
simulants, research on its migration into meat products, particularly raw meat, remains scarce (Abu-Thabit
etal., 2020). The principal mechanism of zinc migration entails the dissolution of zinc ions from the material
into the surrounding medium, with the solubility of zinc compounds like ZnO dictating the degree of ion
dissolution. Once zinc ions are liberated into the surrounding medium, they can diffuse through the material

matrix, moving from regions of higher concentration to lower concentration.

The introduction of ZnO NPs at a concentration of 0.5% led to high water vapor permeability and low tensile
strength, facilitating improved processes involving zinc ions (Gasti et al., 2022). This corresponds with the
in vitro antimicrobial efficacy of the bio-nanocomposites, where the 0.5% bio-nanocomposite
demonstrated the most significant inhibition of bacterial growth due to exceptional diffusion of bioactive
components into the medium (Table 5) (Rahman et al.,, 2017). While daily consumption of fresh poultry
meat wrapped with these bio-nanocomposites seems safe according to current findings, further
investigations into these biobased products are crucial to fully grasp the potential risks associated with

consumer exposure.

Certainly, the quality of fresh meat is predominantly affected by the existence and proliferation of spoilage
and harmful microorganisms, along with oxidation. Inadequate preservation and handling can lead to
microbial contamination of these products (Shankar et al,, 2015). Therefore, employing preservatives with
antimicrobial characteristics and adopting active packaging techniques like thin films or coatings can be

beneficial. This strategy aims to enhance both the excellence and security of the food (Khalid et al., 2017).

4., Conclusion and Recommendations

The study focused on incorporating ZnO NP into a chitosan matrix as an eco-friendly alternative to non-
biodegradable packaging. The bio-nanocomposite showed enhanced physicochemical properties in terms
of pH, reduction in titratable acidity, and discoloration process. The chicken sample wrapped with bio-
nanocomposite exhibited the lowest colony count in TPAM and TMAM, as well as the decreased level of
TBARS, followed by chemogenic-nanocomposites, chitosan, PVA, and unwrapped. Higher Zn concentration
increased zinc content in poultry meat, but the percentage diffused relative to the incorporated amount
decreased at higher levels. The primary method for assessing the preservation of meat involves measuring
TBARS to determine the development of off-flavors and microbiological growth, which determines the
shelf-life. Off-flavor begins on day 10 in chitosan-wrapped meat, exceeding the maximum limit of microbial
growth on day 4. Additionally, chemogenic and biogenic-wrapped meats maintain the off-flavor limit until
day 11; however, they exceed the maximum limit of microbial growth on day 5 and day 6, respectively.
Therefore, biogenic nanocomposite showed the best in all parameters including weight, pH, titratable
acidity, hue angle, TBARS, microbiological growth, and zinc migration, however, among all the
concentrations, it can be chosen that biogenic 0.5% ZnO NP acted as the best formulation. While ZnO is an
essential mineral and is listed as generally recognized as safe (GRAS), further studies are required to

evaluate its safety concerning consumer exposure. In summary, conducting an MTT assay will reveal the
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cytotoxic effects of ZnO NPs. Similarly, analyzing the gut microbiome will offer insights into the composition
and function of microbial communities in the gastrointestinal tract. Together, these studies will provide

valuable data to understand the risks of ZnO exposure for both consumers and the environment.
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