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Role of taste receptors in salty taste perception of minerals and amino acids
and developments in salt reduction strategies: A review

Saumya Sood, Lisa Methven and Qiaofen Cheng

Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom

ABSTRACT

Salt (sodium chloride) plays a key role in maintaining the textural, microbiological, and sensorial
aspects of the foods. However high dietary salt intake in the population has led to a series of health
problems. Currently manufacturers are under pressure to reduce the sodium levels in foods without
compromising the consumer experience. Because of the clean salty taste produced by sodium
chloride, it has been challenging for the food industry to develop a suitable salt substitute. Studies
have shown that different components within a food matrix can influence the perception of
saltiness. This review aims to comprehend the potential synergistic effect of compounds such as
minerals and amino acids on the perception of saltiness and covers the mechanism of perception
where relevant to taste resulting from sodium ions and other metallic ions (such as K, Mg, Ca), as
well as various amino acids and their derivatives. Finally, the review summarizes various salt
reduction strategies explored by researchers, government organizations and food industry, including
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the potential use of plant-based extracts.

Introduction

According to the Health Survey for England (2017), about
26.2% of England’s population, aged 16years or older, had
hypertension in 2017 (Public Health England 2020a). Even
though the treatment and diagnosis of high blood pressure has
improved in some high-income countries, the overall global
burden of hypertension is still high, especially in low- and
middle-income countries (Zhou et al. 2021). In 1995, a report
published by the Committee on Medical Aspects of Food and
Nutrition Policy (COMA), highlighted the relationship between
salt intake and increased blood pressure, and consequently the
increased risk of cardiovascular disease (Hunty 1995). Rucker,
Rudemiller, and Crowley (2018) highlighted that sodium accu-
mulates in the bloodstream altering the blood cells (T cells
and monocytes), thereby elevating blood pressure. Hence,
there is global guidance on limiting salt intake; WHO suggests
consumption is restricted to less than 5g of salt (or 2g of
sodium) per day for an average adult. However, on average,
adults consume about twice the amount of recommended salt,
ie, 9-12g salt/day (World Health Organisation 2020). In the
UK, approximately 67% of adults in England, and 70% in
Scotland, consume more than 5g salt/day (Purdy 2019).
Therefore, Public Health England re-set salt reduction targets
in 2020 for different food product categories such as meat
products (e.g., bacon; maximum 2.59g salt/100g bacon), breads
(maximum 1.01g/100g) and standard potato crisps (maximum
1.38g/100g) to help consumers monitor their sodium intake.

While achieving these salt levels on the labels or products is
voluntary, a monitoring report is expected to take place in
2024 and 2025 (Public Health England 2020b).
Archaeological evidence suggests that the first human har-
vesting of salt happened in around 6000 BC at Lake Yuncheng
in China and the first usage of salt in food was to preserve
fish which is evidenced to around 2000 BC (Kurlansky 2002).
Up to now, numerous studies have confirmed the essential
role of sodium (Na*) in maintaining various functions of the
body such as acid-base balance, functioning of cells, trans-
mission of nerve impulses and maintenance of plasma vol-
ume (World Health Organisation 2020). Besides the
importance of Na* in human health, nutrition, and physiol-
ogy, it has been a key ingredient in food manufacturing.
Firstly, salt has been used as a preservative to extend the
shelf life of food products since early times. Second, the salty
taste is desirable in many products and can enhance other
flavors in the food, and finally salt aids in the processing and
handling of some products (Hutton 2002). However, due to
the increased health concerns associated with high Na* intake
as mentioned above, policy makers have set up recommen-
dations and guidelines for the food industry to reduce the
levels of salt in food products. However, the role of salt is
extremely diverse, and it can perform various functions in
different food matrices. Its functions are inter-linked, which
can make it challenging to reduce the amount of sodium
chloride (NaCl) in food products. Therefore, there remains
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the need for on-going research on alternative salt reduction
strategies as no single solutions are currently able to suffi-
ciently reduce NaCl in all food systems. Substitutes often
bring sensory defects in the final product, such as noticeable
loss of salty taste, and or increased bitter or metallic taste
(Vidal et al. 2020). NaCl also plays a key role in food pro-
cessing, and reduction of salt can affect the textural and
microbiological aspects of the product as well as their taste
and flavor, which is often unacceptable to consumers.

This review aims to comprehend the role of different
components known to contribute or enhance salty taste, such
as alternative minerals and amino acids, and discuss the
mechanisms by which they influence the perception of salti-
ness. It also considers specific molecules as well as alterna-
tive ingredients (such as plant-based substitutes) that may be
present in a complex matrix. Hence, the review includes dis-
cussion of alternatives that may directly influence receptors
(especially sodium channels) or may operate via a cross-modal
effect (such as umami-salt taste interaction or odor-induced
salt perception). This will expand our knowledge on the syn-
ergistic effect of these components and may pave the way for
finding new substitutes to replace NaCl for the food industry.

Mechanism for saltiness perception by minerals
Taste transduction of sodium ion

Saltiness is a distinctive sensory quality linked to Na* con-
taining compounds and this quality is unique to only sodium
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and lithium. Other cations like potassium and calcium also
exhibit salty taste, but it is not the dominant taste quality for
these cations (Man 2007; van der Klaauw and Smith 1995).
Salty taste transduction is a complex mechanism and is still
under investigation. However, the two most widely studied
pathways known to be involved in the perception of salty
taste are amiloride sensitive (particularly the epithelial
sodium channel, ENaC) and amiloride insensitive pathways.

The ENaC channel (an amiloride sensitive pathway)

The ENaC channel is a voltage-gated sodium ion (Na*)
channel. When sodium chloride (NaCl) enters the taste bud,
the Na* interact with these ENaC receptors. This leads to
depolarization, an increase in membrane potential inside the
receptor cells which causes calcium ions to enter the taste
receptor cells through specific voltage ion channels sensitive
to calcium. This regulates the release of neurotransmitters
and stimulates the sensory neurons, so that the signal travels
to the cranial nerves and finally reaches the thalamus region
of the brain. The thalamus sends these signals to the gusta-
tory cortex which allows us to differentiate between the
tastes, including salty taste (Figure 1) (Mattes 1997; Behrens
and Meyerhof 2015; McCaughey and Scott 1998; McCaughey
2019). Besides Na*, other monovalent cations like lithium
(Li*) and cesium (Cs*), can permeate through the ENaC
channels, however their permeability is less than Na*, and
these monovalent cations are usually not seen safe for human
consumption (Bigiani 2016).

Electivity filter that allows
only Na ions to pass

Microvilli
Epithelial cells
Tight junctions
Taste receptor cell

Synapse
Basal cell

——= Fibers of the chorda tympani nerve

Taste signals sent to brain

Figure 1. Depiction of tongue and taste buds in rats: (1) taste receptor cells within the papillae on the tongue and cross section of three types of papillae- cir-
cumvallate, foliate, fungiform. (2) Cross section of a taste bud with its components. (3) Cross section of ENaC channel present on the taste bud. Rats have 3 ENaC
subunits, while in humans there is an additional ENaC-6 subunit present (adapted from McCaughey 2019; McCaughey and Scott 1998).



The ENaC is known to comprise of a-, p- and y- and 6
subunits. In humans it has been proposed that the ENaC-§
plays an important role in salty taste transduction (Coscoy
et al. 1998). A recent review evaluating the role of ENaC in
saltiness perception emphasized that the location of the sub-
units in the human taste system is also extremely important
(Bigiani 2020). When the ENaC-§ is present at the apical
membrane, then the transduction pathway is likely to be via
the ENaC jon channels. Besides the location of the subunit,
studies have reflected on the concentration of the subunits
in the human taste system. Upon analysis it has been
observed that among all the four subunits (a-, p-, y- and
8-), the concentration of 8-ENaC in the taste system is
extremely low (Stdhler et al. 2008). There is still the uncer-
tainty whether all four subunits, or a combination of the
subunits, are synergistically playing a role in the Na* trans-
duction pathway.

However, the Na* transduction can be hindered in the
presence of a drug “amiloride,” which is a diuretic com-
pound known to interfere with Na* transduction, leading to
lower perception of salty taste in mice and in humans.
Schiffman, Lockhead, and Maes (1983), examined the psy-
chophysical and neurophysiological effects of amiloride on
humans and observed significant reduction of salty taste in
both studies. Interestingly the suppression of salty taste was
only noticed on Na* as well as lithium salts and not on
potassium or calcium salts. With increasing interest in taste
transduction and the role of amiloride, several studies con-
firmed the suppression of salty taste in the presence of ami-
loride. It has been observed that amiloride is attracted
toward the Na* channels due to several factors, such as the
transmembrane voltage, extracellular pH, Na* concentration
and charge of the amiloride compound (only the cationic
form of amiloride can bind to the ion channels). Therefore,
it has been concluded that amiloride is capable of blocking
the ion channels through attraction; thereby reducing the
affinity of Na* to the channels and eventually leading to a
reduced saltiness perception (Smith and Ossebaard 1995;
Avenet and Lindemann 1988; Kellenberger and Schild 2002;
Chandrashekar et al. 2010; Garty and Palmer 1997).

Conversely, Halpern and Darlington (1998) did not
observe suppression of salty taste in the presence of ami-
loride at or below a certain concentration (i.e., 100uM
NaCl). This was further investigated by other researchers
and led to an understanding of the role of different ENaC
subunits. Thereby researchers proposed that it could be the
ENaC-§ that affects the sensitivity of receptor to amiloride,
however, to what extent ENaC-8 modulates the perception
of saltiness is unclear (Ji et al. 2006; Stihler et al. 2008).

Amiloride insensitive pathway

Amiloride related research has provided evidence that recep-
tors other than ENaC can be involved in salt taste transduc-
tion. In 2004, Lyall and coworkers reported the involvement
of an “amiloride-insensitive” Na* taste receptor. One pre-
dominant receptor cell involved is called the vanilloid
receptor-1 (TRPV-1), which is an ion channel (further
detailed in TRPV-1 section). There are other amiloride
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insensitive receptors involved in the taste perception, which
is further discussed in the following sections. These
amiloride-insensitive receptors are nonspecific to Na* and
have been shown to detect response from several mineral
salts such as potassium, calcium, ammonium, and sodium
salts (Lyall et al. 2004). However, more recent research has
contradicted this and highlighted the importance of the
anion. In mouse taste cells, Roebber, Roper, and Chaudhari
(2019) concluded that the amiloride-insensitive salt taste
response can be generated by chloride and not sodium or
any other cation.

Overall, to summarize the salty taste transduction mech-
anism, in humans, there is more than one mechanism for
the perception of salty taste from NaCl, it can occur via the
amiloride sensitive pathway, particularly the ENaC channels,
or via other channels (like TRPV-1) which are not specific
to Na* and are insensitive to amiloride. Indeed, both above
mechanisms could be activated during detection of NaCl
Moreover, the complexity of human salty taste system is not
limited to the mechanism of NaCl perception. It is hypoth-
esized that other factors such as protein derived compounds
(amino acids, peptides) and minerals (other than Na*) might
also contribute to salty taste perception, which will be dis-
cussed in the sections below.

Taste perception of minerals other than sodium

Mineral salts of copper, zinc, iron, calcium and magnesium
are some of the most common mineral salts known to con-
tribute to taste quality (Riera et al. 2007; Ahern et al. 2005;
Lim and Lawless 2005). It is widely accepted that they are
transduced by amiloride insensitive, or nonselective cation
channels known as the “transient receptor potential” (TRP)
family consisting of receptors including Transient receptor
potential melastatin-5 (TRPM5), as well as the transient
receptor potential vanilloid-1 (TRPV-1) discussed below.
Initially, these receptors were only known to be activated by
potentially harmful stimuli like capsaicin, noxious heat and
protons (Ishida et al. 2002). However, later studies revealed
minerals such as calcium, magnesium, potassium, and
sodium (or their salts) could provoke additional activation
of sweet, bitter and umami receptors, thereby contributing to
the transduction of other taste qualities, though the mecha-
nism for the activation of the specific receptor cells (i.e.,
TRPV-1 and TRPM5) might vary (Ahern et al. 2005; Lyall
et al. 2004; Riera et al. 2009).

TRPV-1

The TRPV-1 (Figure 2) are abundantly located around the
fungiform papillae (Figure 1) (Ishida et al. 2002). In addi-
tion to the evidence of anion response discussed above,
TRPV-1 consists of two proton binding sites (E600 and
E648), and an influx of divalent cations (e.g., Ca®* and Mg>*)
into the taste bud increases the extracellular membrane
potential activating these two sites (Ahern et al. 2005). The
interaction of the cations with E600 and E648 has been
stated to be essential to fully activate the TRPV-1 receptor
cells (Figure 2), eventually stimulating the sensory neurons
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Divalent Cation (Ca?*/Mg?*)
FaY

Extracellular

Membrane

Intracellular

EG00 & E648-
Proton binding sites

Figure 2. Transient receptor potential vanilloid-1 (TRPV1) [adapted from: Ahern
et al. (2005), and Aroke et al. (2020)].

(Ahern et al. 2005). Once activated, the C terminal of the
TRPV-1 interacts with the calcium sensor calmodium (CaM)
which regulates the influx of the ions via the voltage gated
Ca** channels and protects against the potential harmful
effects of calcium overload (Aroke et al. 2020; Singh
et al. 2018).

As mentioned in Amiloride Insensitive Pathway section,
TRPV-1 is also known to be a major component of the ami-
loride insensitive pathway and can detect response from sev-
eral mineral salts including Na* salts, thereby contributing to
the salt taste transduction (Smith et al. 2012; Lyall et al
2004). This indicates that minerals other than Na* can con-
tribute to salty taste by the activation of the TRPV-1 recep-
tors. Ahern et al. (2005) conducted a study by injecting
different minerals salts including magnesium chloride
(MgCl,) and calcium chloride (CaCl,) on mice with and
without TRPV-1 receptors, and patch clamp recordings were
carried out to measure if current was generated upon the
activation of the sensory neurons via TRPV-1 channels.
Results demonstrated that even though all Na*, Ca?* and
Mg?* cations could activate the TRPV-1 channels, the charge
and the cationic density played essential roles in the activa-
tion of the TRPV-1 channels. Cations with a higher charge,
like Ca** and Mg?* (divalent cations) activated the channels
more efficiently and quickly than monovalent cations such
as Na* (Ahern et al. 2005). Other divalent salts of zinc, cop-
per and iron can also bind to the TRPV-1 activation sites,
but their salty taste perception is less dominant compared to
calcium and magnesium-based salts, perhaps because the
former might not completely dissociate (Riera et al. 2007).

TRPM5

TRPMS5 is another member of the transient receptor poten-
tial (TRP) family that functions as a nonspecific cation
channel (Hofmann et al. 2003). When tastants containing
monovalent cations like K* and Na* comes in contact with
the taste buds, they can activate the TRPM5 receptor. There
are three potential pathways; (i) as a response to increased
calcium influx, (ii) responding in combination with G-protein
receptors, or (iii) the coupling of TRPM5 with Inositol

1,4,5-trisphosphate receptor type III (IP,R3) and (or) indi-
rectly by diacyl glycerol (DAG) (Pérez et al. 2002).

TRPMS5 is extremely sensitive to calcium and even a
minor change in the membrane potential or change in cal-
cium influx can lead to the activation of this receptor
(Hofmann et al. 2003; Prawitt et al. 2003). That means, even
when ENaC is activated during the presence of Na*, there
could be a possibility of activation of TRPM5 along with
ENaC as TRPMS5 is a sensitive nonspecific cation channel.
Interestingly, a study by Nomura et al. (2020) speculates that
since both TRPM5 and ENaC share the similar calcium
gated voltage channel facilitating the ATP neurotransmitter
release, there could be a possibility of some sodium channels
(ENaC) existing along with GPCRs or TRPs. Nonetheless,
there is no evidence to verify this to date, and the current
ENaC mechanism for salty taste perception (Na transduc-
tion) cannot be ignored, thus suggesting that it is indepen-
dent of the activation of the TRPMS5 (Zhang et al. 2003;
Aroke et al. 2020). However, activation of TRPMS5 has a
direct association with the taste transduction of other taste
qualities like sweet, bitter and umami (Talavera et al. 2008;
Dutta Banik et al. 2018).

G Protein receptors (GPCR)
Some divalent cations like copper, magnesium, iron and zinc
are detected by a combination of TRPM5 and the
T1R3 G-protein receptor, and some salts at high concentra-
tions have been shown to activate the T2R bitter receptors.
The T1R3 is known to function as part of two heterodimers,
T1R2-T1R3 for detecting sweet stimuli and T1R1-T1R3 for
detecting umami stimuli. Interestingly, T1R3 is also known
as the calcium tasting receptor, i.e., it is capable of detecting
the taste of calcium based salts in the human taste system
(Tordoff et al. 2012). The taste of calcium varies from salty
to sour depending on the anion attached to it and leads to
an undesirable chalky taste at high concentrations (Tordoff
1996). Besides activating TRPM5 and binding to T1R3, cal-
cium also binds to the “calcium sensing receptor” (CaSr).
Studies have shown that calcium can activate both T1R3 and
CaSr receptors in the presence of magnesium (Tordoff et al.
2008). Additionally, CaSr is also activated by kokumi
peptides (i.e., GSH, y-Glu-Val-Gly and various y-glutamyl
peptides) upon which it imparts a distinct taste quality or
sensation known as kokumi, i.e., the feeling of mouthfulness
or thickness within flavor (Ohsu et al. 2010). These com-
pounds do not substitute for salty taste, but the activation of
CaSr by kokumi peptides in salt-reduced products might
improve the overall perception/acceptance of the products.
Recently, a small-scale study by Wang et al. (2019) ana-
lyzed the activation of another G-protein coupled receptor,
“TAS2R7” in the presence of divalent mineral ions and
found that calcium, magnesium, zinc, copper, manganese
and aluminum all activated the TAS2R7. Since the T2R
receptor family is responsible for bitter taste transduction,
therefore, activation of TAS2R7 by the divalent ions leads to
the perception of bitter taste (Chandrashekar et al. 2000).
However, interaction of TAS2R7 with the CaSR or TI1R3
receptors is unclear. Furthermore, in the presence of larger



cationic molecules, such as salts of Fe** or ammonium chlo-
ride derivatives, the cations are not capable of binding to the
receptor cells, and in these cases they are perceived by direct
adsorption onto the apical membrane of the taste cells
(Nakamura and Kurihara 1991). Subjects have reported quite
a wide range of taste qualities resulting from magnesium
and calcium salts, including bitter and salty with metallic
and sour sensations, with bitterness being more dominant
(Yang and Lawless 2005; Lim and Lawless 2005). Therefore,
the involvement of the specific taste receptors like TRPM5
and T1R3, which are involved in the transduction of sweet,
bitter and umami taste, may explain why the taste of some
minerals can be confused between salty, bitter, sweet and
umami, possibly depending on their concentration.

Taste perception of anions

Besides the activation of the taste receptor and the concen-
tration of cation, studies show that anions also contribute to
taste perception. In an early study, Murphy, Cardello, and
Brand (1981) concluded that salts of chloride, bromide and
iodide exhibited unique taste properties, and noted that
NaCl, NaBr, Nal did not all have the same taste. Their study
also concludes that, even though it is not always a determin-
ing factor, the size and weight of the cation and anion can
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influence the perceived taste. Organic salts can lead to dif-
ference in perception; for example, organic salts of sodium
and lithium exhibit slight saltiness but majorly sour taste
(van der Klaauw and Smith 1995). Zinc also demonstrates
both salty and bitter taste, and the resulting taste quality is
affected by the anion attached to zinc. For example, “zinc
iodide” exhibits sourness and astringency, whereas “zinc
chloride” exhibits strong salty taste and further increasing
the concentration increased the perception of the particular
taste qualities (Keast 2003). Similarly, the chloride salts of
calcium and magnesium also exhibit salty as well as bitter
taste, depending on their concentration (van der Klaauw and
Smith 1995; Lawless et al. 2003; Tordoff 1996). A recent
study conducted both in human and mice identified a volt-
age dependent chloride specific channel which could be
involved in salty taste perception, known as the transmem-
brane channel-like 4 (TMC4), which is amiloride insensitive
(as discussed above). The function of the TMC4 channels
showed similar properties in both mouse and humans
(Kasahara et al. 2022) (Table 1).

In summary, taste perception mechanisms for minerals
other than Na* are quite complex as there is not one single
receptor involved. It is quite likely that we perceive the taste
of minerals via different receptors, however, whether these
receptors are activated all at the same time or within dis-
crete combinations is not yet clear. The multiple receptors

Table 1. Key receptors activated by minerals and amino acid and the taste qualities elicited by them.

Stimuli

Taste qualities References

Receptor family Receptor
lon Channels ENaC Sodium salt
Transient Receptor Potential TRPV-1

(TRP)
(lon Channel)

G Protein coupled receptors
(GPCR)

Transmembrane channel like 4
(TMC4)

TRPV1 (and/or) TRPAT (i.e.,
TRP ankyrin 1)

TRPM5

Heterodimer T1R3/T1R2*
TIR3

TIR1*

TAS2R7

CaSR

mGluR4

mGIluR1

Family C, subtype 6 A
(hGPRC6A)

(h=human)

mTMC4, hTMC4

(m=mouse, h=human)

Harmful stimuli like capsaicin,

Salty taste, intensity
dependent on the anion

Bigiani (2020); Mattes (1997);
Behrens and Meyerhof (2015);
McCaughey (2019); McCaughey
and Scott (1998) Stahler et al.
(2008)

Salty, Sweet, Bitter, Umami Ahern et al. (2005); Lyall et al.

protons, and noxious heat,
Cations (Ca, Mg, K, Zn, Cu, Fe)
Herbs and spices (TRPV1
agonists, e.g., capsaicin and
resiniferatoxin, N-geranyl
cyclopropyl carboxamide)
Cations, particularly of mineral
salts (extremely sensitive to

Salty, Sweet, Bitter, Umami

Sweet, Bitter, Umami

(2004); Riera et al. (2009);
Ishida et al. (2002)
Rhyu, Kim, and Lyall (2021)

Talavera et al. (2008); Dutta Banik
et al. (2018); Hofmann et al.

calcium)

Sugar and sugar alcohols
Amino acid (MSG) +

nucleotides
Calcium

Amino acid (MSG) +

nucleotides

Divalent cations (calcium,

(2003).
Sweet Li et al. (2002); Nelson et al.
Umami (2001)

Salty/Sour/Chalky Tordoff et al. (2012); Tordoff (1996)

Umami Nelson et al. (2002)

Bitter Wang et al. (2019)

magnesium, zinc, copper,
manganese, aluminum)

Calcium ions

Tripeptide glutathione

Salty/Sour/Chalky
Kokumi/Umami/Salty/Sweet

Tordoff et al. (2008)
Ahmad and Dalziel (2020); Ohsu

(Glu-Cys-Gly) (Majorly kokumi taste, et al. (2010)

however, might mildly
elicit the other
mentioned taste
qualities)

Glutamate Umami Chaudhari, Landin, and Roper

(2000)
L-amino acid UmamiA Pallante et al. (2021); Jorgensen

Chloride anion

(Aknown so far) and Brauner-Osborne (2020)

Salty Kasahara et al. (2022)

"TIR3+T1R2 works as a heterodimer sweet receptor[*T1R1+T1R3work as a heterodimer umami taste receptor.
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involved may partly explain why we may be unable to asso-
ciate a unique taste quality to each mineral. Depending on
the ion, minerals are either perceived as bitter, salty, sweet,
umami or sour. However, bitter and salty are the most dom-
inant taste qualities associated with mineral salts.

The role of free amino acids and peptides in taste
transduction and interaction with salty taste

Taste perception of free amino acids and peptides

The contribution of amino acids to taste was first noticed by
Ikeda in 1908 who termed another taste quality known as
“umami” besides the four-basic tastes, i.e., sweet, salty, sour,
and bitter. The major stimulus responsible for umami taste
is the amino acid “glutamic acid or glutamate” (Ikeda 2002).
Likewise, several studies have confirmed that most amino
acids contribute to at least one of the five basic tastes. For
example, L-lysine is perceived as salty-bitter-sweet, L-arginine
is known to have a flat (i.e., virtually indistinguishable) bit-
ter taste, whereas L-glycine, L-alanine, L-threonine are per-
ceived as sweet (Schiffman, Sennewald, and Gagnon 1981;
Delompré et al. 2019; Schmidt, Olsen, and Mouritsen 2020).
Additionally, L-lysine, L-glutamic acid and L-aspartic acid
were found to exhibit salty taste along with sweet/bitter/
umami tastes in unstimulated saliva (Feron 2019). Kawai
et al. (2012) proposed that all amino acids exhibit at least
one of the basic tastes, and there is a strong possibility that
the taste of amino acids can be perceived as a combination
of the five basic tastes. However, since the number of sub-
jects (n=8) in the above-mentioned study was substantially
low, this theory could not be validated.

Many food products contain naturally occurring free
amino acids, such as mushroom, vegetables, milk products,
etc. (Sun et al. 2017; Gorska-Warsewicz et al. 2018; Ito,
Ueno, and Kikuzaki 2017). Usually, the savory taste of amino
acids, resulting predominantly from L-glutamic acid and
L-aspartic acid is categorized as “umami taste” and it has
been observed, in certain foods, to increase the perception
of saltiness (Kawai et al. 2012; Delompré et al. 2019), but
can be argued as in certain foods the presence of L-glutamic
acid doesn’t not lead to the perception of umami taste.
Additionally, individual sensitivity can also lead to the asso-
ciation between umami and salty taste, (Hartley, Liem, and
Keast 2019). Other amino acids might also play a role in
mediating the salty taste (and/or other tastes) of foods, for
example arginine and histidine have been used as flavor
enhancers to enhance the salty taste of low Na* meat prod-
ucts (da Silva et al. 2020). Processes such as fermentation,
ripening and extraction, can break peptide bonds to release
various free amino acids which subsequently can contribute
to taste and lead to the improvement and enhancement of
flavor of many food products; like sake, soy sauce, cheese,
etc. (Ikeda 2002; Kirimura et al. 1969).

Besides the taste contribution of free amino acids, short
peptides have also shown some contribution in taste percep-
tion, including salty taste enhancement. A recent study using
both enzymatic hydrolysis and thermal reactions to prepare
Maillard products from pea proteins, reported smaller

peptides were quickly degraded into low molecular weight
peptides (<1kDa), which were not salty on their own but
played a role in salty and umami taste enhancement when
added in a 0.5% NaCl solution. Furthermore, the study
showed that only the Maillard reaction products [low molec-
ular weight pea peptides (LPP) such as LPP-Glu] derived
from hexoses (such as glucose) led to an increase in salti-
ness (by 8.03%), but saltiness enhancement was not observed
with Maillard products derived from pentoses. This is related
to the slower rate of Maillard reaction from hexoses com-
pared to pentoses. Indeed the study suggests greater the
degree of Maillard reaction the weaker the impact of the
peptides or Maillard reaction products on saltiness or umami
enhancement. (Yan et al. 2021). While this study mentions
the low molecular weight compounds that could be gener-
ated it does not specify any further details of these products.
Other researchers have also identified some specific umami,
kokumi and salt enhancing peptides in soy sauce (Jiinger
et al. 2022), salt enhancing arginyl dipeptides in fermented
fish sauce (Schindler et al. 2011) and some specific umami
peptides with salt enhancing effects have also been identified
in a variety of mushrooms (Wang et al. 2024). It is still
unclear if the saltiness of peptides is perceived due to the
activation of a specific receptor, or it is a result of activation
of umami taste receptors leading to the perception of umami
and subsequently enhancement of salty taste. As per a recent
review by Le et al. (2022), there is a strong possibility that
peptides can activate one or more amino acid taste receptors
in order to lead to saltiness perception.

Amino acid tase receptors

Studies confirm the most probable mechanism for the per-
ception of L-glutamic acid and L-aspartic acid to be via the
G protein coupled receptors, i.e., the TIR1+T1R3 heterod-
imer and mGluR (Chaudhari, Landin, and Roper 2000).
However, the mechanism for perception of other amino
acids, such as lysine, is less clear. One possibility is that the
receptors for the transduction of L-glutamic acid and
L-aspartic acid amino acids, might also be responsible for
the perception of lysine or any other amino acids (Wang
et al. 2022). However, Smith (2015) highlighted that the
activation of TIR1+T1R3 may not be necessary for the
perception of all L-amino acids, thereby suggesting the pos-
sibility of the activation of other taste receptors. Stahler
et al. (2008) proposed other receptors to be involved in
taste perception of amino acids. They reported that amino
acids like L-lysine and L-arginine might lead to the activa-
tion of ENaC subunits, as they noticed an increased Na*
membrane current in oocytes for apy-and Spy-ENaC units,
which is usually observed in the presence of Na*. This
might explain the salty taste associated with L-lysine, how-
ever further research is needed to verify this in association
with the human taste system. It is interesting to note that
there was no effect observed for L-glutamine upon interac-
tion with the ENaC subunits in the above study, which fur-
ther supports the most likely mechanism that glutamine
perception is by the G-protein coupled receptors.



Furthermore, another G-protein coupled receptor in
humans known as family C, subtype 6 A (hGPRC6A) has
gained some attention in its ability to transduce the percep-
tion of amino acids, such as L-arginine and L-lysine.
Genetically, the hGPRC6A has similarities with two other
human taste receptors, ie., 34% with CaSR [G Protein
Receptors (GPCR) section] and 28% with T1R1 (Wellendorph
et al. 2005). Recently, Jorgensen and Brauner-Osborne (2020)
summarized the pharmacology and physiological function of
hGPRC6A and Pallante et al. (2021) highlights the role of
hGPRC6A in the umami taste perception. However, there is
still not enough understanding about the activation and
mechanism of this specific receptor in the taste system, and
if there is association with any other taste quality including
salty taste.

G-protein receptors

As discussed earlier in G Protein Receptors (GPCR) section,
the G-protein receptor heterodimer between T1R1 and T1R3
and is responsible for umami taste, comprising o, - and
y-subunits which activates upon interaction with amino
acids or nucleotide (Behrens and Meyerhof 2015). The acti-
vated a-subunit triggers signal transduction, elevating cal-
cium influx and the opening of the “non-selective cation
channel” TRPM5, which is crucial for umami taste percep-
tion (Zhang et al. 2003; Behrens and Meyerhof 2015; Li
et al. 2002).

Furthermore, it is also proposed TIR3 may also form
homodimers, binding to amino acids. (Nelson et al. 2001;
Smith 2015; Zhao et al. 2003). A recent study by Banik et al.
(2020) identifies a “broadly responsive (BR)” type 3 cell with
a transduction mechanism similar to T1R1/T1R3, influenc-
ing the perception of umami, bitter and sweet taste. However,
it is yet fully understood if other L-amino acids can activate
these cells and further if they are involved in the salty per-
ception, or if the activation of these receptors leading umami
is what leads to perception of enhanced salty taste.

Metabotropic glutamate receptors (mGIuR)

Metabotropic glutamate receptors (mGluR1-8) are receptors
known to be activated by L-glutamate and/or a mix of glu-
tamate and inosine 5'-monophosphate (IMP) (Chaudhari,
Landin, and Roper 2000; Pal Choudhuri, Delay, and Delay
2015). These receptors are known to be found within the
circumvallate and foliate papillae of the posterior tongue.
Activation of these receptor cells, similar to T1R1/T1R3,
leads to the formation of IP, which can boost calcium influx
and thereby signaling the brain (Masu et al. 1991).
Additionally, the signals can be further amplified in the
presence of calcium homeostasis modulator 1(CALHM1), a
voltage channel, helping facilitate the release of ATP in the
taste buds (Lazutkaite et al. 2017; Taruno et al. 2013; Ma
et al. 2018).

San Gabriel et al. (2009) points out the possibility that
mGluR may only be activated within specific concentration
ranges of L-glutamate, i.e., when present in umol/L.
However, when the glutamate concentration is not enough
to activate the mGluR, research suggests the synergetic
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involvement of both T1R1+T1R3 and mGluR in the per-
ception of amino acid (glutamate), thus confirming their
significance in taste perception (Yasumatsu et al. 2015;
Lazutkaite et al. 2017; Vandenbeuch and Kinnamon 2016).
The current knowledge, only supports the activation of
mGluR by glutamate, however, Pal Choudhuri, Delay, and
Delay (2015) puts forward a very fascinating possibility
that the mGluR receptors (such as mGluR4, Table 1) might
form a complex with each other or with one of the T1Rs,
which might act as a receptor for other L-amino acids,
generating taste response. However, there is no such evi-
dence to date.

In summary, amino acid derived umami perception is the
result of the synergistic effect of T1IR1+T1R3 as well as
mGIluR taste receptor cells. Additionally, as mentioned pre-
viously, TRPM5 is sensitive to calcium, therefore, the release
of calcium during the activation of T1R1, T1R3 and mGluR
receptors, can also lead to the activation of TRPM5. The
umami taste can arise from multiple sources including
amino acids (i.e., L-glutamatic acid, L-aspartatic acid), pep-
tides and nucleotides (i.e., IMP, GMP), and thus multiple
binding sites are involved on these receptors. The current
understanding suggests that umami taste derived from amino
acids, which sometimes has been shown to lead to an
increased perception of salty taste, is perceived either via the
umami taste receptor pathway (mGIuR) or the G-protein
receptors (GPCRs) or can be a synergistic effect of the two
(Wu et al. 2021). However, as previously stated, several stud-
ies have highlighted the possibility of amino acids other
than glutamic acid and aspartic acid contributing to other
basic tastes, suggesting the activation of other taste receptors
which needs further investigation.

Current salt reduction strategies

Actions by government, restaurants and
manufacturers

Consumer awareness is one of the key pillars in the WHO
for action on salt reduction (WHO European Salt Action
Network 2013). Besides setting up salt reduction targets,
the governing bodies are making more efforts to educate
consumers about the importance of reducing their con-
sumption of salt. This is being carried out via campaigns
in newspapers, television, radio, social media, press
releases, etc. These campaigns include educating consum-
ers about food labels, for example using color coded front
of pack labeling on all products and dedicating national
salt awareness days or weeks (WHO European Salt Action
Network 2013). Annually, several countries around the
world participate in “World Salt Awareness Week,” with a
different theme each year, to educate consumers on the
profound consequences of consuming too much salt
(World Action on Salt 2021). Additionally, other
non-governmental organizations, food manufacturers and
retailers’ partner with the government to raise public
awareness. However, education alone is not enough, cater-
ers and food manufacturers have a key role in bringing
awareness into action.
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Consumers consider dining out as one of the challenges
in limiting their salt intake, as such meals contribute to a
significant amount of dietary Na* intake. Except in Finland
and the United States of America, implementing salt reduc-
tion guidelines is a voluntary action. The most common salt
reduction strategies at restaurants include “menu labeling,
i.e, highlighting foods containing high Na® (or salt).
Additionally, some countries use symbols or have special
campaigns highlighting foods with less salt, sugar and fat on
their menus. Some countries with mandatory guidelines for
salt reduction recommend reformulating products to ensure
products are below maximum Na* limits. Besides the guide-
lines, educating chefs on the effects of high salt in food and
providing them with training on various low salt dishes are
also carried out (Ding et al. 2020).

Furthermore, due to the increased consumer demand
for clean label and minimally processed foods, food
researchers and manufacturers have been exploring the use
of non-thermal processing to extend the product shelf life
by restricting the microbial growth, thereby, reducing the
use of salt in the products. These technologies use very
minimum heat, thus safeguarding the sensorial and nutri-
tional properties while confirming the microbial safety of
the food (Morris, Brody, and Wicker 2007). Non- thermal
methods like “high pressure processing (HPP),” “ultra-
sound” and “pulse electric fields” have shown some posi-
tives results in extending the shelf life of food products,
mainly meat products even in the presence of low salt
(Parniakov et al. 2020; Inguglia et al. 2017). O’Flynn et al.
(2014) found that high pressure processed “low salt” sau-
sages did not have a negative impact on the sensorial and
textural properties of the sausages. Additionally, there was
no negative impact on the pH and water holding capacity
as well, which was not the case in “low salt” sausages with-
out high pressure treatment. However, the application of
these novel technologies is quite restricted to certain food
products, potentially due to the high equipment cost and
low production yield.

Available salt substitutes and their application

As noted earlier, salt has multiple properties in food prod-
ucts and there are different alternatives available that can
partially impart some of these properties, however it
remains extremely challenging to substitute NaCl with one
specific ingredient. Table 2 summarizes several combina-
tions of salt substitutes which have been explored by the
food industry so far. For example, the use of mineral salts
(such as KCl, CaCl, and MgCl,) which can activate the
TRPV-1 receptor leading to the perception of salty taste or
the use of amino acids (such as glutamic acid, arginine and
histidine) which can activate the umami taste receptors like
T1R1/T1R3 or mGluR leading to umami taste in sodium
reduced products, subsequently leading to enhanced per-
ception of saltiness. The interaction of different salt substi-
tutes with taste receptors leading to enhanced salty taste
perception is further discussed in more detail in Discussion
section.

Discussion

Table 1 summarizes the key receptor cells which, when acti-
vated by minerals, amino acids other compounds, either
directly contribute to salty taste or indirectly enhances the
perception of saltiness in food products. Additionally, it is
interesting to note that many of these receptors are not spe-
cific to single amino acids or minerals, they can be activated
by wide range of stimuli. For example, TRPV-1 can be acti-
vated by both noxious heat stimuli contributing to bitter
taste and by minerals like Na, K, Ca, contributing to salty
taste. In the case of amino acids, one receptor is common
for both sweet and umami taste, i.e., T1R3. Additionally,
T1R3 (Tordoff et al. 2012; Tordoff 1996) and another G pro-
tein receptor, ie., TAS2R7 (Wang et al. 2019) are also acti-
vated by minerals which have some salty taste like K, Ca,
Mg and thus their activation can lead to enhanced salty
taste perception. On the other hand, these minerals can also
activate two or more of these taste receptors which might
lead to the perception of one or more taste qualities. Thus,
from our current knowledge we would expect these recep-
tors, along with ENaC, could be activated when salt substi-
tutes such as KCl, MgCl, CaCl, are used in Na* reduced
products like cheese (Grummer et al. 2012; Horita et al.
2011) or meat products (Vidal et al. 2020).

There are some receptors which are not linked to salty
taste, but their activation is necessary for the detection of
other tastes involved with minerals, including umami, bitter
and sweet taste, for example TRPM5. TRPMS5 is identified as
a key receptor in the transduction mechanism for both min-
eral salts as well as amino acids as its activation has been
observed to be associated with the release of ATP, which is
known to activate the sensory neurons, as discussed previ-
ously. There is a possibility of activation of the TRPMS5
receptors along with the activation of the known mineral
(TRPV-1) and amino acid (T1R1+T1R3) receptors in cases
where amino acids and mineral salts are present in the same
food products. For instance, the study by da Silva et al.
(2020) used a combination of mineral salts (KCl) and amino
acids (arginine and histidine) and Guo et al. (2020) used a
combination of NaCl and lysine. Therefore, the activation of
both mineral and amino acid taste receptors, along with
ENaC receptors are expected, in the presence of NaClL
However, it is still unclear if these receptors can be activated
simultaneously, or if the saltiness is only perceived by the
activation of one dominant receptor.

Furthermore, even though umami taste can be recognized
as a different taste quality, it can play a key role in enhanc-
ing the saltiness perception of the food products. As we can
see from Table 1, umami taste receptors including the het-
erodimer T1R1/T1R3, as well as TRPV-1 and CaSR, are acti-
vated by various stimuli, including mineral ions and umami
tasting compounds like amino acids. Even though there are
specific receptors for individual minerals (like sodium) and
amino acids (like glutamate), there may be some overlap
between the activation of some receptors (like CaSR) by cal-
cium ions, as well as peptides eliciting salty/umami/kokumi
taste (Table 1). Could this overlap be the reason why umami
taste is associated with enhanced salty taste, or could it be
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that the umami taste and salty taste are cognitively associ-
ated to savory/salty taste? While this is still inconclusive,
there are evidence (Table 2) of the role of umami com-
pounds in enhancing the perception of saltiness. Besides, it
is also proposed that amino acids such as lysine can also
work as a flavor enhancer to mask the bitter after-taste aris-
ing from potassium chloride. Studies highlighted in Table 2
have explored the incorporation of umami taste compounds
including amino acids (lysine, taurine, arginine, glutamic
acid) and nucleotides (IMP and GMP) as flavor enhancers
to mask the negative sensorial aspects arising by KCl (i.e.,
bitter, astringent and metallic taste) whilst maintaining the
comparable saltiness of control samples (Campagnol et al.
2011; Rocha et al. 2020). Additionally, a very recent review
highlights the promising aspect of using basic amino acids
(like lysine, arginine, histidine) in low NaCl meat and fish
products with sensory enhancement; indicating that amino
acids can support salt reduction by being more than a taste
enhancer (Zhang et al. 2022). However, these studies do not
examine the effect of the salt substitutes at a receptor level,
which is also highlighted by Zhang et al. (2022); therefore,
it is not clear if the perceived saltiness/other taste attribute
is due to the addition of lysine, flavor enhancer or herbs
and spices. Considering flavor enhancers in Na* reduced
products, a recent “salt-flip” theory was explored in food
products available on the market, which involved switching
to a Na* salt with less Na* than NaCl. In this case, MSG
contains 12.2g Na*/100g whereas NaCl contains 39.34g
Na*/100g, no undesirable flavors were observed and was
accepted by the consumers (Halim et al. 2020). Since MSG
is a Na* salt of the glutamic acid, it will activate the umami
taste receptors, i.e., TIR1+TIR3, thereby leading to umami
taste perception instead of salty taste (Halim et al. 2020).
Although successful salt reduction using MSG was achieved
with consumers’ acceptance; the acceptance was based on
the “flavorful” and “savory” taste quality, rather than specif-
ically on “salty” The study did further confirm that MSG
can be used as a flavor enhancer in salt reduced products.
However, the consumers are hesitant in using MSG based
products due to its negative reputation of causing harmful
health effects. Thus, using MSG alone as a substitute to
NaCl has not achieved success.

To cater for the aspect of consumer perception, an ingre-
dient report by Mintel (2017) highlights the presence of glu-
tamic acid and its salts in various ingredients like yeast
extract, soy extract, hydrolyzed vegetable protein and protein
extracts, which can enhance saltiness perception. Consumers
are more than likely to perceive these ingredients as more
natural than MSG. Strong evidence has shown (Table 2) the
possibility of using ingredients like the yeast extracts and
hydrolyzed vegetable protein for developing salt reduced
products (Table 2). Mitchell, Brunton, and Wilkinson (2011)
used different forms of yeast extracts (autolyzed yeast, whole
yeast cell, nucleotide yeast extract) and achieved 60% salt
reduction with nucleotide yeast extracts, without having any
undesirable impact on the sensorial properties of frozen
ready meals. Protein extracts and hydrolates (in essence free
amino acids or peptides) do not possess strong salty taste,
but they can enhance the taste of NaCl and reduce the total
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amount of salt used. An interesting product in this category
is a mycoprotein derivative, Mycoscent® (by-product from
Quorn™), which is a natural flavor enhancer containing glu-
tamic acid and nucleotides (Parniakov et al. 2020; Methven
2012). Industrial by-products from the wine industry have
also been explored (Taladrid et al. 2020) as a potential
option for salt reduction.

Studies have also explored the addition of herbs and
spices as flavor enhancers in salt reduced products (Table
2). A review by Rhyu, Kim, and Lyall (2021) suggests that
the chemical components of herbs and spices activate the
TRP channels such as TRPV-1 and TRPA-1 (Transient
Receptor Potential ankyrin member 1), which might lead to
an increase in the intracellular calcium concentration,
thereby activating the TRPV-1 leading to stimulation of the
sensory neurons (TRPV-1 section). As previously discussed,
TRPV-1 is activated by several stimuli (like capsaicin and
minerals), and is associated with salty, sweet, bitter and
umami taste qualities. Therefore, a salt substitute mixture
containing herbs and spices along with Na* or other min-
erals, will activate TRPV-1 which might have an impact on
the stimulation of ENaC. However, the relationship between
the activation of TRPV-1 and TRPA-1 in the salt substitute
mixture was not explained in the paper.

What remains unclear is where combination of salt sub-
stitutes or enhancers are present together in a food prod-
uct, what receptors are being activated to determine the
overall salty taste of the products? For example, to reduce
NaCl by 50% in a low fat sausage, Dos Santos Alves et al.
(2017) successfully used a combination of KCI, amino acid
(lysine), flavor enhancers (50% IMP + 50% GMP), liquid
smoke, other spices and herbs (black pepper, coriander and
garlic) to reduce 50% NaCl. The lysine was assumed to
mask the bitterness of KCl. The current understanding of
taste receptors indicates that all the ingredients would acti-
vate a combination of different receptors leading to salty
and umami taste. For instance, herbs and spices are broadly
known to activate TRPA-1 (Table 1), the umami taste of
amino acids and some nucleotides are perceived by the
activation of the heterodimer T1R1+T1R3 and maybe the
homodimer of T1R1 or T1R3 and hGPRC6A and it is
known that NaCl can be perceived as slightly sweet in very
low concentration (due to the activation of TIR2+T1R3)
and sour at very high concentration (McCaughey 2019). It
is tempting to assume that other minerals salts and amino
acids might behave the same way, but to different extents.
Even through the understanding of the salty taste percep-
tion has evolved greatly in past decades, there are still a lot
of uncertainties needing for further investigation. Therefore
we can neither ignore the possibility that all these recep-
tors can be activated at the same time, leading to overall
salty taste, nor the possibility of dominating receptors for
overall saltines perception Conversely, another interesting
possibility which needs in depth exploration is at the neu-
rological level than the receptor level, i.e., the involvement
of a common calcium gated voltage channel involved in
the release of neurotransmitter ATP in the perception of
the different taste qualities via different receptor cells such
GPCRs, TRPM5 and ENaC.
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Conclusion

This paper summarizes the taste receptors involved in the
perception of saltiness, highlighting the necessity to under-
stand the activation of such receptors in developing opti-
mum salt substitute strategies. Using herb and spice blends
has been one of the most widely accepted strategies to
reduce salt in various food products, but mainly used for
flavor enhancement in low Na* products. Other than impart-
ing taste, salt plays many roles in forming the final product
quality including textural and microbial stability. Therefore,
depending on the food matrix, studies have explored using
a combination of mineral salts with herb and spice blends to
retain textural properties and avoid microbial deterioration.

However, with the increasing demand for using clean
label and sustainably sourced ingredients, further studies are
needed to gain a better understanding of the potential use
of plant extracts or other industrial by-products. Additionally,
since plants from the Salicornia species naturally grow
around marshy land and have the potential to grow on
infertile land not necessarily requiring fresh water, they may
offer a solution to utilize land not used for other forms of
agriculture. These underutilized plants may prove to be an
asset to the food and beverage industry as sources of novel
ingredients. Further, converting industrial by-products into
food and flavorings ingredients is a smart technique to
reduce food waste. Considering the composition of the plant
extracts and by-products highlighted, we hypothesize that
they will activate Na*, mineral and amino acid taste trans-
duction pathways. So far there are only a limited number of
studies exploring the use of plants and industrial by-products
as salt replacers, and most research is limited to the investi-
gation of sensorial attributes and elicitation of salty taste,
rather than the fundament mechanisms for their taste per-
ception. With the complexity involved in the perception of
taste, it will be beneficial to have a greater understanding of
the mechanisms responsible for saltiness perception of such
ingredients to enable product optimization and improved
consumer acceptance. Therefore, there is a need to under-
stand the synergistic effect of the different components, par-
ticularly minerals and amino acids on the salty taste
perception derived from natural salt-alternatives.
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