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show that the Berger-Coburn phenomenon fails for a large class of doubling Fock
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Fock spaces spaces. Along the way, we illustrate our results for the canonical weights |z|™ when
Hankel operators m > 0.
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1. Introduction and main results

Let dA = 2iz.dz A dz be the Lebesgue measure on C, and ¢ be a subharmonic function. For 0 < p < oo,
LY = L*(C, e P?dA) is the space of all measurable functions on C such that

19150 = [ 1@ 7PdA) < o, (1)
C

and L;O is the space of measurable functions f such that
[[flloo.p = ess sup ()l < oo (1.2)
zE

Moreover, we write LP(2) for the space LP(2,dA) where Q C C, and we abbreviate LP(C,dA) as LP.
A positive Borel measure p on C is called doubling if there exists some constant C' > 1 such that
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u(D(z,2r)) < Cpu(D(z,1)) (1.3)

for all z € C and r > 0, where D(z,r) is the open disk in C with center z and radius r. The smallest C' > 1
is called the doubling constant for u. Hence, for each z € C, lim,_,o p(D(z,7)) = co. It is well known that
1 has no point mass, i.e.,

w(0D(z,1)) = p({z}) =0 for every z € C and r > 0, (1.4)
and is nonzero and locally finite. That is,
0 < u(D(z,r)) < oo forevery z € C and r > 0. (1.5)

Note that since for each z € C, lim, oo u(D(z,7)) = o0, the function r — u(D(z,r)) is an increasing
homeomorphism from (0, 00) to itself. Therefore, for every z € C, there is a unique positive radius p(z)
such that u(z,p(z)) = 1. For more information on doubling measures see [20]. Denote by H(C) the space
of holomorphic functions on C. Then the doubling Fock space F' qf is defined by

F? = L7 n H(C) (1.6)

where ¢ is a subharmonic function, not identically zero on C, and du = A¢ dA is a doubling measure. As
shown in [16], p=2 is a regularization of A¢. Indeed, Theorem 14 in [16] states that when ¢ is subharmonic
and A¢dA is a doubling measure, there exists a subharmonic function ¥ € C*°(C) and C > 0 such that
| — ¢| < C, Ay dA a doubling measure, and Ay ~ pf ~ p;Q. The comparability relation ~ is explained
at the beginning of Section 2. Since the spaces of functions and sequences that we consider do not change
if ¢ is replaced by 1, we will assume that ¢ € C°°(C) and A¢dA ~ dA/p? is a doubling measure. Hence,
up to normalization by a constant, we can consider p~2(z)dz @ dz to be the metric tensor describing the
underlying geometry of our space.

It is well known that (£}, - ||5,¢) is a Banach space for 1 < p < oo and a quasi-Banach space for
0 <p <1 Let K, = K(, 2) be the reproducing kernel of F;. Then the orthogonal projection P : L} — F
is given by

Pf(z) = / f(w)K, (w)e~ 22 dA(w). (1.7)
C

Then as shown in [18], for any 1 < p < oo, P is a bounded linear operator from L% to F}, and for any
feFY, f=Pf. Let I =span{K, : z € C}, and consider the class of symbols

S = {f measurable : fg € Li for g € T}

Note that L C S. Given f € S, define the Toeplitz operator Ty and the Hankel operator H; on Fj: by

Trg=P(fg), Hpg=I—-P)(fg)=fg— P(fg) (1.8)

The doubling Fock spaces as well as some pointwise estimates of the Bergman kernel have been studied in
seminal papers of Christ [3], and Marco, Massaneda and Ortega-Ceda [16,17]. Oliver and Pascuas [18] studied
the characterization of boundedness, compactness and the Schatten class membership of Toeplitz operators
on doubling Fock spaces. In [11], Hu and Virtanen introduced a new space IDA of locally integrable functions
whose integral distance to holomorphic functions is finite and used it to characterize boundedness and
compactness of Hankel operators on weighted Fock spaces. Using the same notion, in [9] they characterized
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Schatten class Hankel operators acting on weighted Fock spaces Fiz, where m < A® < M for some m, M > 0.
Recently, their characterizations of bounded and compact Hankel operators was extended to the setting of
doubling Fock spaces in [15].

In the present work, we use a generalized version of IDA to study the Schatten class membership of
Hankel operators on doubling Fock spaces. Of particular interest is the result of Berger and Coburn [2]
which says that, for f € L*°, if Hy is a compact operator acting on the classical Fock space F 2. then so is
Hy. We refer to this property as the Berger-Coburn phenomenon and note that an analogous statement fails
both in the Hardy and Bergman spaces (see, e.g., [6]). More recently, Berger and Coburn’s result has been
extended to Fock spaces with standard weights by Hagger and Virtanen [6] (using limit operator techniques
as opposed to C*-algebra techniques and Hilbert space methods) and to generalized Fock spaces F} by Hu
and Virtanen [11]. Our approach is similar to that of [11] except that we need to deal with more complicated
geometry induced by the function p arising in the study of doubling Fock spaces.

It is natural to ask whether the Berger-Coburn phenomenon also holds for Schatten class Hankel opera-
tors. Indeed, Bauer [1] was the first to show that this property holds for Hilbert-Schmidt Hankel operators
on F?. Recently, Hu and Virtanen in [9] proved that when 1 < p < co, H; acting on Fj is in the Schatten
class S if and only if Hy is in Sp. This was followed by the work of Xia [21], in which he showed also
that if f(z) = 1/z for |z| > 1 and f = 0 elsewhere, then Hf acting on the classical Fock space F? is in
the trace class while Hy is not. In his work, Xia employed a rather long and involved calculations using
the standard basis vectors ex(z) = zF/v/k! and the reproducing kernel K(z,w) = e*”. Observe that for
non-standard weighted Fock spaces, there are no explicit formulas for the basis vectors or the reproducing
kernel. To overcome this, Hu and Virtanen [12] used their characterizations of Schatten class Hankel op-
erators to verify that Xia’s example shows that the Berger-Coburn phenomenon fails for Sp(F;7 Li) when
0<m< Ap < M and 0 < p < 1. Here, we use an analogous approach on doubling Fock spaces to prove
the existence of the Berger-Coburn phenomenon for Hilbert-Schmidt Hankel operators. When 0 < p < 1,
we show that the Berger-Coburn phenomenon fails for some doubling Fock spaces—the larger the value of
p, the fewer Fock spaces we can cover.

To state our main results, following [11,14] with a modification according to the doubling property of the
measure under consideration, we define

q _ 3 1 q
(oD =, _nt s [ 17 =hlvaa (19)

D7 (2)

for f € LY, ¢ > 1 and r > 0. Here |D"(z)| is the Lebesgue measure of D"(z) := D(z,rp(z)). Now, for

locy

0 <p<oo,1<q<o00, and a € R, the space IDAP'?® consists of all f € L]  such that || f|ipapae =

loc

10%G g (f)llzr < 0. Besides, for f € L}, define f.(z) := |D" ()| fDT(z) fdA.

locy

Theorem 1.1 (IDA decomposition). Let ¢ € C>*(C) be subharmonic such that dy = ApdA is a doubling
measure. Suppose that 1 < g < o0, 0 <p < oo, « € R, and f € L} .. Then for f € IDALY f = fi + f,
where f1 € C*(C) and

P OS]+ P (D f1]e,) T+ p* (| fol, )V € L7, (1.10)

for some (equivalent any) r > 0, and

| Fllpages = inf {||p1+“<|5f1|qr>”qm n |Pa(|f2|qr)l/q||m} , (L.11)

where the infimum is taken over all possible decompositions f = f1 + fo, with fi and fo satisfying the
conditions in (3.11).



4 G. Asghari et al. / J. Math. Anal. Appl. 540 (2024) 128596

Theorem 1.1 was stated in [15] without proof. We believe that the proof is rather technical and not trivial
at all. It appears that this theorem should be a natural extension of Theorem 3.8 in [11]. However, bounding
a solution to the d-equation in the doubling Fock space is problematic.

Theorem 1.2 (Schatten class membership of Hankel operators). Let 0 < p < 0o, and ¢ € C*(C) be subhar-
monic such that dy := A¢dA is a doubling measure. Then for f € S, the following are equivalent:

(1) Hy: F} — L7 is in Sp,
(2) f € IDAP272/P_ for some (equivalent any) r > 0.

Moreover,

IHflls, = 1fllipaz2—2/e- (1.12)

Remark. Assuming smoothness of p~2, the condition for the S, membership of the Hankel operator on the
doubling Fock space is equivalent to the condition that Ga,(f) belongs to the space of L? functions on C
with the conformal metric p~2dz ® dz.

To characterize the simultaneous membership of Hy and H 7in Sp, we need to define the space of integral

2

mean oscillation. First, for f € L] .

and r > 0, the mean oscillation of f is defined by

1/2
1

MO (1)) = | ey [ V- F@PaA] (113

Dr(z)

Given 0 < p < oo and a € R, we define the space IMOf’Z’a to be the family of those f € L? _such that

loc

[fllvop2e = [lp* MOz, ()| r < o0 (1.14)

Theorem 1.3. Let 0 < p < oo and assume that ¢ € C°(C) is subharmonic such that du = ApdA is a
doubling measure. Then the following are equivalent.

(1) Both Hy and Hj € S,(F3,L3),
(2) fe IMOf’Q’_Q/p, for some (equivalent any) r > 0. Moreover,

1Hplls, + 1 H7lls, = | Fllpgope-2e- (1.15)

Using the preceding result, it is easy to show that Hj is not Hilbert-Schmidt on F, Q% when f is a non-
constant entire function (see Theorem 5.4), which implies an analogous result of Schneider [19] for the
canonical weights ¢(2) = |2|™ and f(z) = z* when k is a positive integer and m > 0. However, when we
restrict our study to bounded symbols, it turns out that Hy € So whenever H; € S as seen in the following
theorem.

Theorem 1.4 (Berger-Coburn phenomenon for Hilbert-Schmidt Hankel operators). Let ¢ € C*(C) be sub-
harmonic and suppose that dp = A¢dA is a doubling measure. Then for f € L, Hy € S’Q(Fq%, Li) if and
only if Hy € Sy(F3, L3), with

[Hflls, = [[Hlls,- (1.16)
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It is worth emphasizing that the preceding theorem for Hilbert-Schmidt Hankel operators was proved by
Bauer [1] in 2004, and it took almost two decades until it was proved for other Schatten classes by Hu and
Virtanen [9]. This leads to the following question.

Open Problem 1.5. Does the Berger-Coburn phenomenon hold true for other Schatten classes S, when
1<p<oo?

For a discussion on the preceding open problem (involving the Muckenhoupt condition for the bounded-
ness of the Beurling-Ahlfors operator), see Remark 6.1 in Section 6.

Before stating our last theorem, we recall the following growth condition for the function p. Given a
doubling Fock space F2, there are constants C,n > 0 and 0 < 3 < 1 such that

CH 2™ < p(z) < Oz (117)

for |z| > 1 (see Equation (5) of [16]); we denote the smallest 8 that satisfies (1.17) by Bs.
The following result shows the Berger-Coburn phenomenon fails for S,(F g,Li) provided that B4 is
sufficiently small in comparison with the value of p.

Theorem 1.6. Let ¢ € C*(C) be subharmonic with du = A¢dA a doubling measure. Then, for 0 < p <1
with By < 11_;;/’2, the Berger-Coburn phenomenon for Schatten class Hankel operators fails; that is, there is
an f € L>(C) such that Hy € Sp(F2, L7) but Hy ¢ Sp(FZ,L).

In particular, when p is bounded, the Berger-Coburn phenomenon fails for all 0 < p < 1.

A simple consequence of the preceding theorem is that if Fg is a doubling Fock space, then the Berger-
Coburn phenomenon fails for S, (F] 57 Li) provided that p is sufficiently small.

Another consequence is the following corollary, in which we consider again the canonical doubling weights
#(2) = |#|™ and determine when the Berger-Coburn phenomenon fails for these weights.

Corollary 1.7. Let m > 0 and 0 < p < 1. Then the Berger-Coburn phenomenon fails for Sp(ﬂi‘m,7L|2z|m) if

In particular, if m > 2, then the phenomenon fails for all Schatten classes S, with 0 < p < 1.
Theorem 1.6 and its corollary lead to the following question.

Open Problem 1.8. Determine whether the Berger-Coburn phenomenon fails for S, (F, ;, Li) when 0 <p <1
and A¢dA is doubling.

The paper is organized as follows. In the next section, we provide preliminaries on the reproducing
kernel, including global and local estimates, and elaborate more on the radius function p and the induced
metric on the complex plane. In Section 3, we provide useful lemmas and use them to prove Theorem 1.1
(IDA decomposition). In Section 4, we use Toeplitz operators with locally finite positive Borel measures
to prove Theorem 1.2, which characterizes the Schatten class membership of Hankel operators. Section 5
is devoted to the study of the function space IMO of integral mean oscillation, which we use to prove
Theorem 1.3. Finally, in Section 6, we prove the Berger-Coburn phenomenon for Hilbert-Schmidt Hankel
operators on general doubling Fock spaces as stated in Theorem 1.4. We finish the last section with the
proofs of Theorem 1.6 and Corollary 1.7.
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Fig. 1. Relation between p(z) and p(w).

2. Preliminaries

In this section we recall and prove some key lemmas on the function p, the reproducing kernel of F2, the
space IDAP®%and their related integral and norm estimates.

Notation. We use C' to denote positive constants whose value may change from line to line but does not
depend on the functions being considered. We say that A ~ B if there exists a constant C' > 0 such that
C~'A < B < CA. Moreover, A < B if A < CB for some positive constant C.

Let ¢ be a subharmonic function on C such that du = A¢dA is a doubling measure. Recall that there is
a function p such that u(D(z, p(z))) = 1, for every point z € C. In other words, the radius of a disk with
unit measure depends on the center of the disk. As shown in the Fig. 1, D(z, p(z)) C D(w, |w — z| + p(2)).
Hence, 1 < u(D(w, |lw — z| + p(2))), and thus p(w) < p(2) + |w — z|. By symmetry,

lo(w) — p(2)] < |w—z|, forevery z,w € C. (2.1)

Lemma 2.1 (See [18], Lemma 2.2). For every r > 0 there is a constant ¢, > 1, depending only on r and the
doubling constant for u, such that

e lp(z) < p(w) < epp(z),  for every z € C and w € D" (2). (2.2)

Namely, ¢, = (1 — 1)1, for every 0 < r < 1. In other words, p(w) and p(z) are equivalent on a disk.

Consider the distance dy induced by the metric p~2dz ® dz. Indeed, for any z,w € C,

1
e [ O
dy(z,w) = va/p(’y(t))dt’ (2.3)

where the infimum is taken over all piecewise C! curves v : [0,1] — C with (0) = z and (1) = w.

Lemma 2.2 (See [16], Lemma 4). There exists 0 > 0 such that for every r > 0 there exists C,. > 0 such that

71—|z—w| zZ,w |z — vl or w "(z
and
_1lz —wl\s e —whes o ",
O () Sdelmw) <G ()™ forw e CAD'(2), (2.5)
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Now we can state the following pointwise estimate for the Bergman kernel.
Lemma 2.3.

(1) There exist C,e > 0 such that

R — p(z
K(w,z)| < (w0)p(?) e , W,z , .

(2) There exists some 1o > 0 such that for z € C and w € D™ (z), we have

e?(w)+9(2)
|K (w, z)| ~ O (2.7)
(3) kp > — 0 uniformly on compact subsets of C as z — oo, where ky , = HKIZ(IT S is the normalized Bergman
P P
kernel of F.
(4) For any 1 < p < oo, we have that
K |lpp =~ ) p(2)?/P2, (2.8)

Proof. See Theorem 1.1 and Proposition 2.11 of [17] respectively for parts (1) and (2), Lemma 2.3 of [8] for
part (3), and Proposition 2.9 of [18] for part (4). O

Given a sequence {a;}52; C C, and r > 0, we call {a;}32; an r-lattice if {D"(a;)}32; covers C and the
disks of {D"/% (aj)}52, are pairwise disjoint. Moreover, for an r-lattice {a;}52,, and a real number m > 1,
there exists an integer NV such that

1 < ZXDmr(aj)(z) < N (29)
j=1

where g is the characteristic function of a subset E of C. For f,e € L2, the tensor product f ® e as a rank
one operator on Li is defined by

foelg)=(g.e)f, gelL (2.10)

Lemma 2.4. Givenr > 0, there is some constant C > 0 such that if T is an r-lattice in C, and if {e, : a € T'}
is an orthonormal set in Li, then

D kra®eq <C, (2.11)
a€l L2—L?
where kg o 1= ”KIjﬁ”M is the normalized Bergman kernel.

Proof. Note that {\, = (g, €4)2.6 taer € [*. Then similar to the proof of Lemma 2.4 in [7],

Z )\ak27a

acl

< Cl{Aataerll (2.12)

where the constant C' only depends on r. Then similar to the proof of Lemma 2.4 in [9], we have
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We finish this section with a description of p for the canonical weights |z|™ with m > 0.

2
< Clg,ea)> <Clgl*. O (2.13)

(Z k2,a ® ea)(g)

a€l

Lemma 2.5. Let ¢(z) = |z|™ with m > 0. Then dp = A¢dA is a doubling measure. Moreover, there is an
R > 0 such that

o) = |12
for|z| > R. In particular, when m > 2, p is bounded.

Proof. Note that A¢(z) = m?|z|™ 2. To show that du is a doubling weight, it is enough to prove that for
any x > 0 and r > 0,

/ 2" 2dA(z) < C / " 2dA(2), (2.14)
D(z,2r) D(z,r)

where the constant C' is independent of x and r.
We consider r > £ > 0 first. Then D(z,2r) C D(0,z + 2r), so that

100
/ du(€) < / €[ 2dA(E) < / €™ 2dA(E) < Cyr™. (2.15)
D(z,2r) || <z+2r [£1<102r

On the other hand, if m > 2,
[ao= [ awe= [ dwgzcam (2.16)
D(z,r) D(z,r)N{Reé>z} D(0,r)N{Re&>0}

From (2.15) and (2.16) we obtain (2.14) for m > 2 and r > 355.

X
Now we suppose 0 <7 < 155. Then

. 2
D(x,2r) C {te® 12— 2r <t < 2+ 2r,|0] < arcsin —r},
x
D(z,r) D {te : & — eyr <t <z + cor, |0] < arcsin 2L}7
x

where ¢; and ¢ are positive constants independent of x are r. Hence,

2r

z+2r arcsin -
/ dp < / ™y / g~ [(x+2r)™ — (x — 2r)™] (2.17)
T
D(z,2r) z—2r — arcsin 2&
~ grxmfl =22,

where the constants in the inequalities ~ are all independent of = and r. Similarly,

sin L
T4cor arcsin 5

/duz / ™ Ldr / do (2.18)

D(z,r) r—cyir — arcsin 5
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(@ + cor)™ — (z — 7)™ >~ 2™ 2

~

8

Using (2.17) and (2.18), we obtain (2.14).
For 0 <m < 2, and r > 155,

€@ = [ levamaaz [ lgraag = oo (219)

D(z,r) D(0,r) D(0,r)

From (2.15) and (2.19) we obtain (2.14) for 0 <m < 2 and r > 55.

Now notice that using (2.17) and (2.18) and when z is large enough,

[ lemraa = (2.20)

_m—2

D(z,xz™ 2 )

This, together with the doubling property implies that there exists R > 0 large enough, such that for the
Fock space F‘QZ‘m7

pz) = || 75 = |2|'7% (2.21)
for |z| > R. O
3. The space IDA

The goal of this section is to prove the IDA decomposition Theorem 1.1. Before proving the theorem, we
need to see some definitions and lemmas.

Lemma 3.1. Suppose 1 < q < co. Then for f € L , 2 € C, and r > 0, there is h € H(D"(z)) such that

loc’

(IF = B2, ()" = Gon(1)(2), (3.1)
and for s <,
sup |h(w)| < C|fllLa(pr(2).da), (3.2)
weD*(z)

where the constant C is independent of f and r.
Proof. This proof is similar to the proof of Lemma 3.3 in [11]. Taking h = 0,
Cor(N(2) < ([717,(2)) " < 0. (3.3)
Then for j =1,2,- -, pick h; € H(D"(z)) such that
(17 =h3l,(2) """ = Gur()(z) a5 j— oo. (3.4)
Hence for sufficiently large j,

(1]a, ()" < L = Ryl () + ([F1,(2)) Y < C(1f19,.(2) . (3.5)
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Thus, we can find a subsequence {hj, }7°, and a function h € H(D"(z)) such that limy_, hj, (w) = h(w)
for w € D"(z). By (3.4),

G ()(2) < (IF = hl9,(2)) " < limin (1f = Ry 17,(2))"" = Gour(£)(2) (3.6)

where in the RHS inequality we have used Fatou’s Lemma. This gives us (3.1).
Now for w € D*(2), by the mean value Theorem,

h(w)| < ([a]4,(2) " < C(nj7,() Y < (7£19,(2) " = Cll flla(or(zyam)- O (3.7)

Now we are ready to define f; and f3 in Theorem 1.1. Using (2.2) and the triangle inequality, there exists

€ (0,1) such that D™"(w) C D"(z), whenever w € D™ (z). For r > 0, let {a;}32; be a mr-lattice, and
let J, :={j: 2z € D"(a;)}, so that |J,| = Z;’;l XDr(a;)(2) < N, for some integer N. Let 1 : C — [0,1] be
the following smooth function with bounded derivatives.

1 if|z] <1/2,
= - 3.8
n(z) {o if 2] > 1. (38)
For each j > 1 we define n,(z) = 77(77;;&{3_)). We can normalize n; such that [~7;dA = 1, for each

j > 1. Define ¢;(z) = = 2 Then one can see that ;132 is a partition of unity subordinate to
J Yy e (2) Jj=1
{D™"(a;)};>1, satisfying the following properties:

Suppty; € D™ (a;), ¥;(2) 20, Y i(z) =

|p(a;);] < C, > uy(z) =0, (3.9)

Jj=1

where the constant C' may depend on 7.
By Lemma 3.1, for j = 1,2,- - -, we can pick h; € H(D"(a;)) such that

7 1 q i (I'q
=Rl 0) = / | = hj|7dA = Gy (£)(a;)". (3.10)

Dr(a;)

For 1 < g<ooand f € L] , decompose f = fi + f2 as

loc?

oo

Zhg (2)5(2),  fal2) = f(2) — fi(2). (3.11)

Lemma 3.2. Let1 < g < oo, f € L}
and

and r > 0. Decomposing f = f1+ f2 as in (5.11), we have f; € C*(C)

loc’?

p(2)0f1(2)] + p(2)(10f1]9,,) T + ([ fal?,,,) T < CGy r(£)(2), (3.12)
for some R > r and m € (0,1).
Proof. Using the properties of h; and 1); we can easily see that f; € C*(C). Let z € C,and J, = {j : z €

D" (a;)}. We know that if z € D"(a;), then p(z) < Cp(a;). Therefore, knowing Z;‘;l ;= 0, using (3.9),
the triangle inequality, and since |h; — hq|? is plurisubharmonic on D" (a,),
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p(2)|0f1(2)] = p(2) |00 hj(2) Z (2 2)[|0w;(2)]

r 1/q

<.
[y

1 .
<C 4 D7 ()] |hy — hi|TdA|  p(a;)|0n;(2)]
€| Dr(a;)
r 1/q
<c /{If Blt 4 1f — ha|7}dA
|DT
i€l | Dr<a1>
Z |F =Ryl (@) + (1f = hale,(a;))
<C Z ar(a;) < CGys(f)(2), (3.13)
eJ,

for some s > r, where the last inequality can be shown similarly to Corollary 3.4 in [11], and using the fact
that |J,| is finite.
Moreover, note that

1/q
= g 1 _ .
(0 )" =02 | ey / 0 (w) [“dA(w)
D™ (z)
r 1/q
1 19 q
<Clgmg [ rw)ios)laaw)
L Dm7(z)
r 1/q
1 q
< | B / Gye()(w) dA(w)
L Dm7(z)
<C Esbt}g()Gq,s(f)(w)SCGq,R(f)(z), (3.14)

for some R > s, where again for the last inequality we use Corollary 3.4 in [11]. Similarly, since Z]Oil vy =1,

[fo(w)|* = |f(w) =Y hy(w)i;(w)|” < Z |f(w w)| 5 (w)]?. (3.15)

j=1
Hence, using |;| < 1,
1/q
x /oo~ 1 2l
(Bl ) <Y |Gy [ 1= bl
=t Dmr(2)

<O Y Gorlf)ag) < CGor(f)(2), (3.16)

Jj€Jz

similar to the previous part for p|5 f1|. Putting everything together, we can find a big enough R > r such
that (3.12) holds. O
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Proof of Theorem 1.1. First, we show that if (1.10) holds for some r, then it holds for any r. Let R > 0.
For 0 < r < R take t = 541 and take 21, - -, 2y in the unit disk D(0,1) so that D(0,1) C U, D(z5,).
Set a;(z) = z + Rp(2)z;. Then

5(a;(2)))

= UM, D"(a;(2)). (3.17)

D(2) € UjZy D(z + Rp(2)z;, tRp(2)) € UL, D(ay(2),

Therefore,

[ (6 n2) 24G) < ¢ [ 3 (6T, alas(zD) aAc2)
C

C

N
<¢ [ Y ey | @y
C =t

Der(ay(2))

N
(lgle,( Z/chr (a5(2)) )md/l(z)
C

[y
/

(1914, (1)) " dA(u), (3.18)

where for the second inequality take ¢ > 0 such that D (a;(2)) C Nueper(a, () D" (u). Taking s = p/q
implies that (1.10) holds for some r > 0, if and only if it holds for any 7.

Now assume that f € IDAP?®. That is, f € L. with [[p®Gq,(f)|lr < 00. Decompose f = f1 + f2 as
in Lemma 3.2. Then f; € C?(C), and (3.12) holds. Multiplying both sides with p® and taking the LP-norm,
we obtain (1.10). O

4. Schatten class Hankel operators on doubling Fock spaces

Recall that for a bounded linear operator T : H; — H; between two Hilbert spaces, the singular values
A, are defined by

A =M\ (T) =inf{||T — K| : K: H — Hg,rank K < n}. (4.1)

The operator T' is compact if and only if A,, — 0. Given 0 < p < oo, we say that T is in the Schatten class
S, and write T' € S,(Hy, Hz), if its singular value sequence {\,,} belongs to {?. Then ||T||pp =3 ol AnlP
defines a norm when 1 < p < oo and a quasinorm when 0 < p < 1. Moreover, for the quasi-Banach case, we
have the triangle inequality.

IT+S|% < |T|% + S|, whenT,5€S, 0<p<1, (4.2)

which is called the Rotfel’d inequality. For a positive compact operators 7" on H and p > 0, T' € S, if and
only if TP € S;. Moreover, ||T|% = IT?||s,. See [22] for further details on the properties of Schatten class
operators, as well as the proof of the next two theorems.

Theorem 4.1 (See [22], Theorem 1.26). If T is a compact operator on H and p > 0, then T' € S,, if and only
if |T|P = (T*T)P/? € Sy, if and only if T*T € Sp/2. Moreover,
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. 2
TN, = ITIE, = ITPls, = 1T T)%2,. (4.3)
Consequently, T € Sy, if and only if |T| € Sp.

Theorem 4.2 (See [22], Theorem 1.28). Suppose T is a compact operator on H and p > 1. Then T is in Sy
if and only if

S [(Ten,on)l? < oo, (4.4)
for all orthonormal sets {e,} and {o,}. If T is positive, we also have

IT|s, = sup { [Z (Ten,on) ] Yr, {en} and {o,} are orthonormal} . (4.5)

Given a locally finite positive Borel measure p on C, we define the Toeplitz operator T}, with symbol p
as

T.4(2) = [ JR@le*duu). (46)
C

Moreover, for every r > 0, the r-averaging transform of u is defined by

WD) ()
C = Thl = e

(4.7)

Theorem 4.3 (See [18], Theorem 4.1). Let p be a locally finite positive Borel measure on C, and let 0 < p <
0o. Then the following are equivalent.

(1)
(2) There is ro > 0 such that any r-lattice {z;};>1 with r € (0,7¢) satisfies {fir(2;)}j>1 € 7,
(3) There is an r-lattice {z;};>1 such that {fi,(z;)};>1 € 17,

(4) There is r > 0 such that fi, € LP(C,do),

Moreover, || Tyl = ||fir|| Lo (C,do), where do = dA/p?.

The rest of this section is devoted to the proof of the Schatten class membership of the Hankel op-
erators Theorem 1.2. For this purpose, let a € C and r > 0. Let A%(D"(a),e 2¢dA) be the weighted
Bergman space containing the holomorphic functions in L?(D" (a),e~2?dA). Let P, . : L?>(D"(a), e 2?dA) —

A%(D"(a),e=2¢dA) be the orthogonal projection, and for f € L?(D"(a),e 2¢dA), extend P, ,(f) to C by
setting

Por(f)ic\Dr(a) = 0. (4.8)
One can check that for f,g € L2,
P2 o(f) = Par(f), and  (f,Pur(9)) = (Par(f).9)- (4.9)
Moreover, for h € F?,

Pa,r(h) = XD”'(a)h'a and  (h, XDT(a)f - Pa,r(f)> =0. (4.10)
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Proof of Theorem 1.2. Here we borrow an idea from the proof of Proposition 6.8 in [5] and the proof of
Theorem 1.1 in [9]. First we show that (2) = (1). Let f € IDAIT”Q’*Z/ID. Then by Theorem 1.1, f = f1 + fo
with

PP+ p (O£ 20V + pm (1 faf?,) Y2 € 1P (4.11)
Applying the definition,
_ =5 _ 1
P BAP) = o [ 10APaAY (12
Dr(z)
and
PR =y [ Pda) (4.13)
Dr(z)

Set @ := p|dfi| or ® = |fa|, and u := |®|?. First, if ® = p|df1],

D) s 1 e
) = = oy | A= ey [ AonPaa (419

Dr(z) Dr(2)

We claim that for f € IDAP>~2/P e LP/2(C,do). Note that

iy = [ Virl?2d )
C

:/W[ / pﬂ&fﬂ%A]pm%. (4.15)
C

Dr(z)

Since f € IDAP2~2%/P we have p'=2/P(|0f1]2,)"/? € LP and thus

«[pﬂ{ﬁ / 01)2dAYPdA(2) < oo. (4.16)

Dr(z)
Recall that in (4.15), w € D"(z), and therefore there is a constant C such that p(w) < Cp(z). Hence,

Cp(z 2 X
||ur||m2 (Cuto) < |D€(Z |W{ / 10f1] 2dA}p/ dA(z) < LHS of (4.16) < oo. (4.17)

Dr(z)

Thus, we can conclude that i, € LP/2(C,do), for p = p?|0f1|?. Now, using Theorem 4.3, T), € Sp2(F3).
Consider the multiplication Mg : qu — Li defined by Mg f := ®f. Then Mg is bounded for ® = p|0fi|
or ® = |f|. For h,g € L2,

(MgMag,h)s p = (Mag, Moh)s ¢ = /gﬁe‘2¢dA = (To29, h)2,¢, (4.18)
C

so, MgMg = Tjp|2 € Sp/2, and thus Mg € Sp. Moreover,
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[Mal[s, = [|MgMalls,,, = [|Tulls, = lirllLr2(c.do)- (4.19)

By equations (3.13) and (3.17) in [15], and using Fock-Carleson measures for F2, we can see that

IHfgll2.0 < llpgdfill2.er  and  [[Hpgll2.s < llgf2ll2.e- (4.20)
Therefore,
1Hr s, S IMalls, = il Lorz(cary S 107 2P10F112) 210 = 1 Fllippp2-2re- (4.21)

To complete the proof, it remains to note that when u = |f2|?, we have

2 p/2dA(z)
e 157 oy /|D7" e D!) |f2[2dA] ren
p(z
- [t [ 1nraa o)
c D7 (2)
= o271 f2>,)"?I| v, (4.22)

so that

||Hf2||5'p 5 ||f||IDA,pJ2’_2/p‘

Consequently, ||Hylls, < |1 Hy, s, + 1Hplls, S Ifllpspe—2/r, and so Hy € Sy(F7, L3).

To show (1) == (2) for p > 1, we proceed as follows. Recall that {a;}32; is an r-lattice if {D"(a;)}72,
covers C and D"/5(a;)ND"/®(ay) = 0 for j # k. Let I be an r-lattice, and let {e, : a € T'} be an orthonormal
basis of F| q% . Define linear operators 7" and B by

T:Zkga@ea, and Bnga@)ea, (4.23)
a€el’ a€el’

where

T(a H (k ,a)
m% if |Xpr(a)yHy(k2,a)ll # 0,

(4.24)
0 if XD () H(k2,a)ll = 0.

Ga =

Since ||gq|| < 1 and (ga, gs) = 0 when a # b, HB||L§ — L% < 1. Moreover, by Lemma 2.4, we can see that
|T|| < C for some constant C. Let Hy € S,. So in particular, Hy is compact. We know from Lemma 2.3
that kp . — 0 uniformly on compact subsets of C as z — oo, where ky, , = K./||K.||p,s is the normalized
Bergman kernel for F' qf . By compactness of H; we obtain that

i (oo Hy(ka )z =01 (4.25)
Note that

<B*MXDT(Q)HJCT€(I7 ea> = <XD"(a)Hf Z k2,b & eb(ea)u ng & ed(ea)>
bel der

= (Xpr(@) Hf(k2,a), 9a) = IXDr () H (k2,2)[ 12 5 (4.26)
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and
(B*My oy HyTeq,e0) =0, a#b. (4.27)
Thus, B*My,, ., HyT is a compact positive operator on Li. By Theorem 4.2, and since we are dealing with
the case of p > 1,
HB*MxDr(a)HfTHgP = sup {Z |<B*MXD,.(G)HfTea, €a) : {€ataer : orthonormal} . (4.28)
So,
Z |<B*MXDr(a)HfTea7 ea>‘ < ||B*MXDT(Q)HfT||gp < CHHngpv (429)
a€cl
as |B|| <1, ||MxDr(a)|| <1,and |T|| < C. Recall that
1/2
1
Go.r(f)(a) = inf D@ / |f — h|?dA che H(D"(a)) ¢, (4.30)

D7 (a)

and for 1 < p < 00, || K, ||p.¢ < €?*)p(2)?/P=2. Moreover, recalling Lemma 2.3 there exists ro > 0 such that
for w € D™ (z),

e?(w)+¢(2)
|K (w,z)| < S (4.31)
Thus for w € D™ (z),
oty KW, 2)] iy | ePFEE)eme(w) B -
el = S o) < ) M = 0l 0, 43)
and we can conclude that % € H(D"(z)). Hence,
1/2
1 P(fk2,0)
G2,r(f)(a) S m / |f - T2‘2dA . (4.33)
D (a) ’
Moreover,
r 1/2
”XDT(a)Hf(kla)||L§5 = / |fk2.a — P(fkoq)|?e 2%dA
D7 (a)
r 1/2
= | [ - Bledpyy perean
k2,a ’
[D"(a)
1/2
(4.32) P(fkoq B
= / |f — —(kg = )Izp(a) 2dA
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1/2
1 P(fk24) o
- _TURa) g 4.34
i A e (4.34)
Dr(a)
where in the last line we have used the equivalence |D"(z2)| < p(z)%. Hence,
G2 (f)(a) S IXDr (@) Hi(kz,a)l 2, (4.35)
and therefore,
D G S XD (@) Hy (k2,0) 72
ael’ a€l
= Z| XDT(Q)HfTeaaeaHp < CHHngp (4.36)
ael’

Now note that

T / §2Goe ()P dA

<3 [ G (ErAR)
aGFDT(a)

<Y sup p(2) PGy (f)(2)7|D" (a)

ael z€D"(a)

=C) pla) G (f)(@)pla)?

acll
= O Gor(f)(a)
acll
< CHy|1% . (4.37)

Now since if Theorem 1.1 holds for some r > 0, it holds for any r, we are done with the proof for p > 1.
Now we finish the proof of Theorem 1.2 by showing that (1) == (2) for 0 < p < 1. Since Hy €
Sp(Fg, Li), it is in particular bounded. For a € I" set

ra) fk ,a_Pa,r(fk ,a) :
Do Pt i IXor@ kza = Par(Fhaa)l 70,

0 if HXDT(a)ka,a - Pa,r(fkla)“ =0.

Yo = (4.38)

Then similar as before, ||gq|| < 1, and (g4, gs) = 0 for a # b. Let J be any finite subcollection of T', and
{ea}aes be an orthonormal set of L. Define

A= ea®ga: Ly — L3 (4.39)
acJ

Then A is of finite rank and ||A|| < 1. Similarly define

T=> kya®eq: Ly — F3. (4.40)
acJ

Then as before, since I' is an r-lattice and thus separated, there is a constant C' such that ||T'|| < C. Then,
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AHT = Z (Hiky r,ga)ea @ ey =Y + Z,

a,Te€J

where

Y = Z<ka2,avga>ea®eaa Z = Z <ka277,ga>6a®€-,—.

acJ a,Te€J,a#T

Note that

(Hiko,a,9a)2.6 = (f2,a — P(fk2,0): 9a)2,6 = (XDr(a) fE2,0 — Par(fk2,a), 9a)2,6

= HXDT(a)fkla - Pa,r(ka,a)H2,¢

r 1/2
= / |XDT'(a)fk2,a - Pa,r(fk27a)|2€_2¢dA
LC
r 1/2
= / |fk2,a - Pa,r(ka,a)|2€_2¢dA
|D7(a)
r 1/2
Py r(fkoa _
= / |f_%|2|k27a|26 264 A
(D7 (a) ’
r 1/2
1 Pa r(ka a) 2
=\ TP — ————"|“dA
s |
L D7 (a)
Z G2,r(f)(a)7

where in the line before the last line we have used (4.32) and |D"(a)| < p(a)?. Thus,

(H¢k2.a,9a)2,6 > CGar(f)(a).

Therefore, there exists some N, independent of f and J such that

V1% = (Hrkoa ga)sy = N Gor(f)(a).
acJ acJ
On the other hand for 0 < p < 1,

1ZI[5, < > (Hrkoroga)b
a,Te€J,a#T

Let Qu, : L*(D"(a),dA) — A%*(D"(a),dA) be the Bergman projection. Then fko, —

P, (fkar) — k2 +Qarf are orthogonal, and by Parseval’s identity,

| flor — Par(fh2)llL2(Dr(a),e-20a4) < [[fR2,r — k2 Qar ()l L2(Dr(a),e-20d4)-

Note that by Lemma 2.3, there exist C, e > 0 such that

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

P, (fk2,) and

(4.47)
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e¢(w)+¢(z) 7( |z—w]|

Q
°
0
-z
<

K (w,2)| <

(4.48)

Besides, by Lemma 6.8 in [18], we can see that given R > 0 and any finite sequence {a;}"_; of different
points in C, it can be partitioned into subsequences such that any different points a; and ay in the same
subsequence satisfy

|aj — ax| = Rmin(p(a;), plar))- (4.49)
So taking J to be a finite collection of I', we can choose an appropriately large R > 0 such that
la —b| > Rmin(p(a), p(b)), when a,b < J,a #b. (4.50)
Putting everything together,

‘<ka72;,—,ga>| = |<fk2,7 - P(ka,‘r)ugaH

XDT(a)ka,a - Pa,'f(fk2,a) >|
"lIxpra) fR2,a — Par(fE2.0)ll

_ |<XD7‘(a)fk2,‘r - Pa,r(fk2,7)7 XDT‘(a)ka,a - Pa,r(ka,a)H
”XDT(a)ka,a - Pa,r(ka,a)H

< ||fk2,r - Pa,r(fk2,'r)||L2(D’"(a),e*2¢dA)

(4

= |<fk2,7' - P(fk2,‘r)

47)
< N fkor = k2,rQar ()l L2 (Dr(a),e-20d4)

< sup ke (e ?f — Qar ()l 2(Dr(a),04)
§€Dm(a)

(4.48) C _(|77§|)€
- Sup —7<¢€ (7 ||f - Qa,r(f)||L2 Dr(a),dA
senr(a) P(§) (D7 (a),dA)
C _(lTt—al\e€
~ —p(a)e ( p(7) ) ||f - Qa,r(f)HLZ(Dr(a))dA)
1/2
O 2 _(\T—a\)e
= D (/2 - Wa,r dA (™)
D" (a)|1/2 / [f = Qar(f)] e (5
Dr(a)
= CGz,r(f)(a)ef(%)é (451)
where in the last line we used the basic properties of Hilbert spaces. Therefore,
(4.46) e
||Z||§’p S Z G2,r(f)(a>p€ ( p(T) )
a,T€J,aF#T
4.49 ooy e e
S Gy YD ey
acJ a,T€JaFT
=Y Gop(Da)ye ™, (452)
aeJ

Now we can pick some R large enough such that



20 G. Asghari et al. / J. Math. Anal. Appl. 540 (2024) 128596

N
125, < T > Gar(f)(a) (4.53)
acJ
Using

1Y%, < 2l AHTIE +2) 25 . (4.54)

we have

N
N Gar(f)(a)y < 2(|AH;T |5, + 5 > Gar(f)a), (4.55)
acJ acJ

and since J is finite,

N Gor(f)(a)? <2||AH,T|f
acJ

< AIAN, s 12, ITIE,

<=, . (4.56)

Since C' is independent of f and J,

> G (@) < OlH I, (4.57)

acll

The remaining of the proof is similar to (4.37) and we can conclude that for 0 < p < 1,
P
1fllipare—2r < ClHgllg, . O (4.58)
5. Simultaneous membership of Hy and Hy in S,

In this section, we first define the space of functions of integral mean oscillation IMO and prove some of its
basic properties. In particular, we prove that Hy and H are simultaneously in Sp(F g, Li) with 0 < p < o0
if and only if the symbol f satisfies a suitable IMO condition (see Theorem 1.3).

Lemma 5.1. Let 0 < p < oo and r > 0. Then for f € L2, f € IMOP>® if and only if there exists a
continuous function ¢(z) on C such that

1/2

of L w) — c(2)]*dA(w p
| [ e -deraaw | et (1)

Dr(z)

Proof. This proof is similar to the proof of Proposition 2.4 in [13]. We can similarly extend the proposition
to the case 0 < p < 1, and the doubling weights by introducing p as the following. First note that if
f € IMOP%?  then (5.1) holds with ¢(z) = f.(z) which is continuous for z € C. Conversely, assume that
(5.1) holds. By Minkowski inequality,

1/2

(MO, (F)(2) < 0 (1) ooy 1 — el2)2dA) " 4 021 () = el2)]. (5.2)

By Holder’s inequality,
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A

(e 1/2
$15(2) = )] < 0 (e S I = c(2)PdA) 2 € L7y (5.1). (5.3)
Hence, using (5.2) and (5.3) we can see that f € IMOP*“, 0

Proposition 5.2. Let 0 < p < 0o, r > 0, and f € L?
that

If for each z € C, there exist h1,ha € H(D"(z)) such

loc*

p‘*(z)(ﬁ [ 1r-mPan?er,

D7(2)
and

1 1/2
. ho|?dA v 5.4
o) i )|DT{) 7~ maPan) e 12, (5.4)

then f € IMOP2?,

Proof. The proof is a more detailed version of the proof of Proposition 2.5 in [13], extended to the case of
doubling Fock spaces. For f € L? | recall that

loc?

(7P, = (g [ 1Pan)™ (55)
Dr(z)

By the triangle inequality and using (5.4),

P 1/2 Vs /2 o/ T—hai2 1/2
Pt (15 =2 () < o (155 P, () 7 + (15522, (2) T e L (56)
Since f + f and p® are real-valued, we can conclude that
p(|Tm latha 2 (2))2 ¢ P, (5.7)

As in the proof of the Proposition 2.5 in [13], we know that if v : D"(z) — R is harmonic, there exists a
harmonic function u such that u + iv € H(D"(z)) and

lu —u(2)l|La(pr(2),a4) < CllvllLa(Dr(2),d4); (5.8)

for all 0 < g < 0.
Taking ¢ = 2 in (5.8), and since hy + hy € H(D"(2)),

(|Re itz — Re bz ()12 ()% < O(|Tm kgl 2 (2))'/2, (5.9)
Thus,
f 3 1/2 3 1/2
P (15— Re B2 (), ()7 < p (1) — Re 2aga ()

(1D Piths 1. hiths /(2 1/2
+p*(|Re Lifle — Re bufha (3)2 (2))"/

F 1/2
< pa(|% _ h142rh2|2r(z))

+ Cp(|Tm g2 2 ()% € 1, (5.10)
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where the first term in the last line is in L? by (5.6), and the second term is in L? by (5.7). Hence,

P (L — Re latha ()2 (2))'* € L7, (5.11)
Similar to (5.6), (5.7), and (5.8), and applying (5.4), we have
=T h 1/2 Wl T—his 12 o/ F—hoia 1/2
P (155 = gt 2 ()7 < po (1L (2) 7 + po (152212, (2) 7 e 12 (5.12)
Since f%f is completely imaginary, we can conclude that
p*(|Reush2 2 ()2 ¢ L2, (5.13)

We can exchange u and v in (5.8), and therefore,

(I Bghe — 1 PPz ()P ()2 < O([Re 5222 ()2, (5.14)
Thus by (5.12) and (5.13),
P (115 — I tagha ()2, ()% < 7 (| £5F — Tm agha 2 (2)) /2
([ Bigte — tm RGP ()
<o (5 - e, (o)
+Cp*([Re 5222 (2))/* € L7, (5.15)
Hence, analogous to (5.11),
o (15— tm 2a5te ()2 ()" e L7 (5.16)
Choose ¢(z) = Re 2232 () + §Tm 2252 (2). Then by (5.11) and (5.16),
(I = ()P, () * e 7, (5.17)
which is equivalent to
pa(|DT1(z)| / |f — c(z)|2dA)1/2 € LP. (5.18)

Thus by Lemma 5.1 we can conclude that f € IMOP?“, O
Lemma 5.3. Let 0 < p < co. Then for f € L2, f € IDAP** and f € IDAP> if and only if f € IMOP>?,

loc?

Proof. First, we show that

I fllnvopza = 10" MOz (f)llze < Ifllpazze + | flmap2e. (5.19)

Note that by Lemma 3.1, there exists hq, ho € H(D"(z)) such that
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Gor(N(E) = (F=MP, ()" and - Gan(D) = (1F = hal?, ()" (5:20)
Taking ¢(z) as in the proof of the previous lemma, and using (5.10), (5.15), (5.6), and (5.12),
o (7= e ()7 = o (15— Re 2ot (o) + 55 —itm gl (o)2, ()
< Cp*(Gaar(f)(2) + G2 (f)(2))
FOp{([Tm B8P, () + (R Bg2P () 7). (5:21)

Note that since L? is a Hilbert space, we can set hy = Q,..(f) and ha = Q. .(f). Then the linearity of the
Bergman projection Q. : L?(D"(z),dA) — A%(D"(z),dA) implies that the last two terms are zero. Thus,

p*([F = ()P (2)/* < Cp™(Gan()(2) + Gon(F)(2)) (5.22)
Hence,
pMOL (1)) < (s [ 1 = @A) 4+ 217 (2) el (5:23)
,T — |DT(Z)|D7( ) T

By Holder’s inequality,

1£:(2) = @) < (g Jorgoy If = cl2)PdA) . (5.24)
Applying this to (5.23), and using (5.22), we get
o MOy, (f)(2) < Cp™{Gan(£)(2) + G ()]} (5.25)
Taking the LP-norms of both sides we can conclude that for 0 < p < o0,
I fllnvor2e < (| flliparze + ”f”IDA[{’yzv“' (5.26)

For the inverse inequality, note that using the definition, it is immediate to see that f € IMOf’Za
if and only if f € IMOff’Q’a. Moreover, f,.(z) is a constant, and therefore holomorphic. So by definition,
[ fllparze < [|fllivor2.e. Similarly, [|fliparze < |[fllor2.e = || fllmor2.«, and we are done. O

We can now give the proof of Theorem 1.3, which shows that both H; and H 7 are in Sp if and only if
f e IMOP?72/P where 1 < p < .

Proof of Theorem 1.3. By Theorem 1.2, H; € S, if and only if f € IDAP%2/P for some (equivalent any)
r > 0. Similarly, Hy € S, if and only if fe IDAf’Z*Q/p. An application of Lemma 5.3 shows that this is

equivalent to f € IMOﬁ’Q’_z/ P_for some (equivalent any) r > 0. Further, the norm estimates in (1.15) follow
from (1.12) and (5.19). O

As mentioned in the introduction, we obtain the following result as a consequence of Theorem 1.3.

Theorem 5.4. Let f be a non-constant entire function and Fq% be a doubling Fock space. Then Hy is not in
S5(F2,12).
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Proof. Since f is holomorphic, Hy = 0, and thus belongs to the Hilbert-Schmidt class. Applying Theo-
rem 1.3, it is enough to show that f ¢ IMO?Q’_I. First note that f is harmonic on D'(z) and by the
mean-value property of harmonic functions,

~ 1

fi(z) = m / fdA = f(z).

D1 (z)

By the Cauchy estimate,

MO24(1)() = (1t Jon oy [F0) = FPdAw))
> C10f(2)lol).

Hence,

ozt = [ p(2)2MO2,1(f)(2)*dA(2)

a—

>c / p(2) 210 (2) 2p(2)dA(2).
C

So, since f is entire and non-constant, it follows that f ¢ IMO?’Q’A7 and thus H is not Hilbert-Schmidt. O
6. Berger-Coburn phenomenon for doubling Fock spaces

This section contains the proofs of Theorems 1.4 and 1.6. We start with the proof of the Berger-Coburn
phenomenon for Hilbert-Schmidt Hankel operators, that is, we show that for f € L°*°, Hy is Hilbert-Schmidt

if and only if H is Hilbert-Schmidt.

Proof of Theorem 1.4. Let H; € Ss. By the assumption, f € L, and in particular f € L? . Then by
Theorem 1.2, f € IDA2%! for some (equivalent any) r > 0, and

[ fllpaze—1 =~ [[Hlls, < oo. (6.1)

Decompose f = f1 + f2 as in (1.10). Thus f; € C?>(C) and

011+ (10F12)0% + p~ ([ fal2,) /% € L2, (6.2)
Then the definition
P D (TP ()2 = () (oo / |fo?dA) 2 (6.3)
D7 (2)]
D7 (z)
implies that
p ([ f22) 2 = p M (| fal2,) Y% € 12 (6.4)

By (1.11) and (1.12), Hy, € Sp. Indeed,
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(1.12) (121) C1F 2 1/2
HHf;HSQ HfQHIDA22—1 S e (2 e
(6) | (1.11)
o~ (£ Y2l S I hpaze- (6.5)

To show that ||H, ||s, < [ fllpaz2.-1, we need to follow a more complicated argument, inspired by the
proof of Theorem 1.2 in [10]. Let {a;}32; be a fixed mjr-lattice for some m; € (0,1) and r > 0. Choose a
partition of unity {1;}32; subordinate to {D™"(a;)} as in (3.9). By Lemma 3.1 there exists h; € H(D" (a;))
such that

(1F = hP(a))? = Gor(f)(ay), and  sup  |h;(2)] S [If ]l oee (6.6)

z€D™17(aj)

Now we get back to the decomposition f = fi + fo as in (1.10) with f; = Z;’;l hjv;. Without loss of
generality we can assume ¢; = @j for all j > 1. Since we assumed that f is bounded, f; € L* and moreover

dfy = ZE O+ > 1pjOh; = F + H, (6.7)

for F =322 hjOy; and H = Y°2 | 4p;0h;. Similar to (3.13) one has

j=1 j=1 j=1
<p ' (2)p(2) i [hj(2) = hu(2)]|0%;(2)] < Cp™*(2)Ga,r(f)(2) (6.8)
j=1
Besides,
1H L2 < 10fi]lz2 + [IF] 2 (6.9)
By (6.8),
[Fl[L2 < [|fllpaz2.-1. (6.10)
Lemma 7.1 in [9] implies that
10fillz: = 0 fillz2 < ClOfillLe < Cllfllpaze—1, (6.11)

where the last inequality is obtained by multiplying both sides of (3.12) with p~!. Hence, we can conclude
that

[H|[rz S [ fllipaz2.-1. (6.12)
Note that for my,ms € (0,1),
HHle%2 = ||f71H12DA§=21*1 = / |8f1‘2mm27“ 1/2} dA
C
— 5 _ 9
S / [(|F|2M1m27‘)1/2:| dA+/ [(‘H|2M1M2T)1/2] dA’ (613)

C C
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where for the last inequality we used the equivalence p(w) ~ p(z) for w € D™™2"(z) and (6.7). Note that
using (6.8) one has

5 2
JUFP ) 24A S 1z (6.14)
C

and thus we are left to compute [ [(@mlmw)lﬂ]zdfl. Let z € D"(a;) N D" (ax). Since |0(hy, — h;)| =
|O(hi — h;)|, applying the Cauchy estimate for the boundary of the disk D™1™2"(z) of radius mimarp(z)
and Holder’s inequality, we obtain the following.

=T = C = = 1/2
0~y < =L [ fadw) =By} (6.15)
Dm'lm27‘(z)

Using |hy —hj|? = |(f —hi) = (f —h;) > < |f —he|?+|f — hj|?, and the fact that hy and h; are holomorphic,
we get
<
(2)
C
)

for some R > mymor. Recalling H as in (6.7),

(GQ,’ITLl’InQT(f)(ak) + G2,m1mzr(f)(aj))

B

Ga.r(f)(2), (6.16)

)

H+Z¢jé(ﬁk*71j):HJFZ%@?%*H- (6.17)

j=1 j=1
Since {1;}72; is a partition of unity and therefore 3372 ¢; = 1,
—— e — —
Ohy =Y 1p;0(hi — hj) + H. (6.18)
j=1

Hence,

Ohe(2)* S 132 w5(2)0(k(2) = Ry () + |H ()]

jeED™17(ay)
S (07N (2)Gar()(2) + [H ()P, (6.19)

where the last inequality follows from (6.16). For z € D™ (ay), notice that D™1™2"(z) C D™ " (ay) for

some my € (0,1). Then by subharmonicity,
__ 1 __

h 2l h 2dA

O < G (O () PdA(w)
Dmimar(z)

(6.19)

< 1

< D)
Dmlmgr(z)

[|p1(w)Gz,R(f)(w)|2 + | H(w)|? |dA(w)
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S (07 ()G p(1)(2)? + THP 1y (2), (6.20)

for some R > R.
Now for z € C, there exists w’ € D™ ™27(z) such that

(TP, (2] < max{ | H(w)[? : w € Dmmar (2)}

—|Z¢k Yoy (w)|, (6.21)

where the first inequality comes from integration on a bounded domain. Note that G, z(f)(w’ )2 <
Ga.s(f)(2)? for some s > R, and

o —

[(TH () 2] < [(HP,, (2D, (6.22)

and we can conclude that

2(021 e

[(@mlmzr(z /2] Zlbk "ohi(w')|*
(6.20)
Y wk<w'>{<p-1<w'>>2ag,é<f><w'>2
kb (w’)#0
+|71\2m1m2r<w'>}
(6.22)
< (0 () Can () +THE, (). (6.23)

Hence as mentioned in (6.13), and applying Theorem 1.1,

HHle?S'z S Hf”IQDAg,?,—l +/ [(|H|2m1m2r( ))1/2] dA( )

C
SUFfpazes + / (P ()G (£)(2)) dA(2) + / [HP,, . (2)dA(2)
C C

5 HfHIZDAE,z,ﬂ +/|H|2dA

S Iflfpaze-1s (6.24)

where in the last line we have used (6.12).
This together with (6.5) implies that

[Hfllsy < NHflls,- (6.25)
We are done since the proof is symmetric for f and f. O

We make the following remark related to the Berger-Coburn phenomenon for other values of p.
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Remark 6.1. For 1 < p < oo we say that w is a Muckenhoupt weight and write w € A, if there is a constant
C > 0 such that for any disk B C C, we have

p/q

1 1
E/wdA E/w‘m’dA < C < o0, (6.26)
B B

where ¢ is the Holder conjugate of p and |B| is the Lebesgue measure of B. As shown in [4], if w € A}, and
1 < p < oo, then the Ahlfors-Beurling operator

I(F)(2) = pov. — / LidA(z) (6.27)

™

is bounded on LP(w). Hence, similarly to the proof of Lemma 7.1 in [9], we can show that when f is bounded,

10f | rw) < ClOfll o), (6.28)

where C' is a constant depending only on p.

To generalize Theorem 1.4 to the other values of 1 < p < oo, our approach would require only one
additional ingredient that w = pP~2 is a Muckenhoupt weight (see (6.11)). However, we have not been able
to prove this condition and also note that Lemma 2.1 does not seem to help because the constants ¢, in
(2.2) are not bounded in general.

Next, we consider the case 0 < p < 1. Recently Xia [21] defined the following simple function

L if |z >1,
z):=17% - 6.29
U {0 if 2] < 1, ( )

and used it to show that the Berger-Coburn phenomenon does not hold for trace class Hankel operators
on the classical Fock space. Hu and Virtanen [12] noticed that when 0 < p < 1 the same example shows
that there is no Berger-Coburn for Schatten class Hankel operators on generalized Fock spaces. Here we
use Xia’s example again to prove that the Berger-Coburn phenomenon fails for some Sy, (F7, L3) while it
remains open whether it fails for the remaining doubling Fock spaces.

Proof of Theorem 1.6. To prove the theorem, we use Theorems 1.2 and 1.3. The idea is to find a bounded

function f with f € IDAf’Q’_Z/p such that f ¢ IMOZf’z’_2/7D for some (equivalent any) r > 0. Note that by
remark 1 in [16], there are constants C,n > 0, and 0 < 8 < 1 such that for |z| > 1,

C™Hz| 7" < p(2) < C2f. (6.30)
Let f be as in (6.29). By Theorem 1.1, the definition of IDAf’z’fz/p is independent of r. So for simplicity, we
set 7 = 1. It is easy to see that for a large enough R > 0, and |z| > R, f is holomorphic in D*(2) = D(z, p(2)),

and hence trivially G2 1(fz)(2) = 0. Indeed, one can see that for |z| > R, D*(z) N D(0,1) = (. Moreover,
for all |z| < R, there is a constant C such that

GQ,l(f)(Z) < O, (631)

as f is bounded in the bounded domain D'(z). Thus,
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M&ﬂww:M”WhMWﬂ:/fwmmWA
C
<C / p2dA < oco. (6.32)
|z|[<R

Indeed, by Theorem 14 in [16], there is a smooth function v, where A¢dA is doubling and Ay ~ qu ~ p72,
Hence,

/ p2dA ~ / ApdA < oo, (6.33)

|z|[<R |z|[<R

as the doubling measures are locally finite. So by (6.32), f € IDAf’2’_2/ P and Theorem 1.2 implies that
Hf S Sp.

To show that H ¢ S, note that if |z| > R, f is harmonic on D'(z) and by the mean-value property of
harmonic functions,

= 1 _ _
fi(z) = m])l(/) fdA = f(2). (6.34)

Moreover, by definition, M Os ,.(f)(z) = MO2,.(f)(z), and thus for |z| > R,

1/2
MOy (1)2) = | e [ 1F(w) — F(2)PdA(uw)
|D(z)]
D1(z)
1/2
_ 1 LRy
- D1(2)|D1{) |w z| dA( )
1/2
B 1 |w — z|? w
_ DI(Z”Dl[) CopdAw) | (6.35)

For w € D*(z), we can write w = z + re?® where 0 < r < p(z) and 0 < @ < 27. Therefore,

|U)—Z‘2 1 p(z) 3 r27 dodr
/ |zw]|? dA(w) = WIO Iy [ztrei?|2 (6.36)
D'(z)
Let z = |z|e'¥. Then
2w a0
_ (27 do 2w a0

/m_ 0 Tatired = Jo EEEEoEse: (6.37)
0

T
ER

Defining y =
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p(z) 27 s or
/ / r3dfdr B i / y3|z[*dOdy
|22 |2|2 + 72 + 2|z|rcosf  |z|? |2|2 + y2|z|? + 2|z|2y cos O
0
p(z)
[z 27
y_3 _ dbdy
2y / +y + cosf’
Let © = 1+y . Then
27 2
/ dé _/ do
J %_Fcosﬂ N J x4+ cosf’
Taking ¢t = tan ¢ 3, we have 0 = 2tan~1(t), df = 124‘_1252, and cosf = 1+t2 Since the cosine function is even,
one has
2w ™ 0o
/ o 2/ o 2/ 2dt
r+cosf r+cosf x(1+1t2)+1—1¢2
0 0 0
T 2dt 4 7 at
=9 = . 6.39
/t2(x—1)+(x+1) x+1/1+(§—;})t2 (6.39)
0 0
Taking u = /= +1t we obtain
%9 0 z+1 o
4 / i 2 /%/ﬁd“_ 2 /m+1/ 20lu
z+1 1—|—(§—;i)t2_m+l w+1  z+1Vae—-1/) u2+1
0 0 0
o [+l [
=2 Jrr! /d9 —
z+1 :13—10 Vie=1)(z+1)
2 4
- 1442 7r1 2 :(1— ;r(z:Jl-i- ) (6.40)
VEE - DL+ ity
Thus,
P12l 2m P12l
y_/ dbdy _ / Y= Amydy (6.41)
2y ) L2 4 cos 2 (1-y%) .
0 0o 0
Let v = 2, then
p(2)/lz| (p(2)/12D)*
/ y_2 drydy vdmy/vdv dv
2(—y?) 2 (0—v) 2/
0
(p(2)/12D)* - (p(2)/12)* )
0 v t+t 14
1—w
0
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p(z p(z
=7 {—(QF —In(1— (QF)} . (6.42)
Hence,
1/2
%)2 —In(1 - (M)Q)] . (6.43)

Therefore,

19 o = [ () MO )
C

(6.44)

1
a—_
[y
[y
|
—
)
—~
~—
~
[
|
—_
=
—~
—_
|
—
)
—
I\
~—
~
[}
~
[
=
~
no
QU
N
—~
N
~—

Note that taking = —(p(z)/|z|)?, the term in the bracket is x —In(1+2) =2 — 2z +22/2 —23/3 + - - -,
and hence the most contribution comes from the term /2. Thus,

1 p(z)? B 1 1
||f||IMOp 2,-2/p — /WWdA(Z) = / p(z)Q*p |Z|2pdA<Z)
C C

o0

1
= / |z|#(2—P) |z|2P /r2p+ﬁ(2 p)
[z|>R R
:/rl_ZP_B(Q_p)dr2r2_2p_5(2_p)|:iR. (6.45)
R

Note that 2—2p—3(2—p) = (2—p) (2(1 p) 6), and since 0 < p < 1, the integral diverges when 8 < 2(2%_;’).
So, when p = 1, 8 must be zero. When p is very close to zero, 8 can get very close to 1, implying that Xia’s
example is a counterexample for any doubling measure. 0O

Remark 6.2. One could also hope to modify (6.29) so that it takes into account the growth condition of p;
see (1.17). However, there are no holomorphic functions that behave like |z|¢ at infinity unless c is an integer.
Indeed, suppose that f is holomorphic in the complement of a disk centered at the origin, and assume that
supy | f(re?)| ~ r¢ as r — oo. Then ¢ € Z. To see this, for such a function f, set g(z) = 2¥f(1/2), where
k < cis an integer. Then g has a removable singularity at the origin since |g(re?)| = O(r*=¢) as r — 0. So
g is bounded at zero, and hence g has a power series Y aj2z* near the origin, which implies that ¢ € Z.

Finally, notice that substituting (6.29) in the proof of Theorem 1.6 by the functions f(z) = 1/z" for
|z| > 1 and f(z) = 0 elsewhere actually works worse when the integer n is larger than 1.

Proof of Corollary 1.7. We apply Theorem 1.6 to the canonical doubling weights ¢(z) = |z|™ with m > 0.
Recall that by Lemma 2.5, there is some R > 0 such that p(z) < |z:|1_m/2 for |z| > R. Therefore, ﬂ¢ =
1—m/2. We can conclude that the Berger-Coburn phenomenon fails for S, (F? oo F1 |m) if1-m/2 < 1 p/2,
which is equivalent to m > m. In particular, if m > 2, then the phenomenon fails for all Schatten classes

Spwith0<p<1 O
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