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Highlights: 

Assesses the benefit of co-locating ESS with HGEV charging applications. 

Intelligent ESS solution addressing long-term sizing & short-term management. 

Analyses on-route and depot charging cases with & without separate charge management. 

Reflects impacts of recent trends in ESS cost decline & electricity price volatility. 

Abstract:  

The global rise of electrified transport is bringing significant attention to provision of charging 

infrastructure and subsequent increases in electricity demand. Whilst much research to date has 

concentrated on light vehicles these challenges are more extreme for Heavy Goods Electric Vehicles 

(HGEVs), with power demands exacerbated by larger batteries and the need for rapid turnaround when 

charging on-route. Colocation with Energy Storage Systems (ESS) could have potential to help, as could 

intelligent charge control. This paper presents a novel integrated elitist intelligent algorithm that can 

simultaneously optimise the multiple numerous technical and economic factors needed here, including long 

term, independent sizing of battery capacity and power-electronic rating, short term ESS management / 

charger dispatch, and consideration of dynamic electricity price variability.  The work goes beyond previous 

studies by examining the particular challenges of heavy-duty vehicles, considering both charge 

management of individual vehicles and co-location of static battery storage, and also by contrasting 

plausible on route and depot-based charging cases. To support this, a method is developed to estimate 

patterns of HGV attendance at UK fuelling stations, applicable for other countries. Results highlight the 

economic challenge of on-route charging. Where fleet operation allows idle time at depots, smart control 

of vehicle charging can track the lowest price electricity time periods. Depot energy delivery cost was seen 

to reduce from 18.32 to 11.90 p/kWh comparing on-demand and managed charging (based on 2021, UK, 

half hourly wholesale electricity prices). On-route charging costs can be reduced by the co-location of static 

ESS but only to 15.74 p/kWh, without consideration of additional commercial costs. All day stations can 

deliver electricity at a lower average price than daytime only stations and can benefit from comparatively 

smaller ESS. Cost benefit analysis was applied for a range of assumptions, revealing insight into the non-

linear relationship between battery capacity, charger rating, and subsequent energy delivery price. 

 

Keywords: Heavy Goods Electric Vehicle, Charging Station, Energy Storage System, Demand-Side 

Management, Optimal Arrangement. 
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Nomenclature 𝑃𝐶𝑖 Vehicle's charging consumption during 

half-hour i of the day, kW 
Abbreviations ∆𝑡 Timestep, hour 

AC Alternative Current ∆𝐸𝑖 Energy variation, kWh 

CCL Climate Change Levy 𝑃𝑖 Power flow of half-hour i of the day, kW 

CRM Conditional Range Metric ∆𝐸𝐵 Daily battery energy flow, sequence of 

48 charging values 

DC Direct Current SoC0 Initial state of charge, kWh 

DF Depot Factor 𝑆𝑜𝐶𝐵 Battery SoC, sequence of 48 values, kWh 

GA Genetic Algorithm 𝑆𝑜𝐶𝑖 SoC at the beginning of half-hour i of the 

day, kWh 

EGA Elitist Genetic Algorithm 𝑃𝐶𝑜𝑛 Converter rating power, kW 

ESS Energy Storage System 𝐶𝐵𝑎𝑡 Battery Capital Cost, £/kWh 

EMS Energy Management System 𝐶𝐶𝑜𝑛 Converter Capital Cost, £/kW 

EV Electric Vehicle CC Total Capital Cost, £ 

FOM Fixed Operating and Maintenance cost OMC Operating and Maintenance Cost, £ 

GB Great Britain 𝐶𝐵𝑎𝑡
𝐹𝑂𝑀 Energy-based Operating, and 

Maintenance Cost, £/kWh 

HGEV Heavy Good Electric Vehicle 𝐶𝐶𝑜𝑛
𝐹𝑂𝑀 Power-based Operating and Maintenance 

Cost, £/kW 

MIT Massachusetts Institute of Technology TC Total Cost of the energy storage system, 

£ 

PSO Particle Swarm Optimisation TEP Total Energy Price, £ 

SoC State of Charge 𝐶𝐸𝑡 Energy price in time step t, £/kWh 

ToU Time of Use T Measurement Time Constant, hour 

Variables TCF Total Cost Function 

𝑥𝑑 Daily travelled distance, km OF Objective Function 

𝐸𝑆𝑝 Specific energy consumption, kWh/km 𝑃𝑇_𝑚𝑎𝑥 Maximum permissible transformer 

loading, kW 

𝐸𝐵𝑎𝑡 Battery capacity, kWh ∆P𝑇 Step change of transformer loading 

𝑃𝑇 Transformer flow, sequence of 48 

charging power values 
𝐼𝑅𝐿𝑀𝑎𝑥 Maximum Incremental Rate of Loading, 

kW 

𝑃𝑇𝑖 Transformer loading during half-hour i of 

the day, kW 
𝐷𝑅𝐿𝑀𝑎𝑥 Maximum Decremental Rate of Loading, 

kW 

𝑃𝐵 Battery flow, sequence of 48 charging 

power values 
𝐸𝐼𝑛
𝑆𝑦𝑠

 Input energy of the system, kWh 

𝑃𝐵𝑖 Battery charging/discharging power 

during half-hour i of the day, kW 
𝐸𝑂𝑢𝑡
𝑆𝑦𝑠

 Output energy of the system, kWh 

𝑃𝐶  Charging flow, sequence of 48 charging 

power values 

𝐸𝑆𝑐ℎ Energy input scheduling, kWh 
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1. INTRODUCTION 

Global plans for transport decarbonisation include a significant growth in electrification. Whilst uncertainty 

remains in the effectiveness of this option for heavy duty transport, manufacturers are developing numerous 

vehicles with battery electric solutions as either an optional or sole powertrain [1]. For the UK, change is 

now on the way as a set of emission standards have been introduced for Heavy Goods Vehicles (HGVs), 

buses and coaches. Due to the battery capacities and fast charging requirements, heavy-duty truck 

electrification will have profound impacts on the power grid, proportionately greater than light vehicle 

electrification. Consequently, the aggregated load profile of the system could see significant changes due 

to the integration of HGEV charging loads. 

High power charging is needed for HGEV applications to be feasible. However this brings a threat for the 

security and stability of power systems, as well as a highly uncertain cost for vehicle operators, especially 

when the HGEV charging station maximum demand and the connected network peak are coincident [2, 3]. 

Looking only at light vehicles, it is stated in [4] that uncontrolled EV fast charging could result in up to five 

times the peak load in residential areas [5]. 

ESSs play a pivotal role in facilitating the global transition towards sustainable development objectives, 

both in the UK and worldwide. They serve as a crucial enabler for achieving affordable and clean energy 

goals by storing renewable energy generated during off-peak periods and releasing it during peak demand, 

thereby reducing reliance on fossil fuels and mitigating greenhouse gas emissions. Furthermore, ESSs 

contribute to the establishment of sustainable cities and communities by offering grid stabilisation 

capabilities in urban areas with high penetration of renewable energy sources. To reduce costs and improve 

network resilience, it has been proposed to couple stationary Energy Storage Systems (ESS) with fast 

charging stations[6, 7]. ESS can reduce the energy cost of charging vehicles by shifting energy purchases 

away from expensive peak load periods [8, 9], and also save connection upgrade cost by reducing, or 

eliminating, any increase in peak demand [10, 11].  

Among various ESS technologies such as Flywheel Energy Storage, Redox Flow Batteries, Sodium-ion 

Batteries, and Pumped Hydroelectric Storage, Lithium-ion (Li-ion) batteries currently stand out as the 

dominant choice. This dominance can be attributed to their advantages, including high energy density, 

efficiency, scalability, and maturity of technology [12]. Several studies have been conducted to analyse the 

benefits of coupling stationary ESS with fast charging stations [13, 14]. Their findings emphasised that to 

achieve the maximum benefits of utilising the ESSs, the storage system optimal design and the consumption 

management for the station should be addressed simultaneously, considering the local load profiles and the 

dynamic tariff. However, no work in the literature has focused on HGEV charging load profiles or dynamic 

HGEV charge scheduling schemes.  

A variety of approaches and definitions can be seen regarding ESS. Several studies either focus solely on 

energy capacity (kWh) [15, 16] or address energy consumption management for existing storage systems 

[17, 18], overlooking the distinct load dynamics of HGEV charging stations. Some now ascribe both energy 

and power (kW) capacities as essential properties of storage systems; meanwhile, it can be preferable to see 

the power capacity of power-electronic ancillaries distinguished from the energy capacity of the core 

storage unit. Studies which adopt a network perspective, typically seek ESS sizing [19, 20] and setting [21, 

22] that can improve the effective operation of smart distribution systems [23, 24] or solve renewable 

generation [25, 26] and load profile diversities [27, 28].  

When considering design variables, there has been a tendence for studies to either adopt fixed converter 

ratings (pre-determined values) [29, 30] or to optimise the size of the battery while assuming an identically 

rated converter [31, 32]. The authors in [12] noted that sequential sizing of battery and converter or fixed-

size converters are considered in most of the available studies. However, this policy can result in under or 
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oversizing of ESS, especially for fast charging stations, where batteries are usually charged and discharged 

daily (charging during off-peak price intervals and discharging during peak price intervals). The 

aforementioned study [12] employs a stochastic model with the objective of minimizing the annual cost of 

the ESS, taking into account the equipment's lifetime and a consistent interest rate. 

A new model is proposed in [33] to combine the planning models of renewable energy systems, ESSs, 

thyristor-controlled series compensators, and transmission lines into a combined EV-based planning 

problem. Their first objective aimed to maximise EV penetration, the second sought to lower carbon dioxide 

emissions, and the third sought to minimise both initial investment and operating costs. This study 

represents appreciable progress in integrating multiple aspects of the problem; however, their main 

objective is limited to maximising EV charging penetration and not the design of the best-fuelling system. 

Further system modelling approaches adopt a range of perspectives in combining ESS, EV charging and 

renewable resources. The authors in [17] developed an efficient unit commitment strategy to optimise 

battery cycling of both the EV batteries and local storage system for a workplace charging case. In turn, 

[34] presents a new Energy Management System (EMS) for the optimised operation of a hybrid, grid-

connected charging station for EVs and fuel cell vehicles. The proposed EMS is designed to reduce the 

utilisation costs of the ESS and manage charging to optimise efficiency across all system components. 

Meanwhile [15] used an equivalent circuit battery model to size and allocate the lithium-ion ESS for a 

system combining a high penetration of renewable generation with electric ferry charging stations.  

A range of numerical approaches have been applied to solve the multi-objective constrained optimisation 

problems presented by ESS applications. [35] and [36] evaluate the parallel application of ESS and 

renewable resources, in both stand-alone and grid-connected arrangements. The authors in [35] employed 

an exhaustive search for this task, while in [36], the ESS capacities are determined using the Conditional 

Range Metric (CRM) and desired power profiles from forecasts. A fuzzy logic system is designed in [37, 

38] to improve efficiency of the system operation while a Particle Swarm Optimisation (PSO) algorithm is 

used to solve the optimisation function. 

Heuristic and metaheuristic methods are used in [16] and [37, 39] addressing optimal hybrid ESS systems, 

which include battery sizing for grid operation and smart buildings respectively. Techno-economic aspects 

are considered including battery lifetime and daily electricity cost. In a detailed techno-economic analysis 

presented in reference [40], a comprehensive evaluation of different metaheuristic techniques is conducted 

to address similar optimisation problems with constraints. The analysis demonstrates the significant 

capabilities of these methods. However, it is important to note that achieving slightly superior results may 

require careful selection of the most suitable technique and fine-tuning of the control parameters. 

The review of the literature shows that little attention has yet been given to charging heavy duty vehicles 

including HGEVs and the associated challenges that emerge. Table 1 maps the contributions from relevant 

studies that relate to aspects of this problem. There is a need for an integrated method that can 

simultaneously optimise both long-term ESS design and short-term scheduling, while effectively managing 

constraints such as connection limits. The proposed approach must consider battery energy capacity and 

power-electronic rating as two independent design variables not only due to the significance for the 

technically efficient performance of the system and total (capital, operating and maintenance) costs but also 

because this issue is more severe given the power consumption range and fast change rates required for 

HGEV charging stations. Metaheuristic approaches with an updated design and adjusted control parameter 

values can be well suited to perform this task. 

The work described below assesses the challenge of charging HGEV fleets, examining options to take best 

advantage of a dynamic, time varying electricity price. This goes beyond previous studies by including 

charge management of individual vehicles and co-location of static battery storage, as well as considering 
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plausible on route and depot-based charging cases. A novel integrated, elitist, intelligent algorithm approach 

is developed that combines long-term storage sizing with short-term storage management to minimise the 

electricity purchase price. Whilst the analysis uses data for half hourly, wholesale UK electricity prices, the 

method could be readily applied to any market with a time varying price signal. A method is also developed 

to estimate patterns of HGV attendance at UK fuelling stations that could similarly be applied across other 

geographies. The analysis reflects significant, recent trends in storage price reduction and electricity cost 

escalation and volatility. Finally, a long-term cost-benefit analysis is conducted to evaluate the effectiveness 

of the proposed approach in dealing with the rapidly changing tariff dynamics observed in recent years. 

TABLE 1.  REVIEW SUMMARY: COMPARISON OF ADDRESSED GAPS IN RECENT KEY WORKS RELEVANT TO THIS RESEARCH 

Reference No. 
HGEV Charging Optimal ESS Design Demand-side 

Management 

Cost-Benefits 

Analysis 
Depots On-route Battery Converter 

[6]  ⁕ ⁕  ⁕  

[7]  ⁕ ⁕  ⁕  

[9]   ⁕ ⁕ ⁕  

[12]   ⁕ ⁕ ⁕  

[14]   ⁕ ⁕  ⁕ 

[19]   ⁕ ⁕ ⁕  

[23]   ⁕  ⁕ ⁕ 

[24]   ⁕ ⁕  ⁕ 

[30]   ⁕  ⁕  

[37]   ⁕  ⁕  

Current Work ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 

2. METHODOLOGY 

The distinction identified above between depot and on-route charging has a number of practical 

implications and leads to a requirement for different methodological approaches. Depot based operation 

presents an opportunity for delayed charging or charge management between vehicles to take advantage of 

the inherent storage within the vehicles’ own batteries. By contrast it is assumed here that on route stations 

will seek to charge every vehicle as quickly as possible providing little or no opportunity to balance 

charging load between vehicles. This section describes the approach developed to address aspects of each 

case, before describing a model to simulate and then optimise a separate static battery which could, in 

principle at least, be added to either case. We then describe our approach to assessing the long-term cost 

effectiveness of the model outputs. 

A. Cases Considered and Data 

1) Vehicle and charger capacities 

Whilst much early EV development has concentrated on passenger cars and light duty vehicles, a growing 

number of manufacturers are now developing or have released fully electric HGVs. Table 2 presents the 

essential characteristics for a snapshot of vehicles currently advertised by four well known manufacturers. 

From this, we take a typical HGEV to have a battery capacity of 400 kWh and a specific consumption of 

1.8 kWh/mile, which reflects the higher, though not extreme, range of the possible energy and therefore 

charging capability requirement. A 2016 study found that in the previous year some 71% of UK HGVs 



6 
 

were part of fleets of 50 or fewer vehicles [41]. A few fleets extended to 3000 vehicles or more, but these 

were distributed across multiple depots and no further breakdown was available. In our analysis we 

concentrate on fleets of 25 to 100 vehicles operating at individual depots, to represent the dominant UK 

situation. 

TABLE 2. ELECTRIC TRUCK SPECIFICATIONS [42-46] 

Company Vehicle name 
Range 

(km) 

Battery Capacity 

(kWh) 

Consumption 

(kWh/km) 

Daimler Trucks Mercedes Benz eActros 200 240 1.2 

Volvo Trucks Volvo FH Up to 300 180-540 0.6 – 1.8 

Volvo FM Up to 300 180-540 0.6 – 1.8 

Volvo FMX Up to 300 180-540 0.6 – 1.8 

Volvo FL Up to 300 - - 

Volvo FE Up to 200 Up to 211 1.05 

Volvo VNR Up to 240 264 1.10 

Tesla - 480 or 800 600 - 1000 1.24 

Nikola Motors Nikola Tre Up to 560 750 1.34 

 

TABLE 3 CHARGING POWER RATING AND GRID CONNECTIONS [47-50] 

EVSE Charging Type Power Level Grid Connection 

Mode 1 (AC) AC charging Up to 3kW  Single phase/ 230 V  

Mode 2 (AC) AC charging Up to 7.4kW Single phase/ 230 V  

Mode 3 (AC) AC charging Up to 22kW (Fast) Three phase/ 400 V  

up to 43kW (Rapid AC) Three phase/ 400 V  

Mode 4 (DC) DC charging 50 kW- 350 kW 

(Rapid DC:  100>P>50 kW) 

(Ultra-Rapid DC:  P>100 kW) 

(400 V, 11 kV, 33 kV) 

In parallel with the development of batteries and vehicles, charger technology is also seeing a rapid 

transformation with an accompanying evolution of standards and terminology. Table 3 presents an 

overview of current charger classifications, drawn from  [48, 49, 51-68]. By considering that vehicles with 

battery capacities of 500 kWh or higher may want to fully recharge during one overnight period at most, it 

is clear that, as a minimum, Rapid AC chargers will be needed for depot charging. In what follows we adopt 

a standard 50 kW charger unless otherwise specified. Depending on the fleet size and the availability of 

parallel charging points, the depot can take advantage of either an 11kV or 33kV grid connection.  

For HGVs ‘refuelling’ on route, there is commercial pressure to minimise downtime, ideally delivering fuel 

in the short periods of a few minutes traditionally delivered by liquid fuels or during a driver rest break. 

According to regulations set by both the UK and the EU, it is mandatory for HGV drivers to pause their 

driving duties after a continuous 4.5-hour driving session, and they are prohibited from exceeding 9 hours 

of driving within a single day. When a driver has been behind the wheel for 4.5 hours, they must allocate 

at least 45 minutes for a break, which can be either a single uninterrupted break or a combination of shorter 

breaks throughout their driving period [69-71]. To enable HGEVs to recharge during brief stops along their 

routes, they will require extremely high-power capacities, potentially reaching up to 350kW. Such 

capabilities are typically available only through ultra-rapid DC chargers, typically necessitating a 33kV 

connection. However, in the UK, if the distance to the substation is short and the total consumption remains 

below 10MW, an 11kV connection could also be a viable option [72, 73]. 
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2) Energy Price 

To reflect the half hourly GB wholesale electricity price, we use data from Elexon, the operator of the 

balancing and settlement code for the GB electricity market. Elexon’s Market Index Price database [74] 

provides a publicly accessible record of the wholesale cost of electricity in the GB short term market, as 

defined at [75]. The variations in the average MIP across weekdays and seasons for 2021 are illustrated in 

Figures 1 and 2. 

To represent the perspective of an EV charge provider with access to a dynamic electricity price we use 

MIP as a starting to point to reflect the half hourly variability. This is then inflated to represent a commercial 

rate for an appropriate size of electricity customer, to develop an annual time series with an average price 

equivalent to that provided in [76], as shown in Table 4. The non-domestic customer's average network 

charge is determined by dividing the commercial rate for the customer size by the yearly average MIP price 

for the same period. 

 
Figure 1.  Typical weekdays Market Index Price (MIP) for the UK 

 
Figure 2.  Sample of the seasonal Market Index Price (MIP) dynamics for the UK 

The consumption bounds associated with the prices in [76], are shown in Table 5, while the yearly 

consumption for the case studies (on-route stations and depots) are summarised in Table 6. All cases can 

be seen as ‘Medium’ sized customers, so an average electricity price of 14.30 p/kWh is used for 2021. 
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TABLE 4. PRICES OF ELECTRICITY PURCHASED BY NON-DOMESTIC CONSUMERS IN THE UNITED KINGDOM (INCLUDING THE CLIMATE CHANGE 

LEVY) (ANNUAL) [76] 

Year 

Electricity: 

Very Small 

(Pence per 

kWh) 

Electricity: 

Small 

(Pence per 

kWh) 

Electricity: 

Small/Medium 

(Pence per 

kWh) 

Electricity: 

Medium 

(Pence per 

kWh) 

Electricity: 

Large 

(Pence per 

kWh) 

Electricity: 

Very Large 

(Pence per 

kWh) 

Electricity: 

Extra 

Large 

(Pence per 

kWh) 

Electricity: 

Average 

(Pence per 

kWh) 

2021 17.99 16.25 15.75 14.30 14.08 13.84 14.18 15.08 

 

TABLE 5. ANNUAL CONSUMPTION BANDS FOR ELECTRICITY [76] 

Electricity: Bands Name Electricity: Annual consumption MWh 

Very Small 0 - 20 

Small 20 - 499 

Small/Medium 500 - 1,999 

Medium 2,000 - 19,999 

Large 20,000 - 69,999 

Very Large 70,000 - 150,000 

Extra Large >150,000 
 

TABLE 6. YEARLY CONSUMPTION OF VARIOUS HGEV CHARGING STYLES 
Station Time Annual Consumption [MWh] 

Daytime On-route 2690 

24-Hours On-route 3086 

Depot-Min fleet (50) 2772 

Depot-Max fleet (100) 6352 

 

 
Figure 3.  Average Non-Domestic Electricity Prices Based on Department for Energy Security & Net Zero Database, UK [76] 
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To avoid the distorting variations that have recently been experienced in the world energy price, and 

consequently in the UK, due to the pandemic and the Ukraine war, 2021 is selected as a base year. The 

prices of electricity purchased by non-domestic consumers in the UK, as published by the Department for 

Energy Security & Net Zero [76] and plotted in Figure 3, confirm rising energy prices, reflecting post-

pandemic economic recovery. However, this inflation is not as extreme as the effects of the Ukraine war 

across 2022, which are likely to be temporary. 

3) Storage Parameters 

In a recent study, MIT researchers estimated the cost elements for Li-ion batteries over a time duration 

between 2020 and 2050 [77]. This reference used the lower-bound, median, and higher-bound projections 

from a broad literature review to present low-, mid-, and high- assumptions for the cost elements of various 

ESS types, as given in Table 7. In what follows we adopt the mid values unless stated otherwise. Section 

3.B.2 explores the implications of the full cost range from the MIT study.  

TABLE 7. THE LI-ION ESS ESTIMATED AND PROJECTED COSTS AND EFFICIENCY ELEMENTS [77] 

Year 

Charging 

Capital Costs 

(£/kW) 

Storage 

Capital Costs 

(£/kWh) 

FOM  

(£/kW-Year) 

FOM 

(£/kWh-

Year) 

Efficiency- 

Charge (%) 

Efficiency- 

Discharge 

(%) 

2020 205.6 221.6 1.1 5.4 92% 92% 

2050 Low 25.6 56.7 0.2 1.1 92% 92% 

2050 Mid 88.0 100.6 0.6 1.8 92% 92% 

2050 High 123.2 141.6 1.1 2.6 92% 92% 

B. Model Development 

1) On-Route Charging Demand Profile 

The proposed modelling system calculates the real-time consumption of the selected on-route station, 

achieving a second-scale resolution. For on-route charging we assume that vehicles charge immediately on 

connection. Therefore, the charge delivery requirement is primarily set by the arrival pattern of vehicles. 

With an absence of publicly available time series data for vehicle refuelling, a method was developed to 

estimate charging demand based on location attendance data accessed from Google Maps [78]. Charging 

profiles were developed by combining this attendance data with a stochastically sampled estimate of vehicle 

charge requirement. 

The ‘HGEV travelled distance’ function produces a population of distances travelled based on the total 

number of vehicles attending the station during a typical day. A typical probability distribution for the 

distance distribution is shown in Figure 4.  

In the next step, the ‘State of Charge (SoC)’ function determines the SoC vector using the daily distance 

travelled (𝑥𝑑 ) and the specific energy consumption (𝐸𝑆𝑝 ) of typical HGEVs, as outlined in [9]. This 

formulation has been tailored to suit the specific requirements of this research, as described in equation (1). 

𝑆𝑜𝐶 = 𝑓(𝑥𝑑) = 𝐸𝐵 − (𝑥𝑑 ∙ 𝐸𝑆𝑃)                                                              (1) 

where battery capacity (𝐸𝐵) and specific energy consumption (𝐸𝑆𝑃) are constant for a heavy vehicle, while 

the daily distance travelled (𝑥𝑑) has a stochastic nature, with probability distribution shown in Figure 4.  

A crucial initial step in charging station modelling is to sample the charging profile for an individual vehicle, 

determined by the proposed model and depicted in Figure 5, showcasing the power demand profile and 

SoC variation. The methodology entails deriving the power demand profile based on the vehicle's arrival 

SoC, the charging time (which can be either equal to the arrival time for on-route scenarios or controlled 

by the fleet operator in depots), and the vehicle's specifications. Within this modelling framework, the 
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battery's charge acceptance is modelled as a linear function, and the charging points are assumed to operate 

at a constant power level. This primary graph adheres to standard practices, as supported by references [80, 

81], while being adjusted for the HGEV battery size and relevant fast charging systems. Depending on the 

operational style of the charging station (depot or on-route), the subsequent step in demand modelling 

involves aggregating individual charging profiles to determine the station's overall demand profile. 

 
Figure 4.  Daily travelled distance [79] 

 

Figure 5.  Charging load profile of an individual vehicle. 

The ‘vehicle attendance’ function is employed to generate the vehicle-time distribution based on the popular 

time curve for the station and the number of vehicles being serviced per typical weekday. These popular 

time curves are a feature of Google Maps showing how busy a location is during different times of the 

weekdays and presented in the form of graphs [78]. The statistics indicating popular times are derived from 

the annual average of historical data specific to the selected property or location. As an illustration, Figure 

6 displays the attendance rate over weekdays at an on-route service station, namely Oban in Scotland, with 

the working time interval from 6:00 a.m. to 9:00 p.m., with Thursday delineated by dashed lines. The 

proposed stochastic model uses the ‘vehicle charging’ function to model the load profile of the vehicles, 

based on their SoCs, and the rating power of the chargers available in the station. 
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Figure 6.  Google map popular time distribution for Oban, Scotland 

Depending on the scenario, the model's output resolution can be customised by employing an averaging 

method over a specified time window, in this case half-hourly intervals. Finally, the 'load profile plotting' 

function provides visual representations of both instantaneous and half-hourly load profiles for the case 

study. The workflow of this innovative function-based charging station modelling system is depicted in 

Figure 7. 

Start

Inputs:

• Charging power
• Battery capacity
• Specific energy consumption

Generate the vehicle attendance time:

based on Popular Time of the station and the 

number of vehicles being served

Generate travelled distance:

using the real world data based traveling 

distance distribution

Determine SOC:

for each attending vehicle by calculating the 
energy consumed using the  travelled 

distance  and the  specific energy 
consumption  of the respective vehicle.

Vehicles Charging profile: 

based on SOC, start time and charging power 
the instantaneous demands determine for 

vehicles and consequently for the station

Plot/Export: 

the instantaneous and half-hourly demand of 

the station

End
 

Figure 7.  Flowchart of on-route charging station model  
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The charging station load model, developed above, is used to determine the demand profile of the daytime 

on-route charging station, Oban Filling station, Oban, UK, and for the 24-hour on-route charging station, 

Roadking (Hollies) truckstop public station, Cannock, UK. The model's input data is derived from the UK's 

typical probability distribution of distance travelled (Figure 4) and the HGVs' attending time distribution, 

which aligns with the average yearly attendance for the day at the target station (Figure 6). Daily 

consumption profiles for both daytime and 24-hour on-route charging stations were generated using the 

specified parameters. The model outputs are illustrated in Figure 8 and Figure 9. Despite the alignment of 

the determined station demand profiles (Figure 8 and 9) with the study's assumptions for the UK, the shape 

analysis of the profiles, based on the limited available references [7, 82], shows consistency with the earlier 

demand profiles. In all cases, the load profiles primarily consist of power step signals, with the rise times 

and charging durations dependent on arrival time, initial State of Charge (SoC), and charger power rating. 

The aggregation process in all studies is influenced by the arrival time distribution, resulting in a staircase 

signal. Various assumptions were made in the research regarding charger power ratings and the number of 

available parallel chargers, leading to variable step heights. Despite different assumptions for arrival time 

distribution, charger power ratings, and the number of available plug-ins in the current UK case studies, the 

fundamental framework and output profiles remain consistent with the referenced studies. 

 
Figure 8.  The station load profile for the daytime only on-road charging station 

 
Figure 9.  The station load profile for the 24-hours on-road charging station 
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2) Depot Charging Station Modelling 

Depot charging profiles were developed for two scenarios: an uncontrolled, on-demand case and a scenario 

in which depot-wide price management is applied. In cases where vehicles spend significant idle time at a 

depot, there is potential for cross-depot charge management to control the charging time and rate of 

individual vehicles. This becomes crucial in situations where the number of chargers is less than the number 

of vehicles or when grid connection capacity is limited. The importance of the ratio between available 

charging infrastructure and fleet size is well-established in the literature [83] while emphasising the need 

for optimisation. Building on this, "Depot Factor" (DF) is defined in the current work as the ratio of 

available charging plugs at the depot to the fleet size. Alternatively, as assumed here, charge control could 

be implemented in order to benefit from price managed charging. 

As with public charging stations, HGEV fleet charging is influenced by key stochastic variables such as 

daily distance travelled. However, the management rules of HGEV depots change the nature of some 

parameters deemed stochastic in the description of on-route modelling above to parameters that are 

effectively deterministic, e.g. the SoC and starting time of charging or time of arrival. It is assumed that all 

vehicles return to the depot at the end of the working day, and the vehicle batteries are fully recharged 

during the night to be ready for the next daily operation.  

Start

Inputs:

• Fleet Size

• Depot Charging Start Time

• Depot Charging End Time

• Charging Power

• Battery Capacity

• Depot Limit

Start charging the first set of 

vehicles by calling the vehicle 

charging function

Obtain the soonest charged 

vehicle s end of charging time

Charged 

Vehicles < 

Fleet Size?

Call the vehicle charging 

function
Store the results

Increase Vehicle Number End

No

Yes

Determine SOC:
calculate consumed energy based 

on the travelled distance and 
subsequently SOC of the 

attending vehicles

 

Figure 10.  Depot fleet charging flow chart. 
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In the unmanaged strategy, the model considers the main parameters of the fleet and the depot, along with 

the start and end times for the charging events. The available time slots are allocated considering the SoC 

of the vehicles and the available charging power at the depot. In the managed strategy, the half-hourly 

electricity market price index has been used as a control signal to coordinate the recharge of the fleet to 

minimise electricity cost, assuming access to dynamic Time of Use (ToU) pricing. As outlined in references 

[5, 6], linear optimisation methods suffice for cost reduction in conventional depot fleet charging, and 

Figure 10 offers an overview of the suggested linear optimisation procedure. 

3) Techno-Economic Model of the ESS-HGEV Charging Station  

In designing energy management and storage systems, there is a critical trade-off between the capital and 

operating costs of energy storage and the resulting benefits. This trade-off is not fixed and is heavily 

influenced by factors such as storage costs, changes in electricity tariffs, and variations in demand profiles. 

Given the significant increase in energy tariffs in recent times, it is essential to analyse how fluctuations in 

energy prices might impact the overall approach. 

To develop a techno-economic model for an HGEV charging station with an ESS, first, it is required to 

have an overview of the whole system and distinguish between controllable and uncontrollable variables 

while assessing the key influencing factors. Figure 11 provides an overview of the charging station, taking 

into account the potential power flow directions. 

 
Figure 11.  The arrangement and typical power flow for the HGEV charging station. 

Based Kirchhoff's Current Law (KCL) [84], there is a momentary equilibrium in the related node between 

the three power flow elements shown, transformer flow (𝑃𝑇), battery flow (𝑃𝐵) and charging flow (𝑃𝐶) [85]. 

This equilibrium is described as follows: 

𝑃𝑇 = 𝑃𝐵 + 𝑃𝐶                                                                                (2) 

of these three elements, only the battery exhibits bidirectional flow. Acknowledging the fundamental 

relationship between power and energy [9, 84], an analogous balance exists between energy flow elements 

over a specific time interval (∆𝑡). This can be expressed as follows: 

∆𝐸𝑇 = ∆𝐸𝐵 + ∆𝐸𝐶                                                                           (3) 

where, ∆𝐸𝑖 = 𝑃𝑖. ∆𝑡 is the energy variation over a timestep while 𝑃𝑖 is the power flow during this time. 

The effective control variable available in a charging station is the battery flow. As is common practice in 

smart distribution systems, a day ahead consumption estimation is used for day ahead battery charging-

discharging scheduling to minimise the total energy cost through optimal demand side management. 
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Optimal energy scheduling over a day or longer period is also affected by battery capacity and converter 

rating power, treated here as design parameters. 

TABLE 8. OPERATIONAL PARAMETERS AND VARIABLES OF BATTERY ENERGY STORAGE SYSTEM 

Type   Units 

Operational 

Parameters 
𝑃𝑚𝑖𝑛 Minimum charging/discharging power MW 

𝑃𝑚𝑎𝑥 Maximum charging/discharging power MW 

𝜂 Charging/Discharging efficiency % 

𝐸𝑚𝑎𝑥 Maximum energy capacity MWh 

𝐸𝑚𝑖𝑛 Minimum residue energy capacity MWh 

Variable 𝑃𝑡 Charging/Discharging Power MW 

𝑢𝑡 Binary variable of charging state / 

𝑆𝑜𝐶𝑡 Stored energy 𝐸𝑡 or State of Charge MWh 

Table 8 lists the parameters and variables that can be directly used in the mathematical formulations for 

optimal power system planning and dispatch, subject to the capacity limits of the battery and converter. For 

example, the stored energy of ESS must be balanced and managed to stay within its permissible minimum 

and maximum energy levels at all time intervals. 

Of all operational variables at HGEV charging stations, battery scheduling provides the greatest control for 

station owners to enact effective demand-side management. Consequently, this research concentrates on 

optimising the scheduling of ESS power segments within a day-ahead framework, synchronising with the 

half-hourly resolution of market price signals. Mathematically, the battery scheduling over a 24-hour time 

window can be described as follows: 

𝑃𝐵 = [𝑃𝐵1 … 𝑃𝐵48]                                                                   (4) 

where 𝑃𝐵𝑖is the battery charging/discharging power, depending on the sign, during half-hour i of the day. 

Considering a half-hourly time window, the power flow described in equation (4) and the fundamental 

relationship between power and energy (∆𝐸𝑖 = 𝑃𝑖 ∙ ∆𝑡) yield a sequence of 48 values, denoted as ∆𝐸𝐵, 

representing the daily battery energy flow. Each element in ∆𝐸𝐵, representing the battery energy variation 

over timestep i, reflects the charging or discharging power scheduled for that timestep. 

By having the initial SoC available at the start of the day, or extending the scheduling horizon as suggested 

in [86], we can determine the variations in SoC as follows: 

 𝑆𝑜𝐶𝑖 = 𝑆𝑜𝐶𝑖−1 + ∆𝐸𝑖                                                                    (5) 

where 𝑆𝑜𝐶𝑖 is average SoC during timestep i while ∆𝐸𝑖 is the battery energy flow at the same time and 

𝑆𝑜𝐶𝑖−1is the SoC by the end of the earlier timestep. The SoC variation determined using equation (5), 

assuming an initial state of charge (SoC0) is available, can be represented by a sequence of SoC values 

(𝑆𝑜𝐶𝐵) associated with the 48 half-hourly time steps across a day. 

Similarly, the consumption profile for the same period can be determined using the stochastic model 

outlined in sections B.1 and B.2. The resulting output is a sequence (𝑃𝐶) of 48 charging power values 

representing the daily consumption profile, where 𝑃𝐶𝑖 denotes the vehicle's charging consumption during 

half-hour i of the day.  

Given equation (2) and the descriptions provided for 𝑃𝐵 and 𝑃𝐶, the transformer/connection power (𝑃𝑇) 

loading during the same period can be represented by a similar sequence of 48 daily power values, where 

𝑃𝑇𝑖 denotes the transformer loading during half-hour i of the day. It is crucial to note that the power flow 
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of a transformer is constrained by factors beyond its rated power and permissible overloading. The current 

capacity and thermal limitations of the connection cables can also impose limitations. 

Capital cost components are summarised in two factors: battery capital cost (£/kWh) and converter/power 

electronic capital cost (£/kW) [77]. Similarly, all operating and maintenance (O&M) costs have constant 

rate (FOM) for routine component servicing and replacement due to wear and tear [77]. The operational 

costs are also determined by defining the battery FOM (£/kWh-year) and power electronic FOM (£/kW-

year). Adding the charge and discharge efficiencies (in %) to the above factors allows us to develop a 

comprehensive ESS system model for lithium-ion (Li-ion) batteries. 

These economic factors are combined with the technical descriptions from the previous sections to develop 

an efficient model of the entire system. The converter rating power (𝑃𝐶𝑜𝑛 ) for the proposed station 

arrangement is equal to the maximum absolute battery charging/discharging power over the design time 

window, as shown below: 

𝑃𝐶𝑜𝑛 = 𝑚𝑎𝑥(|𝑃𝐵|) = 𝑚𝑎𝑥|[𝑃𝐵1 … 𝑃𝐵48]|                                               (6) 

Similarly, the maximum SoC, determined based on the proposed power scheduling over the design time 

window, determines the storage capacity (𝐸𝐵𝑎𝑡) required for the proposed station arrangement, as: 

𝐸𝐵𝑎𝑡 = max⁡(𝑆𝑜𝐶) = 𝑚𝑎𝑥[𝑆𝑜𝐶1 … 𝑆𝑜𝐶48]                                             (7)  

Considering the battery sizing and converter rating power determined in (6) and (7), and the storage (𝐶𝐵𝑎𝑡) 

and converter capital costs (𝐶𝐶𝑜𝑛) defined earlier, now the total capital cost (CC) can be defined as follows: 

𝐶𝐶 = (𝐸𝐵𝑎𝑡 ∙ 𝐶𝐵𝑎𝑡) + (𝑃𝐶𝑜𝑛 ∙ 𝐶𝐶𝑜𝑛)                                                      (8) 

Given the fixed operating and maintenance cost factors, and assuming that the battery sizing and converter 

rating power are determined using equations (6) and 7), the total operating and maintenance cost (OMC) is 

as follows: 

𝑂𝑀𝐶 = (𝐸𝐵𝑎𝑡𝐶𝐵𝑎𝑡
𝐹𝑂𝑀) + (𝑃𝐶𝑜𝑛𝐶𝐶𝑜𝑛

𝐹𝑂𝑀)                                                    (9) 

where 𝐶𝐵𝑎𝑡
𝐹𝑂𝑀 is the energy-based operating, and maintenance cost in [£/kWh-year] and 𝐶𝐶𝑜𝑛

𝐹𝑂𝑀 is the power-

based operating and maintenance cost [£/kW-year]. The base values for the recent coefficients are planned 

on a yearly basis [77], but should be adjusted depending on the case and the time window initiated for 

energy management.  

The Total Cost (TC) of the ESS is the sum of the capital costs and the operating and maintenance costs. 

Considering equations (8) and (9), the total cost is as follows: 

𝑇𝐶 = 𝐶𝐶 + 𝑂𝑀𝐶                                                                    (10) 

Moreover, assuming that the dynamic tariff is accessible for the decision-making time frame and aligning 

with previous references [86], the Total (daily) Energy Price (TEP) can be calculated as follows, utilising 

the transformer power described earlier (𝑃𝑇): 

𝑇𝐸𝑃 = ∑ (𝑃𝑇𝑡 ∙ 𝐶𝐸𝑡 ∙
48
𝑡=1 𝑇)                                                              (11) 

where 𝑃𝑇𝑡 is the transformer power in time step t, 𝐶𝐸𝑡 is energy price in time step t, and T is the measurement 

time constant which is 0.5 [hour] for the case. 

Given the above, the total cost function (TCF) can be described as follows: 

𝑇𝐶𝐹 = 𝑇𝐶 + 𝑇𝐸𝑃                                                                      (12) 
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where the primary aim of the optimisation process is to minimise the total cost by managing the trade-offs 

between ESS capital and operating costs, and energy purchase cost. 

The lengths of the sequences described above, and consequently the upper limit for the summation (11), 

are determined by the daily time window with a half-hourly measurement resolution, resulting in a length 

of 48. When employing a weekly time window, the lengths of the sequences and the upper limit should be 

adjusted to 336, which corresponds to the number of measurements in a week using the same measurement 

time intervals. 

C. Multi-Objective Optimisation Framework 

This work proposes an integrated intelligent techno-economic approach to address this multilateral 

problem. The parameters of the simultaneous ESS design and energy management for on-route and depot 

charging stations are not independent variables, and there are nonlinear relationships and interactions 

between them. This method determines the optimal battery capacity (𝐸𝐵𝑎𝑡), power electronic rating (𝑃𝐶𝑜𝑛), 

and battery scheduling of the HGEV charging station (𝑃𝐶), which is a series of demand values in a half-

hourly resolution for the time window. It considers tariff dynamics, constrains the resulting load profile 

within the available connection capacity and converter loading capacity, and maintains the system energy 

balance. The multilateral problem can be formulated into a single objective function with multiple 

constraints. 

GA is a meta-heuristic algorithm that reflects the process of natural selection where the individuals with 

the best fitness are selected for reproduction to produce offspring of the next generation. In previous studies 

GA have been shown to be powerful optimisation tools for solving nonlinear, complex problems [40, 87-

90]. The problem to be solved is to transform inputs into solutions through a process modelled on genetic 

evolution. An expert-recommended initial population is assigned to the desired design variables, and the 

objective function is evaluated for each candidate solution. Then a set of operators (including reproduction, 

crossover, and mutation) are adjusted for the current application, with due attention to the available 

experiments [91-93] to process the population and generate successive populations by which the global 

optimum of functions is obtained effectively.  

In some cases, a GA with remarkable mutation rates and population-elitist selection can outperform the 

traditional GA [91, 94]. This method is based on the conservation of the most appropriate corresponding 

gene of the previous generation, associated with the random selection of the corresponding pair. 

Accordingly, the elitist algorithm is used here to solve the hybrid problem of ESS design and energy 

management. The flowchart in Figure 12 illustrates the procedure of the genetic algorithm optimisation, 

which was implemented in MATLAB (R2023a). 

1) Objective Function 

In these circumstances, the optimisation objective is to minimise the total cost. Drawing from existing 

experiences in similar applications [9, 86], the objective function (OF) can be formulated as follows: 

𝑚𝑖𝑛⁡𝑂𝐹 = min{𝑇𝐶𝐹(𝑃𝐶𝑜𝑛 , 𝐸𝐵𝑎𝑡 , 𝑃𝐶)}                                                      (13) 

where 𝑃𝐶𝑜𝑛 and 𝐸𝐵𝑎𝑡 are the storage system design variables of function 𝑇𝐶F, and 𝑃𝐶 introduces 48 energy 

management variables (8) on a daily scale. The 50-dimension space of the possible solutions was searched 

to minimise the objective function. However, solving the problem for a longer period of time increases the 

number of energy management variables as the half-hour resolution is considered a base. For instance, a 

338-dimensional space would need to be searched for a weekly optimisation solution.  
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Figure 12.  Flowchart of the proposed approach 

2) Constraints handling  

The proposed approach begins by formulating transformer loading scenarios as potential solutions for the 

problem, subject to constraints related to rated power and permissible overloading of the network 

connections (considering transformer and cable limits). It is important to note that the cable's maximum 

permissible current should align with the transformer's power rating to effectively cover the peak charging 

demand in a direct charging system (i.e., a charging station without battery storage). The transformer’s 

power rating can be specified according to the country’s (UK in this case) standard transformer ratings to 

meet the charging station’s peak load. This is achieved by identifying feasible solutions using the capacity 

of the defined bounds, as described below: 

0 ≤ 𝑃𝑇 ≤ 𝑃𝑇_𝑚𝑎𝑥                                                                     (14) 

where 𝑃𝑇_𝑚𝑎𝑥 is the maximum permissible transformer loading. 
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The approach is able to constrain the maximum rate of charger loading. To achieve this the feasibility of 

solutions are preserved by checking the step change of loading variation and replacing any out-of-step 

values with the associated boundary values given as follows: 

−𝐷𝑅𝐿𝑚𝑎𝑥 ≤ ∆𝑃𝑇 ≤ 𝐼𝑅𝐿𝑚𝑎𝑥                                                              (15) 

where ∆P𝑇 is the step change of loading, 𝐼𝑅𝐿𝑀𝑎𝑥 is the maximum incremental rate of loading and 𝐷𝑅𝐿𝑀𝑎𝑥 

is the maximum decremental rate of loading. Considering that the power electronic converters' loading time 

is 5-times smaller (i.e., 6-minutes) than the half-hourly time-step of the demand scheduling resolution, the 

maximum rate of charger loading across a half-hourly time-step is not restricted by the converter loading 

time. It is just limited by the maximum power rating of the electronic converter. This limit can be 

determined by dividing twice the power electronic board rating (i.e., amplitude of minimum to maximum 

charging rate - positive for reaching the maximum charging rate and negative for reaching the maximum 

discharging rate) by the time-step of the demand duration. Defining this constraint opens the possibility of 

updating this package for P2X system design by acknowledging that the loading rate of electrolysers and 

synthesisers is significantly lower compared to fully electric systems. 

Another constraint is required to maintain system energy balance, taking into account the system's 

efficiency. This is addressed by implementing a repairing infeasible individual method. When an imbalance 

exists between the system's energy input and output, considering its efficiency, a revising coefficient is 

employed to restore the energy balance of the proposed solution. This is formulated as follows, where the 

required energy input is denoted by: 

𝐸𝐼𝑛
𝑆𝑦𝑠

= (
1

𝜂
) ∙ 𝐸𝑂𝑢𝑡

𝑆𝑦𝑠
                                                                      (16) 

𝐸𝐼𝑛
𝑆𝑦𝑠

 and 𝐸𝑂𝑢𝑡
𝑆𝑦𝑠

 represent the system energy input and the system energy output, respectively. The system 

energy input, referred to here as the scheduling energy input, can be determined as follows: 

𝐸𝑆𝑐ℎ = 𝑃𝑇 ∙ 𝑇                                                                        (17) 

Then, the revising coefficient and process can be described as: 

𝐾𝑆𝑐𝑎𝑙𝑒 = {
1, 𝑖𝑓⁡𝐸𝑆𝑐ℎ = 𝐸𝐼𝑛

𝑆𝑦𝑠

𝐾𝑆𝑐𝑎𝑙𝑒 =
𝐸𝐼𝑛𝑝
𝑆𝑦𝑠

𝐸𝑆𝑐ℎ
, 𝑖𝑓⁡𝐸𝑆𝑐ℎ ≠ 𝐸𝐼𝑛

𝑆𝑦𝑠
                                              (18) 

𝑃𝑁𝑒𝑤
𝑆𝑐ℎ = 𝐾𝑆𝑐𝑎𝑙 ∙ 𝑃𝑂𝑙𝑑

𝑆𝑐ℎ                                                                       (19) 

The last constraint arises from battery SoC variations, where the battery capacity acts as the upper bound. 

The minimum feasible SoC is zero. This constraint is addressed through two methods. The first is to add a 

conditional death penalty to the objective function. The second method exploits the fact that the minimum 

battery level is inherently zero. This is done by repairing invalid solutions in the population. Both methods 

have been demonstrated to effectively enforce this constraint. 

3) Elitist optimiser control parameters adjustment 

Certain GA control parameters can have a strong influence on the performance of the GA, with those 

deemed crucial including the population size, crossover rate, mutation rate and number of iterations [80].  

To identify the optimal values for the control parameters in the current application, this study conducted an 

exhaustive search of the experienced range for these parameters. This range, extracted as the "Common-

Range" in Table 9, was determined based on available experiences regarding the application of GA for 

similar optimizations [81, 82]; Subsequently, the maximum feasible variations of these parameters were 

further explored to identify the optimal setting for the current case. The research findings reveal that the 
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time window used for optimisation affects the optimal values for these control parameters. The optimal 

settings for various EGA-based optimisation and scheduling algorithms applied to daily and weekly time 

windows are presented in Table 9. To demonstrate the reliability of the metaheuristic method, the 

optimization convergence rates for both ESS design and demand-side management at the daytime-only 

charging station, considering daily and weekly time-windows, are presented in the Appendix, Figure A.1-

A.4. These results confirm that the process reached stable conditions in all cases. 

TABLE 9. THE COMMON GA CONTROL PARAMETER RANGES AND OPTIMISED SETTINGS FOR THE CURRENT APPLICATION 

 Gens Population Crossover Rate Mutation Rate 

Common Range 3-26 10-160 0.25-1.0 0.00-1.00 

Optimal Setting 

Daily Optimisation 50 202 0.5 0.25 

Weekly Optimisation 338 502 0.5 0.25 

Daily Scheduling 48 202 0.5 0.75 

Weekly Scheduling 336 502 0.5 0.60 

3. SIMULATION STUDIES AND DISCUSSION 

The new approach's robustness is evaluated by applying it to depot charging scenarios with varying fleet 

sizes, depot factors, and operation styles. It is further applied to two on-route cases, based on representative 

data for daytime and 24-hour service stations in the UK. Next, the impacts of the optimisation time window 

on the process, results, and consequently, the unit fuel price are investigated. Finally, the process's validity 

is established through comparative cost-benefit analyses for the charging stations subject to various 

operational terms and tariff dynamics. The detailed flow diagram for the integration of the charging demand 

profile models and simultaneous optimization approach for the ESS-equipped charging station design and 

demand-side management through battery charging/discharging scheduling is illustrated in Figure 13. 
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Figure 13.  Flow Diagram illustrating the Integration of Charging Demand Modelling and Optimization Process 

A. HGEV depot charging station load profiles 

Section 2.B.2 presents the depot charging model, which is used to determine the demand profiles for depots 

with fleet sizes of 50, 75, and 100 vehicles, under depot factors of 0.7 and 1.0, and with unmanaged and 

price-based management styles (see Figures 14 and 15). In this stage, consistent vehicle assumptions have 

been maintained, with battery capacities of 400 kWh, specific consumption of 1.8 kWh/mile, and charger 

ratings of 50 kW.  
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Figure 14.  Unmanaged depot charging, fleet size=50, 75 & 100, depot factor=0.7 & 1.0 

 

Figure 15.  Managed depot charging, fleet size=50, 75 & 100, depot factor=0.7 & 1.0 

The station demand profiles determined in the research align with the assumptions made about depot sizes 

and operational styles. Shape analysis of these profiles, supported by limited references [7, 95], indicates a 

satisfactory level of reliability. In all studies, the base charging power forms a step signal aggregated in 

accordance with the fleet manager's daily scheduling, resulting in stairstep signals representing daily 

demand profiles. The peak value and timing of these signals are influenced by the charging management 

policy and the number of chargers available at the depot. 
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B. Simultaneous Optimised Battery Sizing and Scheduling for Expanding Time Horizons 

The performance of the proposed model has been evaluated hierarchically, beginning with the application 

of predetermined load profiles representing depot charging, daytime-only on-route and 24-hour on-route 

cases. Subsequently, a comprehensive range of cost-benefit analyses was conducted to further assess the 

effectiveness of the proposed approach. In all cases, the determined results are compared with those of the 

direct charging station (without an available ESS), not only to verify the reliability of the results but also to 

assess the robustness of the proposed approach. 

1) Analysis across 24-hour windows 

To speed up computations, the model was initially run on a 24-hour daily time window. It was able to select 

any power electronic rating and storage capacity within the connection limit. It sought to minimise the 

overall cost of energy delivered to vehicles, considering ESS capital and operating costs, as well as 

electricity purchase costs. The results are presented for the daytime and 24-hour on-route stations, along 

with various sizes of unmanaged and price-managed depots, as shown in Figure 16-(b) through 16-(e). The 

summary metrics are compared in Tables 10 and 11. 

The model was run for each of the charging load profiles described above. Friday attendance with a medium 

variation between weekdays is selected as a base input for on-route stations, along with various depot sizes, 

as shown in Figures 8-9 and Figures 14-15. The main economic inputs of the model are the ESS capital and 

operating cost consistent with the medium price estimated by MIT, as described in Table 7, and the Market 

Index-based average daily tariff as determined for 2021 and presented in Figure 16-(a). 

TABLE 10. ENERGY STORAGE SYSTEM OPTIMAL DESIGN FOR THE VARIOUS CHARGING STYLE VIA A DAILY TIME-WINDOW  

 Unit 
Daytime 

station 

24-hour 

station 

Unmanaged 

depot 

Price managed 

depot 

Power Elec. Rating [kWh] 1661 746 4134 184 

Storage Capacity [kWh] 6004 3358 7180 97 

Energy cost (with battery available) [p/kWh] 12.80 13.08 11.60 11.77 

Energy delivery price  

(Bill + Capital & Operating Costs) 
[p/kWh] 15.48 14.39 15.81 11.81 

Direct charging cost (without battery) [p/kWh] 17.13 15.71 18.37 12.07 

Daily benefits [£/Day] 126 106 190 17 

 

TABLE 11. COMPARATIVE ANALYSIS OF THE ESS OPTIMAL DESIGN AND OPERATIONAL VARIABLES FOR THE DEPOT CASES 

Charging 

Policy 

Depot 

Factor 
Fleet Size 

Power Elec. 

Rating [kW] 

Battery Size 

[kWh] 

Energy Cost 

[p/kWh] 

Energy Delivery 

Price [p/kWh] 

Direct Fuelling 

[p/kWh] 

Unmanaged 

0.7 

50 1944 4954 11.80 15.50 17.84 

75 2887 6811 11.71 15.50 18.00 

100 3888 8556 11.65 15.61 18.22 

1.0 

50 2765 4543 11.61 15.83 18.46 

75 4134 7180 11.60 15.81 18.37 

100 5541 10249 11.62 15.74 18.32 

Price-based 

Managed 

0.7 

50 27 15 11.75 11.78 12.16 

75 92 46 11.88 11.93 12.61 

100 85 42 11.80 11.83 12.35 

1.0 

50 34 21 11.68 11.71 11.88 

75 184 97 11.77 11.81 12.07 

100 133 69 11.70 11.75 11.90 
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Comparing the results of the on-route charging arrangements reveals a nonlinear relationship between the 

size of the ESS, the capacity for demand-side management, and consequent economic benefits, which is 

strongly affected by the consumption profile. For instance, in the case of the 24-hour on-route station, a 

lower storage system capacity can effectively cover higher energy consumption, resulting in a daily profit 

close to that of a higher storage system capacity for the daytime station. 

 

(a) 

  

(b) (c) 

  

(d) (e) 

Figure 16.  (a) Market Index based Average Daily Tariff Variation for the UK, (b) The results for the integrated method application for 

daytime charging station, (c) The results for the integrated method application for 24-hour charging station, (d) The results for the integrated 
method application for unmanaged depot charging, (e) The integrated method application for managed depot charging 

 

To investigate further, the proposed approach was applied to a wider range of depot assumptions, including 

various management policies, depot factors, and fleet sizes. The results are summarised in Table 11, which 



24 
 

details the optimal battery capacity and power electronic rating, in addition to the unit energy cost and total 

energy delivery price (including the ESS capital and operating costs). 

The results show that the contribution of the ESS and subsequent demand-side management is highly 

dependent on the case and its inherent capacity for consumption management. For depot charging, a price-

based management approach can eliminate the need for additional battery installation and subsequent extra 

management. However, the fleet size and the depot factor have a considerable influence, as seen with the 

cases that feature a lower depot factor or more restricted charging time revealing reduced benefits from 

price-based charge management. 

2) Examining input parameters 

Future battery costs are a significant cause of uncertainty with implications for the results presented above. 

Figure 17 takes the example of the daytime on-route charging station (Oban) to show how the build-up of 

battery cost components compares with the reduction in unit electricity purchase price as battery size 

increases. Analysing the uncertainty of input parameters by examining variations in capital and operating 

costs adds value not only in validating the optimisation process but also in ensuring the reliability of the 

results. The outputs not only align with the fundamental equations' structure but are also reinforced by the 

references that address similar concerns [96, 97]. The ratio between battery capacity and converter rating 

power is kept equal to the optimal ratio determined in section 3-B-1 over the incremental steps. In turn, 

Figure 18 combines the battery and electricity costs to establish a total cost of fuel delivered. This is 

presented for the three storage cost assumptions determined by MIT (refer to Table 6). It demonstrates how 

the optimal battery size increases as the costs decrease. 

 
Figure 17.  Impacts of battery capacity on the elements of energy price 

An optimistic estimation of the ESS price, or minimum estimated price, leads to a 41.17% higher capacity. 

Conversely, a pessimistic prediction, represented by the maximum estimated price, results in a 64.70% 

lower size compared to the medium-value base price (see Table 6). These findings provide a clear 

understanding of the influence of battery cost factors for station owners’ decision making. 
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3) Impacts of inflation 

Electricity prices present a similar, or arguably greater uncertainty. The UK Quarterly Energy Prices [98] 

indicate a consistent upward trend in average non-domestic electricity prices, including the Climate Change 

Levy (CCL), since the second quarter of 2011. However, a notable surge in average electricity prices 

occurred in the third quarter of 2021, continuing into the third quarter of 2022, as depicted earlier in Figure 

3. As identified above (Table 4 and Table 5), HGEV charging stations can typically be expected to be 

categorised as Medium band consumption customers [76]. To assess the impact of recent inflation on the 

optimal design of ESS and subsequently on energy delivery prices, the effects of inflation over the first 

three quarters of 2022 are compared to the average price across 2021. The results, in Figure 19, show how 

the storage size that achieves minimum cost varies as electricity price assumptions are altered.  

 
Figure 18.  Total impacts of the storage and power-electronic capital costs on the station energy price 

 
Figure 19.  The impacts of tariff variations on the charging station optimal arrangement  
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Analysing outputs across a range of input assumptions for key input parameters, such as MIP dynamics and 

the capital and operating cost factors variations (as depicted in Figures 18 and 19), not only supports the 

validity of the optimisation process but also evaluates the reliability of the results amidst uncertainties. The 

sizing results of the ESS in terms of shape and ratios align with the conclusions of other research studies 

[97], including an available industrial case study [96]. The consistency of the new approach's outputs has 

been tested, confirming that the method is robust and not highly sensitive to factors such as inflation. This 

is particularly evident when reliable assumptions are made regarding key factors like capital and operational 

costs [77]. 

4) Impacts of Optimisation Time-Windows on the ESS Design 

There is a risk that an inappropriate optimisation time window could adversely affect ESS design, 

associated consumption management, and subsequent energy delivery price. Using a longer optimisation 

window has potential to increase cost benefit by taking advantage of differences in tariff between days. To 

address this, a full year of MIP-based data was processed to determine a typical weekly tariff variation, 

defined to span from Saturday to Friday, as illustrated in Figure 20-(a). The proposed integrated method 

was also adjusted to determine a continuous optimisation for this case. The model was then run to take 

account of the weekly tariff and the typical weekly consumption determined earlier. 

The updated approach was used to determine ESS requirements and associated consumption management 

on a weekly scale for all the base cases, including the daytime-only and 24-hour on-route stations, as well 

as the unmanaged and price-based managed depots. Samples of the results, each including battery power 

scheduling, grid connection load profile, and SoC variations during the time, are shown in Figure 20-(b) to 

(e) and summarised numerically in Table 12. 

Table 12. Energy Storage System Optimal Design for the various charging style via a Weekly time-window  

 Unit 
Daytime 

station 

24-hour 

station 

Unmanaged 

depot 

Price managed 

depot 

Power Elec. Rating [kWh] 1218 658 4115 969 

Storage Capacity [kWh] 4235 1545 6744 1216 

Energy bill (with battery available) [p/kWh] 14.59 14.41 13.38 12.25 

Energy delivery price  

(Bill + Capital & Operating Costs) 
[p/kWh] 17.33 15.36 19.19 13.38 

Direct charging bill (without battery) [p/kWh] 34.05 30.74 36.57 23.52 

Weekly benefits [£/Day] 1232 1304 1166 695 
 

The weekly results for cost and benefit indices are compared with the earlier daily scheduling in Table 13. 

ESS capital and operating costs dominate the energy bill reduction on a weekly scale. As this limits the 

optimal ESS size it is not economic to charge the battery during lower weekend tariff periods to cover 

energy consumption during weekday peak times.  

 

TABLE  13. ENERGY STORAGE SYSTEM OPTIMAL DESIGN FOR THE 24-HOURS CHARGING STATION AND CONSEQUENT DAILY BENEFITS  

 Unit 
Weekly 

Scheduling 

Daily  

Scheduling 

Power Elec. Rating [kWh] 658 746 

Storage Capacity [kWh] 1545 3358 

Energy bill (with battery available) [p/kWh] 14.41 13.08  

Energy delivery price (Bill + Capital & Operating Costs) [p/kWh] 15.36 14.39  

Direct charging bill (without battery) [p/kWh] 30.74 15.71 

Daily benefits [£/Day] 1304 106 
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(a) 

  

(a) (b) 

  

(c) (d) 

Figure 20.  (a) A typical weekly tariff deviation for the UK, (b) The results for the adjusted integrated method application for daytime charging 
station weekly optimisation, (c) The results for the adjusted integrated method application for 24-hour charging station weekly optimisation, 

(d) The results for the adjusted integrated method application for unmanaged depot charging weekly optimisation, (e) The Adjusted integrated 

method application for managed depot charging weekly optimisation. 

5) Cost-benefits analysis of the Proposed Approach 

Further long-term analysis was conducted, using both daily and weekly time windows to optimise ESS 

management. The method was applied to the daytime on-route station, together with full year MIP based 

electricity prices for 2021, including the network charge for the relevant consumption bound of non-

domestic customers (as shown in Figure 21). The current long-term cost-benefit analysis, while visualising 

the variations in the optimised energy delivery price compared to the station's direct charging (without an 

available ESS and associated potential for demand-side management) price, along with the analysis of profit 

variations, show optimised energy price to be consistently preferential in profit regardless of MIP variation 

and the HGEV charging profile fluctuations, which demonstrates robustness of the method. Alternatively, 
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implementing a daily and weekly demand-side management package throughout a year (specifically in 

2021 for this case study) to create a targeted cost-benefit analysis is akin to evaluating the developed 

consumption management using 365 varied input MIP dynamics and station demand profiles for daily 

scheduling, along with 52 tests for weekly scheduling. The approach consistently produced outputs across 

numerous test scenarios, indicating stable modelling performance. This not only helps evaluate the 

robustness of the proposed demand-side management but also ensures the reliability of the results. 

 
Figure 21.  Yearly UK Market Index Price (MIP) and Tariff Dynamics Across 2021 

The conventional approach adopted in 3.B.1 and 3.B.4 used daily and weekly average tariffs as inputs for 

daily and weekly time-window ESS design. Given the significant impact of tariff dynamics on ESS sizing, 

the days and weeks of the year with maximum and minimum tariff deviations, can be incorporated as 

boundaries into the design method. Consequently, battery storage capacity and charger power ratings can 

be planned for these scenarios. Additional scenarios have been incorporated into the analysis to gain a 

broader understanding of the energy delivery prices and associated benefits trend, along with ESS size 

variations to incremental and decremental values with a step change of 25%, similarly incorporated for 

battery capacity and power electronic rating relative to adjacent boundary values. All ESS configurations 

have been evaluated using both daily and weekly scheduling strategies to provide a comprehensive insight 

into not only the impact of ESS sizing but also the role of scheduling time-window in load management 

and resulting advantages. The identification of extreme days and weeks across 2021 is depicted in Figures 

22 and 23, while the ESS design outcomes for the scenarios are summarised in Table 14. 

TABLE 14. HGEV CHARGING STATION ESS OPTIMAL DESIGN CONSIDERING 2021 MIP BASED PRICE DATA 

Time-Window Tariff Dynamics Power Elec. 

Rating [kW] 

Battery Capacity 

[kWh] 

Energy Delivery 

Price [p/kWh] 

Daily Optimisation 

Max. Range 2115 8481 18.87 

Average 1661 6004 15.48 

Min. Range 407 371 09.58 

Weekly Optimisation 

Max. Range 1397 8098 20.84 

Average 1218 4235 17.33 

Min. Range 966 3354 11.69 
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Figure 22.  Distinguishing Border Days by Range Across 2021 

 
Figure 23.  Distinguishing Border Weeks by Range Across 2021 

To gain a deeper understanding of trends, the analysis included two additional scenarios where the ESS 

capacities and power electronic ratings were incrementally and detrimentally adjusted by 25% and 50% for 

extreme days and weeks. This led to a total of 10 scenarios being considered. Cost-benefit analysis adopting 

the daily scheduling strategy is presented first. Figure 24 shows the resulting energy delivery prices, across 

2021, for the maximum, average, and minimum ESS capacities, compared to the direct fuelling scenario. 

In turn, Figure 25 shows the daily net profits for each scenario. Finally, summary data for the year is 

presented in Table 15.  

The energy delivery prices in Figure 24 show notable benefits from ESS-based demand-side management 

during autumn and winter days, when electricity market prices are higher. By contrast, benefits are lower 

in spring, and summer and some days are seen where ESS benefits are not sufficient to offset the associated 

capital and operating expenses. A similar picture is seen with the net profit variations in Figure 25. ESS 

installation offers significant advantages during autumn and winter, while it may be a less cost-effective 

approach in spring and summer. 

All cases presented in Table 15 show a profit from the addition of ESS-based demand-side management. 

This benefit reduces for larger ESS assumptions where the energy bill is still seen to decrease but additional 

ESS costs begin to outweigh this saving. From the cases presented here, the ESS sized for the average day 
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leads to the lowest energy delivery price and highest profit. During analysis, minor numerical discrepancies 

were seen to arise due to the optimisation algorithm's low rate of convergence or reaching the maximum 

iteration limit, both of which can halt the optimisation process. 

 
Figure 24.  The daytime on-route charging station comparative energy delivery price analysis 

 
Figure 25.  The daytime on-route charging station comparative daily profit analysis 



31 
 

TABLE 15. SUMMARY OF 2021 ESS-BASED DAILY DEMAND-SIDE MANAGEMENT COST-BENEFIT ANALYSIS 

Scenario 

No. 
ESS Size 

Daily Scheduling Based 

Energy Bill 

[p/kWh] 

Energy Delivery Price 

[p/kWh] 

Profit  

[£/Day] 

1 
Max. Daily Design +50% 

(12721 [kWh], 3172 [kW]) 
10.09 15.60 287.4 

2 
Max. Daily Design +25% 

(10601 [kWh], 2643 [kW]) 
10.35 14.94 341.4 

3 
Max. Daily Design 

(8481 [kWh], 2115 [kW]) 
10.73 14.40 385.7 

4 
Max. Weekly Design (8098 

[kWh], 1397 [kW]) 
11.25 14.57 371.9 

5 
Ave. Daily Design 

(6004 [kWh], 1661 [kW]) 
11.56 14.21 401.3 

5 
Ave. Weekly Design 

(4235 [kWh], 1218 [kW]) 
12.56 14.45 382.2 

6 
Min. Weekly Design 

(3354 [kWh], 966 [kW]) 
13.11 14.60 370.0 

7 
Min. Daily Design 

(371 [kWh], 407 [kW]) 
16.41 16.67 202.2 

8 
Min. Daily Design -25% 

(281 [kWh], 308 [kW]) 
16.63 16.82 190.0 

9 
Min. Daily Design -50% 

(185 [kWh], 203 [kW]) 
16.82 16.95 180.0 

 

 
Figure 26.  The daytime on-route charging station comparative energy delivery price analysis 

 



32 
 

 
Figure 27.  The daytime on-route charging station comparative daily profit analysis 

The cost-benefit analysis was next carried out using a weekly scheduling time window. The outputs are 

shown in Figures 26 and 27 and summarised numerically in Table 16. As with the daily scheduling results, 

all scenarios show a positive profit; however the energy delivery prices are consistently higher, and the 

profit values lower than those obtained in the earlier daily scheduling results. Furthermore, upon 

considering the scenarios that yield the highest benefits, namely scenario 5 for daily scheduling and scenario 

4 for weekly scheduling, it becomes evident that weekly scheduling approaches tend to offer greater 

capacity compared to their daily counterparts. Similarly to the daily results, the preferred scenario now 

becomes the case where the battery is sized based on an average weekly electricity price. However, the 

differences between scenarios 3 and 4 are also very small, and this may simply be a reflection of the 

numerical solution convergence issue. 

To explore these results further, the values from Tables 15 and 16 are plotted in Figure 28. Here, trend 

curves have been added using non-linear regression curve fitting. The comparative evaluation of the time 

window's impact on demand-side management and process outputs, as demonstrated both numerically and 

visually in the current section, represents the final phase of testing the capacity and resilience of the 

proposed approach. Throughout this analysis, the demand-side management outputs exhibited consistency 

and stability, even as adjustments were made to the time window, transitioning from daily to weekly 

scheduling. This shift affected various aspects, including the size of input variables like MIP dynamics, the 

decision dimensions such as the number charging power terms of the battery, as well as the optimal values 

of control parameters like mutation rate in EGA and optimization constraints like energy input-output 

balance. These findings not only showcase the efficacy of the proposed method in consumption 

management but also underscore the reliability of the results. The daily and weekly curves show similar 

trends albeit with modest vertical and horizontal offsets. These curves emphasise the lower energy delivery 

price suggested by daily optimisation as well as the preference of the daily analyses for a somewhat smaller 

ESS capacity. Examination of weekly results (see Figure 20-(b) to (c)) suggests that minimal benefit is 
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achieved from energy exchange between days as the increased ESS size required, and therefore increased 

cost, offsets any purchase price reduction. 

TABLE 16. SUMMARY OF 2021 ESS-BASED WEEKLY DEMAND-SIDE MANAGEMENT COST-BENEFIT ANALYSIS 

Scenario 

No. 
ESS Size 

Weekly Scheduling Based 

Energy Bill 

[p/kWh] 

Energy Delivery Price 

[p/kWh] 

Profit  

[£/Day] 

1 
Max. Daily Design +50% 

(12721 [kWh], 3172 [kW]) 
9.75 15.25 314.6 

2 
Max. Daily Design +25% 

(10601 [kWh], 2643 [kW]) 
10.24 14.82 349.6 

3 
Max. Daily Design 

(8481 [kWh], 2115 [kW]) 
10.83 14.50 376.1 

4 
Max. Weekly Design (8098 

[kWh], 1397 [kW]) 
11.16 14.47 378.3 

5 
Ave. Daily Design 

(6004 [kWh], 1661 [kW]) 
12.16 14.80 350.1 

5 
Ave. Weekly Design 

(4235 [kWh], 1218 [kW]) 
13.29 15.17 320.7 

6 
Min. Weekly Design 

(3354 [kWh], 966 [kW]) 
13.95 15.44 298.9 

7 
Min. Daily Design 

(371 [kWh], 407 [kW]) 
16.75 17.00 170.6 

8 
Min. Daily Design -25% 

(281 [kWh], 308 [kW]) 
16.86 17.05 166.7 

9 
Min. Daily Design -50% 

(185 [kWh], 203 [kW]) 
16.96 17.09 163.9 

 

Figure 28.  Comparative analysis of the daytime on-route charging across daily and weekly scheduling  

In essence, while daily scheduling aims to optimize the balance between system energy inputs and outputs 

more efficiently, weekly scheduling extends this constraint to a weekly scale. This extension permits 
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potential energy exchange between weekdays, consequently leading to a tendency towards higher ESS 

capacity in the weekly approach. This is evidenced by scenario 4 exhibiting the highest benefit compared 

to scenario 5 in the daily scheduling approach. It is important to note that this trend is primarily observed 

in on-route stations with stochastic weekday load profiles. Depot charging, with its typically periodic 

charging pattern over weeks, exhibits similar performance under daily scheduling as under weekly 

scheduling, as illustrated by the SoC variation in Figure 20-(d) to (e). 

The lower profits seen from weekly optimisation are initially surprising. It might be expected that this 

longer window would achieve at least some advantage from storing energy between days. Further analysis 

of the process identified a higher turnover in weekly scheduling compared to daily scheduling making the 

optimisation less sensitive to similar deviations due to their smaller proportion of the total cost. For instance, 

comparing the optimal solutions in Tables 15 and 16, a difference of 23 £/day (161 £/week) in profits, 

across the first week of 2021, reveals that this portion is equal to 0.038% of the energy bill and 0.02% of 

the total cost, while for the weekly approach, it is only 0.019% of the energy bill and 0.015% of the total 

cost. If similar convergence conditions have been defined as 𝜖 = 0.0002 for both approaches, this deviation 

(23 £/day) would be detectable in daily scheduling but would be negligible on a weekly scale. This is an 

example of the 'masking effect' in numerical optimisation techniques.  

Furthermore, extending the scheduling time window from daily to weekly basis while preserving half-

hourly measurement resolution increases the number of decision variables sevenfold. This leads to a 

substantial increase in processing time and a reduction in the accuracy of the optimisation methods. Here, 

computational constraints restrict the potential to increase the population size and maximum generation 

limit. When utilizing a Dell Inspiron 16 with an AMD Ryzen 7 processor, determining ESS design and 

consumption scheduling for a daily time-window typically takes less than 10 minutes, whereas it extends 

to 31 minutes for a weekly time window. Conducting a yearly cost-benefit analysis using the same system, 

the daily scheduling package necessitates approximately 8 hours, while the weekly scheduling package 

demands approximately 16 hours. This increase in calculation time occurs while the control parameter rates 

offer a higher level of reliability in daily scheduling (see Table 9).  

In summary, considering the current ESS capital and operating cost assumptions, extending the ESS 

scheduling time window may result in very limited scheduled energy exchange between weekdays in on-

route cases, but it can significantly increase processing time, reduce optimisation accuracy, and increase 

the risk of the 'masking effect'. Assuming different capital and operating cost assumptions and tariff rates 

become available in the future, the optimal solution may need to be reevaluated. 

4. CONCLUSION  

This paper proposes an integrated techno-economic framework that addresses the interconnected issues of 

HGEV charge management and station ESS design. Whereas previous EV research has mostly concentrated 

on light vehicles, this examination of multiple HGEV scenarios brings new challenges. This reflects larger 

batteries, higher power charging and the new temporal patterns that come from fleet operating regimes. 

Novel stochastic and semi-stochastic models were successfully developed to determine resultant 

consumption patterns. An intelligent elitist approach was then developed to optimise ESS battery and 

converter size while simultaneously solving optimal battery scheduling to meet these charge requirements. 

Multiple constraints are effectively handled using a combination of an adaptive penalty function and repair 

of infeasible solutions. This was applied to identify the minimum energy delivery price, reflecting the costs 

of ESS installation and dynamic energy purchase in line with the half-hourly UK wholesale electricity price. 

HGEVs needing to charge on route were seen to face a cost penalty, although adding static ESS can bring 

a modest benefit. Fleet operation that allows overnight depot charging shows lower costs, with dynamic 
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charge management enabling access to lower electricity prices. On route charging costs as high as 15.48 

p/kWh contrast with 11.81 p/kWh for the managed depot case, considering ESS installation and electricity 

purchase costs. Commercial costs of operating on route stations could be expected to further increase this 

price gap. In the depot case, charge management of individual vehicles delivers a higher cost saving (in one 

configuration, reducing energy delivery cost from 18.32 to 11.90 p/kWh) than installing a static ESS (15.74 

p/kWh). 

The relationship between battery capacity, charger rating, and subsequent energy delivery price was seen 

to be nonlinear and sometimes inverse, depending on the load profile dynamics. For example, for the 24-

hour, on route station examined, optimal battery capacity was determined to be 55.9% of the size for the 

daytime station, while maintaining a 7% reduction in comparative energy delivery price. This was also 

associated with a decrease in charger rating power to 44.9% of that needed for the daytime station. Results 

were unsurprisingly sensitive to cost assumptions with lower ESS costs allowing for a fourfold increase in 

the optimal battery size identified.  

An adapted EGA-based package was developed to implement ESS and charge management across a full 

year, considering daily and weekly optimisation windows. Whilst the latter window enables inter-day 

energy shifting, very little benefit was seen from this, reflecting the influence of ESS cost. Moreover, the 

disadvantages of dealing with a significantly larger number of decision-making components and the risk of 

masking outweigh any potential advantages. Although the differences were small, the shorter daily 

optimisation window was seen to identify solutions with slightly greater cost savings. 
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APPENDIX. 

See Figures A.1, A.2, A.3, A.4 

 
Figure A.1.  Performance of the proposed optimisation method in ESS design with a daily time window 



36 
 

 
Figure A.2.  Performance of the proposed optimisation method in ESS design with a weekly time window 

 
Figure A.3.  Performance of the proposed optimisation method in demand-side management with a daily time window 

 
Figure A.4.  Performance of the proposed optimisation method in demand-side management with a weekly time window 
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