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ABSTRACT: This study quantifies the state-of-the-art in the rapidly growing field of seasonal
Arctic sea ice prediction. A novel multi-model dataset of retrospective seasonal predictions of
September Arctic sea ice is created and analyzed, consisting of community contributions from
17 statistical models and 17 dynamical models. Prediction skill is compared over the period
2001-2020 for predictions of Pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice
concentration (SIC) initialized on June 1, July 1, August 1, and September 1. This diverse set
of statistical and dynamical models can individually predict linearly detrended Pan-Arctic SIE
anomalies with skill, and a multi-model median prediction has correlation coefficients of 0.79,
0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar
skill to Pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower
in the Canadian, Atlantic, and Central Arctic sectors. The skill of dynamical and statistical models
is generally comparable for Pan-Arctic SIE, whereas dynamical models outperform their statistical
counterparts for regional and local predictions. The prediction systems are found to provide the
most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007,
and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has
been minimal change in inherent sea ice predictability over the satellite era. Overall, this study
demonstrates that there are bright prospects for skillful operational predictions of September sea

ice at least three months in advance.
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SIGNIFICANCE STATEMENT: The observed decline of Arctic sea ice extent has created an
emerging need for predictions of sea ice on seasonal timescales. This study provides a comparison
of September Arctic sea ice seasonal prediction skill across a diverse set of dynamical and statistical
prediction models, quantifying the state-of-the-art in the rapidly growing sea ice prediction research
community. We find that both dynamical and statistical models can skillfully predict September
Arctic sea ice 0-3 months in advance on Pan-Arctic, regional, and local spatial scales. Our
results demonstrate that there are bright prospects for skillful operational seasonal predictions of
Arctic sea ice and highlight a number of crucial prediction system design aspects to guide future

improvements.

CAPSULE: September Arctic sea ice seasonal prediction skill is compared across a diverse set of
dynamical and statistical prediction models, quantifying the state-of-the-art in the rapidly growing

sea ice prediction community.

1. Introduction

The rapid decline of summer Arctic sea ice over the satellite era (Fig. 1) has led to increased
socioeconomic activity in the region and an emerging need for skillful predictions of sea ice con-
ditions (Jung et al. 2016; Wagner et al. 2020). Following the then-record-setting 2007 September
Arctic sea ice extent (SIE) minimum, a new research subfield emerged focused on scientific under-
standing of sea ice predictability and prediction. At the core of this research community has been
the Sea Ice Outlook (SIO), which collects, analyzes, and synthesizes real-time seasonal predictions
of September Pan-Arctic SIE (Stroeve et al. (2014); see arcus.org/sipn/sea-ice-outlook). From
2008—present, the SIO has collected predictions of September SIE initialized on June 1, July 1, and
August 1, months that span the summer Arctic melt season. The SIO began additionally collecting
September 1 initialized predictions in 2021. The number of annual SIO submissions has grown
steadily over time, with approximately 40 groups submitting predictions in recent years. These
submissions are provided by an international community of polar scientists and employ a diverse
mix of dynamical modeling, statistical, and heuristic approaches.

In parallel to the growth of the SIO, a body of work on sea ice predictability has been developed,
which underpins the expectation that sea ice could be predictable on seasonal timescales. Coupled

global climate models (GCMs) have been used to estimate the upper limits of sea ice predictability
5
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based on “perfect model” ensemble experiments, which quantify potential prediction skill in the
case of perfectly known initial conditions, forcing, and model physics. These studies have shown
that, with typical sample sizes, Arctic SIE potential predictability is statistically significant up
to 12-36 months in advance (Koenigk and Mikolajewicz 2009; Blanchard-Wrigglesworth et al.
2011b; Holland et al. 2011; Tietsche et al. 2014; Day et al. 2014; Bushuk et al. 2019; Holland
et al. 2019), however they may overestimate nature’s true predictability limits due to the overly
persistent SIE anomalies present in most modern GCMs (Blanchard-Wrigglesworth and Bushuk
2019; Giesse et al. 2021). The inherent predictability of Arctic sea ice is determined by a
competition between the slowly evolving predictable components of the ice-ocean-land system and
the comparatively unpredictable variability of the atmosphere (Tietsche et al. 2016). A number of
physical mechanisms for summer Arctic SIE predictability have been demonstrated. These include
the persistence and reemergence of SIE and sea ice concentration (SIC) anomalies (Blanchard-
Wrigglesworth et al. 2011a; Bushuk and Giannakis 2015; Ordofiez et al. 2018; Giesse et al. 2021;
Zhang et al. 2021), the persistence and advection of sea ice thickness (SIT) anomalies (Holland et al.
2011; Blanchard-Wrigglesworth et al. 2011b; Chevallier and Salas y Mélia 2012; Krumpen et al.
2013; Blanchard-Wrigglesworth and Bitz 2014; Day et al. 2014; Collow et al. 2015; Massonnet
etal. 2015; Guemas et al. 2016; Williams et al. 2016; Blanchard-Wrigglesworth et al. 2017; Bushuk
et al. 2017b; Dirkson et al. 2017; Blockley and Peterson 2018; Holland et al. 2019; Bonan et al.
2019; Brunette et al. 2019; Babb et al. 2019; Ponsoni et al. 2020; Babb et al. 2020; Balan-Sarojini
et al. 2021), ocean heat transport and persistence of upper ocean heat content anomalies (Serreze
et al. 2016; Lenetsky et al. 2021; Bushuk et al. 2022), melt onset and summer ice-albedo feedback
processes (Schroder et al. 2014; Kapsch et al. 2014; Liu et al. 2015; Landy et al. 2015; Cox et al.
2016; Zhan and Davies 2017; Kwok et al. 2018; Bushuk et al. 2020), and summertime atmospheric
circulation patterns (Ding et al. 2017, 2019; Baxter et al. 2019; Baxter and Ding 2022). Taken
together, these studies have laid critical groundwork, showing that sea ice should be potentially
predictable on seasonal timescales.

Have modern prediction systems capitalized upon this potential predictability and produced
skillful predictions of observed Arctic sea ice? There is a tension in the sea ice prediction literature
regarding this question. On one hand, a number of studies have evaluated the performance of

September SIE predictions submitted in real-time to the SIO and found that these predictions
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have only a modest skill advantage relative to a baseline linear trend prediction (Stroeve et al.
2014; Blanchard-Wrigglesworth et al. 2015; Hamilton and Stroeve 2016; Lukovich et al. 2021;
Blanchard-Wrigglesworth et al. 2023). The initial assessment performed by Stroeve et al. (2014)
on SIO predictions submitted over the period of 2008-2013 found that, regardless of method,
predictions struggled to capture years with large SIE anomalies relative to the linear trend. These
initial findings have been largely corroborated over the longer assessment periods of 2008-2015
and 2008-2022 considered by Hamilton and Stroeve (2016) and Blanchard-Wrigglesworth et al.
(2023), respectively. Blanchard-Wrigglesworth et al. (2023) found that the SIO multi-model median
prediction has similar skill to a damped anomaly persistence forecast from July 1 and August 1
initialization dates, and is slightly more skillful than damped persistence from June 1. They found
that the skill of individual models was lower than the multi-model median skill and had worse skill
than damped persistence.

On the other hand, there has been a recent proliferation of studies that document the development
of seasonal prediction systems capable of skillfully predicting detrended September Arctic SIE
anomalies. These skill assessments are based on retrospective seasonal predictions (also known
as hindcasts or reforecasts), which use a fixed initialization and modeling formulation to make
seasonal predictions of past observations using only data that would have been available at the
time of initialization. Many dynamical prediction systems, which are based on initialized coupled
dynamical models, have recently shown skillful seasonal predictions of detrended September Arctic
SIE anomalies (Wang et al. 2013; Sigmond et al. 2013; Chevallier et al. 2013; Merryfield et al.
2013; Msadek et al. 2014; Peterson et al. 2015; Collow et al. 2015; Sigmond et al. 2016; Guemas
et al. 2016; Bushuk et al. 2017a; Dirkson et al. 2017, 2019; Kimmritz et al. 2019; Harnos et al.
2019; Batté et al. 2020; Shu et al. 2021; Bushuk et al. 2022; Zhang et al. 2022; Martin et al. 2023).
Simultaneously, many statistical prediction systems, which leverage empirical relationships in past
observational data, have also demonstrated skillful detrended SIE predictions (Drobot et al. 2006;
Lindsay et al. 2008; Schroder et al. 2014; Kapsch et al. 2014; Yuan et al. 2016; Williams et al. 2016;
Serreze et al. 2016; Petty et al. 2017; Kondrashov et al. 2018; Brunette et al. 2019; Ionita et al.
2019; Walsh et al. 2019; Gregory et al. 2020; Andersson et al. 2021; Chi et al. 2021; Horvath et al.

2021). Both dynamical and statistical predictions (see subsection 2b ahead) have been shown to
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outperform the damped persistence forecast in most cases. This discrepancy between retrospective
and real-time prediction skill represents a key tension in the sea ice prediction literature.

While many dynamical and statistical prediction systems have documented “skillful” SIE pre-
dictions, it is arguably more important to consider the quantitative level of skill and whether such
predictions could provide value to end users (Murphy 1993). The sea ice prediction community
gathered for a Sea Ice Outlook Contributors Forum in 2021 where this and many other issues
were discussed (Steele et al. 2021). Many workshop attendees expressed a need to rigorously
quantify the current state-of-the-art across modern sea ice prediction systems. Unfortunately, this
quantitative skill comparison is challenging due to differences in the evaluation time period and
skill metrics considered across different studies and the relatively short period of real-time SIO
predictions. This knowledge gap led to a key outcome of the SIO Forum-the expressed need
for an “apples-to-apples” skill comparison of modern dynamical and statistical sea ice prediction
systems. This community intercomparison of sea ice prediction skill forms the basis of the present
study.

The outline for this paper is as follows. In section 2, we describe a retrospective prediction data
request that was sent to the SIO contributor community, summarize the prediction methodologies
used by the 35 groups who contributed predictions, and outline our methods for assessing prediction
skill against multiple observational products. In section 3, we assess Pan-Arctic September SIE
prediction skill across dynamical and statistical models and consider whether SIE prediction skill
has changed over time. In section 4, we consider smaller spatial scales, evaluating regional
SIE prediction skill in five Arctic regions and comparing Pan-Arctic and regional performance.
Finally, we assess prediction skill for local SIC and ice-edge predictions in section 5. We discuss
our findings in section 6, focusing on the key elements of successful sea ice prediction systems
and the skill differences between retrospective and real-time predictions. Conclusions and a future

outlook are presented in section 7.

2. Methods

a. Retrospective Prediction Data Request

In order to facilitate a direct “apples-to-apples” skill comparison of SIO models, a data request for

retrospective predictions of September Arctic sea ice was sent to the SIO contributor community in
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Fic. 1. Observations of (a) September Pan-Arctic SIE from NSIDC v3 and OSI SAF v2.1 Sea Ice Indices; (b)
September regional SIE from NSIDC CDR SIC (G02202); and (c) September-mean SIC interannual standard
deviation and sea ice edge positions in the extreme years of 1996 (black), 2007 (magenta), and 2012 (blue).
Panel (d) shows the regional domain definitions for the Alaskan, Siberian, Atlantic, Canadian, and Central Arctic
regions. Note that the Central Arctic time series in panel (b) is plotted using a shifted y-axis on the right (values

in gray).

early 2022. The data request was for retrospective predictions initialized on the SIO initialization
dates of June 1, July 1, August 1, and September 1, and spanning a minimum period of 2001-
2020. The requested target variables were September monthly-mean Pan-Arctic SIE, regional SIE,
and gridded SIC fields. Pan-Arctic SIE is defined as the area of all Northern Hemisphere grid

cells covered by at least 15% SIC. We define monthly-mean SIE following the NSIDC Sea Ice
9
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Index convention, which defines the monthly-mean extent as the monthly mean of the daily SIE
values. Regional SIE was requested for four regional domains: the Alaskan Seas (Chukchi and
Beaufort), Siberian Seas (East Siberian and Laptev), Atlantic Seas (Kara, Barents, and Greenland),
and Canadian Seas (Canadian Archipelago and Baffin Bay). These regions were defined based on a
recently updated NSIDC region mask, which has better agreement with the regional definitions used
by the International Hydrographic Organization (Meier and Stewart (2023); see map in Fig. 1d).
We also later derived Central Arctic regional SIE using the submitted Pan-Arctic and regional
SIE values by taking their difference. SIO contributors were invited to submit any combination
of the requested target variables and initialization dates along with metadata describing the design
of their prediction system. We also requested submission of individual ensemble members, if
applicable, and the initial SIC and SIT conditions used for dynamical predictions. Contributors
were informed that the NSIDC sea ice index and SIC climate data record would be the official
verification products, but we also utilize OSI SAF observations for verification in this study (see
subsection 2c ahead). For groups that only provided SIC predictions, Pan-Arctic and regional SIE
were computed on the native model grid and a post-processing was applied to remove biases (see
ahead), including those related to land-sea mask differences.

Retrospective prediction contributions were received from 17 statistical models, 17 dynamical
models, and 1 heuristic prediction (see summary of submitted data in Table 1). These contributions
span 11 countries across Europe, Asia, and North America, and provide a total of 2807 individual
predictions of September Pan-Arctic SIE (1267 statistical; 1526 dynamical; 14 heuristic). All
data have been subsequently formatted into a common format and made publicly available via an
online repository (https://zenodo.org/doi/10.5281/zenodo.10124346). The online repository also
contains scripts for processing the raw data, computing skill metrics, and producing all figures for
this study. This is the most comprehensive dataset of multi-model Arctic sea ice predictions that
has been assembled to date, and is intended to provide an open community resource for future sea
ice prediction research. In this study, we will focus on ensemble-mean sea ice predictions in order
to compare ensemble and deterministic contributions, since this is the primary focus of the SIO

and allows for the largest set of models to be compared.
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TaBLE 1. Summary of submitted retrospective prediction data. Target variables are Pan-Arctic SIE (P),
Regional SIE (R), SIC (S), and the number of ensemble members (e) is indicated in parentheses. The variables

that are bias corrected are shown in parentheses in the Bias Correction column.

Name Forecast Method ~ Time period  Initialization Dates ~ Target Variables  Bias Correction
AWI Statistical 2000-2021 JJA P No
BDAL Statistical 2001-2021 JJIAS P No
Cawley Statistical 2001-2021 June PR No
CPOM Statistical 1984-2021 A P No
CPOM-UCL Statistical 1993-2020 JJAS PR No
CSU Statistical 20112021 A P No
GSFC_Petty Statistical 1990-2021 JJAS PR No
Damped Persistence Statistical 1990-2021 JJAS PRS No
Horvath Statistical 2001-2020 JIAS PRS Yes (S)
KOPRI Statistical 2001-2021 JJIAS PRS No
Lamont Statistical 2013-2021 JIAS PRS Yes (PR)
MetNo-sparse-st Statistical 2000-2020 JJAS P No
Nico Sun Statistical 2000-2021 JJAS PRSe(3) No
SYSU/SML-KNN Statistical 2000-2020 JJIAS PRS No
SYSU/SML-MLM Statistical 1980-2020 JJIAS PRS No
Trend Climatology Statistical 1990-2021 JJIAS PRS No
UCLA Statistical 2012-2021 JJIAS PR No
UMBC-REU Statistical 2000-2020 S PS No
UPenn Statistical 20002021 JJAS P No
BCCR Dynamical 2003-2021 A PRSe(10) Yes (PR)
CNRM Dynamical 1993-2016 JJIAS PRSe(25) Yes (PR)
CPC CFSm5 Dynamical 2006-2021 JJAS PRSe(4) Yes (S)
CPC CFSv2 Dynamical 1991-2021 JJIAS PRSe(4) Yes (S)
ECCC-CanSIPSv2 Dynamical 1990-2021 JIAS PRSe(20) Yes (PRS)
EC-Earth Dynamical 1981-2014 June PRSe(10) No
ECMWF SEASS Dynamical 1993-2021 JJAS PRSe(25) Yes (PR)
FGOALS-f2 Dynamical 2000-2021 JIAS PRS No
FIO-ESM Dynamical 2000-2021 JJIAS PRS Yes (PR)
GFDL-FLOR Dynamical 1981-2020 JJIAS PRSe(12) Yes (PR)
GFDL-SPEAR Dynamical 1993-2021 JJIAS PRSe(15) Yes (PR)
GFDL-SPEAR-IceDA Dynamical 1992-2021 JIAS PRSe(15) Yes (PR)
Met Office Dynamical 1993-2016 JJA Pe(21) Yes (P)
NASA GMAO Dynamical 1981-2021 JJA PRSe(10) No
PIOMAS-CFS Dynamical 2000-2020 JJAS PRSe(4) No
RASM Dynamical 2001-2021 JJIAS PRSe(10) No
UCLouvain Dynamical 2006-2019 June PRSe(10) No
NCAR-CU Sea Ice Pool Heuristic 2008-2021 June P No
11
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b. Statistical and Dynamical Prediction Systems

The submitted predictions can be grouped into two main categories - dynamical and statistical
predictions. Dynamical predictions are based on numerical dynamical models that are initialized
from observationally constrained initial conditions and integrated forward in time. Statistical
predictions are based on empirical predictor-predictand relationships and are trained using past
observational or reanalysis data. It should also be noted that the distinction between dynamical
and statistical methods is not perfect - for example, many dynamical models use statistical post-
processing techniques to bias correct their predictions and many statistical models are trained on
reanalysis-based predictor data. There is also one submitted “heuristic” prediction from the NCAR
/ University of Colorado sea ice pool. This office pool collects September SIE predictions each
summer on June 1 from NCAR / CU scientists, and serves as a useful ‘human expert assessment’
baseline to compare against the skill of dynamical and statistical models (Hamilton et al. 2014).

Table 2 summarizes the dynamical prediction systems, which come in three main varieties:
fully-coupled global models, fully-coupled regional models driven by specified lateral boundary
conditions, and ice-ocean models driven by specified atmospheric forcing. Fully-coupled global
models are the most common model formulation, likely because many centers have carefully de-
veloped these models for climate modelling applications. Regional models offer the advantage
of substantial computational savings, allowing for Arctic simulations at higher resolution, but
come with the additional challenges of requiring high-quality boundary conditions and significant
research investment in model development. The ice-ocean models that use specified atmospheric
forcing are driven either using atmospheric fields from another prediction system or using reanalysis
atmospheric fields from previous years. The spatial ice-ocean resolution of the global dynamical
models range from 0.25° to 2.8° nominal horizontal resolution, whereas the two submitted regional
models have 0.08° and 0.3° nominal resolutions, respectively. The horizontal atmospheric reso-
lutions employed range from 0.4° to 2.8°. Most of the dynamical prediction systems incorporate
observations of SIC (11 of 17 systems), sea-surface temperature (SST; 14 systems), ocean temper-
ature and salinity (T/S) profiles (13 systems), and reanalysis atmospheric data (15 systems) into
their initialization procedure. A number of systems also initialize their models using observed sea
level anomaly (SLA) data (4 systems), and SIT data (2 systems). A variety of different data assimi-
lation techniques are employed including 3DVAR, 4DVAR, strongly and weakly coupled ensemble
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Kalman filters, nudging, optimal interpolation, and reanalysis-forced ice-ocean runs. Most of the
dynamical models are ensemble prediction systems, and their deterministic SIO prediction is taken
as the ensemble mean. Note that for SIE predictions, SIE is first computed for each ensemble
member and then averaged to form the ensemble mean.

The methodologies of each statistical prediction system are summarized in Table 3. A variety of
different methods are employed, including standard statistical techniques such as linear regression,
multiple regression, autoregressive models, and more complex methods including convolutional
neural networks, Gaussian process regression, multivariate linear Markov models, long short-term
memory networks, and harmonic decomposition. Most models include a sea ice predictor variable—
typically SIE or SIC—and some models also include thermodynamic ocean variables and dynamic
and thermodynamic atmospheric variables as predictors (see Table 3, column 2). The reader is
reminded that the predictand variables are provided in Table 1, column 5. All submitted statistical
models are trained using past data only. Some prediction systems choose to specify a designated
training period (e.g. 1979-2000) and use a fixed statistical model to predict all future years (e.g.
2001-2021). Other systems re-train their model each successive year using all available past data
(e.g. predict 2001 based on 1979-2000 data, predict 2002 based on 1979-2001 data, etc.). As such,
we are unable to disentangle the relative skill from the sophistication of the statistical approach
versus other aspects of the statistical forecast (e.g. the use of training data).

Many of the systems perform a post-processing of their predictions in order to correct system-
atic biases present in their retrospective predictions (see Table 1). The bias correction methods
employed are relatively simple, such as correction of the mean bias, correction of the trend, or a
linear regression adjustment. Some systems bias correct their SIE time series directly, whereas
others correct the SIC spatial fields. We note that some bias correction methods require comput-
ing anomalies relative to a climatology, which may implicitly incorporate future data. This is a
standard approach for retrospective prediction assessment, but may artificially increase prediction

skill (Risbey et al. 2021).
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TaBLE 2. Summary of Dynamical Prediction Models. Acronyms used are: Sea ice concentration (SIC),
sea ice thickness (SIT), sea surface temperature (SST), subsurface temperature and salinity (T/S) profiles, sea
level anomaly (SLA), Ensemble Kalman Filter (EnKF), ECMWF Reanalysis (ERA), Integrated Forecasting
System (IFS), Ocean Reanalysis System (ORAS), National Centers for Environmental Prediction (NCEP),
Climate Forecast System Reanalysis (CFSR), Modern-Era Retrospective analysis for Research and Applications
(MERRA), Japanese Reanalysis (JRA), Climate Prediction Center (CPC), Numerical Weather Prediction (NWP),
Forecast Ocean Assimilation Model (FOAM), HadISST2 combined with Canadian Ice Service Charts (Had2CIS).

Name Initialization Data Brief Method Description and Reference

BCCR SIC, SST, T/S profiles Fully-coupled global with 1° ice-ocean, 2° atmosphere; initialized from
strongly coupled ice-ocean EnKF (Kimmritz et al. 2019)

CNRM SST, T/S profiles, ERA-Int/ERAS Fully-coupled global with 0.25° ice-ocean, 0.5° atmosphere; initialized from
forced ice-ocean with T/S nudging, atmo. from ERAS (http://www.umr-
cnrm.fr/IMG/pdf/system7-technical.pdf; Voldoire et al. (2019))

CPC CFSv2 SIC, SST, T/S profiles, CFSR Fully-coupled global with 0.5° ice-ocean, 1° atmosphere; initialized from
CFSR (Wang et al. 2013; Saha et al. 2014).

CPC CFSm5 SIC, SST, T/S profiles, CFSR Fully-coupled global with 0.5° ice-ocean, 1° atmosphere; initialized from

ECCC-CanSIPSv2

SIC, SST, T/S profiles, Era-Int

CFSR and CPC sea ice intialization system (Liu et al. 2019; Collow et al.
2019)

Two fully-coupled global models: CanCM4i with 2.8° ice-atmosphere, 1°
ocean; initialized from Had2CIS SIC, nudged run, and offline ocean T as-
similation from ORAPS5; GEM-NEMO with 1° ice-ocean, 1.4° atmosphere;
initialized from Had2CIS SIC and ORAPS5 (Lin et al. 2020).

EC-Earth SST, T/S profiles, Era-Int Fully-coupled global with 1° ice-ocean, 1° atmosphere; initialized from
ORAS4 in the ocean, atmo. from Era-Int (Hazeleger et al. 2012)

ECMWEF SEASS SIC, SST, T/S profiles, SLA, Fully-coupled global with 0.25° ice-ocean, 0.4° atmosphere; initialized from

ERAS/IFS ERAS/IFS 4DVAR and ORASS/OCEANS (Johnson et al. 2019; Zuo et al.

2019)

FGOALS-f2 T profiles, JRASS Fully-coupled global with 1° ice-ocean, 1° atmosphere; initialized from
nudged run (Li et al. 2021)

FIO-ESM SIC, SIT, SST, SLA Fully-coupled global with 1° ice-ocean, 1° atmosphere; initialized from
weakly coupled EnKF (Qiao et al. 2013; Chen et al. 2016; Shu et al. 2021)

GFDL-FLOR SST, T/S profiles, NCEP-2 Fully-coupled global with 1° ice-ocean, 0.5° atmosphere; initialized from
weakly coupled EnKF (Msadek et al. 2014; Bushuk et al. 2017a)

GFDL-SPEAR SIC, SST, T/S profiles, CFSR Fully-coupled global with 1° ice-ocean, 0.5° atmosphere; initialized from

GFDL-SPEAR-IDA

SIC, SST, T/S profiles, CFSR

weakly coupled EnKF and nudged run (Bushuk et al. 2022)

Fully-coupled global with 1° ice-ocean, 1° atmosphere; initialized from
weakly coupled EnKF, sea ice EnKF, and nudged run (Zhang et al. 2022)

Met Office SIC, SST, T/S profiles, SLA, Met  Fully-coupled global with 0.25° ice-ocean, 0.6° atmosphere; initialized from
Office NWP Met Office 4ADVAR and FOAM/NEMOVAR (Blockley et al. 2014; MacLach-
lan et al. 2015)
NASA-GMAO SIC, SST, T/S profiles, SLA, Fully-coupled global with 0.5° ice-ocean, 0.5° atmosphere; initialized from
MERRA-2 weakly coupled EnKF (Molod et al. 2020)
PIOMAS-CFS SIC, SIT, SST, CFSR/CFS Regional ice-ocean with 0.3° ice-ocean forced with atmospheric fields from
CFS forecasts; initialized via nudging and optimal interpolation (Zhang and
Rothrock 2003; Zhang et al. 2008)
RASM CFSR Fully-coupled regional with 0.08° ice-ocean and 0.5° atmosphere forced with
CFS operational forecasts; initialized from RASM hindcast run nudged to
CFSR (air temperature and winds) above 540 hPa (Cassano et al. 2017)
UCLouvain JRASS Global sea ice-ocean NEMO3.6/LIM3 with 1° resolution forced with JRA55

atmospheric forcing from the ten previous years; initialized from forced ice-
ocean run (Rousset et al. 2015; Barthélemy et al. 2018)

14

Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0163.1.

Authenticated D.Schroeder@reading.ac.uk |

Downloaded 05/28/24 03:12 PM UTC



TaBLE 3. Summary of Statistical Prediction Models. Acronyms used for training/intialization data are: Sea ice
concentration (SIC), sea ice extent (SIE), sea ice thickness (SIT), sea ice velocity (SIU), melt pond area (MPA),
sea surface temperature (SST), ocean heat content (OHC), ocean temperature (OT), 2m air temperature (SAT),
downwelling longwave radiation (LWDN), downwelling shortwave radiation (SWDN), net surface heat flux
(NSHF), sea level pressure (SLP), surface pressure (PS), geopotential height (Z), surface wind (USURF/VSURF),
winds at geopotential height level (UZ/VZ), specific humidity (q), rain rate (RR), snowfall rate (SR), precipitable
water content (PWC), Icelandic Low (IL), Arctic Oscillation (AO).

Name Training/Initialization Data Brief Method Description and Reference
AWI SIE, SAT, LWDN, USURF, VSURF, PWC, SLP, SST,  Stability maps and multiple regression (Ionita et al.
700m OHC, 100m OT 2019).
BDAL SIE, SST, PS, USURF, VSUREF, qSURF, SAT, SWDN,  Long Short Term Memory (LSTM) model (Ali et al.
LWDN, RR, SR 2021)
Cawley SIE Gaussian process regression (Williams and Ras-
mussen 2006)
CPOM MPA Spatially-weighted linear regression model (Schroder
etal. 2014)
CPOM-UCL SIC, SST Complex networks and Gaussian process regression
(Gregory et al. 2020)
CSU SAT, SIC, SIT, SST, IL, AO Multiple regression
Damped Persistence SIE/SIC Damped anomaly persistence
GSFC_Petty SIC/SIE Spatially-weighted linear regression model (Petty et al.
2017).
Horvath SIC, SIT, SAT, LWDN, SWDN, SIU Linear mixed effects regression (Horvath et al. 2021).
KOPRI SIC Convolutional LSTM model with perceptual loss func-
tion (Chi and Kim 2017; Chi et al. 2021).
Lamont SIC, SST, SAT, Z300, UZ300, VZ300 Multivariate linear Markov model (Yuan et al. 2016).
MetNo-sparse-st SIE Autoregressive model with adaptive order
Nico Sun SIC SIC persistence and past-year analogues
SYSU/SML-KNN SIC, NSHF K-nearest neighbor algorithm (Lin et al. 2023)
SYSU/SML-MLM SIC, SST, SAT, NSHF Multivariate linear Markov model (Zeng et al. 2023)
Trend Climatology SIE/SIC Linear trend
UCLA SIE Data-adaptive harmonic decomposition (Chekroun
and Kondrashov 2017; Kondrashov et al. 2018).
UMBC-REU SIC, SST, SP, USURF, VSUREF, qSURF, SAT, SWDN,  Convolutional Neural Network model (Kim et al.
LWDN, RR, SR 2021)
UPenn SIE Feature-engineered linear regression (Diebold and

Gobel 2022; Diebold et al. 2023)

15

Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0163.1.

Authenticated D.Schroeder@reading.ac.uk | Downloaded 05/28/24 03:12 PM UTC



c. Observational Verification

Consistent with the SIO evaluation, we verify Pan-Arctic SIE predictions against the NSIDC Sea
Ice Index, Version 3 (Fetterer et al. 2017), which is based on the NASA Team retrieval algorithm.
We also verify Pan-Arctic SIE predictions against the OSI SAF Sea Ice Index, Version 2.1 (OSI-
420), which uses the Bristol/Bootstrap retrieval algorithm (Lavergne et al. 2019). SIC predictions
are verified against the NOAA/NSIDC Climate Data Record (CDR) of SIC, version 4 (G02202;
Meier et al. (2021)) and the OSI SAF SIC CDR, release 3 (OSI-450a; EUMETSAT Ocean and
Sea Ice Satellite Application Facility (2022)). Both of these products use a spatial interpolation
to gap fill the polar observational hole. We also use the NSIDC and OSI SAF CDR SIC data to
compute regional SIE using the recently updated NSIDC Arctic region mask (Meier and Stewart
2023). We perform all SIC analysis on the 25km NSIDC polar stereographic north grid and regrid
each model’s SIC data to the NSIDC grid using bilinear interpolation and NSIDC’s CDR land-sea
mask. In cases where the model land-sea boundary lies within the NSIDC ocean domain, nearest

neighbor extrapolation to the NSIDC grid is used.

d. Skill Metrics

We quantify prediction skill using the anomaly correlation coefficient (ACC) and root mean
squared error (RMSE) between predicted and observed time series, which are commonly used
metrics in the sea ice prediction literature. The ACC is the temporal correlation between predicted

and observed time series and is defined as

X, (pi(r) = p(®))(0:-0)

VEL, (i(0) = () VEL, (01-0)°

ACC(t) = : (1)

where p; is the model prediction for year i, o; is the observed value, 7 is the forecast lead time, N

is the number of years, and the overbar indicates a temporal mean. The RMSE is given by

N (2
RMSE(T):\/ =1 (P lz(vT) 0’). ()

In order to isolate trend-independent prediction skill, we compute detrended skill metrics, which
remove a linear trend from both predicted and observed time series prior to computing the skill
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metrics. The detrended ACC is defined as

iy (pi(7) = p} (1)) (0i = 0] )
VEL (pi0) = pH@) ZL, (01-0k)

ACCdetrend(T) = ) 3)

where pl.L (1) and ol.L are linear trend fits to the predicted and observed time series. Note that piL(T)
is a function of lead time 7, since each lead time will have its own linear trend prediction. Similarly,

the detrended RMSE is defined as

N ((pi(x) = pE(1)) = (0i = 0k))?

N “4)

RMSEdetrend(T) = \/

Note that, unlike RMSE, the detrended RMSE has no contribution from mean bias, since this bias
is subtracted off during the detrending procedure, but it does have contributions from conditional
biases (predicting the incorrect amplitude of anomalies). Another commonly used metric in the
sea ice prediction literature is the mean-squared error skill score (MSSS), which is connected to
the ACC and RMSE via the decomposition of Murphy (1988). In particular, the squared ACC
skill provides an upper bound on the MSSS and can be interpreted as the variance explained by a
regression-adjusted forecast that is free of conditional and mean biases.

In order to facilitate an “apples-to-apples” skill comparison, we focus most of our analysis on
the 2001-2020 time period, which is the period with the most submitted predictions (see Table 1).
Note that some models were only able to submit predictions for a portion of this time period,
which may bias their skill results. Specifically, 24 models submitted predictions for the full 2001-
2020 period and 31 models submitted at least 14 years of predictions. We also include figures in
the Supplementary Material showing prediction skill metrics computed over the full time period
submitted by each model (Figs. S5, S6). We emphasize that the overall conclusions of the study

are unchanged if the full time period is used for computing skill.

e. Reference and Multi-Model Predictions

We compare model prediction skill to two reference predictions; a linear trend climatology and
L

a damped anomaly persistence forecast. The linear trend climatology prediction, o;, is computed

for a given year i by computing a linear fit to September SIE using all available past data (i.e.
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1979 to year i — 1) and evaluating the linear function for year i. The damped anomaly persistence
forecast uses the linear trend climatology prediction and adds a scaled observed anomaly at the

initialization time. The damped anomaly persistence forecast is given by

1

L ’ ’ Créep ’
DP(t) = 0; +1(0%,,,07)—0;(7), ®))
p o
where 07(7) is the observed anomaly in year i at lead time 7, 7 (0g, , 07) is the correlation between
p

September anomalies and anomalies at lead time 7, and o, and o, are the standard deviations of
these respective anomalies (Van den Dool 2007). “Anomalies” here are detrended anomalies (i.e.
they are computed relative to the linear trend climatology). The observed anomaly is computed
using the daily observation immediately prior to the initialization date (for example, the June 1
observed anomaly is taken as the May 31 anomaly). The linear trend climatology, lagged correlation
and standard deviation values are updated each year using all available past data. Henceforth, we

refer to the damped anomaly persistence forecast as damped persistence.
We also compute a multi-model median prediction, which is the median predicted value across
all models for each year and each lead time. The multi-model median prediction is only computed
for years with at least 10 models available (years 1993-2021), in order to reduce the impact of

sampling bias.

3. Pan-Arctic Predictions

a. September Pan-Arctic SIE Prediction Skill

We begin by assessing the ability of models to predict September Pan-Arctic SIE, which is the
flagship prediction target of the SIO. Figure 2 shows time series of NSIDC observed September SIE
(black) and multi-model median predictions (red) from initialization dates of June 1-September 1.
The red shading indicates the interquartile range (middle 50%) of individual model ensemble-mean
predictions. We find that the multi-model median prediction has high skill across SIO lead times,
capturing both the observed SIE trend and interannual variations over the period 1993-2021. The
ACC values, which include a substantial trend contribution, are greater than 0.9 for all lead times,
whereas the detrended ACC values range from 0.66—0.97. The RMSE values of the multi-model

median prediction are substantially smaller than the observed detrended standard deviation (0.54
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Fic. 2. Multi-model predictions of Pan-Arctic SIE initialized on (a) June 1, (b) July 1, (c) August 1, and (d)
September 1. The multi-model predictions are based on a multi-model median (red). Red shading indicates the
interquartile range (middle 50%) of individual model predictions. Skill metrics computed over 1993-2021 are
shown in red text, with detrended skill in parentheses. The number of models available for each year is indicated
by the grey bars at the bottom of each plot and grey text on the right y-axis. Multi-model predictions are only

plotted for years with at least 10 models available.

million km?), indicating prediction skill relative to the trend climatology prediction. We find that
the multi-model predictions become more confident (decreased inter-model spread) as the lead
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time decreases, and also capture SIE anomalies with greater skill. For example, better predictions
of the extreme 1996, 2007, and 2012 SIE anomalies are made from July 1 than June 1, and similar
improvements are seen in the forecasts from August 1 and September 1, respectively. We note that
the retrospective skill of the multi-model median prediction is considerably higher than the skill of
multi-model median real-time predictions submitted to the SIO (see supplementary Fig. S1). We
return to this point in the discussion section (section 6b). Versions of Fig. 2 for each individual
model submitted can be viewed on github (https://github.com/MitchBushuk/SIO_review _paper).

Next, we take a more granular view and explore the prediction skill of individual models. Fig-
ures 3 and 4 show the prediction skill of the dynamical and statistical models, respectively. We find
that the majority of dynamical and statistical models are skillful at SIO lead times, outperform-
ing the trend climatology prediction (dashed grey line). The models also generally outperform
damped persistence (solid grey line) from June 1 and July 1, whereas damped persistence provides
amore challenging benchmark from August 1 and September 1, with about half the models beating
damped persistence from August 1 and most models losing to damped persistence from September
1. While there is a large spread in skill across models, we find that the majority of models have
detrended ACC values that exceed 0.4 from June 1, and 0.5 from July 1 onward, the latter of which
is a commonly used practical threshold for useful forecast skill. The fact that this broad set of
models, which employ diverse prediction methodologies and input datasets, are generally skillful
at SIO lead times shows that useful real-time multi-month predictions of September sea ice should
be achievable.

The very high skill of damped persistence from September 1 (detrended ACC of 0.98) indicates
that interannual fluctuations of September-mean SIE are essentially “locked in” by September
1. This high skill demonstrates that the key source of predictability from September 1 is the
multi-week persistence of SIE anomalies, which have particularly high persistence values at the
time of the summer minimum (Blanchard-Wrigglesworth et al. 2011a). Since these SIE anomalies
are observable in near-real time, dynamical prediction systems should, in principle, be able to
initialize predictions using these data and capture this source of predictability. However, we find
that the majority of dynamical models are less skillful than damped persistence from September
1, which indicates that they are making errors in their sea ice initial conditions and/or have

substantial short term forecast drift that is not adequately post-processed in the forecasts. The most
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FiG. 3. Dynamical model prediction skill for September Pan-Arctic SIE computed over the period 2001-2020.
Individual models are shown in colors, multi-model predictions are shown in black, and reference predictions
are shown in grey. Skill metrics are plotted for each available initialization time (June 1-September 1) and are
computed for both full (a,c) and detrended (b,d) time series. The numbers in parentheses in the legend indicate
the number of years available from each model over the 2001-2020 time period. Note that the isolated markers

in the plots correspond to models that submitted a single initialization month.

skillful dynamical models from September 1 are comparable to the damped persistence benchmark,
suggesting that these systems are successfully assimilating sea ice concentration or other related
observations. Similarly, the most skillful statistical models are similar to damped persistence
from September 1 and most statistical models have lower skill than this benchmark despite, in
principle, having access to the same SIE observations as used by the damped persistence forecast.
This lower skill likely results from a combination of factors, such as some models using monthly
rather than daily data and some models including other predictor variables besides SIE which may
negatively impact September 1 skill in favor of higher skill at longer lead times. We also note that

training and verifying the damped persistence forecast on different datasets can provide a useful
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Fic. 4. Statistical model prediction skill for September Pan-Arctic SIE computed over the period 2001-2020.
Individual models are shown in colors, multi-model predictions are shown in black, and reference predictions
are shown in grey. Skill metrics are plotted for each available initialization time (June 1-September 1) and are
computed for both full (a,c) and detrended (b,d) time series. The numbers in parentheses in the legend indicate

the number of years available from each model over the 2001-2020 time period.

measure of observational uncertainty. We find detrended ACC values of 0.96, 0.95, and 0.95
based on training/verification pairs of NSIDC/OSI SAF, OSI SAF/NSIDC, and OSI SAF/OSI SAF,
respectively, which are slightly lower than the value of 0.98 for NSIDC/NSIDC reported above.
Moving to longer lead times, we find that slightly more than half the models outperform damped
persistence from August 1, and nearly all the models outperform damped persistence from June 1
and July 1. This indicates that the models are successfully capturing other sources of predictability
at these lead times, potentially including SIT anomaly persistence, surface albedo anomalies and
ice-albedo feedback, surface air temperature anomalies, and atmospheric circulation patterns.

Taken as a whole, the Pan-Arctic skill of the dynamical and statistical models are broadly similar,
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however, the model spread precludes definitive statements on which class of method is preferable
for Pan-Arctic predictions.

The multi-model median prediction has high skill, with detrended ACC values exceeding 0.75
for all SIO lead times. The multi-model median skill is higher than nearly all individual mod-
els, suggesting that this prediction benefits from cancellation of random errors across prediction
systems, which is a common finding across a variety of prediction applications including the SIO
(e.g., Hagedorn et al. (2005); DelSole et al. (2014); Harnos et al. (2019); Blanchard-Wrigglesworth
et al. (2023)) as well as the Southern Ocean counterpart of the SIO, the SIPN South ensemble
(Massonnet et al. 2023). We also note that the skill of a multi-model median prediction based
only on dynamical models is similar to the skill of the multi-model median based on all models,
whereas the median prediction based only on statistical models has lower skill.

Of the dynamical models, ECMWF SEASS stands out as having particularly high Pan-Arctic
prediction skill, achieving comparable skill to the multi-model median. There are also two statistical
models that are high-skill outliers: the AWI model, which employs a multiple regression based on
stability maps, and the KOPRI model, which uses a convolutional long-short term memory model.
We note that the skill levels of the AWI and KOPRI models are roughly equal to the upper limit
of Pan-Arctic SIE predictability as estimated by perfect model GCM experiments (compare with
the July 1 initialized forecast skill in Fig. 1 of Tietsche et al. (2014)). We return to the possible
sources of prediction skill across the individual systems in Section 6a.

We also verify the predictions using the OSI SAF sea ice index (see supplementary Figs. S3,S4).
The OSI SAF sea ice index has a higher mean value than the NSIDC sea ice index (see Fig. 1a),
but the indices otherwise have a close agreement, with ACC of 1.00, detrended ACC of 0.98, and
detrended RMSE of 0.10 million km?2. Consistent with this close agreement, we find that the skill
values are not sensitive to the choice of verification product, and that the choice of verification
product does not affect the qualitative conclusions regarding Pan-Arctic skill. The main difference
between the NSIDC and OSI SAF-verified skill metrics occurs for the RMSE skill, since this metric
is affected by the mean offset between the products, whereas the other skill metrics are not.

The heuristic prediction submitted from the NCAR / CU sea ice pool provides a useful ‘human
expert assessment’ baseline for Pan-Arctic SIE prediction skill. We find that this June 1 heuristic

prediction has no skill (ACC=-0.18; detrended ACC=-0.39) over their submission period of 2008—
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2021 (see Hamilton et al. (2014), and more recent figure here: https://bit.ly/3MscjmL), emphasizing

the inherent challenges in human-based assessments.

b. Is Prediction Skill Changing Over Time?

Earlier theoretical work has shown that Arctic sea ice predictability is dependent on the mean
climate state (Holland et al. 2011; Holland and Stroeve 2011; Cheng et al. 2016; Holland et al.
2019). While some have argued that the recent observed trends towards a thinner and more mobile
ice pack may reduce inherent summer sea ice predictability, Holland et al. (2019) show that changes
in sea ice predictability characteristics are highly non-monotonic under climate change and sea ice
predictability actually reaches a local maximum in the CESM1 model in the 2010s decade. We
can use the retrospective prediction dataset to investigate this question by analyzing the evolution
of prediction errors over time across the multi-model dataset.

Figure 5a shows the multi-model mean of single-model detrended Pan-Arctic SIE absolute errors
plotted as a function of time (horizontal axis) and initialization date (colors). We find that the
error time series do not display clearly identifiable trends, but are punctuated by large errors in the
extreme sea ice years of 1996, 2007, and 2012, which respectively had high, low, and low sea ice
extents (Serreze and Stroeve 2015; Kay et al. 2008; Zhang et al. 2013). The trends in prediction
errors are not significantly different from zero (at the 95% confidence level) for any initialization
month. This finding suggests that there has not been a detectable change in sea ice predictability
since 1990.

As expected, we find that the SIE errors increase with lead time, but the error reduction between
lead times changes from year to year. For example, 2005 has similar errors across lead times, 2007
shows a similar reduction for each successive initialization month, and 2012 shows large reductions
from June to July and from August to September, but little change from July to August. These
differences are likely related to the particular synoptic conditions of each summer - for example
the August 1 error is particularly large in 2012, likely because the great Arctic cyclone, which
peaked on August 6 (Simmonds and Rudeva 2012) and led to rapid sea ice loss in August, was not
predicted (or its impact on sea ice) by seasonal prediction systems (Yamagami et al. 2018).

Earlier work has shown that sea ice predictions typically struggle in “hard to predict years” with

large SIE anomalies (Stroeve et al. 2014), sometimes related to atmospheric conditions such as
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Fic. 5. Pan-Arctic SIE prediction errors versus time. Panel (a) shows the multi-model mean of single-
model absolute detrended SIE errors for different years (horizontal axis) and initialization dates (colors). The
absolute SIE error of the trend climatology reference prediction is shown in grey. Panels (b) and (c) show the
improvement in absolute error relative to the trend climatology and damped persistence predictions, respectively

(positive values indicate improvement, negative values indicate degradation).
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The dots are colored according to lead time and the colored lines are linear fits. The grey line indicates the error
of the linear trend fit to the observations. Panel (b) shows the distribution of errors for different lead times, with

the black curve showing the distribution of observed detrended anomalies.

late-summer cyclones (Lukovich et al. 2021; Finocchio et al. 2022). Theoretically, however, some
extreme years exhibit seasonal predictability (Tietsche et al. 2013). These large errors in extreme
SIE years have been characterized as a major shortcoming of sea ice prediction systems. However,
Fig. 5a shows that the linear trend prediction makes much larger errors in these years compared
with the prediction systems (compare dashed grey line to colored lines). Figures 5b and 5S¢ show
the skill improvement of the model-based predictions relative to the trend climatology and damped
persistence predictions, respectively, with positive values indicating error reductions. We find
that the time-mean error reductions are generally positive, indicating that the prediction systems
typically provide better skill than the reference forecasts, with the exception of the September 1
damped persistence forecast. Moreover, the extreme SIE years of 1996, 2007, and 2012 stand
out as years in which the prediction systems provide the largest skill improvements over the linear
trend prediction. This challenges the typical interpretation that prediction systems “failed” in these
extreme SIE years. Rather, it is precisely these extreme years that the prediction systems provide

the most value added relative to basic reference forecasts.
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We next investigate the error characteristics of individual model predictions in Fig. 6. Figure 6a
shows prediction errors from individual models and target years plotted against the observed
detrended SIE anomalies in those years. In low SIE years, the models generally overpredict the
observed SIE (positive errors), and the models generally underpredict in high SIE years (negative
errors). The distribution of errors (Fig. 6b) is relatively symmetric about zero for all initialization
times, suggesting that high and low SIE anomalies are similarly difficult to predict. Q-Q plots
reveal that the error distributions for all initialization times have symmetric heavy tails compared
with a Gaussian distribution, suggestive of outlier models with large errors (not shown). The linear
fits to the prediction errors in Fig. 6a (colored lines) have decreasing slopes as the initialization
date approaches September, and are bracketed by the 1:1 line (a no skill prediction) and the y=0
line (a perfect prediction). If September SIE were entirely unpredictable, we would expect the
errors to lie on the 1:1 line, whereas if it were perfectly predicable, we would expect the errors to
lie on the y=0 line. Thus, the decreasing slopes as the initialization date approaches September
shows that inherent SIE predictability increases as the lead time decreases. We also find that
the prediction error distributions become progressively more peaked around zero as the lead time

decreases (Fig. 6b).

4. Regional Predictions

a. September Regional SIE Prediction Skill

The prediction systems skillfully predict Pan-Arctic SIE, but how do they perform on the regional
and local scales that users ultimately require? In Figs. 7 and 8, we plot detrended regional SIE
skill for the dynamical and statistical models, respectively, in the five regional domains shown in

Fig. 1d. The skill metrics for full regional SIE time series are shown in Figs. S9 and S10.
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FiG. 7. Dynamical model prediction skill for September regional SIE computed over the period 2001-2020
in the Alaskan (a,b), Siberian (c,d), Atlantic (e,f), Canadian (g,h), and Central (i,j) regions (shown in Fig. 1d).
Individual models are shown in colors, multi-model predictions are shown in black, and reference predictions
are shown in grey. Skill metrics are plotted for each available initialization time (June 1-September 1) and are
computed for detrended time series. The numbers in parentheses in the legend indicate the number of years
available from each model over the 2001-2020 time period.
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We find that both dynamical and statistical models have detrended regional skill, but the level of
skill is regionally variable. The highest skill is found in the Alaskan and Siberian sectors, in which
the multi-model median detrended ACC exceeds 0.75 at SIO lead times. Unlike the Pan-Arctic skill
results, there is a notable difference between dynamical and statistical model performance in these
regions (compare panels a—d of Figs. 7 and 8). Taken as a whole, the dynamical models outperform
the statistical models in the Alaskan and Siberian regions, however the KOPRI statistical model
has high skill in both regions at a level comparable to the most skillful dynamical models. The
dynamical models also outperform the statistical models in the Central Arctic domain (compare
panels i—j), whereas the skill differences are more modest in the Canadian and Atlantic regions
(panels e-h). Interestingly, the superior regional SIE skill of dynamical models does not clearly
translate into better Pan-Arctic skill relative to statistical models.

The model skill is lowest in the Atlantic region for both dynamical and statistical models. This
is likely because Atlantic September SIE variations result from SIE variability occurring in the
northern portions of the Greenland, Barents, and Kara Seas, which are driven by anomalies in
sea ice export that are challenging to predict (Kwok 2008). The Canadian Archipelago is also
well known as a difficult to predict region due to its complex network of channels and straits.
Encouragingly, the majority of statistical and dynamical models show detrended prediction skill in
this region, albeit at a generally lower skill level than dynamical models in the Alaskan and Siberian
sector. Of the dynamical models, RASM has high skill in the Canadian region, potentially related to
its relatively high horizontal resolution compared to other systems. This higher resolution provides
both a more accurate representation of complex land geometry and a more realistic representation
of sea ice dynamical and thermodynamical processes. The skill in the Central Arctic domain is
the second lowest next to the Atlantic. The Central Arctic SIE time series is dominated by large
anomalies in 2007, 2012, and 2020 (Fig. 1b), which suggests that the models generally struggled
to capture the Central Arctic anomalies in these years.

Relative to the damped persistence benchmark, the models perform quite skillfully for regional
SIE. Analogous to Pan-Arctic SIE, regional SIE damped persistence is highly skillful for September
1 forecasts and provides a stringent benchmark that most dynamical and statistical models fail to
beat. The models perform more favorably at longer lead times. In the Alaskan, Siberian and

Canadian regions, the majority of models outperform damped persistence from June 1, July 1, and

30

Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0163.1.
Authenticated D.Schroeder@reading.ac.uk | Downloaded 05/28/24 ©03:12 PM UTC



August 1 initialization dates. In the Central Arctic, most models beat damped persistence from June
1 and July 1. In the Atlantic sector, the models are notably less skillful than damped persistence
from August 1, suggesting a deficiency in the models in representing summertime Atlantic SIE.
These regional skill results are insensitive to the verification product—the same conclusions hold if

OSI SAF observations are used for verification (see Figs. S11 and S12).

b. Relation Between Pan-Arctic and Regional Skill

Are models more skillful at predicting Pan-Arctic or regional SIE? Do models with high Pan-
Arctic skill also have high regional skill? We investigate these questions in Fig. 9, which plots
regional vs Pan-Arctic detrended ACC for each model, colored by lead time. In most regions, the
majority of predictions lie below the 1:1 line, indicating that regional SIE skill is generally lower
than Pan-Arctic skill. The Alaskan region is the most skillfully predicted region, with 46% of
predictions lying above the 1:1 line. The damped persistence prediction also lies above the 1:1 line
(square markers) indicating that the Alaskan region may have high inherent predictability. The
Siberian and Canadian regions are also predicted fairly well, with 37% and 32% of predictions
exceeding Pan-Arctic skill, respectively. The performance is notably worse in the Atlantic and
Central sectors, as each of these regions only has 12% of predictions that exceed Pan-Arctic skill.
We also find that the regional skill differences across models are related to their Pan-Arctic skill
differences. For example, the R? values between regional and Pan-Arctic detrended ACC are 0.59,
0.48, and 0.49 in the Alaskan, Siberian, and Central regions. Regional skill is more decoupled from

Pan-Arctic skill in the Canadian and Atlantic regions, with R? values of 0.25 and 0.05, respectively.
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the 1:1 line is shown in black.
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5. Sea Ice Concentration Predictions

a. September SIC Prediction Skill

Finally, we consider the ability of models to predict September sea ice variations on the local
scale. Figures 10 and 11 show SIC skill metrics for the dynamical and statistical models that
submitted SIC predictions, respectively. These metrics are first computed locally and then area-
averaged over the zone of September SIC variability, defined as all grid points where the September
SIC standard deviation exceeds 10% (see Fig. 1c). The gap between full and detrended SIC skill
is quite small, consistent with the fact that observed SIC variability is dominated by interannual
rather than trend-based variance (84% and 16% of the total variance, respectively). Compared to
the skill levels for Pan-Arctic and regional SIE, the SIC skill scores are lower, consistent with a
larger role for unpredictable local-scale dynamics and the fact that, unlike SIE, SIC predictions do
not benefit from error compensation (i.e., the cancellation of over and under-estimations). This
lower predictability is also reflected by the damped persistence forecast, which is skillful from
September 1 but drops off quite rapidly for earlier initialization dates. Interestingly, a handful
of models (ECMWF SEASS, CPC CFSv2, ECCC-CanSIPSv2, FIO-ESM, GFDL-SPEAR-IDA,
PIOMAS-CEFS, Nico Sun) outperform damped persistence from September 1, which was not the
case for Pan-Arctic or regional SIE. This suggests that some models are extracting additional
skill from their ability to skillfully predict the atmospheric state over early September and the
corresponding local SIC response.

The multi-model median SIC prediction has detrended ACC values above 0.5 for initialization
dates of July 1 and later, and falls off for predictions made on June 1. Most individual models
exceed the 0.5 detrended ACC threshold from September 1, a handful exceed it from August 1, and
all models lie below 0.5 from July 1 and June 1. While the relatively small number of statistical
models (7) precludes definitive statements, the dynamical models generally have higher SIC skill
than the statistical models. The SIC skill scores are very similar when predictions are verified
against OSI SAF SIC observations (see Figs. S13 and S14). Again, we find that the ECMWF
SEASS model stands out amongst the dynamical models (see solid gold line in Fig. 10) and the
KOPRI model stands out amongst the statistical models (see solid orange line in Fig. 11). The fact

that these models also perform well at the local scale increases our confidence in their strong Pan-
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Fic. 10. Dynamical model prediction skill for September SIC computed over the period 2001-2020. Skill
values are averaged over the region in which observed SIC standard deviation is greater than 10%. Individual
models are shown in colors, multi-model predictions are shown in black, and reference predictions are shown
in grey. Skill metrics are plotted for each available initialization time (June 1-September 1). The numbers
in parentheses in the legend indicate the number of years available from each model over the 2001-2020 time

period.

Arctic and regional performance. It is notable that the ECMWF system also stood out as the best
performing system for subseasonal (0—45 day) sea ice predictions in the multi-model comparison
study of Zampieri et al. (2018). Interestingly, the ECMWF model has a notable bias from June 1
resulting in SIC RMSE values that are larger than the trend climatology and most other models (see
Fig. 10c). Nevertheless, ECMWF maintains detrended prediction skill at this lead time for SIC,
regional SIE, and Pan-Arctic SIE, suggesting that this is mostly a linear bias that can be removed.

We also consider the integrated ice-edge error (IIEE), which is the areal integral of local sea
ice extent errors (Goessling et al. 2016). The IIEE has contributions from both absolute extent

errors (Pan-Arctic SIE errors) and ice edge misplacement errors. Note that we do not consider
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Fic. 11. As in Fig. 10 but for statistical models.

the probabilistic version of the IIEE, i.e. the spatial probability score of Goessling and Jung
(2018)), since this study focuses on deterministic (non-ensemble) sea ice predictions. The IIEE
for dynamical and statistical models is shown in Fig. 12. Note that no detrending or additional
bias correction has been applied in computing the IIEE metrics. Relative to the trend climatology
prediction, we find that most models are skillful when initialized on August 1 and September 1.
Approximately half of the models outperform the trend climatology from July 1, and most models
lose to this benchmark from June 1. The multi-model median ice edge prediction is skillful at SIO
lead times relative to both damped persistence and the trend climatology prediction. The median
prediction is more skillful than the individual model predictions, with the exception of the KOPRI

model which maintains low IIEE at June 1 and July 1 initialization dates.
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Fic. 12. Integrated ice edge error for September SIC predictions for dynamical and statistical models over
the period 2001-2020. Individual models are shown in colors, multi-model predictions are shown in black, and
reference predictions are shown in grey. Skill metrics are plotted for each available initialization time (June

1-September 1). The numbers in parentheses in the legend indicate the number of years available from each

model over the 2001-2020 time period.
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6. Discussion

a. Elements of Successful Sea Ice Prediction Systems

In addition to quantifying and comparing prediction skill across models, the retrospective pre-
diction dataset can also be used to understand the key system design choices that underpin skillful
sea ice predictions. This “meta-analysis” can allow members of the sea ice prediction community
to learn from one another, and incorporate these lessons into development of their own prediction
systems. We consider the average pan-Arctic SIE prediction skill of models grouped according
to various system design choices. These results should be viewed with some caution, given the
relatively small number of models available for each group and the possibility of other confounding
factors contributing to skill differences. Nevertheless, this unique dataset can offer insights into
the key factors that determine skill differences between models. We first discuss aspects of the
dynamical prediction systems and follow with a discussion of the statistical systems.

Figure 13 shows the averaged pan-Arctic SIE prediction skill of dynamical models grouped
according to their initialization data and their ice-ocean and atmospheric horizontal resolution.
Consistent with earlier work assessing the impact of SIC data assimilation on seasonal prediction
skill (e.g., Zhang et al. (2022)), we find that the models that assimilate SIC have superior skill
from September 1, and that SIC assimilation has less of an impact from June 1, July 1, and
August 1 (Fig. 13a). Similarly, the models that assimilate SST have superior September 1 skill,
likely because SST assimilation provides a strong constraint on the sea ice edge position and also
provides predictability for the ice growth that occurs during the latter half of September (Fig. 13b).
The SST-assimilating models do not show a clear difference for July and August predictions, and
have insignificant differences from June 1. Only two models assimilate SIT information, which
precludes us from analyzing the impact of SIT data assimilation on seasonal prediction skill.

It is commonly suggested that high-resolution dynamical models should be more skillful than
their low-resolution counterparts (e.g. Vecchi et al. (2014); Prodhomme et al. (2016); Kirtman et al.
(2017)), but this has not been carefully demonstrated for sea ice prediction applications before.
We find that the models with higher ice-ocean resolution (defined here as ice-ocean grid spacing
less than 0.4°) have higher skill than the low-resolution models at all SIO lead times (Fig. 13c),

suggesting that there is indeed value to using higher-resolution prediction systems. It is important
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horizontal resolution (c), and high versus low atmospheric horizontal resolution (d). The numbers in parentheses
indicate the number of models in each group. Shading indicates 68% confidence intervals based on bootstrapped

distributions of 1000 realizations.

to note that this finding is based on a small set of models and there could be other confounding
factors at play; for example, modeling groups capable of running high-resolution predictions tend to
be better resourced and may have also placed additional focus on other aspects of their prediction
systems. The impact of higher horizontal atmospheric resolution (defined here as atmospheric
grid spacing less than 0.6°) is smaller than that of ice-ocean resolution (Fig. 13d). The higher
atmospheric resolution models have higher skill from July 1 and August 1, but the differences are
not significant, and they show similar skill to the lower resolution models at other initialization
times.

In terms of sea ice physics, the majority of models use an (elastic) viscous plastic rheology (Hibler

1979; Hunke and Dukowicz 1997) and include a prognostic ice-thickness distribution (Bitz et al.
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2001). Interestingly, the most skillful dynamical model-ECMWEF SEAS5-uses a relatively simple
sea ice physics formulation based on the Louvain-la-Neuve sea-ice model version 2 (LIM2; Fichefet
and Maqueda (1997)), which uses a single thickness category and does not include prognostic melt
ponds. The strong performance of ECMWF SEASS suggests that sea ice physics complexity may

not be of leading-order importance for seasonal sea ice predictions.
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FiG. 14. Average detrended Pan-Arctic ACC for statistical models grouped according to various system design
choices: models that include ocean predictors (a), atmosphere predictors (b), and machine learning versus
non-machine learning methods (c). The numbers in parentheses indicate the number of models in each group.

Shading indicates 68% confidence intervals based on bootstrapped distributions of 1000 realizations.

Figure 14 shows the prediction skill of statistical models grouped according to their predic-
tor/input data and their prediction methodology. All statistical models include a sea ice predictor
variable (see Table 3) and a number of models also include predictors from the ocean and atmo-
sphere. Figure 14a—b examines the impact of these oceanic and atmospheric predictors. Unexpect-
edly, we find that the models that withhold ocean and atmosphere predictors tend to outperform

the models that include these predictors. The statistical models without ocean predictors show
39

Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0163.1.
Authenticated D.Schroeder@reading.ac.uk | Downloaded 05/28/24 03:12 PM UTC



higher skill at all SIO lead times, and the models without atmospheric predictors have higher skill
from July 1 and September 1. We note that a handful of the statistical models that include ocean
and atmosphere predictors have quite low skill generally. This affects the average skill shown in
Fig. 14, thus this result should be viewed with some caution.

While these findings are somewhat contrary to our understanding of seasonal sea ice predictabil-
ity, the inclusion of additional physically-relevant predictor variables within a given statistical
model may actually degrade predictions due to the ‘curse of dimensionality’ problem (e.g., Bell-
man and Kalaba (1959)), which can lead to overfitting. Indeed, although it is possible to mitigate
these effects with regularization techniques and/or sufficient training data samples, the former op-
tion may not be available to many of the statistical models submitted to this inter-comparison, and
overcoming the limitations of typically fewer than 43 years (samples) of training data is potentially
only achievable with more sophisticated data augmentation approaches, such as transfer learning
(e.g., Andersson et al. (2021)).

There has been a recent proliferation of machine learning (ML) methods applied to seasonal
prediction problems, including for Arctic sea ice. How do the skill of these ML methods compare
to other statistical techniques? Figure 14c shows this comparison, and we find that there is no clear
skill advantage for ML-based prediction techniques. The skill of ML and Non-ML methods is
similar for August and September initialization dates, whereas the Non-ML methods have slightly
higher skill for June and July initializations, but the differences are not significant. We note that the
classification of “ML methods” is somewhat equivocal. Here, our classification of ML methods is
based on self-identification by seven models, and includes methods based on convolutional neural
networks, Gaussian process regression, long short-term memory networks, the k-nearest neighbors
algorithm, and data adaptive harmonic decomposition. Of the top five performing statistical models
at each SIO lead time, there is a roughly equal split between ML and non-ML models, suggesting

that one class of methods is not clearly superior to the other.

b. Differences between Real-Time and Retrospective Prediction Skill

Consistent with the tension in the sea ice prediction literature discussed in the Introduction, the
retrospective predictions analyzed in this paper have higher skill than the real-time predictions

submitted to the SIO. Why is this? This skill difference could potentially result from a number
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of interacting factors, which we describe in more detail below: 1) Different evaluation periods; 1)
Non-stationarity of prediction systems; iii) Model selection bias; iv) Bias correction; v) Systematic
differences between real-time and retrospective prediction methodologies; vi) Implicit or erroneous
use of future data; and vii) Changes in inherent predictability.

Regarding the different evaluation periods (factor i), we confirm that the multi-model median skill
difference is still present when skill is evaluated over the period of 2008-2021, which is common
to both the retrospective and real-time SIO predictions (see Figs. S1, S7, S8). A natural question
is: Can one directly compare retrospective and real-time SIO forecasts submitted from the same
system? Such a comparison is difficult to make due to the non-stationarity of prediction systems
(factor ii). In particular, many groups have updated and improved their systems during the SIO
period. These groups have submitted their best-performing system to the SIO retrospective skill
comparison, which in some cases differ from the SIO predictions that were submitted in real-time.
Also, while many of the groups have submitted predictions to the real-time SIO at some point, few
groups have submitted predictions using a “frozen” system over a sustained period of more than 5
years. These factors complicate the comparison between real time and retrospective predictions.

Selection bias (factor iii) may also play a role in the skill difference. Given that submission
to the retrospective comparison is voluntary, the skill scores in this paper may be biased towards
better performing models. Also, models with retrospective prediction suites have likely used this
retrospective skill information to assess and improve their prediction systems. Knowing the skill of
one’s method is not a requirement to submit to the real-time SIO, which may contribute to poorer
performance of real-time SI1O predictions. Access to a retrospective prediction suite also allows for
a quantification of a model’s lead-dependent prediction bias, which allows for more effective bias
correction. This may contribute to the higher skill found in models that submitted retrospective
forecasts (factor iv). Figure S1 shows that the main differences in multi-model median prediction
errors occur over the early portion of the SIO period (from 2008-2014). The SIO received fewer
annual submissions over this period, including a notable fraction from heuristic methods (see
Fig. S2), which may have degraded the skill of the real-time SIO median prediction relative to the
more recent SIO period (2015-2021).

It is well known that retrospective skill of seasonal-to-interannual climate predictions tends to

be higher than real-time skill (e.g., Goddard et al. (2013); Risbey et al. (2021)), and this is likely
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a contributor to the real-time/retrospective SIO skill differences (factor v). These skill differences
can arise due to certain observations being available for retrospective forecasts but not in real-time
(e.g. subsurface T/S ocean profiles collected from ships) or due to real-time predictions relying
on real-time reanalyses and satellite data that has not been rigorously quality controlled. Skill
differences can also arise due to the implicit use of future data in retrospective predictions, which
may unrealistically inflate their skill scores (factor vi). For example, dynamical models are often
tuned to match the climatology and trends of the observational record. Statistical models need to
take care to not include future data in their training procedure (e.g., computing EOFs using only
past data), which is often called the “data leakage” problem in machine learning methods (Kapoor
and Narayanan 2023). Also, both dynamical and statistical prediction systems are constructed
based on their performance predicting past anomalies, which may result in an “overfitting” to
the observational record. Additionally, standard bias correction approaches (e.g., Manzanas et al.
(2019)) require computing anomalies relative to a climatology which is typically computed using
the full record. This approach implicitly uses future data and may artificially increase skill (Risbey
et al. 2021).

Finally, skill differences between real-time and retrospective predictions could arise due to
changes in inherent sea ice predictability if the real-time SIO period had inherently lower pre-
dictability (factor vii). The earlier analysis shown in Fig. 5a suggests that prediction errors have
not changed substantially over the SIO period, thus factor vii is unlikely a dominant contributor
to the skill differences. In summation, our analysis suggests that the most likely contributors
to the real-time versus retrospective skill differences are a combination of model selection bias,
bias correction differences, and systematic differences between real-time and retrospective predic-
tions. The skill gaps associated with model selection and bias correction could be addressed fairly
straightforwardly, by using only the subset of prediction systems with proven skill and by ensuring
that these systems utilize retrospective predictions to bias correct their forecasts. The skill gaps
associated with systematic differences between real-time and retrospective predictions are more
challenging to address, as these require modifications to the observing network and may also be

influenced by inherent biases present in the prediction system development process.
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7. Conclusions and Future Outlook

This work has produced and analyzed a novel multi-model retrospective seasonal sea ice pre-
diction dataset, consisting of community contributions from 17 statistical models, 17 dynamical
models, and 1 heuristic prediction. The majority of contributing models provided retrospective
predictions of September Arctic sea ice initialized on the Sea Ice Outlook (SIO) initialization dates
of June 1, July 1, August 1, and September 1, spanning a minimum period of 2001-2020 (see
Table 1). The statistical and dynamical model submissions employ a wide range of prediction
methodologies ranging from linear regression, to Markov models, to deep learning techniques, to
coupled regional and global models with data assimilation (see Tables 2 and 3).

Our overarching key finding is that this diverse set of seasonal prediction models can skillfully
predict September Arctic sea ice at SIO lead times on Pan-Arctic, regional, and local scales. These
results demonstrate that useful real-time multi-month predictions of September sea ice are likely
within reach in the coming years. We have shown that the majority of models have detrended
ACC values for Pan-Arctic sea ice extent (SIE) which exceed 0.5 at SIO lead times, and that the
multi-model median prediction exceeds 0.75 at SIO lead times. Regional SIE skill is similar to
Pan-Arctic SIE skill in the Alaskan and Siberian regions, whereas skill is lower in the Atlantic,
Canadian, and Central Arctic regions. The multi-model median detrended ACC exceeds 0.75 at
all SIO lead times in the Alaskan and Siberian regions, exceeds 0.6 in the Canadian sector, and
falls below 0.5 for certain lead times in the Atlantic and Central Arctic. We have found that the
regional skill differences across models are related to their Pan-Arctic skill differences, especially
in the Alaskan, Siberian, and Central Arctic regions. The models also have skill in predicting local
sea ice concentration (SIC), however this local quantity is much more challenging to predict than
Pan-Arctic or regional SIE. The multi-model median SIC prediction has detrended ACC values
above 0.5 from July 1-September 1 and below 0.4 from June 1. The high skill of the Pan-Arctic
and regional multi-model median predictions is slightly lower than lead 0-3 month predictions of
the winter El Nino Southern Oscillation index, which have ACC skill above 0.9 for a number of
individual models (see Fig. 7 of Barnston et al. (2012)).

We have investigated whether sea ice prediction errors have changed over time, and determined
that there are no statistically significant trends in prediction errors over the period since 1990. This

suggests, but does not prove, that there has been minimal change in inherent sea ice predictability
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over this period. We have found that models generally exhibit their largest errors in extreme sea ice
years (i.e., 1996, 2007, 2012), however they also provide the most “added value” over baseline trend
climatology and damped anomaly persistence forecasts in these years. This finding challenges the
interpretation of earlier studies which stated that prediction systems perform particularly poorly in
extreme SIE years (e.g., Stroeve et al. (2014)).

We have found that the skill of dynamical and statistical models is generally comparable for
Pan-Arctic SIE, whereas dynamical models tend to outperform their statistical counterparts when
evaluated on the regional and local scale. It is important to note that there are individual statistical
models that have high levels of skill for both regional SIE and local SIC, which are competitive
with the most skillful dynamical models. Analysis of the design aspects of the dynamical pre-
diction systems revealed higher skill in models that i) assimilate SIC; ii) assimilate sea surface
temperature; iii) use higher ice-ocean horizontal resolution (finer that 0.4°), and iv) use higher
atmospheric horizontal resolution. A similar analysis of the statistical prediction systems revealed
skill degradation in models that i) include ocean predictors and ii) include atmospheric predictors,
potentially associated with overfitting. We also found that statistical models based on machine
learning methods had no clear skill advantage over other statistical techniques. The retrospective
predictions evaluated in this study have higher prediction skill than real-time predictions submitted
to the SIO. We speculate that these skill differences result from a number of interacting factors, with
the most likely contributors being model selection bias, bias correction techniques, and systematic
differences between real-time and retrospective prediction methodologies.

This study demonstrates that there are bright prospects for skillful seasonal predictions of Arc-
tic sea ice made using both dynamical and statistical prediction models. We anticipate that the
multi-model retrospective prediction dataset produced by this study will motivate additional future
research by the sea ice prediction community. Natural future directions include assessment of prob-
abilistic forecast skill using the submitted ensemble predictions, comparison of initial conditions
across prediction systems and their relation to prediction skill, analysis of the mechanisms of pre-
dictability being captured by different systems, exploration of the role of subseasonal-to-seasonal
atmospheric prediction skill in determining sea ice skill, analysis of forecast errors, understanding
the importance of prediction system design choices, and the construction of a “consensus” real-time

SIO prediction based on a skill-weighted multi-model mean. We also hope that the findings of
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this study motivate new targeted experiments and development efforts within individual sea ice
prediction systems. This study has focused on September sea ice predictions, but similar skill
intercomparisons are required for other months of the year, particularly winter freeze-up months
which are characterized by very different predictability mechanisms. Another route for future
investigation is a comparison of Arctic and Antarctic sea ice prediction skill, making use of the
multi-model SIPN-South seasonal prediction dataset (Massonnet et al. 2023). The past 15 years
have featured many breakthroughs in the field of sea ice prediction and predictability. Community
intercomparison of sea ice prediction systems, combined with new observations, improved coupled
models, new statistical techniques, deepened stakeholder input, improved dissemination of forecast
products, and theoretical predictability research, provide key pathways for continuing to advance

this field over the coming decade.
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