

Electrical measurements during fog in the United Arab Emirates

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Alkamali, A. A., Ambaum, M. H.P. ORCID:
<https://orcid.org/0000-0002-6824-8083> and Nicoll, K. A. ORCID: <https://orcid.org/0000-0001-5580-6325> (2024) Electrical measurements during fog in the United Arab Emirates. *Atmospheric Research*, 307. 107469. ISSN 1873-2895 doi: 10.1016/j.atmosres.2024.107469 Available at <https://centaur.reading.ac.uk/116651/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1016/j.atmosres.2024.107469>

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading
Reading's research outputs online

Electrical measurements during fog in the United Arab Emirates

Ahmad A. Alkamali¹², Maarten H. P. Ambaum¹ & Keri A. Nicoll¹

1. Department of Meteorology, University of Reading, United Kingdom
2. Department of Research and Weather Enhancement, National Center of Meteorology, United Arab Emirates

Abstract

Distinct differences in electrical characteristics of the atmosphere are observed during clear and foggy laden air. The presence of droplets in the air causes the removal of natural cluster ions and hence, a change in the electrical properties, which is useful for fog detection, and potentially fog forecasting. In this study, we report on some of the first electrical measurements conducted during fog in the United Arab Emirates (UAE).

The analysis indicates that the Potential Gradient (PG) values observed during fog in the UAE were substantially higher than those previously reported in the literature (ranging from -1247 V/m to 1400 V/m). Furthermore, the PG during fog was often negative, with 93% of cases recording negative PG values (with median PG value of -397 V/m), particularly during wintertime fog events. A comparison with fog measurements conducted in the UK showed a stark contrast in PG behaviour between the two sites, with only positive PG values reported during fog in the UK (as is the case for the majority of PG fog studies reported in the literature), and higher PG variability in the UAE fogs. It is hypothesized that the unusual polarity of PG observed in UAE fog events may be attributed to the deposition of fog droplets, during which positive charges are transported from the top of the fog layer downwards toward the surface, thereby modifying PG. This deposition process is expected to be particularly active during the latter stages of the fog, when the droplet size distribution has fully evolved.

Keywords:

Fog

Potential Gradient

Atmospheric Electricity

43 United Arab Emirates

44

1. Introduction

47 A continual electric field occurs in the atmosphere due to the presence of Earth's Global
48 Atmospheric Electric Circuit (GEC). The GEC describes large scale current flow around the
49 planet, caused by charge separation in thunderstorms, which generate a large potential difference
50 between the conductive upper atmosphere and Earth's surface (Wilson, 1921). Measurements of
51 atmospheric electricity can provide valuable information about the local meteorological conditions
52 close to the observation site, including warning of disturbed weather, lightning, and fog formation
53 (Nicoll, 2012). The most frequently observed surface quantity in atmospheric electricity is the
54 vertical electric field, which is measured as the Potential Gradient¹ (PG) (Bennett and Harrison,
55 2007).

57 The PG is closely related to local air conductivity, which originates from the presence of
 58 atmospheric cluster ions. Natural ionisation, produced by galactic cosmic rays and Earth's
 59 surface radioactivity, is the main cause of the finite electrical conductivity of air. Both positive and
 60 negative air conductivities are strongly influenced by the presence of aerosol and water droplets
 61 (Bennett and Harrison, 2008; Bennett and Harrison, 2009). Such aerosols include different particle
 62 sizes, which can affect PG by reducing the mobility of the ions through attachment, particularly to
 63 the larger particles (Yair and Yaniv, 2023), and consequently, removing the natural background
 64 small ions. The reduction of ion number concentration results in a decrease in air conductivity. As
 65 a result, the PG increases as the air conductivity decreases. The PG and air conductivity (σ) are
 66 related by Ohm's law:

$$J_z = \sigma PG \quad (1),$$

70 where J_z (which is assumed to remain constant) is the vertical conduction current density, which
 71 flows as a result of the GEC (Rycroft et al., 2000).

74 Many studies have reported the marked difference in PG between fair² and disturbed weather
75 (Dolezalek, 1973; Hoppel et al., 1986; Anisimov et al., 2005; Bennett and Harrison, 2009; Harrison
76 and Nicoll, 2018). During fair weather conditions, the observed PG is normally positive with
77 typical values ranging between 50 to 300 V/m depending on the site (Bennett and Harrison, 2007).
78 In addition, the magnitude of PG variability during fair weather conditions is low when compared
79 to that observed during disturbed weather conditions. However, the presence of aerosol
80 concentrations in the air can cause substantial changes in PG (Bennett and Harrison, 2008).

¹Potential Gradient (PG) is the difference in potential between the surface and a fixed point vertically above it, which is often used instead of the electric field (E) but with the opposite polarity (i.e., $PG = -E$) (Harrison and Nicoll, 2018).

2

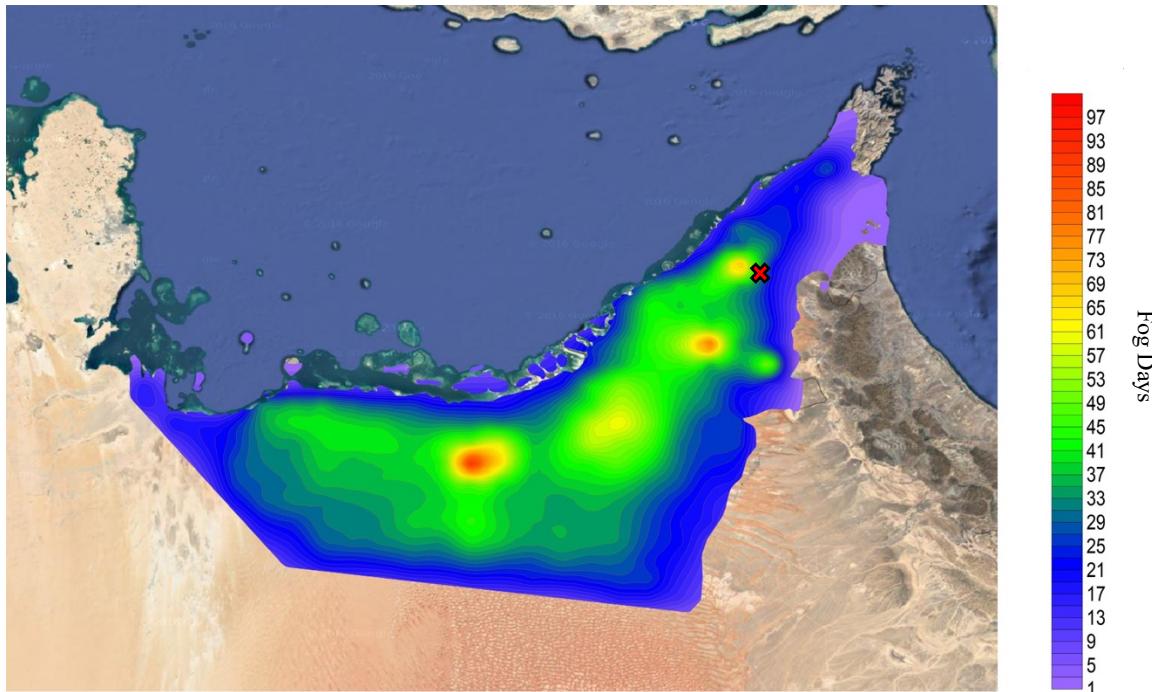
²Fair-weather: For the conditions to be classified as “fair-weather”, the Met Office (in 1964) required four criteria, which are: (1) hours with no hydrometeors (i.e., no rain, hail, snow). (2) no low stratus clouds. (3) less than three eighths cumuliform clouds. (4) mean hourly wind speed less than 8 m/s (Harrison and Nicoll, 2018).

81 Fog occurs due to the condensation of water vapor to form droplets, which become suspended in
82 air, leading to a reduction in visibility (typically defined as visibility less than 1 km). During fog,
83 the PG is generally observed to increase substantially and become more variable. Harrison and
84 Nicoll (2018) provided a good example of a foggy event observed in Reading, UK. A clear change
85 in PG during the fog incident was reported, where the PG increased from about 150 V/m to 200 –
86 250 V/m and became more variable. As the fog starts to dissipate, the PG decreased until it reached
87 a steady value of 100 – 150 V/m, where the fog has completely dissipated.

88 A further comparison between foggy air and fair weather conditions was performed by Bennett
89 and Harrison (2009). A clear difference was reported between the two conditions, where the
90 measured PG was 400 V/m during fog while 100 V/m was observed during fair weather. The ratio
91 of PG between foggy air and clear air can be obtained from Ohm's law assuming the fair weather
92 current from the ionosphere to the surface is broadly constant across a fog event. This ratio of
93 foggy air PG to clear air PG is only applicable with respect to the vertical conductivity, giving:
94

$$96 \frac{PG(Fog)}{PG(Clear\ air)} = \frac{\sigma(Clear\ air)}{\sigma(Fog)} \quad (2),$$

97
98 The presence of water drops and other aerosols leads to scavenging of free cluster ions that are
99 responsible for the conductivity of the air (Harrison and Ambaum, 2008). As a consequence, foggy
100 air exhibits lower conductivity compared to clear air.


101
102 Understanding the physics of fog has been a topic of significant interest due to its societal impact,
103 particularly in terms of negative effects on transportation. Despite significant advances in
104 numerical forecasting of fog during the past few decades, accurate fog prediction is still a challenge
105 (e.g., Roman-Cascon et al., 2016). Previous research (Serbu and Trent, 1958; Dolezalek, 1973)
106 has suggested that atmospheric electrical measurements may be useful for fog prediction, but this
107 is still very much an open research question. Interest in the electrical properties of fog is also
108 motivated by understanding the effect of charge on the behaviour of fog droplets (Harrison et al.,
109 2022), with applications in fog dissipation (Tag, 1976; Zhang et al., 2023), and collection of fog
110 droplets for water harvesting (Li et al., 2022).
111

112
113 This paper aims to characterise the electrical properties of fog in the United Arab Emirates (UAE)
114 via a new dataset of atmospheric electrical observations. The measurement site is a desert location,
115 where fog is prevalent during the winter months. Few papers in the literature report on fog
116 observations from desert sites, so this is one of the first to characterise the electrical properties of
117 fog in the desert. In this paper, Section 2 discusses the observation sites and instrumentation used.
118 Section 3 reports observations of PG and meteorological parameters during several fog case
119 studies, followed by a statistical analysis of all fog events captured in the UAE dataset. In order to
120 compare the PG in fog in the UAE with those typically observed at mid latitude sites (which
121 dominate the literature), Section 4 compares the UAE observations with those from a mid-latitude
122 site in Reading, UK. The relationship between PG and visibility in the UAE and Reading is also
123 considered in Section 4. Section 5 presents a discussion and Section 6 the conclusions.
124

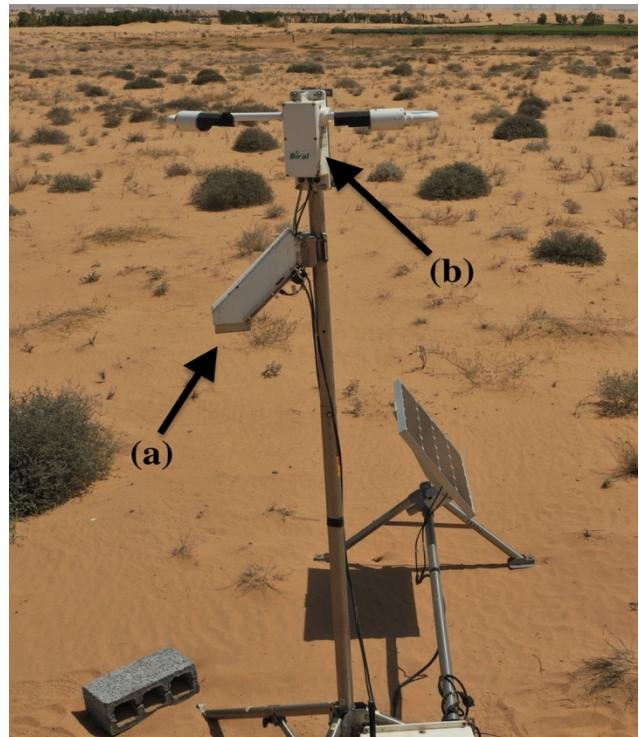
126 **2. Observation sites and instrumentation**

127
128 The data presented in this paper is from a new observation site at Sanad Academy, Dubai, UAE
129 ($24^{\circ} 56' N$, $55^{\circ} 30' E$), which was established in February 2021. The UAE (where the most
130 prevailing aerosol type is composed of mineral dust (Nelli et al., 2021)) experiences frequent fog
131 events throughout the year, with the highest frequency during the autumn and early winter months
132 (de Villiers and van Heerden, 2007). This depends mainly on the sea-land breeze, which happens
133 on over 70% of days during winter months in the UAE (Eager et al., 2008). The process starts with
134 a transport of moisture from the sea during the day with the sea-breeze, which can extend up to
135 200 km in land. During night time, the wind veers towards the land due to the temperature gradient
136 caused by rapid cooling of air and hence, weakening the sea-breeze. A land breeze is common
137 overnight in the UAE, which often lasts into the early morning and persists until the sea-breeze
138 forms (Eager et al., 2008).

139
140
141 The most common fog type observed in the UAE is radiation fog (Weston et al., 2021), where the
142 land cools rapidly at night and in turn causes the air above it to cool. As a result, water vapor
143 condenses into liquid droplets and fog forms.

165 Figure 1. Annual number of fog days in the United Arab Emirates (UAE) for the year 2021. The
166 location of the selected field site (Sanad Academy) is marked as red cross. This figure was obtained
167 from the National Center of Meteorology (NCM), UAE, using data from NCM's automatic
168 weather stations across the UAE, along with EUMETSAT infrared satellite images.

171 As the fog occurs, the horizontal visibility drops, which has historically led to significant economic
172 losses in the UAE. These losses include transport disruptions such as air traffic delays, and car
173 traffic accidents (Ali et al., 2013; Mohan et al., 2020). Figure 1 displays the number of fog days in
174 the UAE during 2021, where most cases were observed in the internal regions of the country
175 (ranging between 30 – 60 fog days) and some locations witnessed almost 100 fog days in 2021.
176 This distribution of fog occurrences is typical for most years in the UAE. At Sanad Academy
177 (marked as red cross in Figure 1), 27 fog days (both light and dense fog) were observed during
178 2021. Dense fog cases were identified as cases when the visual range was ≤ 1 km for at least one
179 hour period, while light cases (i.e., mist) were characterised by visibility ranges >1 km and ≤ 3
180 km. Additionally, a relative humidity (RH) $>90\%$ was used as a supplementary indicator to
181 distinguish fog from the presence of other aerosols.
182


183 The measurement mast at Sanad Academy is located in the internal desert region of Dubai, which
184 is a favorable location for radiation fog formation. As a result of radiative cooling, the air over the
185 desert cools rapidly during the night, which causes the sea-breeze to weaken, leading to a reduction
186 in the effects of warm maritime temperatures. As the surface radiative cooling intensifies, a surface
187 inversion forms which traps the moisture near the surface and eventually, extends vertically until
188 the dewpoint temperature is reached, where fog can form (Weston et al., 2021).
189

190

(a)

(b)

191

Figure 2. The location of the observation site and instrumentation used. (a) Map of the UAE displaying the location of Sanad Academy, Dubai (obtained from Google Maps), and (b) sensors used to conduct this study, including (a) A downward facing electric field meter (Campbell CS110), used to measure the PG, and (b) The visibility sensor (Biral SWS-100).

192 Atmospheric electrical observations were conducted at Sanad Academy since February 2021 to
193 present. Sanad Academy is an unmanned aircraft training facility in a desert location
194 (approximately 45 km from the coastline), with the electrical instrumentation mast mounted on a
195 sandy surface. The closest buildings to the instrumentation are 400 m away. **Figure 2 display the**
196 **location of the field site along with the instrumentation used.** Instrumentation includes a Campbell
197 CS110 electric field meter to measure the PG and Biral SWS-100 visibility sensor to measure the
198 horizontal visibility. The CS110 was mounted at a height of 3 m above the ground, with a
199 measurement range of ± 20 kV/m, at a sampling rate of 1-second. PG data were averaged, to 1-
200 minute mean values to conduct the analysis described in this study. The visibility data were logged
201 at 1-minute time resolution. Detailed explanation of the instrumentation used is given in Appendix
202 A.

203 Meteorological data are also analysed in this paper, obtained from Al Marmoom Automatic
204 Weather Station (AWS), Dubai ($25^{\circ} 00' N, 55^{\circ} 30' E$). Meteorological observations include air
205 temperature, RH, wind speed and direction, all logged at 15-minute time resolution. Al Marmoom
206 is located approximately 9 km northeast of Sanad Academy (about 36 km from the coastline). The
207 AWS used here is part of the National Center of Meteorology (NCM), Abu Dhabi, UAE. Due to
208 the homogeneity of the terrain and the proximity, the weather conditions at Al Marmoom generally
209 closely match those observed at the Sanad Academy field site.

210
211 The observations in the UK were conducted at Reading University Atmospheric Observatory
212 (RUAO), Reading ($51.441^{\circ} N, 0.937^{\circ} W$). The observations were performed from December 2020
213 to January 2021. At the site, a JCI131 electric field mill was used for PG measurements and a Biral
214 visibility sensor to measure the visual range during the observation period. PG and visibility data
215 were logged at 5-minute time resolution.

216
217
218
219
220
221
222

223 **3. Electrical characteristics of fog in the UAE**

224
225 The following section presents two individual fog case studies from Sanad Academy, UAE,
226 followed by a statistical analysis of all fog events from the Sanad Academy dataset. For an event
227 to be classified as fog, the horizontal visibility must drop below 1 km as described in previous
228 studies (Mohan et al., 2020; Tardif and Rasmussen, 2007; Weston et al., 2021) along with high
229 RH which typically exceeds 90 %, this criterion is applied here to define fog events.

230
231 Figure 3 presents data for the first fog case study on, March 31st, 2021, with PG and visibility
232 (plotted on logarithmic scale) in Figure 3 (a), wind speed and direction in Figure 3 (b), and RH
233 and temperature in Figure 3(c). During this day, several different types of meteorological
234 conditions were observed at Sanad Academy which affected the PG, including early morning fog,
235 an afternoon sea breeze front and a change in airmass in the evening, each of which is discussed
236 in turn. Figure 3 (a) demonstrates high visibility (≥ 10 km) and fair weather values of PG (~200

237 V/m) from 00-02 LT (UTC+4), in the period before fog forms. For comparison, the average typical
238 diurnal variation in PG and visibility under fair weather conditions is displayed in Appendix A.2.
239 As the condensation of haze droplets begins, the PG becomes negative, decreasing sharply down
240 to -400 V/m at about 03 LT. This is followed by a steep decrease in visibility (down to 90 m)
241 approximately an hour later (at 04 LT). Consequently, the dry bulb temperature was very low
242 (about 16°C) and the RH was very high (reaching up to 100%), confirming the presence of a dense
243 fog event. During the established fog period (04 – 07 LT) the PG is variable and mainly negative
244 and fluctuates between 150 and -150 V/m. The existence of such negative PG values during fog is
245 unusual, being rarely reported in the literature, and seem to defy theory, which predicts that a
246 decrease in conductivity in fog should lead to an increase in PG (e.g., Harrison, 2012). This will
247 be discussed further in Section 5.

248
249 Following dissipation of the fog event around 07 LT, the afternoon of March 31st experienced a
250 sea breeze, as shown in Figure 3. This is characterised by abrupt change in PG between 14 to 16
251 LT, where the PG increased from 200 V/m up to 1000 V/m. During the same time, visibility
252 decreased to 10 km, the wind speed increased from approximately 3 m/s to 6.5 m/s, and the wind
253 veered from SE-SW and began blowing from W-NW (275° – 300°). These changes signify the
254 arrival of the sea breeze front, which occurs due to temperature contrast between the land and the
255 sea (Miller et al., 2003), a common phenomenon in the UAE (Eager et al., 2008). The large
256 transient increase in PG during the sea breeze is characteristic of that reported in Nicoll et al.
257 (2020) at another site (Al Ain international airport) located in the southeast of the UAE, and is
258 thought to be associated with lofting of charged aerosols in the sea breeze front. During 2021, a
259 total of 125 days of electrically active sea breeze cases were observed at Sanad Academy from a
260 total of 238 days of data.

261
262 In Figure 3 (a), the final distinct change in PG happened from about 21 – 00 LT, where a sudden
263 decrease and polarity reversal in PG (from 200 V/m down to -200 V/m), occurs as well as an
264 increase in the PG variability. Correspondingly, the visibility dropped from 10 km to 8 km. This
265 sudden reduction in PG appears to be correlated with wind direction veering from NW to SE (300°
266 to 135°), and also a decrease in wind speed from 6m/s to 1m/s. This shift in wind direction may
267 indicate the change from a sea breeze to a weak land breeze, which would likely alter the aerosol
268 properties over the measurement site. Sensitivity of the PG to wind direction was reported by
269 Bennett and Harrison (2007), who found that variations in charged aerosol concentrations
270 associated with wind direction changes, cause marked alterations in the PG. However, further
271 analysis is still required to confirm the cause of the PG variations during this period.

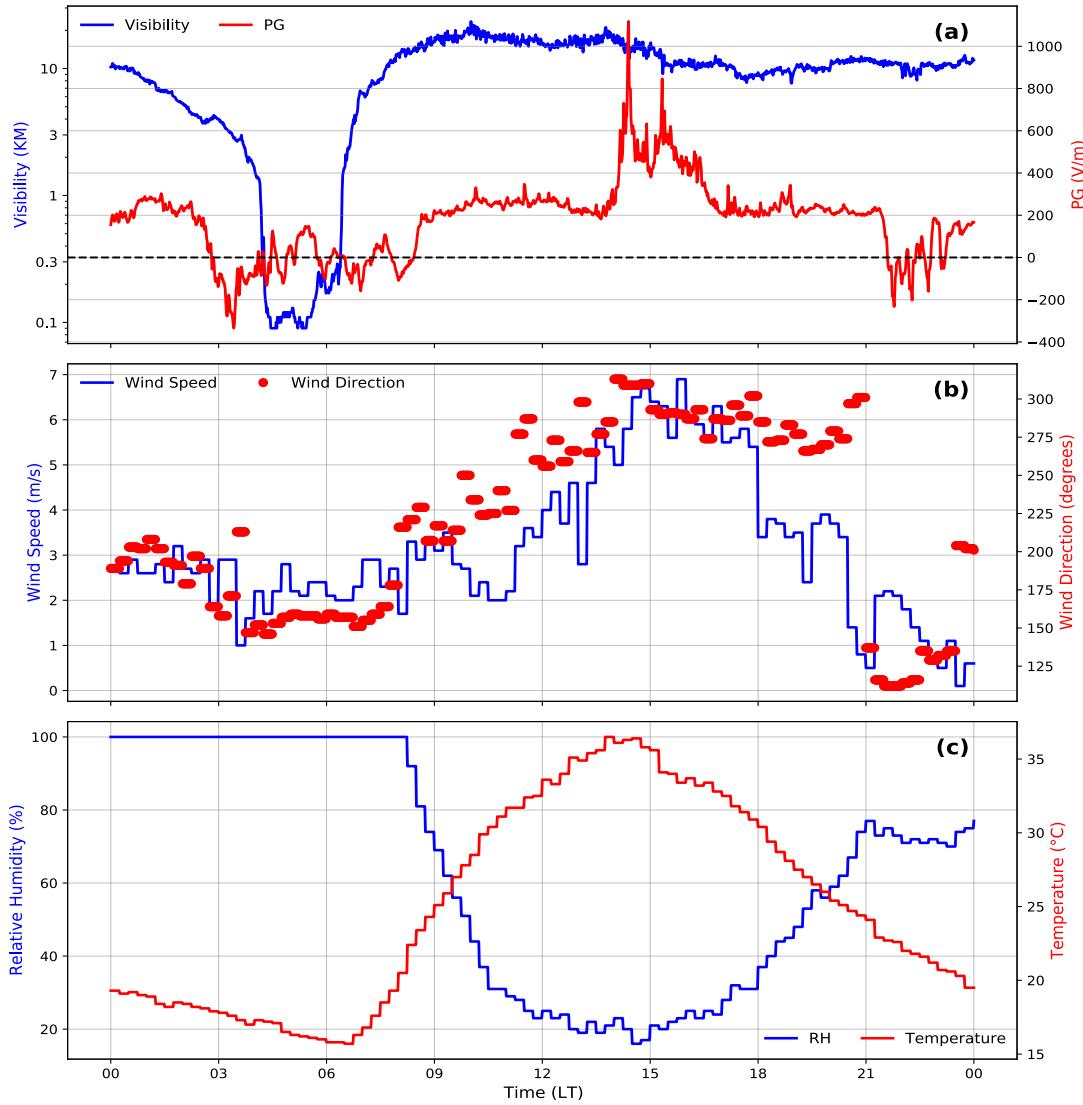
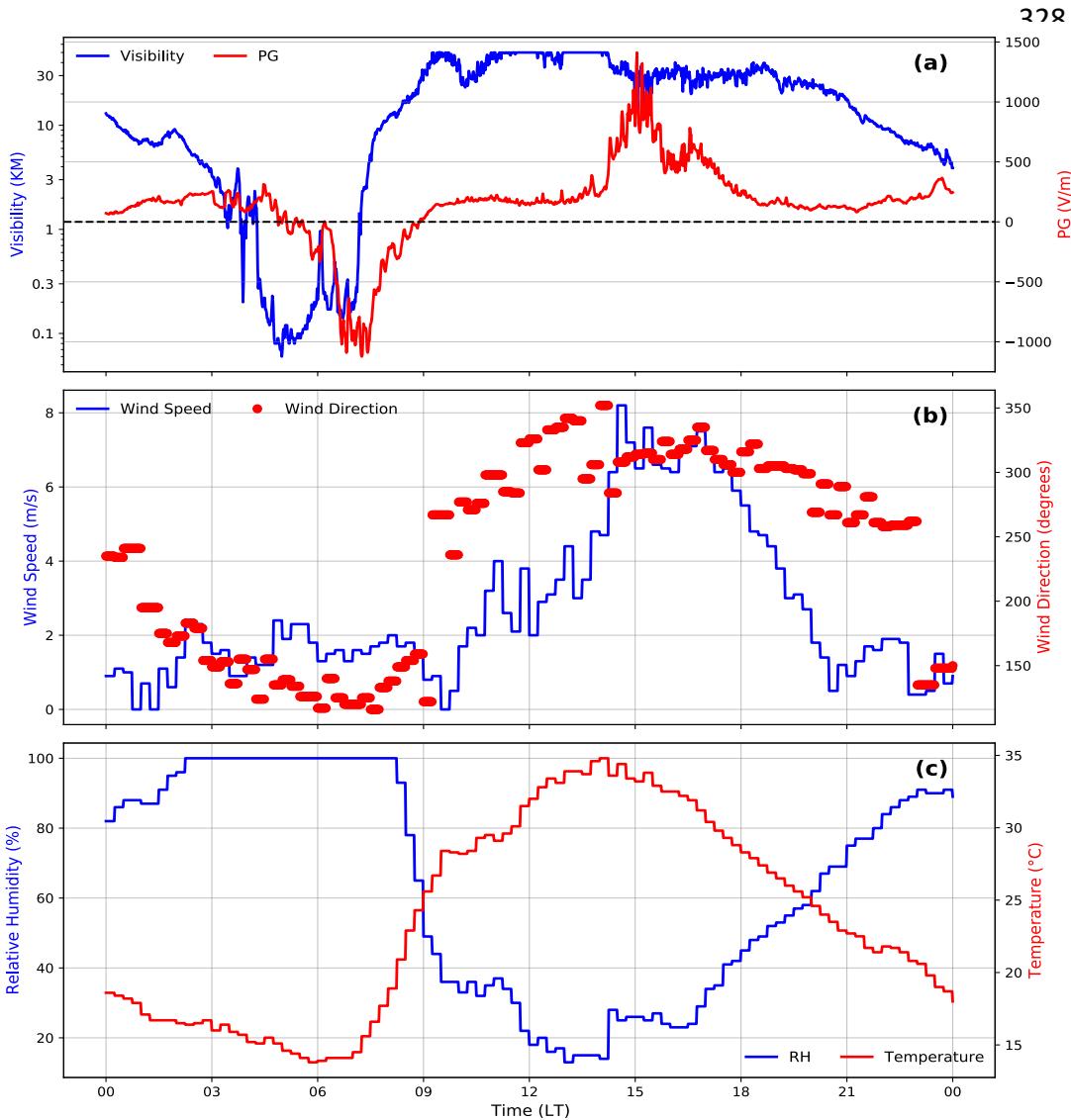



Figure 3. Diurnal variation in (a) PG and Visibility at Sanad Academy, (b) Wind speed and direction, and (c) Relative Humidity (RH) and Temperature from Al Marmoom AWS. The timeseries ranged from 00 UAE LT March 31st, 2021 till 00 UAE LT April 01st, 2021. PG and visibility are 1-minute time resolution while the wind speed and direction, RH and temperature are 15-minute time resolution. The wind direction was omitted for wind speeds of 0 m/s. The visibility data are presented on a logarithmic scale.

A second fog case study was observed on April 07th, 2021, presented in Figure 4. Similarly, as in the first case study presented in Figure 3, the fog event occurred during the early morning hours (04 – 07 LT) and was followed by a sea breeze event during the afternoon (14 – 18 LT). Figure 4 (a) shows a gradual decrease in visibility from 00 – 04 LT as haze starts to form, followed by a sharp decrease in visibility from 1 km to 60 m around 04 LT as the fog becomes more established. This fog case was further confirmed by the RH observation exceeding 95 % as seen in Figure 4 (c). The PG shows a small increase during the haze phase (from 100 – 300 V/m), but then decreases gradually from 04 LT as the fog forms. A sharp decrease to large negative values (-1100

318 V/m) is observed at 07 LT approximately 30 minutes before the fog dissipation (as indicated by
 319 the increasing visibility at 08 LT, and a temperature rise from 14°C to 20°C). Although the
 320 visibility has increased to non-fog values by 0830 LT the PG remains large and negative until 0900
 321 LT. During the dissipation period, the fog droplets start to evaporate, but it takes some time for the
 322 air to become entirely droplet free (and also any charge that existed on the fog droplets will remain
 323 in the air). Thus, we expect it to take some time for the PG to return to its normal background value
 324 after the fog dissipation stage. One of the distinctions between the two case studies is that the
 325 largest change in PG in Figure 4 is approximately 1-2 hours following the fog formation (identified
 326 from the reduction in visibility), whilst in Figure 3, the largest change in PG occurs at the start of
 327 the fog event. The reasons for these discrepancies are still unclear.

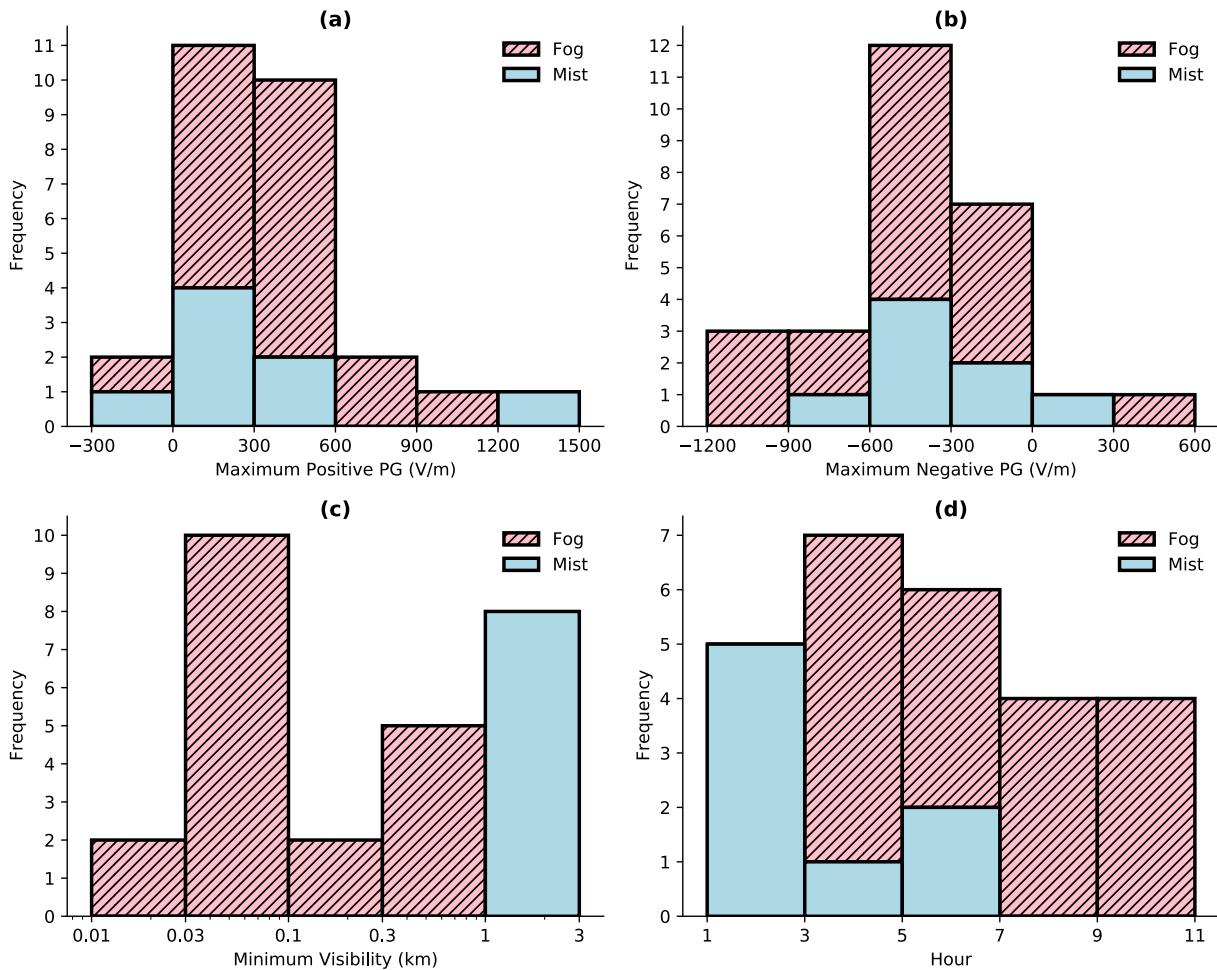
360 Figure 4. Diurnal variation in (a) PG and Visibility at Sanad Academy, (b) Wind speed and
 361 direction, and (c) Relative Humidity (RH) and Temperature from Al Marmoom AWS. The
 362 timeseries is from 00 UAE LT April 07th, 2021 till 00 UAE LT April 08th, 2021. PG and visibility
 363 are 1-minute time resolution while the wind speed and direction, RH and temperature are 15-

359

364 minute time resolution. The wind direction was omitted for wind speeds of 0 m/s. The visibility
365 data are presented on a logarithmic scale.

366
367 As in Figure 3, the arrival of an afternoon sea breeze front is evident in Figure 4, where the PG
368 increases rapidly from 200 V/m to 1400 V/m between 14 – 17 LT. During this period, visibility
369 reduces from 50 km down to 15 km and wind speed increases to 8 m/s, with a directional shift
370 from SE to W-NW.

371
372 Both case studies in Figures 3 and 4 demonstrate that the PG during fog conditions in the UAE is
373 often large and negative, in contrast to most of the results reported in the literature (which are
374 predominantly large and positive) (e.g., Serbu and Trent, 1958; Dolezalek, 1973; Yaniv and Yair,
375 2023). To establish whether this type of PG behaviour is dominant during fog events in the UAE,
376 statistical analysis of more fog events is required. From the Sanad Academy dataset, we have
377 identified 27 fog events during 2021. 19 of these events were classified as dense fog (defined as
378 cases when the visibility is \leq 1 km with RH >90 %) and 8 classed as mist cases, where the visibility
379 was greater than 1 km and less than or equal to 3 km and RH observations exceeding 90%. Only
380 2 of the fog events occurred during the UAE summer months (June – August), with 25 events
381 during winter/spring (February – April).


382
383 Figure 5 displays the distribution of maximum positive PG, maximum negative PG, minimum
384 visibility, and fog duration observed at Sanad Academy during all 27 fog events in 2021. Of the
385 27 fog events, the largest maximum positive PG recorded was 1318 V/m (median = 311 V/m),
386 which was observed during a summer fog event (both summer fog events exhibited only positive
387 PG values, with values $>$ 1000 V/m in both events). This is large compared to most reported
388 measurements of PG during fog in the literature (typically 300 – 800 V/m). Figure 5 (a) also
389 demonstrates that in some of the fog events (2 events) the maximum PG is negative, and this occurs
390 in both fog and mist cases.

391
392 From Figure 5 (b), most PG values were clustered below 0 V/m (median = -397 V/m), with the
393 lowest recorded negative PG value during fog events being -1247 V/m. This overall tendency
394 towards negative PG was observed in 25 of the 27 fog events (93%), and predominantly during
395 winter fog events. From the minimum visibility distribution in Figure 5 (c), it is apparent that
396 approximately 70% of the fog events were classified as dense fog events, in which the lowest
397 visibility recorded was 20 m (with median = 250 m). The winter fog events experienced lower
398 visibilities in comparison to the summer fog events (with the minimum visibility in summer fog
399 being 170 m).

400
401 Figure 5 (d) shows the duration of the fog events, in which the median fog duration was 5 hours
402 (comparable to other UAE fog events reported in the literature, such as Mohan et al., 2020), and
403 the maximum duration observed was 10 hours. The two summer fog events exhibited much shorter
404 durations, typically only lasting 1 hour.

405
406
407
408

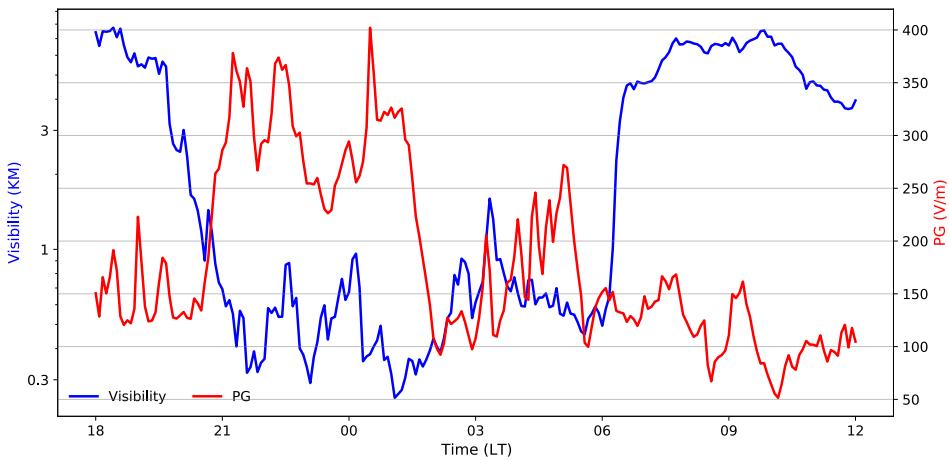
409
410

411
412
413
414
415
416

Figure 5. Stacked histograms of (a) maximum positive PG, (b) maximum negative PG, (c) minimum visibility, and (d) fog duration, during 19 dense fog events and 8 light fog events at Sanad Academy in 2021. Fog events were defined as instances when visibility was ≤ 1 km, while mist events were characterised by visibility > 1 km and ≤ 3 km (with RH $> 90\%$ in both conditions). Minimum visibility data are presented on a logarithmic scale.

417
418
419
420
421
422
423
424

425 **4. Comparison of electrical characteristics of fog at different sites**


426

427 **4.1 United Kingdom case study**

428

429 In the preceding section, the electrical properties of fog in the UAE were investigated. In this
430 section, a comparative analysis is undertaken to assess the electrical characteristics of fog in the
431 UAE in relation to those observed at a typical midlatitude site, chosen to be Reading, UK.
432 Generally, the UAE exhibits significantly higher aerosol loading in comparison to the UK, which
433 has much more rainfall, more grass covered sites and, hence, lower aerosol loading (Nicoll et al.,
434 2022). This discrepancy in background aerosol loading between the two countries potentially
435 contributes to large differences in the observed electrical properties, which we seek to investigate.
436 For this analysis, a fog case study from Reading is examined, followed by a comparison of
437 statistical fog properties between the UAE and Reading sites for a small number of fog events. A
438 timeseries of the meteorological and electrical parameters during a typical fog event at RUAO,
439 UK is displayed in Figure 6 between December 31st, 2020 and January 01st, 2021.

440

453 Figure 6. Timeseries of PG and Visibility obtained at RUAO. The period used ranged from 18 UK
454 LT December 31st, 2020 till 12 UK LT January 01st, 2021. The PG and visibility data were at 5-
455 minute time resolution. The visibility data are presented on a logarithmic scale.

456

457 Figure 6 shows a sharp increase in PG from 120 to 400 V/m at 20:30 LT. At the same time, the
458 visibility reduced rapidly from 7 km down to 250 m, signifying the presence of a dense fog event.
459 The PG remains large and positive until 02 LT where it decreases (coinciding with an increase in
460 visibility) but remains very variable. The small values of visibility (500 – 800 m) during the period
461 from 02 – 06 LT indicate that fog is still present but is less dense than during the earlier part of the
462 morning. After 06 LT, the visibility increases rapidly (from 700 m up to 5 km), and the PG returns
463 to more fair weather values, indicating fog dissipation. The increase in PG during the fog formation
464 stage shown here is typical of what is expected from the theory of a conductivity decrease in fog
465 due to ion-aerosol attachment (e.g., Harrison, 2012), and reported by others in the literature (e.g.,

466 Anisimov et al., 2005; Bennett and Harrison, 2009). This contrasts with the negative PG values
467 shown in UAE fogs in Section 3.

468
469 To investigate the anomalous negative PG values observed in the UAE, it is useful to compare
470 statistical information from UAE fog events with UK events. Table 1 shows a statistical summary
471 of median PG, PG variability, maximum PG and minimum visibility during fog and non-fog
472 (defined as visibility ≥ 10 km) for a continuous 10-day period in the UAE and UK. The timeframe
473 selected for this analysis was from 21:00 to 09:00 LT in the UAE and from 18:00 to 09:00 LT in
474 the UK, chosen to coincide with periods when fog is most likely to occur and to minimise the
475 effects of other weather conditions. It should be noted that there are only 5 fog events (selected
476 during the winter period) analysed for each site here. This small sample of fog events is not
477 intended to give a full representation of fog characteristics for the two sites but is included here
478 merely to provide an example of the general differences in PG behaviour between the two sites.
479 The analyses for the fog events were computed only during periods where the visibility fell below
480 1 km. In contrast, for the non-fog events, these quantities were calculated using visibility values
481 ≥ 10 km. The variability of PG is estimated as the interquartile range divided by 1.349 (i.e.,
482 adjusted to be equivalent to the standard deviation for a normally distributed dataset).

483 Table 1 shows that in non-fog conditions the median PG is similar between the two sites (111 V/m
484 in the UAE, and 104 V/m in the UK). This becomes very different in fog, with a negative median
485 PG of -7 V/m in the UAE, but large and positive median PG of 235 V/m in the UK. The maximum
486 PG values in the 5 fog cases are comparable for both sites (336 V/m in UAE and 402 V/m in UK),
487 but, as is shown in Figure 5, in fog PG values can be much larger (up to 1400 V/m) in the UAE.
488 Variability in PG was larger in the UAE for both non-fog (61 V/m compared to 26 V/m in UK)
489 and fog cases (160 V/m compared to 102 V/m in UK) as would be expected from the increased
490 aerosol loading in the UAE. The minimum visibility during the 5 UAE fog events was also found
491 to be lower (40 m) than in the UK (250 m), signifying more dense fog events in the UAE.

492
493

Region	Fog				Non-Fog				Number of Fog Cases
	Median PG (V/m)	PG Variability (V/m)	Max PG (V/m)	Min Visibility (km)	Median PG (V/m)	PG Variability (V/m)	Max PG (V/m)	Min Visibility (km)	
UAE	-7	160	336	0.04	111	61	460	10.02	5
UK	235	102	402	0.25	104	26	195	10.03	5

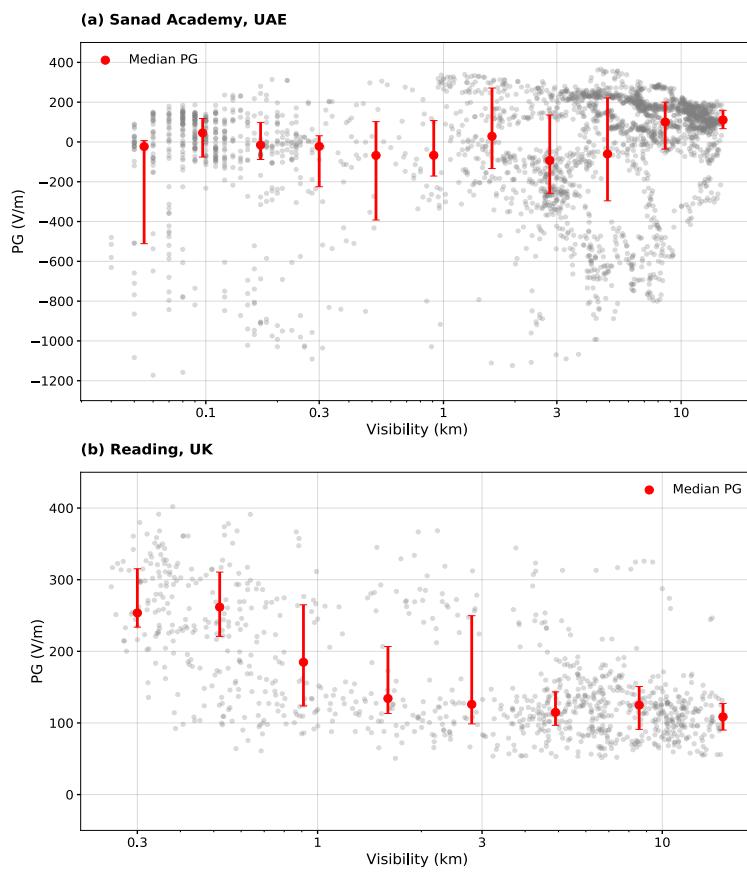
494
495
496
497
498
499
500
501
502
503

Table 1. Summary of the statistical comparison performed during fog and non-fog conditions in
the UAE (Sanad Academy) and the UK (RUAO). The observation period used for the UAE was
from March 30th, 2021 till April 09th, 2021, while for the UK was from December 30th, 2020 till
January 10th, 2021. The selected timings for the UAE were between 21 to 09 UAE LT only, while
for the UK were between 18 to 09 UK LT only. Visibility range of ≥ 10 km was used for non-fog
conditions. PG variability is expressed in terms of interquartile range (IQR) divided by 1.349.

504
505
506

507 4.2 PG and Visibility relationship

508
509


510 To investigate the anomalous negative PG values observed in the UAE further, it is instructive to
511 examine the relationship between the PG and visibility for both the UAE and Reading sites during
512 fog events, as illustrated in Figure 7. This analysis aims to test theoretical predictions, as reported
513 by Harrison (2012), which suggest a predictable relationship between the PG and the visibility due
514 to the close association between PG and air conductivity. Figure 7 shows PG and visibility data
515 for the 5 fog events in Table 1, for (a) the UAE (Sanad Academy), and (b) Reading, UK. In fog
516 events observed in the UK (Figure 7 (b)), a clear relationship is demonstrated between the PG and
517 the visibility. PG is largest for the lowest visibility values and decreases towards more fair weather
518 values as the visibility increases. At higher visibilities (> 1 km), the PG ceases to change with
519 increasing visibility and instead becomes steady, reaching an asymptotic behaviour. These findings
520 align with the previous observations of PG behaviour during fog in the UK, as reported in Harrison
521 (2012) and Harrison and Nicoll (2018).

522
523

524 Conversely, the relationship observed between PG and visibility during fog events in the UAE
525 (Figure 7 (a)) is much less obvious, with no clear relationship observed between the two. Also, as
526 noted previously, many of the PG values are negative. These findings suggest that the PG changes
527 observed during many fog events in the UAE are not dominated by conductivity changes (which
528 are indicative of visibility variations). **It is possible that charging of the fog droplets (which is**
529 **discussed more fully in section 5, and not included in the theoretical relationship derived in**
530 **Harrison (2012)) modifies the PG/visibility relationship beyond what is expected from the neutral**
531 **fog droplet case, but further measurements are needed to confirm this.**

532

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

558 Figure 7. Relationship between PG and visibility during fog at (a) Sanad Academy and (b) Reading
559 University Atmospheric Observatory (RUAO). Red dot represents the median PG values including
560 interquartile ranges binned based on visibility at Sanad Academy (11 bins from 0.055 to 15 km)
561 and RUAO (8 bins from 0.30 to 15 km). Data from Sanad Academy was from March 30th, 2021
562 to April 09th, 2021 with time selected between 21 to 09 UAE LT only, while for RUAO data was
563 from December 30th, 2020 till January 10th, 2021 with time selected between 18 to 09 UK LT
564 only. During the selected periods, 5 fog cases were observed at each site. The visibility data are
565 presented on a logarithmic scale.

566
567

5. Discussion

568
569
570
571
572
573
574
575
576
577

Based on the analysis presented in this study, it is evident that the electrical characteristics of fog in the UAE differ from those typically observed at some midlatitude sites such as the UK. The observed transition of the PG behaviour to negative values during the fog events in the UAE contradicts the findings of many previous studies (e.g., Nizamuddin and Ramanadham, 1983; Anisimov et al., 2005; Bennett and Harrison, 2007; Bennett and Harrison, 2008; Harrison, 2012; Harrison and Nicoll, 2018; Yair and Yaniv, 2023). These studies have reported an increase in the PG, which is likely attributed to the removal of ions by fog droplets, resulting in a decrease in air conductivity, through Ohm's law (equation 1). Figure 4 demonstrate that in fog events at Sanad, the PG increases as expected during the initial fog formation stage, but then decreases and becomes

578 negative. In order for the PG to become negative during fog it is likely that an additional charge
579 separation/generation mechanism (either natural or artificially) must be present. Previous research
580 by Chalmers and Little (1947) and Chalmers (1952) measured negative PG values during fog,
581 which they attributed to generation of negatively charged ions from power cables. This negative
582 charge is likely to be transferred to the fog droplets, potentially leading to a reversal in polarity of
583 the PG. Although the measurement mast at Sanad Academy is approximately 400 m from any
584 buildings, with no known sources of artificial charge generation, it is possible (though unlikely)
585 that nearby factories or construction work could be responsible for the negative PG values.
586

587 Another possible explanation is related to the observation that fogs at Sanad Academy are
588 noticeably wet, which we refer to here as “drizzling fog”. Often the desert surface during such fog
589 events is extremely damp, with visible droplets on equipment. Evidence of large fog droplet
590 diameters observed in the UAE is discussed in the findings of Weston et al. (2021), where the peak
591 of the droplet size distribution has been measured to be 25 μm during fog in the UAE, compared
592 to peaks below 10 μm in some midlatitude sites. It is possible that very large “drizzling” fog
593 droplets may splash and release charged ions on impact with the surface (and the surface of the
594 field mill), potentially leading to negative values of PG, as is observed during rain events (e.g.,
595 Simpson, 1909; Levin and Hobs, 1971; Kamra et al., 2015), but the rain rates required for splashing
596 to occur are likely to be larger than would occur during “drizzling fog” conditions.
597

598 An alternative, more likely, hypothesis is related to the deposition of droplets, which is a common
599 phenomenon during radiation fog (Duynkerke, 1991). In theory, within a stable cloud layer,
600 positive charges are likely to accumulate on droplets at the cloud top due to the vertical current
601 from the global electric circuit as it flows through the vertical conductivity gradient at the boundary
602 between the clear air and droplet-laden air (Harrison et al., 2020; Nicoll and Harrison 2010; Zhou
603 and Tinsley 2012). We hypothesize that the conductivity change at the upper boundary of a fog
604 layer is similar to that in a stratiform layer, and is likely to produce positive charge as suggested
605 by theory. Although the authors are not aware of any charge measurements of this phenomena in
606 fog, it is well documented in the stratiform cloud case (Nicoll and Harrison, 2016), where it has
607 been observed that the charge at the cloud top is often larger than at cloud base, due to strong
608 temperature inversions at cloud top, which provide a “sharper” transition between clear and cloudy
609 air. Vertical profiles of microphysical fog droplet properties by Egli et al., (2015) demonstrate
610 that fog tops are often associated with strong temperature inversions, and sharp changes in fog
611 droplet concentrations (as is the case for stratiform clouds), therefore it is reasonable to suggest
612 that fog tops will be similarly charged to stratiform clouds. Once the droplets become large
613 enough, deposition of the fog droplets will transport the positive charge (which exists on the
614 droplets) downwards towards the surface, which is likely to modify the PG, causing it to decrease
615 and potentially become negative. This is expected to occur particularly during the latter stages of
616 fog events where the droplet size distribution has fully evolved (Katata 2014; Lovett 1984). The
617 formation of larger drops and their subsequent deposition is a characteristic of the dissolving of
618 long-lived fog.
619

620 The observation that the negative PG values only occur during winter fogs (when the fogs are
621 denser and long lived), supports the possibility that these fogs have the potential to contain larger
622 droplets than fogs during the summer months, and also that the conductivity gradient between clear

623 and foggy air at fog top is larger (which, theoretically, leads to more positive charge), but more
624 research is required to fully explain the occurrence of negative PG values during fog in the UAE.
625

626 The large positive values of PG observed in the UAE summer months (up to 1400 V/m) are
627 generally larger than those reported in the literature (Nizamuddin and Ramanadham, 1983;
628 Anisimov et al., 2005; Bennett and Harrison, 2007; Bennett and Harrison, 2009; Harrison and
629 Nicoll, 2018; Yair and Yaniv, 2023), which may be related to differences in the fog droplet number
630 concentration and size distributions between the various sites. The high aerosol content in the UAE
631 (from lofted sand and industrial pollution) may also influence the fog droplet properties, as well
632 as the background conductivity, which has likely implications for the PG (e.g., Zheng, 2013; Nicoll
633 et al., 2020), which also needs further investigation.

638 6. Conclusions

639 Forecasting fog onset and dissipation remains a challenging task despite the improvements in
640 numerical weather prediction (NWP) models. The need of improving the forecast accuracy is
641 required to mitigate major losses caused by fog. This study aims to investigate whether electrical
642 properties of the atmosphere may serve as a useful tool to aid fog forecasting, by understanding
643 the electrical characteristics of fog in the UAE, which experiences regular fog events. These
644 surface electrical measurements of fog are the first to be conducted in the UAE, and hence, are
645 compared to previous studies made in the UK.

646 This study established that the electrical behavior of fog in the UAE is different to that in the UK,
647 especially during winter fog. Unlike in previous studies (Nizamuddin and Ramanadham, 1983;
648 Anisimov et al., 2005; Bennett and Harrison, 2007; Bennett and Harrison, 2008; Harrison, 2012;
649 Harrison and Nicoll, 2018; Yair and Yaniv, 2023), the PG in the UAE experienced opposite
650 polarity during the presence of fog. 93% (25 out of 27) of fog cases included periods of negative
651 PG, with the median minimum PG during fog being -397 V/m. Analysis of the relationship
652 between PG and visibility in the UAE during fog conditions showed no clear correlation between
653 the two, suggesting that PG changes in fog in the UAE are not dominated by conductivity changes.

654 The transition of PG to negative values during fog is considered an unusual phenomenon, which
655 we hypothesize to occur due to the deposition of positively charged fog droplets. The positive
656 charge is hypothesized to exist at the top of the fog layer, from vertical current flow in the Global
657 Electric Circuit. During the deposition process, positive charge is suggested to be transported
658 downwards toward the surface, modifying the surface PG. This is likely to be particularly active
659 during the latter stages of the fog when the droplet size distribution has fully evolved. The negative
660 PG did not occur during summer time fog events, where the PG was observed to increase solely
661 as a result of the formation of fog over a brief duration. Hence, the droplets do not have enough
662 time to grow in size. Currently, our research focuses on analysing droplet size distribution using
663 an optical sensor to investigate the growth of droplet size during fog events in the UAE to
664 investigate this hypothesis further.

669 Furthermore, the quantified variability of the PG during foggy and non-foggy conditions were used
670 to compare between the UAE and the UK. The results showed that the PG exhibited significantly
671 higher variability in the UAE during foggy conditions, with a measured variability of 160 V/m
672 compared to 102 V/m in the UK. In addition, the median PG during fog in the UAE was very
673 different from that observed in the UK, with median of -7 V/m compared to 235 V/m in the UK.
674 This may occur due to differences in turbulent characteristics of the fog, differences in droplet
675 size/number/ charge properties, or variations in the fog droplet charge between the two
676 environments.

677

678 It can be concluded that fog occurrences during the winter season in the UAE consistently exhibit
679 different PG behaviour to those generally reported in the literature, making it an unusual
680 phenomenon that diverges from fog events observed in clean air environments.

681

682

683

684

685

686 **Acknowledgments**

687

688 AAK acknowledges a studentship from the Scholarship Coordination Office (SCO)
689 Presidential Court, Abu Dhabi, UAE. The National Center of Meteorology (NCM) are
690 also acknowledged for sharing Al Marmoom AWS and satellite images. Our thanks also
691 go to Samer Akoum who helped with our field setup. We would also like to thank Sanad
692 Academy team for allowing us to use their site.

693

694

695 **Data Availability**

696

697 Potential gradient and visibility data are openly available and can be accessed online
698 from the University of Reading Data Repository at <https://doi.org/10.17864/1947.000501>.
699 Wind speed, wind direction, and EUMETSAT satellite data can be requested from the
700 National Center of Meteorology, UAE.

701

702

703

704

705

706

707

708

709

710

711

712
713 **References**
714

715 Agarwal, A., Bhattacharya, S., Chaudhari, S., 2020. Electric Field Mill, an Effective
716 Methodology to Measure the Localized Lower Atmospheric Electric Field. *Mat. Proc.* 29.
717 440 – 447. DOI: 10.1016/j.matpr.2020.07.297.

718 Ali, O.W.B., Al-Harthei, H., Garib, A., 2013. Real-Time Fog Warning System for the Abu
719 Dhabi Emirate (UAE). *J. Traff. Log. Eng.* 1. 213 – 217. DOI: 10.12720/jtle.1.2.213-217.

720 Anisimov, S.V., Mareev, E.A., Shikhova, N.M., Sorokin, A.E., Dmitriev, E.M., 2005. On the
721 electro-dynamical characteristics of fog. *J. Atmos. Res.* 76. 16 – 28. DOI:
722 10.1016/j.atmosres.2004.11.026.

723 Bateman, M.G., Stewart, M.F., Podgorny, S.J., Christian, H.J., Mach, D.M., Blakeslee, R.J.,
724 Bailey, J.C., Daskar, D., 2007. A Low-Noise, Microprocessor- Controlled, Internally
725 Digitizing Rotating-Vane Electric Field Mill for Airborne Platforms. *Amer. Meteor. Soc.* 24.
726 1245 – 1255. DOI: 10.1175/JTECH2039.1.

727 Bennett, A.J., Harrison, R.G., 2007. Atmospheric electricity in different weather conditions.
728 *Roy. Meteor. Soc.* 62. 277 – 283. DOI: 10.1002/wea.97.

729 Bennett, A.J., Harrison, R.G., 2008. Variability in surface atmospheric electric field
730 measurements. *J. Phys.: Conf. Ser.* 142. DOI: 10.1088/1742-6596/142/1/012046.

731 Bennett, A.J., Harrison, R.G., 2009. Evidence for global circuit current flow through water
732 droplet layer. *J. Atmos. Solar-Terr. Phys.* 71. 1219 – 1221. DOI: 10.1016/j.jastp.2009.04.011.

733 Chalmers, J.A., Little, E.W.R., 1947. Currents of atmospheric electricity. *Terr. Magn. Atmos.*
734 *Electr.* 52. 239 – 260. DOI: 10.1029/TE052i002p00239.

735 Chalmers, J.A., 1952. Negative electric fields in mist and fog. *J. Atmos. Terr. Phys.* 2. 155 –
736 159. DOI: 10.1016/0021-9169(52)90060-3.

737 De Villiers, M.P., van Heerden, J., 2007. Fog at Abu Dhabi International Airport. *Roy. Meteor.*
738 *Soc.* 62. 209 – 214. DOI: 10.1002/wea.45.

739 Dolezalek, H., 1973. On the Electro-atmospheric Fog Effect. *Pure Applied Geophys.* 105. 907
740 – 909. DOI: 10.1007/BF00875840.

741 Duynkerke, P.G., 1991: Radiation Fog: A Comparison of Model Simulation with Detailed
742 Observations. *Mon. Wea. Rev.* 119. 324 – 341. DOI: 10.1175/1520-
743 0493(1991)119<0324:RFACOM>2.0.CO;2.

744 Eager, E.R., Raman, S., Wootten, A., Westphal, D.L., Reid, J.S., Al Mandoos, A., 2008. A
745 climatological study of the sea and land breezes in the Arabian Gulf region. *J. Geophys. Res.*
746 113. 1 – 12. DOI: 10.1029/2007JD009710.

747
748
749
750
751
752
753
754
755

756 Egli, S., Maier, F., Bendix, J., Thies, B., 2015. Vertical distribution of microphysical properties
757 in radiation fogs – A case study. *J. Atmos. Res.* 151. 130 – 145. DOI:
758 10.1016/j.atmosres.2014.05.027.

759

760 Harrison, R.G., 2012. Aerosol-induced correlation between visibility and atmospheric
761 electricity. *J. Aero. Sci.* 52. 121 – 126. DOI: 10.1016/j.jaerosci.2012.04.011.

762

763 Harrison, R.G., 2011. Fair weather atmospheric electricity. *J. Phys.: Conf. Ser.* 301.
764 DOI:10.1088/1742-6596/301/1/012001.

765

766 Harrison, R.G., Marlton, G.J., Ambaum, M.H.P., Nicoll, K.A., 2022. Modifying natural
767 droplet systems by charge injection. *Phys. Rev. Res.* 4. 1 – 6. DOI:
768 10.1103/PhysRevResearch.4.L022050.

769

770 Harrison, R.G., Nicoll, K.A., 2018. Fair weather criteria for atmospheric electricity
771 measurements. *J. Atmos. Solar-Terr. Phys.* 179. 239 – 250. DOI:
772 10.1016/j.jastp.2018.07.008.

773

774 Harrison, R.G., Ambaum, M.H.P., 2008. Enhancement of cloud formation by droplet
775 charging. *Proc. Roy. Soc.* 464. 2561 – 2573. DOI: 10.1098/rspa.2008.0009.

776

777 Harrison, R.G., Nicoll, K.A., Mareev, E., Slyunyaev, N., Rycroft, M.J., 2020. Extensive layer
778 clouds in the global electric circuit: their effects on vertical charge distribution and storage.
779 *Proc. Roy. Soc.* 476. 1471 – 2946. DOI: 10.1098/rspa. 2019.0758.

780

781 Harrison, R.G., 2015. Meteorological Measurements and Instrumentation. John Wiley & Sons,
782 Ltd. 257 pp.

783

784 Hoppel, W.A., Anderson, R.V., Willett, J.C., 1986. Atmospheric Electricity in the Planetary
785 Boundary Layer, The Earth's Electrical Environment. National Academy Press. 149 – 165.

786

787 Izett, J.G., van de Wiel, B.J.H., Baas, P., Bosveld, F.C., 2018. Understanding and Reducing
788 False Alarms in Observational Fog Prediction. *Boundary-Lay. Meteor.* 169. 347 – 372. DOI:
789 10.1007/s10546-018-0374-2.

790

791 Kamra, A.K., Gautam, A.S., Siingh, D., 2015. Charged nanoparticles produced by splashing
792 of raindrops. *J. Geophy. Res.* 120. 6669 – 6681. DOI: 10.1002/2015JD023320.

793

794 Katata, G., 2014. Fogwater deposition modeling for terrestrial ecosystem: A review of
795 developments and measurements. *J. Geophy. Res. Atmos.* 119. 8137 – 8159.
796 DOI:10.1002/2014JD021669.

797

798 Levin, Z., Hobbs, P.V., 1971. Splashing of water drops on solid and wetted surfaces:
799 hydrodynamics and charge separation. *Philosophical Transactions of the Royal Society of*
800 *London.* 269. 555 – 585. DOI: 10.1098/rsta.1971.0052.

801

802 Li, D., Li, C., Li, J., Yang, W., Xiao, M., Zhang, M., Yang, Y., Yu, K., 2022. Efficient
803 direction- independent fog harvesting using a corona discharge device with a multi-electrode
804 structure. *Plasma Sci. Technol.* 24. 1 – 10. DOI: 10.1088/2058-6272/ac6be4.

805

806 Lovett, G.M., 1984. Rates and mechanisms of cloud water deposition to a subalpine balsam
807 fir forest. *Atmos. Environ.* 18. 361 – 371. DOI: 10.1016/0004-6981(84)90110-0.

808

809 Miller, S.T.K., Keim, B.D., Talbot, R.W., Mao, H., 2003. Sea Breeze: Structure, Forecasting,
810 and Impacts. *Rev. Geophys.* 41. DOI: 10.1029/2003RG000124.

811

812 Mohan, T.S., Temimi, M., Ajayamohan, R.S., Nelli, N.R., Fonseca, R., Weston, M.,
813 Valappil, V., 2020. On the Investigation of the Typology of Fog Events in an Arid
814 Environment and the Link with Climate Patterns. *Amer. Meteor. Soc.* 148. 3181 – 3202.
815 DOI: 10.1175/MWR-D-20-0073.1.

816

817 Nelli, N., Fissehaye, S., Francis, D., Fonseca, R., Temimi, M., Weston, M., Abida, R.,
818 Nesterov, O., 2021. Characteristics of Atmospheric Aerosols over the UAE Inferred From
819 CALIPSO and Sun Photometer Aerosol Optical Depth. *Earth and Space Sci.* 8. 1 – 18. DOI:
820 10.1029/2020EA001360.

821

822 Nicoll, K.A., Harrison, R.G., Marlton, G., Airey, M., 2020. Consistent dust electrification
823 from Arabian Gulf sea breezes. *Environ. Res. Lett.* 15. DOI: 10.1088/1748-9326/ab9e20.

824

825 Nicoll, K.A., Harrison, R.G., 2010. Experimental determination of layer cloud edge charging
826 from cosmic ray ionisation. *Geophys. Res. Lett.* 37. DOI: 10.1029/2010GL043605.

827

828 Nicoll, K.A., 2012. Measurements of Atmospheric Electricity Aloft. *Surv. Geophys.* 33. 991
829 – 1057. DOI: 10.1007/s10712-012-9188-9.

830

831 Nicoll, K.A., Harrison, R.G., 2016. Stratiform cloud electrification comparison of theory
832 with multiple in-cloud measurements. *Quart. J. Roy. Meteor. Soc.* 142(700). 2679 – 2691.
833 DOI: 10.1002/qj.2858.

834

835 Nicoll, K.A., Readle, A., Al Kamali, A., Harrison, R.G., 2022. Surface atmospheric electric
836 field variability at a desert site. *J. Atmos. Solar-Terr. Phys.* 241. 1 – 11. DOI:
837 10.1016/j.jastp.2022.105977.

838

839 Nizamuddin, S., Ramanadham, R., 1983. The Electric Potential Gradient in Mist, Haze, and
840 Fog. *PAGEOPH.* 121. 353 – 359. DOI: 10.1007/BF02590144.

841

842 Roman-Cascon, C., Steeneveld, G.J., Yague, C., Sastre, M., Arrillaga, J.A., Maqueda, G.,
843 2016. Forecasting radiation fog at climatologically contrasting sites: evaluation of statistical
844 methods and WRF. *Quart. J. Roy. Meteor. Soc.* 142. 1048 – 1063. DOI: 10.1002/qj.2708.

845 Rycroft, M.J., S. Israelsson and C. Price, 2000: The global atmospheric electric circuit, solar
846 activity and climate change. *J. Atmos. Solar-Terr. Phys.* 62. 1563 – 1576. DOI:
847 10.1016/s1364-6826(00)00112-7.

848
849 Serbu, G.P., Trent, E.M., 1958. A study of the use of atmospheric -electric measurements in
850 fog forecasting. *Eos Trans. Amer. Geophy. Union.* 39. 1034 – 1042. DOI:
851 10.1029/TR039i006p01034.

852
853 Simpson, G.C., 1909. XV. On the electricity of rain and its origin in thunderstorms.
854 *Philosophical Transactions of the Royal Society of London.* 209. 379 – 413. DOI:
855 10.1098/rsta.1909.0015.

856
857 Tag, P.M., 1976. A Numerical Simulation of Warm Fog Dissipation by Electrically
858 Enhanced Coalescence: Part I. An Applied Electric Field. *J. Applied Meteor. Climatology.*
859 15. 282 – 291. DOI: 10.1175/1520-0450(1976)015<0282:ANSOWF>2.0.CO;2.

860
861 Tai, H., Zhuang, Z., Jiang, L., Sun, D., 2017. Visibility Measurement in an Atmospheric
862 Environment Simulation Chamber. *Current Optics and Photonics.* 1. 186 – 195. DOI:
863 10.3807/COPP.2017.1.3.186.

864
865 Tardif, R., Rasmussen, R.M., 2007. Event-Based Climatology and Typology of Fog in the
866 New York City Region. *J. Applied Meteor. Climatology.* 46. 1141 – 1168. DOI:
867 10.1175/JAM2516.1.

868
869 Weston M., Temimi, M., Burger, R., Piketh, S., 2021. A Fog Climatology at Abu Dhabi
870 International Airport. *J. Applied Meteor. Climatology.* 60. 223 – 236. DOI: 10.1175/JAMC-
871 D-20-0168.1.

872
873 Wilson, C.T.R., 1921. III. Investigations on lightning discharges and on the electric field of
874 thunderstorms. *Philosophical Transactions of the Royal Society of London.* 221. 73 – 115.
875 DOI: 10.1098/rsta.1921.0003.

876
877 World Meteorological Organization, 2012. Guide to Meteorological Instruments and
878 Methods of Observations. Accessed 16 August 2022, from:
879 https://library.wmo.int/doc_num.php?explnum_id=10616

880
881 Yair, Y., Yaniv, R., 2023. The Effects of Fog on the Atmospheric Electrical Field Close to the
882 Surface. *J. Atmos.* 14. 1 – 12. DOI: 10.3390/atmos14030549.

883
884 Zheng, M., Li, J., Li, C., He, F., Li, D., Yu, K., Pan, Y., 2023. Investigation of the effects of
885 parallel electric field on fog dissipation. *J. Phys. D: Applied Phys.* 56. 1 – 10. DOI:
886 10.1088/1361-6463/acd85c.

887
888 Zheng, X.J., 2013. Electrification of wind-blown sand: Recent advances and key issues. *Eur.*
889 *Phys. J. E.* 36. 1 – 15. DOI: 10.1140/epje/i2013-13138-4.

890
891 Zhou, L., Tinsley, B.A., 2012. Time dependent charging of layer clouds in the global electric
892 circuit. *Advances Space Res.* 50. 828 – 842. DOI: 10.1016/j.asr.2011.12.018.

893

894 **Appendix A**

895

896 **A.1 Instrumentation**

897

898

899 **A.1.1 Campbell CS110: Electric Field Meter**

900

901 Being robust to all meteorological conditions makes the electric field mill as one of the reliable
902 ways for continuous measurements of atmospheric electric fields (Agarwal et al., 2020; Bennett
903 and Harrison, 2007). The electric field mill consists of a sensing electrode, which is shielded and
904 exposed via a mechanical shutter (Bateman et al., 2007; Nicoll, 2012). As the electrode vane rotate,
905 they become shielded and exposed with the aid of the motor, which in turn causes charge to be
906 induced as it gets exposed (Agarwal et al., 2020; Bennett and Harrison, 2007). This charge is
907 proportional to the electric field (Harrison, 2015).

908

909 In this research, A Campbell CS110 electric field meter was used to measure the atmospheric
910 electric fields (see Figure 2(b)). In terms of measurements ranges, the electric field meter was
911 mounted at 3m above ground and set to measure the electric fields at ± 20 k V/m. In terms of
912 datalogging, the electric field data were logged each 1-second, which was then averaged to 1-
913 minute mean values to conduct this study.

914

915

916

917

918

919 **A.1.2 Biral SWS-100: Visibility Sensor**

920

921 One of the commonly performed meteorological observation is visibility (Tai et al., 2017).
922 Visibility sensors are considered the main tool in detecting fog. In this study, Biral SWS-100 was
923 used to estimate the optical range in the site (see Figure 2 (b)). The sensor uses the forward
924 scattering method to measure the visibility (Izett et al., 2018). This works by sending out a beam
925 of light from the transmitter, while the receiver measures the light scattered forward by the particles
926 in the air (WMO, 2012). The visual range decreases as the particles in the air increase, which cause
927 more scattering of light (Harrison, 2015).

928

929 In this study, the sensor was configured to have a maximum visual range of 50 km and the visibility
930 data were logged at a time resolution of 1 minute. In addition, the SWS-100 also includes a present
931 weather sensor, which can help in identifying the presence of fog. One of the issues encountered
932 was the contamination of the sensor's windows, which was mainly caused due to dust and sand
933 surrounding the field site.

934

935

936

937

938

939 **A.1.3 Standard Meteorological Sensor**

940

941 To verify the presence of fog and other weather conditions, standard meteorological data were
942 obtained from an automatic weather station in Al Marmoom, Dubai. As discussed, Al Marmoom
943 AWS is located about 9 km away from the observation site. This was chosen mainly because no
944 standard meteorological measurements were available in the observation site until January 2022.
945 In addition, the station was the closest available to Sanad Academy, in which the results were
946 expected to link.

947

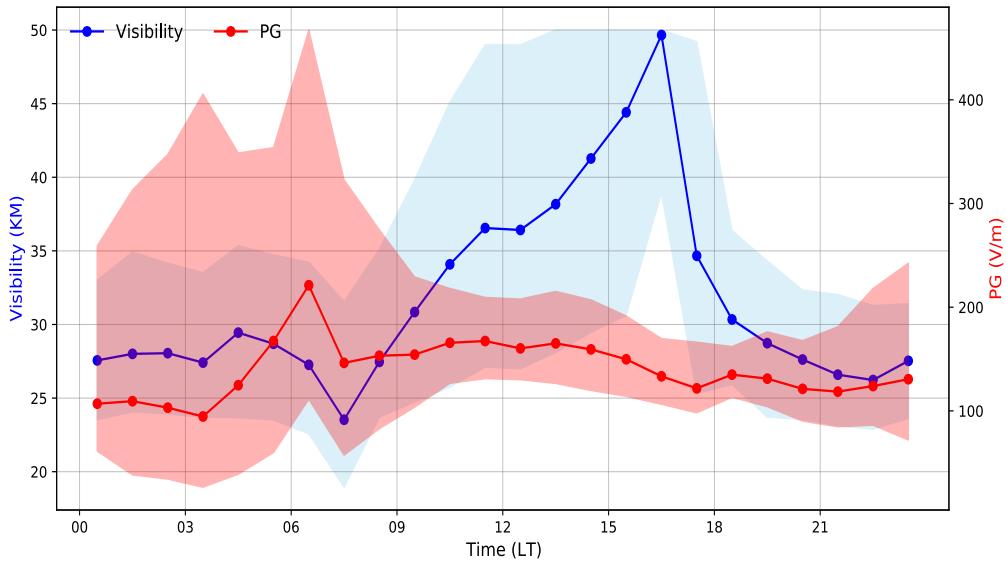
948 The weather parameters focused on were the wind speed (in m/s) and direction, the RH, and the
949 dry bulb temperature (in °C). All these parameters were useful in confirming the present weather
950 in the field site. For example, the wind speed and direction were used to verify some of the sudden
951 changes in the PG data. In addition, the dry bulb temperature and the RH were used to calculate
952 the dew point temperature (in °C), which was also useful to confirm the presence of fog. Other
953 variables such as rainfall amount (in mm), air pressure (in hPa) and solar radiation (in W/m²) were
954 used occasionally for extra support. The standard meteorological data at Al Marmoom AWS were
955 logged at 15-minute time resolution.

956

957

958

959


960

961 **A.2 Diurnal variation during fair weather conditions**

962

963 To compare the electrical properties during disturbed weather conditions to those observed during
964 fair weather conditions, the average typical diurnal variation in PG under fair weather conditions
965 was derived using data collected throughout the year 2021. The criteria used to identify fair
966 weather conditions included wind speed less than 4 m/s, visibility greater than 20 km, and present
967 weather code equals to 0 (i.e., no significant weather observed). A high visibility threshold was
968 used to minimise the influence of aerosol particles, which can affect the PG measurements. Figure
969 A1 demonstrates the hourly mean diurnal variation in PG and visibility during fair weather
970 conditions. The analysis reveals that typical PG values during such conditions are positive with
971 median values ranging between 90 to 250 V/m, which aligns with the previous findings (i.e.,
972 Bennett and Harrison, 2007). The peak in PG between 16-17LT is likely to be associated with the
973 arrival of the sea breeze front (e.g., as observed for other UAE sites (Nicoll et al, 2022)). When
974 compared to the foggy events, the PG during fair weather conditions demonstrates lower
975 variability with fewer sharp changes, and exclusively positive PG values.

976

978 Figure A1. Diurnal variation in PG and Visibility along with the interquartile ranges under fair
 979 weather conditions at Sanad Academy. The displayed data points are hourly medians using 1-
 980 minute values throughout all 2021 data. The criteria used to identify fair weather conditions
 981 included wind speed less than 4 m/s, visibility greater than 20 km and present weather code equals
 982 to 0 (i.e., no significant weather).