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Abstract
We present new second-kind integral-equation formulations of the interior and exte-
rior Dirichlet problems for Laplace’s equation. The operators in these formulations
are both continuous and coercive on general Lipschitz domains in R

d , d ≥ 2, in the
space L2(�), where � denotes the boundary of the domain. These properties of conti-
nuity and coercivity immediately imply that (1) the Galerkin method converges when
applied to these formulations; and (2) the Galerkin matrices are well-conditioned as
the discretisation is refined, without the need for operator preconditioning (and we
prove a corresponding result about the convergence of GMRES). The main signifi-
cance of these results is that it was recently proved (see Chandler-Wilde and Spence in
Numer Math 150(2):299–371, 2022) that there exist 2- and 3-d Lipschitz domains and
3-d star-shaped Lipschitz polyhedra for which the operators in the standard second-
kind integral-equation formulations for Laplace’s equation (involving the double-layer
potential and its adjoint) cannot bewritten as the sum of a coercive operator and a com-
pact operator in the space L2(�). Therefore there exist 2- and 3-d Lipschitz domains
and 3-d star-shaped Lipschitz polyhedra for which Galerkin methods in L2(�) do not
converge when applied to the standard second-kind formulations, but do converge for
the new formulations.
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1326 S. N. Chandler-Wilde, E. A. Spence

1 Introduction

1.1 Boundary integral equations for Laplace’s equation

If an explicit expression for the fundamental solution of a linear PDE is known, then
boundary value problems (BVPs) for that PDE can be converted to integral equations
on the boundary of the domain. The main advantage of this procedure is that the
dimension of the problem is reduced; indeed, the problem is converted from one on
a d-dimensional domain to one on a (d − 1)-dimensional domain. Futhermore, if the
original domain is the exterior of a bounded obstacle, then the problem is reduced
from one on a d-dimensional infinite domain, to one on a (d − 1)-dimensional finite
domain.

This reduction to the boundary has both theoretical and practical benefits: on the
theoretical side, C. Neumann famously used boundary integral equations (BIEs) to
prove existence of the solution of the Dirichlet problem for Laplace’s equation in con-
vex domains in [80] (see, e.g., the account in [65, Chapter 1]), and BIEs have a long
history of use in the harmonic analysis literature to prove wellposedness of BVPs on
rough domains (see, e.g., [13, 22, 101], [49, §2.1], [72], [68, Chapter 15], [97, Chapter
4], [70]). On the more practical side, numerical methods based on Galerkin, colloca-
tion, or numerical quadrature discretisation of BIEs, coupled with fast matrix–vector
multiply and compression algorithms, and iterative solvers such as GMRES, provide
spectacularly effective computational tools for solving a range of linear boundary value
problems, for example in potential theory, elasticity, and acoustic and electromagnetic
wave scattering (see, e.g., [4, 8, 11, 15, 21, 23, 39, 55, 85, 87, 106]).

Let �(x, y) be the fundamental solution for Laplace’s equation:

�(x, y) := 1

2π
log

(
a

|x − y|
)

, d = 2, := 1

(d − 2)Cd |x − y|d−2 , d ≥ 3,

(1.1)

where Cd is the surface area of the unit sphere Sd−1 ⊂ R
d and a > 0. With � the

boundary of a bounded Lipschitz domain, the boundary integral operators (BIOs) S,
D, D′, and H , the single-layer, double-layer, adjoint double-layer, and hypersingular
operators, respectively, are defined for φ ∈ L2(�), ψ ∈ H1(�), and x ∈ � by

Skφ(x) =
∫

�

�k(x, y)φ(y) ds(y), Dφ(x) =
∫

�

∂�(x, y)
∂n(y)

φ(y) ds(y), (1.2)

and

D′φ(x) =
∫

�

∂�(x, y)
∂n(x)

φ(y) ds(y), Hψ(x) = ∂

∂n(x)

∫
�

∂�k(x, y)
∂n(y)

ψ(y) ds(y).

(1.3)

When � is Lipschitz, the integrals in D and D′ are defined as Cauchy principal values,
in general only for almost all x ∈ � with respect to the surface measure ds. The
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Coercive second-kind boundary integral equations for the… 1327

Table 1 The integral operators involved in the standard boundary-integral-equation formulations of the
interior and exterior Dirichlet and Neumann problems for Laplace’s equation

Interior
Dirichlet
problem

Interior
Neumann
problem

Exterior
Dirichlet
problem

Exterior
Neumann
problem

Direct S H S H

1

2
I − D′ 1

2
I + D

1

2
I + D′ 1

2
I − D

Indirect S H S H

1

2
I − D

1

2
I + D′ 1

2
I + D

1

2
I − D′

definition of H on spaces larger than H1(�) is complicated (it must be understood
either as a finite-part integral, or as the non-tangential limit of a potential; see [65,
Chapter 7], [17, Page 113] respectively), but these details are not essential to the present
paper. The standard mapping properties of S, D, D′, and H on Sobolev spaces on �

are recalled in Appendix A (see (A.3)).
The BIE operators involved in the standard first- and second-kind BIEs for the

Dirichlet andNeumannproblems forLaplace’s equation are shown inTable 1; although
we do not explicitly consider the Neumann problem in this paper, we use the informa-
tion in this table in what follows. For the details of the right-hand sides and unknowns
for the integral equations corresponding to the operators in Table 1, see, e.g., [87,
§3.4], [65, Chapter 7], [93, Chapter 7], [17, §2.5]. Recall that the adjective “direct"
in the table refers to equations where the unknown is either the Dirichlet or Neumann
trace of the solution to the corresponding BVP, and the adjective “indirect" refers to
equations where the unknown does not have immediate physical relevance.

Following [87, Pages 9 and 10], we call BIEs first kind where the unknown function
only appears under the integral, and second kind where the unknown function appears
outside the integrand as well as inside; by this definition, the BIEs in the first and
third row of Table 1 are first kind, and in the second and fourth row second kind. An
alternative definition of second kind BIEs is that, in addition to the unknown function
appearing outside the integrand as well as inside, the BIO is Fredholm of index zero
(i.e., the Fredholm alternative applies to the BIE); see, e.g., [4, §1.1.4]. Every BIE that
we describe in the paper as second-kind is second-kind in both senses above.

1.2 The Galerkinmethod

We focus on solving Laplace BIEs with the Galerkin method. The Galerkin method
applied to the equation Aφ = f , where φ, f ∈ H, A : H → H is a continuous
(i.e. bounded) linear operator, andH is a complex1 Hilbert space, is: given a sequence

1 It is convenient, since we deal with non-self-adjoint operators and talk at some points about spectra and
numerical ranges, to assume throughout that all Hilbert spaces and function spaces are complex. Of course
results for the corresponding real case are easily deduced, if needed, from the complex function space case.
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1328 S. N. Chandler-Wilde, E. A. Spence

(HN )∞N=1 of finite-dimensional subspaces of H with dim(HN ) → ∞ as N → ∞,

find φN ∈ HN such that
(
AφN , ψN )H = (

f , ψN
)
H for all ψN ∈ HN . (1.4)

We say that the Galerkin method converges for the sequence (HN )∞N=1 if, for every
f ∈ H, the Galerkin equations (1.4) have a unique solution for all sufficiently large
N and φN → A−1 f as N → ∞. We say that (HN )∞N=1 is asymptotically dense in H
if, for every φ ∈ H,

min
ψN∈HN

‖φ − ψN‖H → 0 as N → ∞. (1.5)

A necessary condition for the convergence of the Galerkin method is that (HN )∞N=1
is asymptotically dense in H. Indeed, a standard necessary and sufficient condition
(e.g., [37, Chapter II, Theorem 2.1]) for convergence of the Galerkin method is that
(HN )∞N=1 is asymptotically dense and that, for some N0 ∈ N and Cdis > 0,

‖PN AψN‖H
‖ψN‖H ≥ Cdis for all non-zero ψN ∈ HN and N ≥ N0, (1.6)

where PN is orthogonal projection of H onto HN . Importantly, if (1.6) holds, then
([37, Chapter II, Equation (2.5)] or see [87, Theorem 4.2.1 and Remark 4.2.5])

‖φ − φN‖H ≤
(
1 + ‖A‖H→H

Cdis

)
min

ψN∈HN

‖φ − ψN‖H, for N ≥ N0, (1.7)

where φ = A−1 f and φN is the unique solution of the Galerkin equations (1.4). We
note that (1.7) is known as a quasioptimal error estimate.

We now recap the main abstract theorem on convergence of the Galerkin method;
this theorem uses the definition that an operator A : H → H is coercive,2 if there
exists Ccoer > 0 such that

∣∣(Aψ,ψ)H
∣∣ ≥ Ccoer ‖ψ‖2H for all ψ ∈ H. (1.8)

Theorem 1.1 (The main abstract theorem on convergence of the Galerkin method.)

(a) If A is invertible then there exists a sequence (HN )∞N=1 for which the Galerkin
method converges.

(b) If A is invertible then the following are equivalent:

(i) The Galerkin method converges for every asymptotically-dense sequence
(HN )∞N=1 inH.

2 In the literature, the property (1.8) (and its analogue for operators A : H → H′, where H′ is the dual
of H) is sometimes called “H-ellipticity" (as in, e.g., [87, Page 39] [93, §3.2], and [47, Definition 5.2.2])
or “strict coercivity" (e.g., [52, Definition 13.22]), with “coercivity" then used to mean either that A is the
sum of a coercive operator and a compact operator (as in, e.g., [93, §3.6] and [47, §5.2]) or that A satisfies
a Gårding inequality (as in [87, Definition 2.1.54]).
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Coercive second-kind boundary integral equations for the… 1329

(ii) A = A0 + K where A0 is coercive and K is compact.

(c) If A is coercive (i.e. (1.8) holds) then, for every sequence (HN )∞N=1 and every
N ∈ N, the Galerkin equations (1.4) have a unique solution φN and, where
φ = A−1 f ,

∥∥φ − φN
∥∥H ≤ ‖A‖H→H

Ccoer
min

ψ∈HN

∥∥φ − ψ
∥∥H, (1.9)

(so that φN → φ as N → ∞ if (HN )∞N=1 is asymptotically dense inH).

References for the proof Part (a) was first proved in [64, Theorem 1]; see also [37,
Chapter II, Theorem 4.1]. Part (b) was first proved in [64, Theorem 2], with this result
building on results in [99]; see also [37, Chapter II, Lemma 5.1 and Theorem 5.1].
Part (c) is Céa’s Lemma, first proved in [14]. 
�

1.3 The rationale for using second-kind BIEs posed in L2(0)

The BIOs in Table 1 are coercive in the trace spaces H±1/2(�) (or certain subspaces of
these) for Lipschitz �, thus insuring convergence of the associated Galerkin methods
by Part (c) of Theorem 1.1; this coercivity theory was established for first-kind equa-
tions by Nédélec and Planchard [79], Le Roux [56], [57], and Hsiao and Wendland
[46], and for second-kind equations by Steinbach andWendland [95]. These arguments
involve transferring boundedness/coercivity properties of the PDE solution operator
to the associated boundary integral operators via the trace map and layer potentials;
the generality of these arguments is why coercivity holds with � only assumed to be
Lipschitz, and Costabel [25] highlighted how these ideas can be traced back to the
work of Gauss and Poincaré.

Despite convergence of the associated Galerkin methods, using the first-kind for-
mulations in the trace spaces has the disadvantage that the condition numbers of the
Galerkin matrices grow as the discretisation is refined; e.g., for the h-version of the
Galerkin method (where convergence is obtained by decreasing the mesh-width h and
keeping the polynomial degree fixed), the condition numbers grow like h−1; see, e.g.
[87, §4.5]. The design of appropriate preconditioning strategies for these Galerkin
matrices has therefore been a classic topic of study in the BIE community for over 20
years, with proposed solutions including (i) preconditioning with an opposite-order
operator [94] (see also the survey [45]), (ii) using wavelets, either as an approximation
space (e.g., [42, 43, 103]) or in preconditioning (e.g., [88, 98]); using domain decom-
position methods; see, e.g., [44] and the recent book [96]. Furthermore, using the
second-kind formulations in the trace spaces has the disadvantage that the inner prod-
ucts on H±1/2(�) are non-local and non-trivial to evaluate; even if the basis functions
φN and ψN in (1.4) have supports only on a subset of �, (AφN , ψN )H is an integral
over all of �, and the calculation of the Galerkin matrix in this case is impractical.

For the second-kind BIEs, an attractive alternative to working in the trace spaces
is to work in L2(�). When � is C1, D and D′ are compact in L2(�) by the results of
Fabes, Jodeit, and Rivière [35, Theorems 1.2 and 1.9] and thus each of the second-kind
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1330 S. N. Chandler-Wilde, E. A. Spence

BIOs 1
2 I ± D and 1

2 I ± D′ is the sum of a coercive operator and a compact operator,
and convergence of the associated Galerkin methods in L2(�) is ensured by Part (b)
of Theorem 1.1. Since the L2(�) norm is local, (AφN , ψN )H is an integral over the
support ofψN , and the Galerkinmatrix is muchmore easily computable. Furthermore,
when D and D′ are compact, the condition numbers of theGalerkinmatrices of 1

2 I±D
and 1

2 I ± D′ are independent of the discretisation (without preconditioning); see [4,
§3.6.3], [41, §4.5.5].

1.4 Convergence of the Galerkinmethod in L2(0) for the standard second-kind
integral equations on polyhedral and Lipschitz domains

The disadvantage of using second-kind BIEs in L2(�) is that convergence of the
Galerkin method is harder to establish when � is only Lipschitz, or Lipschitz polyhe-
dral. Indeed, in these cases D and D′ are not compact; e.g., when � has a corner or
edge their spectra are not discrete; see, e.g. [4, §8.1.3]. When � is only Lipschitz, D
and D′ are bounded on L2(�) by the results on boundedness of the Cauchy integral
on Lipschitz � of Coifman, McIntosh, and Meyer [22] (following earlier work by
Calderón [12] on boundedness for � with small Lipschitz character). Verchota [101]
showed that the operators 1

2 I ± D and 1
2 I ± D′ are Fredholm of index zero on L2(�);

when � is connected, 1
2 I − D and 1

2 I − D′ are invertible on L2(�) and 1
2 I + D and

1
2 I + D′ invertible on L2

0(�), the set of φ ∈ L2(�) with mean value zero; see [101,
Theorems 3.1 and 3.3(i)].3

A long-standing open question has been

Can 1
2 I ± D and 1

2 I ± D′ be written as the sum of a coercive operator and a
compact operator in the space L2(�) when � is only assumed to be Lipschitz?

ByPart (b) ofTheorem1.1, this question is equivalent to the question: does theGalerkin
method applied to 1

2 I ± D and 1
2 I ± D′ in L2(�) converge for every asymptotically-

dense sequence of subspaces when � is only assumed to be Lipschitz?
Until recently, this question was answered only in the following two cases, both

in the affirmative: (i) � is a 2d curvilinear polygon with each side C1,α for some
0 < α < 1 and with each corner angle in the range (0, 2π). (ii) � is Lipschitz,
with sufficiently small Lipschitz character. Regarding (i): this result was announced
by Shelepov in [89], with details of the proof given in [90], and with the analogous
result for polygons following from the result of Chandler [16, §3]; see, e.g. [9, Lemma
1.5]. Regarding (ii): Wendland [105, §4.2] recognised that the results of I. Mitrea [71,
Lemma 1, Page 392] about the essential spectral radius could be adapted to prove this

3 The invertibility of 1
2 I − D′ on L2(�) implies that the bilinear form of the associated least-squares

formulation

a(φ, ψ) =
((

1

2
I − D′

)
φ,

(
1

2
I − D′

)
ψ

)
L2(�)

is coercive. This formulation, however, suffers from the same disadvantages as the variational formulation
of 1

2 I − D′ in H−1/2(�), including that computing the entries of the Galerkin matrix requires computing
integrals over all of �, even when the basis functions have support on (small) subsets of �.
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Coercive second-kind boundary integral equations for the… 1331

Fig. 1 Views from above and below of the open-book polyhedron 	θ,n of [19, Definition 5.7], with n = 4
pages and opening angle θ = π/2

result, with this result proved in full in [19, Corollary 3.5]; for more discussion on
both (i) and (ii), see [19, §1].

The recent paper [19] finally settled the question above negatively by giving exam-
ples of 2-d Lipschitz domains and 3-d star-shaped Lipschitz polyhedra for which
1
2 I ± D and 1

2 I ± D′ cannot be written as the sum of a coercive operator and a com-
pact operator in the space L2(�). The 3-d star-shaped Lipschitz polyhedra are defined
in [19, Definition 5.7], and called the open-book polyhedra; see Fig. 1 for an example,
where we use the notation that 	θ,n is the open-book polyhedron with n pages and
opening angle θ . Given ε > 0 there exists θ0 ∈ (0, π ] such that the essential numerical
range of D in L2(�) contains the interval [−√

n/2+ε,
√
n/2−ε] [19, Theorem 1.3] if

0 < θ ≤ θ0. By the definition of the essential numerical range (see, e.g., [19, Equation
2.3]), this result implies that if θ is sufficiently small and n ≥ 2, then 1

2 I ± D and
1
2 I ± D′ cannot be written as the sum of a coercive operator and a compact operator
in the space L2(�) when � = ∂	θ,n .

Nevertheless, Part (b) of Theorem 1.1 only shows that the Galerkin method
applied to these domains does not converge for every asymptotically dense sequence
(HN )∞N=1 ⊂ L2(�), leaving opening the possibility that all Galerkin methods used
in practice (based on boundary element method discretisation [87, 93]) are in fact
convergent. However, the following result from [19] clarifies that this is not the case.

Theorem 1.2 ([19, Theorem 1.4]) Suppose that A is invertible but A cannot be written
in the form A = A0 + K, where A0 is coercive and K is compact, and that (H∗

N )∞N=1
is a sequence of finite-dimensional subspaces of H, with H∗

1 ⊂ H∗
2 ⊂ ..., for which

the Galerkin method converges. Then there exists a sequence (HN )∞N=1 of finite-
dimensional subspaces of H, withH1 ⊂ H2 ⊂ ..., such that:

(a) the Galerkin method does not converge for the sequence (HN )∞N=1; and
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1332 S. N. Chandler-Wilde, E. A. Spence

(b) for each N ∈ N,

H∗
N ⊂ HN ⊂ H∗

MN
, for some MN ∈ N. (1.10)

We can apply this result when (H∗
N )∞N=1 is a sequence of boundary element sub-

spaces that is asymptotically dense in L2(�), in which case (HN )∞N=1, satisfying
(1.10), is also a sequence of boundary element subspaces (since HN ⊂ H∗

MN
) and is

also asymptotically dense in L2(�) (sinceH∗
N ⊂ HN ).

In summary, the results of [19] show that there exist Lipschitz and polyhedral
boundaries� for which there are Galerkin methods for solving BIEs involving 1

2 I ±D
and 1

2 I ± D′ that do not converge, with these methods based on asymptotically-dense
sequences (HN )∞N=1 ⊂ L2(�) of boundary element subspaces.

1.5 Motivation for the present paper and summary of themain results

Given the negative results of [19] about convergence of the Galerkin method for the
standard second-kind formulations, a natural question is therefore

Do there exist second-kind BIE formulations in L2(�) of Laplace’s equation
where, with � only assumed to be Lipschitz, the operators are continuous,
invertible, and can be written as the sum of a coercive operator and a compact
operator?

In this paper we answer this question in the affirmative for the Laplace interior and
exterior Dirichlet problems.We present new BIE formulations that are continuous and
in fact coercive (i.e., not just the sum of a coercive and a compact operator) in the space
L2(�), with� only assumed to be Lipschitz; thus convergence of the Galerkin method
in L2(�) for every asymptotically-dense sequence (HN )∞N=1, plus the explicit error
estimate (1.9), is ensured by Part (c) of Theorem 1.1. Furthermore, the strong property
of coercivity allows us to prove that, if the Galerkin matrices are preconditioned
by a specified diagonal matrix, then the number of GMRES iterations required to
solve the associated linear systems to a prescribed accuracy does not increase as the
discretisation is refined and N increases.

In summary, the new BIEs introduced in this paper are such that, when solving the
Laplace interior and exterior Dirichlet problems on a general Lipschitz domain:

1. Given any asymptotically-dense sequence of subspaces, the associated Galerkin
method is provably convergent; and

2. For a wide variety of subspaces, including piecewise polynomials (of arbi-
trary degree) on anisotropic meshes, the Galerkin matrices are provably well
conditioned—with the number of GMRES iterations independent of the subspace
dimension—after preconditioning by only a diagonal matrix.

Indeed, Sect. 1.4 recalled that the standard second-kind BIEs in L2(�) do not satisfy
Point 1. Furthermore, the proposed remedies to the growth of the condition number
of the first-kind BIEs in the trace spaces recapped in Sect. 1.3, although tremen-
dously successful in many contexts, do not satisfy Point 2. Indeed, to our knowledge,
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Coercive second-kind boundary integral equations for the… 1333

there is no theory on either operator preconditioning or wavelet preconditioning of
piecewise-polynomial discretisations using anisotropic meshes on general Lipschitz
polyhedra. Furthermore, whilst there exists theory for domain-decomposition meth-
ods on anisotropic meshes (e.g., [44]) the preconditioners are more complicated, and
expensive, than multiplication by a diagonal matrix.

Outline of the paper. Section 1.6 defines more precisely the Laplace BVPs we con-
sider. Section 1.7 recaps results about a non-standard layer potential introduced in [13]
and its non-tangential limits. Section 2 states the main results. Section 3 discusses the
ideas behind the main results, and the links to other work in the literature. Section 4
proves the main results, except the parts of the proofs that are related to the wellposed-
ness and regularity of the Laplace oblique Robin problem, with these given in Sect.
5.

Section 6 in the extended version of the present paper [18] presents results for the
Helmholtz exterior Dirichlet problem (with these results corollaries of the Laplace
results in Sect. 2).

1.6 Notation and statement of the BVPs

Let 	− ⊂ R
d , d ≥ 2, be a bounded (not necessarily connected) Lipschitz open set,

and let 	+ := R
d\	− and � := ∂	−. Let n be the outward-pointing unit normal

vector to	− (so n points out of	− and into	+). For v ∈ H1(	−) let γ −v denote its
Dirichlet trace. For v ∈ H1(	−,
) := {w : w ∈ H1(	−),
w ∈ L2(	−)} let ∂−

n v

denote its Neumann trace; recall that, if v ∈ H2(	−) then ∂−
n v = n ·γ −∇v. Similarly,

for v ∈ H1
loc(	

+) := {w : 	+ → R : χw ∈ H1(	+) for all χ ∈ C∞
comp(R

d)}, let
γ +v denote its Dirichlet trace. For v ∈ H1

loc(	
+,
) := {w : 	+ → R : χw ∈

H1(	+), χ
w ∈ L2(	+) for all χ ∈ C∞
comp(R

d)}, let ∂+
n v denote its Neumann

trace.

Definition 1.3 (Laplace interior Dirichlet problem (IDP)) Given gD ∈ H1/2(�), we
say that u ∈ H1(	−) satisfies the interior Dirichlet problem (IDP) if 
u = 0 in 	−
and γ −u = gD on �.

Definition 1.4 (Laplace exterior Dirichlet problem (EDP))With	− and	+ as above,
assume further that	+ is connected. Given gD ∈ H1/2(�), we say that u ∈ H1

loc(	
+)

satisfies the exterior Dirichlet problem (EDP) if 
u = 0 in 	+, γ +u = gD on �, and
u(x) = O(1) when d = 2 and u(x) = o(|x|3−d) when d ≥ 3 as |x| → ∞ (uniformly
in all directions x/|x|).

We make three remarks.

(i) Recall that, by elliptic regularity (see, e.g., [65, Theorem 4.16]), the solution of
the IDP and EDP are C∞ in 	− and 	+ respectively. Therefore, the pointwise
conditions at infinity imposed in the EDP make sense.
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1334 S. N. Chandler-Wilde, E. A. Spence

(ii) For the IDP and EDP, uniqueness of the solution is shown in, e.g., [65, Corollary
8.3] and [65, Theorems 8.9 and 8.10] respectively4. Existence then follows from
Fredholm theory and, e.g., [65, Theorems 7.5, 7.6, and 7.15].

(iii) The Neumann traces of the solutions of both the IDP and EDP are in H−1/2(�);
see, e.g., [65, Lemma 4.3]. Later, we consider both these BVPs when the Dirichlet
data is in H1(�). The regularity result of Nečas [78, §5.1.2] (restated as Theorem
B.1 below) then implies that ∂−

n u and ∂+
n u (in Definitions 1.3 and 1.4 respectively)

are both in L2(�), as opposed to just in H−1/2(�).

The IDP and EDP can equivalently be formulated in terms of non-tangential limits,
with these alternative formulations standard in the harmonic-analysis literature (see,
e.g., [101, Corollary 3.2], [13, §3], [68, Theorem 2], [97, Proposition 5.1]). We state
these alternative formulations, and recall their equivalence, so that we can easily use
results from the harmonic-analysis literature (summarised in Appendix B below).

Given x ∈ �, let �±(x) be the non-tangential approach set to x from 	± defined
by

�±(x) :=
{
y ∈ 	± : |x − y| ≤ min

{
c,Cdist(y, �)

}}
, (1.11)

for some c > 0 and someC > 1 sufficiently large depending on the Lipschitz character
of 	±.5 If u ∈ C(	±), its non-tangential maximal function u∗ : � → [0,∞] is
defined by

u∗(x) := sup
y∈�±(x)

|u(y)|, x ∈ �. (1.12)

Define the non-tangential limit

γ̃ ±u(x) := lim
y→x, y∈�±(x)

u(y). (1.13)

If u ∈ C2(	±), 
u = 0, and u∗ ∈ L2(�), then γ̃ ±u(x) is well-defined for almost
all x ∈ � and γ̃ ±u ∈ L2(�) by [48, Corollary 5.5] (restated as Part (ii) of Theorem
B.2 below). Furthermore, if u ∈ Hs

loc(	
±) with s > 1/2, then γ̃ ±u = γ ±u by [17,

Lemma A.9] (restated as Lemma B.3 below).

Definition 1.5 (Laplace IDP formulated via non-tangential limits)Given gD ∈ L2(�),
we say that u ∈ C2(	−) with u∗ ∈ L2(�) satisfies the IDP if 
u = 0 in 	− and
γ̃ −u = gD on �.

Definition 1.6 (Laplace EDP formulated via non-tangential limits)With 	− and 	+
as above, assume further that 	+ is connected. Given gD ∈ L2(�), we say that
u ∈ C2(	+) with u∗ ∈ L2(�) satisfies the EDP if 
u = 0 in 	+, γ̃ +u = gD on
�, and u(x) = O(1) when d = 2 and u(x) = o(|x|3−d) when d ≥ 3 as |x| → ∞
(uniformly in all directions x/|x|).
4 [65, Theorem 8.10] proves uniqueness under the condition u(x) = O(|x|2−d ) as |x| → ∞, but when
d ≥ 3 the proof still goes through when u(x) = o(|x|3−d ) as |x| → ∞.
5 E.g., C > M + 1 is large enough when M is the Lipschitz character.
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Existence and uniqueness of the solutions of these formulations of the IDP and
EDP go back to the work of Dahlberg [27], and are given explicitly in, e.g., [101,
Corollary 3.2 and Lemma 3.7], [13, §3]. The following equivalence result is proved
in Appendix C.

Theorem 1.7 (Equivalence of the different formulations of the IDP and EDP) If gD ∈
H1/2(�), then the solution of the IDP in the sense of Definition 1.3 is the solution of
the IDP in the sense of Definition 1.5, and vice versa.

Similarly, if gD ∈ H1/2(�), then the solution of the EDP in the sense of Definition
1.4 is the solution of the EDP in the sense of Definition 1.6, and vice versa.

1.7 Recap of results about layer potentials and their non-tangential limits

Recall that the surface gradient operator on � is the unique operator such that, when
v ∈ C1(	−), ∇v = n(n · ∇v) + ∇�(γ −v) on � (and similarly for v ∈ C1(	+));
for an explicit expression for ∇� in terms of a parametrisation of �, see, e.g., [17,
Equation A.14].

The following results all rely on the harmonic-analysis results in [22] and [101]
(see also the accounts in [68, Chapter 15], [97, Chapter 4], [49, Chapter 2, Section 2]).
Define

∇�Sφ(x) :=
∫

�

∇�,x�(x, y)φ(y)ds(y) for a.e. x ∈ �,

where the integral is understood in the principal-value sense. By [101, Theorem 1.6],
∇�S : L2(�) → L2(�), with this mapping continuous, and (∇�S)φ = ∇�(Sφ). The
following potential was introduced in [13, §2]; givenZ ∈ (L∞(�))d that is real-valued
(which we assume throughout), let

KZφ(x) :=
∫

�

Z(y) · ∇y�(x, y)φ(y) ds(y) for x ∈ R
d \ �, (1.14)

and let

KZφ(x) :=
∫

�

Z(y) · ∇y�(x, y)φ(y) ds(y) for a.e. x ∈ �, (1.15)

where the integral in (1.15) is understood in the principal-value sense. The results of
[22] and [101] imply that KZ : L2(�) → L2(�) and, for φ ∈ L2(�),KZφ ∈ C2(	±),
KZφ satisfies Laplace’s equation, and (KZφ)∗ ∈ L2(�) with

γ̃ ±KZφ(x) = ±1

2

(
Z(x) · n(x)

)
φ(x) + KZφ(x) for a.e. x ∈ �. (1.16)
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1336 S. N. Chandler-Wilde, E. A. Spence

Observe that (i) when Z = n, KZ = D, KZ = D, and (1.16) is the usual jump
relation for the double-layer potential, and (ii) we can rewrite KZ as

KZφ(x) =
∫

�

(
Z(y) · n(y)

∂�(x, y)
∂n(y)

φ(y) + Z(y) · ∇��(x, y)φ(y)
)
ds(y).

(1.17)

In a similar way to how the L2 adjoint of D is D′ (see, e.g., [68, Chapter 15, text
around Equation 4.10]), the L2 adjoint of KZ is

K ′
Zφ(x) := (

Z(x) · n(x)
)
D′φ(x) + Z(x) · ∇�Sφ(x). (1.18)

The significance of the operator K ′
Z is that it appears in the inner product of Zwith the

non-tangential limit of∇S, whereS is the single-layer potential defined forφ ∈ L2(�)

by

Sφ(x) :=
∫

�

�(x, y)φ(y) ds(y) for x ∈ R
d \ �. (1.19)

Indeed, by [101, Theorems 1.6 and 1.11] (see also [68, Theorem 5], [17, Equation
2.30]), for almost every x ∈ �,

γ̃ ±∇Sφ(x) = n(x)
(

∓1

2
I + D′

)
φ(x) + ∇�(Sφ)(x), (1.20)

so that

Z(x) · γ̃ ±∇Sφ(x) =
(

∓1

2
(Z(x) · n(x))I + K ′

Z

)
φ(x). (1.21)

2 Statement of themain results

2.1 New boundary integral equations for the Laplace interior and exterior
Dirichlet problems on general Lipschitz domains for d ≥ 3

We focus on the case d ≥ 3, since the question of whether or not there exist BIE for-
mulations of the Laplace IDP and EDP that are coercive, or coercive up to a compact
perturbation, on Lipschitz domains is more pressing when d = 3 than d = 2 (because
of the existing convergence theory for ± 1

2 I + D and ± 1
2 I + D′ on curvilinear poly-

gons [16, 89, 90] but negative results for these operators for certain 3-d star-shaped
polyhedra [19] recapped in Sect. 1.4). Results for d = 2 are given in Sect. 2.3.
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2.1.1 The interior Dirichlet problem

Given Z ∈ (L∞(�))d and α ∈ R, define the integral operators A′
I ,Z,α , AI ,Z,α , and

BI ,Z,α by

A′
I ,Z,α := 1

2
(Z · n)I − K ′

Z + αS, AI ,Z,α := 1

2
(Z · n)I − KZ + αS, (2.1)

BI ,Z,α := −(Z · n)H − Z · ∇�

(
1

2
I + D

)
+ α

(
1

2
I + D

)
, (2.2)

with the subscript I standing for “interior", and the ′ superscript indicating that A′
I ,Z,α

is the L2 adjoint of AI ,Z,α .

Theorem 2.1 (New integral equations for Laplace IDP with d ≥ 3)

(i) Direct formulation. Let u be the solution of the Laplace IDP of Definition 1.3 with
d ≥ 3 and additionally gD ∈ H1(�). Then ∂−

n u satisfies

A′
I ,Z,α∂−

n u = BI ,Z,αgD. (2.3)

(ii) Indirect formulation. Given gD ∈ L2(�), if φ ∈ L2(�) satisfies

AI ,Z,αφ = −gD, (2.4)

then

u := (KZ − αS)φ (2.5)

is the solution of the Laplace IDP of Definition 1.5.
(iii) Continuity. A′

I ,Z,α : L2(�) → L2(�), AI ,Z,α : L2(�) → L2(�), and BI ,Z,α :
H1(�) → L2(�), and these mappings are continuous.

(iv) Coercivity up to compact perturbation. If Z ∈ (C(�))d and there exists c > 0
such that

Z(x) · n(x) ≥ c for almost every x ∈ �, (2.6)

then both A′
I ,Z,α and AI ,Z,α are the sum of a coercive operator and a compact

operator on L2(�).
(v) Invertibility for all α > 0. If α > 0, Z ∈ (C0,β(�))d for some 0 < β < 1, and

there exists c > 0 such that (2.6) holds, then both A′
I ,Z,α : L2(�) → L2(�) and

AI ,Z,α : L2(�) → L2(�) are invertible.
(vi) Coercivity for sufficiently large α. If Z satisfies (2.6), Z ∈ (C0,1(�))d with

Lipschitz constant LZ, and

2α ≥ 3dLZ, (2.7)
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1338 S. N. Chandler-Wilde, E. A. Spence

then both A′
I ,Z,α and AI ,Z,α are coercive on L2(�) with coercivity constant c/2

(with c defined by (2.6)); indeed,

(
A′
I ,Z,αψ,ψ

)
L2(�)

≥ c

2
‖ψ‖2L2(�)

for all real-valued ψ ∈ L2(�), (2.8)

and similarly for AI ,Z,α .

Recall that if A is real and (Aψ,ψ) ≥ Ccoer‖ψ‖2
L2(�)

for all real-valuedψ ∈ L2(�),

then�(Aφ, φ) ≥ Ccoer‖φ‖2
L2(�)

for all complex-valued φ ∈ L2(�); thus (2.8) implies

that A′
I ,Z,α and AI ,Z,α are coercive on complex-valued L2(�).

For any bounded Lipschitz open set	− there exists Z ∈ (C0,1(�))d such that (2.6)
holds; see, e.g., [40, Lemma 1.5.1.9], [78, Proof of Lemma 1.3], [18, Appendix D].
The combination of this result and Parts (iii) and (vi) of Theorem 2.1 imply that, for
any bounded Lipschitz open set, there exists a BIE formulation of the Laplace IDP
that is continuous and coercive in L2(�).

The vector field Z can be thought of as a “regularised normal vector"; the choice
Z = n satisfies (2.6) but does not have the regularity required for Parts (iv), (v), and
(vi) of Theorem 2.1 unless 	− is, respectively, C1, C1,β , or C1,1. Indeed, from Parts
(iv)-(vi) of the theorem we see that the stronger the property one wishes to obtain for
A′
I ,Z,α and AI ,Z,α , themore regularity ofZ is required. E.g., coercivity up to a compact

perturbation is proved for continuous Z satisfying (2.6) but coercivity is proved only
for Lipschitz Z satisfying (2.6).

2.1.2 The exterior Dirichlet problem

Given Z ∈ (L∞(�))d and α ∈ R, define the integral operators A′
E,Z,α , AE,Z,α , and

BE,Z,α by

A′
E,Z,α := 1

2
(Z · n)I + K ′

Z + αS, AE,Z,α := 1

2
(Z · n)I + KZ + αS, (2.9)

BE,Z,α := (Z · n)H + Z · ∇�

(
−1

2
I + D

)
+ α

(
−1

2
I + D

)
, (2.10)

with the subscript E standing for “exterior".

Theorem 2.2 (New integral equations for Laplace EDP with d ≥ 3)

(i) Direct formulation. Let u be the solution of the Laplace EDP of Definition 1.4
with d = 3 and additionally gD ∈ H1(�). Then ∂+

n u satisfies

A′
E,Z,α∂+

n u = BE,Z,αgD. (2.11)

(ii) Indirect formulation. Given gD ∈ L2(�), if φ ∈ L2(�) satisfies

AE,Z,αφ = gD, (2.12)
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then

u := (KZ + αS)φ (2.13)

is the solution of the Laplace EDP of Definition 1.6.
(iii) Continuity. A′

E,Z,α : L2(�) → L2(�), AE,Z,α : L2(�) → L2(�), and BE,Z,α :
H1(�) → L2(�), and these mappings are continuous.

(iv) Coercivity up to compact perturbation. If Z ∈ (C(�))d and there exists c > 0
such that (2.6) holds, then both A′

E,Z,α and AE,Z,α are the sum of a coercive

operator and a compact operator on L2(�).
(v) Invertibility for all α > 0. If α > 0, Z ∈ (C0,β(�))d for some 0 < β < 1, and

there exists c > 0 such that (2.6) holds, then both A′
E,Z,α : L2(�) → L2(�) and

AE,Z,α : L2(�) → L2(�) are invertible.
(vi) Coercivity for sufficiently large α. If Z ∈ (C0,1(�))d with Lipschitz constant

LZ and (2.7) holds, then both A′
E,Z,α and AE,Z,α are coercive on L2(�) with

coercivity constant c/2 (with c defined by (2.6)), in that (2.8) holds with A′
I ,Z,α

replaced by either A′
E,Z,α or AE,Z,α .

Similar to the case of the IDP, the existence, for any bounded Lipschitz open set
	−, of a vector field Z ∈ (C0,1(�))d such that (2.6) holds combined with Parts (iii)
and (vi) of Theorem 2.2 imply that, for any bounded Lipschitz open set 	− such that
	+ is connected, there exists a BIE formulation of the Laplace EDP that is continuous
and coercive in L2(�).

2.1.3 The new formulations of the IDP and EDP for d ≥ 3 on domains that are
star-shaped with respect to a ball

When 	− is star-shaped with respect to a ball, the coercivity results in Theorems 2.1
and 2.2 take a particularly simple form.

Definition 2.3 (i) D is star-shaped with respect to the point x0 if, whenever x ∈ D,
the segment [x0, x] ⊂ D.

(ii) D is star-shaped with respect to the ball Bκ(x0) if it is star-shaped with respect
to every point in Bκ(x0).

Lemma 2.4 ([73, Lemma 5.4.1]) If D is Lipschitz with outward unit normal vector
ν, then D is star-shaped with respect to Bκ(x0), for some κ > 0, if and only if
(x − x0) · ν(x) ≥ κ for all x ∈ ∂D for which ν(x) is defined.

From now on, if a domain D is star-shaped with respect to x0, we assume (without
loss of generality) that x0 = 0.

Theorem 2.5 (Coercivity for star-shaped domains)Let	− ⊂ R
d , d ≥ 3, be a bounded

Lipschitz domain that is star-shaped with respect to a ball of radius κ , i.e.

κ := ess inf
x∈�

(x · n(x)). (2.14)
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Then

A′
I ,x,α and AI ,x,α, with α ≥ −(d − 2)/2,

and

A′
E,x,α and AE,x,α, with α ≥ (d − 2)/2,

are all coercive on L2(�) with coercivity constant κ/2, in that (2.8) holds with c
replaced by κ , and A′

I ,Z,α replaced by any one of A′
I ,x,α, AI ,x,α, A′

E,x,α , or AE,x,α .

2.2 Convergence and conditioning of the associated Galerkinmethods

We now show how Theorems 2.1 and 2.2 imply that (i) the associated Galerkin meth-
ods converge (see Sect. 2.2.1), and (ii) the associated Galerkin matrices are provably
well-conditioned as the discretisation is refined, without the need for operator precon-
ditioning (see Sect. 2.2.2). We focus on the case d ≥ 3 and the new BIE formulations
for the IDP and EDP (appearing in Theorems 2.1 and 2.2), but analogous results hold
for the BIEs for star-shaped domains in Sect. 2.1.3 and also for the newBIEs for d = 2
in Sect. 2.3 below.

2.2.1 Convergence of the Galerkin method for the new formulations

Corollary 2.6 (Convergence of the Galerkin method) Let (HN )∞N=1 denote any
sequence of finite-dimensional subsets ofH := L2(�) that is asymptotically dense in
L2(�) in the sense defined in Sect. 1.2.

(a) If Z ∈ (C0,β(�))d for some 0 < β < 1, and there exists c > 0 such that (2.6)
holds then, for all α > 0, the Galerkin method (1.4) applied to any one of the BIEs
(2.3), (2.4), (2.11) or (2.12) converges (in the sense defined in Sect. 1).

(b) If, additionally,Z is Lipschitz and α satisfies (2.7), then, additionally, the Galerkin
solution exists for every finite-dimensional subspace HN ⊂ L2(�) and satisfies
the quasioptimal error estimate (1.9), with constant 2‖A†

Z,α‖L2(�)→L2(�)/c, where

A†
Z,α := AI ,Z,α for the BIEs (2.3) and (2.4), A†

Z,α := AE,Z,α for the BIEs (2.11)
and (2.12).

Since the proof is so short, we include it here.

Proof of Corollary 2.6 (a) This follows from Parts (iv) and (v) of Theorem 2.1/Theorem
2.2 and Part (b) of Theorem 1.1. (b) This follows from Part (vi) of Theorem
2.1/Theorem 2.2 and Part (c) of Theorem 1.1. 
�

We highlight that Corollary 2.6 is the first time convergence of the Galerkin method
for a BIE posed in L2(�) used to solve a boundary-value problem for Laplace’s
equation has been proved with the only assumption on � that it is Lipschitz; the same
is true if � is assumed to be Lipschitz polyhedral in 3-d.
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Remark 2.7 (Bounding the best approximation andGalerkin errors) For 3-d Lipschitz
polyhedra the smoothness of the solution, in particular its singularities at corners
and edges, is well understood (see, e.g., [104]) for the direct formulations (2.3) and
(2.11), where the solution of the integral equation is φ = ∂±

n u. Moreover, it is well
understood how to design effective h- and hp-boundary element approximation spaces
HN based on graded, anisotropic meshes so as to obtain optimal best approximation
error estimates (see, e.g., [30, 31, 61, 62, 104]), indeed exponential convergence of
minψ∈HN

∥∥φ − ψ
∥∥
L2(�)

as a function of MN := dim(HN ) if the Dirichlet data gD is
the restriction to � of an analytic function (see [62, Theorem 3.1]). Further, by Part (a)
of Corollary 2.6 and the quasioptimality (1.7), the same rates of convergence follow
for the Galerkin error ‖φ − φN‖L2(�) as long as α > 0.

2.2.2 Solution of the Galerkin linear systems of the new formulations

Let HN = span{ψN
1 , . . . , ψN

MN
}, with MN = dim(HN ) and {ψN

1 , . . . , ψN
MN

} a basis
for HN . The Galerkin method (1.4) applied to (2.4) is then equivalent to the linear
system

Ax = b (2.15)

where

(A)i j := (
A†
Z,αψN

j , ψN
i

)
L2(�)

and bi := −(gD, ψN
i )L2(�), i, j = 1, . . . , MN ,

(2.16)

with A†
Z,α := AI ,Z,α , andwith theGalerkin solutionφN given byφN = ∑MN

j=1 x
N
j ψN

j ,

where x = (xN1 , . . . , xNMN
)T . The Galerkin method applied to (2.3), (2.12), or (2.11),

respectively, is also equivalent to (2.15), with A†
Z,α := A′

I ,Z,α , AE,Z,α , or A′
E,Z,α in

(2.16) andwith correspondingly different definitions of the right-hand side components
bi .

In each case, whether A†
Z,α = AI ,Z,α , A′

I ,Z,α , AE,Z,α , or A′
E,Z,α , the matrix A

defined in (2.16) is non-symmetric, and a popular method for solving such non-
symmetric linear systems is the generalised minimum residual method (GMRES)
[86], which we now briefly recall. Consider the abstract linear system Cx = d in
C

MN , where C ∈ C
MN×MN is invertible. Let x0 be an initial guess for x, and define the

corresponding initial residual r0 := Cx0 − d and the corresponding standard Krylov
spaces by

Km(C, r0) := span
{
C jr0 : j = 0, . . . ,m − 1

}
.

For m ≥ 1, define the mth GMRES iterate xm to be the unique element of Km (C, r0)
such that its residual rm := Cxm − d satisfies the minimal residual property

‖rm‖2 = min
y∈Km (C,r0)

‖Cy − d‖2.
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The main result of this subsection (Theorem 2.11 below) is a result about the
convergence of GMRES applied to (2.15) preconditioned by diagonal matrices. This
result is proved under the following assumption in which (and subsequently) for every
vN ∈ HN we denote by v ∈ C

MN the unique vector v = (vN
1 , . . . , vN

MN
)T such that

vN = ∑MN
j=1 vN

j ψN
j .

Assumption 2.8 (HN )∞N=1, and the associated bases ({ψN
1 , . . . , ψN

MN
})∞N=1, are such

that there exists a sequence of diagonal matrices (DN )∞N=1 and C1,C2 > 0,
independent of N , such that

C1
∥∥D1/2

N w
∥∥
2 ≤ ‖wN‖L2(�) ≤ C2

∥∥D1/2
N w

∥∥
2 for all wN ∈ HN . (2.17)

Remark 2.9 (Relation of C1 and C2 in (2.17) to the mass matrix) LetMN be the mass
matrix defined by

(MN )i j := (
ψN

j , ψN
i

)
L2(�)

. (2.18)

Since (MNw,w)2 = ‖wN‖2
L2(�)

, and thus ‖M1/2
N w‖2 = ‖wN‖L2(�), (2.17) implies

that

C1‖v‖2 ≤ ∥∥M1/2
N D−1/2

N v
∥∥
L2(�)

≤ C2‖v‖2 for all vN ∈ HN ;

i.e., D1/2
N can be considered as a right-preconditioner for M1/2

N , removing the

N -dependence of the norms of M1/2
N and M−1/2

N .

Remark 2.10 (When does Assumption 2.8 hold?) If (ψN
j )

MN
j=1 is an orthogonal basis

ofHN , then Assumption 2.8 is satisfied with DN = MN and C1 = C2 = 1; therefore,
if (ψN

j )
MN
j=1 is an orthonormal basis of HN , then Assumption 2.8 is satisfied with DN

equal the identity matrix, IN .
Lemma 4.15 below shows that Assumption 2.8 is satisfied (and specifies the matri-

cesDN ) when (HN )∞N=1 are piecewise-polynomial subspaces allowing discontinuities
across elements, under very mild constraints on the sequence of meshes; in particular
Lemma 4.15 covers nodal basis functions on highly anisotropic meshes, such as the
meshes highlighted in Remark 2.7. We highlight that the assumption that discontinu-
ities are allowed is made so that we can assume in the proof that each basis function
is supported on only one element, but we expect the result to hold more generally. In
particular, if d = 3 and the sequence of meshes is regular, shape-regular, and quasi-
uniform (in the sense of [87, Definitions 4.1.4, 4.1.12, and 4.1.13], respectively) on
a polyhedral or piecewise curved domain (in the sense of [87, Assumptions 4.3.17
and 4.3.18], respectively), then Assumption 2.8 holds for a general nodal basis with
DN = hd−1IN by [87, Theorem 4.4.7].

Let ym be the mth iterate when the linear system

(D−1/2
N AD−1/2

N )y = D−1/2
N b (2.19)
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is solved using GMRES with zero initial guess. (Since DN is diagonal, the cost of
calculating the action of D−1/2

N AD−1/2
N is dominated by the cost of calculating the

action of A.) Let

φm
N :=

MN∑
j=1

(D−1/2
N ym) jψ

N
j , (2.20)

and observe that, by (2.19), (2.15), and (2.16), the Galerkin solution φN is given by

φN =
MN∑
j=1

(D−1/2
N y) jψN

j . (2.21)

Theorem 2.11 (Convergence of GMRES applied to the linear system (2.19)) Assume
that Z is Lipschitz, there exists c > 0 such that (2.6) holds, α satisfies (2.7), and
Assumption 2.8 holds. With C1 and C2 as in (2.17), and where ‖A†

Z,α‖ denotes

‖A†
Z,α‖L2(�)→L2(�), let β ∈ [0, π/2) be defined such that

cosβ = c

2‖A†
Z,α‖

(
C1

C2

)2

and let γβ := 2 sin

(
β

4 − 2β/π

)
(2.22)

(observe that cosβ is indeed ≤ 1 since, by definition, C1 ≤ C2 and c/2 ≤ ‖A†
Z,α‖).

Given ε > 0, if

m ≥
(
log

(
1

γβ

))−1
[
log

(
24‖A†

Z,α‖
c

(
C2

C1

)3
)

+ log

(
1

ε

)]
, (2.23)

then
∥∥φ − φm

N

∥∥
L2(�)

‖φ‖L2(�)

≤ (1 + ε)
2‖A†

Z,α‖
c

(
min

ψ∈HN

‖φ − ψ‖L2(�)

‖φ‖L2(�)

)
+ ε (2.24)

(compare to (1.9)).

The key point about Theorem 2.11 is that both the bound on the number of iterations
(2.23) and the terms on the right-hand side of (2.24) other than the best-approximation
error are independent of the dimension MN . Therefore, the number of iterations
required to solve systems involving D−1/2

N AD−1/2
N to a prescribed accuracy does not

increase as the discretisation is refined and MN increases. The same property holds
when the conjugate-gradient method is applied to sequences of MN ×MN symmetric,
positive-definite matrices whose condition number is bounded independently of MN .

Remark 2.12 (Bounds on the condition number)Recall that, in general, a bound on the
condition number for a nonnormal matrix cannot be used to rigorously prove results
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1344 S. N. Chandler-Wilde, E. A. Spence

about the convergence of GMRES applied to that matrix; see, e.g., [60, Page 165],
[32, Page 3]. We have no reason to expect that A is normal, so to prove Theorem 2.11
we crucially use the coercivity of AI ,Z,α .

Nevertheless, since there is a long history of studying the condition numbers of
second-kind integral equations posed on L2(�), we record that in the course of proving
Theorem 2.11 we prove that, where C := ‖A†

Z,α‖L2(�)→L2(�),

cond
(
D−1/2
N AD−1/2

N

) ≤ 2C

c

(
C2

C1

)2

,

where cond(B) := ‖B‖2‖B−1‖2 (see (4.41) and (4.42) below); i.e.,
cond(D−1/2

N AD−1/2
N ) is bounded independently of the dimension MN . Furthermore,

by the arguments in [6, §III], [63, Equation B.8], and [4, Equation 3.6.166],

cond(A) ≤ 2C

c
cond(MN ); (2.25)

recall that for a piecewise polynomial boundary element approximation space (in
dimensions d = 2 or 3) using nodal basis functions on a quasiuniform mesh (with
these terms defined in Sect. 4.6.2), cond(MN ) is independent of the dimension MN

(see, e.g., the proof of Part (i) of Lemma 4.15 or [87, Remark 4.5.3]).

Remark 2.13 (Calculating the entries of the Galerkin matrices for the new BIEs) Cal-
culating the entries of the Galerkin matrices for the new BIEs requires evaluating
integrals involving only the operators S, D, and D′. Indeed, for the direct BIE (2.3),
the expression (1.18) shows that constructing the Galerkin matrix requires evaluating
integrals involving the operators above, and evaluating integrals of the form

∫
�

Z(x) · ∇�

(
Sψ j (x)

)
ψi (x) ds(x) (2.26)

where ψi , ψ j ∈ HN . It is shown in [91, §4.3] that, using integration by parts, the
integral (2.26) can be evaluated in terms of integrals involving derivatives of ψi and
values (but not derivatives) of Sψ j . Constructing the Galerkin matrix of the indirect
BIE (2.4) requires evaluating the integral

∫
�

(
KZψ j (x)

)
ψi (x) ds(x), (2.27)

where KZ is defined by (1.15). Using the expansion Z = ∑d
i=1 Ziei in the definition

of KZ, we have

KZφ(x) =
d∑

i=1

ei ·
∫

�

∇y�(x, y)Zi (y)φ(y) ds(y).
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Coercive second-kind boundary integral equations for the… 1345

Given x ∈ �, ei = (ei · n(x))n(x) + eT (x), where eT (x) is tangent to � at x. Thus,

KZφ(x) = −
d∑

i=1

(
(ei · n(x))D′(Ziφ

)
(x) + ei · ∇�S

(
Ziφ

)
(x)

)
;

the integral (2.27) can therefore be evaluated in terms of integrals only involving D′
and (by the discussion above regarding (2.26)) S.

2.3 New boundary integral equations for the Laplace interior and exterior
Dirichlet problems on general 2-d Lipschitz domains

The biggest difference in going from d ≥ 3 to d = 2 is that the single-layer potential
is no longer o(1) at infinity, and is only O(1) for a restricted class of densities; see
(4.23), (4.24) below. In this section, we first outline what parts of the d ≥ 3 results
in Sect. 2.1 immediately carry over to d = 2. We then present modifications of the
integral equations in Theorem 2.1 and Theorem 2.2 that are coercive for general 2-d
Lipschitz domains when α is sufficiently large.

Inspecting the proof of Theorem 2.1 in Sect. 4, we see that Parts (i), (ii), (iii), and
(iv) hold when d = 2 (i.e., everything apart from invertibility (v) and coercivity for
sufficiently large α (vi)).

Similarly, inspecting the proof of Theorem 2.2 in Sect. 4, we see that Parts (i), (iii),
(iv), and (v) hold when d = 2 (i.e., everything apart from the indirect formulation (ii)
and coercivity for sufficiently large α (vi)), although, firstly, αu∞ must be added to the
right-hand side of the BIE (2.11), where u∞ is the limit of u at infinity6 and, secondly,
Part (v) holds when d = 2 provided the constant a in the fundamental solution (1.1)
is not equal to the capacity of �, Cap� (defined in, e.g., [65, Page 263]), which holds,
in particular, if a > diam(�).

Let

P�φ(x) := 1

|�|
∫

�

φ(y) ds(y) = 1

|�|
(
φ, 1

)
L2(�)

for x ∈ �; (2.28)

i.e., P�φ is the mean value of φ. Observe that P2
� = P� and P ′

� = P� . Let Q� :=
I − P� .

We give two theorems: the first for general 2-d Lipschitz domains, the second for
2-d star-shaped Lipschitz domains. Recall that we are assuming throughout that Z is
real-valued.

Theorem 2.14 (New integral equations for Laplace IDP and EDP in 2-d) Suppose that
Z ∈ (L∞(�))2 and α, β ∈ R.

6 This is because Green’s integral representation for the solution of the Laplace EDP with d = 2 takes the
form u(x) = −S∂+

n u(x) + Dγ +u(x) + u∞ for x ∈ 	+.
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1346 S. N. Chandler-Wilde, E. A. Spence

(i) IDP direct formulation. Let u be the solution of the Laplace IDP of Definition 1.3
with d = 2 and gD ∈ H1(�). Let

T ′
I ,Z,α,β := Q�A

′
I ,Z,αQ� + βP�. (2.29)

Then ∂−
n u satisfies

T ′
I ,Z,α,β(∂−

n u) = Q�BI ,Z,α gD. (2.30)

(ii) IDP indirect formulation. Let

TI ,Z,α,β := Q�AI ,Z,αQ� + βP�.

Given gD ∈ L2(�), if φ satisfies

TI ,Z,α,βφ = −gD, (2.31)

then, if d = 2,

u := (KZ − αS)Q�φ + P�AI ,Z,αQ�φ − βP�φ (2.32)

is the solution of the Laplace IDP of Definition 1.5.
(iii) EDP direct formulation. Let u be the solution of the Laplace EDP of Definition

1.4 with d = 2 and gD ∈ H1(�). Let

T ′
E,Z,α,β := Q�A

′
E,Z,αQ� + βP�. (2.33)

Then ∂+
n u satisfies

T ′
E,Z,α,β(∂+

n u) = Q�BE,Z,α gD. (2.34)

(iv) EDP indirect formulation. Let

TE,Z,α,β := Q�AE,Z,αQ� + βP�.

Given gD ∈ L2(�), if φ satisfies

TE,Z,α,βφ = gD, (2.35)

then, if d = 2,

u := (KZ + αS)Q�φ − P�AI ,Z,αQ�φ + βP�φ (2.36)

is the solution of the Laplace EDP of Definition 1.6.
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(v) Coercivity. If Z ∈ (C0,1(�))2 satisfies (2.6), α satisfies (2.7), and β = c/2, then
T ′
I ,Z,α,β , TI ,Z,α,β , T ′

E,Z,α,β , and TE,Z,α,β are all coercive on L2(�)with coercivity
constant c/2.

Theorem 2.15 (New integral equations for 2-d star-shaped domains)

(i) IDP direct formulation. Let u be the solution of the Laplace IDP of Definition 1.3
with d = 2 and gD ∈ H1(�). Then ∂−

n u satisfies

(
A′
I ,x,0 − |�|

4π
P�

)
∂−
n u = BI ,x,0 gD. (2.37)

(ii) IDP indirect formulation. Given gD ∈ L2(�), if φ satisfies

(
AI ,x,0 − |�|

4π
P�

)
φ = −gD, (2.38)

then, if d = 2,

u := KZφ + |�|
4π

P�φ

is the solution of the Laplace IDP of Definition 1.5.
(iii) EDP direct formulation. Let u be the solution of the Laplace EDP of Definition

1.3 with d = 2 and gD ∈ H1(�). Then ∂+
n u satisfies

(
A′
E,x,0 + |�|

4π
P�

)
∂+
n u = BE,x,0 gD. (2.39)

(iv) EDP indirect formulation. Given gD ∈ L2(�), if φ satisfies

(
AE,x,0 + |�|

4π
P�

)
φ = gD, (2.40)

then, if d = 2,

u := KZφ + |�|
4π

P�φ

is the solution of the Laplace EDP of Definition 1.6.
(v) Coercivity. If	− is star-shapedwith respect to a ball of radius κ (i.e. (2.14) holds),

then each of the integral operators on the left-hand sides of (2.37), (2.38), (2.39),
and (2.40) is coercive on L2(�) with coercivity constant κ/2.
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1348 S. N. Chandler-Wilde, E. A. Spence

3 Discussion of the ideas behind the new BIEs and links to previous
work

3.1 How the BIEs arise

The indirect BIE (2.4) for the IDP arises from imposing the boundary condition on the
ansatz u = (KZ −αS)φ via taking the nontangential limit. Similarly, the indirect BIE
(2.12) for the EDP arises from the ansatz u = (KZ + αS)φ. For the indirect BIEs for
d = 2 in Theorem 2.14, the idea is the same, except now a) the density in the ansatz
is not a general L2(�) function (so that Sφ has the correct behaviour at infinity), and
b) extra terms are added to the ansatz to ensure that the resulting BIE is still coercive
on L2(�).

For the direct BIE (2.3) for the IDP, recall that u = S∂−
n u − Dγ −u by Green’s

integral representation. The direct BIE (2.3) then arises from considering

−Z · γ̃ −(∇u) + αγ −u.

Similarly, the direct BIE (2.11) for the EDP arises from considering

Z · γ̃ +(∇u) + αγ +u,

with u = −S∂+
n u+Dγ +u. Alternatively, since (informally)Z·∇ = (Z·n)∂n+Z·∇� ,

the direct BIE (2.3) can be obtained by adding (i) (Z · n) multiplied by the standard
direct second-kind BIE

(
1

2
I − D′

)
∂−
n u = −Hγ −u, (3.1)

(ii) −Z · ∇� applied to the standard direct first-kind BIE

S∂−
n u =

(
1

2
I + D

)
γ −u, (3.2)

and (iii) α multiplied by (3.2). Similar considerations hold for the direct BIE (2.11),
and the 2-d direct BIEs of Theorems 2.14 and 2.15, where, additionally, one uses that
P�(∂±

n u) = 0 (see Lemma 4.10).

3.2 The other BVPs solved by the new BIEs

TheBIEs introduced in Sect. 2 to solve theDirichlet problem can be used to solve other
Laplace BVPs. Although the focus of this paper is on solving the Dirichlet problem,
we highlight this fact here since these other BVPs affect the properties of the new
BIEs.

For example, the BIO A′
E,Z,α used to solve the EDP in Theorem 2.2 can also be

used to solve the Laplace interior oblique Robin problem, i.e., the problem of finding
u in 	− satisfying 
u = 0 and
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(Z · n)∂−
n u + Z · ∇�(γ −u) + α γ −u = g on �; (3.3)

see Definition 5.1 and Theorem 5.5 below. Similarly, the BIO A′
I ,Z,α used to solve

the IDP in Theorem 2.1 can also be used to solve the Laplace exterior oblique Robin
problem; see Definition 5.2 and Theorem 5.6 below. This relationship means that the
injectivity results implicit in Part (v) of Theorems 2.1 and 2.2 are obtained by proving
uniqueness of these oblique Robin problems; see Sect. 5.3.

3.3 The use of similar BIEs by Calderón [13] andMedková [67]

Calderón [13] used indirect versions of the BIEs in Theorems 2.1 and 2.2 with α = 0
to prove wellposedness results about the Dirichlet problem and the oblique derivative
problem (i.e., (3.3) with α = 0) with data in L p(�). Indeed, [13] posed the ansatz
u = KZφ for the IDP, which gives the BIE AI ,Z,0φ = −gD [13, Page 39], and
posed the ansatz u = Sφ for the oblique derivative problem, which gives the BIE
A′
E,Z,0φ = g [13, Page 45]. Furthermore, Medková [67, §5.23] posed the ansatz

u = Sφ for the interior oblique Robin problem, resulting in A′
I ,Z,αφ = −g.

In both [13] and [67], the BIOs are proved to be Fredholm of index zero on L2(�);
see [13, Page 39] (where the result is proved to hold on a slightly wider range of L p(�)

spaces) and [67, Proposition 5.23.2].

3.4 Themain new properties of the BIEs of this paper: coercivity for appropriate˛

Building on the work of Calderón and Medková, we show that the BIOs are not only
Fredholm of index zero on L2(�), but invertible for general Lipschitz domains as soon
as α > 0, and, crucially, coercive if α is chosen appropriately (so also coercive plus
compact for all α > 0). For star-shaped domains this coercivity can be proved using
a simple modification of Calderón’s proof that the BIOs are Fredholm of index zero
(see Lemmas 4.1 and 4.2 below). For general domains this coercivity (for appropriate
α) is proved using Rellich-type identities (with this method also giving an alternative
proof of coercivity for star-shaped domains). Recall that identities arising from multi-
plying 
u by a derivative of u are associated with the name Rellich, due to Rellich’s
introduction of the multiplier x · ∇u for the Helmholtz equation in [84]; these iden-
tities have been well-used in the study of the Laplace, Helmholtz, and other elliptic
equations, see, e.g., the overviews in [49, Pages 111 and 112], [17, §5.3], [74, §1.4].
Verchota [101] famously used Rellich identities to prove invertibility of 1

2 I − D and
1
2 I −D′ on L2(�) (see Remark 4.9 below) andMedková [67, §5.23] also used Rellich
identities to prove that A′

I ,Z,α is invertible for sufficiently large α [67, Lemma 5.23.1,
Prop. 5.23.2, Theorem 5.23.4].

Our coercivity results are proved using the identity arising frommultiplying
u by
Z ·∇u+αu (see Lemma 4.6 below); our use of a multiplier that is a linear combination
of u and a derivative of u is inspired by the use of such multipliers by Morawetz [75–
77], and the particular identity we use also appears as [54, Equation 2.28]. As recalled
in Sect. 1.3, the idea of proving coercivity of Laplace BIOs in the trace spaces goes
back to Nédélec and Planchard [79], Le Roux [56], Hsiao and Wendland [46], and
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1350 S. N. Chandler-Wilde, E. A. Spence

Steinbach and Wendland [95], with this method based on using Green’s identity (i.e.
multiplying 
u by u). The idea of proving coercivity of second-kind BIOs in L2(�)

using Rellich-type identities was introduced in [91] for a particular Helmholtz BIE on
star-shaped domains and then further developed in [92] for the standard second-kind
Helmholtz BIE on smooth convex domains. The main differences between [91, 92]
and the present paper are that (i) [91, 92] only consider direct BIEs for the exterior
Helmholtz Dirichlet problem whereas the present paper considers direct and indirect
BIEs for the interior and exterior Laplace Dirichlet problems and (ii) [91, 92] only
prove coercivity under geometric restrictions on � (which is somewhat expected for
the high-frequency Helmholtz equation; see [7], [20, §6.3.2]), namely star-shapedness
with respect to a ball for [91] and strict convexity and a piecewise analyticC3 boundary
for [92], whereas the present paper proves coercivity of Laplace BIOs for general
Lipschitz domains.

3.5 Combined-potential ansatz for solutions of Laplace’s equation

A key difference between the indirect BIEs in the present paper and those in [13]
is that ours arise from the ansatz u = (KZ − αS)φ for the solution of the Laplace
IDP, whereas [13] poses the ansatz u = KZφ. We saw in the discussion above that the
presence of the parameter α—i.e., the fact that we use a combined-potential ansatz—is
crucial for proving coercivity of our BIOs.

The combined-potential ansatz is also crucial to proving uniqueness for caseswhere
coercivity does not hold. Indeed, using a linear combination of double- and single-layer
potentials to find solutions of the Helmholtz equation is standard, and goes back to
[10, 58, 81], with the motivation to ensure uniqueness at all wavenumbers. Using such
a combination for Laplace’s equation is less common, but this was done by D. Mitrea
in [69, Theorem 5.1] and subsequently by Medková in [66]. The rationale for this
combined ansatz is similar, namely that the standard indirect second-kind equations
(based on a double-layer-potential ansatz) have non-trivial null spaces for multiply
connected domains (with these characterised in [53, 69]) but the BIOs resulting from
a combined double- and single-layer potential ansatz are invertible no matter the
topology of 	−; see [67, Theorem 5.15.2] (for d ≥ 3) and [67, Theorem 5.15.3] (for
d = 2). The BIOs in Sect. 2 are also invertible (and even, for appropriate α, coercive)
no matter the topology of 	−.

4 Proofs of themain results

In this section we prove all of the results in Sect. 2 apart from the invertibility results
in Part (v) of Theorem 2.1/2.2. As discussed in Sect. 3, these invertibility results are
equivalent to uniqueness of the Laplace interior and exterior oblique Robin problems,
and these uniqueness results are proved in Sect. 5. Indeed, Part (v) of Theorem 2.1
follows from Corollary 5.11, and Part (v) of Theorem 2.2 follows from Corollary 5.9.
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4.1 Proofs of Parts (i), (ii), and (iii) of Theorems 2.1 and 2.2

For Part (i) of Theorem 2.1, first recall that the standard direct BIEs for the IDP
(corresponding to the top left of Table 1) are (3.2) and (3.1). If gD ∈ H1(�), then
∂−
n u ∈ L2(�) (by Theorem B.1), and then the mapping properties (A.3a) of S and D
imply that both sides of (3.2) are in H1(�). Taking the surface gradient, ∇� , of (3.2)
yields the (vector) integral equation in (L2(�))d

∇�S(∂−
n u) = ∇�

(
1

2
I + D

)
γ −u. (4.1)

Taking (Z · n) times the scalar equation (3.1), minus Z dot the vector equation (4.1),
plus α times (3.2) yields (2.3). The proof of Part (i) of Theorem 2.2 (i.e., that (2.11)
holds) is very similar.

For Part (ii) of Theorem 2.1, first recall that KZφ and Sφ are both in C2(	−) and
satisfy Laplace’s equation (for KZ this was recalled in Sect. 1.7). When φ ∈ L2(�),
Sφ ∈ H3/2(	−) by (A.2) and then (Sφ)∗ ∈ L2(�) by Part (iii) of Theorem B.2. As
recalled in Sect. 1.7, (KZφ)∗ ∈ L2(�) by [101], and thus u defined by (2.5) satisfies
u∗ ∈ L2(�). To show that φ satisfies the BIE (2.4), we take the non-tangential limit
of (2.5), using (1.16) and that, by Lemma B.3, γ̃ −(Sφ) = γ −(Sφ), where γ −(Sφ)

is given by the first jump relation in

γ ±S = S, ∂±
n S = ∓1

2
I + D′. (4.2)

(see, e.g., [65, Page 219] or [17, Equation 2.41]).
Part (ii) of Theorem 2.2 follows in an analogous way, except that we now need to

show that u defined by (2.13) satisfies u(x) = o(|x|3−d) when d = 3 as |x| → ∞;
these asymptotics follow from the first bound in (4.23) and the bound

|KZφ(x)| = O(|x|1−d) as |x| → ∞, (4.3)

which is proved in a similar way to the bound on the double-layer potential in [87,
Equation 3.23].

Part (iii) of both Theorems 2.1 and 2.2 follows from combining: (a) the definitions
of A′

I ,Z,α (2.1) and A′
E,Z,α (2.9) in terms of K ′

Z and S; (b) the definitions of AI ,Z,α

(2.1) and AE,Z,α (2.9) in terms of KZ and S; (c) the definitions of BI ,Z,α (2.2) and
BE,Z,α (2.2) in terms of D, H , and ∇�; (d) the continuity of KZ : L2(�) → L2(�)

(and hence also of K ′
Z : L2(�) → L2(�)) recalled in Sect. 1.7; (e) the continuity of

S : L2(�) → L2(�), H : H1(�) → L2(�), and D : H1(�) → H1(�) (and hence
also of ∇�D : H1(�) → L2(�)), recalled in (A.3).

4.2 Proofs of Part (iv) of Theorems 2.1 and 2.2 (coercivity up to a compact
perturbation)

Lemma 4.1 If d ≥ 2, � is Lipschitz and Z ∈ (C(�))d then KZ + K ′
Z is compact in

L2(�). Thus there exists a compact operator C : L2(�) → L2(�) such that
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(
KZφ, φ

)
L2(�)

= (
Cφ, φ

)
L2(�)

for all real-valued φ ∈ L2(�).

Part (iv) of both Theorems 2.1 and 2.2 follow by combining Lemma 4.1 with the
assumption (2.6) and the fact that S is compact on L2(�) (via the mapping property
in (A.3a) with s = 1/2).

Proof of Lemma 4.1 Since �(x, y) is a function of |x−y|, ∇x�(x, y) = −∇y�(x, y);
the definitions of KZ (1.15) and K ′

Z (1.18) then imply that, for all φ ∈ L2(�),

(
KZ + K ′

Z
)
φ(x) =

∫
�

(
Z(y) − Z(x)

) · ∇y�(x, y)φ(y) ds(y). (4.4)

If Z ∈ (C0,β(�))d for β > 0, then the kernel of the integral on the right-hand
side of (4.4) is weakly singular, and thus the operator is compact on L2(�) by, e.g.,
the combination of [83, Part 3 of the theorem on Page 49] and the Riesz-Thorin
interpolation theorem (see, e.g., [36, Theorem 6.27]), where the latter is used to verify
the hypothesis of the former. Therefore, the result of this lemma follows if we can
show that if, for all β > 0, KZ+K ′

Z is compact for allZ ∈ (C0,β(�))d , then KZ+K ′
Z

is compact for all Z ∈ (C(�))d .
Given Z ∈ (C(�))d , there exist β > 0 and Z� ∈ (C0,β(�))d for all � ∈ N such that

‖Z� −Z‖L∞ → 0 as � → ∞. By (1.18), the operator K ′
Z can be written K ′

Z = Z ·T,
whereT : L2(�) → (L2(�))d is bounded by the results of [22] and [101] (as discussed
in Sect. 1.7). Let K ′

Z�
= Z� · T; then

∥∥∥K ′
Z�

− K ′
Z

∥∥∥
L2(�)→L2(�)

= ‖Z� · T − Z · T‖L2(�)→L2(�)

≤ ‖Z� − Z‖(L∞(�))d ‖T‖L2(�)→L2(�) → 0

as � → ∞. Therefore also KZ�
→ KZ, so that KZ�

+ K ′
Z�

→ KZ + K ′
Z. Since the

space of compact operators is closed, KZ + K ′
Z is compact. 
�

4.3 Proof of Theorem 2.5 (coercivity forÄ− that are star-shaped with respect to a
ball)

Theorem 2.5 is an immediate consequence of combining (i) the following special case
of Lemma 4.1, (ii) the definitions of A′

I ,Z,α and AI ,Z,α in (2.1) and A′
E,Z,α and AE,Z,α

in (2.9), and (iii) the inequality (Sφ, φ)L2(�) ≥ 0 for all φ ∈ L2(�). The inequality in
(iii) is well-known, following from Green’s identity, and is a special case of Lemma
4.4 below with Z̃ = 0.

Lemma 4.2 (Key lemma for coercivity for star-shaped 	−) Let � be Lipschitz. If
d ≥ 3 then

Kx + K ′
x + (d − 2)S = 0 and thus

(
Kxφ, φ

)
L2(�)

+ d − 2

2

(
Sφ, φ

)
L2(�)

= 0 for all real-valued φ ∈ L2(�). (4.5)
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If d = 2 then

Kx + K ′
x + |�|

2π
P� = 0 and thus

((
Kx + |�|

4π
P�

)
φ, φ

)
L2(�)

= 0 for all real-valued φ ∈ L2(�), (4.6)

where P� is defined by (2.28).

Proof of Lemma 4.2 By (1.1), when d ≥ 3, (y − x) · ∇y�(x, y) = −(d − 2)�(x, y),
and when d = 2, (y − x) · ∇y�(x, y) = −1/2π . The results then follow from (4.4)
with Z(x) = x. 
�
Remark 4.3 (Link with the work of Fabes, Sand, and Seo [34]) The analogue of (4.5)
when � is the graph of a function (i.e., the boundary of a hypograph) appears in the
first sentence after the first displayed equation on [34, Page 133]. Indeed, the analogue
of the operator K ′

Z for the hypograph with Z = ed (i.e., the unit vector pointing in
the xd direction) arises in [34] when they apply the Rellich identity (4.9) below with
u = Sφ, as part of their proof that λI − D′ is invertible on L2(�) for λ ∈ R with
|λ| ≥ 1/2.

4.4 Proof of Part (vi) of Theorems 2.1 and 2.2 (coercivity for generalÄ−)

Lemma 4.4 (Key lemma for coercivity for general 	−) Suppose that 	− ⊂ R
d is

Lipschitz, Z̃ ∈ W 1,∞(Rd)with compact support, and α ∈ R satisfies the lower bound

2α ≥ 2

(
sup
x∈Rd

∥∥DZ̃(x)
∥∥
2

)
+ ∥∥∇ · Z̃∥∥

L∞(Rd )
(4.7)

(where DZ̃ is the matrix with (i, j)th element ∂i Z̃ j and ‖ · ‖2 denotes the operator
norm on R

d × R
d induced by the Euclidean norm on R

d ). If d ≥ 3 then

± (
KZ̃φ, φ)L2(�) + α(Sφ, φ)L2(�) ≥ 0 (4.8)

for all real-valued φ ∈ L2(�). If d = 2, then (4.8) holds for all real-valued φ ∈ L2(�)

with P�φ = 0, where P� is defined by (2.28).

We first show how the coercivity results of Theorems 2.1 and 2.2 are a consequence
of Lemma 4.4 combined with the following lemma.

Lemma 4.5 Given Z ∈ (C0,1(�))d with non-zero Lipschitz constant, there exists a
compactly supported Z̃ext ∈ (C0,1(Rd))d with the same Lipschitz constant as Z and
such that Z̃ext|� = Z.

The proof of Lemma 4.5 is given in [18, Appendix D] (i.e., the extended version of
the present paper). Note that, by the Kirszbraun theorem [51], [100], Z ∈ (C0,1(�))d

can be extended to a function Zext ∈ (C0,1(Rd))d with the same (non-zero) Lipschitz
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1354 S. N. Chandler-Wilde, E. A. Spence

constant, so to prove Lemma 4.5 we only need to show that there exists an extension
with compact support.

Proof of Part (vi) of Theorems 2.1 and 2.2 assuming Lemmas 4.4 and 4.5 Given Z, by
Lemma 4.5 there exists a compactly-supported Lipschitz extension ofZ toRd with the
same Lipschitz constant; call this Z̃. This Z̃ then satisfies the assumptions of Lemma
4.4, and the inequality (2.7) then ensures that (4.7) holds (where we have used the
inequality ‖A‖22 ≤ ∑

i
∑

j |(A)i j |2 to show that supx ‖DZ̃(x)‖2 ≤ dLZ). Thus (4.8)
holds (with KZ̃ replaced by KZ) and the coercivity results follow from the definitions
of A′

I ,Z,α and AI ,Z,α (2.1) and A′
E,Z,α and AE,Z,α (2.9) and the inequality (2.6) on

Z · n. 
�
The proof of Lemma 4.4 is based on the following identity. The relationship of this

identity to other similar identities in the literature is discussed in Sect. 3.4, and we
note, in particular, that this identity appears as [54, Equation 2.28]; for completeness
we include the short proof.

Lemma 4.6 (Rellich-type identity) Let v be a real-valued C2 function on some open
set D ⊂ R

d , d ≥ 2. Let Z̃ ∈ (C1(D))d and α ∈ C1(D) and let both be real-valued.
Then, with the summation convention,

2Zv
v = ∇ ·
[
2Zv∇v − |∇v|2Z̃

]
− (

2α − ∇ · Z̃)|∇v|2 − 2∂i Z̃ j∂iv∂ jv

− 2v∇α · ∇v, (4.9)

where

Zv := (
Z̃ · ∇v + αv

)
. (4.10)

Proof Splitting Zv into its component parts, we see that the identity (4.9) is the sum
of the identities

2 Z̃ · ∇v
v = ∇ ·
[
2 (Z̃ · ∇v)∇v − |∇v|2Z̃

]
+ (∇ · Z̃)|∇v|2 − 2∂i Z̃ j∂iv∂ jv

(4.11)

and

2αv
v = ∇ · [2αv∇v] − 2α|∇v|2 − 2v∇α · ∇v. (4.12)

To prove (4.12), expand the divergence on the right-hand side. The identity (4.11) is
obtained by combining the identities

Z̃ · ∇v
v = ∇ · [
(Z̃ · ∇v)∇v

] − ∂i Z̃ j∂iv∂ jv − ∇v · (Z̃ · ∇)∇v (4.13)

and

2∇v ·
(
Z̃ · ∇

)
∇v = ∇ ·

(
|∇v|2Z̃

)
− (∇ · Z̃)|∇v|2, (4.14)
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which can both be proved by expanding the divergences on the right-hand sides. 
�

For the proof of Lemma 4.4, we need the identity (4.9) integrated over a Lipschitz
domain when v is the single-layer potential. As a step towards this, we prove the
following lemma.

Lemma 4.7 (Integrated version of the identity) Let D be a Lipschitz domain with
outward-pointing unit normal vector ν. Define

V (D) :=
{
v : v ∈ H1(D), 
v ∈ L2(D), γ v ∈ H1(∂D), ∂νv ∈ L2(∂D)

}
.

(4.15)

If v ∈ V (D), Z̃ ∈ (W 1,∞(D))d (i.e. Z̃i and ∂i Z̃ j ∈ L∞(D) for i, j = 1, . . . , n),
α ∈ W 1,∞(D), and v, Z̃, and α are all real-valued, then

∫
∂D

[
(Z̃ · ν)

(
(∂νv)2 − |∇�v|2

)
+ 2

(
Z̃ · ∇�(γ v) + α(γ v)

)
∂νv

]
ds

=
∫
D

(
2Zv
v + 2 ∂i Z̃ j∂iv∂ jv + 2 v∇α · ∇v + (

2α − ∇ · Z̃) |∇v|2
)
dx.

(4.16)

Recall that, when D is Lipschitz, we can identify W 1,∞(D) with C0,1(D) (see, e.g.,
[33, §4.2.3, Theorem 5]), and understand Z̃ and α on ∂D in (4.16) by restriction
without needing a trace operator.

Proof of Lemma 4.7 Wefirst assume that Z̃ andα are as in the statement of the theorem,
but v ∈ D(D) := {U |D : U ∈ C∞(Rd)}. Recall that the divergence theorem ∫

D ∇ ·
F dx = ∫

∂D F ·ν ds is valid when F ∈ (C1(D))d [65, Theorem 3.34], and thus for F ∈
(H1(D))d by the density of C1(D) in H1(D) [65, Theorem 3.29] and the continuity
of the trace operator from H1(D) to H1/2(∂D) [65, Theorem 3.37]. Recall also that
the product of an H1(D) function and aW 1,∞(D) function is in H1(D), and the usual
product rule for differentiation holds for such functions. Thus F = 2Zv∇v − |∇v|2Z̃
is in (H1(D))d and then (4.9) implies that ∇ · F is given by the integrand on the
left-hand side of (4.16). Furthermore,

γF · ν = (Z̃ · ν)

((
∂v

∂ν

)2

− |∇�v|2
)

+ 2
(
Z̃ · ∇�v + αv

)∂v

∂ν

on ∂D, where we have used the fact that∇v = ν(∂v/∂ν)+∇�v on ∂D for v ∈ D(D);
the identity (4.16) then follows from the divergence theorem.

The result for v ∈ V (D) then follows from (i) the density of D(	) in V (D) [26,
Lemmas 2 and 3] and (ii) the fact that (4.16) is continuous in v with respect to the
topology of V (D) 
�
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1356 S. N. Chandler-Wilde, E. A. Spence

Proof of Lemma 4.4 As discussed in Sect. 3, our strategy is tomimic the classicmethod
of “transferring" coercivity properties of the PDE formulation to the BIOs in the trace
spaces, but with Green’s identity

−
∫
D
u
u dx =

∫
D

|∇u|2 dx −
∫

∂D
γ u ∂nu ds, (4.17)

replaced by the integrated version of the Rellich-type identity (4.9). That is, we apply
the integrated version of (4.9), namely (4.16), with v replaced by u = Sφ (with
φ ∈ L2(�)), and D first equal to 	−, and then equal to 	+ ∩ BR , where R >

supx∈	− |x|. At this stage we let Z̃ be a general real-valued W 1,∞(R3) vector field
with compact support, and let α be an arbitrary real constant. That (4.16) holds with
v replaced by u = Sφ, with φ real-valued, can be justified by using the results of
[48] and [17, Appendix A] recapped in Appendix Sect. B. Indeed, when φ ∈ L2(�),
u = Sφ ∈ H3/2(D) when D = 	− or 	+ ∩ BR by the first mapping property in
(A.2); then u ∈ V (D) by Corollary B.5, and (4.16) holds by Lemma 4.7,7

We have therefore established that (4.16) holds when D = 	− or 	+ ∩ BR and
u = Sφ for φ ∈ L2(�) that is real-valued. That is, with the identity (4.9) written as
∇ · Q = P ,

∫
�

Q− · n ds =
∫

	−
P dx (4.18)

and

−
∫

�

Q+ · n ds +
∫

�R

QR ds =
∫

	+∩BR

P dx, (4.19)

where (remembering that 
u = 0 and α is a constant)

P = 2 ∂i Z̃ j∂i u∂ j u + (
2α − ∇ · Z̃)|∇u|2, (4.20)

Q± · n = (Z̃ · n)
((

∂±
n u

)2 − |∇�(γ ±u)|2
)

+ 2
(
Z̃ · ∇�(γ ±u) + αγ ±u

)
∂±
n u.

(4.21)

If R is chosen large enough so that supp Z̃ ⊂ BR , then

QR = Q · x̂ = 2α u
∂u

∂r
for x ∈ �R, (4.22)

7 A common alternative to justify that (4.16) holds with v replaced by u = Sφ is to (a) approximate 	−
by a sequence of subdomains (often they are assumed to be smoother than 	−, but this is not necessary),
(b) apply the identity (4.16) to each member of the sequence, (c) pass to the limit using the facts that (i)
the non-tangential limits of u and ∇u exist, and (ii) the maximal functions u∗ defined by (1.12) and (∇u)∗
(defined analogously) are in L2(�); for examples of this argument, see, e.g., [101, Proof of Theorem 2.1]
[68, Proof of Theorem 1], [97, Proof of Proposition 4.2], and [91, Proof of Lemma 4.5].
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where we have used the fact that u is C∞ in a neighbourhood of �R (either by elliptic
regularity or directly by the definition of the single-layer potential (1.19)) to justify
writing ∂u/∂r in place of some appropriate trace.

Adding (4.18) and (4.19) yields

∫
�

(Q− − Q+) · n ds +
∫

�R

QR ds =
∫

	−
P dx +

∫
	+∩BR

P dx.

Now if d ≥ 3 and φ ∈ L2(�), then

|Sφ(x)| = O(|x|2−d) and |∇Sφ(x)| = O(|x|1−d) (4.23)

as |x| → ∞, uniformly in all directions x/|x|. If d = 2 then

Sφ(x) = 1

2π
log

(
a

|x|
)

(φ, 1)L2(�) + O(|x|−1) and

∇Sφ(x) = − 1

2π |x| (φ, 1)L2(�) + O(|x|−2) (4.24)

as |x| → ∞, uniformly in all directions x/|x|; these asymptotics are proved for
d = 2, 3 in, e.g., [93, Lemma 6.21] (see also [87, Equations 3.22 and 3.23] for d = 3);
the proof of (4.23) for d ≥ 4 is analogous. Recalling the definition of P� (2.28) and the
assumption that P�φ = 0 when d = 2, we see that, by (4.22),

∫
�R

QR ds = O(R2−d)

for d ≥ 3 and
∫
�R

QR ds = O(R−2) for d = 2 as R → ∞. Thus, in this limit,

∫
�

(Q− − Q+) · n ds =
∫

	−∪	+
P dx. (4.25)

The expressions for Q± · n (4.21) and the single-layer potential jump relations (4.2)
then imply that

∫
�

(Q− − Q+) · n ds = 2
(
(Z̃ · n)D′ + Z̃ · ∇�S + αS)φ, φ

)
L2(�)

. (4.26)

A key identity to help one see this is

(
∂−
n u(x)

)2 − (
∂+
n u(x)

)2 = 2φ(x)
(
D′φ(x)

)
for a.e. x ∈ �,

which can be established using a2 − b2 = (a − b)(a + b) and the jump relations (4.2)
for ∂±

n u.
Combining (4.25), (4.26), and (2.28), we therefore have that

2
(
(Z̃ · n)D′ + Z̃ · ∇�S + αS)φ, φ

)
L2(�)

=
∫

	−∪	+

(
2∂i Z̃ j∂i u∂ j u + (

2α − ∇ · Z̃)|∇u|2
)
dx. (4.27)
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1358 S. N. Chandler-Wilde, E. A. Spence

Using the Cauchy-Schwarz inequality and the definition of the matrix 2-norm for
the term involving 2 ∂i Z̃ j∂i u∂ j u = 2∇u · (DZ̃∇u), and then standard results about
integrals for both this term and the term involving ∇ · Z̃, we find that the right-hand
side of (4.27) is

≥
(
2α −

(
2 sup
x∈Rd

∥∥DZ̃
∥∥
2 + ∥∥∇ · Z̃∥∥

L∞(Rd )

)) ∫
	−∪	+

|∇u|2 dx.

Therefore, choosing α to satisfy the lower bound (4.7) establishes the lemma with the
+ sign in (4.8). Multiplying (4.27) by −1 and letting α �→ −α we see again that if α

satisfies (4.7) then this modified right-hand side is ≥ 0, which establishes the lemma
with the − sign in (4.8). 
�
Remark 4.8 (Recovering the results of Lemma 4.2 for d ≥ 3) If d ≥ 3 and Z̃ = x,
(4.27) becomes

2
(
(x · n)D′ + x · ∇�S + αS)φ, φ

)
L2(�)

= (2 + 2α − d)

∫
	−∪	+

|∇u|2 dx.
(4.28)

This is because, despite the additional terms in the analogue of (4.22) coming from Z̃
no longer having compact support, it turns out that

∫
�R

QR ds = O(R2−d) as R → ∞
as before. Letting α = (d − 2)/2 in (4.28) and recalling the definition (1.18) of K ′

Z,
we obtain the second equality in (4.5).

Remark 4.9 (Link with Verchota’s proof of invertibility of 1
2 I − D′ on L2(�)) Ver-

chota’s proof that 12 I−D′ is invertible on L2(�)when� is Lipschitz in [101, Theorem
3.1] relies on the inequalities

∥∥∥∥
(
1

2
I − D′

)
φ

∥∥∥∥
L2(�)

�
∥∥∥∥
(
1

2
I + D′

)
φ

∥∥∥∥
L2(�)

�
∥∥∥∥
(
1

2
I − D′

)
φ

∥∥∥∥
L2(�)

,

(4.29)

which hold for all φ ∈ L2(�) for d ≥ 3 and for all φ ∈ L2(�) with P�φ = 0 for
d = 2, and where the omitted constants depend only on the Lipschitz character of
	−. (Note that [101, Theorem 2.1] proves the slightly weaker result that

∥∥∥∥
(
1

2
I ± D′

0

)
φ

∥∥∥∥
L2(�)

�
∥∥∥∥
(
1

2
I ∓ D′

0

)
φ

∥∥∥∥
L2(�)

+
∣∣∣∣
∫

�

S0φ ds

∣∣∣∣ ,

but the final term on the right-hand side can be eliminated; see [68, Chapter 15,
Corollary 1, Page 273] when � is the graph of a function and [3, Corollary 2.20] for
	− bounded.)

The inequalities in (4.29) can be obtained by applying the following Dirichlet-to-
Neumann and Neumann-to-Dirichlet map bounds with u = Sφ and using the jump
relations (4.2).
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(i) If u ∈ H1(	−) is such that 
u = 0 in 	−, γ −u ∈ H1(�), and ∂−
n u ∈ L2(�),

then

∥∥∇�(γ −u)
∥∥
L2(�)

�
∥∥∂−

n u
∥∥
L2(�)

�
∥∥∇�(γ −u)

∥∥
L2(�)

. (4.30)

(ii) If u ∈ H1
loc(	

+) is such that 
u = 0 in 	+, γ +u ∈ H1(�), ∂+
n u ∈ L2(�), and

u(x) = O(|x|2−d) for d ≥ 3 and u(x) = O(|x|−1) for d = 2, then

∥∥∇�(γ +u)
∥∥
L2(�)

�
∥∥∂+

n u
∥∥
L2(�)

�
∥∥∇�(γ +u)

∥∥
L2(�)

. (4.31)

The link with our proofs of coercivity of our new BIEs comes from the fact that the
bounds (4.30) and (4.31) can be proved using the identity (4.9) with α = 0 and Z̃ the
vector field of Lemma 4.5; see, e.g., [3, Corollary 2.20].

4.5 Proofs of Theorems 2.14 and 2.15 (the 2d results)

Lemma 4.10 If u is the solution of the IDP then P�(∂−
n u) = 0. If u is the solution of

the EDP and d = 2, then P�(∂+
n u) = 0.

Proof The result for the IDP follows from applying Green’s second identity to u and
the constant function. The result for the EDP when d = 2 follows in a similar way,
using the arguments in the proof of [65, Theorem 8.9] to deal with the integral at
infinity. Alternatively, the result for the EDP when d = 2 is proved in [52, Proof of
Theorem 6.10]; see [52, Equation 6.10]. 
�
Proof of Theorem 2.14 For Parts (i) and (iii), arguing exactly as in the proofs of Part
(i) of Theorems 2.1 and 2.2 gives

A′
I ,Z,α∂−

n u = BI ,Z,αgD and A′
E,Z,α∂+

n u = BE,Z,αgD + αu∞, (4.32)

where u∞ is the limit of the solution of the EDP at infinity and we use Green’s integral
representation u(x) = −S∂+

n u(x)+Dγ +u(x)+u∞ for x ∈ 	+ and d = 2. The BIEs
(2.30) and (2.34) then follow by applying Q� = I − P� to the equations in (4.32) and
then using that P�∂±

n u = 0 by Lemma 4.10, so that ∂±
n u = Q�∂±

n u.
For Part (ii), taking the non-tangential limit of u defined by (2.32) and using the

jump relations (1.16) and (4.2) (similar to the proof of Part (ii) of Theorem 2.1) and
the fact that Q� = I − P� , we obtain that γ−u = gD if the BIE (2.31) holds. Exactly
as in the analogous proof for d ≥ 3 in Sect. 4.1, KZψ and Sψ with ψ ∈ L2(�) are
in C2(	−), have non-tangential maximal functions in L2(�), and satisfy Laplace’s
equation; therefore u defined by (2.32) inherits these properties.

The proof of Part (iv) is very similar to the proof of Part (ii), except that we now need
to show that u defined by (2.36) satisfies u(x) = O(1) as |x| → ∞; these asymptotics
follow from the first bound in (4.23) (since P�Q�φ = 0) and the bound (4.3).

To see Part (v), arguing as in the proof of Part (vi) of Theorems 2.1 and 2.2 below
Lemma 4.5, but using (4.8) with d = 2, we see that (Aψ,ψ)L2(�) ≥ (c/2)‖ψ‖2

L2(�)

for all real-valued ψ ∈ L2
0(�) := {φ ∈ L2(�) : P�φ = 0} if α satisfies (2.7), where
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1360 S. N. Chandler-Wilde, E. A. Spence

A denotes any of AI ,Z,α , A′
I ,Z,α , AE,Z,α , or A′

E,Z,α . Part (v) then follows from the

fact that if (Aψ,ψ)L2(�) ≥ (c/2)‖ψ‖2
L2(�)

for all real-valued ψ ∈ L2
0(�) (so that A

is coercive on L2
0(�)with coercivity constant c/2), then Q�AQ� +cP�/2 is coercive

on L2(�) with coercivity constant c/2. Indeed, since Q′
� = Q� , P2

� = P� , P ′
� = P� ,

and P�Q� = 0, it follows that, for all real-valued ψ ∈ L2(�), Q�ψ ∈ L2
0(�) and

((
Q�AQ� + c

2
P�

)
ψ,ψ

)
L2(�)

= (
AQ�ψ, Q�ψ

)
L2(�)

+ c

2

(
P2

�ψ,ψ
)
L2(�)

≥ c

2
‖Q�ψ‖2L2(�)

+ c

2
‖P�ψ‖2L2(�)

= c

2
‖ψ‖2L2(�)

.


�
Proof of Theorem 2.15 For Parts (i) and (iii), taking Z = x and α = 0 in (4.32) yields

A′
I ,x,0∂

+
n u = BI ,x,0 gD and A′

E,x,0∂
+
n u = BE,x,0 gD.

Since P�∂±
n u = 0 by Lemma 4.10, the BIEs (2.37) and (2.39) follow.

The proofs of Parts (ii) and (iv) follow in the same way as the proofs of Parts (ii)
and (iv) of Theorem 2.14, namely by taking non-tangential limits of u, using the jump
relations (1.16) and (4.2), and using the asymptotics (4.3) for the exterior problem.

Part (v) follows immediately from using the second equation in (4.6). 
�

4.6 Proof of the results in Sect. 2.2.2 (the conditioning results)

4.6.1 Proof of Theorem 2.11

Theorem2.11 is a special case of the following general theorem aboutGMRES applied
to Galerkin linear systems of a continuous and coercive operator on a Hilbert space.
We first establish some notation.

As in Sect. 1.2, we consider the Galerkin method applied to the equation Aφ = f ,
where φ, f ∈ H, A : H → H is a continuous (i.e. bounded) linear operator, andH is
a Hilbert space over C. Let HN ⊂ H be such that HN = span{ψN

1 , . . . , ψN
MN

}, with
MN = dim(HN ) and {ψN

1 , . . . , ψN
MN

} a basis for HN . The Galerkin matrix of A is

then defined by (A)i j := (AψN
j , ψN

i )H, i, j = 1, . . . , MN (compare to (2.16)).
The rest of the set up of Sect. 2.2.2 then holds exactly as stated; i.e., we consider

the equation Ax = b, let ym be the mth iterate when the linear system (2.19) is solved
using GMRES with zero initial guess, let rm denote the corresponding residual, and
let φm

N be defined by (2.20), so that the Galerkin solution φN is given by (2.21).

Theorem 4.11 (Convergence of GMRES applied to the Galerkin linear system of a
continuous and coercive operator) Suppose that A : H → H is coercive (i.e., there
exists Ccoer > 0 such that (1.8) holds) and Assumption 2.8 holds with ‖ · ‖L2(�) in
(2.17) replaced by ‖ · ‖H. With C1 and C2 as in (2.17), let β ∈ [0, π/2) be defined
such that
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cosβ = Ccoer

‖A‖H→H

(
C1

C2

)2

and let γβ := 2 sin

(
β

4 − 2β/π

)
. (4.33)

Given ε > 0, if

m ≥
(
log

(
1

γβ

))−1
[
log

(
12‖A‖H→H

Ccoer

(
C2

C1

)3
)

+ log

(
1

ε

)]
, (4.34)

then
∥∥φ − φm

N

∥∥H
‖φ‖H

≤ (1 + ε)
‖A‖H→H
Ccoer

(
min

ψ∈HN

‖φ − ψ‖H
‖φ‖H

)
+ ε. (4.35)

The first step in proving Theorem 4.11 is to establish the following relationship
between the error

∥∥φ − φm
N

∥∥H, the GMRES relative residual ‖rm‖2 / ‖r0‖2, and the
Galerkin error ‖φ − φN‖H.

Lemma 4.12 Suppose that A : H → H is coercive (i.e., there exists Ccoer > 0 such
that (1.8) holds) and Assumption 2.8 holds with ‖ · ‖L2(�) in (2.17) replaced by ‖ · ‖H.
If C1 and C2 are as in (2.17) and φm

N is defined by (2.20), then

∥∥φ − φm
N

∥∥H
‖φ‖H

≤
(
1 + ‖A‖H→H

Ccoer

(
C2

C1

)3 ‖rm‖2
‖r0‖2

)
‖φ − φN‖H

‖φ‖H

+‖A‖H→H
Ccoer

(
C2

C1

)3 ‖rm‖2
‖r0‖2 . (4.36)

The right-hand side of (4.36) contains the relative residual ‖rm‖2 / ‖r0‖2. The
following bound, from [5], gives sufficient conditions on m for this relative residual
to be controllably small; recall that this bound is an improvement of the so-called
“Elman estimate" from [28, 29].

Theorem 4.13 (Elman-type estimate for GMRES from [5]) Let C be an MN × MN

matrix with 0 /∈ W (C), where

W (C) := {〈Cv, v〉 : v ∈ C
MN , ‖v‖2 = 1

}

is the field of values, also called the numerical range, of C. Let β ∈ [0, π/2) be such
that

cosβ ≤ dist
(
0,W (C)

)
‖C‖2 (4.37)

(observe that cosβ is indeed ≤ 1 by the definition of W (C)) and, given β, let

γβ := 2 sin

(
β

4 − 2β/π

)
.

123



1362 S. N. Chandler-Wilde, E. A. Spence

Let rm be the mth GMRES residual, as defined in Sect. 2.2.2. Then

‖rm‖2
‖r0‖2 ≤

(
2 + 2√

3

) (
2 + γβ

)
(γβ)m ≤ 12(γβ)m . (4.38)

Proof of Lemma 4.12 We first use continuity and coercivity of A to obtain bounds on
the norm of D−1/2

N AD−1/2
N and its inverse. By the definition (2.16),

(
Av,w

)
2 = (

AvN , wN
)
H for all vN , wN ∈ HN .

Using this, along with the norm equivalence (2.17), we find that, for all v,w ∈ C
MN ,

∣∣(Av,w)
2

∣∣ ≤ ‖A‖H→H ‖vN‖H ‖wN‖H ≤ ‖A‖H→H (C2)
2
∥∥D1/2

N v
∥∥
2

∥∥D1/2
N w

∥∥
2

and

∣∣(Av, v)2
∣∣ ≥ Ccoer ‖vN‖2H ≥ Ccoer(C1)

2
∥∥D1/2

N v
∥∥2
2.

Letting ṽ = D1/2
N v and w̃ = D1/2

N w, we therefore have that, for all ṽ, w̃ ∈ C
MN ,

∣∣(D−1/2
N AD−1/2

N ṽ, w̃
)
2

∣∣ ≤ ‖A‖H→H (C2)
2 ‖̃v‖2 ‖w̃‖2 (4.39)

and

∣∣(D−1/2
N AD−1/2

N ṽ, ṽ
)
2

∣∣ ≥ Ccoer(C1)
2 ‖̃v‖22 . (4.40)

The inequalities (4.39) and (4.40) then imply that

∥∥D−1/2
N AD−1/2

N

∥∥
2 ≤ ‖A‖H→H (C2)

2 and

dist
(
0,W (D−1/2

N AD−1/2
N )

)
≥ Ccoer(C1)

2, (4.41)

with the second inequality and the Lax–Milgram theorem then implying that

∥∥(
D−1/2
N AD−1/2

N

)−1∥∥
2 ≤ 1

Ccoer(C1)2
. (4.42)

We now prove (4.36). By the definitions of ym (see (2.19)) and rm ,

rm = D−1/2
N AD−1/2

N (ym − y)

and (since y0 = 0) r0 = −D−1/2
N b = −D−1/2

N AD−1/2
N y. Therefore, by (4.42) and the

first bound in (4.41),

‖ym − y‖2 ≤ ∥∥(
D−1/2
N AD−1/2

N

)−1∥∥
2 ‖rm‖2
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≤ 1

Ccoer(C1)2

(‖rm‖2
‖r0‖2

)
‖r0‖2

≤ 1

Ccoer(C1)2

(‖rm‖2
‖r0‖2

) ∥∥D−1/2
N AD−1/2

N

∥∥
2 ‖y‖2

≤ ‖A‖H→H
Ccoer

(
C2

C1

)2 (‖rm‖2
‖r0‖2

)
‖y‖2 . (4.43)

Next, the definition of φm
N (2.20), the expression for φN (2.21), and the norm

equivalence (2.17) imply that

∥∥φm
N − φN

∥∥H
‖φN‖H

≤ C2

C1

∥∥D1/2
N (D−1/2

N (ym − y))
∥∥
2∥∥D1/2

N D−1/2
N y

∥∥
2

= C2

C1

∥∥ym − y
∥∥
2∥∥y∥∥2 ,

and then combining this with (4.43) we obtain

∥∥φm
N − φN

∥∥H
‖φN‖H

≤ ‖A‖H→H
Ccoer

(
C2

C1

)3 (‖rm‖2
‖r0‖2

)
.

Combining this last inequality with the triangle inequality, we obtain that

∥∥φ − φm
N

∥∥H ≤ ‖φ − φN‖H + ∥∥φN − φm
N

∥∥H ,

≤ ‖φ − φN‖H + ‖A‖H→H
Ccoer

(
C2

C1

)3 (‖rm‖2
‖r0‖2

)
‖φN‖H ,

and then the result (4.36) follows by another use of the triangle inequality. 
�
Proof of Theorem 4.11 By Part (c) of Theorem 1.1, the Galerkin error ‖φ − φN‖H
satisfies the quasioptimal error estimate (1.9). The definition of β in (4.33) and the
bounds onD−1/2

N AD−1/2
N in (4.41) imply that (4.37) is satisfiedwithC = D−1/2

N AD−1/2
N ;

note that here it is important that H is a Hilbert space over C, so that continuity and
coercivity of A control W (A) (which involves A applied to vectors in C

MN ).
Using both (1.9) and the relative-residual bound (4.38) in (4.36), we obtain that

∥∥φ − φm
N

∥∥H
‖φ‖H

≤
(
1 + 12 ‖A‖H→H

Ccoer

(
C2

C1

)3

(γβ)m

)
‖A‖H→H
Ccoer

min
ψ∈HN

‖φ − ψ‖H
‖φ‖H

+ 12 ‖A‖H→H
Ccoer

(
C2

C1

)3

(γβ)m .

Given ε > 0, if m satisfies (4.34), then

12 ‖A‖H→H
Ccoer

(
C2

C1

)3

(γβ)m ≤ ε

and thus the bound (4.35) holds. 
�
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4.6.2 Conditions under which Assumption 2.8 holds

Our result about the convergence of GMRES applied to the Galerkin matrices of the
new formulations, namely Theorem 2.11, is proved under Assumption 2.8, which is
an assumption about the sequence of finite-dimensional subspaces (HN )∞N=1 and their
associatedbases.Recall fromSect. 2.2.2 thatAssumption2.8 holds, indeedwithDN the
identitymatrix, for any sequence (HN )∞N=1 (and in any dimension d ≥ 2) provided that
the baseswe choose are orthonormal. Butmany standard implementations of boundary
element approximation methods use non-orthogonal bases, particularly bases of so-
called nodal basis functions (e.g., [2, 38], [93, Page 216], [87, Pages 205 and 280].
We show as Lemma 4.15 below that Assumption 2.8 holds (moreover specifying the
diagonal matrices DN ) under mild constraints on the sequence of meshes when the
approximation space allows discontinuities across elements. In particular, Lemma
4.15 holds when nodal basis functions are used, including for sequences of highly
anisotropic meshes.

To specify the conditions under which Assumption 2.8 holds, we recall the notion
of a surface mesh on �, and aspects of the standard implementation of boundary
element methods, including the notation of a reference element (for the moment, until
we indicate otherwise, our results hold for any dimension d ≥ 2). Following, e.g., [87,
Defn. 4.1.2], we call G a mesh of � if G is a set of finitely many disjoint, relatively
open, topologically regular8 subsets of � that cover � in the sense that � = ∪τ∈Gτ ,
and are such that the relative boundary of each τ ∈ G has zero surface measure. We
call the elements of G the (boundary) elements of the mesh and, for τ ∈ G, set

hτ := diam(τ ) and sτ := |τ |,

where |τ | denotes the (d − 1)-dimensional surface measure of τ , and set h :=
maxτ∈G hτ .

We assume moreover that, for each τ ∈ G, there exists a mapping χτ : τ̂ → τ ,
for some τ̂ ∈ R, the finite set of reference elements, that is bijective and at least
bi-Lipschitz, so that χ−1

τ : τ → τ̂ is well-defined and also bi-Lipschitz.9 Here,
by a reference element, τ̂ , we mean, generically, some bounded, open, topologically
regular subset of Rd−1, but with the idea that, in practical implementations, τ̂ is
a polyhedron, usually the unit cube τ̂ = (0, 1)d−1 or the unit simplex τ̂ = {̂x ∈
(0, 1)d−1 : x̂1 + . . . + x̂d−1 < 1}. (In the case d = 2 it is usual to take R = {τ̂ } with
τ̂ = (0, 1).) For each τ ∈ G let Jτ ∈ (L∞(�))d×(d−1) denote the Jacobian of χτ .
Importantly, for every f ∈ L1(τ ), where τ̂ ∈ R is the domain of χτ ,

∫
τ

f (x) ds(x) =
∫

τ̂

f (χτ (̂x))gτ (̂x) d̂x, where gτ := (
det(J Tτ Jτ )

)1/2 ∈ L∞(�);
(4.44)

8 By topologically regular we mean that the relative interior of the closure of τ is again τ .
9 It is standard (e.g., [2, 38]) to assume more smoothness for χτ , e.g. that χτ ∈ Cr (̂τ ) for some r ∈ N, in
which case also χ−1

τ ∈ Cr (τ ). In the important case when d = 3, � is a polyhedron, andR = {̂τ }, with τ̂

the unit simplex (a triangle), it is usual (e.g., [93, Chap. 10], [87, Defn. 4.1.2]) for each τ to be a triangle
and for χτ to be affine.
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in particular sτ = ∫
τ̂
gτ (̂x) d̂x, so that

g−
τ |̂τ | ≤ sτ ≤ g+

τ |̂τ |, where g+
τ := ess sup

x̂∈τ̂

gτ (̂x), g−
τ := ess inf

x̂∈τ̂
gτ (̂x).

(4.45)

For p ∈ N0 and τ̂ ∈ R let Pτ̂
p denote some finite-dimensional set of polynomials

ψ : τ̂ → R that contains the polynomials of (total) degree ≤ p. When τ̂ is a simplex
one usually takes Pτ̂

p to be the set of polynomials of total degree≤ p; when τ̂ is a cube
one usually takes Pτ̂

p to be the set of polynomials of coordinate degree ≤ p; see, e.g.,
[38, Page 1494, penultimate displayed equation]. Following [87, Defn. 4.1.17], given a
mesh G on �, define the boundary element approximation space, S p

G , of discontinuous
piecewise polynomials of degree ≤ p on G, by

S p
G := {

ψ ∈ L∞(�) : ψ |τ ◦ χτ ∈ P
τ̂
p, for all τ ∈ G, where τ̂ is the domain of χτ

}
.

(4.46)

Where P̂τ = dim(Pτ̂
p) and M = dim(S p

G), we equip S p
G with a basis {ψ1, . . . , ψM }

constructed as follows. For each τ̂ ∈ R choose a basis {ψτ̂
1 , . . . , ψτ̂

P̂τ
} for Pτ̂

p (for
example, a nodal basis as in [2, 38]). For each τ ∈ G, where τ̂ is the domain of χτ ,
define ψτ

j ∈ L∞(�), for j = 1, . . . , P̂τ , by

ψτ
j (x) :=

{
ψτ̂

j

(
χ−1

τ (x)
)
, x ∈ τ,

0, x ∈ � \ τ.
(4.47)

Then set

{
ψ1, . . . , ψM

} = {
ψτ

j : τ ∈ G, j ∈ {1, . . . , P̂τ }
}
, (4.48)

noting that (see, e.g., [38, p. 1495]) {ψ1, . . . , ψM } is a nodal basis if each
{ψτ̂

1 , . . . , ψτ̂
P̂τ

}, τ̂ ∈ R, is a nodal basis.

Consider now the case that we keep R, p, and the bases {ψτ̂
1 , . . . , ψτ̂

P̂τ
}, τ̂ ∈ R,

fixed but use a sequence of meshes GN , N ∈ N, with associated approximation spaces
HN := S p

GN that are such that hN := maxτ∈GN hτ → 0 as N → ∞, i.e. we consider
the h-version of the boundary-element method. Lemma 4.15 below applies in this
regime under the following assumption on the constants g±

τ defined by (4.45) (this
assumption is the first half, Equation 3.5a, of [38, Assumption 3.1]).

Assumption 4.14 There exists a constant c1 ≥ 1 such that, for every N ∈ N and
τ ∈ GN ,

g+
τ ≤ c1g

−
τ ; (4.49)

equivalently, there exists a constant c2 ≥ 1 such that, for every N ∈ N and τ ∈ GN ,

c−1
2 sτ ≤ gτ (̂x) ≤ c2sτ for almost all x̂ ∈ τ̂ . (4.50)
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We make two remarks about Assumption 4.14.

(i) The claimed equivalence of (4.49) and (4.50) follows from (4.45) (precisely, if
(4.49) holds then (4.50) holds with c2 = c1 max(|̂τ |, |̂τ |−1), and if (4.50) holds
then (4.49) holds with c1 = c22).

(ii) Because χτ is bi-Lipschitz, (4.49) holds for every τ ∈ GN for some c1 ≥ 1 (not
necessarily independent of τ and N ). In particular (4.49) holds with c1 = 1 if each
χτ is affine, so that Assumption 4.14 holds in that case (see also the discussion
below [38, Assumption 3.1]).

For the following lemma, recall that the matrix A is given by (2.16) with A†
Z,α equal

to one of AI ,Z,α , A′
I ,Z,α , AE,Z,α , or A′

E,Z,α .

Lemma 4.15 (Conditions under which Assumption 2.8 holds) Suppose that, while
keeping R, p, and the bases {ψτ̂

1 , . . . , ψτ̂
P̂τ

}, τ̂ ∈ R, fixed, we use a sequence of

meshes GN , N ∈ N, with associated approximation spaces HN := S p
GN and bases

(4.48) that are such that hN := maxτ∈GN hτ → 0 as N → ∞ and Assumption 4.14
holds. Then the following is true.

(i) Assumption 2.8 holds with (DN )i i := si , i = 1, . . . , MN , where si := sτ if ψi is
supported in τ , with C1 := c−1/2

2 c−1/2
R , C2 := c1/22 c1/2R , where cR ≥ 1 depends

only on the bases {ψτ̂
1 , . . . , ψτ̂

P̂τ
}, τ̂ ∈ R.

(ii) If, in addition, d ≥ 3, (2.6) holds for some c > 0, and α satisfies (2.7), then
Assumption 2.8 holds also with (DN )i i := |Ai i |, for i = 1, . . . , MN , with

C1 := C−C−1/2c−1
2 and C2 := C+c−1/2c2, (4.51)

where C := ‖A†
Z,α‖L2(�)→L2(�) and C± > 0 depend only on the bases

{ψτ̂
1 , . . . , ψτ̂

P̂τ
}, τ̂ ∈ R.

Part (ii) of Lemma 4.15 is proved for d = 3 using the coercivity results of Part
(vi) of both Theorems 2.1 and 2.2. An analogous result holds for d = 2 using the
coercivity results of Part (v) of Theorem 2.14, but we omit this for brevity.

Proof of Lemma 4.15 (i) Given wN = ∑MN
�=1 wN

� ψN
� ∈ HN , by (4.48),

wN =
∑

τ∈GN

P̂τ∑
j=1

wτ
jψ

τ
j (4.52)

for some coefficients {wτ
j }P̂τ

j=1, and where τ̂ is the domain of χτ . Thus, by (4.44),
for all τ ∈ GN ,

∥∥wN |τ
∥∥2
L2(τ )

=
∫

τ̂

|ψ̂ (̂x)|2gτ (̂x) d̂x, (4.53)
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where

ψ̂ (̂x) := wN
(
χτ (̂x)

) =
P̂τ∑
j=1

wτ
jψ

τ̂
j (̂x) for x̂ ∈ τ̂ (4.54)

(and we have used (4.52) and (4.47)). For every τ̂ ∈ R, every φ̂ ∈ P
τ̂
p can be

written as φ̂ = ∑P̂τ

j=1 a jψ
τ̂
j for some unique vector a = (a1, . . . , aP̂τ )

T . With Pτ̂
p

equipped with the norm ‖ · ‖τ̂ defined by

‖φ̂‖2τ̂ =
P̂τ∑
j=1

a2j , (4.55)

since Pτ̂
p is finite-dimensional, there exists cτ̂ ≥ 1 such that

c−1
τ̂

∥∥φ̂
∥∥2

τ̂
≤ ∥∥φ̂

∥∥2
L2 (̂τ )

≤ cτ̂

∥∥φ̂
∥∥2

τ̂
for all φ̂ ∈ P

τ̂
p. (4.56)

Therefore, using (4.50) and (4.56) (with φ̂ = ψ̂) in (4.53), we have that, for all
τ ∈ GN ,

c−1
τ̂ c−1

2 sτ
∥∥ψ̂

∥∥2
τ̂

≤ c−1
2 sτ

∥∥ψ̂
∥∥2
L2 (̂τ )

≤ ∥∥wN |τ
∥∥2
L2(τ )

≤ c2sτ
∥∥ψ̂

∥∥2
L2 (̂τ )

≤ c2sτ cτ̂

∥∥ψ̂
∥∥2

τ̂
. (4.57)

Furthermore, by (4.54) and (4.55),

‖ψ̂‖2τ̂ =
P̂τ∑
j=1

(wτ
j )
2. (4.58)

If (DN )i i := si , i = 1, . . . , MN , then, by (4.52),

∥∥D1/2
N w

∥∥2
2 =

∑
τ∈GN

sτ

P̂τ∑
j=1

(wτ
j )
2. (4.59)

Therefore, combining (4.57), (4.58), and (4.59), we see that, with the choice
(DN )i i := si , i = 1, . . . , MN , Assumption 2.8 holds with C1 = c−1/2

2 c−1/2
R

and C2 = c1/22 c1/2R , where cR := maxτ̂∈R cτ̂ .

(ii) By the coercivity and continuity of A†
Z,α from Theorem 2.1 or Theorem 2.2,

c

2
‖ψN

i ‖2L2(�)
≤ ∣∣(A†

Z,αψN
i , ψN

i

)
L2(�)

∣∣ ≤ C‖ψN
i ‖2L2(�)

;
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therefore, since |Ai i | = |(A†
Z,αψN

i , ψN
i )L2(�)|,

c

2
‖ψN

i ‖2L2(�)
≤ |Ai i | ≤ C‖ψN

i ‖2L2(�)
. (4.60)

Further, where τ is the support of ψN
i and τ̂ is the domain of χτ , by (4.44),

‖ψN
i ‖2L2(�)

=
∫

τ

|ψτ
j (x)|2 ds(x) =

∫
τ̂

|ψτ̂
j (̂x)|2gτ (̂x) d̂x,

for some j ∈ {1, ..., P̂τ }, so that, by (4.50),

c−c−1
2 sτ ≤ ‖ψN

i ‖2L2(�)
≤ c+c2sτ , (4.61)

where

c+ := max
τ̂∈R, j=1,...,P̂τ

‖ψτ̂
j ‖2L2 (̂τ )

and c− := min
τ̂∈R, j=1,...,P̂τ

‖ψτ̂
j ‖2L2 (̂τ )

.

Thus, combining (4.60) and (4.61), we have that

c

2
c−c−1

2 sτ ≤ |Ai i | ≤ Cc+c2sτ for i = 1, . . . , MN .

Therefore, if (DN )i i := |Ai i |, for i = 1, . . . , MN , then, by (4.52),

c

2
c−c−1

2

∑
τ∈GN

sτ

P̂τ∑
j=1

(wτ
j )
2 ≤ ∥∥D1/2

N w
∥∥2
2 ≤ Cc+c2

∑
τ∈GN

sτ

P̂τ∑
j=1

(wτ
j )
2.

By (4.58) and (4.57), Assumption 2.8 therefore holds with C1 and C2 given by
(4.51).


�
Remark 4.16 (The novelty of Lemma 4.15) Similar results to Lemma 4.15 are given
in [38], where, for a continuous, coercive, and symmetric sesquilinear form, scaling
by the diagonal part of the Galerkin matrix (as in Part (ii) of Lemma 4.15) is used to
remove the ill-conditioning of the Galerkin matrix due to mesh degeneracy; see [38,
Equations 1.5−1.7].

The advantage of the results of [38] compared to those of Lemma 4.15 is that [38]
works in Hs(�) for |s| ≤ 1, whereas Lemma 4.15 only works in L2(�). However,
Lemma 4.15 works with rather general meshes in arbitrary dimensions, subject only
to Assumption 4.14, whereas [38] imposes the following conditions on the mesh: (i)
the mesh is regular in the sense of [87, Definition 4.1.4], see [38, Page1495], and (ii)
the mesh satisfies [38, Assumptions 3.1 and 3.2], with the latter requiring, e.g., that
neighbouring mesh elements have comparable aspect ratios.
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5 Wellposedness and regularity results for the Laplace interior and
exterior oblique Robin problems

5.1 Statement of the Laplace interior and exterior oblique Robin problems

Definition 5.1 (The Laplace interior oblique Robin problem (IORP)) With 	− as in
Sect. 1.6, given g ∈ L2(�), Z ∈ (L∞(�))d , and α ∈ L∞(�), find u ∈ H1(	−) with
γ −u ∈ H1(�) and ∂−

n u ∈ L2(�) such that 
u = 0 in 	− and

(Z · n)∂−
n u + Z · ∇�(γ −u) + α γ −u = g on �. (5.1)

Definition 5.2 (The Laplace exterior oblique Robin problem (EORP)) With 	+ as in
Sect. 1.6, given g ∈ L2(�), Z ∈ (L∞(�))d , and α ∈ Ł∞(�), find u ∈ H1

loc(	
+) with

γ +u ∈ H1(�) and ∂+
n u ∈ L2(�) such that 
u = 0 in 	+,

(Z · n)∂+
n u + Z · ∇�(γ +u) − α γ +u = g on �, (5.2)

and, as |x| → ∞, u(x) = O(1) when d = 2 and u(x) = o(|x|3−d) when d ≥ 3
(uniformly in all directions x/|x|).

A regularity result of Nečas [78] (stated as Theorem B.1 below) implies that either
of the requirements ∂−

n u ∈ L2(�) and γ −u ∈ H1(�) inDefinition 5.1 can be removed;
similarly in Definition 5.2.

The IORP and EORP can also be formulated in terms of non-tangential maximal
functions and non-tangential limits (similar to the case of the Dirichlet problem dis-
cussed in Sect. 1.6). We now give this alternative formulation for the IORP and prove
that it is equivalent to Definition 5.1; this equivalence is necessary to use results from
the harmonic-analysis literature on the standard Laplace oblique derivative problem
(see Theorem 5.13 below). The alternative formulation for the EORP and proof of
equivalence to Definition 5.2 are completely analogous and are omitted.

Definition 5.3 (The Laplace IORP via non-tangential limits) With 	− as in Sect.
1.6, given g ∈ L2(�), Z ∈ (L∞(�))d , and α ∈ L∞(�), find u ∈ C2(	−) with
(∇u)∗ ∈ (L2(�))d such that 
u = 0 in 	− and

Z · γ̃ −(∇u) + αγ̃ −u = g on �, (5.3)

where γ̃ − is the non-tangential limit defined by (1.13).

Theorem 5.4 (Equivalence of the different formulations of the IORP) The formula-
tions of the IORP in Definition 5.1 and 5.3 are equivalent (i.e., if u is a solution to the
IORP in the sense of Definition 5.1, then it is a solution in the sense of Definition 5.3,
and vice versa).

Proof If u is a solution of the IORP in the sense of Definition 5.1, then u ∈ C∞(	−)

by elliptic regularity. Furthermore, u ∈ H3/2(	−) by Lemma B.4, and then (∇u)∗ ∈
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L2(�) by Part (iii) of Theorem B.2. By Lemma B.3, γ̃ −u = γ −u, and, by Lemma
B.4,

γ̃ −(∇u) = n∂−
n u + ∇�(γ −u) almost everywhere on �. (5.4)

Therefore

Z · γ̃ −(∇u) + αγ̃ −u = (Z · n)∂−
n u + Z · ∇�(γ −u) + αγ −u, (5.5)

so that the boundary condition (5.3) is equivalent to (5.1); therefore, u is a solution of
the IORP in the sense of Definition 5.3.

Conversely, if u is the solution of the IORP in the sense of Definition 5.3, then u ∈
H3/2(	−) by Part (iii) of Theorem B.2. Then Lemma B.4 implies that ∂−

n u ∈ L2(�),
γ −u ∈ H1(�), and (5.4) holds. Hence (5.5) holds and the boundary condition (5.1)
is equivalent to (5.3); therefore, u is a solution of the IORP in the sense of Definition
5.1. 
�

5.2 Link between the IORP/EORP and the BIEs in Theorems 2.1, 2.2

Theorem 5.5 (A′
I ,Z,α can be used to solve the EORP for d ≥ 3) If d ≥ 3 then the

single-layer potential u = Sφ with density φ ∈ L2(�) satisfies the exterior oblique
Robin problem (Definition 5.2) if and only if

A′
I ,Z,αφ = −g. (5.6)

Conversely, if d ≥ 3 and u satisfies the EORP, then u = Sφ for some φ ∈ L2(�) that
satisfies (5.6).

Theorem 5.6 (A′
E,Z,α can be used to solve the IORP for d ≥ 2) The single-layer

potential u = Sφ, with density φ ∈ L2(�), satisfies the IORP (Definition 5.1) if and
only if

A′
E,Z,αφ = g. (5.7)

Conversely, if u satisfies the IORP, then, provided a �= Cap� when d = 2, u = Sφ,
where φ ∈ L2(�) satisfies (5.7).

Proof of Theorem 5.5 If d ≥ 3 and u = Sφ with φ ∈ L2(�), then by, e.g., [17,
Theorem 2.14] u ∈ C2(	+) and 
u = 0 in 	+, and, by (4.23), u(x) = O(|x|2−d) as
|x| → ∞, uniformly in x/|x|. By, e.g., [17, Theorem 2.14], u ∈ H1

loc(	
+) and, by the

jump relations (4.2) and the definition of K ′
Z (1.18), (5.2) holds if and only if φ satisfies

(5.6). Conversely, if u satisfies the EORP, then, by the invertibility of S recalled in
Lemma A.1 below, φ := S−1γ +u ∈ L2(�). Defining v := Sφ, v satisfies the Laplace
exterior Dirichlet problem with boundary data γ +v = γ +Sφ = Sφ = γ +u, so that
v = u by uniqueness for the EDP. As established in the first part of the proof, since u
satisfies the EORP, φ satisfies (5.6). 
�
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Proof of Theorem 5.6 This is very similar to the proof of Theorem 5.5, except that now
we can also consider d = 2, since (by definition) there are no conditions at infinity
imposed on the solution of the IORP. 
�
Theorem 5.7 Let P±

DtN : H1(�) → L2(�) denote the Dirichlet-to-Neumann maps for
Laplace’s equation in 	±; i.e., the maps gD �→ ∂±

n u for u as in Definitions 1.3/1.4
respectively. Let P−,α,Z

ItD : L2(�) → H1(�) denote the map g �→ γ −u where u is as

in Definition 5.1. Let P+,α,Z
ItD : L2(�) → H1(�) denote the map g → γ +u where u

is as in Definition 5.2. Then, as operators on L2(�),

(
A′
E,Z,α

)−1 = 1

Z · n I −
(
P+
DtN + 1

Z · n
(
α + Z · ∇�

))
P−,α,Z
ItD (5.8)

and

(
A′
I ,Z,α

)−1 = 1

Z · n I −
(
P−
DtN + 1

Z · n
( − α + Z · ∇�

))
P+,α,Z
ItD . (5.9)

Proof Wefirst prove (5.8). Suppose A′
E,Z,αφ = g with φ, g ∈ L2(�) and let u := Sφ.

Then γ +u = γ −u = P−,α,Z
ItD g by the first jump relation in (4.2) and Theorem 5.6. By

the second jump relation in (4.2), the definition of P+
DtN, and the boundary condition

(5.1),

φ = ∂−
n u − ∂+

n u,

= 1

Z · n
(
g − Z · ∇�(γ −u) − αγ −u

) − P+
DtNγ +u = 1

Z · n g

−
(
P+
DtN + α + Z · ∇�

Z · n
)
P−,α,Z
ItD g,

which implies (5.8). The proof of (5.9) is then very similar, using Theorem 5.5 instead
of Theorem 5.6. 
�

5.3 Statement of the wellposedness results and implications for the BIEs in
Theorems 2.1 and 2.2

Theorem 5.8 (Uniqueness for the IORP) Suppose that, for some β ∈ (0, 1], Z ∈
(C0,β(�))d and α ∈ C0,β(�) and that, for some constants c, c0 > 0,

Z(x) · n(x) ≥ c for almost every x ∈ � and α(x) ≥ c0 for x ∈ �. (5.10)

Then the IORP has at most one solution.

Corollary 5.9 (Existence for the IORP and invertibility of A′
E,Z,α) If the assumptions

of Theorem 5.8 hold and a �= Cap� when d = 2, then A′
E,Z,α is invertible and the

IORP has exactly one solution.
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Theorem 5.10 (Uniqueness for the EORP) Suppose that, for some β ∈ (0, 1], Z ∈
(C0,β(�))d and α ∈ C0,β(�), and that (5.10) holds, for some constants c, c0 > 0.
Then the EORP has at most one solution.

Corollary 5.11 (Existence for the EORP and invertibility of A′
I ,Z,α) If the assumptions

of Theorem 5.10 hold and d ≥ 3, then the EORP has exactly one solution and A′
I ,Z,α

is invertible.

5.4 Proofs of Theorems 5.8 and 5.10

Recall that, for 1 ≤ p ≤ ∞, H1,p(�) := {φ ∈ L p(�) : ∇�φ ∈ L p(�)} is a Banach
space with the norm ‖φ‖H1,p(�) := ‖φ‖L p(�) + ‖∇�φ‖L p(�). Note that H1(�) =
H1,2(�), with equivalence of norms.

The following result is standard in the theory of potential theory on Lipschitz
domains; see, e.g., [102, Page 203].

Lemma 5.12 Suppose that Z ∈ (C(�))d and the first of the bounds (5.10) holds for
some c > 0. Then, for each x ∈ � there exists R > 0 and F ∈ C0,1(Rd−1) and a
rotated coordinate system 0x̃1...x̃d , with origin at x and with the x̃d axis pointing in
the direction Z(x), such that, where ỹ′ := (ỹ1, ..., ỹd−1),

BR(x) ∩ 	+ = BR(x) ∩ {y = (ỹ′, ỹd) : ỹd > F(ỹ′)},
BR(x) ∩ 	− = BR(x) ∩ {y = (ỹ′, ỹd) : ỹd < F(ỹ′)}.

The following key regularity estimate follows immediately from [82, 102].

Theorem 5.13 (Regularity for the interior oblique derivative problem.) Suppose that
Z ∈ (C0,β(�))d for some β ∈ (0, 1], the first inequality in (5.10) holds for some
constant c > 0, and u satisfies the Laplace oblique derivative problem (i.e., the IORP
in the special case α = 0) with data g.

(i) If g ∈ C0,β(�), then u ∈ C1,γ (	−) for some γ ∈ (0, β] depending only on 	−.
(ii) If g ∈ L p(�) with 2 ≤ p < ∞, then (∇u)∗ ∈ (L p(�))d .

Proof (i) It is known from [13, Section 4], [50, 82, 102] that if the first inequality
in (5.10) holds, then the Laplace oblique derivative problem has a solution if
and only if g satisfies finitely-many linear conditions (i.e., conditions of the form
(g, φ j )� = 0, j = 1, ..., N , for some N ∈ N and φ1, ..., φN ∈ L2(�)). If
Z ∈ (C0,β(�))d and u is a solution for particular data g ∈ C0,β(�), the finitely-
many linear conditions on g are satisfied, and u can be written as u = uP + uH

where uP is the particular solution studied in [82], which is shown in [82, §3]
to satisfy uP ∈ C1,γ (	−) for some γ ∈ (0, β] (dependent on 	−), and uH is a
solution of the homogeneous oblique derivative problem, which is shown in [102,
Corollary 2.7] to be constant in 	−.

(ii) This follows from arguing as in (i), but replacing the results of [82] for Hölder
continuous g by those of [13] for g ∈ L p(�) with 2 − ε < p < 2 + ε (for some
ε > 0 dependent on 	−) and [50] for g ∈ L p(�) with p > 2 (note that while the
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results of [13, 50] only require that Z is continuous, [102, Corollary 2.7] requires
Z to be Hölder continuous).


�
Theorem 5.14 (Regularity for the IORP) Suppose that Z ∈ (C0,β(�))d and α ∈
C0,β(�) for some β ∈ (0, 1], Z satisfies the first inequality in (5.10) for some c > 0,
and u satisfies the Laplace interior oblique Robin problem with data g ∈ C0,β(�).
Then u ∈ C1,γ (	−) for some γ ∈ (0, β].
Proof Suppose that the conditions of the theorem are satisfied, in particular that u
satisfies the IORP with data g ∈ C0,β(�), for some β ∈ (0, 1]. Suppose also that
2 ≤ p < ∞ and that γ −u ∈ L p(�). Then since, clearly, g ∈ L p(�), u is a solution of
the Laplace oblique derivative problem with data in L p(�). Therefore, by Part (ii) of
Theorem 5.13, (∇u)∗ ∈ (L p(�))d and thus γ −u ∈ H1,p(�) by Corollary B.7. This
implies, by the Sobolev embedding theorem [1, Chapter V, Equations 6 and 4], that,
if p ≥ d − 1, then γ −u ∈ Lq(�) for all 2 ≤ q < ∞, while, if p < d − 1, then
γ −u ∈ Lq(�) for 2 ≤ q ≤ p0 where 1/p0 = 1/p − 1/(d − 1). Since, certainly,
γ −u ∈ L2(�) (as γ −u ∈ H1(�) by definition of the IORP), applying the above
argument at most a finite number of times leads to the conclusion that γ −u ∈ H1,q(�)

for all 2 ≤ q < ∞. But this implies, by the Sobolev embedding theorem [1, Chapter
V, Equation 9], that γ −u ∈ C0,β ′

(�) for all 0 < β ′ < 1. Thus u is a solution of
the Laplace oblique derivative problem with data in C0,β(�), and thus the result that
u ∈ C1,γ (	−) for some γ ∈ (0, β] follows from Part (i) of Theorem 5.13. 
�
Corollary 5.15 (Regularity for the EORP) Suppose that Z ∈ (C0,β(�))d and α ∈
C0,β(�) for some β ∈ (0, 1], Z satisfies the first inequality in (5.10) for some c > 0,
and u satisfies the Laplace exterior oblique Robin problem with data g ∈ C0,β(�).
Then u ∈ C1,γ (	+ ∩ BR) for all R > 0 and for some γ ∈ (0, β].
Proof Since 	− is bounded, � ⊂ Br for some r > 0. Suppose that u satisfies the
EORP and choose R2 > R1 > R0 > r and χ ∈ C∞

comp(R
d) with χ(x) = 1 for

|x| ≤ R0 and χ(x) = 0 for |x| ≥ R1. Let v(x) := χ(x)u(x) for x ∈ G := 	+ ∩ BR2 ,
so that, in particular, v = u in 	+ ∩ BR0 . The idea now is to create a solution of an
IORP on G, and then use the interior regularity result of Theorem 5.14. Since u is
harmonic in 	+,


v = F := 2∇χ · ∇u + u
χ in G.

Since χ ∈ C∞
comp(R

d) and u ∈ C∞(	+), F ∈ C∞
comp(G). Therefore

v̂(x) := −
∫
G

�(x, y)F(y) dy, for x ∈ G,

satisfies v̂ ∈ C2(G) and
v̂ = F inG. Letw(x) := v(x)− v̂(x) for x ∈ G, and define
Z̃ ∈ (C0,β(∂G))d and α̃ ∈ C0,β(∂G) by Z̃ := −Z on �, Z̃(x) := x, for x ∈ ∂BR2 ,
and α̃ := α on �, α̃ := 0 on ∂BR2 . Then w ∈ H1(G) with trace γw ∈ H1(∂G),

w = 0 in G, and
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(Z̃ · n)∂nw + Z̃ · ∇�(γw) + α̃ γw = g̃ on ∂G,

wheren is the unit normal pointing out ofG and g̃ ∈ C0,β(∂G) is definedby g̃ := −(Z̃·
∇v̂+ α̃v̂)−g on �, and by g̃ := −(Z̃ ·∇v̂+ α̃v̂) on ∂BR2 . Theorem 5.14 implies that,
for some γ ∈ (0, β], w ∈ C1,γ (G), so that v ∈ C1,γ (G) and u ∈ C1,γ (	+ ∩ BR0).
Since u is harmonic in 	+, u ∈ C1,γ (	+ ∩ BR) for every R > 0. 
�

We can now prove Theorems 5.8 and 5.10 and Corollaries 5.9 and 5.11.

Proof of Theorem 5.8 Suppose that u satisfies the IORP with g = 0 and that, without
loss of generality, u is real-valued. To show that u = 0 it is enough to show that u ≤ 0
in 	−, since this implies, by the same argument applied to −u, that also u ≥ 0, and
hence u = 0. By Theorem 5.14, u ∈ C1(	−) (indeed ∇u is Hölder continuous). By
themaximum principle, since u ∈ C2(	−)∩C(	−) is harmonic in	−, themaximum
value of u in 	− is attained at some point x0 ∈ �. Since u ∈ C1(	−) it follows from
(5.1) with g = 0 that

α(x0)u(x0) = −Z(x0) · ∇u(x0) = − lim
h→0+

u(x0) − u(x0 − hZ(x0))
h

.

Since Z is continuous and Z · n ≥ c ≥ 0 almost everywhere on �, x0 − hZ(x0) ∈ 	−
for all sufficiently small h > 0 by Lemma 5.12, so that Z(x0) · ∇u(x0) ≥ 0 since x0
is the global maximum. Since α(x0) > 0, it follows that u(x0) ≤ 0, so that u ≤ 0 in
	−. 
�
Proof of Theorem 5.10 Suppose that u satisfies the EORPwith g = 0 and, without loss
of generality, is real-valued. As in the proof of Theorem 5.8, it is enough to show that
u ≤ 0 in 	+. We recall that, when d = 2, the condition that u is bounded on 	+
implies that, for some u∞ ∈ R,

u(x) = u∞ + O(|x|−1) as |x| → ∞,

uniformly in x/|x|, and that

u∞ = 1

2πR

∫
∂BR

u ds (5.11)

if � ⊂ BR [52, Equation 6.11].
By Corollary 5.15, u ∈ C1(	+). By the maximum principle, since u ∈ C2(	+) ∩

C(	+) is harmonic in 	+, the maximum value of u in 	+ is attained on � or, when
d = 2, u(x) ≤ u∞ for x ∈ 	+. If the maximum is attained on �, the result that u ≤ 0
follows by arguing as in the proof of Theorem 5.8. Therefore, it is sufficient to prove
that the maximum is attained on � when d = 2. If u(x) ≤ u∞ for x ∈ 	+, then (5.11)
implies that u(x) = u∞ for |x| ≥ R if � ⊂ BR , so that the maximum is attained
in 	+. The maximum principle (see, e.g., [52, Theorem 6.8]) then implies that u is
constant in 	+, so that the maximum is also attained on �. 
�
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The following proofs of Corollaries 5.9 and 5.11 use the fact that, whenα ∈ L∞(�),
Z is continuous, and (2.6) (i.e., the first lower bound in (5.10)) holds, then A′

I ,Z,α and
A′
E,Z,α are Fredholm of index zero by Parts (iii) and (iv) of Theorem 2.1 and 2.2

respectively. Although these two theorems are for d = 3, Parts (iii) and (iv) also hold
when d = 2 (as noted at the beginning of Sect. 2.3).

Proof of Corollary 5.9 If we can prove invertibility of A′
E,Z,α , then existence of a solu-

tion to the IORP follows from Theorem 5.5. Since A′
E,Z,α is Fredholm of index zero

on L2(�), by the Fredholm alternative (see, e.g., [65, Theorem 2.27]), to prove invert-
ibility it is sufficient to prove injectivity. Assume that A′

E,Z,αφ = 0 for φ ∈ L2(�).
By Theorem 5.6, u := Sφ satisfies the IORP, and by Theorem 5.8 u = 0 in 	−.
Therefore γ −u = 0 and the first jump relation in (4.2) implies that Sφ = 0. Lemma
A.1 then implies that φ = 0 and the proof is complete. 
�

Proof of Corollary 5.11 This is very similar to that of Corollary 5.9 except that now we
only work in d ≥ 3, since Theorem 5.5 requires d ≥ 3. 
�

Remark 5.16 (The results of [59]) Although not directly used to prove the results in
this section, the results of [59] concern the Laplace IORP in Lipschitz domains with
Hölder continuous Z̃ and g, and we comment here on their relevance to the results
above.

The results of [59] give an alternative route for obtaining uniqueness of the IORP
(i.e., proving Theorem 5.8). Indeed, in the proof of Theorem 5.8, once we have estab-
lished that u ∈ C1(	−) (by using Theorem 5.14), then uniqueness follows from [59,
Theorem 3.2]. The reason we argue as we do in the proof of Theorem 5.8 is that this
argument easily carries over to the proof of uniqueness for the EORP (Theorem 5.10),
whereas [59, Theorem 3.2] concerns only the IORP.

Furthermore, [59, Theorem 3.2] implies that, under the assumptions of Theorem
5.14, there exists β0 < 1, depending only on the Lipschitz constant of 	−, such that
if β < β0 then u ∈ C1,β(	−).

Remark 5.17 (Additional uniqueness results for the EORPwith Z = x)The coercivity
result of Theorem 2.5 allows us to extend the range of α for which the EORP is unique
when Z = x and d ≥ 3. Indeed, Theorem 2.5 implies that A′

I ,Z,α is injective when
Z = x, α(x) ≥ −(d − 2)/2 for almost every x ∈ �, and d ≥ 3. Then, using Theorem
5.5 and arguing as at the end of the proof of Corollary 5.9, we see that the solution of
the EORP is unique under these conditions. This result proves uniqueness for certain
non-positive values of α, which are not covered by Theorem 5.10.

5.5 Link between the IORP/EORP and the BIEs in Theorem 2.14

Lemma 5.18 Given g ∈ L2(�), if φ satisfies

T ′
E,Z,α,βφ = g, (5.12)
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(with T ′
E,Z,α,β defined by (2.33)) and d = 2, then

u = SQ�φ + β

α
P�φ − 1

α
P�A

′
E,Z,αQ�φ (5.13)

satisfies the IORP.

Lemma 5.19 Given g ∈ L2(�), if φ satisfies

T ′
I ,Z,α,βφ = −g, (5.14)

(with T ′
I ,Z,α,β defined by (2.29)) and d = 2, then

u = SQ�φ + β

α
P�φ − 1

α
P�A

′
I ,Z,αQ�φ (5.15)

satisfies the EORP.

Proofs of Lemmas 5.18, 5.19 The fact that u given by (5.13)/(5.15) is C2 and satisfies
Laplace’s equation follows from, e.g., [17, Theorem 2.14]. The condition that u =
O(1) at infinity for the EORP follows from the asymptotics (4.24), the definition of
P� (2.28), and that Q� := I − P� . The BIEs (5.13)/(5.15) follow from the jump
relations (4.2) and the definitions of A′

I ,Z,α (2.1), A′
E,Z,α (2.9), and K ′

Z (1.18). 
�
Remark 5.20 (Link with the work of Medková [67]) In [67, Theorem 5.23.5], the
solution of the IORP is sought as (5.13) without the final term on the right-hand side,
resulting in the BIE (A′

E,Z,αQ� +βP�)φ = g; this BIO is then proved to be invertible

on L2(�) if β = α and α is sufficiently large [67, Theorem 5.23.5]. The advantage
of including the final term on the right-hand side of (5.13) is that, by Theorem 2.14,
the resulting BIO T ′

E,Z,α,β is not just invertible when α is sufficiently large, but also
coercive by Part (v) of Theorem 2.14.

A Recap of mapping properties of layer potentials and boundary
integral operators

Recall that the single-layer potential Sφ is defined by (1.19). For φ ∈ L2(�), define
the double-layer potential Dφ by

Dφ(x) :=
∫

�

∂�(x, y)
∂n(y)

φ(y) ds(y) for x ∈ R
d \ �. (A.1)

For χ ∈ C∞
comp(R

d ) and |s| ≤ 1/2,

χS : Hs−1/2(�) → Hs+1(Rd) and χD : Hs+1/2(�) → Hs+1(	±). (A.2)
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With S, D, D′, and H defined by (1.2) and (1.3), for all |s| ≤ 1/2,

S : Hs−1/2(�) → Hs+1/2(�), D : Hs+1/2(�) → Hs+1/2(�), (A.3a)

D′ : Hs−1/2(�) → Hs−1/2(�), H : Hs+1/2(�) → Hs−1/2(�), (A.3b)

and these mappings are bounded. The results in (A.2) and (A.3) for |s| = 1/2 (which
then imply the results for |s| < 1/2 by interpolation) are consequences of the results in
[22], [101], and [48]; see, e.g., [17, Theorems 2.15 and 2.16 and Corollary A.8]. (Note
that the results in (A.2) for |s| < 1/2 can also be obtained from mapping properties of
the Newtonian potential and Green’s integral representation, with the results in (A.3)
then following from results about the trace map; see [24], [65, Theorem 6.11].)

Lemma A.1 (Invertibility of S : L2(�) → H1(�) when � is Lipschitz) If � is
Lipschitz and either d = 3, or d = 2 and a �= Cap� , then S : L2(�) → H1(�) is
bounded and invertible.

References for the proof The boundedness is (A.3a) above with s = 1/2. The invert-
ibility is proved in [101, Theorem 5.1] for d = 3 and [101, Theorem 4.11] for d = 2.
Note that [101] assumes for simplicity that	− and � are connected, but it is clear that
this implies that the result holds when � is the boundary of any bounded Lipschitz
open set (with this result for d = 3 contained in [69, Theorem 4.1]). Indeed, in this
case, � and R

d \ � each have finitely-many connected components, and the results
of [101] for the case when � is connected imply that S is Fredholm of index zero as
an operator L2(�) �→ H1(�). Further, S : L2(�) → H1(�) is injective since S is
invertible as an operator from H−1/2(�) to H1/2(�) [65, Corollary 8.13, Theorem
8.16]. 
�

B Recap of harmonic-analysis results

In this appendixwe recap results on the behaviour of solutions toLaplace’s or Poisson’s
equation near the boundary of the domain. For simplicity, these results are stated for a
bounded Lipschitz domain D with boundary ∂D. Analogues of the results then hold
with D = 	− and D = 	+, where in the latter case spaces such as H1(D) become
H1
loc(	

+) (since these results do not assume any particular behaviour at infinity).

Theorem B.1 ([78, §§5.1.2, 5.2.1], [65, Theorem 4.24]) If u ∈ H1(D) and 
u ∈
L2(D), then ∂nu ∈ L2(�) iff γ u ∈ H1(�).

Given x ∈ �, let �(x) be the non-tangential approach set to x from D defined,
for some sufficiently large C > 1, as in (1.11). Given u ∈ C2(D) with 
u = 0,
let the non-tangential maximal function of u, u∗, be defined by (1.12), and let the
non-tangential limit of u, γ̃ u, be defined by (1.13).

Theorem B.2 ([48, Corollaries 5.5 and 5.7]) Let u ∈ C2(D) with 
u = 0.

(i) u∗ ∈ L2(∂D) iff u ∈ H1/2(D).
(ii) u∗ ∈ L2(∂D) implies that γ̃ u ∈ L2(∂D).

123



1378 S. N. Chandler-Wilde, E. A. Spence

(iii) (∇u)∗ ∈ (L2(∂D))d iff u ∈ H3/2(D).
(iv) (∇u)∗ ∈ (L2(∂D))d implies that γ̃ (∇u) ∈ (L2(∂D))d .

Lemma B.3 ([17, Lemma A.9]) If u ∈ Hs(D) with s > 1/2 and 
u = 0, then
γ̃ u = γ u.

Lemma B.4 Let u ∈ C2(D) ∩ H1(D) with 
u = 0. Then u ∈ H3/2(D) iff ∂nu ∈
L2(∂D) and γ u ∈ H1(∂D). Furthermore, if u ∈ H3/2(D) then, almost everywhere
on ∂D,

γ̃ (∇u) = n ∂nu + ∇∂D(γ u). (B.1)

Proof The forward implication and the trace result (B.1) are proved in [17, Lemma
A.10]. For the reverse implication, assume that ∂nu ∈ L2(∂D) and γ u ∈ H1(∂D). Let
v := Sφ where the single-layer potential S is defined by (1.19) (with � replaced by
∂D) with a �= Cap∂D when d = 2. Let φ := S−1γ u, so that φ ∈ L2(∂D) by Lemma
A.1. By the first jump relation in (4.2) γ v = γ u, so that v = u by uniqueness of the
interior Dirichlet problem of Definition 1.3. Since φ ∈ L2(∂D), (∇u)∗ ∈ (L2(∂D))d

by [101, Theorem 1.6] (see also [68, Chapter 15, Theorem 5]), and thus u ∈ H3/2(D)

by Part (iii) of Theorem B.2. 
�
Corollary B.5 The space V (D) defined by (4.15) is equal to {v : v ∈ H3/2(D), 
v ∈
L2(D)}.
Proof With � defined by (1.1) and f ∈ L2(D), let

N f (x) :=
∫
D

�(x, y) f (y) dy, for x ∈ D;

i.e., N is a Newtonian potential. Recall that N : L2(D) → H2(D) by, e.g., [65,
Theorem 6.1], and 
(N f ) = − f .

Given v ∈ V (D), observe that N (
v) ∈ H2(D), ∂nN (
v) = n · γ (∇N (
v)) ∈
L2(∂D), and γN (
v) ∈ H1(∂D); to see this last point observe that Theorem B.1
implies that

γ : {
u : u ∈ H1(D),
u ∈ L2(D), ∂nu ∈ L2(∂D)

} → H1(∂D),

and thus, in particular, γ : H2(D) → H1(∂D). Therefore N (
v) ∈ V (D). Now let
ṽ := v + N (
v). Then ṽ ∈ V (D) with 
ṽ = 0 and hence ṽ ∈ C2(D) by elliptic
regularity. Therefore ṽ ∈ H3/2(D) by Lemma B.4. The result that v ∈ H3/2(D) then
follows since v = ṽ − N (
v) and N (
v) ∈ H2(D).

The reverse inclusion is proved similarly: given v ∈ H3/2(D) with 
v ∈ L2(D),
define ṽ as before. SinceN (
v) ∈ H2(D), ṽ ∈ H3/2(D). Since 
ṽ = 0, ṽ ∈ C2(D)

by elliptic regularity, and then ∂n ṽ ∈ L2(∂D) and γ ṽ ∈ H1(�) by Lemma B.4; thus
ṽ ∈ V (D). The result that v ∈ V (D) then follows from the definition of ṽ and the fact
that N (
v) ∈ H2(D) ⊂ V (D) 
�
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Wealso need the following results in L p(∂D) for p �= 2 (as opposed to the L2-based
results above).

Theorem B.6 ([67, Theorem 5.6.1]) Suppose u ∈ C2(D) with 
u = 0 and (∇u)∗ ∈
(L p(∂D))d for some 1 < p < ∞. Then u∗ ∈ L p(∂D), γ̃ u ∈ L p(∂D), and γ̃ (∇u) ∈
(L p(∂D))d .

Corollary B.7 Suppose u ∈ C2(D) with 
u = 0 and (∇u)∗ ∈ (L p(∂D))d for some
2 < p < ∞. Then γ u ∈ L p(∂D), ∂nu ∈ L p(∂D), and ∇∂D(γ u) ∈ (L p(∂D))d .

Proof Since (∇u)∗ ∈ (L2(∂D))d , u ∈ H3/2(D) by Part (iii) of Theorem B.2. Further,
γ̃ u ∈ L p(∂D) and γ̃ (∇u) ∈ (L p(∂D))d by Theorem B.6. Also, γ u = γ̃ u by Lemma
B.3, and thus γ u ∈ L p(∂D). By Lemma B.4, (B.1) holds, and thus ∂nu = n · γ̃ (∇u) ∈
L p(∂D) and ∇∂D(γ u) ∈ (L p(∂D))d . 
�

C Proofs of Theorem 1.7

We prove the result for the IDP when d = 3; the proof for the EDP is very similar.
The proof for the IDP when d = 2 is also similar, with use of [67, Theorem 5.15.2]
replaced by use of [67, Theorem 5.15.3].

If u is the solution of the IDP in the sense of Definition 1.3 then, since u ∈ H1(	−),
γ̃ −u = γ −u by Lemma B.3 and thus γ̃ −u = gD . Furthermore, since u ∈ H1/2(	−),
u∗ ∈ L2(�) by Part (i) of Theorem B.2. Finally, by elliptic regularity u ∈ C2(D).
Therefore u is a solution of the IDP in the sense of Definition 1.5

To prove the converse, let v := (−D + S)φ for φ ∈ L2(�), with D the double-
layer potential defined by (A.1) andS the single-layer potential defined by (1.19). Now
γ̃ +v = ( 12 I − D + S)φ, where we have used that (i) γ̃ −Dφ = (− 1

2 I + D)φ by [101,
Theorem 1.10] (similarly to (1.16)) and (ii) γ̃ +Sφ = γ +Sφ = Sφ by Lemma B.3 and
the first jump relation in (4.2). Since ( 12 I − D+ S) : L2(�) → L2(�) is invertible by
[67, Theorem 5.15.2]10, if φ := ( 12 I − D+ S)−1gD , then v is a solution to the IDP of
Definition 1.5. The solution of this BVP is unique by [13, Page 41] and [101, Lemma
3.7]11, and thus v = u. Arguing as in the proof of [17, Theorem 2.27], one can show
that (− 1

2 I + D + S) : H1/2(�) → H1/2(�) is invertible—this follows by proving
that (− 1

2 I + D′ + S) : H−1/2(�) → H−1/2(�) is invertible, which in turn follows
since− 1

2 I +D′ : H−1/2(�) → H−1/2(�) is Fredholm of index zero by [17, Theorem
2.25], S : H−1/2(�) → H−1/2(�) is compact by (A.3a), and− 1

2 I+D′+S is injective
by uniqueness of the Laplace exterior Robin problem. Therefore, if gD ∈ H1/2(�),
then φ ∈ H1/2(�), and u ∈ H1(	−) by the mapping properties of D and S in (A.2).
Finally, γ −u = γ̃ −u by Lemma B.3, and thus γ u = gD and u is the solution of the
IDP in the sense of Definition 1.3.

10 Note that the operator K in [67] equals minus our D (see [67, §5.3]).
11 [101, Lemma 3.7] justifies how the uniqueness argument of [35, Theorem 2.3] for C1 domains also
holds for Lipschitz domains.
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