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Abstract

We present new second-kind integral-equation formulations of the interior and exte-
rior Dirichlet problems for Laplace’s equation. The operators in these formulations
are both continuous and coercive on general Lipschitz domains in RY, d > 2, in the
space L?(I"), where I denotes the boundary of the domain. These properties of conti-
nuity and coercivity immediately imply that (1) the Galerkin method converges when
applied to these formulations; and (2) the Galerkin matrices are well-conditioned as
the discretisation is refined, without the need for operator preconditioning (and we
prove a corresponding result about the convergence of GMRES). The main signifi-
cance of these results is that it was recently proved (see Chandler-Wilde and Spence in
Numer Math 150(2):299-371, 2022) that there exist 2- and 3-d Lipschitz domains and
3-d star-shaped Lipschitz polyhedra for which the operators in the standard second-
kind integral-equation formulations for Laplace’s equation (involving the double-layer
potential and its adjoint) cannot be written as the sum of a coercive operator and a com-
pact operator in the space L?(I"). Therefore there exist 2- and 3-d Lipschitz domains
and 3-d star-shaped Lipschitz polyhedra for which Galerkin methods in L>(T") do not
converge when applied to the standard second-kind formulations, but do converge for
the new formulations.
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1 Introduction
1.1 Boundary integral equations for Laplace’s equation

If an explicit expression for the fundamental solution of a linear PDE is known, then
boundary value problems (BVPs) for that PDE can be converted to integral equations
on the boundary of the domain. The main advantage of this procedure is that the
dimension of the problem is reduced; indeed, the problem is converted from one on
a d-dimensional domain to one on a (d — 1)-dimensional domain. Futhermore, if the
original domain is the exterior of a bounded obstacle, then the problem is reduced
from one on a d-dimensional infinite domain, to one on a (d — 1)-dimensional finite
domain.

This reduction to the boundary has both theoretical and practical benefits: on the
theoretical side, C. Neumann famously used boundary integral equations (BIEs) to
prove existence of the solution of the Dirichlet problem for Laplace’s equation in con-
vex domains in [80] (see, e.g., the account in [65, Chapter 1]), and BIEs have a long
history of use in the harmonic analysis literature to prove wellposedness of BVPs on
rough domains (see, e.g., [13,22, 101], [49, §2.1], [72], [68, Chapter 15], [97, Chapter
4], [70]). On the more practical side, numerical methods based on Galerkin, colloca-
tion, or numerical quadrature discretisation of BIEs, coupled with fast matrix—vector
multiply and compression algorithms, and iterative solvers such as GMRES, provide
spectacularly effective computational tools for solving arange of linear boundary value
problems, for example in potential theory, elasticity, and acoustic and electromagnetic
wave scattering (see, e.g., [4, 8, 11, 15, 21, 23, 39, 55, 85, 87, 106]).

Let ®(x, y) be the fundamental solution for Laplace’s equation:

> 3,

1 a 1
dx,y) ;= —1 , d=2, = , d>
V= °g<|x—y|> @ = 2)Calx —yT2
(1.1)

where Cy is the surface area of the unit sphere S¢~! ¢ R? and @ > 0. With T the
boundary of a bounded Lipschitz domain, the boundary integral operators (BIOs) S,
D, D', and H, the single-layer, double-layer, adjoint double-layer, and hypersingular
operators, respectively, are defined for ¢ € LZ(F), v e H 1 (I'),and x € T by

0P (x,y)
Sid(x) = / O(x, P ds(¥),  Dp(x) = / S Dsmsy), (1)
r r on(y)
and
a0y o [ ady)
D'p(x) = fr T dsy). H = 5 fr L) ).

(1.3)

When T is Lipschitz, the integrals in D and D’ are defined as Cauchy principal values,
in general only for almost all x € I' with respect to the surface measure ds. The
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Table 1 The integral operators involved in the standard boundary-integral-equation formulations of the
interior and exterior Dirichlet and Neumann problems for Laplace’s equation

Interior Interior Exterior Exterior
Dirichlet Neumann Dirichlet Neumann
problem problem problem problem

Direct S H S H
Lo 11+D 11+D/ L b
2 2 2 2

Indirect S H S H
Yoo 11+D’ 11+D Ly
2 2 2 2

definition of H on spaces larger than H'(I") is complicated (it must be understood
either as a finite-part integral, or as the non-tangential limit of a potential; see [65,
Chapter 7], [17, Page 113] respectively), but these details are not essential to the present
paper. The standard mapping properties of S, D, D’, and H on Sobolev spaces on "
are recalled in Appendix A (see (A.3)).

The BIE operators involved in the standard first- and second-kind BIEs for the
Dirichlet and Neumann problems for Laplace’s equation are shown in Table 1; although
we do not explicitly consider the Neumann problem in this paper, we use the informa-
tion in this table in what follows. For the details of the right-hand sides and unknowns
for the integral equations corresponding to the operators in Table 1, see, e.g., [87,
§3.4], [65, Chapter 7], [93, Chapter 7], [17, §2.5]. Recall that the adjective “direct"
in the table refers to equations where the unknown is either the Dirichlet or Neumann
trace of the solution to the corresponding BVP, and the adjective “indirect" refers to
equations where the unknown does not have immediate physical relevance.

Following [87, Pages 9 and 10], we call BIEs first kind where the unknown function
only appears under the integral, and second kind where the unknown function appears
outside the integrand as well as inside; by this definition, the BIEs in the first and
third row of Table 1 are first kind, and in the second and fourth row second kind. An
alternative definition of second kind BIEs is that, in addition to the unknown function
appearing outside the integrand as well as inside, the BIO is Fredholm of index zero
(i.e., the Fredholm alternative applies to the BIE); see, e.g., [4, §1.1.4]. Every BIE that
we describe in the paper as second-kind is second-kind in both senses above.

1.2 The Galerkin method

We focus on solving Laplace BIEs with the Galerkin method. The Galerkin method
applied to the equation A¢p = f, where ¢, f € H, A : H — 'H is a continuous
(i.e. bounded) linear operator, and  is a complex' Hilbert space, is: given a sequence

! 1t is convenient, since we deal with non-self-adjoint operators and talk at some points about spectra and
numerical ranges, to assume throughout that all Hilbert spaces and function spaces are complex. Of course
results for the corresponding real case are easily deduced, if needed, from the complex function space case.
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1328 S.N. Chandler-Wilde, E. A. Spence

(Hn)$_; of finite-dimensional subspaces of H with dim(Hy) — oo as N — oo,

find ¢y € Hy such that (A(]bN, YN)H = (f, WN)H forall yy € Hy. (1.4)

We say that the Galerkin method converges for the sequence (Hy)%_, if, for every
f € H, the Galerkin equations (1.4) have a unique solution for all sufficiently large
Nand ¢y — A7 fas N — oo. We say that (HN)$_, is asymptotically dense in 'H
if, for every ¢ € H,

min ||¢ —Ynllyy -0 as N — oo. (1.5)
NEHN

A necessary condition for the convergence of the Galerkin method is that (Hx)§_,
is asymptotically dense in H. Indeed, a standard necessary and sufficient condition
(e.g., [37, Chapter II, Theorem 2.1]) for convergence of the Galerkin method is that
(HN)ﬁ: | is asymptotically dense and that, for some Ng € N and Cg;s > 0,

Py ANl
(K27

> Cgis for all non-zero ¢y € Hy and N > Ny, (1.6)

where Py is orthogonal projection of H onto H . Importantly, if (1.6) holds, then
([37, Chapter II, Equation (2.5)] or see [87, Theorem 4.2.1 and Remark 4.2.5])

||A||H—>H>

o —onll S(H—
N Cdis

mi% l¢ —¥nlly, forN =No, (1.7)

YnEHN

where ¢ = A™! f and ¢y is the unique solution of the Galerkin equations (1.4). We
note that (1.7) is known as a quasioptimal error estimate.

We now recap the main abstract theorem on convergence of the Galerkin method;
this theorem uses the definition that an operator A : H — H is coercive,? if there
exists Ceoer > 0 such that

(A, V)| = Ceoer IV [17; forall yr € H. (1.8)

Theorem 1.1 (The main abstract theorem on convergence of the Galerkin method.)

(a) If A is invertible then there exists a sequence (Hy)5%_, for which the Galerkin
method converges.
(b) If A is invertible then the following are equivalent:

(i) The Galerkin method converges for every asymptotically-dense sequence

(HN)$—, in H.

2 In the literature, the property (1.8) (and its analogue for operators A : H — H’, where H is the dual
of 'H) is sometimes called “H-ellipticity" (as in, e.g., [87, Page 39] [93, §3.2], and [47, Definition 5.2.2])
or “strict coercivity" (e.g., [52, Definition 13.22]), with “coercivity" then used to mean either that A is the
sum of a coercive operator and a compact operator (as in, e.g., [93, §3.6] and [47, §5.2]) or that A satisfies
a Garding inequality (as in [87, Definition 2.1.54]).
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Coercive second-kind boundary integral equations for the... 1329

(ii) A = Ag + K where Ay is coercive and K is compact.

(c) If A is coercive (i.e. (1.8) holds) then, for every sequence (Hy)S_, and every
N € N, the Galerkin equations (1.4) have a unique solution ¢ and, where

¢p=A""F,

Al .
l¢ —enly < o S l¢ = vl (1.9)

(so that gy — ¢ as N — oo if (Hn)F_, is asymptotically dense in H).

References for the proof Part (a) was first proved in [64, Theorem 1]; see also [37,
Chapter II, Theorem 4.1]. Part (b) was first proved in [64, Theorem 2], with this result
building on results in [99]; see also [37, Chapter II, Lemma 5.1 and Theorem 5.1].
Part (c) is Céa’s Lemma, first proved in [14]. O

1.3 The rationale for using second-kind BIEs posed in L2(I")

The BIOs in Table 1 are coercive in the trace spaces H £1/2(T) (or certain subspaces of
these) for Lipschitz I', thus insuring convergence of the associated Galerkin methods
by Part (c) of Theorem 1.1; this coercivity theory was established for first-kind equa-
tions by Nédélec and Planchard [79], Le Roux [56], [57], and Hsiao and Wendland
[46], and for second-kind equations by Steinbach and Wendland [95]. These arguments
involve transferring boundedness/coercivity properties of the PDE solution operator
to the associated boundary integral operators via the trace map and layer potentials;
the generality of these arguments is why coercivity holds with I" only assumed to be
Lipschitz, and Costabel [25] highlighted how these ideas can be traced back to the
work of Gauss and Poincaré.

Despite convergence of the associated Galerkin methods, using the first-kind for-
mulations in the trace spaces has the disadvantage that the condition numbers of the
Galerkin matrices grow as the discretisation is refined; e.g., for the s-version of the
Galerkin method (where convergence is obtained by decreasing the mesh-width 2 and
keeping the polynomial degree fixed), the condition numbers grow like 2~ !; see, e.g.
[87, §4.5]. The design of appropriate preconditioning strategies for these Galerkin
matrices has therefore been a classic topic of study in the BIE community for over 20
years, with proposed solutions including (i) preconditioning with an opposite-order
operator [94] (see also the survey [45]), (ii) using wavelets, either as an approximation
space (e.g., [42, 43, 103]) or in preconditioning (e.g., [88, 98]); using domain decom-
position methods; see, e.g., [44] and the recent book [96]. Furthermore, using the
second-kind formulations in the trace spaces has the disadvantage that the inner prod-
ucts on H*Y/ 2(F) are non-local and non-trivial to evaluate; even if the basis functions
¢n and Yy in (1.4) have supports only on a subset of I', (A¢n, ¥n)7¢ is an integral
over all of I', and the calculation of the Galerkin matrix in this case is impractical.

For the second-kind BIEs, an attractive alternative to working in the trace spaces
is to work in L?(I"). When I is C!, D and D’ are compact in L>(T") by the results of
Fabes, Jodeit, and Riviére [35, Theorems 1.2 and 1.9] and thus each of the second-kind
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1330 S.N. Chandler-Wilde, E. A. Spence

BIOs %I 4+ D and %I + D’ is the sum of a coercive operator and a compact operator,
and convergence of the associated Galerkin methods in L2(T") is ensured by Part (b)
of Theorem 1.1. Since the L>(I") norm is local, (A¢y, ¥n )7 is an integral over the
support of 1y, and the Galerkin matrix is much more easily computable. Furthermore,
when D and D’ are compact, the condition numbers of the Galerkin matrices of % I1+D
and %I =+ D’ are independent of the discretisation (without preconditioning); see [4,
§3.6.3], [41, §4.5.5].

1.4 Convergence of the Galerkin method in L2(I") for the standard second-kind
integral equations on polyhedral and Lipschitz domains

The disadvantage of using second-kind BIEs in L?(I") is that convergence of the
Galerkin method is harder to establish when I' is only Lipschitz, or Lipschitz polyhe-
dral. Indeed, in these cases D and D’ are not compact; e.g., when I' has a corner or
edge their spectra are not discrete; see, e.g. [4, §8.1.3]. When I' is only Lipschitz, D
and D’ are bounded on L*(I") by the results on boundedness of the Cauchy integral
on Lipschitz I' of Coifman, MclIntosh, and Meyer [22] (following earlier work by
Calder6n [12] on boundedness for I with small Lipschitz character). Verchota [101]
showed that the operators %I + D and %I + D’ are Fredholm of index zero on L2(I");
when I" is connected, %I — D and %I — D’ are invertible on L2(I") and %I + D and
%I + D’ invertible on L%(F), the set of ¢ € L?(I") with mean value zero; see [101,
Theorems 3.1 and 3.3(1)].
A long-standing open question has been

Can %I 4+ D and %I =+ D’ be written as the sum of a coercive operator and a
compact operator in the space L>(I") when I' is only assumed to be Lipschitz?

By Part (b) of Theorem 1.1, this question is equivalent to the question: does the Galerkin
method applied to %1 + D and %I + D' in L*(I") converge for every asymptotically-
dense sequence of subspaces when I" is only assumed to be Lipschitz?

Until recently, this question was answered only in the following two cases, both
in the affirmative: (i) I" is a 2d curvilinear polygon with each side C1¢ for some
0 < o < 1 and with each corner angle in the range (0, 2m). (ii) I' is Lipschitz,
with sufficiently small Lipschitz character. Regarding (i): this result was announced
by Shelepov in [89], with details of the proof given in [90], and with the analogous
result for polygons following from the result of Chandler [16, §3]; see, e.g. [9, Lemma
1.5]. Regarding (ii): Wendland [105, §4.2] recognised that the results of I. Mitrea [71,
Lemma 1, Page 392] about the essential spectral radius could be adapted to prove this

3 The invertibility of %1 — D' on LA(I") implies that the bilinear form of the associated least-squares

formulation
1 1
@, ¥) = ((4 - D’) ¢, (71 - D/> w)
“ 2 2 LZ(F)

is coercive. This formulation, however, suffers from the same disadvantages as the variational formulation
of %I — D in H V2, including that computing the entries of the Galerkin matrix requires computing
integrals over all of I', even when the basis functions have support on (small) subsets of I
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Fig.1 Views from above and below of the open-book polyhedron €2¢ ;, of [19, Definition 5.7], withn = 4
pages and opening angle 6 = /2

result, with this result proved in full in [19, Corollary 3.5]; for more discussion on
both (i) and (ii), see [19, §1].

The recent paper [19] finally settled the question above negatively by giving exam-
ples of 2-d Lipschitz domains and 3-d star-shaped Lipschitz polyhedra for which
%I + D and %I =+ D’ cannot be written as the sum of a coercive operator and a com-
pact operator in the space L(I"). The 3-d star-shaped Lipschitz polyhedra are defined
in [19, Definition 5.7], and called the open-book polyhedra; see Fig. 1 for an example,
where we use the notation that 2y , is the open-book polyhedron with n pages and
opening angle 6. Given € > 0 there exists 6y € (0, 7] such that the essential numerical
range of D in L?(I") contains the interval [—+/n/2+¢, /n/2—€] [19, Theorem 1.3] if
0 < 6 < 6. By the definition of the essential numerical range (see, e.g., [19, Equation
2.3]), this result implies that if 6 is sufficiently small and n > 2, then %I + D and
%I + D’ cannot be written as the sum of a coercive operator and a compact operator
in the space L*(T") when " = 020 5.

Nevertheless, Part (b) of Theorem 1.1 only shows that the Galerkin method
applied to these domains does not converge for every asymptotically dense sequence
(Hm¥y-, C L?(I"), leaving opening the possibility that all Galerkin methods used
in practice (based on boundary element method discretisation [87, 93]) are in fact
convergent. However, the following result from [19] clarifies that this is not the case.

Theorem 1.2 ([19, Theorem 1.4]) Suppose that A is invertible but A cannot be written
in the form A = Ao + K, where Ay is coercive and K is compact, and that (7'(*1\,)7\,"= 1
is a sequence of finite-dimensional subspaces of H, with H} C H; C ..., for which
the Galerkin method converges. Then there exists a sequence (Hy)Y_, of finite-
dimensional subspaces of H, with H1 C Hy C ..., such that:

(a) the Galerkin method does not converge for the sequence (Hy)%_,; and
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1332 S.N. Chandler-Wilde, E. A. Spence

(b) foreach N € N,
Hy C Hn C HLN, for some My € N. (1.10)

We can apply this result when (H},)}_, is a sequence of boundary element sub-
spaces that is asymptotically dense in L?(I"), in which case (HN)S7_;» satisfying
(1.10), is also a sequence of boundary element subspaces (since Hy C Hj, ) and is
also asymptotically dense in L*(I") (since Hy C Hw).

In summary, the results of [19] show that there exist Lipschitz and polyhedral
boundaries I' for which there are Galerkin methods for solving BIEs involving %I +=D
and %I =+ D’ that do nor converge, with these methods based on asymptotically-dense
sequences (HN)?VOZ 1 C L) of boundary element subspaces.

1.5 Motivation for the present paper and summary of the main results

Given the negative results of [19] about convergence of the Galerkin method for the
standard second-kind formulations, a natural question is therefore

Do there exist second-kind BIE formulations in LZ(I") of Laplace’s equation
where, with I only assumed to be Lipschitz, the operators are continuous,
invertible, and can be written as the sum of a coercive operator and a compact
operator?

In this paper we answer this question in the affirmative for the Laplace interior and
exterior Dirichlet problems. We present new BIE formulations that are continuous and
in fact coercive (i.e., not just the sum of a coercive and a compact operator) in the space
L2(I"), with T only assumed to be Lipschitz; thus convergence of the Galerkin method
in L>(T") for every asymptotically-dense sequence (H N)¥—;» plus the explicit error
estimate (1.9), is ensured by Part (c) of Theorem 1.1. Furthermore, the strong property
of coercivity allows us to prove that, if the Galerkin matrices are preconditioned
by a specified diagonal matrix, then the number of GMRES iterations required to
solve the associated linear systems to a prescribed accuracy does not increase as the
discretisation is refined and N increases.

In summary, the new BIEs introduced in this paper are such that, when solving the
Laplace interior and exterior Dirichlet problems on a general Lipschitz domain:

1. Given any asymptotically-dense sequence of subspaces, the associated Galerkin
method is provably convergent; and

2. For a wide variety of subspaces, including piecewise polynomials (of arbi-
trary degree) on anisotropic meshes, the Galerkin matrices are provably well
conditioned—with the number of GMRES iterations independent of the subspace
dimension—after preconditioning by only a diagonal matrix.

Indeed, Sect. 1.4 recalled that the standard second-kind BIEs in L2(I") do not satisfy
Point 1. Furthermore, the proposed remedies to the growth of the condition number
of the first-kind BIEs in the trace spaces recapped in Sect. 1.3, although tremen-
dously successful in many contexts, do not satisfy Point 2. Indeed, to our knowledge,
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there is no theory on either operator preconditioning or wavelet preconditioning of
piecewise-polynomial discretisations using anisotropic meshes on general Lipschitz
polyhedra. Furthermore, whilst there exists theory for domain-decomposition meth-
ods on anisotropic meshes (e.g., [44]) the preconditioners are more complicated, and
expensive, than multiplication by a diagonal matrix.

Outline of the paper. Section 1.6 defines more precisely the Laplace BVPs we con-
sider. Section 1.7 recaps results about a non-standard layer potential introduced in [13]
and its non-tangential limits. Section 2 states the main results. Section 3 discusses the
ideas behind the main results, and the links to other work in the literature. Section 4
proves the main results, except the parts of the proofs that are related to the wellposed-
ness and regularity of the Laplace oblique Robin problem, with these given in Sect.
5.

Section 6 in the extended version of the present paper [18] presents results for the
Helmbholtz exterior Dirichlet problem (with these results corollaries of the Laplace
results in Sect. 2).

1.6 Notation and statement of the BVPs

Let Q- Cc R4, d > 2, be a bounded (not necessarily connected) Lipschitz open set,
and let QF := RA\Q~ and I' := 9Q~. Let n be the outward-pointing unit normal
vector to 2~ (so n points out of 2~ and into Q1). Forv € H'(Q7) let y ~v denote its
Dirichlet trace. Forv € H'(Q7, A) :=={w:w € H'(Q7), Aw € L>(Q7)} let 3, v
denote its Neumann trace; recall that, if v € H 2(Q_) then 9, v = n-y~ Vu. Similarly,
forve HL Q") :={w: Q" > R: yw e H/(QT) forall x € cggmp(Rd)}, let
¥ Tv denote its Dirichlet trace. For v € H} (QT,A) :={w: QT - R: yw €
HY(QY), xAw € L*(QT)forall x € ng’mp(Rd)}, let 8,7 v denote its Neumann
trace.

Definition 1.3 (Laplace interior Dirichlet problem (IDP)) Given gp € HY*(I"), we
say thatu € H L(Q™) satisfies the interior Dirichlet problem (IDP) if Au =01in Q™
and y"u=gponl.

Definition 1.4 (Laplace exterior Dirichlet problem (EDP)) With Q™ and Q™ as above,
assume further that Q is connected. Given gp € H'/?(I"), we say that u € HILC(QJF)
satisfies the exterior Dirichlet problem (EDP) if Au = 0in Q*, y*u = gp onT, and
u(x) = O(1) whend = 2 and u(x) = o(|x|*~¢) whend > 3 as |x| — oo (uniformly
in all directions x/|x|).

We make three remarks.
(1) Recall that, by elliptic regularity (see, e.g., [65, Theorem 4.16]), the solution of

the IDP and EDP are C™ in Q™ and Q7 respectively. Therefore, the pointwise
conditions at infinity imposed in the EDP make sense.
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1334 S.N. Chandler-Wilde, E. A. Spence

(ii) For the IDP and EDP, uniqueness of the solution is shown in, e.g., [65, Corollary
8.3] and [65, Theorems 8.9 and 8.10] respectively4. Existence then follows from
Fredholm theory and, e.g., [65, Theorems 7.5, 7.6, and 7.15].

(iii) The Neumann traces of the solutions of both the IDP and EDP are in H~1/2(I');
see, e.g., [65, Lemma 4.3]. Later, we consider both these BVPs when the Dirichlet
dataisin H'(I'). The regularity result of Necas [78, §5.1.2] (restated as Theorem
B.1 below) then implies that 9, u and 8, u (in Definitions 1.3 and 1.4 respectively)
are both in L2(I"), as opposed to just in H=12(D.

The IDP and EDP can equivalently be formulated in terms of non-tangential limits,
with these alternative formulations standard in the harmonic-analysis literature (see,
e.g., [101, Corollary 3.2], [13, §3], [68, Theorem 2], [97, Proposition 5.1]). We state
these alternative formulations, and recall their equivalence, so that we can easily use
results from the harmonic-analysis literature (summarised in Appendix B below).

Given x € I', let ®*(x) be the non-tangential approach set to x from QF defined
by

O*(x) = {y € QF : [x —y| < min {c, Cdist(y, r)}}, (1.11)

for some ¢ > Oandsome C > 1 sufficiently large depending on the Lipschitz character
of QE2 If u € C(QY), its non-tangential maximal function u* : T' — [0, o0] is
defined by

u*(x) ;= sup |u(y)|, xeT. (1.12)
yeO*(x)

Define the non-tangential limit

Yrux) = lim  u(y). (1.13)
y—X, ye®*(x)

If u e C*(Q%), Au = 0, and u* € L*(I'), then T u(x) is well-defined for almost
all x € T and y*u € L2 by [48, Corollary 5.5] (restated as Part (ii) of Theorem
B.2 below). Furthermore, if u € Hlf)C(Qi) with s > 1/2, then )7iu = yiu by [17,
Lemma A.9] (restated as Lemma B.3 below).

Definition 1.5 (Laplace IDP formulated via non-tangential limits) Given gp € L*(I),
we say that u € C%(27) with u* € L%(I') satisfies the IDP if Au = 0 in ™ and
Yy u=gponTl.

Definition 1.6 (Laplace EDP formulated via non-tangential limits) With Q~ and Q7
as above, assume further that Q% is connected. Given gp € LZ(F), we say that
u € C*(Q") with u* € L?(I') satisfies the EDP if Au = 0in QF, ¥tu = gp on
I, and u(x) = O(1) when d = 2 and u(x) = o(Jx]*~¢) whend > 3 as |x| - oo
(uniformly in all directions x/|x|).

4 [65, Theorem 8.10] proves uniqueness under the condition u(x) = O ( |x|2*d) as |x| — oo, but when
d > 3 the proof still goes through when u(x) = o(Ix]3~9) as |x| —> oo.

5 E.g.,C > M + 1 is large enough when M is the Lipschitz character.
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Existence and uniqueness of the solutions of these formulations of the IDP and
EDP go back to the work of Dahlberg [27], and are given explicitly in, e.g., [101,
Corollary 3.2 and Lemma 3.7], [13, §3]. The following equivalence result is proved
in Appendix C.

Theorem 1.7 (Equivalence of the different formulations of the IDP and EDP) If gp €
H'/2(T"), then the solution of the IDP in the sense of Definition 1.3 is the solution of
the IDP in the sense of Definition 1.5, and vice versa.

Similarly, if gp € HY?(I"), then the solution of the EDP in the sense of Definition
1.4 is the solution of the EDP in the sense of Definition 1.6, and vice versa.

1.7 Recap of results about layer potentials and their non-tangential limits

Recall that the surface gradient operator on I' is the unique operator such that, when
v e CHQ), Vv =nm-Vv)+ Vr(y v) on I (and similarly for v € CH(Q1));
for an explicit expression for Vr in terms of a parametrisation of I, see, e.g., [17,
Equation A.14].

The following results all rely on the harmonic-analysis results in [22] and [101]
(see also the accounts in [68, Chapter 15], [97, Chapter 4], [49, Chapter 2, Section 2]).
Define

Vr$¢((x) .= f Vrx®x,y)¢(y)ds(y) forae xeTl,
r

where the integral is understood in the principal-value sense. By [101, Theorem 1.6],
VrS : L*(I') — L*(I'), with this mapping continuous, and (VrS)¢ = Vr(S¢). The
following potential was introduced in [13, §2]; given Z € (L*° (1) that is real-valued
(which we assume throughout), let

Kzo(x) .= /FZ(y) - Vy®(x, y)p(y) ds(y) for x € RY \ T, (1.14)
and let
Kz¢(x) := /FZ(y) - Vy®(x,y)¢(y) ds(y) forae. xeT, (1.15)

where the integral in (1.15) is understood in the principal-value sense. The results of
[22]and [101] imply that Kz : L*(I") — L*(I") and, for ¢ € L*>(T"), Kz¢ € C*(Q1),
Kz satisfies Laplace’s equation, and (Kz¢)* € L2(I") with

)'7iICZ¢(X) = :I:%(Z(x) -n(x))¢(x) + Kz¢(x) forae.xel'. (1.16)
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Observe that (i) when Z = n, Kz = D, Kz = D, and (1.16) is the usual jump
relation for the double-layer potential, and (ii) we can rewrite Kz as

Kzo(x) = / (Z(y) n(y) 8(( ))¢<y)+Z(y> Vrd(x, y>¢(y>) ds(y).
(1.17)

In a similar way to how the L? adjoint of D is D’ (see, e.g., [68, Chapter 15, text
around Equation 4.10]), the L? adjoint of Kz is

K;p(x) := (Z(x) -n(x))D’qﬁ(X) +Z(x) - VrS¢ (x). (1.18)

The significance of the operator K7, is that it appears in the inner product of Z with the
non-tangential limit of V.S, where S is the single-layer potential defined for ¢ € L2(I")
by

So(x) := '/F D(x,y)o(y) ds(y) forx € R? \T. (1.19)

Indeed, by [101, Theorems 1.6 and 1.11] (see also [68, Theorem 5], [17, Equation
2.30]), for almost every x € T,

iV&j)(x) =n(x) ( 11 + D ) ¢(x) + Vr(S¢)(x), (1.20)
so that

~ 1 ,
Z(x) - YEVSe(x) = <¥§(Z(X) -n(x))1 + KZ> o (x). (1.21)

2 Statement of the main results

2.1 New boundary integral equations for the Laplace interior and exterior
Dirichlet problems on general Lipschitz domains ford > 3

We focus on the case d > 3, since the question of whether or not there exist BIE for-
mulations of the Laplace IDP and EDP that are coercive, or coercive up to a compact
perturbation, on Lipschitz domains is more pressing when d = 3 than d = 2 (because
of the existing convergence theory for :t%l + D and :I:%I + D’ on curvilinear poly-
gons [16, 89, 90] but negative results for these operators for certain 3-d star-shaped
polyhedra [19] recapped in Sect. 1.4). Results for d = 2 are given in Sect. 2.3.
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2.1.1 The interior Dirichlet problem

Given Z € (LOO(F))d and o € R, define the integral operators Al/,z,a’ A1.7.4,and
BI,Z,ot by

1 1
2 = A Ky +aS,  Alze:= 5@ Wl —Kz+as.  (21)

1 1
Bizq:=—(Z -n)H —Z-Vr <§1+D> +a <§1+D>, (2.2)

with the subscript I standing for “interior", and the ’ superscript indicating that A’I’ Za
is the L2 adjoint of A7z 4.
Theorem 2.1 (New integral equations for Laplace IDP with d > 3)
(i) Direct formulation. Let u be the solution of the Laplace IDP of Definition 1.3 with
d > 3 and additionally gp € H'(I"). Then 9, u satisfies
72,000 4 = Bl.2.48D. (2.3)
(ii) Indirect formulation. Given gp € L*(I), if $ € L*(I") satisfies

A1z2,090 =—8D, 2.4
then
u:=Kz—aS)o 2.5)

is the solution of the Laplace IDP of Definition 1.5.

(iii) Continuity. A, , , : L*(T) — L*(I"), Arz,q : L*(T') — L*(I"), and By 7.4 :
HY (') — L*(I"), and these mappings are continuous.

(iv) Coercivity up to compact perturbation. If Z. € (C(I'))¢ and there exists ¢ > 0
such that

Z(x) -n(x) > c foralmosteveryx €T, (2.6)

then both A, , . and Aj 7.4 are the sum of a coercive operator and a compact

operator on Lz(l").

(v) Invertibility for all « > 0. Ifa > 0, Z € (COP(I')) for some 0 < B < 1, and
there exists ¢ > 0 such that (2.6) holds, then both A’I’Z’a : L3(T) — L*(T) and
A1z : L>(T) — L*(T') are invertible.

(vi) Coercivity for sufficiently large o. If Z satisfies (2.6), Z € (C%1(I")? with
Lipschitz constant Lz, and

20 > 3dLz, 2.7)
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then both A’[’Z,a and Aj 7. are coercive on LZ(F) with coercivity constant c/2
(with c defined by (2.6)), indeed,

c
( /1,z,a1/f, W)Lz(p) > 5 Ileliz(F) for all real-valued € L*(T'), (2.8)

and similarly for Aj 7. 4.

Recall thatif A isrealand (AY, ¥) > Ceoer V17,  forallreal-valued yr € L>(IN),
then R(A¢p, @) > Ceoerll@ ”iZ(F) for all complex-valued ¢ € L?(I'); thus (2.8) implies
that A/I,Z, o and Aj z o are coercive on complex-valued LZ(F).

For any bounded Lipschitz open set Q2™ there exists Z € (C 0.1 (F))d such that (2.6)
holds; see, e.g., [40, Lemma 1.5.1.9], [78, Proof of Lemma 1.3], [18, Appendix D].
The combination of this result and Parts (iii) and (vi) of Theorem 2.1 imply that, for
any bounded Lipschitz open set, there exists a BIE formulation of the Laplace IDP
that is continuous and coercive in L2(T").

The vector field Z can be thought of as a “regularised normal vector"; the choice
Z. = n satisfies (2.6) but does not have the regularity required for Parts (iv), (v), and
(vi) of Theorem 2.1 unless 27 is, respectively, C 1 ¢l or C1!. Indeed, from Parts
(iv)-(vi) of the theorem we see that the stronger the property one wishes to obtain for
A’]’ 7. and A7 7 o, the more regularity of Z is required. E.g., coercivity up to a compact
perturbation is proved for continuous Z satisfying (2.6) but coercivity is proved only
for Lipschitz Z satisfying (2.6).

2.1.2 The exterior Dirichlet problem

Given Z € (L°°(F))d and o € R, define the integral operators A’E!Z’a, Afg7.4,and
BE,Z,a by

1 1
Ap g4 = E(Z mI +K;+aS, Apze:= E(Z -n)I + Kz +aS, (2.9)
1 1
Brza = (Z-wH+Z-Vr (—§I+D>+a<—§I+D), (2.10)

with the subscript E standing for “exterior".

Theorem 2.2 (New integral equations for Laplace EDP with d > 3)

(i) Direct formulation. Let u be the solution of the Laplace EDP of Definition 1.4
with d = 3 and additionally gp € H'(T). Then 0, u satisfies

F.Z.a00 4= BE 748D @2.11)
(ii) Indirect formulation. Given gp € L*(T), if ¢ € L*(T") satisfies
AEZ.o% = 8D, (2.12)
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then
u:=Kz+aS)ep (2.13)

is the solution of the Laplace EDP of Definition 1.6.

(iii) Continuity. A’y ; , L*(T) — L*(T), Apz.4 : L*(T) — L*(T), and Br.z,4 :
HYT) = L2(), and these mappings are coOntinuous.

(iv) Coercivity up to compact perturbation. If Z. € (C(T)Y)? and there exists ¢ > 0
such that (2.6) holds, then both A/E,Z,a and Afg 7.4 are the sum of a coercive
operator and a compact operator on L*(I').

(v) Invertibility for all o« > 0. Ifa > 0, Z € (COP (') for some 0 < B < 1, and
there exists ¢ > 0 such that (2.6) holds, then both A/E,Z,a - L2(I') - L%(T) and
AEz.a: L2(I') = L%(I) are invertible.

(vi) Coercivity for sufficiently large o. If Z < (C%' (T N with Lipschitz constant
Lz and (2.7) holds, then both A’E’Z’a and AE 7.4 are coercive on L3(T") with
coercivity constant c/2 (with c defined by (2.6)), in that (2.8) holds with A’[’Z’a
replaced by either A/E,Z,ot or Ag.7.q-

Similar to the case of the IDP, the existence, for any bounded Lipschitz open set
Q~, of a vector field Z € (C%!(I"))? such that (2.6) holds combined with Parts (iii)
and (vi) of Theorem 2.2 imply that, for any bounded Lipschitz open set 2~ such that
Q1 is connected, there exists a BIE formulation of the Laplace EDP that is continuous
and coercive in L2(I").

2.1.3 The new formulations of the IDP and EDP for d > 3 on domains that are
star-shaped with respect to a ball

When Q7 is star-shaped with respect to a ball, the coercivity results in Theorems 2.1
and 2.2 take a particularly simple form.

Definition 2.3 (i) D is star-shaped with respect to the point X if, whenever x € D,
the segment [xg, Xx] C D.

(ii) D is star-shaped with respect to the ball B, (Xg) if it is star-shaped with respect
to every point in B, (Xp).

Lemma 2.4 ([73, Lemma 5.4.1]) If D is Lipschitz with outward unit normal vector
v, then D is star-shaped with respect to B, (Xg), for some k > 0, if and only if
(X —Xq) - v(X) > « for all x € 3D for which v(X) is defined.

From now on, if a domain D is star-shaped with respect to X9, we assume (without
loss of generality) that xo = 0.

Theorem 2.5 (Coercivity for star-shaped domains) Let @~ C R?, d > 3, be a bounded
Lipschitz domain that is star-shaped with respect to a ball of radius «k, i.e.

K= essirnf(x -n(x)). (2.14)
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Then

! and Ajxqy, witha > —(d —2)/2,

1.x,«a

and
ALy o and Apxe. witha > (d —2)/2,

are all coercive on Lz(F) with coercivity constant k/2, in that (2.8) holds with ¢
replaced by k, and A/I’Z o teplaced by any one ofA/I,x o Alxa A or AE x.a-

!/
E x,a’
2.2 Convergence and conditioning of the associated Galerkin methods

We now show how Theorems 2.1 and 2.2 imply that (i) the associated Galerkin meth-
ods converge (see Sect. 2.2.1), and (ii) the associated Galerkin matrices are provably
well-conditioned as the discretisation is refined, without the need for operator precon-
ditioning (see Sect. 2.2.2). We focus on the case d > 3 and the new BIE formulations
for the IDP and EDP (appearing in Theorems 2.1 and 2.2), but analogous results hold
for the BIEs for star-shaped domains in Sect. 2.1.3 and also for the new BIEs ford = 2
in Sect. 2.3 below.

2.2.1 Convergence of the Galerkin method for the new formulations

Corollary 2.6 (Convergence of the Galerkin method) Let (Hy)%_, denote any

sequence of finite-dimensional subsets of H := L*(T") that is asymptotically dense in
L%(T) in the sense defined in Sect. 1.2.

(a) IfZ € (COHP('))? for some 0 < B < 1, and there exists ¢ > 0 such that (2.6)
holds then, for all « > 0, the Galerkin method (1.4) applied to any one of the BIEs
(2.3), (2.4), (2.11) or (2.12) converges (in the sense defined in Sect. 1).

(b) If, additionally, Z is Lipschitz and o satisfies (2.7), then, additionally, the Galerkin
solution exists for every finite-dimensional subspace Hy C L*(I') and satisfies
the quasioptimal error estimate (1.9), with constant 2|| A;’a l22(r)— 22/ ¢, where

A} = Ay 7, for the BIEs (2.3) and (2.4), A}, , := Ag 7,4 for the BIEs (2.11)
and (2.12).

Since the proof is so short, we include it here.

Proof of Corollary 2.6 (a) This follows from Parts (iv) and (v) of Theorem 2.1/Theorem
2.2 and Part (b) of Theorem 1.1. (b) This follows from Part (vi) of Theorem
2.1/Theorem 2.2 and Part (c) of Theorem 1.1. O

We highlight that Corollary 2.6 is the first time convergence of the Galerkin method
for a BIE posed in L?(I") used to solve a boundary-value problem for Laplace’s
equation has been proved with the only assumption on I' that it is Lipschitz; the same
is true if I is assumed to be Lipschitz polyhedral in 3-d.
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Remark 2.7 (Bounding the best approximation and Galerkin errors) For 3-d Lipschitz
polyhedra the smoothness of the solution, in particular its singularities at corners
and edges, is well understood (see, e.g., [104]) for the direct formulations (2.3) and
(2.11), where the solution of the integral equation is ¢ = 83[14. Moreover, it is well
understood how to design effective /- and hp-boundary element approximation spaces
‘Hn based on graded, anisotropic meshes so as to obtain optimal best approximation
error estimates (see, e.g., [30, 31, 61, 62, 104]), indeed exponential convergence of
miny ey, ¢ — || L2 @ a function of My := dim(Hy) if the Dirichlet data gp is
the restriction to I" of an analytic function (see [62, Theorem 3.1]). Further, by Part (a)
of Corollary 2.6 and the quasioptimality (1.7), the same rates of convergence follow
for the Galerkin error ||[¢ — ¢n |l 2y as long as o > 0.

2.2.2 Solution of the Galerkin linear systems of the new formulations

Let Hy = span{y{", ..., ¥y }, with My = dim(Hy) and {¢/{", ..., ¥p } a basis
for Hy. The Galerkin method (1.4) applied to (2.4) is then equivalent to the linear
system

Ax=Db (2.15)
where
A)ij = (AL Y W) oy and b= =20, ¥ )y, i =1,..., My,
(2.16)

with A;’a := A 7.4, and with the Galerkin solution ¢ givenby ¢pn = Z] 1 X wN,
where x = (x[', ..., xpy )7 The Galerkin method applied to (2.3), (2.12), or (2.11),

respectively, is also equivalent to (2.15), with A;’a = A’I’Z’a, AE 7.4, OF A’E’Z,a in
(2.16) and with correspondingly different definitions of the right-hand side components
b;.
In each case, whether AZa = Al Za A, Z.a AE 7., OF AE Za the matrix A
defined in (2.16) is non-symmetric, and a popular method for solvmg such non-
symmetric linear systems is the generalised minimum residual method (GMRES)
[86], which we now briefly recall. Consider the abstract linear system Cx = d in
CMv  where C € CMNXMN ig invertible. Let g be an initial guess for x, and define the
corresponding initial residual r* := Cx® — d and the corresponding standard Krylov
spaces by

K™ (C, o) :=span{C/rg: j =0,...,m —1}.

For m > 1, define the mth GMRES iterate x,, to be the unique element of ™ (C, rp)
such that its residual r,, := Cx,, — d satisfies the minimal residual property

[tmllz = min [|Cy —d]2.

yeln (C,rY)
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The main result of this subsection (Theorem 2.11 below) is a result about the
convergence of GMRES applied to (2.15) preconditioned by diagonal matrices. This
result is proved under the following assumption in which (and subsequently) for every

vy € Hy we denote by v € CYVN the unique vector v = (v{v, e vf;,/[N)T such that
vy = ; N1 ] wN
Assumption 2.8 (H )%/, and the associated bases ({1//1N, R W%N})fvozl , are such

that there exists a sequence of diagonal matrices (Dy)%_; and Ci,C; > 0,
independent of N, such that

C1|oy?wl, < oyl 2 < C2|DY W, forallwy € Hy.  (2.17)

Remark 2.9 (Relation of C1 and Cj in (2.17) to the mass matrix) Let My be the mass
matrix defined by

Mg = (7 0) 2y (2.18)
Since (Myw, W)2 = [[wy 2, ., and thus 1My Wll2 = llww ll 2y, (2.17) implies
that

1/2~—1/2
Cilvlla < [My*Dy" < Collvlla forall vy € Hys:

v || LX) =

ie., Dl/ % can be considered as a right-preconditioner for MY 2, removing the

N-dependence of the norms of M N/ % and M_l/ 2

Remark 2.10 (When does Assumption 2.8 hold?) If (1//N ) | is an orthogonal basis
of Hy, then Assumption 2.8 is satisfied with Dy = My and C1 Cy = 1; therefore,
if (wN ) | is an orthonormal basis of H, then Assumption 2.8 is satisfied with Dy
equal the 1dent1ty matrix, Iy.

Lemma 4.15 below shows that Assumption 2.8 is satisfied (and specifies the matri-
ces Dy) when (Hy)37_, are piecewise-polynomial subspaces allowing discontinuities
across elements, under very mild constraints on the sequence of meshes; in particular
Lemma 4.15 covers nodal basis functions on highly anisotropic meshes, such as the
meshes highlighted in Remark 2.7. We highlight that the assumption that discontinu-
ities are allowed is made so that we can assume in the proof that each basis function
is supported on only one element, but we expect the result to hold more generally. In
particular, if d = 3 and the sequence of meshes is regular, shape-regular, and quasi-
uniform (in the sense of [87, Definitions 4.1.4, 4.1.12, and 4.1.13], respectively) on
a polyhedral or piecewise curved domain (in the sense of [87, Assumptions 4.3.17
and 4.3.18], respectively), then Assumption 2.8 holds for a general nodal basis with
Dy = h% 1y by [87, Theorem 4.4.7].

Let y,, be the mth iterate when the linear system
(Dy'*AD,*)y = D'/ b (2.19)
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is solved using GMRES with zero initial guess. (Since Dy is diagonal, the cost of
calculating the action of D;,l/ ZAD;,l/ ? is dominated by the cost of calculating the
action of A.) Let

My
¢h =Y Oy Pymvl, (2.20)
=

and observe that, by (2.19), (2.15), and (2.16), the Galerkin solution ¢y is given by
My
ov =Y Oy y),vl. 21)
j=1

Theorem 2.11 (Convergence of GMRES applied to the linear system (2.19)) Assume
that Z is Lipschitz, there exists ¢ > 0 such that (2.6) holds, o satisfies (2.7), and
Assumption 2.8 holds. With Cy and C, as in (2.17), and where ||A2a|| denotes

1AY, ol 20y L2(ry let B € [0, 70/2) be defined such that

B = _c (ﬂ)z and let ;= 2sin (L> (2.22)
2zl \C S CEEEY

ol

(observe that cos B is indeed < 1 since, by definition, C1 < C> and c¢/2 < ||A; ol
Given e > 0, if

-1 24| 1A} 3
m > <log <i>> |:10g (M (2) ) + log <l>j| , (2.23)
VB c Cy e

then

_am T
|o ¢N||L2(F)<(1+8)2||Az,a|| i 19—Vl
veHy

< +e  (224)
||¢||L2(r) ||¢||L2(r) )

(compare to (1.9)).

The key point about Theorem 2.11 is that both the bound on the number of iterations
(2.23) and the terms on the right-hand side of (2.24) other than the best-approximation
error are independent of the dimension M. Therefore, the number of iterations
required to solve systems involving D;,l/ 2AD;,1/ ’toa prescribed accuracy does not
increase as the discretisation is refined and My increases. The same property holds
when the conjugate-gradient method is applied to sequences of My x My symmetric,
positive-definite matrices whose condition number is bounded independently of My .

Remark 2.12 (Bounds on the condition number) Recall that, in general, a bound on the
condition number for a nonnormal matrix cannot be used to rigorously prove results
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about the convergence of GMRES applied to that matrix; see, e.g., [60, Page 165],
[32, Page 3]. We have no reason to expect that A is normal, so to prove Theorem 2.11
we crucially use the coercivity of A; 7 o.

Nevertheless, since there is a long history of studying the condition numbers of
second-kind integral equations posed on L2(I"), we record that in the course of proving
Theorem 2.11 we prove that, where C := ||A2a l2(r)—22(r)>

2
12 =172y 2C [(C
cond (D, /“ADy ) < - (C_1) ,

where cond(B) = IBll2IIB~ ||z (see (4.41) and (4.42) below); i.e.,
cond(DX,l/ ZAD;,I/ 2) is bounded independently of the dimension My . Furthermore,
by the arguments in [6, §III], [63, Equation B.8], and [4, Equation 3.6.166],

2C
cond(A) < — cond(My); (2.25)
C

recall that for a piecewise polynomial boundary element approximation space (in
dimensions d = 2 or 3) using nodal basis functions on a quasiuniform mesh (with
these terms defined in Sect. 4.6.2), cond(My) is independent of the dimension My
(see, e.g., the proof of Part (i) of Lemma 4.15 or [87, Remark 4.5.3]).

Remark 2.13 (Calculating the entries of the Galerkin matrices for the new BIEs) Cal-
culating the entries of the Galerkin matrices for the new BIEs requires evaluating
integrals involving only the operators S, D, and D’. Indeed, for the direct BIE (2.3),
the expression (1.18) shows that constructing the Galerkin matrix requires evaluating
integrals involving the operators above, and evaluating integrals of the form

/r Z(x) - Vr (S (%) ¥ (x) ds (x) (2.26)

where ¥, ¥; € Hy. It is shown in [91, §4.3] that, using integration by parts, the
integral (2.26) can be evaluated in terms of integrals involving derivatives of v; and
values (but not derivatives) of S/ ;. Constructing the Galerkin matrix of the indirect
BIE (2.4) requires evaluating the integral

/F (Kzy; ()¢ (%) ds(x), (2.27)

where K7 is defined by (1.15). Using the expansion Z = 27:1 Z;e; in the definition
of Kz, we have

d
Ko =Y e;- /F Vy (X, ¥) Zi ()6 () ds ().
i=1
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Givenx € I, ¢; = (e; - n(x))n(x) + er(x), where er (x) is tangent to I" at x. Thus,

d

Kz$(00 ==Y (e nx)D'(Zi9) (0 + e - Vi S(Zi#) ) )

i=1

the integral (2.27) can therefore be evaluated in terms of integrals only involving D’
and (by the discussion above regarding (2.26)) S.

2.3 New boundary integral equations for the Laplace interior and exterior
Dirichlet problems on general 2-d Lipschitz domains

The biggest difference in going from d > 3 to d = 2 is that the single-layer potential
is no longer o(1) at infinity, and is only O(1) for a restricted class of densities; see
(4.23), (4.24) below. In this section, we first outline what parts of the d > 3 results
in Sect. 2.1 immediately carry over to d = 2. We then present modifications of the
integral equations in Theorem 2.1 and Theorem 2.2 that are coercive for general 2-d
Lipschitz domains when « is sufficiently large.

Inspecting the proof of Theorem 2.1 in Sect. 4, we see that Parts (i), (ii), (iii), and
(iv) hold when d = 2 (i.e., everything apart from invertibility (v) and coercivity for
sufficiently large « (vi)).

Similarly, inspecting the proof of Theorem 2.2 in Sect. 4, we see that Parts (i), (iii),
(iv), and (v) hold when d = 2 (i.e., everything apart from the indirect formulation (ii)
and coercivity for sufficiently large « (vi)), although, firstly, ou~, must be added to the
right-hand side of the BIE (2.11), where u is the limit of « at infinity® and, secondly,
Part (v) holds when d = 2 provided the constant a in the fundamental solution (1.1)
is not equal to the capacity of I', Capy- (defined in, e.g., [65, Page 263]), which holds,
in particular, if a > diam(T").

Let

1

Pro(x) = Tl

1
/Fqﬁ(y) ds(y) = ﬁ(q) I)LZ(F) forx e I; (2.28)

i.e., Pr¢ is the mean value of ¢. Observe that P2 = Pr and P, = Pr. Let Or =
I — Pr.

We give two theorems: the first for general 2-d Lipschitz domains, the second for
2-d star-shaped Lipschitz domains. Recall that we are assuming throughout that Z is
real-valued.

Theorem 2.14 (New integral equations for Laplace IDP and EDP in 2-d) Suppose that
Z e (LT anda, B € R.

6 This is because Green’s integral representation for the solution of the Laplace EDP with d = 2 takes the
form u(x) = =S8 u(x) + Dy Tu(x) + uoo forx € QF.
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(i) IDP direct formulation. Let u be the solution of the Laplace IDP of Definition 1.3
withd =2 and gp € H'(T). Let

T g0p = QrA} 7.,0r + BPr. (2.29)
Then 0, u satisfies
T} 748 w) = OrBrz.q 8p. (2.30)
(ii) IDP indirect formulation. Let
T1. 2,08 = OrAr,2,4QOr + BPr.
Given gp € L*(), if ¢ satisfies
T1.2.0.86% = —8D, (2.31)
then, ifd = 2,
u:=(Kz —aS)Qr¢ + PrA;z.0r¢ — BPr¢ (2.32)

is the solution of the Laplace IDP of Definition 1.5.
(iii) EDP direct formulation. Let u be the solution of the Laplace EDP of Definition
1.4 withd =2 and gp € H'(T"). Let

T/E,Z,a,ﬂ = QrA’E’Z’aQr + BPr. (2.33)
Then 9, u satisfies
T} 2,057 u) = OrBE 2.4 8- (2.34)
(iv) EDP indirect formulation. Let
TEZap:=OrAez.Qr + BPr.
Given gp € L*(), if ¢ satisfies
TE 7,089 = gD, (2.35)
then, ifd =2,
u:=Kz+aS)Q0r¢ — PrA;7,.0r¢ + BPro (2.36)
is the solution of the Laplace EDP of Definition 1.6.

@ Springer



Coercive second-kind boundary integral equations for the... 1347

(v) Coercivity. If Z. € (C%1(I"))? satisfies (2.6), a satisfies (2.7), and B = c¢/2, then

T;’Z,a’ﬁ, 117,08 T]’;’Z’a’ﬁ, and Tg 7,4, are all coercive on L%(T) with coercivity

constant c /2.

Theorem 2.15 (New integral equations for 2-d star-shaped domains)
(i) IDP direct formulation. Let u be the solution of the Laplace IDP of Definition 1.3
withd =2 and gp € H' (). Then 0, u satisfies

I _
( %0~ a7 [r ) 9w = Bixogp- (2.37)

(ii) IDP indirect formulation. Given gp € L*(I"), if ¢ satisfies

T
(AI,X,O - 4_PF> ¢ =—¢p, (2.38)
T
then, ifd = 2,
r
u:=Kzo + T |Pr¢
4

is the solution of the Laplace IDP of Definition 1.5.
(iii) EDP direct formulation. Let u be the solution of the Laplace EDP of Definition
1.3 withd =2 and gp € H'(T). Then 9, u satisfies

A T Y oru = 5 2.39
Exot b ) oyu=BEx08D. (2.39)
(iv) EDP indirect formulation. Given gp € L*(I), if ¢ satisfies

|
(AE,x,o + 4—Pr) ¢ =¢gp, (2.40)
T

then, ifd = 2,

r
u .= K:Z(b + uprqb
4

is the solution of the Laplace EDP of Definition 1.6.

(v) Coercivity. If Q™ is star-shaped with respect to a ball of radius k (i.e. (2.14) holds),
then each of the integral operators on the left-hand sides of (2.37), (2.38), (2.39),
and (2.40) is coercive on LZ(F) with coercivity constant k /2.

@ Springer



1348 S.N. Chandler-Wilde, E. A. Spence

3 Discussion of the ideas behind the new BIEs and links to previous
work

3.1 How the BIEs arise

The indirect BIE (2.4) for the IDP arises from imposing the boundary condition on the
ansatz u = (Kz —aS)¢ via taking the nontangential limit. Similarly, the indirect BIE
(2.12) for the EDP arises from the ansatz u = (Kz + aS)¢. For the indirect BIEs for
d = 2 in Theorem 2.14, the idea is the same, except now a) the density in the ansatz
is not a general L2(TI") function (so that S¢ has the correct behaviour at infinity), and
b) extra terms are added to the ansatz to ensure that the resulting BIE is still coercive
on L? ).

For the direct BIE (2.3) for the IDP, recall that u = S9, u — Dy~ u by Green’s
integral representation. The direct BIE (2.3) then arises from considering

—Z -y (Vu) +ay u.
Similarly, the direct BIE (2.11) for the EDP arises from considering
Z-77(Vu) +aytu,
withu = —88,f u+Dy " u. Alternatively, since (informally) Z-V = (Z-n)d,+Z- Vr,

the direct BIE (2.3) can be obtained by adding (i) (Z - n) multiplied by the standard
direct second-kind BIE

1
<§I—D’) o, u=—Hy u, (3.1)
(ii) —Z - Vr applied to the standard direct first-kind BIE
_ 1 _
S0, u = <§I+D)y u, 3.2)

and (iii) o multiplied by (3.2). Similar considerations hold for the direct BIE (2.11),
and the 2-d direct BIEs of Theorems 2.14 and 2.15, where, additionally, one uses that
Pr(dfu) = 0 (see Lemma 4.10).

3.2 The other BVPs solved by the new BIEs

The BIEs introduced in Sect. 2 to solve the Dirichlet problem can be used to solve other
Laplace BVPs. Although the focus of this paper is on solving the Dirichlet problem,
we highlight this fact here since these other BVPs affect the properties of the new
BIEs.

For example, the BIO A’ .7, used to solve the EDP in Theorem 2.2 can also be
used to solve the Laplace interior oblique Robin problem, i.e., the problem of finding
u in Q7 satisfying Au = 0 and
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(Z-n)o,u+7Z -Vr(y u)+ay u=g onl; 3.3)

see Definition 5.1 and Theorem 5.5 below. Similarly, the BIO A’I 7.¢ Used to solve
the IDP in Theorem 2.1 can also be used to solve the Laplace exterior oblique Robin
problem; see Definition 5.2 and Theorem 5.6 below. This relationship means that the
injectivity results implicit in Part (v) of Theorems 2.1 and 2.2 are obtained by proving
uniqueness of these oblique Robin problems; see Sect. 5.3.

3.3 The use of similar BIEs by Calderdon [13] and Medkova [67]

Calderon [13] used indirect versions of the BIEs in Theorems 2.1 and 2.2 witha = 0
to prove wellposedness results about the Dirichlet problem and the oblique derivative
problem (i.e., (3.3) with « = 0) with data in L?(T"). Indeed, [13] posed the ansatz

= Kz¢ for the IDP, which gives the BIE A; 7z0¢ = —gp [13, Page 39], and
posed the ansatz u = S¢ for the oblique derivative problem, which gives the BIE
A’E z. 0® = g [13, Page 45]. Furthermore, Medkova [67, §5.23] posed the ansatz
u= Sd) for the interior oblique Robin problem, resulting in A’ 1249 ="8

In both [13] and [67], the BIOs are proved to be Fredholm of index zero on LZ(F);
see [13, Page 39] (where the result is proved to hold on a slightly wider range of L? (I")
spaces) and [67, Proposition 5.23.2].

3.4 The main new properties of the BIEs of this paper: coercivity for appropriate a

Building on the work of Calderén and Medkova, we show that the BIOs are not only
Fredholm of index zero on L2(I"), but invertible for general Lipschitz domains as soon
as a > 0, and, crucially, coercive if « is chosen appropriately (so also coercive plus
compact for all & > 0). For star-shaped domains this coercivity can be proved using
a simple modification of Calderdén’s proof that the BIOs are Fredholm of index zero
(see Lemmas 4.1 and 4.2 below). For general domains this coercivity (for appropriate
«) is proved using Rellich-type identities (with this method also giving an alternative
proof of coercivity for star-shaped domains). Recall that identities arising from multi-
plying Au by a derivative of u are associated with the name Rellich, due to Rellich’s
introduction of the multiplier x - Vu for the Helmholtz equation in [84]; these iden-
tities have been well-used in the study of the Laplace, Helmholtz, and other elliptic
equations, see, e.g., the overviews in [49, Pages 111 and 112], [17, §5.3], [74, §1.4].
Verchota [101] famously used Rellich identities to prove invertibility of %I — D and
1 51— D’ on L%(I") (see Remark 4.9 below) and Medkova [67, §5.23] also used Rellich
1dent1t1es to prove that A, ,  is invertible for sufficiently large o [67, Lemma 5.23.1,
Prop. 5.23.2, Theorem 5. 23 4]

Our coercivity results are proved using the identity arising from multiplying Au by
Z.-Vu+ou (see Lemma 4.6 below); our use of a multiplier that is a linear combination
of u and a derivative of u is inspired by the use of such multipliers by Morawetz [75—
77], and the particular identity we use also appears as [54, Equation 2.28]. As recalled
in Sect. 1.3, the idea of proving coercivity of Laplace BIOs in the trace spaces goes
back to Nédélec and Planchard [79], Le Roux [56], Hsiao and Wendland [46], and
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Steinbach and Wendland [95], with this method based on using Green’s identity (i.e.
multiplying Au by ). The idea of proving coercivity of second-kind BIOs in L>(I")
using Rellich-type identities was introduced in [91] for a particular Helmholtz BIE on
star-shaped domains and then further developed in [92] for the standard second-kind
Helmbholtz BIE on smooth convex domains. The main differences between [91, 92]
and the present paper are that (i) [91, 92] only consider direct BIEs for the exterior
Helmholtz Dirichlet problem whereas the present paper considers direct and indirect
BIEs for the interior and exterior Laplace Dirichlet problems and (ii) [91, 92] only
prove coercivity under geometric restrictions on I' (which is somewhat expected for
the high-frequency Helmholtz equation; see [7], [20, §6.3.2]), namely star-shapedness
with respect to a ball for [91] and strict convexity and a piecewise analytic C* boundary
for [92], whereas the present paper proves coercivity of Laplace BIOs for general
Lipschitz domains.

3.5 Combined-potential ansatz for solutions of Laplace’s equation

A key difference between the indirect BIEs in the present paper and those in [13]
is that ours arise from the ansatz u = (Kz — aS)¢ for the solution of the Laplace
IDP, whereas [13] poses the ansatz u = Kz¢. We saw in the discussion above that the
presence of the parameter «—i.e., the fact that we use a combined-potential ansatz—is
crucial for proving coercivity of our BIOs.

The combined-potential ansatz is also crucial to proving uniqueness for cases where
coercivity does not hold. Indeed, using a linear combination of double- and single-layer
potentials to find solutions of the Helmholtz equation is standard, and goes back to
[10, 58, 81], with the motivation to ensure uniqueness at all wavenumbers. Using such
a combination for Laplace’s equation is less common, but this was done by D. Mitrea
in [69, Theorem 5.1] and subsequently by Medkova in [66]. The rationale for this
combined ansatz is similar, namely that the standard indirect second-kind equations
(based on a double-layer-potential ansatz) have non-trivial null spaces for multiply
connected domains (with these characterised in [53, 69]) but the BIOs resulting from
a combined double- and single-layer potential ansatz are invertible no matter the
topology of Q27; see [67, Theorem 5.15.2] (for d > 3) and [67, Theorem 5.15.3] (for
d = 2). The BIOs in Sect. 2 are also invertible (and even, for appropriate «, coercive)
no matter the topology of Q7.

4 Proofs of the main results

In this section we prove all of the results in Sect. 2 apart from the invertibility results
in Part (v) of Theorem 2.1/2.2. As discussed in Sect. 3, these invertibility results are
equivalent to uniqueness of the Laplace interior and exterior oblique Robin problems,
and these uniqueness results are proved in Sect. 5. Indeed, Part (v) of Theorem 2.1
follows from Corollary 5.11, and Part (v) of Theorem 2.2 follows from Corollary 5.9.
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4.1 Proofs of Parts (i), (ii), and (iii) of Theorems 2.1 and 2.2

For Part (i) of Theorem 2.1, first recall that the standard direct BIEs for the IDP
(corresponding to the top left of Table 1) are (3.2) and (3.1). If gp € H'(I"), then
9, u€ L%(I") (by Theorem B.1), and then the mapping properties (A.3a) of S and D
imply that both sides of (3.2) are in H (). Taking the surface gradient, Vr, of (3.2)
yields the (vector) integral equation in (L2()?

VrS§@0, u) =Vr <%I + D) Yy u. 4.1

Taking (Z - n) times the scalar equation (3.1), minus Z dot the vector equation (4.1),
plus o times (3.2) yields (2.3). The proof of Part (i) of Theorem 2.2 (i.e., that (2.11)
holds) is very similar.

For Part (ii) of Theorem 2.1, first recall that Kz¢ and S¢ are both in C2(27) and
satisfy Laplace’s equation (for Kz this was recalled in Sect. 1.7). When ¢ € L*(I'),
S¢ € H3?(Q27) by (A.2) and then (S¢)* € L*(I") by Part (iii) of Theorem B.2. As
recalled in Sect. 1.7, (Kz¢)* € L*() by [101], and thus u defined by (2.5) satisfies
u* € L*(I). To show that ¢ satisfies the BIE (2 4), we take the non-tangential limit
of (2.5), using (1.16) and that, by Lemma B.3, ¥~ (S¢) = y ~(S¢), where y —(S¢)
is given by the first jump relation in

1
yES =5, 9fS= Fol+ D'. 4.2)

(see, e.g., [65, Page 219] or [17, Equation 2.41]).

Part (ii) of Theorem 2.2 follows in an analogous way, except that we now need to
show that u defined by (2.13) satisfies u(x) = 0(|x|3_d) when d = 3 as |x| — oo;
these asymptotics follow from the first bound in (4.23) and the bound

Kzo )| = O(Ix|'™) as |x| > oo, 4.3)

which is proved in a similar way to the bound on the double-layer potential in [87,
Equation 3.23].

Part (iii) of both Theorems 2.1 and 2.2 follows from combining: (a) the definitions
of A’I z.o (2.1) and Al 2. (2.9) in terms of K7, and S; (b) the definitions of A; 7, «
2.1 and AE 7o (2.9) in terms of Kz and S; (c) the definitions of By z 4 (2.2) and
BE 7.o (2.2) in terms of D, H, and Vr; (d) the continuity of Kz : L2(F) — LX)
(and hence also of K7, : L2(F) — L%(I")) recalled in Sect. 1.7; (e) the continuity of
S: LX) — L¥I),H : HY(I') - L*(I"),and D : H'(I') - H'(I') (and hence
also of Vp D : HI(I') — L2(I")), recalled in (A.3).

4.2 Proofs of Part (iv) of Theorems 2.1 and 2.2 (coercivity up to a compact
perturbation)

Lemma4.1 Ifd > 2, T is Lipschitz and Z € (C(T)) then Kz + K’Z is compact in
L2(T). Thus there exists a compact operator C : L2(T") — L*(T) such that
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(K29, 8) 2y = (C. 8) 2y Jor all real-valued ¢ € L*().

Part (iv) of both Theorems 2.1 and 2.2 follow by combining Lemma 4.1 with the
assumption (2.6) and the fact that S is compact on L(I") (via the mapping property
in (A.3a) with s = 1/2).

Proofof Lemma 4.1 Since ®(x,y) is a function of [x —y|, Vx® (X, y) = —Vy P (X, y);
the definitions of Kz (1.15) and K, (1.18) then imply that, for all ¢ € L3(IN),

(Kz + Kz)o(x) = /r (Z(y) = Z()) - Vy @ (x, Y)¢ (y) ds(y). (4.4)

IfZ € (C O’ﬁ(F))d for B > 0, then the kernel of the integral on the right-hand
side of (4.4) is weakly singular, and thus the operator is compact on L*(T") by, e.g.,
the combination of [83, Part 3 of the theorem on Page 49] and the Riesz-Thorin
interpolation theorem (see, e.g., [36, Theorem 6.27]), where the latter is used to verify
the hypothesis of the former. Therefore, the result of this lemma follows if we can
show that if, forall 8 > 0, Kz + K’Z is compact for all Z € (CO’/S (F))d, then K7 + K/Z
is compact for all Z € (C(F))d.

Given Z € (C(I"))4, there exist 8 > 0 and Z; € (C%#(I"))? forall £ € N such that
1Z¢ — Z||1~ — 0as £ — oo. By (1.18), the operator K/ can be written K, =Z- T,
where T : L2(I') — (L%(I"))? is bounded by the results of [22] and [101] (as discussed
in Sect. 1.7). Let K/z =7, - T; then

!/ / — . _ .
HKZ( — KZ LZ(I‘)_>L2(I‘) = ||Z( T Z T||L2(F)—>L2(F)

< |Z¢ = Zll (pooryye 1Tl 2ry— 220y = 0

as £ — oo. Therefore also Kz, — Kz, so that Kz, + K/ZZ — Kz + K/Z. Since the
space of compact operators is closed, Kz + K, is compact. O

4.3 Proof of Theorem 2.5 (coercivity for Q~ that are star-shaped with respect to a
ball)

Theorem 2.5 is an immediate consequence of combining (i) the following special case
of Lemma 4.1, (ii) the definitions of A/I,Z,ot and Aj 7., in (2.1) and A/E,Z,a and Ap 7.4
in (2.9), and (iii) the inequality (S¢, ¢)L2(r) > Oforall ¢ € L?*(T"). The inequality in
(iii) is well-known, following from Green’s identity, and is a special case of Lemma
4.4 below with Z = 0.

Lemma 4.2 (Key lemma for coercivity for star-shaped Q27) Let I be Lipschitz. If
d > 3 then

) d-2
Kx + Kx + (d - 2)S = 0 and thus (KX(P’ ¢)L2(F) + T(S(P’ ¢)L2(F)

= 0 for all real-valued ¢ € L*(T). (4.5)
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Ifd = 2 then

2 4
= 0 for all real-valued ¢ € LZ(F), (4.6)

r r
Kx + K, + UPr =0 and thus <<KX + uPr) P, ¢)
L2

where Pr is defined by (2.28).

Proofof Lemma 4.2 By (1.1), whend > 3, (y — x) - Vy®(x,y) = —(d —2)D(x,y),
and whend =2, (y — x) - Vy®(X,y) = —1/27. The results then follow from (4.4)
with Z(x) = x. m]

Remark 4.3 (Link with the work of Fabes, Sand, and Seo [34]) The analogue of (4.5)
when I is the graph of a function (i.e., the boundary of a hypograph) appears in the
first sentence after the first displayed equation on [34, Page 133]. Indeed, the analogue
of the operator K/ for the hypograph with Z = e, (i.e., the unit vector pointing in
the x4 direction) arises in [34] when they apply the Rellich identity (4.9) below with
u = S¢, as part of their proof that A/ — D’ is invertible on L>(I") for A € R with
Al > 1/2.

4.4 Proof of Part (vi) of Theorems 2.1 and 2.2 (coercivity for general Q™)

Lemma 4.4 (Key lemma for coercivity for general Q7) Suppose that 2~ C RY is
Lipschitz, Z. € W1 (R?) with compact support, and a € R satisfies the lower bound

2a > 2 (sup | DZx) ||2> + [V Z o ey (4.7)
xeR4

(where DZ is the matrix with (i, J)th element 9; 2,- and || - ||2 denotes the operator
norm on R? x R? induced by the Euclidean norm on R?). If d > 3 then

£ (Kz¢. 9) 12y +@(8h,d) 2 = 0 4.8)

forall real-valued ¢ € L*(I"). Ifd = 2, then (4.8) holds for all real-valued ¢ € L*(T")
with Pr¢ = 0, where Pr is defined by (2.28).

We first show how the coercivity results of Theorems 2.1 and 2.2 are a consequence
of Lemma 4.4 combined with the following lemma.

Lemma4.5 Given Z S (CO’I(F))d with non-zero Lipschitz constant, there exists a
compactly supported Zex: € (C O.L(RY) with the same Lipschitz constant as Z. and
such that Zext|r = Z.

The proof of Lemma 4.5 is given in [18, Appendix D] (i.e., the extended version of
the present paper). Note that, by the Kirszbraun theorem [51], [100], Z € (C%!1(I"))¢
can be extended to a function Zey € (C%1(R?))? with the same (non-zero) Lipschitz

@ Springer



1354 S.N. Chandler-Wilde, E. A. Spence

constant, so to prove Lemma 4.5 we only need to show that there exists an extension
with compact support.

Proof of Part (vi) of Theorems 2.1 and 2.2 assuming Lemmas 4.4and 4.5 Given Z, by
Lemma 4.5 there exists a compactly-supported Lipschitz extension of Z to R? with the
same Lipschitz constant; call this Z. This Z then satisfies the assumptions of Lemma
4.4, and the inequality (2.7) then ensures that (4.7) holds (where we have used the
inequality |A[3 < >°; 3", [(A);j|* to show that supy [| DZ(x)||2 < dLz). Thus (4.8)
holds (with K7 replaced by Kz) and the coercivity results follow from the definitions
of A/I,Z,a and A 7.4 (2.1) and A/E,Z,a and Ag 7z (2.9) and the inequality (2.6) on
Z.-n. O

The proof of Lemma 4.4 is based on the following identity. The relationship of this
identity to other similar identities in the literature is discussed in Sect. 3.4, and we
note, in particular, that this identity appears as [54, Equation 2.28]; for completeness
we include the short proof.

Lemma 4.6 (Rellich-type identity) Let v be a real-valued C 2 function on some open
set D CRY d>2 LetZ € (CY(D))? and « € C' (D) and let both be real-valued.
Then, with the summation convention,

2 ZvAv =V - [22qu - |Vv|2i] — Qo =V -Z)|VvP = 20, Z;v0 ;v
—2vVa - Vo, 4.9)

where
Zv:=(Z- Vv +av). (4.10)

Proof Splitting Zv into its component parts, we see that the identity (4.9) is the sum
of the identities

27 -VoAv=V- [2 Z - Vv) Vv — |Vu|2Z] + (V- Z)|Vol = 20,0090
@.11)

and
20vAv =V - 2avVv] — 2a|Vv|? = 2vVa - Vo. (4.12)

To prove (4.12), expand the divergence on the right-hand side. The identity (4.11) is
obtained by combining the identities

Z-Vorav=V_-[(Z -Vv)Vv] -8 Z;%vdjv—Vv-(Z-V)Vv  (4.13)
and

2V - (Z : v)w —v. (|W|2Z) —(V-D) |V, (4.14)
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which can both be proved by expanding the divergences on the right-hand sides. O

For the proof of Lemma 4.4, we need the identity (4.9) integrated over a Lipschitz
domain when v is the single-layer potential. As a step towards this, we prove the
following lemma.

Lemma 4.7 (Integrated version of the identity) Let D be a Lipschitz domain with
outward-pointing unit normal vector v. Define

V(D) := [v - ve H'(D), Ave LAD), yve H'(3D), ayv e L2(8D)}.
4.15)

IfveV(D),Ze W D) (ie. Zi and Z; € L®(D) fori,j = 1,....n),
a € WL(D), and v, Z, and « are all real-valued, then

/BD [(Z ) ((8,,1))2 - |V1~v|2) n 2(2 Vr(yv) 4+ a(yv))avv] ds

= / <22vAv + 2ai2jaiva,v +2vVa - Vv + (Za -V Z) |Vv|2>dx.
D
(4.16)

Recall that, when D is Lipschitz, we can ide~ntify wloo (D) with C%1(D) (see, e.g.,
[33, §4.2.3, Theorem 5]), and understand Z and « on dD in (4.16) by restriction
without needing a trace operator.

Proof of Lemma 4.7 We first assume that Z and « are as in the statement of the theorem,
butv € D(D) := {U|p : U € C®°(R%)}. Recall that the divergence theorem f p V-
Fdx = [, F-vdsisvalid when F € (C'(D))? [65, Theorem 3.34], and thus for F €
(H'(D))? by the density of C'(D) in H!(D) [65, Theorem 3.29] and the continuity
of the trace operator from H 1(D) to HY2(3 D) [65, Theorem 3.37]. Recall also that
the product of an H (D) function and a W'-°° (D) function is in H!(D), and the usual
product rule for differentiation holds for such functions. Thus F = 2ZvVv — |Vv |22
is in (H'(D))? and then (4.9) implies that V - F is given by the integrand on the
left-hand side of (4.16). Furthermore,

~ av\? - 3
yF-v=(Z v) <<a—v> - |Vrv|2> +2(Z-Vrv+av)a—v
v

v

on 3 D, where we have used the fact that Vv = v(dv/dv) + Vrv on 3D for v € D(D);
the identity (4.16) then follows from the divergence theorem.

The result for v € V(D) then follows from (i) the density of D(2) in V(D) [26,
Lemmas 2 and 3] and (ii) the fact that (4.16) is continuous in v with respect to the
topology of V(D) O
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Proof of Lemma 4.4 As discussed in Sect. 3, our strategy is to mimic the classic method
of “transferring" coercivity properties of the PDE formulation to the BIOs in the trace
spaces, but with Green’s identity

—/ uAudx:/ |Vu|2dx—/ yu dauds, 4.17)
D D oD

replaced by the integrated version of the Rellich-type identity (4.9). That is, we apply
the integrated version of (4.9), namely (4.16), with v replaced by u = S¢ (with
¢ € L%(I")), and D first equal to Q~, and then equal to Q* N Bg, where R >
supyco- |X|. At this stage we let Z be a general real-valued W' *°(IR?) vector field
with compact support, and let o be an arbitrary real constant. That (4.16) holds with
v replaced by u = S¢, with ¢ real-valued, can be justified by using the results of
[48] and [17, Appendix A] recapped in Appendix Sect. B. Indeed, when ¢ € L*(T"),
u =S¢ € H¥*(D) when D = Q™ or QT N By by the first mapping property in
(A.2); then u € V(D) by Corollary B.5, and (4.16) holds by Lemma 4.7,”

We have therefore established that (4.16) holds when D = Q~ or QT N By and
u = S¢ for ¢ € L%(") that is real-valued. That is, with the identity (4.9) written as
V-Q=Pr,

/Q_~nds=/ P dx (4.18)
r Q-

and
—/Q+-nds+ QOrds :/ P dx, 4.19)
r T'r Q+NBg

where (remembering that Au = 0 and « is a constant)

P=28Z;udju+ (2a —V-Z)|Vul, (4.20)
Qu-n= w (@) = V0P ) +2(Z- Vro=w +aytu)otu
4.21)

If R is chosen large enough so that supp ZCB R, then

9
QR=Q~3Z=2aua—u forx € Tk, (4.22)
r

7 A common alternative to justify that (4.16) holds with v replaced by u = S¢ is to (a) approximate 2~
by a sequence of subdomains (often they are assumed to be smoother than 2_, but this is not necessary),
(b) apply the identity (4.16) to each member of the sequence, (c) pass to the limit using the facts that (i)
the non-tangential limits of u and Vu exist, and (ii) the maximal functions u* defined by (1.12) and (Vu)*
(defined analogously) are in L? (I'); for examples of this argument, see, e.g., [101, Proof of Theorem 2.1]
[68, Proof of Theorem 1], [97, Proof of Proposition 4.2], and [91, Proof of Lemma 4.5].
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where we have used the fact that u is C* in a neighbourhood of ' (either by elliptic
regularity or directly by the definition of the single-layer potential (1.19)) to justify
writing du/dr in place of some appropriate trace.

Adding (4.18) and (4.19) yields

/(Qf_Qﬁ»)ndS—‘— QRdS:f de+/ de
r Tr - QtNBg

Now if d > 3 and ¢ € L%(T"), then
ISp®)| = 0(x*™) and |VS¢x)| = O(x|'™) (4.23)

as |[X| — oo, uniformly in all directions x/|x|. If d = 2 then

1
Sp(x) = 7 log <%) @. D2y +O0(x|™")  and

1
VS¢(x) = ~2r @ Dy + o(IxI™%) (4.24)

as |x| — oo, uniformly in all directions x/|x|; these asymptotics are proved for
d =2,3in,e.g.,[93, Lemma 6.21] (see also [87, Equations 3.22 and 3.23] ford = 3);
the proof of (4.23) ford > 4 is analogous. Recalling the definition of Pr (2.28) and the
assumption that Pr¢ = 0 when d = 2, we see that, by (4.22), er Ords = O(R*™9)

ford > 3and . Ords = O(R™?) ford =2 as R — oc. Thus, in this limit,

/(Q_ —Q4)-nds = / P dx. (4.25)
r Q-uQ*

The expressions for Q+ - n (4.21) and the single-layer potential jump relations (4.2)
then imply that

/(Q_ — Q) nds = 2((2 D +7Z-VrS+aS)o, 45) (4.26)
r

L2(D)
A key identity to help one see this is

(0, u)” — (37 u)’ =2¢x) (D'¢(x) forae.x €T,
which can be established using a?>—b% = (a —b)(a+b) and the jump relations (4.2)

for dFu.
Combining (4.25), (4.26), and (2.28), we therefore have that

2(2. D +7-VpS+aS )
@-mD +Z-Vrs+aso.9) ,

= /Q N (2ai2,~amaju +(2e-V- Z)|Vu|2)dx. 4.27)
—uU
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Using the Cauchy-Schwarz inequality and the definition of the matrix 2-norm for
the term involving 2 9; Z;d;udju = 2 Vu - (DZ Vu), and then standard results about
integrals for both this term and the term involving V - Z, we find that the right-hand
side of (4.27) is

> (20— (2 DZ|., + ||V -Z|, / Vu/|? dx.
(20— (2.0 102 19 2l ) [, 50

Therefore, choosing « to satisfy the lower bound (4.7) establishes the lemma with the
+ sign in (4.8). Multiplying (4.27) by —1 and letting @ — —a we see again that if @
satisfies (4.7) then this modified right-hand side is > 0, which establishes the lemma
with the — sign in (4.8). O

Remark 4.8 (Recovering the results of Lemma 4.2 for d > 3)If d > 3 and 7= X,
(4.27) becomes

2((x.n)D’+x.vFS+aS)¢,¢) =0t |Vu|? dx.

L2 Q-uUQ+

(4.28)

This is because, despite the additional terms in the analogue of (4.22) coming from Z
no longer having compact support, it turns out that fFR Qrds = O(R>*%)as R — oo
as before. Letting @ = (d — 2)/2 in (4.28) and recalling the definition (1.18) of K/,
we obtain the second equality in (4.5).

Remark 4.9 (Link with Verchota’s proof of invertibility of %I — D' on LZ(F)) Ver-
chota’s proof that %I — D' isinvertible on L2(I") when I is Lipschitzin [101, Theorem
3.1] relies on the inequalities

1 1 1
(G 2)el =1 Gr o) o 2| G- )
2 LZ(F) 2 LZ(F) 2

which hold for all ¢ € L?(I") ford > 3 and for all ¢ € L*(I") with Pr¢ = 0 for
d = 2, and where the omitted constants depend only on the Lipschitz character of
Q7. (Note that [101, Theorem 2.1] proves the slightly weaker result that

1 1
(Greon)el,.,, =|Gree)el ., + | oo
L2(I) r

but the final term on the right-hand side can be eliminated; see [68, Chapter 15,
Corollary 1, Page 273] when I' is the graph of a function and [3, Corollary 2.20] for
7~ bounded.)

The inequalities in (4.29) can be obtained by applying the following Dirichlet-to-
Neumann and Neumann-to-Dirichlet map bounds with u = S¢ and using the jump
relations (4.2).

3

LX)
(4.29)

_|_
LX)

3
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(i) Ifu € H'(Q7) is such that Au = 0in Q~, y"u € H'(I"), and 3, u € L*(I),
then

I VF(V—“)”LZ(F) < 8n_u||L2(F) S “VF(V_“)”LZ(F)' (4.30)

(ii) Ifu € H} (QT) is such that Au = 0in QF, y*u € H'(I"), 8,7u € L*(T"), and
u(x) = 0(|x|>~9) ford > 3 and u(x) = O(|x|~") ford = 2, then

|WF(V+”)||L2(F) < 3:”“L2(r) S |WF(V+”)||L2(F)' (4.3D)

The link with our proofs of coercivity of our new BIEs comes from the fact that the
bounds (4.30) and (4.31) can be proved using the identity (4.9) with « = 0 and Z the
vector field of Lemma 4.5; see, e.g., [3, Corollary 2.20].

4.5 Proofs of Theorems 2.14 and 2.15 (the 2d results)

Lemma 4.10 If u is the solution of the IDP then Pr (9, u) = 0. If u is the solution of
the EDP and d = 2, then Pr (8,fu) =0.

Proof The result for the IDP follows from applying Green’s second identity to # and
the constant function. The result for the EDP when d = 2 follows in a similar way,
using the arguments in the proof of [65, Theorem 8.9] to deal with the integral at
infinity. Alternatively, the result for the EDP when d = 2 is proved in [52, Proof of
Theorem 6.10]; see [52, Equation 6.10]. O

Proof of Theorem 2.14 For Parts (i) and (iii), arguing exactly as in the proofs of Part
(i) of Theorems 2.1 and 2.2 gives

A} 7o u=Brz.¢p and Ay g 0 u = Brz.¢p + s, (4.32)

where u is the limit of the solution of the EDP at infinity and we use Green’s integral
representation u(x) = —S89,; u(x) + Dy u(x) +un forx € Q* andd = 2. The BIEs
(2.30) and (2.34) then follow by applying Qr = I — Pr to the equations in (4.32) and
then using that PrdFu = 0 by Lemma 4.10, so that 8Fu = QrdFu.

For Part (i), taking the non-tangential limit of u# defined by (2.32) and using the
jump relations (1.16) and (4.2) (similar to the proof of Part (ii) of Theorem 2.1) and
the fact that Qr = I — Pr, we obtain that y_u = gp if the BIE (2.31) holds. Exactly
as in the analogous proof for d > 3 in Sect. 4.1, Kz and Sy with ¢ € L*(I') are
in C2(7), have non-tangential maximal functions in L?(I"), and satisfy Laplace’s
equation; therefore u defined by (2.32) inherits these properties.

The proof of Part (iv) is very similar to the proof of Part (ii), except that we now need
to show that u defined by (2.36) satisfies u(x) = O(1) as |x| — oo; these asymptotics
follow from the first bound in (4.23) (since Pr Qr¢ = 0) and the bound (4.3).

To see Part (v), arguing as in the proof of Part (vi) of Theorems 2.1 and 2.2 below

Lemma 4.5, but using (4.8) with d = 2, we see that (Ay, ¥) 21 > (C/Z)”l/f”sz(r)

for all real-valued ¢ € L3(T") := {¢ € L*(I") : Pr¢ = O} if « satisfies (2.7), where
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A denotes any of A 7.4, A’, Z.o> AEZas O A% z.o- Part (v) then follows from the
fact that if (Ay, ¥) 2y = (c/2)||1/f||L2(l_) for all real-valued ¢ € L2 o(T) (so that A

is coercive on L%(F) with coercivity constant ¢/2), then Qr AQr + ¢ Pr /2 is coercive
on L2(I") with coercivity constant c/2. Indeed, since Or = Or, Plg = Pr, Pl = Pr,
and Pr Qr = 0, it follows that, for all real-valued ¢ € L*(I"), Qrv € L%(F) and

c
AQrv, QFW)Lz(r) + ‘(Prz‘ﬁ’ W)LZ(F)

((oraor+5rr)v.v)

L2(I)

c
5 ” QFI’””H(I‘) “PFI//”LZ(F) ||'W||L2(I~) .

m}

Proof of Theorem 2.15 For Parts (i) and (iii), taking Z = x and @ = 0 in (4.32) yields
A/I’X’Oa:u = Brxo08p and A%’X’O(‘);—u = BEx,08D-

Since Pr 8niu = 0 by Lemma 4.10, the BIEs (2.37) and (2.39) follow.

The proofs of Parts (ii) and (iv) follow in the same way as the proofs of Parts (ii)
and (iv) of Theorem 2.14, namely by taking non-tangential limits of «, using the jump
relations (1.16) and (4.2), and using the asymptotics (4.3) for the exterior problem.

Part (v) follows immediately from using the second equation in (4.6). O

4.6 Proof of the results in Sect. 2.2.2 (the conditioning results)
4.6.1 Proof of Theorem 2.11

Theorem 2.11 is a special case of the following general theorem about GMRES applied
to Galerkin linear systems of a continuous and coercive operator on a Hilbert space.
We first establish some notation.

As in Sect. 1.2, we consider the Galerkin method applied to the equation A¢ = f,
where ¢, f € H, A : H — H is a continuous (i.e. bounded) linear operator, and H is
a Hilbert space over C. Let Hy C H be such that Hy = span{wlN, R wﬁN}, with

= dim(Hy) and {y{", ..., ¥y } abasis for Hy. The Galerkin matrix of A is
then defined by (A);j := (AY Y, ¥¥)p. i, j =1,..., My (compare to (2.16)).

The rest of the set up of Sect. 2.2.2 then holds exactly as stated; i.e., we consider

the equation Ax = b, let y,, be the mth iterate when the linear system (2.19) is solved

using GMRES with zero initial guess, let r,, denote the corresponding residual, and
let ¢ be defined by (2.20), so that the Galerkin solution ¢y is given by (2.21).

Theorem 4.11 (Convergence of GMRES applied to the Galerkin linear system of a
continuous and coercive operator) Suppose that A : H — H is coercive (i.e., there
exists Ceoer > 0 such that (1.8) holds) and Assumption 2.8 holds with || - || 2(ry in
(2.17) replaced by || - ||. With C1 and Cs as in (2.17), let B € [0, w/2) be defined
such that
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2
cos B = _ Cooer <9> and let yg :=2sin <L) . (433)
IAlH—H \C2 4-28/m
Givene > 0, if
1\ 12| Al (€2 1
m > <log (—)) log| ———— <—) + log (—) ,  (4.34)
VB Ceoer Cy €
then
—_ H" A _
l¢ — &1 (14 oy Al ( Ll wm) b (435
||¢||H Ceoer veHy ||¢||H

The first step in proving Theorem 4.11 is to establish the following relationship
between the error |¢ — ¢/ ||H, the GMRES relative residual ||r,, [, / [lroll,, and the
Galerkin error [[¢ — ¢y Il 7.

Lemma 4.12 Suppose that A : H — 'H is coercive (i.e., there exists Ceoer > 0 such
that (1.8) holds) and Assumption 2.8 holds with || - ||Lz(1~) in (2.17) replaced by || - || -
If Cy and C3 are as in (2.17) and ¢Y; is defined by (2.20), then

[¢ = 2hls _ (), MAlon <g>3 Iewlla | 9 — énllag
Iellze ~ Coorr \C1) lIvolla ) ligllne

I All3¢— 2 <Cz>3 [T

Ceoer lIroll,

+ (4.36)

Cy

The right-hand side of (4.36) contains the relative residual ||r;,|l, / llroll.. The
following bound, from [5], gives sufficient conditions on m for this relative residual
to be controllably small; recall that this bound is an improvement of the so-called
“Elman estimate" from [28, 29].

Theorem 4.13 (Elman-type estimate for GMRES from [5]) Let C be an My x My
matrix with 0 ¢ W (C), where

W(Q) := {(Cv,v) :ve CM¥ vy = 1}

is the field of values, also called the numerical range, of C. Let 8 € [0, 7 /2) be such
that

cos B < M (4.37)
ICll2

(observe that cos B is indeed < 1 by the definition of W (C)) and, given B, let

yg 1= 2sin <L> .
4-28/m
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Let vy, be the mth GMRES residual, as defined in Sect. 2.2.2. Then

Irolz — V3 B

Proof of Lemma 4.12 We first use continuity and coercivity of A to obtain bounds on

the norm of D;,I/ZAD;,I/2 and its inverse. By the definition (2.16),

(AV, W)2 = (AUN, wN)H for all UN, WN € HN.
Using this, along with the norm equivalence (2.17), we find that, for all v, w € CMv

|(Av. W), | < I1Allpog lonllag lwwllzg < 1Al (€22 [DY V], DY w],

and

1/2

|(AV V) ‘ > Ceoer ”UN”H = Ccoer(cl) HD VHi

Letting Vv = D}V/ZV and W = D}V/ZW, we therefore have that, for all ¥, w € CM~

|(Dy'?ADY?%. W), | < 1All3-2¢ (€ ¥l 11l (4.39)
and
|(Dy"*ADY*%,9),| = Ceoer (C2IFI3 - (4.40)

The inequalities (4.39) and (4.40) then imply that

1/2

1Dy 2ADY %], < 1 Al3% (C2)*  and

dist(O, W(DN”ZADN”Z)) > Ceoer(C1), (4.41)

with the second inequality and the Lax—Milgram theorem then implying that

1

D71/2AD71/2 —1 )
”( N N ) ”2 — Ccoer(cl)2

(4.42)

We now prove (4.36). By the definitions of y,, (see (2.19)) and ry,,

—1/2 1/2
r, = Dy'?AD * (v, — y)

and (since ygp = 0) ryp = —D;l/zb = —D;,l/z
first bound in (4.41),

AD;,I/ 2y. Therefore, by (4.42) and the

lym — ¥l < [ (©y2ADY?) ", Il
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1 llem
< 2( “2 ) fixoll,
Ceoer (C1) llxoll,

1 llr, ||2) 12y n—1)2
< Dy /'"AD lyll
Ccoer(cl)2 ( Iroll, ” N N H2 z

Al (C2 el

M( ) ( i 2) Iyll, - (4.43)
Ccoer Cl ||I‘0||2

Next, the definition of ¢>1”\} (2.20), the expression for ¢y (2.21), and the norm

equivalence (2.17) imply that

||¢% - ¢N “H C2 “DI/Z(D_I/z ym Y))||2 C2 Hym - y||2

loxle G ooy, vl

)

and then combining this with (4.43) we obtain

|\¢;G—¢>N||H I All o3¢ <C2> <||rm||2>

”¢N”H o Ccoer Cl ”rO”Z

Combining this last inequality with the triangle inequality, we obtain that

|6 — N2 <6 —dnlp + [ dn — DN |5
S (C2\ (I
s||¢—¢N||H+””#(—2) (”r ”2)||¢N||H,

Ceoer Cy Iroll,

and then the result (4.36) follows by another use of the triangle inequality. O

Proof of Theorem 4.11 By Part (c) of Theorem 1.1, the Galerkin error |[¢ — ¢n |l
satisfies the quasioptimal error estimate (1.9). The definition of g in (4.33) and the

boundsonD,, 1720 1/2 in (4.41) imply that (4.37) is satisfied withC = D 1/ZAD_l/2
note that here it is 1mportant that H is a Hilbert space over C, so that contmulty and
coercivity of A control W (A) (which involves A applied to vectors in CMw),

Using both (1.9) and the relative-residual bound (4.38) in (4.36), we obtain that

19 =Rl _ [, 120410 <C2) Gy | WA= 19 = Yl
||¢||H Ccoer Ccoer veHy ||¢||'H

12| Al (€ ”
4 ||||HH(2>()

Ccoer

Given ¢ > 0, if m satisfies (4.34), then

CC oer

12| All3o3e {Ca
#( )(yﬂ) e
Cy

and thus the bound (4.35) holds. m]
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4.6.2 Conditions under which Assumption 2.8 holds

Our result about the convergence of GMRES applied to the Galerkin matrices of the
new formulations, namely Theorem 2.11, is proved under Assumption 2.8, which is
an assumption about the sequence of finite-dimensional subspaces ()% _, and their
associated bases. Recall from Sect. 2.2.2 that Assumption 2.8 holds, indeed with Dy the
identity matrix, for any sequence (Hy)%;_, (and in any dimensiond > 2) provided that
the bases we choose are orthonormal. But many standard implementations of boundary
element approximation methods use non-orthogonal bases, particularly bases of so-
called nodal basis functions (e.g., [2, 38], [93, Page 216], [87, Pages 205 and 280].
We show as Lemma 4.15 below that Assumption 2.8 holds (moreover specifying the
diagonal matrices Dy ) under mild constraints on the sequence of meshes when the
approximation space allows discontinuities across elements. In particular, Lemma
4.15 holds when nodal basis functions are used, including for sequences of highly
anisotropic meshes.

To specify the conditions under which Assumption 2.8 holds, we recall the notion
of a surface mesh on I', and aspects of the standard implementation of boundary
element methods, including the notation of a reference element (for the moment, until
we indicate otherwise, our results hold for any dimension d > 2). Following, e.g., [87,
Defn. 4.1.2], we call G a mesh of T if G is a set of finitely many disjoint, relatively
open, topologically regular® subsets of I" that cover I in the sense that I' = UregT,
and are such that the relative boundary of each t € G has zero surface measure. We
call the elements of G the (boundary) elements of the mesh and, for t € G, set

h; :=diam(r) and s; :=|t],

where |t| denotes the (d — 1)-dimensional surface measure of 7, and set i :=
maxceg hr.

We assume moreover that, for each T € G, there exists a mapping x; : T — T,
for some T € R, the finite set of reference elements, that is bijective and at least
bi-Lipschitz, so that y/ 1. ¢ — T is well-defined and also bi-LipschitZ.9 Here,
by a reference element, T, we mean, generically, some bounded, open, topologically
regular subset of R?~!, but with the idea that, in practical implementations, T is
a polyhedron, usually the unit cube T = (0, 1)~! or the unit simplex T = {X €
0, D41 X + ... +Xy-1 < 1}. (In the case d = 2 it is usual to take R = {f} with
T = (0,1).) Foreach 7 € G let J; € (L°(I"))?*@=D denote the Jacobian of x;.
Importantly, for every f € L! (t), where T € R is the domain of x,

/ fx)ds(x) = ﬁ FO®)g® R, where g := (det(J] J))'* € L¥(T);
' ' (4.44)

8 By topologically regular we mean that the relative interior of the closure of 7 is again t.

9 It is standard (e.g., [2, 38]) to assume more smoothness for xz, e.g. that y; € C"(T) for some r € N, in
which case also Xz_l € C"(T). In the important case when d = 3, T is a polyhedron, and R = {7}, with T
the unit simplex (a triangle), it is usual (e.g., [93, Chap. 10], [87, Defn. 4.1.2]) for each 7 to be a triangle
and for x; to be affine.
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in particular s; = [> g (X) dX, so that

g7 1Tl <s; < gl[7], where g :=esssupg,(X), g, :=essinf g;(X).

XeT Xer

(4.45)

For p e Npand T € R let IP’? denote some finite-dimensional set of polynomials
¥ : T — R that contains the polynomials of (total) degree < p. When T is a simplex
one usually takes ]P’E to be the set of polynomials of total degree < p; when T is a cube
one usually takes ]Pg to be the set of polynomials of coordinate degree < p; see, e.g.,
[38, Page 1494, penultimate displayed equation]. Following [87, Defn. 4.1.17], given a
mesh G on I', define the boundary element approximation space, Sg, of discontinuous
piecewise polynomials of degree < p on G, by

Sgp ={y e L) :¥lrox € IP;, forall T € G, where T is the domain of x. }.
(4.46)

Where Pz = dim(P%) and M = dim(S5), we equip S} with a basis {y1. ... ¥u}
constructed as follows. For each T € R choose a basis {wf, ey w;} for ]P’E (for

example, a nodal basis as in [2, 38]). For each T € G, where T is the domain of x.,
define w; e L®(M),forj=1,..., Ps, by

vi(x7' ), xer,

"x) = 4.47
l[’]( ) 0, xel\r. ( )
Then set
Wi,....ymp={yj:reg jell,.... P}, (4.48)
noting thatA(see, e.g., [38, p. 1495]) {¢1,...,¥um} is a nodal basis if each
Wi, ....¥pt T € R, is a nodal basis.
Consider now the case that we keep R, p, and the bases {w?, R 1//}.1}, TeR,

fixed but use a sequence of meshes Gy, N € N, with associated approximation spaces
Hy = SP  that are such that hy = max.egy he — 0as N — oo, i.e. we consider
the h-version of the boundary-element method. Lemma 4.15 below applies in this
regime under the following assumption on the constants gﬁt defined by (4.45) (this
assumption is the first half, Equation 3.5a, of [38, Assumption 3.1]).

Assumption 4.14 There exists a constant ¢; > 1 such that, for every N € N and
T € Gn,

g <cigr; (4.49)
equivalently, there exists a constant ¢, > 1 such that, for every N € N and t € Gy,

1

¢, S¢ < g:(X) < cp5; foralmostallX € 7. (4.50)
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We make two remarks about Assumption 4.14.

(i) The claimed equivalence of (4.49) and (4.50) follows from (4.45) (precisely, if
(4.49) holds then (4.50) holds with ¢ = ¢ max(|7], |T]™1), and if (4.50) holds
then (4.49) holds with ¢; = ¢3).

(i1) Because y is bi-Lipschitz, (4.49) holds for every T € Gy for some ¢; > 1 (not
necessarily independent of t and N). In particular (4.49) holds with ¢; = 1 if each
X is affine, so that Assumption 4.14 holds in that case (see also the discussion
below [38, Assumption 3.1]).

For the following lemma, recall that the matrix A is given by (2.16) with A; o €qual
toone of A 7.4, A’I’Z,a, AE 7.4, OF A’E’Z’a.

Lemma 4.15 (Conditions under which Assumption 2.8 holds) Suppose that, while
keeping R, p, and the bases {1//1?, ceey 1//}.1}, T € R, fixed, we use a sequence of
meshes Gy, N € N, with associated approximation spaces Hy = Sg and bases
(4.48) that are such that hy := max;cg, h: — 0as N — oo and Assumption 4.14
holds. Then the following is true.

(i) Assumption 2.8 holds with (Dy)i; :=si, i = 1,..., My, where s; := s if ¥; is

supported in t, with C| := cz_l/zc;alﬂ, Cy = cé/zc;-éz, where cp > 1 depends
only on the bases {yr{, ..., Yp.}, TeR.

(ii) If, in addition, d > 3, (2.6) holds for some ¢ > 0, and « satisfies (2.7), then
Assumption 2.8 holds also with (Dy);; := |Aiil, fori =1, ..., My, with

C1:=C_C 25" and Cp:=Cic™Pes, 4.51)

where C = ||A;,a||L2(F)—>L2(I‘) and C+ > 0 depend only on the bases
Wi,....¥phTeR

Part (ii) of Lemma 4.15 is proved for d = 3 using the coercivity results of Part
(vi) of both Theorems 2.1 and 2.2. An analogous result holds for d = 2 using the
coercivity results of Part (v) of Theorem 2.14, but we omit this for brevity.

ProofofLemma4.15 (i) Given wy = Y s w)¥y N € Hy, by (4.48),

Py
wy = Y > wiy] (4.52)

Tegy j=1

for some coefficients {w;}fi \» and where T is the domain of y.. Thus, by (4.44),
for all T € Gy,

sl oy = [P ®Pe G o, (453
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where

U = wy (x:®) Zw Yi® forke? (4.54)

Jj=1
(and we have used (4.52) and (4.47)). For every T € R, every EE € Pg can be

writ.ten as a = Zf; aj w]? for some unique vector a = (ay, .. ., ah)T. With IP’E
equipped with the norm || - |3 defined by

Pe
112 = a3, (4.55)

since IP’E is finite-dimensional, there exists ¢z > 1 such that

B < 19 < lBE forander) @56

Therefore, using (4.50) and (4.56) (with ¢ = ¥) in (4.53), we have that, for all
T €0y,

&' s D1z = se [Pl < lowlelzag,

< a5 |20 < casece |0 (4.57)

Furthermore, by (4.54) and (4.55),
P
112 => " wH? (4.58)

If Dy)ii :=si,i =1,..., My, then, by 4.52),

Ioywls =Y s Z(wf)2 (4.59)

teGy  Jj=1

Therefore, combining (4.57), (4.58), and (4.59), we see that, with the choice

(Own)ii == si, i = 1,..., My, Assumption 2.8 holds with C; = c2_1/2c7_z1/2
1/2 1/2 .

and Cy = ¢,""cp, ", where cg 1= maxzeR cz.

(ii) By the coercivity and continuity of A; o from Theorem 2.1 or Theorem 2.2,

||w Moy = (A ) oy | < CIWN 1o
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therefore, since |A;;| = |(A;’a1piN, wiN)Lz(r)l,
||wN||L2(F) < Al < CIM 13- (4.60)
Further, where 7 is the support of W,-N and 7 is the domain of ., by (4.44),
0 ey = [ 195 00P a5 = [ 1] @Per ) 6%

for some j € {l, ..., Pz}, so that, by (4.50),

-1 N2
C_Cy St =< ||1/fl ||L2(F) = C4C257, (461)
where
. T2
Cy = max || 12 and c_ = min IRV .
T feRr =l 1'// L@ FeR.j=1....P; Vil

Thus, combining (4.60) and (4.61), we have that

c _ .
Ec_c2 ls, < |Ajil < Ccycpsy fori=1,..., My.

Therefore, if (Dy);; := |Aiil, fori = 1,..., My, then, by (4.52),

—c cy Z St Z(w )2 < |D1/2w||2 <Ccic Z St Z(wf)z.

teGy j=I1 teGy j=1

By (4.58) and (4.57), Assumption 2.8 therefore holds with C; and C; given by
(4.51).
O

Remark 4.16 (The novelty of Lemma 4.15) Similar results to Lemma 4.15 are given
in [38], where, for a continuous, coercive, and symmetric sesquilinear form, scaling
by the diagonal part of the Galerkin matrix (as in Part (ii) of Lemma 4.15) is used to
remove the ill-conditioning of the Galerkin matrix due to mesh degeneracy; see [38,
Equations 1.5—1.7].

The advantage of the results of [38] compared to those of Lemma 4.15 is that [38]
works in H*(I") for |s| < 1, whereas Lemma 4.15 only works in L2(F ). However,
Lemma 4.15 works with rather general meshes in arbitrary dimensions, subject only
to Assumption 4.14, whereas [38] imposes the following conditions on the mesh: (i)
the mesh is regular in the sense of [87, Definition 4.1.4], see [38, Page1495], and (ii)
the mesh satisfies [38, Assumptions 3.1 and 3.2], with the latter requiring, e.g., that
neighbouring mesh elements have comparable aspect ratios.
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5 Wellposedness and regularity results for the Laplace interior and
exterior oblique Robin problems

5.1 Statement of the Laplace interior and exterior oblique Robin problems

Definition 5.1 (The Laplace interior oblique Robin problem (IORP)) With Q™ as in
Sect. 1.6, given g € L>(I"), Z € (L*®(I')?, and « € L®(I"), find u € H' (™) with
y~u e H'(I') and 8, u € L*(I") such that Au = 0 in ~ and

(Z-n)o, u+7Z -Vr(y u)+ay u=g onl. ;.1

Definition 5.2 (The Laplace exterior oblique Robin problem (EORP)) With Q% as in
Sect. 1.6, given g € L*(I"), Z € (L®(T"))¢,and o € ("), find u € H (") with
ytu € H'(I') and 8;u € L*(I") such that Au = 0 in Q7

Z-n)dtu+Z -Vr(yTu)—aytu=g onT, (5.2)

and, as |x| — o0, u(x) = O(1) when d = 2 and u(x) = o(|x|>~%) whend > 3
(uniformly in all directions x/|x|).

A regularity result of Necas [78] (stated as Theorem B.1 below) implies that either
of the requirements 0, u € L*(I")and y “u € H'(T") in Definition 5.1 can be removed;
similarly in Definition 5.2.

The IORP and EORP can also be formulated in terms of non-tangential maximal
functions and non-tangential limits (similar to the case of the Dirichlet problem dis-
cussed in Sect. 1.6). We now give this alternative formulation for the IORP and prove
that it is equivalent to Definition 5.1; this equivalence is necessary to use results from
the harmonic-analysis literature on the standard Laplace oblique derivative problem
(see Theorem 5.13 below). The alternative formulation for the EORP and proof of
equivalence to Definition 5.2 are completely analogous and are omitted.

Definition 5.3 (The Laplace IORP via non-tangential limits) With Q7 as in Sect.
1.6, given g € L>("), Z € (L®(M)¢, and & € L®(), find u € C>(Q~) with
(Vu)* € (L*(I"))? such that Ay = 0in Q™ and

Z -y (Vu)4+ay u=g onT, (5.3)

where Y is the non-tangential limit defined by (1.13).

Theorem 5.4 (Equivalence of the different formulations of the IORP) The formula-
tions of the IORP in Definition 5.1 and 5.3 are equivalent (i.e., if u is a solution to the
IORP in the sense of Definition 5.1, then it is a solution in the sense of Definition 5.3,
and vice versa).

Proof If u is a solution of the IORP in the sense of Definition 5.1, then u € C*°(27)
by elliptic regularity. Furthermore, u € H3/?(Q7) by Lemma B.4, and then (Vu)* €
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L*(I) by Part (iii) of Theorem B.2. By Lemma B.3,  "u = y "u, and, by Lemma
B.4,

Y~ (Vu) =md,; u+ Vr(y u) almost everywhere on I'. 5.4)
Therefore
Z-y " (Vuy+ay u=@Z -n)d,u+Z -Vr(y u)+ay u, (5.5)

so that the boundary condition (5.3) is equivalent to (5.1); therefore, u is a solution of
the IORP in the sense of Definition 5.3.

Conversely, if u is the solution of the IORP in the sense of Definition 5.3, then u €
H?3/2(7) by Part (iii) of Theorem B.2. Then Lemma B.4 implies that 8, u € L*(T"),
y~u € HY(T"), and (5.4) holds. Hence (5.5) holds and the boundary condition (5.1)
is equivalent to (5.3); therefore, u is a solution of the IORP in the sense of Definition
5.1 O

5.2 Link between the IORP/EORP and the BIEs in Theorems 2.1, 2.2

Theorem 5.5 (A/I,Z,a can be used to solve the EORP for d > 3) Ifd > 3 then the

single-layer potential u = S¢ with density ¢ € L*(I') satisfies the exterior oblique
Robin problem (Definition 5.2) if and only if

Al z..0=-2 (5.6)

Conversely, ifd > 3 and u satisfies the EORP, then u = S¢ for some ¢ € L*(T) that
satisfies (5.6).

Theorem 5.6 (A’E,Z’a can be used to solve the IORP for d > 2) The single-layer
potential u = S¢, with density ¢ € L*(I"), satisfies the IORP (Definition 5.1) if and
only if

Az ab =8 (5.7)

Conversely, if u satisfies the IORP, then, provided a # Cappr whend = 2, u = S¢,
where ¢ € L*(T") satisfies (5.7).

Proofof Theorem 5.5 If d > 3 and u = S¢ with ¢ € L>(I'), then by, e.g., [17,
Theorem 2.14] u € C>(Q1) and Au = 01in Q7 and, by (4.23), u(x) = O(|x|>~%) as
|x| — oo, uniformly in x/|x|. By, e.g., [17, Theorem 2.14], u € ngc(§2+) and, by the
jump relations (4.2) and the definition of K. /Z (1.18), (5.2) holds if and only if ¢ satisfies
(5.6). Conversely, if u satisfies the EORP, then, by the invertibility of S recalled in
Lemma A.1 below, ¢ := S~y *u € L2(I'). Defining v := S¢, v satisfies the Laplace
exterior Dirichlet problem with boundary data y Tv = y T8¢ = S¢ = yTu, so that
v = u by uniqueness for the EDP. As established in the first part of the proof, since u

satisfies the EORP, ¢ satisfies (5.6). O
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Proof of Theorem 5.6 This is very similar to the proof of Theorem 5.5, except that now
we can also consider d = 2, since (by definition) there are no conditions at infinity
imposed on the solution of the IORP. O

Theorem 5.7 Let PSEtN : HY(T') = L*(T") denote the Dirichlet-to-Neumann maps for
Laplace’s equation in Q; i.e., the maps gp Bniu for u as in Definitions 1.3/1.4

respectively. Let Ph_D’Dl’Z : L3(I') — HY(I") denote the map g — y~u where u is as

in Definition 5.1. Let PS’D’“’Z . L3(') — HY(T) denote the map g — y+u where u
is as in Definition 5.2. Then, as operators on L*(I"),

-1 1 1 -
Weza) =701~ (PS‘N et VF)) Py (58)

and

-1 ! - 1 +aZ
(Alza) = 7ol ( N T ﬂ( —a+Z- Vr)) Pt (59)
Proof We first prove (5.8). Suppose A% , ¢ = g with¢, g € L*(T") and letu := S¢.

ThenyTu =y u= PIt_D’a’Zg by the first jump relation in (4.2) and Theorem 5.6. By
the second jump relation in (4.2), the definition of PI;rtN, and the boundary condition
(5.1),

¢ =08, u—2a u,
1
- - + o+
=ﬂ(g—Z-Vr(V u) —ay~u) — Poy u=-—8
+ (X+Z'V[‘ —aZ
_(PDtN+ 7Z - n PltDa &

which implies (5.8). The proof of (5.9) is then very similar, using Theorem 5.5 instead
of Theorem 5.6. O

5.3 Statement of the wellposedness results and implications for the BIEs in
Theorems 2.1 and 2.2

Theorem 5.8 (Uniqueness for the IORP) Suppose that, for some B € (0,1], Z €
(CHB(M) and a € COB(I") and that, for some constants ¢, cy > 0,

Z(x) -n(x) > c¢ foralmosteveryx € I' and a(xX) >cyp forxeTl. (5.10)

Then the IORP has at most one solution.

Corollary 5.9 (Existence for the IORP and invertibility of A’E’ 7.) If the assumptions
of Theorem 5.8 hold and a # Capy when d = 2, then A/E,Z,oc is invertible and the
IORP has exactly one solution.
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Theorem 5.10 (Uniqueness for the EORP) Suppose that, for some g € (0,1], Z €
(COB(MN and o € COB(I"), and that (5.10) holds, for some constants ¢, cy > O.
Then the EORP has at most one solution.

Corollary 5.11 (Existence for the EORP and invertibility of Al], 2.) If the assumptions
of Theorem 5.10 hold and d > 3, then the EORP has exactly one solution and A’I 7o
is invertible.

5.4 Proofs of Theorems 5.8 and 5.10

Recall that, for 1 < p < oo, H'P(I') := {¢p € LP(I") : Vr¢ € LP(I')} is a Banach
space with the norm (|¢ | g1.pry = [PllLrry + [IVr@llLr(r). Note that HY) =
H'“2(I"), with equivalence of norms.

The following result is standard in the theory of potential theory on Lipschitz
domains; see, e.g., [102, Page 203].

Lemma 5.12 Suppose that Z. € (C(T)) and the first of the bounds (5.10) holds for
some ¢ > 0. Then, for each x € T there exists R > 0 and F € COY(RIYY and a
rotated coordinate system 0X1...Xq, with origin at X and with the X4 axis pointing in
the direction Z(x), such that, where 3" .= (31, ..., Ya—1),

Br(x) N Q" = Br) N{y = (', Ja) : Ja > F(),
Br(x) N Q™ = BrxX)N{y = (7', Ja) : Ja < F(G)}.

The following key regularity estimate follows immediately from [82, 102].

Theorem 5.13 (Regularity for the interior oblique derivative problem.) Suppose that
Z € (COBM) for some B € (0, 1], the first inequality in (5.10) holds for some
constant ¢ > 0, and u satisfies the Laplace oblique derivative problem (i.e., the IORP
in the special case o = 0) with data g.

(i) Ifg € COP(I), thenu € Cl’y(ﬁ)for some y € (0, B] depending only on Q™.
(ii) If g € LP(I') with2 < p < 00, then (Vu)* € (LP(I"))“.

Proof (i) It is known from [13, Section 4], [50, 82, 102] that if the first inequality
in (5.10) holds, then the Laplace oblique derivative problem has a solution if
and only if g satisfies finitely-many linear conditions (i.e., conditions of the form
(8. ¢))r = 0,j = 1,..,N, for some N € N and ¢1,...,¢5 € L*). If
Z € (C%A(1))¢ and u is a solution for particular data g € C 0.8(I"), the finitely-
many linear conditions on g are satisfied, and u can be written as u = up + ugy
where u p is the particular solution studied in [82], which is shown in [82, §3]
to satisfy up € CL7(Q7) for some y € (0, B] (dependent on 27), and u g is a
solution of the homogeneous oblique derivative problem, which is shown in [102,
Corollary 2.7] to be constant in 7.

(ii) This follows from arguing as in (i), but replacing the results of [82] for Holder
continuous g by those of [13] for g € LP(I') with2 — € < p < 2 + € (for some
€ > 0 dependent on 27) and [50] for g € LP(T") with p > 2 (note that while the
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results of [13, 50] only require that Z is continuous, [102, Corollary 2.7] requires
Z. to be Holder continuous).
O

Theorem 5.14 (Regularity for the IORP) Suppose that Z. € (COP(I')¢ and a €
C%B () for some B € (0, 1], Z satisfies the first inequality in (5.10) for some ¢ > 0,
and u satisfies the Laplace interior oblique Robin problem with data g € cOB ().
Then u € C1Y (™) for some y € (0, B).

Proof Suppose that the conditions of the theorem are satisfied, in particular that u
satisfies the IORP with data g € C%#(T"), for some 8 € (0, 1]. Suppose also that
2 < p < ooandthat y “u € LP(T"). Then since, clearly, g € L?(I"), u is a solution of
the Laplace oblique derivative problem with data in L? (I"). Therefore, by Part (ii) of
Theorem 5.13, (Vu)* € (LP(I"))¢ and thus y “u € H'?(I") by Corollary B.7. This
implies, by the Sobolev embedding theorem [1, Chapter V, Equations 6 and 4], that,
if p>d—1,then y"u € L9(I'") for all 2 < q < oo, while, if p < d — 1, then
y~u € LI(T) for2 < g < po where 1/pyp = 1/p — 1/(d — 1). Since, certainly,
y~u € L*(I') (as y"u € H'(I') by definition of the IORP), applying the above
argument at most a finite number of times leads to the conclusion that y “u € H4(I")
for all 2 < g < oo. But this implies, by the Sobolev embedding theorem [1, Chapter
V, Equation 9], that y "u € Co'ﬂ/(F) forall 0 < B’ < 1. Thus u is a solution of
the Laplace oblique derivative problem with data in C 0.-8(I"), and thus the result that
u € C17(Q) for some y € (0, B] follows from Part (i) of Theorem 5.13. m]

Corollary 5.15 (Regularity for the EORP) Suppose that Z. € (C*F(T')? and a €
COB(T) for some B € (0, 11, Z satisfies the first inequality in (5.10) for some ¢ > 0,
and u satisfies the Laplace exterior oblique Robin problem with data g € C%#(I).
Thenu € CL7(Q+t N BR) for all R > 0 and for some y € (0, B].

Proof Since 27 is bounded, I' C B, for some r > 0. Suppose that u satisfies the
EORP and choose R, > Ry > Ryg > r and x € CCOmp (R?) with x(x) = 1 for
x| < Rp and x (x) = 0 for |x| > R;. Let v(x) := x (X)u(x) forx € G := Q" N Bg,,
so that, in particular, v = u in Qtn Bpg,. The idea now is to create a solution of an
IORP on G, and then use the interior regularity result of Theorem 5.14. Since u is
harmonic in Q7

Av=F :=2Vx  -Vu+uAy inG.

Since x € €2 (R%) and u € C®(Q1), F € C°__(G). Therefore

comp comp

(x) = —/ d(x,y)F(y)dy, forxeG,
G

satlsﬁes v e C?*G)and A= FinG. Letw(x) := v(x)—v(x) forx € G, and define
Z c (C*F(3G))? and @ € COF(3G) by Z := —Z on T, Z(x) := x, for X € dBg,.
and@ :=aonT, & := 0on dBg,. Then w € H'(G) with trace yw € H1(8G),
Aw =01in G, and
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(Z -n)opw +Z - Vr(yw) + & yw = g on 3G,

where n is the unit normal pointing outof G and g € CY%F(3G)isdefinedby g := —(Z-
Vu+av)—gonT,andby g := —(Z- VU +av) on 3 Bg,. Theorem 5.14 implies that,
for some y € (0, B, w € CHY(G), sothatv € CY(G) and u € CHV(Q+ N Bgy)-
Since u is harmonic in QF, u € C7(Q* N Bg) for every R > 0. m]

We can now prove Theorems 5.8 and 5.10 and Corollaries 5.9 and 5.11.

Proof of Theorem 5.8 Suppose that u satisfies the IORP with ¢ = 0 and that, without
loss of generality, u is real-valued. To show that u = 0 it is enough to show thatu < 0
in 7, since this implies, by the same arngent applied to —u, that also # > 0, and
hence u = 0. By Theorem 5.14, u € cl(Q) (indeed Vu is Holder continuous). By
the maximum principle, sinceu € C 2@Hnc ( €27) is harmonic in 27, the maximum
value of u in Q7 is attained at some point Xg € I". Since u € c! (Q ) it follows from
(5.1) with g = 0 that

) u(xo) — u(xo — hZ(xp))
m .

a(xp)u(xp) = —Z(Xg) - Vu(xp) = — 7

Since Z is continuous and Z - n > ¢ > 0 almost everywhere on I', xg — hZ(Xg) € Q-
for all sufficiently small 2 > 0 by Lemma 5.12, so that Z(xg) - Vu(x¢) > 0 since Xq
is the global maximum. Since a(xp) > 0, it follows that u(xg) < 0, so that u < 0 in
Q. |

Proof of Theorem 5.10 Suppose that u satisfies the EORP with g = 0 and, without loss
of generality, is real-valued. As in the proof of Theorem 5.8, it is enough to show that
u < 01in Q7. We recall that, when d = 2, the condition that u is bounded on QT
implies that, for some uy, € R,

u(x) = ttoo + O(Ix|7) as x| — oo,

uniformly in x/|x|, and that

1
- d 5.11
Yo T 0nR Jog, -11)

if ' C Bg [52, Equation 6. 11]

By Corollary 5.15, u € cl@b). By the maximum principle, since u € cZ@QhHn
C(Q71) is harmonic in 7, the maximum value of  in Q is attained on I" or, when
d=2,u(X) <ux forx e Q+. If the maximum is attained on I", the result that u < 0
follows by arguing as in the proof of Theorem 5.8. Therefore, it is sufficient to prove
that the maximum is attained on I' when d = 2. If u(X) < uso forx € QF, then (5.11)
implies that u(X) = u for |x| > R if ' C Bg, so that the maximum is attained
in Q7. The maximum principle (see, e.g., [52, Theorem 6.8]) then implies that u is
constant in 1, so that the maximum is also attained on T". O
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The following proofs of Corollaries 5.9 and 5.11 use the fact that, whena € L°°(T"),
Z is continuous, and (2.6) (i.e., the first lower bound in (5.10)) holds, then A’I,Z’a and
A/E,Z, o, are Fredholm of index zero by Parts (iii) and (iv) of Theorem 2.1 and 2.2
respectively. Although these two theorems are for d = 3, Parts (iii) and (iv) also hold
when d = 2 (as noted at the beginning of Sect. 2.3).

Proof of Corollary 5.9 1f we can prove invertibility of A’E, 7.o» then existence of a solu-
tion to the IORP follows from Theorem 5.5. Since A%y 7. 18 Fredholm of index zero

on L2(F), by the Fredholm alternative (see, e.g., [65, Theorem 2.27]), to prove invert-
ibility it is sufficient to prove injectivity. Assume that A/E,Z, @ =0for¢ e L*(I).
By Theorem 5.6, u := S¢ satisfies the IORP, and by Theorem 5.8 u = 0 in Q™.
Therefore y “u = 0 and the first jump relation in (4.2) implies that S¢ = 0. Lemma
A.1 then implies that ¢ = 0 and the proof is complete. O

Proof of Corollary 5.11 This is very similar to that of Corollary 5.9 except that now we
only work in d > 3, since Theorem 5.5 requires d > 3. O

Remark 5.16 (The results of [59]) Although not directly used to prove the results in
this section, the results of [S9] concern the Laplace IORP in Lipschitz domains with
Holder continuous Z and g, and we comment here on their relevance to the results
above.

The results of [59] give an alternative route for obtaining uniqueness of the IORP
(i.e., proving Theorem 5.8). Indeed, in the proof of Theorem 5.8, once we have estab-
lished that u € C'(2~) (by using Theorem 5.14), then uniqueness follows from [59,
Theorem 3.2]. The reason we argue as we do in the proof of Theorem 5.8 is that this
argument easily carries over to the proof of uniqueness for the EORP (Theorem 5.10),
whereas [59, Theorem 3.2] concerns only the IORP.

Furthermore, [59, Theorem 3.2] implies that, under the assumptions of Theorem
5.14, there exists By < 1, depending only on the Lipschitz constant of &7, such that
if B < Bothenu € CHA(Q).

Remark 5.17 (Additional uniqueness results for the EORP with Z. = x) The coercivity
result of Theorem 2.5 allows us to extend the range of « for which the EORP is unique
when Z = x and d > 3. Indeed, Theorem 2.5 implies that A’[’Z!a is injective when
Z =X, a(x) > —(d —2)/2 for almost every x € I', and d > 3. Then, using Theorem
5.5 and arguing as at the end of the proof of Corollary 5.9, we see that the solution of
the EORP is unique under these conditions. This result proves uniqueness for certain
non-positive values of «, which are not covered by Theorem 5.10.

5.5 Link between the IORP/EORP and the BIEs in Theorem 2.14

Lemma5.18 Given g € L*(I), if ¢ satisfies

Ti7.0p% =8 (5.12)
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(with T[E’Z,a’ﬁ defined by (2.33)) and d = 2, then

1
u=3S0r¢+ §Pr¢ — —PrAl 7,0r¢ (5.13)

satisfies the IORP.

Lemma5.19 Given g € L*(I), if ¢ satisfies
T} 7.0p% = —8 (5.14)
(with TI/,Z,a,/S defined by (2.29)) and d = 2, then

B

1 /
u =3Qr¢+aPr¢— aPrAl,z,aQMb (5.15)

satisfies the EORP.

Proofs of Lemmas 5.18, 5.19 The fact that u given by (5.13)/(5.15) is C? and satisfies
Laplace’s equation follows from, e.g., [17, Theorem 2.14]. The condition that u =
O(1) at infinity for the EORP follows from the asymptotics (4.24), the definition of
Pr (2.28), and that Qr := I — Pr. The BIEs (5.13)/(5.15) follow from the jump

relations (4.2) and the definitions of A/I,Z,(x (2.1), A’E’Z’a (2.9), and K, (1.18). O

Remark 5.20 (Link with the work of Medkovd [67]) In [67, Theorem 5.23.5], the
solution of the IORP is sought as (5.13) without the final term on the right-hand side,
resulting in the BIE (A%’ 2..9r +BPr)Y =g; this BIO is then proved to be invertible
on L%(I) if B = « and « is sufficiently large [67, Theorem 5.23.5]. The advantage
of including the final term on the right-hand side of (5.13) is that, by Theorem 2.14,
the resulting BIO Té)Z’ w.p is not just invertible when « is sufficiently large, but also
coercive by Part (v) of Theorem 2.14.

A Recap of mapping properties of layer potentials and boundary
integral operators

Recall that the single-layer potential S¢ is defined by (1.19). For ¢ € L*(I"), define
the double-layer potential D¢ by

Do (x) := / Md}(y) ds(y) forx e R? \T. (A.1)
r an(y)
For x € Coypp(R?) and 5] < 1/2,

xS H VX)) > Y ®RY) and xD: HTV2(T) > HH(QY). (A2)
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With S, D, D', and H defined by (1.2) and (1.3), for all |s| < 1/2,

S:H V() > VA1), D:HTVA(T) > B2, (A.3a)
D H V2 — B2y, H:HTVAT) > BHSTVA(D), (A.3b)

and these mappings are bounded. The results in (A.2) and (A.3) for |s| = 1/2 (which
then imply the results for |s| < 1/2 by interpolation) are consequences of the results in
[22], [101], and [48]; see, e.g., [17, Theorems 2.15 and 2.16 and Corollary A.8]. (Note
that the results in (A.2) for |s| < 1/2 can also be obtained from mapping properties of
the Newtonian potential and Green’s integral representation, with the results in (A.3)
then following from results about the trace map; see [24], [65, Theorem 6.11].)

Lemma A.1 (Invertibility of S : L*(I') - HYTI) when T is Lipschitz) If T is
Lipschitz and either d = 3, or d = 2 and a # Capr, then S : L") — HY() is
bounded and invertible.

References for the proof The boundedness is (A.3a) above with s = 1/2. The invert-
ibility is proved in [101, Theorem 5.1] for d = 3 and [101, Theorem 4.11] for d = 2.
Note that [101] assumes for simplicity that 2~ and I" are connected, but it is clear that
this implies that the result holds when I is the boundary of any bounded Lipschitz
open set (with this result for d = 3 contained in [69, Theorem 4.1]). Indeed, in this
case, I" and R? \ T each have finitely-many connected components, and the results
of [101] for the case when I" is connected imply that S is Fredholm of index zero as
an operator L?(') — HYT). Further, S : LZ(F) — HYD) is injective since S is
invertible as an operator from H-Y2(") to HY2(I') [65, Corollary 8.13, Theorem
8.16]. O

B Recap of harmonic-analysis results

In this appendix we recap results on the behaviour of solutions to Laplace’s or Poisson’s
equation near the boundary of the domain. For simplicity, these results are stated for a
bounded Lipschitz domain D with boundary d D. Analogues of the results then hold
with D = Q™ and D = Q™ where in the latter case spaces such as H 1(D) become
HILC(Q+) (since these results do not assume any particular behaviour at infinity).

Theorem B.1 ([78, §§5.1.2, 5.2.1], [65, Theorem 4.24]) If u € H (D) and Au €
L%(D), then d,u € L>(T") iff yu € H'(I").

Given x € I', let ®(x) be the non-tangential approach set to x from D defined,
for some sufficiently large C > 1, as in (1.11). Given u € C%(D) with Au = 0,
let the non-tangential maximal function of u, u*, be defined by (1.12), and let the
non-tangential limit of u, Yu, be defined by (1.13).

Theorem B.2 ([48, Corollaries 5.5 and 5.7]) Let u € C?(D) with Au = 0.

(i) u* € L>(OD) iffu € H'/*(D).
(ii) u* € L2(dD) implies that Yu € L*(d D).
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(iii) (Vu)* € (L>(@D)? iffu € H3*(D).
(iv) (Vu)* € (L*(3D))? implies that ¥ (Vu) € (L*(dD))4.

LemmaB.3 ([17, Lemma A9]) If u € H*(D) with s > 1/2 and Au = 0, then

yu=yu.

LemmaB.4 Let u € C2(D) N H'(D) with Au = 0. Then u € H*(D) iff d,u €
L%(dD) and yu € HY(3D). Furthermore, if u € H3?(D) then, almost everywhere
on dD,

F(Vu) = ndu + Vap(yu). (B.1)

Proof The forward implication and the trace result (B.1) are proved in [17, Lemma
A.10]. For the reverse implication, assume that d,u € L%(3D) and yue H L(3D). Let
v := S¢ where the single-layer potential S is defined by (1.19) (with I" replaced by
dD) with a # Capyp whend = 2. Let ¢ := S~1yu, so that ¢ € L?(dD) by Lemma
A.1. By the first jump relation in (4.2) yv = yu, so that v = u by uniqueness of the
interior Dirichlet problem of Definition 1.3. Since ¢ € L?(dD), (Vu)* € (L*(dD))4
by [101, Theorem 1.6] (see also [68, Chapter 15, Theorem 5]), and thus u € H3/%(D)
by Part (iii) of Theorem B.2. O

Corollary B.5 The space V(D) defined by (4.15) is equal to {v : v € H¥*(D), Av e
L*(D)}.

Proof With ® defined by (1.1) and f € L?(D), let
N F(x) ::/ ®(x,y) f(y)dy, forxe D;
D

i.e., N is a Newtonian potential. Recall that N : L2(D) — HZ(D) by, e.g., [65,
Theorem 6.1], and AN f) = —f.

Given v € V (D), observe that N'(Av) € H%(D), 3,N(Av) =n -y (VN (Av)) €
L%(dD), and yN'(Av) € H'(3D); to see this last point observe that Theorem B.1
implies that

y:{u:ue HY(D), Au e L*(D), d,u € L*(3D)} — H'(3D),

and thus, in particular, y : H>(D) — H'(3D). Therefore N'(Av) € V(D). Now let
¥ := v+ N(Av). Then ¥ € V(D) with AT = 0 and hence 7 € C?(D) by elliptic
regularity. Therefore ¥ € H3/?(D) by Lemma B.4. The result that v € H3/?(D) then
follows since v = ¥ — N (Av) and N (Av) € H%(D).

The reverse inclusion is proved similarly: given v € H 3/ 2(D) with Av € L2(D),
define ¥ as before. Since N (Av) € H*(D),¥ € H>*(D). Since AT = 0,7 € C%(D)
by elliptic regularity, and then 8,7 € L?(3D) and y¥ € H'(I') by Lemma B.4; thus
v € V(D). The result that v € V (D) then follows from the definition of ¥ and the fact
that N'(Av) € H*(D) C V(D) O
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We also need the following results in L7 (3 D) for p # 2 (as opposed to the L>-based
results above).

Theorem B.6 ([67, Theorem 5.6.11) Suppose u € C*(D) with Au = 0 and (Vu)* €
(LP (D)) for some 1 < p < oo. Then u* € LP(dD), Yu € LP(3D), and ¥ (Vu) €
(LP(dD))*.

Corollary B.7 Suppose u € C*(D) with Au = 0 and (Vu)* € (LP(3D))4 for some
2 < p < oo. Then yu € LP(3D), d,u € LP(3D), and Vyp(yu) € (LP(dD))?.

Proof Since (Vu)* € (L?(dD))¢,u € H3?(D) by Part (iii) of Theorem B.2. Further,
Yu € LP(3D) and 7 (Vu) € (L?(3D))? by Theorem B.6. Also, yu = yu by Lemma
B.3,and thus yu € L?(dD). By Lemma B.4, (B.1) holds, and thus 3,u = n-y(Vu) €
LP(dD) and Vyp(yu) € (LP(3D))“. O

C Proofs of Theorem 1.7

We prove the result for the IDP when d = 3; the proof for the EDP is very similar.
The proof for the IDP when d = 2 is also similar, with use of [67, Theorem 5.15.2]
replaced by use of [67, Theorem 5.15.3].

If u is the solution of the IDP in the sense of Definition 1.3 then, since u € H'! (227),
¥~u = y~u by Lemma B.3 and thus 7 ~u = gp. Furthermore, since u € H'/2(Q7),
u* € L*(T) by Part (i) of Theorem B.2. Finally, by elliptic regularity u € C*(D).
Therefore u is a solution of the IDP in the sense of Definition 1.5

To prove the converse, let v := (=D + S)¢ for ¢ € L%(T"), with D the double-
layer potential defined by (A.1) and S the single-layer potential defined by (1.19). Now
ytu = (%1 — D + S)¢, where we have used that (i) Y~ D¢ = (—%I + D)¢ by [101,
Theorem 1.10] (similarly to (1.16)) and (ii) Y *S¢ = y "S¢p = S¢ by Lemma B.3 and
the first jump relation in (4.2). Since (31 — D + ) : L*(I') — L*(I') is invertible by
[67, Theorem 5.15.2]',if ¢ := (31 — D+ S) "' gp, then v is a solution to the IDP of
Definition 1.5. The solution of this BVP is unique by [13, Page 41] and [101, Lemma
3.7]”, and thus v = u. Arguing as in the proof of [17, Theorem 2.27], one can show
that (31 + D + 8) : HY/2(I') — H'Y(I") is invertible—this follows by proving
that (=31 + D'+ §) : H-Y2(') » H~Y2(I') is invertible, which in turn follows
since —%I +D': H'/2(I') - H~'2(I") is Fredholm of index zero by [17, Theorem
2.251,8 : H-Y2(I') - H~Y2(I') is compactby (A.3a), and — 11 + D'+ S is injective
by uniqueness of the Laplace exterior Robin problem. Therefore, if gp € H'/?(I"),
then ¢ € H'/2(I'), and u € H'(Q™) by the mapping properties of D and S in (A.2).
Finally, y "u = ¥ " u by Lemma B.3, and thus yu = gp and u is the solution of the
IDP in the sense of Definition 1.3.

10 Note that the operator K in [67] equals minus our D (see [67, §5.3]).

1 [101, Lemma 3.7] justifies how the uniqueness argument of [35, Theorem 2.3] for ¢! domains also
holds for Lipschitz domains.
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