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Abstract

An accurate evaluation of thermal environments in buildings is beneficial not just for
occupant comfort but also for reducing unnecessary overheating or overcooling energy.
The aPMV (adaptive Predictive Mean Vote) index can take into account occupants’
thermal adaptations and is stipulated in Chinese standards for evaluating thermal
conditions in free-running buildings. Even though substantial studies have validated the
efficiency of the aPMV index, it occasionally exhibits limited performance in certain
scenarios. This paper aims to propose a novel algorithm for solving the key adaptive
coefficient A in the aPMV index. Validation was carried out utilizing the public
ASHRAE thermal comfort database, which spans 14 climate zones. Results show that
the new algorithm-based aPMV index can fit data effectively with low errors,
improving average performance by 34.5-37.7% compared to the previous method. The
different A values in the aPMV index are able to quantify specific patterns of occupant
thermal adaptations in cold, mild, and hot climates, respectively. Some aPMV outcomes
with large deviations can be explained adequately by the specific properties of the

original data sources. The code is available at https://github.com/SuDBE/aPMV-

calculation.
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Abbreviations

Af

Am

Aw

BSh

BSk

BWh

Cfa

Cfb

Csa

Csb

Csc

Cwb

Dfb

Dwa

MAE

PMV

RSME

TSV

Tropical rainforest

Tropical monsoon

Tropical wet savanna

Hot semi-arid

Cold semi-arid

Hot desert

Humid subtropical

Temperate oceanic

Hot-summer Mediterranean

Warm-summer Mediterranean

Cool-summer mediterranean

Subtropical highland

Warm-summer humid continental
Monsoon-influenced hot-summer humid continental
Mean Absolute Error

Predictive Mean Vote

Root Mean Square Error

Thermal Sensation Vote

Adaptive coefficient in the aPMV index
Proposed algorithm for solving A in this paper

Existing A optimization method




1. Introduction

Existing international [1] and national [2] standards stipulated Fanger’s PMV
(Predictive Mean Vote) index for assessing thermal comfort in HVAC (Heating,
Ventilation, and Air Conditioning) buildings. While PMV performs well in steady-state
conditions [3], its effectiveness is limited in dynamic environments with thermal
fluctuations [4], such as naturally ventilated buildings. Given that PMV is defined as a
“condition of mind which expresses satisfaction with the thermal environment” [2],
considerable studies have concentrated on developing adaptive thermal comfort models
that emphasize occupant self-regulation and adaptation, while depending less on HVAC
systems. These models have been successfully established and stipulated into
international and national standards, such as the graphic-based adaptive mode in EN
16798 [5] and the aPMV index in Chinese GB/T 50785 [6]. The application of adaptive
models not only meets occupants’ actual thermal needs but also promotes energy
efficiency. Research indicates that the models embedded with occupant adaptation can

effectively reduce building energy consumption by 18.9-34.4% [7].

To further improve the adaptive comfort theory, several researchers have performed
theoretical explorations and extensions on the basis of the PMV index, such as
Humphrey’s nPMYV [8], Fanger’s ePMV [9], Yao’s aPMV [10], Marcel’s ATHB [11],
etc. Among these, the aPMV index was first proposed in 2009, with the goal of the
development of a framework for quantifying thermal feedback loop based loopsontrol
theory. It employs a transfer function to represent occupant adaptations as a negative
feedback system. Since its incorporation into the Chinese national standards in 2012
for evaluating thermal environments in free-running buildings (or naturally ventilated
buildings), the aPMV index has received substantial academic attention regarding its
applicability across varied climates. The adaptive coefficient A, the key parameter of
the aPMV index, has been examined, validated and customized further. These
explorations included a wide range of building types, such as residential buildings
[12][13][14][15][16][17][18], offices [19][20], classrooms [21][22], activity centers

[23], cotton textile factories [24], bus stations [25], railway stations [26], etc. However,



because the original aPMV was validated in the context of Chinese climate, with an
emphasis on decreasing PMV overestimation in hot and cold conditions, data from too
extreme scenario or inappropriate use of the aPMV framework may lead
to suboptimal performance. For instance, Chaudhuri et al. [27] found that aPMV
exhibited lower accuracy compared to a machine learning-based approach (35.51% vs.
73.14%) and even worse than PMV (35.51% vs. 41.68%) in a study involving 16
buildings in Singapore, but 12 of which were under HVAC operation. They concluded
that occupant adaptation in hot and humid weather exhibited an negative A value (-
0.3217), but their calculation method was derived from a non-original source [28].
Notably, the aPMV index has the potential to align with PMV when A equals zero,
raising questions about the rationale behind aPMV’s underperformance compared to
PMV. Kim et al. [19] found large aPMV deviations from occupant thermal
sensation and calculated abnormal negtive A values in hot conditions. Again, their
investigated building was fully air-conditioned rather than naturally ventilated, and
subjective voting data also showed a strange trend of more cooler votes when
temperatures exceeded 30°C. Certain research, such as [29] [30], have presented
optimization methods for solving A in the aPMV index, but a standardized approach
remains elusive. The complexity of the least square method in the aPMV framework
could also make computing the best parameter more challenging. Furthermore, there is
a lack of comprehensive validation of its performance across various contexts based on

large-scale data.

This paper aims to introduce a novel method for solving A to improve the performance
of the aPMV index in data fitting. It also discusses the potential application issues and
validates the proposed method using a public thermal comfort database spanning 14

climate zones.



2. Solving adaptive coefficient A in the aPMYV index
2.1 Original solving approach

The aPMV Index is proposed based on Fanger’s PMV (Predictive Mean Vote) index,
which incorporates negative (adaptive) feedback concept from control theory to

account for occupant adaptation in the form of:

puy = MV 1
A T A PMV (1)

Where A is the adaptive coefficient and it can be solved by:

n

1
A= =X @

=1

Where n represents the data sum of binned air temperatures, X; is defined as i™ binned
1/PMV;, and Y; is defined as i binned 1/TSV;. The original concept of the aPMV index,

its derivation, and the detailed computation can be found in Ref [10].

The aPMV index has been stipulated in the current Chinese National Standard GB/T
50785-2012 [6] and its suggested A values for the aPMV index are shown Table 1. For
evaluating the thermal environment in free-running buildings, the aPMV shall be in
accordance with the requirements on the grades of overall thermal comfort indexes as

stated in Table 2.

Table 1 Values of A for the five climate zones in different building types in Chinese

National Standard GB/T 50785-2012 [6]

Residential buildings,
Building climate zone Education buildings
shops, hotels, and offices
SC and cold PMV>0 0.24 0.21
zones PMV <0 -0.50 -0.29
HSCW, HSWW, PMV>(0 0.21 0.17
and mild zones PMV<0 -0.49 -0.28

Note: SC is severe cold zone, HSCW is hot summer and cold winter zone, and HSWW is hot



summer and warm winter zone.

Table 2 Grade of thermal environment in free-running buildings [6]

Grade aPMV
I -0.5<aPMV<0.5
II -1<aPMV<-0.5, or 0.5<aPMV<1
I aPMV<-1, or aPMV>1

2.2 Improved algorithm for solving A from the published study

While the aPMV index has demonstrated successful applications across various
countries, building types, field studies, and Chinese national standards, its fitting results
exhibit limitations in certain scenarios. This could be caused by inappropriate
utilizations of the aPMV or inadequate solving process for the key coefficient A. Zhang
et al. [29] introduced an improved algorithm for optimizing A by forcing the target
function to the fourth power of the TSV (Thermal Sensation Vote) before calculation,

and their improved determination is as follows:

TSV,?
noTSy.—yn L
i=1 i 21—1 PMVi

AP = (3)
n TSV?

Detailed deductions can be found in Ref [29] and this method will be marked as Ap in

the following main text and figures to avoid any confusion.
2.3 Proposed algorithm for solving A

The original computation of A coefficient and improved Ap method both involve the
reciprocal transformation of TSV and PMYV, resulting in the creation of new variables
1/TSV or 1/PMV (assumptions before equation (7) in Ref [10] and equations (11) and
(12) in Ref [29]). However, as real-world TSV measurements and calculated PMV
values approach zero, these new variables tend to escalate dramatically. In extreme

cases of values reaching zero, these new variables can diverge to infinity. To address



this concern, this paper introduces an innovative approach for A determination that
circumvents these problematic zero crossings. The original reciprocal transformation in
aPMV calculation enables the conversion of the aPMV solving process into a linear
equation, which is easy to solve but introduces zero crossings. Here we maintain the
same principle and methodology of the aPMV index as outlined in the original paper
[10], but solve the A directly rather than using the reciprocal transformation. The

following steps outline the step-by-step procedure:
For original form of aPMV index in equation (1),

Letx = PMV, f(x) = aPMV, equation (1) can be transformed to:

fx) = (4)

1+AXx

Then import the given set of binned data (x1,y1), (x2,y2),. .., (Xn,yn), Which are also equal
to (PMVy, TSV)), (PMV,, TSV2),..., (PMV,, TSV,), the best fitting curve will present

the least square error:

n
i=1 i=1

In search of the minimal 9§ that yields the partial derivative of A equating to zero, the

following derivation is undertaken:

26 - X Xiz
6_7\:;[z(yi_1+/1><xi)x(1+/1xxi)2]_0 (6)
(1+Axx;)3
Multiply —ez o both sides, then we have:
DI+ A% x) = x)] = 0 )
i=1
The new A can be solved as:
oy
AN — =1 =1 yl (8)

n
i=1Xi X Vi



Which is also equal to:

_ S PMV, — 3L, TSV,
N n TSV; X PMV;

%)

The proposed Ay determination process avoids the use of reciprocal operations, which
may help to alleviate the zero crossing concerns. The following sections will validate
of its performance by examining data from natural ventilation buildings of 14 climatic

regions sourced from the public global ASHRAE thermal comfort database [31].

The aPMV theory aims to reduce the deviation between PMV prediction and actual
TSV on the 7-voting scale from -3 to +3, representing “cold”, “cool”, “slightly cool”,
“neutral”, “slightly warm”, “warm”, and “hot”. The smaller absolute A value indicates
lower capacity of adaptation, and the aPMV index is equal to the PMV index when A is
zero. On the hot side, the lowest available vote for occupants is +1 (slightly warm).
Assuming that PMV overestimates the +1 (slightly warm) to the highest level, which is
+3 (hot) by two orders of magnitude, the A value will be +0.66. Meanwhile, the A value
will be -0.66 when PMV underestimates actual hot sensation by two orders of
magnitude. Similarly, when the PMV index overestimates or underestimates the cold
sensation by two orders of magnitude, the A value is -0.66 or +0.66, respectively. If the
absolute value of A is greater than 0.66, it indicates that the PMV index overestimates
or underestimates the sensation magnitude by more than 2, which lacks practical
meaning under 7-voting scale. Therefore, it is suggested that any A values greater than
+0.66 and less than -0.66 should be modified to the nearest +0.66 or -0.66 value that
best fits the practical data. The detailed steps for solving Ay are outlined in Appendix
A.

2.4 Evaluation indicators

The model estimation errors in this paper have been calculated by two popular

indicators MAE (Mean Absolute Error) and RSME (Root Mean Square Error):



n
1
MAE = ;Z'ei' (10)
i=1

1
1% 2
RMSE = Nzleilzl (11)

i=1

Where e; is individual model prediction error defined as e; = P; — O;, P; is specific
model prediction, and O; is its matched observation. In this paper, P; is equal to aPMV;,

and O; is equal to TSV;.

Willmott and Matsuura [32] criticized RSME as a misleading indicator for representing
average model performance compared with MAE, because RSME tends to inflate
disproportionately relative to MAE when the magnitudes of the errors within the
distribution vary. However, Chai and Draxler [33] argued that RMSE can be more
appropriate than MAE when error distribution is expected to be Gaussian. To
comprehensively evaluate the A performance, this paper used both MAE and RSME as

evaluation indicators.

3. Validation using public Comfort Database

The ASHRAE Global Thermal Comfort Database II (short name: Comfort Database) is
an accessible online dataset, which includes 81,846 data points of 52 field studies from
160 buildings worldwide [31] and 22,000 records from the RP-884 project which aims
to supplement the adaptive comfort theory [34]. This paper employs the Comfort
Database to validate the proposed algorithm for solving A in the aPMYV index. Although
this database harmonized the raw data with a high and uniform standard, some
anomalies still remain. For example, radiant temperature of 148.1°C (record No. 53,128)
and air velocity of 56.16 m/s (record No. 17,533). Therefore, the Boxplot rule [35] was
employed to eliminate these outliers. After filtering the data from naturally ventilated
buildings, 22,785 data points from 14 climate zones have been selected for further

analysis under Kdppen climatic classification [36], as shown in Table 3, Fig 1 and Fig.



2. The meanings of Koppen climatic symbols are presented in Table 4.

Table 3. Statistical information of variables in selected data for A validation

Air Radiant Relative Air Clothing .
Climate temperature temperature  humidity velocity level Metabolic PMV TSV Sum
C) C) ® oy oy
Af 30.2+1.42  30.34+¥1.33 71.82+6.36  0.2+0.13 0.25+0.11 1.08+0.09  1.4+0.72 0.46+1.3 1060
Am 27.14+2.26 27.14+2.26 63.53+#5.18 0.22+0.13 0.41+0.09 1.18+0.06 0.44+0.83 0.41+0.94 1626
Aw 28.9+2.27 28.98+2.31 65.86+11.19 0.22+0.13 0.59+0.14 1.13+0.08 1.39+0.71 0.64+1.09 801
BSh 24.76+4.68 24.76+4.68 46.03+x19.55 0.19+0.13 0.61+0.23 1.06+0.09  -0.3+1.51 -0.2+1.14 1271
BSk 24224543 24224543 57.56+10.76 0.13+0.06 0.62+0.22 1.11+0.09 -0.03+1.48 0.4+1.05 156
Bwh  25.81+5.02 25.845.05 51.96+16.71 0.15+0.13 0.71+£0.24 1.09+0.1 0.47+1.34 0.33£0.92 2580
Cfa 27.4+321 27.86+£3.06 60.4+12.45 0.25+0.11 0.47+£0.19 1.17+0.08 0.73%£0.91 0.43+1.22 1321
Cfb 23.35£2.72  23.49+2.78 43.37+£9.25 0.1+0.09 0.62+0.18 1.16+0.08 -0.38+0.85  0.37+1.18 2240
Csa 23.76+2.98 23.77+2.92 37.78+10.92 0.07£0.09 0.69+0.2 1.19+0.08 -0.02+0.72  0.19+1.25 7194
Csbh 22.43+2.34 25.02+2.79  54.9+7.43 0.06+0.05 0.87+0.21 1.21+0.06 0.36+0.46 0.11+0.85 140
Csc 23.83£1.32 24.08+1.24 47.87+10.24 0.11+0.07 0.62+0.19 1.09£0.1 -0.36+0.57 0.3+£1.08 456
Cwb 23.79£257 23.79+2.57 60.51+19.74 0.04+0.05 0.71+0.17 1.14+0.09 0.04+0.61 0.09£0.56 436
Dfb 22.21+1.89 22.83+2.01 57.79+8.35 0.09+0.03 0.58+0.15 1.2+0 -0.47+0.56  0.57x1.58 2928
Dwa 24.44+2 45 2257+251 37.64+11.31 0.17£0.11 0.78+0.23 1.1+0 -0.24+0.64  -0.03+0.71 576

Note: several empty radiant temperature values were replaced with air temperature to enrich

the data sum. Af: Tropical rainforest; Am: Tropical monsoon; Aw: Tropical wet savanna; BSh:

Hot semi-arid; BSk: Cold semi-arid; BWh: Hot desert; Cfa: Humid subtropical; Cfb: Temperate

oceanic; Csa: Hot-summer Mediterranean; Csb: Warm-summer Mediterranean; Csc: Cool-

summer Mediterranean; Cwb: Subtropical highland; Dfb: Warm-summer humid continental;

Dwa: Monsoon-influenced hot-summer humid continental.

Table 4. Description of Kdppen climatic symbols [36]

Ist 2nd 3rd

Description
A Tropical
-Rainforest
-Monsoon
-Savannah

B Arid

-Desert

-Steppe

£B ™

©w=



h -Hot
k -Cold
C Temperate
-Dry Summer
-Dry Winter
-Without dry season
-Hot Summer
-Warm Summer
c -Cold Summer
D Cold
-Dry Summer
-Dry Winter
-Without dry season
-Hot Summer
-Warm Summer
-Cold Summer
-Very Cold Winter
E Plar
T -Tundra
F -Frost

g » s A
(o}

o0 o

The tropical climatic zones (Af, Am, Aw) have the highest temperature values, with
means ranging from 27.14°C to 30.34°C. The Csa and Dwa zones have the lowest
relative humidity levels with mean values below 40%. Wind speeds average between
0.1 and 0.2 m/s, with the exception of the Csa, Csb, Cwb, and Dfb zones, where they
fall below 0.1 m/s. This suggests that airflow is being intentionally utilized to regulate
occupants’ thermal comfort in naturally ventilated buildings. Clothing levels tend to be
lower in tropical regions, while other areas demonstrate a more uniform distribution.
Given that most data in the Comfort Database come from office buildings, the values
of metabolic rate keep stable, ranging from 1 to 1.4 met, since occupants often assume
to conduct office activities, such as reading, typing, filing, standing, etc. Moreover, as
A to E in the K&ppen climatic classification correspond to Tropical, Arid, Temperate,
Cold, and Polar, respectively, the outdoor climate will follow a descending trend. This

tendency corresponds to the fluctuation in PMV values shown in Fig. 2.
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Fig.1 Variable distributions of environmental data grouped by climate
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Fig.2 Variable distributions of subjective data, PMV and TSV grouped by climate

Table 5 shows the A values obtained through our proposed algorithm (1) and Zhang’s
algorithm (4p). It is evident that the absolute values of 1, are generally higher, with a
mean excess of 0.08 on the cold side and 0.06 on the hot side. To guarantee that the
outputs are meaningful, any aPMV prediction greater than +3 was limited to +3, while
any aPMV prediction less than -3 was limited to -3. Fig. 3 and Fig. 4 present the
predictive errors of aPMV under the two A scenarios, measured using both MAE and
RMSE. It is clear that Ay-based aPMV index demonstrates superior performance, as
evidenced by lower predictive errors in both MAE and RMSE across the majority of

cases, with the mean improvements of 34.5% in MAE and 37.7% in RMSE as shown



in Table 6.

Table 5. Calculated Ay and A, for selected climate zones

Climate A A
PMV<0 PMV>( PMV<0 PMV>0

Af 0.66 0.66 0.66 0.11
Am -0.66 0.46 -0.66 0.15
Aw - 0.36 - 0.21
BSh -0.56 0.66 0.15 0.51
BSk -0.66 0.09 -0.66 -0.32
BWh -0.66 0.34 -0.54 0.21
Cfa 0.1 0.41 0.19 0.38
Cfb -0.41 -0.23 0.22 -0.46
Csa -0.66 0.29 -0.53 -0.4
Csb -0.25 0.55 -0.26 -0.66
Csc -0.66 -0.66 -0.66 -0.66
Cwb -0.66 0.55 -0.31 0.33
Dfb -0.66 -0.66 -0.66 -0.66
Dwa -0.66 -0.07 -0.66 -0.28
Absolute mean 0.57 0.44 0.49 0.38
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Fig. 3 MAE (Mean Absolute Error) for aPMV performance using Ay and Ap across 14

climate zones
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Fig. 4 RMSE (Root Mean Square Error) for aPMV performance using Ay and Ap

across 14 climate zones

Table 6. Statistical information of MAE and RMSE on Ap-based aPMV and Ay-based

aPMV
o ) Ap-based  Ay-based  Improvements of 1, method
Building type Indicator
aPMV aPMV compared to 1p method
Naturally ventilated
MAE Min 0.21 0.17 19.0%
buildings
Mean 0.55 0.36 34.5%
Max 0.98 0.78 20.4%
RMSE Min 0.25 0.22 12.0%
Mean 0.69 0.43 37.7%
Max 1.39 0.85 38.8%

To examine calculation outcomes at the climate level, two climatic zones, hot semi-arid
(BSh) and cold semi-arid (BSk), were chosen for further investigation since they had
the longest temperature ranges. The appendix has detailed results for each climate zone.
According to Fig.5, Ay-based aPMV curves (green lines) fit better with actual TSV
points compared with Ap-based aPMV ones. The Ap-based aPMV underestimates

occupants’ tolerance for cold conditions (red line, PMV<O0 parts) in climate BSh, and it



also underestimates occupants’ tolerance for warm conditions (red line, PMV>(0 parts)
in climate BSk. In contrast, Ay-based aPMV curves present more adequate performance

when fitting data from these two climates.

Fig. 6 shows the actual TSV votes, PMV, Ay -based aPMV, and Ap-based aPMV
predictions at one-temperature binned intervals. In Fig. 6(a), for climate BSh, the
absolute PMV values (blue squares) consistently surpass TSV values (black circles).
This suggests that using PMV for thermal comfort prediction tends to underestimate
people’s heat tolerance in naturally ventilated buildings. However, both Ay -based
aPMYV (green triangles) and Ap-based aPMV (red diamonds) can effectively align the
predicted points on the right side (warm conditions) with the actual TSV values.
However, on the left side (cool conditions) of Fig. 6(a), Ap-based aPMV exhibits
considerable overestimation that even performs slightly worse than the original PMV,
nearing or exceeding -3. In comparison, the proposed Ay-based approach in this paper
better fits the TSV. Nonetheless, for points at 14°C and 34°C, the absolute values of Ap-
based predictions lie lower than users’ actual TSV, approaching a difference of nearly
one scale. This indicates a potential risk of overestimating human tolerance under
extreme conditions using Ap-based approach. Fig. 6(b) shows similar trends, where
PMV and TSV deviate, and Ay-based aPMV is capable of correcting this discrepancy
on both the cold and warm conditions, whereas Ap-based aPMV falls short in rectifying

the deviation on one side (warm conditions).

Climate: BSh Climate: BSk

TSV/aPMV
o
\

N\
TSV/aPMV
o
.

N,
hY

Fig. 5 Fitted aPMV curves in climates hot semi-arid (BSh) and cold semi-arid (BSk)



using Ay and Ap along with corresponding PMV-TSV values
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Fig. 6 Validation of proposed Ay-based aPMV, pervious Ap-based aPMV, TSV, and

PMYV for naturally ventilated buildings in climates hot semi-arid (BSh) and cold semi-



arid (BSk)
4. Discussion
4.1 Are adaptive opportunities always available in naturally ventilated buildings?

One key concept in adaptive thermal comfort theory is that individuals can actively
adjust environmental surroundings and personal factors to restore their own comfort,
particularly in naturally ventilated buildings [37]. Fitting results of aPMV curves based
on the Comfort Database show strong alignment across the majority of climates.
However, for climate warm-summer humid continental (Dfb), both Ap-based and Ay-
based aPMV models perform limited with high MAE and RMSE values, with
corresponding predictions shown in Fig. 7. A high proportion of PMV and aPMV values
are approximately one scale lower than the actual TSV of occupants (black circles),

indicating frequent warm discomfort.

After further exploring the dataset, these data points were found originated from a study
conducted in 2011 concerning non-heating periods in classrooms for children aged 7 to
11 in the UK [38]. The authors mentioned that thermal environments in the surveyed
classrooms were generally controlled by teachers and students can only adjust clothing
levels. Notably, even among students who indicated a thermal sensation of +3 and +2,
they (15% and 25%) continued to wear jumpers (0.25 clo). Some teachers also reported
the observations that some students appeared to be visibly hot, yet they did not remove

their jumpers or seek for help.

In the Comfort Database, the naturally ventilated buildings in climate Dfb are not the
commonly investigated offices but rather classrooms. The majority of occupants, in this
case, students, did not have the authority to control the thermal surroundings in the
classrooms and were not always able to actively adapt themselves by taking off jumpers
to restore thermal comfort. These departures from the adaptive thermal comfort theory
gives rise to distinct characteristics in data distribution, which may ultimately result in

constrained effectiveness during aPMV model fitting.
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Fig. 7 Validation of predictions in climate warm-summer humid continental (Dfb)
4.2 aPMV fitting curves under the 1st level of Koppen climatic classification

The average MAE obtained for the Ay-based aPMV models is 0.34 (Table 6), which
signifies that the absolute value of the average prediction deviation is roughly 0.34 scale
units, indicating that the aPMV index has a robust predictive capacity. To further
investigate the thermal adaptability represented by A, we combine the data within
distinct 1st levels of Koppen climatic classification. Specifically, we calculate the
averages of A values for each of the initial letters A to D (corresponding to Tropical,
Arid, Temperate, and Cold climates) and generate aPMV fitting curves for 1st level, as

shown in Figure 8.

According to the original concept of aPMV [10], when A equals 0, aPMV corresponds
to PMYV, indicating that PMV can adequately provide accurate evaluations of thermal
comfort with very limited thermal adaptations (black dashed line in Fig. 8). In cold
conditions, A generally tends to be less than 0, aligning the curve close to the x-axis,
demonstrating higher cold tolerance. Conversely, in hot conditions, A tends to be greater
than 0, also resulting in a curve close to the x-axis, indicating enhanced heat tolerance.

Furthermore, the magnitude of A influences this phenomenon: the larger A absolute



value, the greater the individuals’ tolerance, leading to a curve that lies closer to the x-

axis.
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Fig. 8 Ay-based aPMYV fitting curves under 1st level of K&ppen climatic

classification: Tropical, Arid, Temperate, and Cold

Fig. 8 depicts the aPMYV fitting curves under 1st level of Koppen climatic classification,

and several key findings emerge:

* Tropical climates: individuals exhibit the highest tolerance for hot conditions (red
lines), but for cold conditions, three tropical climates (Af, Am, and Aw) only
contribute three binned data points that are just slightly below PMV=0 (Appendix
B). Therefore, there is insufficient data representation for cold adaptation in tropical

climate regions, and its PMV<0 curve was not depicted in Fig. 8.

* Arid climates: there is a notable resilience to both cold and hot conditions (orange

lines).
* Temperate climates: tolerance levels fall within intermediate ranges (green lines).

* Cold climates: people have the strongest cold tolerance, yet display an unusual trend
with A values below 0 for hot conditions (blue lines). This implies a stricter cooling

demand in hot conditions when compared to PMV estimation. Considering the



substantial amount of data from Cold climates originating from climate Dfb, this
observation (A<0 in hot conditions) correlates with the findings discussed in the
preceding section 4.1, where occupants within the Dfb climate struggled with

uncontrolled environments and non-active self-regulation.

More detailed findings under the 3rd level of Kdppen climatic classification can be

found in Appendices B and C.

5. Online package release for calculating the Ay-based aPMYV index

In order to reinforce the reproducibility of this study and facilitate more efficient
computations with the Ay-based aPMV index, we have uploaded our proposed method

(Python codes) to GitHub at https://github.com/SuDBE/aPMV-calculation. The website

interface is shown in Fig. 9, meanwhile the used Python packages, along with their

respective versions and functions, are detailed in Table 7.

= Q SuDBE / aPMV-calculation

y——y——

e aass <> Code (@ lssues 11 Pullrequests () Actions [ Projects [0 wiki @
Binned values
aPMV-calculation  pubiic Fiinate Ta

¥ main ~ ¥ 1branch  © 0 tags

SuDBE README.md

input

Add files via upload

aBMY prediction pythermalcomfort

README.md

aPMV.csv

fd files via upload

Add files via upload

N]
]
B Leezaazt 3 lambda_Npy
.
0O lambda_N_ASHRAE.py
]

remove NA - outliter.py Add files via upload

Fig. 9 GitHub interface and code execution results

Table 7. Python packages and their versions and functions

Package Version Function
pandas 143 Data analysis and manipulation
numpy 1.23.1 Computation

sklearn 1.3.0 Calculate error


https://github.com/SuDBE/aPMV-calculation

matplotlib 352 Data visualization
seaborn 0.12.2 Data visualization

pythermalcomfort 2.8.4 Calculate PMV

5.1 Content reproduction

The original Comfort Database was preprocessed using the “remove NA - outliter.py”,
which involves filtering qualified data and removing outliers. The cleaned dataset was
stored in folder “input”. The “lambda N ASHRAE.py” utilizes this cleaned dataset to
calculate the A values by the method propsoed in this study. By default, the program
assumes a “Csb” climate zone, as indicated in code line 15 (Fig 10). Users can modify
this setting to compute A values for other climate zones, thus facilitating validation and

reproducibility.

df = pd.read

(df.describe())

temperature_bins =

result_df = pd.DataFrame(

] == Climate_sample]

Fig. 10 A calculations using the Comfort Database in Python 3.9

5.2 General approaches for solving A4y

To provide a more general way of sovling A, we have developed “lambda_N.py” to
compute Ay when a csv file named “aPMV.csv” with accurate column names is given
at the same file directory. Detailed descriptions can be found on our shared GitHub site.
This program has several functions, including PMV calculation, temperature binned
computation, Ay calculation, aPMV curve plotting, and aPMV prediction compared

with TSV/PMV.



For the convenience of users who do not have Python installed, we have also compiled
this code into an executable (.exe) file. It can run on 64-bit Windows systems without
requiring Python installation. The download link and input file template can also be

found on our GitHub site. Its functionality is illustrated in Fig. 11.

aPMV

Copy to Dropbox ~ Download Template csv flle

Name
068
0.62
0.68
0.68
0.62
0.68

259 259 38 0.01
259 259 38 0.01
259 259 38 0.01
26.9 26.9 52 0.01
269 26.9 52 0.01
281 281 33 0.05

@ aPMV.esv o

om0 o
e e e e

#  lambda_N.exe

@ Download to local ‘ ® Two figures containing A values will be generated
@ Double click p s
P lambda_N.exe AN ol e —— PMV<0, A=-0.56
x I LR = o noss
aPMV.csv IambdaiN?exe pic-aPMV pic-aPMV

aPMV.csv lambda_N.exe curve.png points.png

Fig. 11 Steps of using executable EXE file for solving Ay without Python installation

6. Conclusions

The aPMYV index has been extensively validated and used by research community over
last 15 years since its initial publication. This study introduces a novel solving
algorithm for adaptive coefficient A in the aPMV index. It can effectively avoid the
issue of some abnormal intermediary values resulting from previous aPMYV calculations,
especially the problematic near-zero data points. A package containing the original
Python code and an executable file for this approach has also been shared on GitHub to
facilitate better dissemination and reproducibility. We emphasize that, in accordance
with the concept and purpose of original aPMV index, it should be careful when
employing aPMV in scenarios involving a high proportion of cases with neutral TSV
or PMV. This is due to the fact that the goal of aPMV is to correct predicted biases on
the hot and cold conditions, rather than to discover adaptive patterns in neutral

environments.

We validate the proposed A solving algorithm for aPMV fitting across 14 climate zones



based on the ASHRAE public database after providing constraints on the border of
adaptive coefficients A and prediction outputs. The results demonstrate that new aPMV
curves can better fit actual TSV and significantly reduce predictive deviations in various
temperature ranges. Compared to the previously published Ap optimization method, our
approach presents lower Mean Absolute Error and Root Mean Square Error values, with

average performance improvements of 34.5% and 37.7%, respectively.

The aPMV fitting curves for the 1st level of Koppen climatic classification demonstrate
the following trends: in hot climates, occupants have highest heat tolerance; in
cold climates, their heat tolerance decreases while their cold tolerance is high. The
adaptive coefficient A can efficiently quantify the degrees of these tolerances. Certain
Cold climate evidence suggests that when people are in naturally ventilated
buildings with minimal environmental control and non-active self-regulation, they
develop demanding heat preferences, which can also be captured by the A in the aPMV

index.
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Appendix
Appendix A
Suggested solving steps for adaptive coefficient Ay in the aPMV index

The least-square method is employed to minimize errors in solving adaptive coefficient
A in the aPMV index, and the calculation process proposed in this paper is

recommended as:



(1) Gather binned values (average value at a certain interval) of indoor air intemperate
with corresponding PMV; and TSVi. PMVi is the mean value of PMV; at i binned
range, and TSV; is the mean value of occupants’ thermal sensation vote at i binned
range.

(2) Choose data whose PMV>0 to calculate A in warm conditions, choose data whose
PMV<O0 to calculate A in cool conditions.

(3) Find out the binned sum of data sets “n”, suggest to bin air temperature at 1°C
integer intervals for better reproductivity, such as [25.0°C, 26°C), [26°C, 27.0°C),
etc.

(4) Let each
X; = PMV,,Y; = TSV;

(5) Calculate A:

L PMV, - Y TSV,
?=1T5Vi X PMV;

AN:

(6) For A values greater than +0.66 or less than -0.66, the A should be +0.66 or -0.66,
depending on which can give a smaller sum of squared errors.

(7) For aPMV predictions greater than +3 or less than -3, it is suggested to constrain
the acceptable aPMV values to +3 or -3. Specifically, values that are greater than
+3 should be adjusted to +3, and values that are less than -3 should be adjusted to -

3.

Appendix B

Fitted aPMV curves using Ay and Apin 14 climate zones based on Comfort Database
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Validation of proposed and previous algorithms on aPMV in 14 climate zones based on

Comfort Database
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