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Abstract 

An accurate evaluation of thermal environments in buildings is beneficial not just for 

occupant comfort but also for reducing unnecessary overheating or overcooling energy. 

The aPMV (adaptive Predictive Mean Vote) index can take into account occupants’ 

thermal adaptations and is stipulated in Chinese standards for evaluating thermal 

conditions in free-running buildings. Even though substantial studies have validated the 

efficiency of the aPMV index, it occasionally exhibits limited performance in certain 

scenarios. This paper aims to propose a novel algorithm for solving the key adaptive 

coefficient λ in the aPMV index. Validation was carried out utilizing the public 

ASHRAE thermal comfort database, which spans 14 climate zones. Results show that 

the new algorithm-based aPMV index can fit data effectively with low errors, 

improving average performance by 34.5-37.7% compared to the previous method. The 

different λ values in the aPMV index are able to quantify specific patterns of occupant 

thermal adaptations in cold, mild, and hot climates, respectively. Some aPMV outcomes 

with large deviations can be explained adequately by the specific properties of the 

original data sources. The code is available at https://github.com/SuDBE/aPMV-

calculation. 
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Abbreviations 

 

Af  Tropical rainforest 

Am  Tropical monsoon 

Aw  Tropical wet savanna 

BSh  Hot semi-arid 

BSk  Cold semi-arid 

BWh Hot desert 

Cfa  Humid subtropical 

Cfb  Temperate oceanic 

Csa  Hot-summer Mediterranean 

Csb  Warm-summer Mediterranean 

Csc  Cool-summer mediterranean 

Cwb  Subtropical highland 

Dfb  Warm-summer humid continental 

Dwa  Monsoon-influenced hot-summer humid continental 

MAE Mean Absolute Error 

PMV Predictive Mean Vote 

RSME Root Mean Square Error 

TSV  Thermal Sensation Vote 

𝜆  Adaptive coefficient in the aPMV index 

𝜆𝑁  Proposed algorithm for solving 𝜆 in this paper 

𝜆𝑆  Existing 𝜆 optimization method 

 



1. Introduction 

Existing international [1] and national [2] standards stipulated Fanger’s PMV 

(Predictive Mean Vote) index for assessing thermal comfort in HVAC (Heating, 

Ventilation, and Air Conditioning) buildings. While PMV performs well in steady-state 

conditions [3], its effectiveness is limited in dynamic environments with thermal 

fluctuations [4], such as naturally ventilated buildings. Given that PMV is defined as a 

“condition of mind which expresses satisfaction with the thermal environment” [2], 

considerable studies have concentrated on developing adaptive thermal comfort models 

that emphasize occupant self-regulation and adaptation, while depending less on HVAC 

systems. These models have been successfully established and stipulated into 

international and national standards, such as the graphic-based adaptive mode in EN 

16798 [5] and the aPMV index in Chinese GB/T 50785 [6]. The application of adaptive 

models not only meets occupants’ actual thermal needs but also promotes energy 

efficiency. Research indicates that the models embedded with occupant adaptation can 

effectively reduce building energy consumption by 18.9-34.4% [7].  

To further improve the adaptive comfort theory, several researchers have performed 

theoretical explorations and extensions on the basis of the PMV index, such as 

Humphrey’s nPMV [8], Fanger’s ePMV [9], Yao’s aPMV [10], Marcel’s ATHB [11], 

etc. Among these, the aPMV index was first proposed in 2009, with the goal of the 

development of a framework for quantifying thermal feedback loop based loopsontrol 

theory. It employs a transfer function to represent occupant adaptations as a negative 

feedback system. Since its incorporation into the Chinese national standards in 2012 

for evaluating thermal environments in free-running buildings (or naturally ventilated 

buildings), the aPMV index has received substantial academic attention regarding its 

applicability across varied climates. The adaptive coefficient λ, the key parameter of 

the aPMV index, has been examined, validated and customized further. These 

explorations included a wide range of building types, such as residential buildings 

[12][13][14][15][16][17][18], offices [19][20], classrooms [21][22], activity centers 

[23], cotton textile factories [24], bus stations [25], railway stations [26], etc. However, 



because the original aPMV was validated in the context of Chinese climate, with an 

emphasis on decreasing PMV overestimation in hot and cold conditions, data from too 

extreme scenario or inappropriate use of the aPMV framework may lead 

to suboptimal performance. For instance, Chaudhuri et al. [27] found that aPMV 

exhibited lower accuracy compared to a machine learning-based approach (35.51% vs. 

73.14%) and even worse than PMV (35.51% vs. 41.68%) in a study involving 16 

buildings in Singapore, but 12 of which were under HVAC operation. They concluded 

that occupant adaptation in hot and humid weather exhibited an negative λ value (-

0.3217), but their calculation method was derived from a non-original source [28]. 

Notably, the aPMV index has the potential to align with PMV when λ equals zero, 

raising questions about the rationale behind aPMV’s underperformance compared to 

PMV. Kim et al. [19] found large aPMV deviations from occupant thermal 

sensation and calculated abnormal negtive λ values in hot conditions. Again, their 

investigated building was fully air-conditioned rather than naturally ventilated, and 

subjective voting data also showed a strange trend of more cooler votes when 

temperatures exceeded 30℃. Certain research, such as [29] [30], have presented 

optimization methods for solving λ in the aPMV index, but a standardized approach 

remains elusive.  The complexity of the least square method in the aPMV framework 

could also make computing the best parameter more challenging. Furthermore, there is 

a lack of comprehensive validation of its performance across various contexts based on 

large-scale data. 

This paper aims to introduce a novel method for solving λ to improve the performance 

of the aPMV index in data fitting. It also discusses the potential application issues and 

validates the proposed method using a public thermal comfort database spanning 14 

climate zones. 

 



2. Solving adaptive coefficient λ in the aPMV index 

2.1 Original solving approach 

The aPMV Index is proposed based on Fanger’s PMV (Predictive Mean Vote) index, 

which incorporates negative (adaptive) feedback concept from control theory to 

account for occupant adaptation in the form of: 

𝑎𝑃𝑀𝑉 =
𝑃𝑀𝑉

1 + 𝜆 × 𝑃𝑀𝑉
                                             (1) 

Where λ is the adaptive coefficient and it can be solved by： 

𝜆 =
1

𝑛
∑(𝑌𝑖 − 𝑋𝑖)                                                     (2)

𝑛

𝑖=1

 

Where n represents the data sum of binned air temperatures, 𝑋𝑖 is defined as ith binned 

1/PMVi, and 𝑌𝑖 is defined as ith binned 1/TSVi. The original concept of the aPMV index, 

its derivation, and the detailed computation can be found in Ref [10]. 

The aPMV index has been stipulated in the current Chinese National Standard GB/T 

50785-2012 [6] and its suggested λ values for the aPMV index are shown Table 1. For 

evaluating the thermal environment in free-running buildings, the aPMV shall be in 

accordance with the requirements on the grades of overall thermal comfort indexes as 

stated in Table 2. 

 

Table 1 Values of λ for the five climate zones in different building types in Chinese 

National Standard GB/T 50785-2012 [6] 

Building climate zone 
Residential buildings, 

shops, hotels, and offices 
Education buildings 

SC and cold 

zones 

PMV≥0 0.24 0.21 

PMV＜0 -0.50 -0.29 

HSCW, HSWW, 

and mild zones 

PMV≥0 0.21 0.17 

PMV＜0 -0.49 -0.28 

Note: SC is severe cold zone, HSCW is hot summer and cold winter zone, and HSWW is hot 



summer and warm winter zone. 

 

Table 2 Grade of thermal environment in free-running buildings [6] 

Grade aPMV 

I -0.5≤aPMV≤0.5 

II -1≤aPMV≤-0.5, or 0.5≤aPMV≤1 

III aPMV<-1, or aPMV>1 

 

2.2 Improved algorithm for solving λ from the published study 

While the aPMV index has demonstrated successful applications across various 

countries, building types, field studies, and Chinese national standards, its fitting results 

exhibit limitations in certain scenarios. This could be caused by inappropriate 

utilizations of the aPMV or inadequate solving process for the key coefficient λ. Zhang 

et al. [29] introduced an improved algorithm for optimizing λ by forcing the target 

function to the fourth power of the TSV (Thermal Sensation Vote) before calculation, 

and their improved determination is as follows: 

𝜆𝑃 =
∑ 𝑇𝑆𝑉𝑖

𝑛
𝑖=1 − ∑

𝑇𝑆𝑉𝑖
2

𝑃𝑀𝑉𝑖

𝑛
𝑖=1

∑ 𝑇𝑆𝑉𝑖
2𝑛

𝑖=1

                                              (3)  

Detailed deductions can be found in Ref [29] and this method will be marked as 𝜆𝑃 in 

the following main text and figures to avoid any confusion. 

2.3 Proposed algorithm for solving λ 

The original computation of λ coefficient and improved 𝜆𝑃 method both involve the 

reciprocal transformation of TSV and PMV, resulting in the creation of new variables 

1/TSV or 1/PMV (assumptions before equation (7) in Ref [10] and equations (11) and 

(12) in Ref [29]). However, as real-world TSV measurements and calculated PMV 

values approach zero, these new variables tend to escalate dramatically. In extreme 

cases of values reaching zero, these new variables can diverge to infinity. To address 



this concern, this paper introduces an innovative approach for λ determination that 

circumvents these problematic zero crossings. The original reciprocal transformation in 

aPMV calculation enables the conversion of the aPMV solving process into a linear 

equation, which is easy to solve but introduces zero crossings. Here we maintain the 

same principle and methodology of the aPMV index as outlined in the original paper 

[10], but solve the λ directly rather than using the reciprocal transformation. The 

following steps outline the step-by-step procedure:  

For original form of aPMV index in equation (1),  

Let 𝑥 = 𝑃𝑀𝑉, 𝑓(𝑥) = 𝑎𝑃𝑀𝑉, equation (1) can be transformed to： 

𝑓(𝑥) =
𝑥

1 + 𝜆 × 𝑥
                                                       (4) 

Then import the given set of binned data (x1,y1), (x2,y2),…, (xn,yn), which are also equal 

to (PMV1, TSV1), (PMV2, TSV2),…, (PMVn, TSVn), the best fitting curve will present 

the least square error: 

𝛿 = ∑[𝑦𝑖 − 𝑓(𝑥𝑖)]2

𝑛

𝑖=1

= ∑ [𝑦𝑖 −
𝑥𝑖

1 + 𝜆 × 𝑥𝑖
]

2

                               (5)

𝑛

𝑖=1

 

In search of the minimal δ that yields the partial derivative of λ equating to zero, the 

following derivation is undertaken: 

𝜕𝛿

𝜕λ
= ∑ [2 (𝑦𝑖 −

𝑥𝑖

1 + 𝜆 × 𝑥𝑖
) ×

𝑥𝑖
2

(1 + 𝜆 × 𝑥𝑖)2
]

𝑛

𝑖=1

= 0                          (6) 

Multiply 
(1+𝜆×𝑥𝑖)3

2𝑥𝑖
2  to both sides, then we have: 

∑[(𝑦𝑖(1 + 𝜆 × 𝑥𝑖) − 𝑥𝑖)] = 0                                                       (7)

𝑛

𝑖=1

 

The new λ can be solved as： 

𝜆𝑁 =
∑ 𝑥𝑖 − ∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
𝑖=1

∑ 𝑥𝑖 × 𝑦𝑖
𝑛
𝑖=1

                                                 (8) 



Which is also equal to： 

𝜆𝑁 =
∑ 𝑃𝑀𝑉𝑖 − ∑ 𝑇𝑆𝑉𝑖

𝑛
𝑖=1

𝑛
𝑖=1

∑ 𝑇𝑆𝑉𝑖 × 𝑃𝑀𝑉𝑖
𝑛
𝑖=1

                                                (9) 

The proposed 𝜆𝑁 determination process avoids the use of reciprocal operations, which 

may help to alleviate the zero crossing concerns. The following sections will validate 

of its performance by examining data from natural ventilation buildings of 14 climatic 

regions sourced from the public global ASHRAE thermal comfort database [31]. 

The aPMV theory aims to reduce the deviation between PMV prediction and actual 

TSV on the 7-voting scale from -3 to +3, representing “cold”, “cool”, “slightly cool”, 

“neutral”, “slightly warm”, “warm”, and “hot”. The smaller absolute λ value indicates 

lower capacity of adaptation, and the aPMV index is equal to the PMV index when λ is 

zero. On the hot side, the lowest available vote for occupants is +1 (slightly warm). 

Assuming that PMV overestimates the +1 (slightly warm) to the highest level, which is 

+3 (hot) by two orders of magnitude, the λ value will be +0.66. Meanwhile, the λ value 

will be -0.66 when PMV underestimates actual hot sensation by two orders of 

magnitude. Similarly, when the PMV index overestimates or underestimates the cold 

sensation by two orders of magnitude, the λ value is -0.66 or +0.66, respectively. If the 

absolute value of λ is greater than 0.66, it indicates that the PMV index overestimates 

or underestimates the sensation magnitude by more than 2, which lacks practical 

meaning under 7-voting scale. Therefore, it is suggested that any λ values greater than 

+0.66 and less than -0.66 should be modified to the nearest +0.66 or -0.66 value that 

best fits the practical data. The detailed steps for solving 𝜆𝑁 are outlined in Appendix 

A. 

 

2.4 Evaluation indicators 

The model estimation errors in this paper have been calculated by two popular 

indicators MAE (Mean Absolute Error) and RSME (Root Mean Square Error):   



𝑀𝐴𝐸 =
1

𝑛
∑|𝑒𝑖|                                                     (10)

𝑛

𝑖=1

 

𝑅𝑀𝑆𝐸 = [
1

𝑁
∑|𝑒𝑖|

2

𝑛

𝑖=1

]

1
2

                                             (11) 

Where 𝑒𝑖  is individual model prediction error defined as 𝑒𝑖 = 𝑃𝑖 − 𝑂𝑖 , 𝑃𝑖  is specific 

model prediction, and 𝑂𝑖 is its matched observation. In this paper, 𝑃𝑖 is equal to 𝑎𝑃𝑀𝑉𝑖, 

and 𝑂𝑖 is equal to 𝑇𝑆𝑉𝑖. 

Willmott and Matsuura [32] criticized RSME as a misleading indicator for representing 

average model performance compared with MAE, because RSME tends to inflate 

disproportionately relative to MAE when the magnitudes of the errors within the 

distribution vary. However, Chai and Draxler [33] argued that RMSE can be more 

appropriate than MAE when error distribution is expected to be Gaussian. To 

comprehensively evaluate the λ performance, this paper used both MAE and RSME as 

evaluation indicators. 

 

3. Validation using public Comfort Database 

The ASHRAE Global Thermal Comfort Database II (short name: Comfort Database) is 

an accessible online dataset, which includes 81,846 data points of 52 field studies from 

160 buildings worldwide [31] and 22,000 records from the RP-884 project which aims 

to supplement the adaptive comfort theory [34]. This paper employs the Comfort 

Database to validate the proposed algorithm for solving λ in the aPMV index. Although 

this database harmonized the raw data with a high and uniform standard, some 

anomalies still remain. For example, radiant temperature of 148.1℃ (record No. 53,128) 

and air velocity of 56.16 m/s (record No. 17,533). Therefore, the Boxplot rule [35] was 

employed to eliminate these outliers. After filtering the data from naturally ventilated 

buildings, 22,785 data points from 14 climate zones have been selected for further 

analysis under Köppen climatic classification [36], as shown in Table 3, Fig 1 and Fig. 



2. The meanings of Köppen climatic symbols are presented in Table 4. 

 

Table 3. Statistical information of variables in selected data for λ validation 

Climate 

Air 

temperature 

(℃) 

Radiant 

temperature 

(℃) 

Relative 

humidity 

(%) 

Air 

velocity 

(m/s) 

Clothing 

level 

(Clo) 

Metabolic 

rate (Met) 
PMV TSV Sum 

Af 30.2±1.42 30.34±1.33 71.82±6.36 0.2±0.13 0.25±0.11 1.08±0.09 1.4±0.72 0.46±1.3 1060 

Am 27.14±2.26 27.14±2.26 63.53±5.18 0.22±0.13 0.41±0.09 1.18±0.06 0.44±0.83 0.41±0.94 1626 

Aw 28.9±2.27 28.98±2.31 65.86±11.19 0.22±0.13 0.59±0.14 1.13±0.08 1.39±0.71 0.64±1.09 801 

BSh 24.76±4.68 24.76±4.68 46.03±19.55 0.19±0.13 0.61±0.23 1.06±0.09 -0.3±1.51 -0.2±1.14 1271 

BSk 24.22±5.43 24.22±5.43 57.56±10.76 0.13±0.06 0.62±0.22 1.11±0.09 -0.03±1.48 0.4±1.05 156 

BWh 25.81±5.02 25.8±5.05 51.96±16.71 0.15±0.13 0.71±0.24 1.09±0.1 0.47±1.34 0.33±0.92 2580 

Cfa 27.4±3.21 27.86±3.06 60.4±12.45 0.25±0.11 0.47±0.19 1.17±0.08 0.73±0.91 0.43±1.22 1321 

Cfb 23.35±2.72 23.49±2.78 43.37±9.25 0.1±0.09 0.62±0.18 1.16±0.08 -0.38±0.85 0.37±1.18 2240 

Csa 23.76±2.98 23.77±2.92 37.78±10.92 0.07±0.09 0.69±0.2 1.19±0.08 -0.02±0.72 0.19±1.25 7194 

Csb 22.43±2.34 25.02±2.79 54.9±7.43 0.06±0.05 0.87±0.21 1.21±0.06 0.36±0.46 0.11±0.85 140 

Csc 23.83±1.32 24.08±1.24 47.87±10.24 0.11±0.07 0.62±0.19 1.09±0.1 -0.36±0.57 0.3±1.08 456 

Cwb 23.79±2.57 23.79±2.57 60.51±19.74 0.04±0.05 0.71±0.17 1.14±0.09 0.04±0.61 0.09±0.56 436 

Dfb 22.21±1.89 22.83±2.01 57.79±8.35 0.09±0.03 0.58±0.15 1.2±0 -0.47±0.56 0.57±1.58 2928 

Dwa 24.44±2.45 22.57±2.51 37.64±11.31 0.17±0.11 0.78±0.23 1.1±0 -0.24±0.64 -0.03±0.71 576 

Note: several empty radiant temperature values were replaced with air temperature to enrich 

the data sum. Af: Tropical rainforest; Am: Tropical monsoon; Aw: Tropical wet savanna; BSh: 

Hot semi-arid; BSk: Cold semi-arid; BWh: Hot desert; Cfa: Humid subtropical; Cfb: Temperate 

oceanic; Csa: Hot-summer Mediterranean; Csb: Warm-summer Mediterranean; Csc: Cool-

summer Mediterranean; Cwb: Subtropical highland; Dfb: Warm-summer humid continental; 

Dwa: Monsoon-influenced hot-summer humid continental. 

 

Table 4. Description of Köppen climatic symbols [36] 

1st 2nd 3rd Description 

A   Tropical 

 f  -Rainforest 

 m  -Monsoon 

 w  -Savannah 

B   Arid 

 W  -Desert 

 S    -Steppe 



  h     -Hot 

  k     -Cold 

C   Temperate 

 s    -Dry Summer 

 w    -Dry Winter 

 f    -Without dry season 

  a     -Hot Summer   

  b     -Warm Summer 

  c     -Cold Summer 

D   Cold 

 s    -Dry Summer 

 w    -Dry Winter 

 f    -Without dry season 

  a     -Hot Summer 

  b     -Warm Summer 

  c     -Cold Summer 

  d     -Very Cold Winter 

E   Plar 

 T    -Tundra 

 F    -Frost 

 

The tropical climatic zones (Af, Am, Aw) have the highest temperature values, with 

means ranging from 27.14°C to 30.34°C. The Csa and Dwa zones have the lowest 

relative humidity levels with mean values below 40%. Wind speeds average between 

0.1 and 0.2 m/s, with the exception of the Csa, Csb, Cwb, and Dfb zones, where they 

fall below 0.1 m/s. This suggests that airflow is being intentionally utilized to regulate 

occupants’ thermal comfort in naturally ventilated buildings. Clothing levels tend to be 

lower in tropical regions, while other areas demonstrate a more uniform distribution. 

Given that most data in the Comfort Database come from office buildings, the values 

of metabolic rate keep stable, ranging from 1 to 1.4 met, since occupants often assume 

to conduct office activities, such as reading, typing, filing, standing, etc. Moreover, as 

A to E in the Köppen climatic classification correspond to Tropical, Arid, Temperate, 

Cold, and Polar, respectively, the outdoor climate will follow a descending trend.  This 

tendency corresponds to the fluctuation in PMV values shown in Fig. 2. 



 

Fig.1 Variable distributions of environmental data grouped by climate 



 

Fig.2 Variable distributions of subjective data, PMV and TSV grouped by climate 

 

Table 5 shows the λ values obtained through our proposed algorithm (𝜆𝑁) and Zhang’s 

algorithm (𝜆𝑃). It is evident that the absolute values of 𝜆𝑁 are generally higher, with a 

mean excess of 0.08 on the cold side and 0.06 on the hot side. To guarantee that the 

outputs are meaningful, any aPMV prediction greater than +3 was limited to +3, while 

any aPMV prediction less than -3 was limited to -3. Fig. 3 and Fig. 4 present the 

predictive errors of aPMV under the two λ scenarios, measured using both MAE and 

RMSE. It is clear that 𝜆𝑁-based aPMV index demonstrates superior performance, as 

evidenced by lower predictive errors in both MAE and RMSE across the majority of 

cases, with the mean improvements of 34.5% in MAE and 37.7% in RMSE as shown 



in Table 6.  

Table 5. Calculated 𝜆𝑁 and 𝜆𝑃 for selected climate zones 

Climate 
𝜆𝑁 𝜆𝑃 

PMV<0 PMV>0 PMV<0 PMV>0 

Af 0.66 0.66 0.66 0.11 

Am -0.66 0.46 -0.66 0.15 

Aw - 0.36 - 0.21 

BSh -0.56 0.66 0.15 0.51 

BSk -0.66 0.09 -0.66 -0.32 

BWh -0.66 0.34 -0.54 0.21 

Cfa 0.1 0.41 0.19 0.38 

Cfb -0.41 -0.23 0.22 -0.46 

Csa -0.66 0.29 -0.53 -0.4 

Csb -0.25 0.55 -0.26 -0.66 

Csc -0.66 -0.66 -0.66 -0.66 

Cwb -0.66 0.55 -0.31 0.33 

Dfb -0.66 -0.66 -0.66 -0.66 

Dwa -0.66 -0.07 -0.66 -0.28 

Absolute mean 0.57 0.44 0.49 0.38 

 

Fig. 3 MAE (Mean Absolute Error) for aPMV performance using 𝜆𝑁 and 𝜆𝑃 across 14 

climate zones 



 

Fig. 4 RMSE (Root Mean Square Error) for aPMV performance using 𝜆𝑁 and 𝜆𝑃 

across 14 climate zones 

Table 6. Statistical information of MAE and RMSE on 𝜆𝑃-based aPMV and 𝜆𝑁-based 

aPMV 

Building type Indicator 
𝜆𝑃-based 

aPMV 

𝜆𝑁-based 

aPMV 

Improvements of 𝜆𝑁 method 

compared to 𝜆𝑃  method 

Naturally ventilated 

buildings 
MAE Min 0.21 0.17 19.0% 

  Mean 0.55 0.36 34.5% 

  Max 0.98 0.78 20.4% 

 RMSE Min 0.25 0.22 12.0% 

  Mean 0.69 0.43 37.7% 

  Max 1.39 0.85 38.8% 

 

To examine calculation outcomes at the climate level, two climatic zones, hot semi-arid 

(BSh) and cold semi-arid (BSk), were chosen for further investigation since they had 

the longest temperature ranges. The appendix has detailed results for each climate zone. 

According to Fig.5, 𝜆𝑁 -based aPMV curves (green lines) fit better with actual TSV 

points compared with 𝜆𝑃 -based aPMV ones. The 𝜆𝑃 -based aPMV underestimates 

occupants’ tolerance for cold conditions (red line, PMV<0 parts) in climate BSh, and it 



also underestimates occupants’ tolerance for warm conditions (red line, PMV>0 parts) 

in climate BSk. In contrast, 𝜆𝑁-based aPMV curves present more adequate performance 

when fitting data from these two climates.  

Fig. 6 shows the actual TSV votes, PMV, 𝜆𝑁 -based aPMV, and 𝜆𝑃 -based aPMV 

predictions at one-temperature binned intervals. In Fig. 6(a), for climate BSh, the 

absolute PMV values (blue squares) consistently surpass TSV values (black circles). 

This suggests that using PMV for thermal comfort prediction tends to underestimate 

people’s heat tolerance in naturally ventilated buildings. However, both 𝜆𝑁 -based 

aPMV (green triangles) and 𝜆𝑃-based aPMV (red diamonds) can effectively align the 

predicted points on the right side (warm conditions) with the actual TSV values. 

However, on the left side (cool conditions) of Fig. 6(a), 𝜆𝑃 -based aPMV exhibits 

considerable overestimation that even performs slightly worse than the original PMV, 

nearing or exceeding -3. In comparison, the proposed 𝜆𝑁-based approach in this paper 

better fits the TSV. Nonetheless, for points at 14°C and 34°C, the absolute values of 𝜆𝑃-

based predictions lie lower than users’ actual TSV, approaching a difference of nearly 

one scale. This indicates a potential risk of overestimating human tolerance under 

extreme conditions using 𝜆𝑃 -based approach. Fig. 6(b) shows similar trends, where 

PMV and TSV deviate, and 𝜆𝑁-based aPMV is capable of correcting this discrepancy 

on both the cold and warm conditions, whereas 𝜆𝑃-based aPMV falls short in rectifying 

the deviation on one side (warm conditions). 

  

Fig. 5 Fitted aPMV curves in climates hot semi-arid (BSh) and cold semi-arid (BSk) 



using 𝜆𝑁 and 𝜆𝑃 along with corresponding PMV-TSV values  

 

(a) Validation for climate hot semi-arid (BSh) 

  

(B) Validation for climate cold semi-arid (BSk) 

Fig. 6 Validation of proposed 𝜆𝑁-based aPMV, pervious 𝜆𝑃-based aPMV, TSV, and 

PMV for naturally ventilated buildings in climates hot semi-arid (BSh) and cold semi-



arid (BSk) 

4. Discussion 

4.1 Are adaptive opportunities always available in naturally ventilated buildings? 

One key concept in adaptive thermal comfort theory is that individuals can actively 

adjust environmental surroundings and personal factors to restore their own comfort, 

particularly in naturally ventilated buildings [37]. Fitting results of aPMV curves based 

on the Comfort Database show strong alignment across the majority of climates. 

However, for climate warm-summer humid continental (Dfb), both 𝜆𝑃-based and 𝜆𝑁-

based aPMV models perform limited with high MAE and RMSE values, with 

corresponding predictions shown in Fig. 7. A high proportion of PMV and aPMV values 

are approximately one scale lower than the actual TSV of occupants (black circles), 

indicating frequent warm discomfort. 

After further exploring the dataset, these data points were found originated from a study 

conducted in 2011 concerning non-heating periods in classrooms for children aged 7 to 

11 in the UK [38]. The authors mentioned that thermal environments in the surveyed 

classrooms were generally controlled by teachers and students can only adjust clothing 

levels. Notably, even among students who indicated a thermal sensation of +3 and +2, 

they (15% and 25%) continued to wear jumpers (0.25 clo). Some teachers also reported 

the observations that some students appeared to be visibly hot, yet they did not remove 

their jumpers or seek for help. 

In the Comfort Database, the naturally ventilated buildings in climate Dfb are not the 

commonly investigated offices but rather classrooms. The majority of occupants, in this 

case, students, did not have the authority to control the thermal surroundings in the 

classrooms and were not always able to actively adapt themselves by taking off jumpers 

to restore thermal comfort. These departures from the adaptive thermal comfort theory 

gives rise to distinct characteristics in data distribution, which may ultimately result in 

constrained effectiveness during aPMV model fitting.  



 

Fig. 7 Validation of predictions in climate warm-summer humid continental (Dfb) 

4.2 aPMV fitting curves under the 1st level of Köppen climatic classification 

The average MAE obtained for the 𝜆𝑁-based aPMV models is 0.34 (Table 6), which 

signifies that the absolute value of the average prediction deviation is roughly 0.34 scale 

units, indicating that the aPMV index has a robust predictive capacity. To further 

investigate the thermal adaptability represented by λ, we combine the data within 

distinct 1st levels of Köppen climatic classification. Specifically, we calculate the 

averages of λ values for each of the initial letters A to D (corresponding to Tropical, 

Arid, Temperate, and Cold climates) and generate aPMV fitting curves for 1st level, as 

shown in Figure 8. 

According to the original concept of aPMV [10], when λ equals 0, aPMV corresponds 

to PMV, indicating that PMV can adequately provide accurate evaluations of thermal 

comfort with very limited thermal adaptations (black dashed line in Fig. 8).  In cold 

conditions, λ generally tends to be less than 0, aligning the curve close to the x-axis, 

demonstrating higher cold tolerance. Conversely, in hot conditions, λ tends to be greater 

than 0, also resulting in a curve close to the x-axis, indicating enhanced heat tolerance. 

Furthermore, the magnitude of λ influences this phenomenon: the larger λ absolute 



value, the greater the individuals’ tolerance, leading to a curve that lies closer to the x-

axis. 

  

(a) PMV<0                                                   (b) PMV>0 

Fig. 8  𝜆𝑁-based aPMV fitting curves under 1st level of Köppen climatic 

classification: Tropical, Arid, Temperate, and Cold  

 

Fig. 8 depicts the aPMV fitting curves under 1st level of Köppen climatic classification, 

and several key findings emerge: 

· Tropical climates: individuals exhibit the highest tolerance for hot conditions (red 

lines), but for cold conditions, three tropical climates (Af, Am, and Aw) only 

contribute three binned data points that are just slightly below PMV=0 (Appendix 

B). Therefore, there is insufficient data representation for cold adaptation in tropical 

climate regions, and its PMV<0 curve was not depicted in Fig. 8. 

· Arid climates: there is a notable resilience to both cold and hot conditions (orange 

lines).  

· Temperate climates: tolerance levels fall within intermediate ranges (green lines).  

· Cold climates: people have the strongest cold tolerance, yet display an unusual trend 

with λ values below 0 for hot conditions (blue lines). This implies a stricter cooling 

demand in hot conditions when compared to PMV estimation. Considering the 



substantial amount of data from Cold climates originating from climate Dfb, this 

observation (λ<0 in hot conditions) correlates with the findings discussed in the 

preceding section 4.1, where occupants within the Dfb climate struggled with 

uncontrolled environments and non-active self-regulation.  

More detailed findings under the 3rd level of Köppen climatic classification can be 

found in Appendices B and C. 

 

5. Online package release for calculating the 𝝀𝑵-based aPMV index 

In order to reinforce the reproducibility of this study and facilitate more efficient 

computations with the 𝜆𝑁-based aPMV index, we have uploaded our proposed method 

(Python codes) to GitHub at https://github.com/SuDBE/aPMV-calculation. The website 

interface is shown in Fig. 9, meanwhile the used Python packages, along with their 

respective versions and functions, are detailed in Table 7. 

 

Fig. 9 GitHub interface and code execution results 

Table 7. Python packages and their versions and functions 

Package Version Function 

pandas 1.4.3 Data analysis and manipulation 

numpy 1.23.1 Computation 

sklearn 1.3.0 Calculate error 

https://github.com/SuDBE/aPMV-calculation


matplotlib 3.5.2 Data visualization 

seaborn 0.12.2 Data visualization 

pythermalcomfort 2.8.4 Calculate PMV 

 

5.1 Content reproduction 

The original Comfort Database was preprocessed using the “remove NA - outliter.py”, 

which involves filtering qualified data and removing outliers. The cleaned dataset was 

stored in folder “input”. The “lambda_N_ASHRAE.py” utilizes this cleaned dataset to 

calculate the λ values by the method propsoed in this study. By default, the program 

assumes a “Csb” climate zone, as indicated in code line 15 (Fig 10). Users can modify 

this setting to compute λ values for other climate zones, thus facilitating validation and 

reproducibility. 

 

Fig. 10 𝜆𝑁 calculations using the Comfort Database in Python 3.9 

 

5.2 General approaches for solving 𝝀𝑵 

To provide a more general way of sovling 𝜆𝑁, we have developed “lambda_N.py” to 

compute 𝜆𝑁 when a csv file named “aPMV.csv” with accurate column names is given 

at the same file directory. Detailed descriptions can be found on our shared GitHub site. 

This program has several functions, including PMV calculation, temperature binned 

computation, 𝜆𝑁  calculation, aPMV curve plotting, and aPMV prediction compared 

with TSV/PMV. 



For the convenience of users who do not have Python installed, we have also compiled 

this code into an executable (.exe) file. It can run on 64-bit Windows systems without 

requiring Python installation. The download link and input file template can also be 

found on our GitHub site. Its functionality is illustrated in Fig. 11. 

 

Fig. 11 Steps of using executable EXE file for solving 𝜆𝑁without Python installation 

 

6. Conclusions 

The aPMV index has been extensively validated and used by research community over 

last 15 years since its initial publication. This study introduces a novel solving 

algorithm for adaptive coefficient λ in the aPMV index. It can effectively avoid the 

issue of some abnormal intermediary values resulting from previous aPMV calculations, 

especially the problematic near-zero data points. A package containing the original 

Python code and an executable file for this approach has also been shared on GitHub to 

facilitate better dissemination and reproducibility. We emphasize that, in accordance 

with the concept and purpose of original aPMV index, it should be careful when 

employing aPMV in scenarios involving a high proportion of cases with neutral TSV 

or PMV. This is due to the fact that the goal of aPMV is to correct predicted biases on 

the hot and cold conditions, rather than to discover adaptive patterns in neutral 

environments. 

We validate the proposed λ solving algorithm for aPMV fitting across 14 climate zones 



based on the ASHRAE public database after providing constraints on the border of 

adaptive coefficients λ and prediction outputs. The results demonstrate that new aPMV 

curves can better fit actual TSV and significantly reduce predictive deviations in various 

temperature ranges. Compared to the previously published 𝜆𝑃 optimization method, our 

approach presents lower Mean Absolute Error and Root Mean Square Error values, with 

average performance improvements of 34.5% and 37.7%, respectively. 

The aPMV fitting curves for the 1st level of Köppen climatic classification demonstrate 

the following trends: in hot climates, occupants have highest heat tolerance; in 

cold climates, their heat tolerance decreases while their cold tolerance is high. The 

adaptive coefficient λ can efficiently quantify the degrees of these tolerances. Certain 

Cold climate evidence suggests that when people are in naturally ventilated 

buildings with minimal environmental control and non-active self-regulation, they 

develop demanding heat preferences, which can also be captured by the λ in the aPMV 

index. 
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Appendix 

Appendix A 

Suggested solving steps for adaptive coefficient 𝜆𝑁 in the aPMV index 

The least-square method is employed to minimize errors in solving adaptive coefficient 

λ in the aPMV index, and the calculation process proposed in this paper is 

recommended as: 



(1) Gather binned values (average value at a certain interval) of indoor air intemperate 

with corresponding PMVi and TSVi. PMVi is the mean value of PMVi at ith binned 

range, and TSVi is the mean value of occupants’ thermal sensation vote at ith binned 

range. 

(2) Choose data whose PMV≥0 to calculate λ in warm conditions, choose data whose 

PMV<0 to calculate λ in cool conditions. 

(3) Find out the binned sum of data sets “n”, suggest to bin air temperature at 1℃ 

integer intervals for better reproductivity, such as [25.0℃, 26℃), [26℃, 27.0℃), 

etc. 

(4) Let each 

𝑋𝑖 = 𝑃𝑀𝑉𝑖, 𝑌𝑖 = 𝑇𝑆𝑉𝑖 

(5) Calculate λ: 

         𝜆𝑁 =
∑ 𝑃𝑀𝑉𝑖 − ∑ 𝑇𝑆𝑉𝑖

𝑛
𝑖=1

𝑛
𝑖=1

∑ 𝑇𝑆𝑉𝑖 × 𝑃𝑀𝑉𝑖
𝑛
𝑖=1

      

(6) For λ values greater than +0.66 or less than -0.66, the λ should be +0.66 or -0.66, 

depending on which can give a smaller sum of squared errors. 

(7) For aPMV predictions greater than +3 or less than -3, it is suggested to constrain 

the acceptable aPMV values to +3 or -3. Specifically, values that are greater than 

+3 should be adjusted to +3, and values that are less than -3 should be adjusted to -

3. 

 

Appendix B  

Fitted aPMV curves using 𝜆𝑁 and 𝜆𝑃in 14 climate zones based on Comfort Database 



  

  

  



  

  

  



  

 

Appendix C  

Validation of proposed and previous algorithms on aPMV in 14 climate zones based on 

Comfort Database 
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