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Abstract 

Accurate and real-time assessment of occupant thermal comfort can provide a solid 

foundation for efficient air conditioning operations. Existing studies already show the 

feasibility of using contactless technologies for thermal comfort prediction assisted by 

machine learning algorithms. However, the lack of transparency in machine learning 

often weakens user trust. This study performs explainable AI analysis to explore the 

potential of infrared imaging in thermal comfort evaluation. Specifically, an 

investigation was carried out in a climatic chamber, and infrared cameras were used to 

collect facial temperature data. Five popular ensemble tree models were employed to 

construct prediction models, and explainable AI analysis was performed using SHAP 

(SHapley Additive exPlanations) theory. Results show that combining additional facial 

information can significantly improve the overall model performance, and certain facial 

attributes present high contributions based on SHAP values. Combining facial features 

with explainable AI provides a convincing basis for thermal comfort assessment. The 

high SHAP values of facial features can also contribute to finding selective occupants 

with low neutral voting rates, providing evidence for customized cooling or heating 

from building systems. 
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1. Introduction 

Comfortable and pleasurable indoor thermal environments can benefit occupants in 

terms of comfort, health, well-being, and productivity. In unfavorable outdoor climates, 

heating, ventilation, and air conditioning (HVAC) systems are commonly utilized to 

improve indoor thermal conditions, resulting in significant energy usage. According to 

the European Commission, heating and cooling energy in buildings and industries 

account for 50% of the EU’s annual energy consumption [1]. Currently, most 

international (ISO-7730 [2], EN 16798 [3]) and national standards (ASHRAE-55 [4], 

Abbreviations 

AdaBoost Adaptive Boosting 

BP Blood Pressure 

DBP Diastolic Blood Pressure 

Env Features of environmental parameters 

GBDT Gradient Boosting Decision Trees 

HVAC Heating Ventilation and Air Conditioning 

LightGBM  Light Gradient Boosting Machine 

LIME  Local Interpretable Model-agnostic Explanations 

RF  Random Forest 

RH  Relative humidity 

PMV  Predicted Mean Vote 

SBP  Systolic Blood Pressure 

SET  Standard Effective Temperature 

SHAP  SHapley Additive exPlanations 

TSV  Thermal Sensation Vote 

Ta  Air temperature 

Tankle  Ankle temperature 

Tear  Ear temperature 

Tfacials  Features of temperature variations from forehead, inner canthus, 

nose, and nasolabial fold to the cheek temperature 

Tg  Globe temperature 

Twrist  Wrist temperature 

XGBoost  eXtreme Gradient Boosting 

 



CIBSE Guide-A [5], GB/T 50785 [6]) stipulate the classic Predicted Mean Vote (PMV) 

method as the primary approach for evaluating indoor thermal comfort under HVAC 

operations. The PMV index effectively combines environmental parameters (such as 

air temperature, radiant temperature, relative humidity, and air velocity) with subjective 

factors (including metabolic rate and clothing level) to assess thermal comfort. This 

approach has demonstrated satisfactory performance in a range of building types [7], 

such as school buildings [8], mosques and churches [9], hospitals [10], residential 

apartments [11], office buildings [12], etc.  

However, certain dynamic and statistic factors that can potentially affect thermal 

comfort were not considered in the evaluation process in current PMV approach, such 

as age, gender, race, acclimation, prior thermal exposure, and food/drink intake [13]. 

The collections of certain parameters are also expensive and challenging, such as 

radiant temperature, air velocity, and metabolic rate [14]. Furthermore, because of 

factors such as device-user distance or user movement [15], the arrangement of 

environmental measuring devices typically depicts specific measurement areas, 

frequently failing to capture the actual surroundings near each occupant. Increasing the 

number of environmental devices to improve the representativeness of environmental 

parameters will increase data collection costs even further, and related measurement 

errors and miscalculations of PMV can also result in greater energy consumption for 

maintaining the indoor thermal environment [16]. To address these challenges, 

researchers have created thermal comfort models based on real-time physiological 

parameters, such as occupants’ skin temperature of back hand [17], wrist temperature 

[18], heart rate variability [19], etc. 

The majority of these physiological-based solutions necessitate the deployment of 

additional devices in touch with occupants’ skin and the collection of subjective 

feedback in real-time [20]. These can interfere with users’ daily work, perhaps creating 

the Hawthorne effect [21], in which people change their behaviors to fit the expectations 

of observers when they feel watched. Furthermore, long-term contact with monitoring 

devices may not be appropriate for certain vulnerable or special populations, such as 

infants, burned patients, etc. Therefore, some thermal comfort studies have turned their 



attention to non-intrusive methods of monitoring occupant thermal states using images 

and videos. Infrared thermography is one such technology, which uses infrared cameras 

to collect skin temperatures from exposed parts of the human body (face [15], hands 

[22], etc.) or clothing temperature. This contactless method enables the creation of 

personalized predictive models for each individual while avoiding obvious interference. 

Many of these studies have utilized machine learning algorithms for model training and 

prediction. 

A major challenge to the widespread adoption of machine learning is its lack of 

interpretability. Even though extensive research and evidence demonstrate its superior 

performance, the perception of a model as a full black box with little or no human 

intermediation may create worries about its trust in real-world applications. The 

Recital 71 from European Union’s new General Data Protection Regulation (GDPR) 

emphasizes the “right to explanation” of data subject during the algorithmic decision-

making process, which should include the right to “obtain human intervention, to 

express his or her point of view, to obtain an explanation of the decision reached after 

such assessment and to challenge the decision” [23] instead of blindly accepting black 

box models, but making these black box models transparent faces several barriers [24]: 

· Intentional concealment: corporations and institutions deliberately keep decision-

making processes hidden from public scrutiny. 

· Technical literacy gaps: access to underlying code alone is often insufficient due 

to limitations in the technical proficiency of general public. 

·  Human cognitive limitations: a mismatch exists between the mathematical 

optimization in high-dimensional machine learning and the demands of human-scale 

reasoning and interpretive styles.  

The first two issues involve public concerns, making it more challenging for researchers 

to improve due to their extensive societal, cultural, educational, and awareness-related 

characteristics. The third issue is technological in nature and could potentially be 

tackled through advancements in machine learning algorithms, building decision 

processes that are more explainable and align better with human reasoning modes, etc.  



1.1 Related work 

Several recent studies employed machine learning algorithms to predict thermal 

comfort based on facial physiological parameters. Ghahramani et al. [25] used Hidden 

Markov Models based on infrared facial imaging to predict thermal discomfort with an 

accuracy of 82.8%. Cosma and Simha [26] analyzed facial and clothing temperatures 

using principal component analysis (PCA) and found that clothing temperature also 

plays a positive role in thermal comfort assessment. He et al. [27] studied cheek, nose, 

and hand temperatures using Random Forest and observed that with an increasing 

number of input features, the prediction accuracy improved from 83% to 96%. Aryal 

and Becerik-Gerber [28] investigated the impact of features on model performance 

using Random Forest, Support Vector Machines, and K-Nearest Neighbor, and 

discovered that using facial features as additional input for model training will increase 

prediction accuracy by 3-4%. These studies highlight the potential of thermal imaging 

for capturing facial features as well as the effectiveness of machine learning in 

establishing thermal comfort models.  

Many research endeavors have also been dedicated to making complex machine 

learning models interpretable based on explainable AI approaches, with encouraging 

results [29]. One of these approaches is the Local Explanation Method, which tries to 

explain the decision-making processes of complicated machine learning models by 

constructing a simplified model (often linear) for specific prediction instances and 

offering effective interpretation for the local context. LIME (Local Interpretable Model-

agnostic Explanations) [30] and SHAP (SHapley Additive exPlanations) [31] are the 

two most popular Local Explanation Methods and SHAP can be considered an 

improved version of LIME to some extent. Several researchers already employed SHAP 

to study thermal comfort from diverse perspectives. Qiao et al. [32] used SHAP to 

assess the gender impact on thermal comfort in underground public transportation. 

Their findings revealed that women tend to be more sensitive to low temperatures 

(below 24℃), whereas men exhibit greater sensitivity to high temperatures (above 

29℃). Lan et al. [33] employed SHAP to evaluate individual differences in thermal 

comfort among classroom students. According to their findings, overweight and obese 



students preferred cooler temperatures. Yang et al. [34] utilized SHAP to investigate the 

interpretability of a public thermal comfort database. They observed thresholds at 

which particular feature contributions abruptly shift, implying that the true neutral 

environment may be a dynamic high-dimensional space formed of specific 

combinations of features in certain ranges with changing forms, rather than just a 

concept of temperature boundaries. Baek et al. [35] investigated infrared thermography 

of seated human subjects (wearing short sleeves). They developed deep convolutional 

neural networks (CNN) to forecast thermal comfort and visualized SHAP values at 

pixel levels throughout the CNN prediction. Their visualizations revealed the effects of 

exposed skin temperature and clothing temperature on predictions, emphasizing the 

importance of clothing temperature in predicting thermal perception. These SHAP-

based studies demonstrated the effectiveness of explainable AI on thermal comfort data 

and research.  

1.2 Existing research gaps 

Despite advancements in predicting thermal comfort through infrared thermography 

and explainable AI, critical research gaps persist, and a coherent connection between 

these two domains is yet to be fully established. Many infrared thermography studies 

have successfully constructed high-performing thermal comfort models using 

physiological parameters and machine learning algorithms, but the inner mechanisms 

of these black box models remain inadequately explained. Meanwhile, the majority of 

explainable AI-based thermal comfort studies, although valuable in their approaches, 

have primarily incorporated non-physiological factors like age, gender, and BMI as 

supplementary inputs for model development. This falls short of fully capturing the 

complex dynamics of real-time variations in occupants’ physiological responses in 

practice, which play an important role in representing occupants’ thermal states in real-

time. These gaps indicate the potential for the strengths of these two approaches to 

compensate for the weaknesses of each other. By focusing on a more comprehensive 

understanding of occupants’ physiological parameters and their immediate interactions 

with indoor conditions, there arises an opportunity to advance the field through a novel 



approach that integrates infrared thermography and explainable AI. The combination 

of these two approaches allows us to not only construct accurate prediction models in 

a contactless way, but also to investigate the fundamental mechanisms of machine 

learning algorithms on how physiological and environmental variables impact thermal 

comfort. 

1.3 The objectives of this study 

Given these considerations, this study aims to develop a contactless infrared 

thermography method to predict thermal comfort based on machine learning algorithms 

using the explainable AI to explicate the model training and predicting processes, as 

illustrated in Fig. 1. During the climatic chamber studies, environmental and 

physiological parameters have been collected together by data loggers, infrared 

cameras and other instruments, while only two thermocouples were attached to the 

individuals' wrist and ankle to minimize interference with the subjects. In order to find 

the best machine learning model, Random Forest and four different types of boosting 

trees were evaluated using all features, and the best-performing model was chosen for 

further investigation on feature selections. The SHAP model, which has been widely 

used in the thermal comfort and medical domains [36][37], was chosen for the 

explainable AI analysis to investigate the inner structure of complex machine learning 

models. In addition, the effects of different TSV mapping scenarios were examined at 

the end. 

The main contributions of this paper include the following three aspects: 

(1) Ensemble tree algorithms were employed to evaluate model performance by 

considering various combinations of input features, including environmental 

conditions, facial physiological parameters, and other non-facial physiological data. 

The distinctive role of facial thermography in model training was clarified. 

(2) Explainable AI approach was used to quantify the contribution degree of each single 

sample and its cumulative effect on each feature. We particularly focused on 

demonstrating the contributions of facial thermography to predicting hot and cold 



thermal sensations. 

(3) The thresholds of facial temperature variations were identified to indicate thermal 

discomfort of both the general population and individuals. It validated the potential 

of explainable AI in addressing individualized thermal comfort prediction, shedding 

light on personalized heating or cooling strategies within building systems.  

 

Fig. 1 Schematic view of this study 

 

2. Method 

2.1 Experimental settings 

2.1.1 Surveys in climate chamber 

A two-week series of subject tests were conducted in a climate chamber at Chongqing 

University in June, 2021. The chamber was operated from 8:00 to 18:30 and each test 

lasted for 90 minutes. To investigate subjects’ thermal responses in moderately cold and 

hot environments, the indoor conditions were controlled in five scenarios ranging from 

22-32℃: (1) constant 22℃; constant 26℃; (3) constant 32℃; (4) increasing from 22℃ 

to 32℃; and (5) decreasing from 32℃ to 22. Before the test, all subjects were informed 



to wear typical summer clothes at the typical ensembles of 0.36 clo suggested by 

ASHRAE-55 and not to smoke, drink liquor, or sleep late. During the test, all subjects 

firstly stayed in the preparation room for 30 minutes where the temperature was kept 

the same with the initial temperature setting in the 90-minute chamber experiment to 

avoid the feelings of sudden thermal stimuli. It is important to note that no thermal 

comfort questionnaires were delivered during this 30-minute preparation period. 

Instead, our analysis focused on the data collected during the 90-minute experimental 

session conducted within the climate chamber. In the chamber, the subjects remained 

sitting posture and carried out light office activities, such as reading or typing (1 to 1.1 

met). The questionnaires, facial thermography, blood pressure, and other physiological 

measurements were performed every 10 minutes (Fig. 2).  

Fifteen master students voluntarily joined the experiments with monetary compensation 

and contributed to the generation of approximately 2,000 thermal response 

questionnaires. However, due to one participant discontinuing his involvement, his data 

were excluded from the analysis. Subsequently, we removed null data and outliers 

based on the boxplot method to ensure data quality [38]. This refinement process 

yielded a final dataset of 1,697 data points with valid questionnaires and 

environmental/physiological records from fourteen people (9 males and 5 females), 

which were used to build machine learning models for predicting thermal comfort and 

model interpretation. 

 

Fig. 2 Testing procedure of the experiment (①-⑨ represent the surveyed moments 

when occupants are required to complete questionnaires and take physiological 

measurements/thermography) 

2.1.2 Measurements 

Table 1 shows the technical specifications of the instruments used in this study. In 



general, three types of measurements were monitored and collected during the 

experiment (Fig. 3): 

· Environmental conditions: air temperature and relative humidity were monitored by 

HOBO devices near each subject. Globe temperature was collected every by a black 

bulb thermometer placed in the middle of the chamber. 

· Non- Facial physiological parameters: wrist temperature and ankle temperature were 

collected by a HOBO 4-channel thermocouple logger with two thermocouples attached 

to the skin of each subject’s wrist and ankle. Omron blood pressure monitors were used 

to collect SBP (systolic blood pressure), DBP (diastolic blood pressure), and Heartrate 

(pulse). The ear temperature was also measured by an ear thermometer. 

· Facial physiological parameters: a FLIR thermal camera was used to capture the 

facial thermal response of forehead, inner canthus, cheek, nose, and nasolabial fold, as 

shown in Fig. 4. For the sensitivity of thermal camera, temperature drifting is 

considered to be a common problem, which can occur after device calibration and cause 

all points on the thermal image to increase or decrease [39]. Following device 

calibrations, we shot two thermal images of the same subject at the same moment. 

Temperature drifting of general values reached around 4°C, but their inner fluctuation 

between each point changed only up to 0.2°C, as shown in Table 2. Therefore, instead 

of using the absolute value measured by the thermal camera, this study used the 

variations between pixel points to indicate facial thermal information.    



 

Fig. 3 Layout of the climate chamber. 

Table 1. Technical specifications of measuring instruments 

Model Manufacturer Measuring parameters 
Measuring 

frequency 
Range Accuracy 

HOBO 

UX100-011 
Onset Air temperature 1 second -20~70℃ 

±0.21°C 

(0~50℃) 

  Relative humidity 1 second 1~95% 
±2.5% 

(10~90%) 

JTR04 
Beijing JT 

Technology  
Globe temperature 10 minutes 10~80℃ 

±0.2°C 

(20~40℃) 

HOBO 4-

channel 

thermocouple 

logger 

Onset 
Wrist temperature 

Ankle temperature 
1 second -20~70℃ ±0.21℃ 

HEM-7012 OMRON 
SBP (systolic blood pressure) 

DBP (diastolic blood pressure) 
10 minutes 0~299 mmHg ±4 mmHg 

  Heartrate (pulse) 10 minutes 40~180 bpm 5% 

YHT200 ear 

thermometer 
Yuwell Ear temperature 10 minutes 34~42.2℃ 

±0.2℃ 

(35~42℃) 

±0.3℃ (beyond 

35~42℃) 

FLIR E6-XT 

thermal 

camara 

FLIR Systems, 

Inc 
Facial temperatures 10 minutes 

-20~550°C, 

240 × 180 pixels 

±2°C or ±2% of 

reading, 



 

Fig. 4 Extracted temperature points from facial tomography 

Table 2. Temperature drifting of one subject at the same moment after device 

calibration 
 

Forehead (℃) Inner canthus (℃) Cheek (℃) Nose (℃) Nasolabial fold (℃) 

Record 1 34.2 34.8 34.2 34.1 34.1 

Record 2 38.1 38.6 38.3 38.0 38.2 

Deviation -3.9 -3.8 -4.1 -3.9 -4.1 

2.1.3 Subjective feedback 

Throughout the experiment, each subject was required to provide thermal feedback 

every 10 minutes. The thermal sensation vote (TSV) was primarily used to assess 

subjects’ thermal responses. The scale ranged from -3 to +3 based on ASHRAE 55-

2020 [4]: -3 (cold), -2 (cool), -1 (slightly cool), 0 (neutral), 1 (slightly warm), 2 (warm), 

and 3 (hot). For the specific model training and establishment in this study, votes of -1, 

0, and +1 were combined as comfort, while -3 and -2 were considered cold and +2 and 

+3 as hot. Therefore, the 7-scale classification problems were reduced to 3-scale 

problems. 

2.2 Ensemble tree models 

In recent years, deep learning models have achieved remarkable success in handling 

complex and unstructured data in various domains [40], including image recognition 

[41], recommender systems [42], natural language processing [43], etc. On the other 

hand, tree-based models can consistently outperform typical deep learning models 

when the data is individually meaningful and lacks strong multi-scale temporal or 

spatial features [44]. Both deep learning [45] and tree-based approaches [46] made 

significant contributions to the field of thermal comfort research, allowing for the 



development of highly precise models as well as improved comprehension of 

underlying patterns in data. In this paper, our sample size of 1,697 may not be sufficient 

for building a deep learning model. Consequently, we used tree-based methods to 

construct machine learning models for predicting thermal comfort. For classic tree 

classifier, it often faces the challenges of overfitting when trees are too complex and 

lacking generalization to unseen data [46]. Therefore, several ensemble approaches 

were developed to improve the predictive performance and robustness of tree-based 

models, such as bootstrap sampling (Random Forest) [46], weak learners boosting 

(AdaBoost) [47], residual minimizing in each interaction (Gradient Boosting Decision 

Trees) [48], etc. According to the characteristics of tabular-style data in this study, five 

popular ensemble tree algorithms have been employed to construct machine learning 

models for predicting thermal comfort, as shown in Table 3.  

In this paper, the raw data have been cleaned by removing null values and outliers using 

the Boxplot rule [38]. Because each ensemble tree model has distinct characteristics 

and appropriate hyperparameter tuning can improve model performance [49], the grid 

search method with 5-folder cross validation was used to identify the best parameter 

combinations. The collected data were divided into training and testing subsets in an 

8:2 ratio. In order to ensure reproducibility and consistency in the data splitting process, 

we specified the parameter “random_state” as 42 when utilizing the “train_test_split” 

function in Python. This setting allowed us to reproduce the same splitting results 

consistently across multiple runs of the code. During the training processes, the label 

encoding method was used to convert text data into numeric data, because this method 

was found to be an effective way to process thermal comfort data [50]. No data 

normalization or standardization (scaling to [0,1] range) was performed during the pre-

processing procedure as tree-based models are known to be robust to feature scaling 

[51]. All environmental and physiological parameters were used as inputs for model 

training, while the 3-scale TSV was the output. To comprehensively evaluate ensemble 

tree models, four evaluation metrics “accuracy, precision, recall, and F1 score” were 

used for assessing the classification problems, because relying solely on accuracy will 

lead to accuracy cheating [52], especially when the dataset is imbalanced. 



Table 3. Features of popular ensemble tree models and applications in thermal comfort 

studies 

Model Year Main feature 
Key 

hyperparameters 
Strengths  Weaknesses 

Applications in thermal comfort 

studies 

Random 

Forest 

(RF) 

[46] 

1995 

Use random 

feature selection 

and bootstrap 

sampling to 

construct each 

decision tree. 

Number of 

estimators 

Max depth 

Min samples leaf 

Criterion: gini, 

entropy 

Good at handling 

high-dimensional 

data, outliers, and 

missing values. 

Overfit when 

dealing with 

noisy data 

and highly 

correlated 

features. 

Gender difference based on 

wearable sensing (over 90% 

accuracies) [53] 

Thermal pleasure based on 

cutaneous thermoreceptor 

activity (83% accuracy and 67% 

F1 score) [54] 

Thermal state based on infrared 

thermography (83-96% 

accuracies) [27] 

AdaBoos

t [47] 
1997 

Focus on wrong 

classification and 

boost the weak 

learner (tree). 

Number of 

estimators 

Learning rate 

Good accuracy and 

generalizability on 

complex 

classification 

problems. 

Overfit when 

dealing with 

noisy data 

and outliers. 

Individual preference based on 

skin temperature and heating 

behaviors (84% accuracy) [55] 

Outdoor thermal comfort based 

on UTCI index and bike 

ridership data (75% acceptable 

predictions) [56]  

Thermal comfort prediction 

based on heart rate variability 

(93.7% accuracy) [57] 

Gradient 

Boosting 

Decision 

Trees 

(GBDT) 

[48] 

2001 

Iterate decision 

trees based on 

residuals in each 

round. 

Number of 

estimators 

Learning rate 

Max depth 

Min samples leaf 

Good 

generalizability on 

large datasets. 

Slow training 

process and 

high 

requirements 

of computing 

resources. 

Air conditioner usage in 

residential buildings (89.5% 

accuracy) [58] 

Impacts of climate change on 

thermal comfort (72% and 91% 

accuracies) [59] 

Gender differences in 

underground public 

Transportation (29% and 35% 

increased accuracies) [32] 

eXtreme 

Gradient 

Boosting 

(XGBoo

st) [60] 

2016 

Based on GBDT. 

Embed 

parallelization, 

regularization, 

and greedy 

algorithm to 

optimize the 

training process. 

Max depth 

Subsample 

Min child weight 

Gamma 

Good accuracy and 

efficiency on large 

datasets and 

complex features. 

Sensitive to 

noise and 

outliers. 

Thermal comfort prediction 

based on local skin temperatures 

(72.5% and 78.3% accuracies) 

[61] 

Outdoor thermal comfort based 

on optimized tree algorithms 

(95.21% accuracy) [59] 



Individual difference in 

classrooms (over 88% 

accuracies) [34] 

Light 

Gradient 

Boosting 

Machine 

(LightG

BM) 

[62] 

2017 

Based on GBDT. 

Exclude data with 

small gradients 

and bundle 

mutually 

exclusive features 

to reduce training 

time. 

Number of 

estimators 

Learning rate 

Max depth 

Subsample 

Fast training 

efficiency on large 

datasets. 

Worse 

performance 

on small 

datasets 

compared 

with GBDT. 

Passengers in high-speed 

Railway based on 

electroencephalography (0.1704 

RMSE and 0.1261 MAE) [63] 

Rapid establishment of 

prediction models (89.3% 

average F1 score) [64] 

Cooling load prediction in a 

commercial building (95.94% 

accuracy) [65] 

2.3 Model interpretation 

Machine learning models are becoming increasingly widespread because they can 

achieve superior performance and even surpass human capacity in many applications, 

such as the game of GO [66], language translation [67], and protein folding [68]. 

However, their inner mechanisms remain “black boxes”, and one critical concern is the 

trust in the reasoning behind their predictions: if the users do not trust a model or a 

prediction, they will not use it [30]. Among all the effective approaches to explain 

machine learning models, local feature attribution is considered a prominent approach. 

It helps to understand individual predictions by assigning attribution scores to each 

feature, thereby providing insights into the model’s decision-making process and 

feature importance [69]. Within this methodology, Lundberg and Lee [31] introduced 

SHAP (SHapley Additive exPlanations) as a powerful tool to interpret the predictions 

of machine learning models. At its core, SHAP was built upon the Shapley value [70], 

a concept with a long history in game theory for assigning contributions of players in 

cooperative games. SHAP adopts the idea of examining different orders of adding 

inputs to determine the attribution scores for each feature. 

According to the Shapley value, 𝜑𝑖 is the local importance of feature i [31]: 

𝜑𝑖 = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑖}

[𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)]               (1) 

Where |S| is the size of the subset before adding the feature i, |F| is the number of 

features, 𝑆 ⊆ 𝐹\{𝑖} is all possible subsets without the feature i, 𝑥𝑆∪{𝑖} is the subset S 



with feature i added, and S is the subset without feature i. The second part of the 

equation (1) [𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)]  represents the marginal contribution, which 

captures the incremental contribution of a specific player (feature) in the overall game 

(model). Whereas the first part of equation (1) 
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!
  is the weight for 

combinations of this occurrence.  

The calculation of the original Shapley value is an NP-hard (nondeterministic 

polynomial time) subset sum problem, because it needs to consider the combinations 

and permutations of all possible subsets. For N features, there are 2^N different subsets 

to be considered, while the number of permutations for each subset is N!. As a result, 

the overall computational complexity of Shapley value will be O(2^N*N!) and it grows 

exponentially with the number of features, making it extremely challenging to directly 

solve in high-dimensional feature spaces. The SHAP method solved this by developing 

additive feature attribution methods based on the idea of local methods designed in 

LIME (Local Interpretable Model-agnostic Explanations) that can create a local 

approximation of the complex model for a specific input [30]: 

𝜉 = argmin
𝑔𝜖𝐺

𝐿(𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔)                                         (2)                

Where 𝜉 is the objective function in LIME, g is the simplified interpretation model 

(mostly linear) to the original complex model f, G is the family of g, πx is the proximity 

that measures locality around input x, Ω(𝑔) is the complexity penalty for g. It means 

that LIME tries to find a simple model g that minimizes the two lost terms L and Ω, 

while L approximates the complex model in the local area and Ω ensures the simplicity 

of g. 

Lundberg and Lee [31] developed the Shapley kernel to identify specific forms of terms 

in equation (2) that are consistent with the three key properties of the Shapley value in 

game theory: 1) Local accuracy: the explainable model produces roughly the same 

output of the actual model in the local area (g ≈ f); 2) Missingness: if one feature is 

excluded from the model, its attribution is zero (φ = 0); and 3) Consistency: if the 

contribution of a particular feature changes, the attribution in the explanatory model 

can not change in the opposite direction.  



However, SHAP kernel suffers from ignoring feature dependence and correlation, 

which can lead to biased interpretations [71]. Lundberg et al. [44] later presented 

TreeExplainer, a popular and improved variant of SHAP kernel for interpreting tree-

based models, to address these limitations by explicitly modeling conditional 

expectation predictions, effectively accounting for feature correlations. It computes 

exact Shapley values for tree models efficiently by collapsing calculations specific to 

each leaf in the tree. TreeExplainer also introduces the SHAP interaction value, 

capturing local interaction effects between features and enhancing model understanding. 

By incorporating interventional expectations and path coverage information, 

TreeExplainer enables robust interpretations with correlated features [44], and it 

reduces the original NP-hard exponential complexity of Shapley value to a manageable 

O(TLD^2) complexity, where T is the number of trees, L is the number of leaves, and 

D is the maximum depth of any tree. Compared with the other two popular Explainable 

AI methods LIME [30] and DeepLIFT [72], the SHAP method was proved to achieve 

higher performance and be more consistent with human intuitions on classification 

problems [31]. 

In this paper, thermal sensation votes were collected using the ASHRAE 7-scale, 

ranging from cold (-3) to hot (+3). Two binary-classification models were trained to 

interpret tree-based models based on the function TreeExplainer in package SHAP [44], 

as summarized in Table 4. The original SHAP value for binary problems generates a 

probability ranging from 0 to 1, where positive contributions push the value towards a 

probability of 1 and negative contributions push it towards 0. However, directly using 

the probability output as feature contributions will result in undercounting small 

negative contributions (close to zero). To address this, SHAP introduces the log odds 

function, which is logit(p)=log(p/(1-p)) and it maps the probability range [0,1] to a 

symmetric range (-∞, +∞). This transformation ensures a fair and balanced account of 

contributions to both positive and negative sides. 

Table 4. thermal sensation scales in ASHRAE-55 and classification scales in this paper  

Criteria for categorizing sensations Cold Cool Slightly cool Neutral Slightly warm Warm Hot 

ASHRAE 55 7-scale TSV -3 -2 -1 0 1 2 3 



Relaxed neutral 

conditions 

3-scale TSV Cold Cold Neutral Neutral Neutral Hot Hot 

Cold and non-cold sensations 1 1 0 0 0 0 0 

Hot and non-hot sensations 0 0 0 0 0 1 1 

Stringent 

neutral 

conditions 

3-scale TSV Cold Cold Cold Neutral Hot Hot Hot 

Cold and non-cold sensations 1 1 1 0 0 0 0 

Hot and non-hot sensations 0 0 0 0 1 1 1 

 

3. Results 

3.1 Data overview 

The data collection took 2 weeks and each test included a 30-minute acclimation stage 

and a 90-minute experiment stage. A total of 1697 valid sensation votes were used to 

build ensemble tree models after removing null values and outliers. Tables 5 and 6 

present statistical data from environmental and physiological measurements, 

respectively. The measured air temperatures were well controlled, corresponding to 

chamber settings of 22℃, 26℃, and 32℃: three constant conditions with mean values 

of 22.29℃, 25.90℃, and 31.78℃ were observed, while uniform temperature 

distributions were observed under two transient conditions from 22℃ to 32℃ with 

mean air temperature around 27℃ (Fig. 5). The globe temperature presents similar 

trend with air temperature. For three blood pressure related parameters, heartrate 

increases in hotter environments, while SBP (systolic blood pressure) and DBP 

(diastolic blood pressure) decrease.  

Table 5. Statistical information of environmental and non-facial physiological 

measurements  

Chamber settings Ta (℃) Tg (℃) RH (%) SBP (mmHg) DBP (mmHg) Heartrate (bpm) T_ear (℃) T_wrist (℃) T_ankle (℃) 

22℃ 22.19±0.17 22.42±0.6 66.03±4.48 107.31±12.06 68.74±10.26 72.18±8.68 36.97±0.27 30.46±1.53 27.16±1.65 

26℃ 25.90±0.14 25.99±0.10 59.24±2.24 103.85±13.49 65.02±10.59 74.88±10.42 37.10±0.26 32.60±0.78 29.68±1.36 

32℃ 31.78±0.11 31.59±0.56 58.08±0.70 99.29±12.27 60.19±8.64 80.07±10.63 37.38±0.24 34.59±0.58 33.32±0.51 

22-32℃ 27.14±2.72 26.74±2.47 58.60±2.96 100.95±10.46 62.88±7.84 75.44±10.30 37.15±0.23 32.36±1.91 30.01±1.79 

32-22℃ 27.22±2.53 27.53±2.33 60.53±3.30 102.01±10.02 62.86±7.66 76.87±10.97 37.20±0.23 32.79±1.31 30.55±1.79 

Total 26.93±3.27 26.93±3.11 60.23±3.97 102.34±11.57 63.62±9.06 75.95±10.57 37.16±0.27 32.56±1.81 30.17±2.31 

 

Table 6. Statistical information of facial physiological measurements and TSV 

Chamber settings Forehead-Cheek (℃) Inner-Cheek (℃) Nose-Cheek (℃) Nasolabial-Cheek (℃) TSV Sum 

22℃ 2.39±1.25 3.07±1.29 -0.19±2.34 2.40±1.09 -1.24±0.69 245 

26℃ 1.39±0.81 1.85±0.77 0.70±1.19 1.61±0.77 -0.21±0.64 243 



32℃ 0.16±0.51 0.71±0.7 0.45±0.99 0.24±0.60 1.87±0.83 243 

22-32℃ 1.42±0.95 1.89±1.06 0.95±1.37 1.65±0.99 0.26±0.92 489 

32-22℃ 1.07±0.85 1.64±0.94 0.51±1.33 1.35±0.85 0.20±1.01 477 

Total 1.28±1.09 1.82±1.17 0.55±1.51 1.46±1.07 0.19±1.22 1697 

 

Fig. 5 Distributions of air temperature and relative humidity under five experimental 

scenarios 

Fig. 6 illustrates the distributions of ear, wrist, and ankle temperatures measured by an 

ear thermometer and attached thermocouples, and classified into three different thermal 

sensation categories. From cold to hot sensations, the ear temperatures remain relatively 

stable, fluctuating around ±0.2℃. In contrast, wrist and ankle temperatures show a 

significant increase, with ankle temperatures consistently lower than wrist temperatures 

 



Fig. 6 Distributions of ear, wrist, and ankle temperatures under different thermal 

sensations 

To avoid the influence of temperature drifting caused by infrared camera calibration, 

this study utilized temperature variations between measure pixels to indicate facial 

thermal information. The cheek temperature was chosen as the baseline due to its 

generally lower values. Fig. 7 depicts the facial temperature variations. For hot 

sensations, the temperature differences between measured points and cheek are close to 

zero (red dotted line), indicating a relatively uniform distribution of facial temperature. 

Under neutral sensations, many of the four measured points show increasing 

temperature differences with the cheek. However, during cold sensations, all measured 

points show significant differences except for the nose, suggesting obviously cooling 

in both nose and cheek regions, while the other three areas maintain relatively higher 

temperatures, especially the inner canthus (orange area). Fig. 8 illustrates the linear 

relationships between the four facial variations at different air temperatures. The 

forehead, inner canthus, and nasolabial fold temperatures exhibit similar negative 

gradients with slower rates of temperature decrease compared to the baseline 

temperature of the cheek, as opposed to the nose (which shows a positive gradient). As 

the temperatures decrease from 32°C to 22°C, some nose temperatures show values 

even 6°C lower than the cheek temperature, resulting in a higher overall decreasing rate 

of temperature than the cheek. 

 

Fig. 7 Temperature variations of forehead, inner canthus, nose, and nasolabial fold 

from check 

 



 

Fig. 8 Distributions and linear regressions of facial temperature variations under 

different air temperatures 

 

Fig. 9 Thermal sensation votes of investigated fourteen subjects 

Fig. 9 shows the distribution of thermal sensation votes of investigated subjects based 

on ASHRAE-55 7-scale. The overall TSV distribution appears to be relatively balanced, 

with the majority of individuals voting neutral (green), except for subjects S3 and S9. 

These two subjects are also the only ones who vote cold (-3). In addition, the entire 

group has a higher prevalence of combined votes for “cool” and “warm” sensations. 

3.2 Model performance  

After mapping the ASHRAE 55 7-scale TSV to the 3-scale TSV used in this paper 



(slightly cool and slightly cool as neutral, cool as cold, and warm as hot), we employed 

five popular ensemble tree algorithms to train the machine learning models for 

predicting the TSV. The entire dataset of 1,697 samples was divided into a training and 

testing set at an 8:2 ratio, resulting in 1,357 samples for training and 340 samples for 

testing. Table 7 shows the best combinations of hyperparameters obtained through the 

grid-search method. The corresponding predictive performance of these five tree-based 

models is presented in Table 8 and compared with classic PMV predictions. All tree-

based models achieved accuracy above 85%, except for AdaBoost which achieved 76%. 

XGBoost obtained the highest accuracy, precision, and F1 score, while PMV had the 

highest recall. Therefore, the XGBoost algorithm was further examined with different 

combinations of input features, as shown in Table 9.  

When using individual Env. (Ta, Tg, RH), BP-related (systolic blood pressure, diastolic 

blood pressure, and heartrate), ear temperature, wrist temperature, or ankle temperature 

for prediction, the accuracy and F1-score both remain below 80% and 60%, respectively. 

When using the individual facial feature alone, XGBoost achieves an accuracy of 77-

78%, but the overall F1-score is quite low, consistently less than 40%. This indicates 

that although the model can predict the correct labels reasonably well, its general ability 

to correctly identify both the actual positive samples (recall) and the predicted positive 

samples (precision) is poor. However, when combining all facial information, the 

prediction performance surpasses that of other individual features (green background 

in Table 9). As the number of features continues to increase, the prediction performance 

further improves. Moreover, by adding features “Tear, Twrist, Tankle” and facial features to 

the basic combination (Env. + BP-related), the accuracy improves by 5%, and other 

metrics also show significant improvements from 3.5% in recall to 11.9% in precision 

(blue backgrounds in Table 9). The magnitudes of improvement for both approaches 

are similar, but the facial features’ improvement is slightly lower, ranging from 0.8% to 

3.4%, compared to the addition of “Tear, Twrist, Tankle” features across four evaluation 

metrics. The XGBoost model achieves the best performance when all features are used. 

Table 7. Optimal parameters for model training based on grid search 



Model 

Number of 

estimators 

[50, 100, 

150, 200] 

Learning 

rate  

[0.1, 0.25, 

0.5, 0.75, 

1.0] 

Max depth 

[3, 5, 10, 15, 

20, 25] 

Min samples 

leaf 

[1, 2, 5, 10] 

Subsample 

[0.6, 0.8, 

1.0] 

Other 

hyperparameters 

RF 100 - 15 2 - 
Criterion: entropy 

from ['gini', 'entropy'] 

AdaBoost 100 0.25 - - - 

Algorithm: SAMME 

from [SAMME, 

SAMME.R] 

GBDT 200 0.1 3 1 - - 

XGBoost - - 5 - 0.8 

Min child weight: 5 

from [1, 5, 10] 

Gamma: 1 from [0.5, 

1, 1.5, 2, 5] 

LightGBM 50 0.1 20 - 0.6 - 

Table 8. Performance metrics of different ensemble tree models using all features and 

PMV 

 Accuracy Precision Recall F1 Training duration 

RF 85.6% 75.3% 63.7% 67.5% 4.7 minutes 

AdaBoost 76.2% 59.5% 73.7% 63.6% 2.6 minutes 

GBDT 86.2% 79.0% 69.8% 73.1% 52.1 minutes 

XGBoost 88.2% 81.9% 73.6% 76.8% 19.5 minutes 

LightGBM 87.6% 79.8% 73.3% 75.8% 11.3 minutes 

PMV (±1) 66.6% 56.3% 78.0% 58.7% 0.64 seconds 

Note: Three PMV inputs were simplified in the chamber environments: air velocity = 0.1 m/s, 

metabolic rate = 1 met (reading activity in office), clothing level = 0.46 clo (consists of 0.36 

clo for typical summer ensemble and an additional 0.1 clo for a sitting chair), and mean radiant 

temperature = f (air temperature, globe temperature, air velocity) in equation (9) according to 

ISO 7726-1998 [73]. Precision and recall focus on capturing true positive and false negative 

samples in classification problems, and F1-score provides a balanced evaluation of both 

precision and recall. 

Table 9. Performance metrics of XGBoost models using different combinations of 

features 

Feature combinations Accuracy Precision Recall F1 

Enva 75.3% 53.8% 52.2% 52.9% 

BP-relatedb 75.3% 52.0% 40.8% 42.8% 

Tear 78.8% 51.3% 35.2% 33.0% 



Twrist 76.8% 51.8% 48.6% 49.2% 

Tankle 78.2% 57.2% 54.7% 55.8% 

Twrist, Tankle 79.1% 61.5% 58.3% 59.5% 

TForehead-Check 77.9% 48.4% 35.9% 34.4% 

TInner canthus-Check 78.8% 78.8% 39.4% 39.5% 

TNose-Check 77.1% 48.3% 34.7% 32.5% 

TNasolabial fold-Check 78.5% 44.9% 36.1% 34.8% 

Tfacials
c 80.9% 62.5% 59.0% 60.6% 

Tear, Twrist, Tankle 82.1% 67.6% 62.7% 64.8% 

“Tear, Twrist, Tankle” + Tfacials 86.5% 80.8% 72.8% 75.3% 

Env+ BP-related 82.1% 69.2% 66.4% 67.5% 

Env+ BP-related + “Tear, Twrist, Tankle” 87.9% 81.1% 73.2% 76.5% 

Env+ BP-related + Tfacials 87.1% 78.5% 69.9% 73.1% 

Env+ BP-related + “Tear, Twrist, Tankle” + Tfacials 88.2% 81.9% 73.6% 76.8% 

Not: aEnv represents three physical parameters: air temperature, global temperature, and 

relative humidity; bBP-related represents three blood pressure related parameters: systolic blood 

pressure, diastolic blood pressure, and heartrate; cTfacials represents four temperature variations 

from forehead, inner canthus, nose, and nasolabial fold to the cheek temperature. 

3.3 Feature interpretation 

3.3.1 Contribution of a single sample to the total ranking in SHAP 

We use the SHAP (SHapley Additive exPlanations) values proposed by Lundberg and 

Lee [44] to explain the contributions of training samples and features in the chamber 

experiments. Specifically, we employed XGBoost to train two binary classification 

models: “non-cold vs. cold” and “non-hot vs. hot”. The SHAP values were computed 

for each sample using all features in the dataset. A positive SHAP value indicates that 

the model’s output is closer to 1 (cold or hot label), while a negative value suggests the 

output is closer to 0 (non-cold or non-hot label). This approach allowed us to gain 

insights into the model’s decision process and understand how individual samples 

contribute to the classification outcomes, as shown in Fig. 10. The left thermal images 

depict the same individual voting cold and hot, while the right waterfall figures 

illustrate the decision process. The red arrows in the waterfall plot represent positive 

contributions to the model’s output towards 1 (feeling cold or hot), while the blue 

arrows represent negative contributions towards 0. E[F(X)] denotes the baseline value, 

which is the average output of the training set. Starting from this baseline, each 



additional feature of the sample leads to an expected change in the output. After 

computing all features and sorting them based on their absolute magnitudes, we obtain 

the final SHAP value f(x). In Fig. 10, both E[F(X)] baseline values are less than 0, while 

the final SHAP values are greater than 0. This indicates that the majority of the votes in 

both models are classified as non-cold or non-hot, and the two selected samples in the 

figure contribute to the explanation process by having a voting output of cold or hot. 

For these two specific votes, the SHAP value exhibits significantly positive 

contributions of four facial features for the cold voting, with contribution values ranging 

from 0.69 to 1.59, particularly the inner canthus. However, when feeling hot, these facial 

features show relatively smaller contributions, with values ranging from -0.18 to 0.5. 

 

Fig. 10 Decision process of SHAP values with cold and hot voting 

3.3.2 Importance ranking and local explanation 

After computing the SHAP contributions of each feature for every sample, their 

absolute values are averaged to obtain the global feature importance ranking, and 

original SHAP values are concluded in the beeswarm plot to display an information-

dense summary, as shown in Fig. 11. In the beeswarm plot, the y-axis order represents 



the importance ranking, the position of each dot on the x-axis displays the 

corresponding SHAP value, and the color intensity of each point indicates the 

magnitude of the associated feature value. For instance, in the “Ta” row of Fig. 11 (a), 

the concentrated red dots on the left suggest the model’s tendency to predict non-cold 

sensations during high air temperatures. Conversely, the presence of blue dots with a 

long tail on the right indicates a stronger possibility to predict cold sensations when air 

temperatures are low, and this long tail feature suggests that feature Ta can affect each 

individual differently. When the SHAP value is 0, it indicates that the corresponding 

feature contributes equally to the model’s binary classification on the output of 1 or 0, 

meaning it does not provide a distinct impact on the model prediction. On the other 

hand, when the SHAP value deviates significantly from 0, it implies an increased 

contribution to the model prediction. 

In Fig. 11 (a), when classifying between “cold” and “non-cold” votes, the air 

temperature exhibits rank one and no points with SHAP = 0, and a concentration of red 

points is observed on the negative side. This suggests that air temperature positively or 

negatively contributes to all samples, with higher temperatures tending to lead to a 

“non-cold” vote. In contrast to “hot” and “non-hot” votes in Fig. 11 (b), air temperature 

also remains ranked one and extends further towards both the negative and positive 

sides. A cluster of blue points on the negative side indicates that air temperature plays 

a larger role in this judgment, with the leftmost concentration of blue points indicating 

that lower temperatures tend to result in “non-hot” votes. The right long tail of the air 

temperature in the beeswarm plot indicates that the feature’s contribution varies across 

individual samples and some samples rely strongly on this feature. The SHAP results 

based on game theory are consistent with human intuition and previous experimental 

findings, demonstrating the relationship between temperature and cold/hot sensations, 

as well as individual differences within the same thermal environments.  

The top-contributing physiological factors are all facial-related features, with the 

feature “inner canthus-cheek” being prominent in cold sensation evaluation, and the 

feature “nose-cheek” in hot sensation evaluation. Both features exhibit similar local 

explanations, with red long tails on the right and blue clusters on the left, indicating that 



larger facial temperature differences (higher red values) positively contribute to specific 

users’ cold/hot judgments under certain thermal environments. 

 

Fig .11 Importance ranking based on the global feature and local explanation 

3.3.3 Feature interactions 

Fig. 12 examines the impact of each feature at various feature values on the prediction 

for all samples, focusing specifically on the rank of one environmental feature and the 

rank one physiological feature used during the training of two models. Points above the 

black dotted line (SHAP = 0) indicate positive contributions to the prediction output of 

“1” (voting cold or hot). The fill color of each point is determined by the feature that 

exhibits the highest local interaction effect with the considered feature. This interaction 

effect is computed using the original “Shapley interaction index” from game theory, 

which allocates credit not only to each individual player but also to all possible 

combinations of players [44].  



When evaluating hot and cold sensations, the feature “air temperature” exhibits fewer 

points concentrated around SHAP = 0, indicating its significant impact on model 

prediction. Similarly, the feature “inner canthus-cheek” in cold sensation evaluation 

shows scattered points with positive SHAP values, some of which are close to 3, 

resembling the pattern observed for “air temperature”. However, a larger number of 

points are distributed at lower levels, with SHAP values ranging from 0.5 to 1.5, 

suggesting a relatively lower contribution to the model's prediction compared to “air 

temperature”. As for the feature “nose-cheek” in hot sensation evaluation, it shares 

similarities with the results for “inner canthus-cheek”, where some points show 

substantial positive contributions. Nevertheless, a significant concentration of points 

around SHAP = 0 indicates that during training, many samples assign limited 

importance to this feature.  

The interaction effects of each feature exhibit distinct patterns. Specifically, the 

interaction between “inner canthus-cheek” and “air temperature” shows a 

concentration of high values (red points) around SHAP = 0, indicating a limited 

contribution of “inner canthus-cheek” to the evaluation of cold sensation when air 

temperature is high. In the case of the interaction between “nose-cheek” and “globe 

temperature”, a clear separation of filled globe temperature points is observed when 

“nose-cheek” is greater than 2℃ (right side of the plot). This indicates that a higher 

“nose-cheek” temperature provides a stronger indication for hot sensation judgments 

under high globe temperatures, compared to low globe temperatures. 

 



 

Fig. 12 SHAP dependence plot of key environmental and physiological features  

In Fig. 12, the interaction plots for features “inner canthus-cheek” and “nose-cheek” 

feature exhibit discrete clusters of scattered points and separated points, which were 

further divided based on SHAP value=1.5 and the voting count of different subjects, 

resulting in Fig. 13. It can be observed that facial features exhibit strong contributions 

for the majority of subjects, while some subjects obtain weaker contributions. Subjects 

with lower contributions from facial features tend to be less selective (or picky) in their 

thermal environments (higher green triangles). For example, S5 and S13 maintain 

relatively stable facial temperatures across experimental conditions and have a high 

proportion of TSV=0, accounting for 44% and 48%, respectively, and the counts of their 

high facial temperature variation are close to 0. On the other hand, subjects with more 

significant facial reactions tend to be more selective in thermal environments, such as 

S3 and S9, as evidenced by their high counts above SHAP=1.5 and low proportions of 

TSV=0, which are 19% and 22%, respectively. For subjects S12 and S7, they also show 

high facial temperature variation counts, but the proportion of high SHAP values (>1.5) 



is relatively low, which may result in a higher number of TSV=0 votes (56% and 37%, 

respectively). 

 

Fig. 13 Counts of high SHAP values for physiological features in interpreting cold 

and hot sensations in relaxed neutral conditions corresponding to the proportion of 

TSV=0 in green triangles (“inner canthus-cheek” > 2℃, and “nose-cheek” > 1.7℃). 

3.4 Mapping slightly cool and slightly warm to non-comfort sensations as stringent 

neutral conditions 

Previous analysis classified the votes for “slightly cool” and “slightly warm” as neutral. 

Several standards require air-conditioned environments to maintain a narrower comfort 

range, such as ISO 7730 and EN 16798, which define the category A comfort zone as 

being within ±0.2 PMV. In this section, we reassigned the votes for “slightly cool” (-1) 

and “slightly warm” (+1) as uncomfortable, classifying -3, -2, -1 as cold sensations and 

+1, +2, +3 as hot sensations, with 0 remaining neutral. Following that, we used the 

XGBoost algorithm for the training process and output prediction to assess whether 

significant differences exist in the results. 

Table 10 shows the predictive performance of XGBoost models. Compared to previous 



results in Table 8, the overall predictive performance shows significant reductions, 

which could be attributed to significant individual differences in perceiving the narrow 

range of thermal neutrality that increases the prediction difficulty. Four evaluation 

metrics (accuracy, precision, recall, and F1-score) fall below 70% when only 

physiological features are considered. However, when all physiological features are 

combined, the performance exceeds 70%. In contrast, PMV (green backgrounds) and 

the XGBoost model with environmental variables (blue backgrounds) demonstrate 

superior predictive performance with all evaluation metrics exceeding 70%. When 

physiological features are added to the environmental feature-based XGBoost model, 

performance gradually improves, with the potential to raise evaluation metrics by 

around 4%.  

Table 11 further categorizes precision, recall, and F1-score by each vote, revealing that 

apart from blood pressure-related features, other feature combinations generally exhibit 

the best predictive performance for the hot vote, with the highest precision, recall, and 

F1-score. Conversely, they exhibit the poorest predictive performance for the neutral 

vote. This suggests that predicting sensations of hot and cold can be easier, while 

predicting neutral sensations is often more challenging due to individual differences in 

temperature preferences within the same moderate environment. 

Table 10. Performance metrics of XGBoost models using different combinations of 

features when mapping votes slightly cool and slightly warm to neutral 

Feature combinations Accuracy Precision Recall F1 

BP-related 41.2% 40.5% 40.1% 40.1% 

Tear 45.3% 48.3% 42.4% 42.4% 

Twrist 59.4% 59.4% 58.3% 58.6% 

Tankle 64.4% 65.1% 63.8% 64.3% 

Twrist, Tankle 65.3% 65.5% 64.5% 64.9% 

Tear, Twrist, Tankle 66.2% 66.6% 65.5% 65.9% 

Tfacials 62.9% 63.9% 62.5% 63.1% 

“Tear, Twrist, Tankle” + Tfacials 72.9% 74.5% 72.5% 73.2% 

PMV (±0.5) 73.5% 73.2% 74.6% 73.3% 

Env 74.7% 75.3% 74.8% 75.0% 

Env+ BP-related + “Tear, Twrist, Tankle” 77.6% 78.6% 77.7% 78.1% 

Env+ BP-related + Tfacials 76.2% 76.8% 76.4% 76.6% 

Env+ BP-related + “Tear, Twrist, Tankle” + Tfacials 78.8% 79.5% 79.1% 79.3% 



Table 11. Performance metrics of XGBoost models using different combinations of 

features when mapping votes slightly cool and slightly warm to neutral for each vote 

Feature combinations Vote Accuracy Precision Recall F1 

BP-related 

Cold 

41.2% 

39.5% 35.6% 37.4% 

Neutral 44.0% 51.1% 47.3% 

Hot 38.0% 33.6% 35.7% 

Tear, Twrist, Tankle 

Cold 

66.2% 

63.9% 58.9% 61.3% 

Neutral 62.3% 68.6% 65.3% 

Hot 73.6% 69.0% 71.2% 

Tfacials 

Cold 

62.9% 

65.4% 56.7% 60.7% 

Neutral 57.0% 62.8% 59.7% 

Hot 69.4% 68.1% 68.8% 

PMV (±0.5) 

Cold 

73.5% 

71.5% 72.4% 72.0% 

Neutral 72.3% 57.8% 64.2% 

Hot 75.8% 93.4% 83.7% 

Env 

Cold 

74.7% 

76.5% 72.2% 74.3% 

Neutral 69.3% 70.8% 70.0% 

Hot 80.0% 81.4% 80.7% 

Env+ BP-related + “Tear, 

Twrist, Tankle” + Tfacials 

Cold 

78.8% 

81.6% 78.9% 80.2% 

Neutral 73.0% 75.2% 74.1% 

Hot 83.9% 83.2% 83.6% 

Fig. 14 depicts the feature contributions based on SHAP values. In its two middle 

subplots, “air temperature” still remains the most influential feature compared to the 

previous results, extending even further and forming corresponding clusters. This 

implies that more samples tend to assign higher contributions to “air temperature” 

regardless of whether the output is 1 (cold or hot) or 0 (non-cold or non-hot) during the 

training process.  

However, the most influential physiological parameter has shifted in both models. In 

assessing cold sensations, the feature “forehead-cheek” has now taken the place of the 

previously prominent feature “inner canthus-cheek”, which was previously ranked 2. 

Consequently, “inner canthus-cheek” has been relegated to the bottom of the 

importance ranking. On the other hand, for the evaluation of hot sensations, the most 

influential physiological feature is “ankle”. The overall importance ranking of facial 

features shows a decline, with some being surpassed by blood pressure features. The 

dependence plots for the feature “air temperature” in Figs. 15 (a) and 15 (b) exhibit 

smooth S-shaped curves. These curves indicate significant contributions from data 



points located at extreme air temperature values, while the near-linear change of SHAP 

values for intermediate air temperatures demonstrates a gradual change of impact on 

feature contribution.  

In the right subplot in Fig. 14 (a), a sudden truncation occurs when “forehead-cheek” 

values are approximately below 0.2℃. On the right side of truncation, the linear 

relationship suddenly ends, and a significant proportion of data points with high ankle 

temperatures tend to converge towards SHAP=0, indicating that feature “forehead-

cheek” becomes less useful in making reliable judgments of feature contribution. In the 

right subplot of Fig. 14 (b), when evaluating hot sensations, the feature “ankle” exhibits 

higher contributions when the RH is low. This observation can be attributed to the 

correlation between low RH and high air temperature.  

 

Fig .14 Importance ranking based on local explanation and dependence plot of top 

two features filled with their most interactive feature 

Fig. 15 shows the high SHAP value counts of the features “forehead-cheek” and “ankle” 

under stringent neutral conditions, with the green triangles reflecting the proportion of 

users voting for TSV=0. According to Fig. 15 (a), some subjects who are more selective 

about their environments have a higher frequency of high SHAP values for the facial 

feature “forehead-cheek”, such as S3 and S9. Meanwhile, subjects with low or zero 

counts of high facial feature contributions exhibit higher proportions of TSV=0, as seen 

on the right side of Fig. 15 (a). In contrast, Fig. 15 (b) shows the results for the feature 



“ankle” where no comparable pattern was detected, demonstrating that all subjects’ 

physiological responses related to the ankle are relatively similar. Therefore, compared 

to the feature “ankle”, the SHAP values of the facial feature “forehead-cheek” are more 

effective in distinguishing between people who are more or less selective about thermal 

conditions, thus providing a better representation of individual differences. 

 

Fig. 15 Counts of high SHAP values for physiological features in interpreting cold 

and hot sensations in stringent neutral conditions corresponding to the proportion of 

TSV=0 in green triangles (“forehead-cheek” > 2.3℃, and “ankle” > 30.75℃). 

Currently widely adopted Fanger's PMV and Gagge’ SET models are both based on 

statistical modeling of the “standard person”, assuming uniform physiological 

parameters such as BMI and baseline core body temperature. However, in reality, every 

individual has unique biological characteristics in terms of physiological regulation and 

skin type [74]. These characteristics are influenced by demographic factors (such as 

age, gender, and race) and physiological factors (such as metabolism, and hormone 

levels), which affect their perception of temperature and thermal comfort, resulting in 

variations in temperature responses and skin properties. Obermeyer et al. [75], after 



statistical analysis of 243,506 core body temperature data points from 35,488 patients, 

excluding extreme core temperature situations like emergencies, found that core body 

temperature decreases by approximately 0.021°C with each additional decade of age. 

There are also differences in core body temperature between races, with African-

American women having a higher temperature than white men by 0.052°C. 

Research also indicates a decline in core body temperature among some Americans 

(0.03°C per decade) [76] and tropical populations (declined by 0.05°C/year over 16 

years) [77] compared to previous levels. Therefore, individuals’ baseline core body 

temperatures are correlated with many factors, and there is a risk of misjudgment when 

using a completely uniform physiological standard for modeling (such as the “standard 

person” used in PMV and SET models established about 5 decades ago) to assess 

individual health or thermal comfort. Our experimental results further indicate 

differences in facial responses and thermal preferences among individuals within the 

same race and similar age groups. Further analysis and understanding of these 

differences will contribute to the construction of more accurate and theoretically solid 

thermal comfort models. 

 

4. Discussion 

4.1 Performance of tree-based models and the PMV index 

This study trained random forests and four popular boosting tree models (AdaBoost, 

GBDT, XGBoost, and LightGBM) to predict the thermal comfort of subjects in a well-

controlled climate chamber. After conducting a grid search for hyperparameter tuning, 

XGBoost, which demonstrated the best performance, was selected for further 

exploration based on different feature combinations, and its results were compared with 

the PMV index. Overall, XGBoost models achieved better performance when 

physiological features were added as extra inputs alongside environmental features (4-

24% performance improvements). This emphasizes the data-driven nature of machine 

learning algorithms and their benefits of integrating extra feature dimensions for better 

predictions.  

The inclusion of facial features in the XGBoost training has shown positive effects. 



When mapping “slightly cool” and “slightly warm” as comfortable (relaxed neutral 

conditions), the XGBoost model using only facial information achieved better 

predictive performance (80.9% accuracy) compared to features of wrist and ankle (76.8% 

and 78.2% accuracies). However, when categorizing “slightly cool” and “slightly warm” 

as uncomfortable (stringent neutral conditions), all physiological feature-based 

XGBoost models performed worse compared with only using environmental 

parameters (74.7% accuracy). Among them, the XGBoost model using only facial 

features achieved an accuracy of 62.9%, outperforming the wrist feature (59.4% 

accuracy) but falling behind the ankle feature (64.4% accuracy). The precision, recall, 

and F1-score metrics also demonstrated consistent patterns with the accuracy results. 

This implies that the labeling of “slightly cool” and “slightly warm” can significantly 

impact XGBoost’s predictive performance, indicating that each individual’s 

requirements for extremely neutral environments (TSV=0) vary greatly. This variation 

brings uncertainty to the training process of machine learning algorithms. When the 

requirements for neutral environments are relaxed, individual physiological parameters 

outperform environmental parameters in XGBoost training. Therefore, in stringent 

neutral conditions, environmental factors could play a more important role in predicting 

thermal comfort, while under relaxed neutral conditions, physiological parameters 

become more significant. 

This study also proves that PMV can achieve satisfactory results in 3-class 

classification problems when operating in stringently controlled conditions. Its 

predictive performance was found to be similar to that of fine-tuned XGBoost when 

using only environmental parameters as inputs. However, when XGBoost incorporated 

additional physiological factors, PMV’s performance fell behind. 

4.2 Contribution of facial thermography using SHAP value 

Although machine learning has made great advances in several domains, including 

thermal comfort research, the interpretability of these models remains a critical 

challenge in practical deployments. The interpretability degree of a certain model can 

significantly influence people’s trust in using it. Traditional tree-based models can 

provide feature importance rankings, but they are unable to quantify the individual 



contributions of each sample to model training, identify interactions between samples, 

or find feature threshold values that would have the greatest impact on model training. 

However, the SHAP-based explainable AI has overcome some of these challenges. It 

can provide a local perspective to explain machine learning models by mapping players 

in a cooperative game to specific features and player allocation scores to feature 

contributions. This allows us to better understand how each unique sample and feature 

impacts the training and decision-making processes of data-driven machine learning 

algorithms. 

For the SHAP interpretation during XGBoost training process, facial features showed 

significant positive contributions, with their importance generally higher than other 

physiological parameters, such as wrist, ankle, and blood pressure-related parameters. 

Under relaxed neutral conditions, the feature “inner canthus-cheek” ranked second, 

closely following the feature “air temperature”. Its pronounced right-skewed red tails 

in the SHAP local explanation plot in Fig. 11 (a) suggest that high “inner canthus-cheek” 

variation values can provide effective evidence for cold sensation judgments. However, 

in the SHAP interaction plot of Fig. 12 (a), it can be observed that these high “inner 

canthus-cheek” differences were more dispersed, indicating individual differences exist 

within these points. Moreover, its strongest interaction feature “air temperature” 

indicates that lower temperatures are more likely to result in higher “inner canthus-

cheek” variations, which will push the model towards predicting cold sensations. 

Although the feature “inner canthus-cheek” may not present high contributions for all 

samples, its overall predictive contributions remain promising, as evidenced by a mean 

absolute SHAP value of 0.74. This value is slightly lower than the mean absolute SHAP 

value of rank one feature “air temperature”, which is 0.85. Similar notable feature 

contributions were also observed for “nose-cheek” variation and “forehead-cheek” 

variation in the SHAP analysis, obtaining ranks 3 and 2, respectively.  

After further dividing the high SHAP values of the feature “inner canthus-cheek” by a 

threshold of SHAP=1.5 in Fig. 13 (a) when “inner canthus-cheek” values are greater 

than 2℃, it is clear that this feature reflects individual differences. Subjects with 

consistently low “inner canthus-cheek” variations tend to be less selective about 



thermal environments (subjects 5 & 13, 44-48% of voting TSV=0), while subjects with 

high facial reactions may be more selective (subjects 3 & 9, 19-22% of voting TSV=0). 

Interestingly, even for subjects with intense facial reactions, if the proportion of 

SHAP>1.5 values remains low, they appear to be more accepting of their surroundings 

(subjects 7 & 12, 37-56% of voting TSV=0). Therefore, the SHAP-based local 

explanations and interaction effects can provide a more comprehensive understanding 

compared to feature importance rankings. This will allow us to gain insights not only 

into the overall importance of features but also into the specific contributions of 

individual samples and their distribution. Furthermore, these analyses shed light on the 

interactions between different features, offering a more in-depth knowledge of their 

mutual influences. 

In general, it’s essential to highlight the unique capabilities of machine learning models 

in filling the gap left by traditional modeling approaches: 1) Individualized 

predictions: machine learning models can provide individualized predictions of 

thermal sensation by considering a broader range of physiological parameters and 

environmental variables, including facial thermography data, as demonstrated in our 

study; 2) Adaptive learning: unlike static models such as PMV, machine learning 

models can continuously learn and adapt to new data, allowing them to evolve and 

improve their predictive performance over time; 3) Interpretability: while 

interpretability remains a challenge in machine learning, techniques such as SHAP-

based explainable AI, as shown in our analysis, offer insights into the underlying factors 

driving thermal comfort predictions. This will enhance transparency and trust in the 

decision-making process of AI models. 

By leveraging machine learning techniques, we can bridge the gap between traditional 

static models and the dynamic, individualized nature of thermal comfort assessment, 

thereby enhancing the applicability and accuracy of our predictions. 

4.3 Relationship between facial interpretation and physiological basis 

This section further explores the physiological basis of top-ranking facial features in 

SHAP local explanation: “inner canthus-cheek”, “nose-cheek”, and “forehead-cheek”. 



4.3.1 Inner canthus 

The inner canthus is considered the warmest facial region that closely reflects the core 

temperature of human body, as it receives an abundant blood supply from the lacrimal 

branch of the ophthalmic artery [78]. Furthermore, being located within a well-

protected facial recess, the inner canthus experiences less heat loss from radiation and 

convection compared with other regions on the face. This will contribute to the relative 

stability of its temperature in individuals who are not experiencing fever. Pascoe and 

Fisher [79] investigated the core body temperature of 22 university students. They 

discovered that as the ambient temperature ranged from 15.5℃ to 26.6℃, the 

temperature of the inner canthus increased by only 1.2℃, rising from 35.7℃ to 36.9℃. 

Therefore, the feature “inner canthus-cheek” can be considered as a representation of 

cheek temperature to a certain extent. Previous research in thermal comfort has already 

demonstrated that cheek temperature is highly indicative for predicting thermal comfort 

[80] and shows significant correlations with thermal sensations [81]. The SHAP 

interpretation in this study further elucidates that cheek temperature plays a more 

significant role in predicting cold sensations, especially under broader neutral 

conditions during the training process of machine learning models when “inner 

canthus-cheek” variations are beyond 2℃. However, when neutral conditions are more 

stringent, its contributions become limited compared to environmental parameters.  

4.3.2 Nose 

The nose is typically the coldest and most temperature-sensitive area on the face, 

because of its high surface area to volume ratio [82], the avascular nature of its 

cartilaginous component [83], and the influence of inhaled air before it is warmed by 

the nasal mucosa in the nasal cavity [84]. Ghahramani et al. [15] exposed individuals 

to cold and heat stress in office environments. They observed that nose temperature 

(31.70 ± 2.33℃ and 34.78 ± 1.66℃) generally exhibited lower mean values and higher 

standard deviations compared to forehead (34.06 ± 0.58℃ and 35.53 ± 0.58℃) and 

cheek (33.27 ± 1.18℃ and 35.31 ± 0.71℃). Because the maximum heat exposure in 

their study was 29°C, there was no occurrence of the nose temperature exceeding the 

cheek temperature, which happened in this study and could have been caused by the 



more extensive exposure to higher temperatures at 32℃. Tejedor et al. [85] discovered 

a high correlation (95.14%) between nose temperature and skin temperature in the 

elderly, making it a potential thermal comfort indicator. However, nose temperature is 

also considered to be linked to emotions. For example, in infants under one-year old, 

nose temperature can drop by 2 ℃ within 2 minutes after laughing [86], whereas in 

adults, it tends to rise after experiencing feelings of happiness or positive emotions [87]. 

These differences are believed to be indications of the body’s development at various 

periods of life [86]. To control for these confounding factors, the participants in this 

study were instructed to do typical office work to avoid direct emotional changes caused 

by entertainment or other factors. Our SHAP interaction analysis reveals that when the 

feature “nose-cheek” exceeds 1.7 ℃, its contribution grows dramatically, especially in 

the picky users S3 and S9. 

4.3.3 Forehead 

The forehead generally achieves high mean temperatures due to its proximity to the 

brain, allowing conductive and convective heat transfer that helps regulate brain 

temperature [88]. Additionally, the forehead is well vascularized and has a uniform 

surface area with a thin layer of subcutaneous fat [89]. It could be used for fever 

detection [90], as well as remote sensing of heart and respiration rates [91]. The 

forehead is also identified important body part for thermosensitivity [92]. Parkinson et 

al. [54] measured cutaneous thermoreceptor activity on the forehead in dynamic 

thermal environments and found that under the “Cool front fan/High speed” condition, 

the receptor impulses on the forehead were significantly higher compared to other body 

regions. This observation aligns with the result of this study, where the SHAP values of 

the forehead feature exhibit high contributions in indicating cold sensation. Choi and 

Yeom [93] investigated personalized thermal comfort modeling using seven different 

body parts and discovered that the forehead and arms had the strongest correlation with 

thermal sensation, particularly in males. Pavlin et al. [94] designed an embedded 

mechatronic device primarily based on forehead temperature collected by infrared 

cameras, providing a non-invasive solution for building automation or Industry 4.0 

applications. The findings of this study indicate that when the "forehead-cheek" 



variation is greater than 2.3℃, the computation of SHAP values has the potential to 

distinguish potential users who are more selective or less selective towards the 

environment. This could provide a more precise decision basis for related non-invasive 

solutions for more personalized and refined controls. 

 

5. Conclusion 

This study proposes a contactless method for estimating occupant thermal state by 

combining facial infrared thermography, environmental variables, and physiological 

parameters. Five ensemble tree algorithms were examined using all of the features 

collected in the chamber experiment, and the best-performing XGBoost model was 

chosen for further feature selection and explainable AI analysis. The novelty of this 

research lies in transitioning machine learning models for thermal comfort research 

from “black-box” to “gray-box” by conducting explainable AI analysis on the 

contribution of each feature and specific sample within the high-performance machine 

learning models, with a particular emphasis on non-contact facial-related infrared 

features. This will contribute to increasing the trust in non-contact intelligent 

assessment of human thermal comfort in buildings, thereby enhancing the credibility 

and reliability of AI model deployments. The main conclusions are: 

(1) The approach used to map the TSV labels has a substantial impact on the training 

and predictive performance of tree-based models for classification problems. When 

categorizing “slightly cool/warm” as comfortable, using one single facial feature 

within the XGBoost model produces acceptable accuracies of 77.1-78.8% but poor 

F1-scores of 32.5-39.5%. By combining all facial features, the accuracy and F1-

score of XGBoost were increased to 80.9% and 60.9%, respectively, which 

outperform the predictions obtained from wrist and ankle temperatures, as well as 

the PMV index. These findings demonstrate that incorporating more facial features 

can significantly enhance model performance. When “slightly cool/warm” is 

categorized as uncomfortable, the PMV index demonstrates preferable predictive 

performance (73.5% accuracy), slightly behind the fine-tuned XGBoost model 

utilizing solely environmental parameters (74.7% accuracy), but is superior to that 



of multiple XGBoost models utilizing only physiological features (45.3-62.9% 

accuracies). In both mapping scenarios, the incremental introduction of facial 

features for the XGBoost training exhibits a progressive enhancement of model 

performance. 

(2) The SHAP-based explainable AI analysis reveals a consistent distinction of air 

temperature as the foremost contributing factor, followed by temperature variations 

in specific facial areas (inner canthus, nose, forehead, and cheek areas) and ankle 

temperature. Elevated SHAP values become pronounced when the features “inner 

canthus-cheek”, “nose-cheek”, “forehead-cheek”, and “ankle” exceed 2°C, 1.7°C, 

2.3°C, and 30.75°C, respectively. Noticeably, high facial SHAP values can 

contribute to distinguishing individual differences and filtering selective occupants, 

whereas ankle SHAP values can not. 

(3) Among the facial features extracted from infrared thermography, the “inner 

canthus-cheek” and “forehead-cheek” show significant local contributions in 

assessing cold discomfort (rank 2 mean SHAP values), while the “nose-cheek” 

shows remarkable local contributions in assessing hot discomfort (rank 2 mean 

SHAP values). This alignment correlates to documented trends in the reaction of 

facial organs to temperature fluctuations observed in the medical literature. Given 

the obstruction issue with the inner canthus caused by glasses, it is suggested to 

incorporate the forehead, nose, and cheek temperatures for evaluating occupants’ 

thermal state in practical applications. These facial features can significantly 

enhance the predictive performance of AI models, allowing them to accurately 

predict the energy needed by HVAC systems. 

(4) Although this paper demonstrates the potential of using the SHAP method to 

indicate thresholds in facial features and assess individual differences, thereby 

offering the possibility of individualized cooling or heating from building systems, 

it is important to note that an excessive and indiscriminate extrapolation of big data 

and AI solutions could also create socio-ethical quandaries, potentially resulting in 

discriminatory or equity-related concerns in spaces like buildings. Further 

exploration is still needed for greater human involvement in AI solutions. 
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