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Abstract

Accurate and real-time assessment of occupant thermal comfort can provide a solid
foundation for efficient air conditioning operations. Existing studies already show the
feasibility of using contactless technologies for thermal comfort prediction assisted by
machine learning algorithms. However, the lack of transparency in machine learning
often weakens user trust. This study performs explainable Al analysis to explore the
potential of infrared imaging in thermal comfort evaluation. Specifically, an
investigation was carried out in a climatic chamber, and infrared cameras were used to
collect facial temperature data. Five popular ensemble tree models were employed to
construct prediction models, and explainable Al analysis was performed using SHAP
(SHapley Additive exPlanations) theory. Results show that combining additional facial
information can significantly improve the overall model performance, and certain facial
attributes present high contributions based on SHAP values. Combining facial features
with explainable Al provides a convincing basis for thermal comfort assessment. The
high SHAP values of facial features can also contribute to finding selective occupants
with low neutral voting rates, providing evidence for customized cooling or heating

from building systems.
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Abbreviations
AdaBoost Adaptive Boosting
BP Blood Pressure
DBP Diastolic Blood Pressure
Env Features of environmental parameters
GBDT Gradient Boosting Decision Trees
HVAC Heating Ventilation and Air Conditioning
LightGBM  Light Gradient Boosting Machine
LIME Local Interpretable Model-agnostic Explanations
RF Random Forest
RH Relative humidity
PMV Predicted Mean Vote
SBP Systolic Blood Pressure
SET Standard Effective Temperature
SHAP SHapley Additive exPlanations
TSV Thermal Sensation Vote
Ta Air temperature
Tankle Ankle temperature
Tear Ear temperature
Tacials Features of temperature variations from forehead, inner canthus,
nose, and nasolabial fold to the cheek temperature
Ty Globe temperature
Twrist Wrist temperature
XGBoost eXtreme Gradient Boosting

1. Introduction

Comfortable and pleasurable indoor thermal environments can benefit occupants in
terms of comfort, health, well-being, and productivity. In unfavorable outdoor climates,
heating, ventilation, and air conditioning (HVAC) systems are commonly utilized to
improve indoor thermal conditions, resulting in significant energy usage. According to
the European Commission, heating and cooling energy in buildings and industries
account for 50% of the EU’s annual energy consumption [1]. Currently, most

international (ISO-7730 [2], EN 16798 [3]) and national standards (ASHRAE-55 [4],



CIBSE Guide-A [5], GB/T 50785 [6]) stipulate the classic Predicted Mean Vote (PMV)
method as the primary approach for evaluating indoor thermal comfort under HVAC
operations. The PMV index effectively combines environmental parameters (such as
air temperature, radiant temperature, relative humidity, and air velocity) with subjective
factors (including metabolic rate and clothing level) to assess thermal comfort. This
approach has demonstrated satisfactory performance in a range of building types [7],
such as school buildings [8], mosques and churches [9], hospitals [10], residential
apartments [11], office buildings [12], etc.

However, certain dynamic and statistic factors that can potentially affect thermal
comfort were not considered in the evaluation process in current PMV approach, such
as age, gender, race, acclimation, prior thermal exposure, and food/drink intake [13].
The collections of certain parameters are also expensive and challenging, such as
radiant temperature, air velocity, and metabolic rate [14]. Furthermore, because of
factors such as device-user distance or user movement [15], the arrangement of
environmental measuring devices typically depicts specific measurement areas,
frequently failing to capture the actual surroundings near each occupant. Increasing the
number of environmental devices to improve the representativeness of environmental
parameters will increase data collection costs even further, and related measurement
errors and miscalculations of PMV can also result in greater energy consumption for
maintaining the indoor thermal environment [16]. To address these challenges,
researchers have created thermal comfort models based on real-time physiological
parameters, such as occupants’ skin temperature of back hand [17], wrist temperature
[18], heart rate variability [19], etc.

The majority of these physiological-based solutions necessitate the deployment of
additional devices in touch with occupants’ skin and the collection of subjective
feedback in real-time [20]. These can interfere with users’ daily work, perhaps creating
the Hawthorne effect [21], in which people change their behaviors to fit the expectations
of observers when they feel watched. Furthermore, long-term contact with monitoring
devices may not be appropriate for certain vulnerable or special populations, such as

infants, burned patients, etc. Therefore, some thermal comfort studies have turned their



attention to non-intrusive methods of monitoring occupant thermal states using images
and videos. Infrared thermography is one such technology, which uses infrared cameras
to collect skin temperatures from exposed parts of the human body (face [15], hands
[22], etc.) or clothing temperature. This contactless method enables the creation of
personalized predictive models for each individual while avoiding obvious interference.
Many of these studies have utilized machine learning algorithms for model training and
prediction.

A major challenge to the widespread adoption of machine learning is its lack of
interpretability. Even though extensive research and evidence demonstrate its superior
performance, the perception of a model as a full black box with little or no human
intermediation may create worries about its trust in real-world applications. The
Recital 71 from European Union’s new General Data Protection Regulation (GDPR)
emphasizes the “right to explanation” of data subject during the algorithmic decision-
making process, which should include the right to “obtain human intervention, to
express his or her point of view, to obtain an explanation of the decision reached after
such assessment and to challenge the decision” [23] instead of blindly accepting black
box models, but making these black box models transparent faces several barriers [24]:

* Intentional concealment: corporations and institutions deliberately keep decision-
making processes hidden from public scrutiny.

* Technical literacy gaps: access to underlying code alone is often insufficient due
to limitations in the technical proficiency of general public.

* Human cognitive limitations: a mismatch exists between the mathematical
optimization in high-dimensional machine learning and the demands of human-scale
reasoning and interpretive styles.

The first two issues involve public concerns, making it more challenging for researchers
to improve due to their extensive societal, cultural, educational, and awareness-related
characteristics. The third issue is technological in nature and could potentially be
tackled through advancements in machine learning algorithms, building decision

processes that are more explainable and align better with human reasoning modes, etc.



1.1 Related work

Several recent studies employed machine learning algorithms to predict thermal
comfort based on facial physiological parameters. Ghahramani et al. [25] used Hidden
Markov Models based on infrared facial imaging to predict thermal discomfort with an
accuracy of 82.8%. Cosma and Simha [26] analyzed facial and clothing temperatures
using principal component analysis (PCA) and found that clothing temperature also
plays a positive role in thermal comfort assessment. He et al. [27] studied cheek, nose,
and hand temperatures using Random Forest and observed that with an increasing
number of input features, the prediction accuracy improved from 83% to 96%. Aryal
and Becerik-Gerber [28] investigated the impact of features on model performance
using Random Forest, Support Vector Machines, and K-Nearest Neighbor, and
discovered that using facial features as additional input for model training will increase
prediction accuracy by 3-4%. These studies highlight the potential of thermal imaging
for capturing facial features as well as the effectiveness of machine learning in
establishing thermal comfort models.

Many research endeavors have also been dedicated to making complex machine
learning models interpretable based on explainable Al approaches, with encouraging
results [29]. One of these approaches is the Local Explanation Method, which tries to
explain the decision-making processes of complicated machine learning models by
constructing a simplified model (often linear) for specific prediction instances and
offering effective interpretation for the local context. LIME (Local Interpretable Model-
agnostic Explanations) [30] and SHAP (SHapley Additive exPlanations) [31] are the
two most popular Local Explanation Methods and SHAP can be considered an
improved version of LIME to some extent. Several researchers already employed SHAP
to study thermal comfort from diverse perspectives. Qiao et al. [32] used SHAP to
assess the gender impact on thermal comfort in underground public transportation.
Their findings revealed that women tend to be more sensitive to low temperatures
(below 24°C), whereas men exhibit greater sensitivity to high temperatures (above
29°C). Lan et al. [33] employed SHAP to evaluate individual differences in thermal

comfort among classroom students. According to their findings, overweight and obese



students preferred cooler temperatures. Yang et al. [34] utilized SHAP to investigate the
interpretability of a public thermal comfort database. They observed thresholds at
which particular feature contributions abruptly shift, implying that the true neutral
environment may be a dynamic high-dimensional space formed of specific
combinations of features in certain ranges with changing forms, rather than just a
concept of temperature boundaries. Baek et al. [35] investigated infrared thermography
of seated human subjects (wearing short sleeves). They developed deep convolutional
neural networks (CNN) to forecast thermal comfort and visualized SHAP values at
pixel levels throughout the CNN prediction. Their visualizations revealed the effects of
exposed skin temperature and clothing temperature on predictions, emphasizing the
importance of clothing temperature in predicting thermal perception. These SHAP-
based studies demonstrated the effectiveness of explainable Al on thermal comfort data

and research.

1.2 Existing research gaps

Despite advancements in predicting thermal comfort through infrared thermography
and explainable Al, critical research gaps persist, and a coherent connection between
these two domains is yet to be fully established. Many infrared thermography studies
have successfully constructed high-performing thermal comfort models using
physiological parameters and machine learning algorithms, but the inner mechanisms
of these black box models remain inadequately explained. Meanwhile, the majority of
explainable Al-based thermal comfort studies, although valuable in their approaches,
have primarily incorporated non-physiological factors like age, gender, and BMI as
supplementary inputs for model development. This falls short of fully capturing the
complex dynamics of real-time variations in occupants’ physiological responses in
practice, which play an important role in representing occupants’ thermal states in real-
time. These gaps indicate the potential for the strengths of these two approaches to
compensate for the weaknesses of each other. By focusing on a more comprehensive
understanding of occupants’ physiological parameters and their immediate interactions

with indoor conditions, there arises an opportunity to advance the field through a novel



approach that integrates infrared thermography and explainable Al. The combination
of these two approaches allows us to not only construct accurate prediction models in
a contactless way, but also to investigate the fundamental mechanisms of machine
learning algorithms on how physiological and environmental variables impact thermal

comfort.

1.3 The objectives of this study

Given these considerations, this study aims to develop a contactless infrared
thermography method to predict thermal comfort based on machine learning algorithms
using the explainable Al to explicate the model training and predicting processes, as
illustrated in Fig. 1. During the climatic chamber studies, environmental and
physiological parameters have been collected together by data loggers, infrared
cameras and other instruments, while only two thermocouples were attached to the
individuals' wrist and ankle to minimize interference with the subjects. In order to find
the best machine learning model, Random Forest and four different types of boosting
trees were evaluated using all features, and the best-performing model was chosen for
further investigation on feature selections. The SHAP model, which has been widely
used in the thermal comfort and medical domains [36][37], was chosen for the
explainable Al analysis to investigate the inner structure of complex machine learning
models. In addition, the effects of different TSV mapping scenarios were examined at

the end.
The main contributions of this paper include the following three aspects:

(1) Ensemble tree algorithms were employed to evaluate model performance by
considering various combinations of input features, including environmental
conditions, facial physiological parameters, and other non-facial physiological data.

The distinctive role of facial thermography in model training was clarified.

(2) Explainable Al approach was used to quantify the contribution degree of each single
sample and its cumulative effect on each feature. We particularly focused on

demonstrating the contributions of facial thermography to predicting hot and cold



thermal sensations.

(3) The thresholds of facial temperature variations were identified to indicate thermal
discomfort of both the general population and individuals. It validated the potential
of explainable Al in addressing individualized thermal comfort prediction, shedding

light on personalized heating or cooling strategies within building systems.
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Fig. 1 Schematic view of this study
2. Method

2.1 Experimental settings

2.1.1 Surveys in climate chamber

A two-week series of subject tests were conducted in a climate chamber at Chongqing
University in June, 2021. The chamber was operated from 8:00 to 18:30 and each test
lasted for 90 minutes. To investigate subjects’ thermal responses in moderately cold and
hot environments, the indoor conditions were controlled in five scenarios ranging from
22-32°C: (1) constant 22°C; constant 26°C; (3) constant 32°C; (4) increasing from 22°C

to 32°C; and (5) decreasing from 32°C to 22. Before the test, all subjects were informed



to wear typical summer clothes at the typical ensembles of 0.36 clo suggested by
ASHRAE-55 and not to smoke, drink liquor, or sleep late. During the test, all subjects
firstly stayed in the preparation room for 30 minutes where the temperature was kept
the same with the initial temperature setting in the 90-minute chamber experiment to
avoid the feelings of sudden thermal stimuli. It is important to note that no thermal
comfort questionnaires were delivered during this 30-minute preparation period.
Instead, our analysis focused on the data collected during the 90-minute experimental
session conducted within the climate chamber. In the chamber, the subjects remained
sitting posture and carried out light office activities, such as reading or typing (1 to 1.1
met). The questionnaires, facial thermography, blood pressure, and other physiological
measurements were performed every 10 minutes (Fig. 2).

Fifteen master students voluntarily joined the experiments with monetary compensation
and contributed to the generation of approximately 2,000 thermal response
questionnaires. However, due to one participant discontinuing his involvement, his data
were excluded from the analysis. Subsequently, we removed null data and outliers
based on the boxplot method to ensure data quality [38]. This refinement process
yielded a final dataset of 1,697 data points with valid questionnaires and
environmental/physiological records from fourteen people (9 males and 5 females),
which were used to build machine learning models for predicting thermal comfort and

model interpretation.
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Fig. 2 Testing procedure of the experiment (D-© represent the surveyed moments
when occupants are required to complete questionnaires and take physiological
measurements/thermography)
2.1.2 Measurements

Table 1 shows the technical specifications of the instruments used in this study. In



general, three types of measurements were monitored and collected during the
experiment (Fig. 3):

* Environmental conditions: air temperature and relative humidity were monitored by
HOBO devices near each subject. Globe temperature was collected every by a black
bulb thermometer placed in the middle of the chamber.

* Non- Facial physiological parameters: wrist temperature and ankle temperature were
collected by a HOBO 4-channel thermocouple logger with two thermocouples attached
to the skin of each subject’s wrist and ankle. Omron blood pressure monitors were used
to collect SBP (systolic blood pressure), DBP (diastolic blood pressure), and Heartrate
(pulse). The ear temperature was also measured by an ear thermometer.

* Facial physiological parameters: a FLIR thermal camera was used to capture the
facial thermal response of forehead, inner canthus, cheek, nose, and nasolabial fold, as
shown in Fig. 4. For the sensitivity of thermal camera, temperature drifting is
considered to be a common problem, which can occur after device calibration and cause
all points on the thermal image to increase or decrease [39]. Following device
calibrations, we shot two thermal images of the same subject at the same moment.
Temperature drifting of general values reached around 4°C, but their inner fluctuation
between each point changed only up to 0.2°C, as shown in Table 2. Therefore, instead
of using the absolute value measured by the thermal camera, this study used the

variations between pixel points to indicate facial thermal information.
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Fig. 3 Layout of the climate chamber.

Table 1. Technical specifications of measuring instruments

Measuring

Model Manufacturer Measuring parameters Range Accuracy
frequency
HOBO ) +0.21°C
Onset Air temperature 1 second -20~70°C
UX100-011 (0~50°C)
. o +2.5%
Relative humidity 1 second 1~95%
(10~90%)
Beijing JT i +0.2°C
JTRO4 Globe temperature 10 minutes 10~80°C
Technology (20~40°C)
HOBO 4-
channel Wrist temperature
Onset 1 second -20~70°C +0.21°C
thermocouple Ankle temperature
logger
SBP (systolic blood pressure) .
HEM-7012 OMRON . . 10 minutes 0~299 mmHg +4 mmHg
DBP (diastolic blood pressure)
Heartrate (pulse) 10 minutes 40~180 bpm 5%
+0.2°C
YHT200 ear i (35~42°C)
Yuwell Ear temperature 10 minutes 34~42.2°C
thermometer +0.3°C (beyond
35~42°C)
FLIR E6-XT
FLIR Systems, . . -20~550°C, +2°C or +2% of
thermal Facial temperatures 10 minutes . .
Inc 240 x 180 pixels reading,

camara
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Fig. 4 Extracted temperature points from facial tomography

Table 2. Temperature drifting of one subject at the same moment after device

calibration
Forehead (°C)  Inner canthus (°C) Cheek (°C) Nose (°C)  Nasolabial fold (°C)
Record 1 34.2 34.8 34.2 34.1 34.1
Record 2 38.1 38.6 383 38.0 38.2
Deviation -3.9 -3.8 -4.1 -3.9 -4.1

2.1.3 Subjective feedback

Throughout the experiment, each subject was required to provide thermal feedback
every 10 minutes. The thermal sensation vote (TSV) was primarily used to assess
subjects’ thermal responses. The scale ranged from -3 to +3 based on ASHRAE 55-
2020 [4]: -3 (cold), -2 (cool), -1 (slightly cool), 0 (neutral), 1 (slightly warm), 2 (warm),
and 3 (hot). For the specific model training and establishment in this study, votes of -1,
0, and +1 were combined as comfort, while -3 and -2 were considered cold and +2 and
+3 as hot. Therefore, the 7-scale classification problems were reduced to 3-scale
problems.

2.2 Ensemble tree models

In recent years, deep learning models have achieved remarkable success in handling
complex and unstructured data in various domains [40], including image recognition
[41], recommender systems [42], natural language processing [43], etc. On the other
hand, tree-based models can consistently outperform typical deep learning models
when the data is individually meaningful and lacks strong multi-scale temporal or
spatial features [44]. Both deep learning [45] and tree-based approaches [46] made

significant contributions to the field of thermal comfort research, allowing for the



development of highly precise models as well as improved comprehension of
underlying patterns in data. In this paper, our sample size of 1,697 may not be sufficient
for building a deep learning model. Consequently, we used tree-based methods to
construct machine learning models for predicting thermal comfort. For classic tree
classifier, it often faces the challenges of overfitting when trees are too complex and
lacking generalization to unseen data [46]. Therefore, several ensemble approaches
were developed to improve the predictive performance and robustness of tree-based
models, such as bootstrap sampling (Random Forest) [46], weak learners boosting
(AdaBoost) [47], residual minimizing in each interaction (Gradient Boosting Decision
Trees) [48], etc. According to the characteristics of tabular-style data in this study, five
popular ensemble tree algorithms have been employed to construct machine learning
models for predicting thermal comfort, as shown in Table 3.

In this paper, the raw data have been cleaned by removing null values and outliers using
the Boxplot rule [38]. Because each ensemble tree model has distinct characteristics
and appropriate hyperparameter tuning can improve model performance [49], the grid
search method with 5-folder cross validation was used to identify the best parameter
combinations. The collected data were divided into training and testing subsets in an
8:2 ratio. In order to ensure reproducibility and consistency in the data splitting process,
we specified the parameter “random_state” as 42 when utilizing the “train_test split”
function in Python. This setting allowed us to reproduce the same splitting results
consistently across multiple runs of the code. During the training processes, the label
encoding method was used to convert text data into numeric data, because this method
was found to be an effective way to process thermal comfort data [50]. No data
normalization or standardization (scaling to [0,1] range) was performed during the pre-
processing procedure as tree-based models are known to be robust to feature scaling
[51]. All environmental and physiological parameters were used as inputs for model
training, while the 3-scale TSV was the output. To comprehensively evaluate ensemble
tree models, four evaluation metrics “accuracy, precision, recall, and F1 score” were
used for assessing the classification problems, because relying solely on accuracy will

lead to accuracy cheating [52], especially when the dataset is imbalanced.



Table 3. Features of popular ensemble tree models and applications in thermal comfort

studies
Ke Applications in thermal comfort
Model Year Main feature y Strengths Weaknesses PP .
hyperparameters studies
Gender difference based on
wearable sensing (over 90%
Use random Number of Overfitwhen  accuracies) [53]
Random feature selection estimators Good at handling dealing with  Thermal pleasure based on
Forest 1995 and bootstrap Max depth high-dimensional noisy data cutaneous thermoreceptor
(RF) sampling to Min samples leaf  data, outliers, and  and highly activity (83% accuracy and 67%
[46] construct each Criterion: gini, missing values. correlated F1 score) [54]
decision tree. entropy features. Thermal state based on infrared
thermography (83-96%
accuracies) [27]
Individual preference based on
skin temperature and heating
behaviors (84% accuracy) [55
Good accuracy and . (84% V) 5]
Focus on wrong . Overfitwhen  Outdoor thermal comfort based
. Number of generalizability on . . . .
AdaBoos classification and . dealing with  on UTCI index and bike
1997 estimators complex . . .
t [47] boost the weak . e noisy data ridership data (75% acceptable
Learning rate classification . .
learner (tree). and outliers. predictions) [56]
problems. -
Thermal comfort prediction
based on heart rate variability
(93.7% accuracy) [57]
Aiir conditioner usage in
residential buildings (89.5%
Gradient Slow trainin accuracy) [58
) . Number of g Nl _]
Boosting Iterate decision estimators Good process and Impacts of climate change on
Decision trees based on . . high thermal comfort (72% and 91%
2001 . . Learning rate generalizability on . i
Trees residuals in each requirements  accuracies) [59]
Max depth large datasets. . . .
(GBDT) round. . of computing  Gender differences in
Min samples leaf .
[48] resources. underground public
Transportation (29% and 35%
increased accuracies) [32]
Based on GBDT. .
Embed Thermal comfort prediction
eXtreme . based on local skin temperatures
. parallelization, Max depth Good accuracy and . .
Gradient L . Sensitive to (72.5% and 78.3% accuracies)
. regularization, Subsample efficiency on large .
Boosting 2016 o i noise and [61]
and greedy Min child weight  datasets and .
(XGBoo . outliers. Outdoor thermal comfort based
algorithm to Gamma complex features. . .
st) [60] . on optimized tree algorithms
optimize the

training process.

(95.21% accuracy) [59]



Light
Gradient
Boosting
Machine
(LightG

BM)

[62]

Individual difference in
classrooms (over 88%
accuracies) [34]
Passengers in high-speed

Based on GBDT. Railway based on
Exclude data with Number of Worse electroencephalography (0.1704
small gradients . L performance RMSE and 0.1261 MAE) [63]
estimators Fast training . )
and bundle . . on small Rapid establishment of
2017 Learning rate efficiency on large .
mutually datasets prediction models (89.3%
. Max depth datasets.
exclusive features Subsample compared average F1 score) [64]
to reduce training P with GBDT.  Cooling load prediction in a

time.

commercial building (95.94%

accuracy) [65]

2.3 Model interpretation
Machine learning models are becoming increasingly widespread because they can
achieve superior performance and even surpass human capacity in many applications,
such as the game of GO [66], language translation [67], and protein folding [68].
However, their inner mechanisms remain “black boxes”, and one critical concern is the
trust in the reasoning behind their predictions: if the users do not trust a model or a
prediction, they will not use it [30]. Among all the effective approaches to explain
machine learning models, local feature attribution is considered a prominent approach.
It helps to understand individual predictions by assigning attribution scores to each
feature, thereby providing insights into the model’s decision-making process and
feature importance [69]. Within this methodology, Lundberg and Lee [31] introduced
SHAP (SHapley Additive exPlanations) as a powerful tool to interpret the predictions
of machine learning models. At its core, SHAP was built upon the Shapley value [70],
a concept with a long history in game theory for assigning contributions of players in
cooperative games. SHAP adopts the idea of examining different orders of adding
inputs to determine the attribution scores for each feature.
According to the Shapley value, ¢; is the local importance of feature i [31]:

ISIL(AF] = IS| -

SCF\{i}

1!
) [fsu{i}(xsu{i}) - fs(xs)] €Y

Where [S| is the size of the subset before adding the feature i, |F| is the number of

features, S € F\{i} is all possible subsets without the feature i, xs,g; is the subset S



with feature i added, and S is the subset without feature i. The second part of the
equation (1) [fsu{i}(xsu{i}) — fs(xs)] represents the marginal contribution, which

captures the incremental contribution of a specific player (feature) in the overall game

ISI(FI—[S]-1)!

(model). Whereas the first part of equation (1) i

is the weight for

combinations of this occurrence.

The calculation of the original Shapley value is an NP-hard (nondeterministic
polynomial time) subset sum problem, because it needs to consider the combinations
and permutations of all possible subsets. For N features, there are 2*N different subsets
to be considered, while the number of permutations for each subset is N!. As a result,
the overall computational complexity of Shapley value will be O(2"N*N!) and it grows
exponentially with the number of features, making it extremely challenging to directly
solve in high-dimensional feature spaces. The SHAP method solved this by developing
additive feature attribution methods based on the idea of local methods designed in
LIME (Local Interpretable Model-agnostic Explanations) that can create a local

approximation of the complex model for a specific input [30]:

§ = argrrGlin L(f, g, my) +Q(g) (2)
ge

Where ¢ is the objective function in LIME, g is the simplified interpretation model
(mostly linear) to the original complex model f, G is the family of g, nx is the proximity
that measures locality around input x, Q(g) is the complexity penalty for g. It means
that LIME tries to find a simple model g that minimizes the two lost terms L and (),
while L approximates the complex model in the local area and () ensures the simplicity
of g.

Lundberg and Lee [31] developed the Shapley kernel to identify specific forms of terms
in equation (2) that are consistent with the three key properties of the Shapley value in
game theory: 1) Local accuracy: the explainable model produces roughly the same
output of the actual model in the local area (g = f); 2) Missingness: if one feature is
excluded from the model, its attribution is zero (¢ = 0); and 3) Consistency: if the
contribution of a particular feature changes, the attribution in the explanatory model

can not change in the opposite direction.



However, SHAP kernel suffers from ignoring feature dependence and correlation,
which can lead to biased interpretations [71]. Lundberg et al. [44] later presented
TreeExplainer, a popular and improved variant of SHAP kernel for interpreting tree-
based models, to address these limitations by explicitly modeling conditional
expectation predictions, effectively accounting for feature correlations. It computes
exact Shapley values for tree models efficiently by collapsing calculations specific to
each leaf in the tree. TreeExplainer also introduces the SHAP interaction value,
capturing local interaction effects between features and enhancing model understanding.
By incorporating interventional expectations and path coverage information,
TreeExplainer enables robust interpretations with correlated features [44], and it
reduces the original NP-hard exponential complexity of Shapley value to a manageable
O(TLD"2) complexity, where T is the number of trees, L is the number of leaves, and
D is the maximum depth of any tree. Compared with the other two popular Explainable
Al methods LIME [30] and DeepLIFT [72], the SHAP method was proved to achieve
higher performance and be more consistent with human intuitions on classification
problems [31].

In this paper, thermal sensation votes were collected using the ASHRAE 7-scale,
ranging from cold (-3) to hot (+3). Two binary-classification models were trained to
interpret tree-based models based on the function TreeExplainer in package SHAP [44],
as summarized in Table 4. The original SHAP value for binary problems generates a
probability ranging from 0 to 1, where positive contributions push the value towards a
probability of 1 and negative contributions push it towards 0. However, directly using
the probability output as feature contributions will result in undercounting small
negative contributions (close to zero). To address this, SHAP introduces the log odds
function, which is logit(p)=log(p/(1-p)) and it maps the probability range [0,1] to a
symmetric range (-oo, +o0). This transformation ensures a fair and balanced account of
contributions to both positive and negative sides.

Table 4. thermal sensation scales in ASHRAE-55 and classification scales in this paper

Criteria for categorizing sensations Cold Cool  Slightly cool  Neutral Slightly warm Warm  Hot

ASHRAE 55 7-scale TSV -3 -2 -1 0 1 2 3



3-scale TSV Cold Cold Neutral Neutral Neutral Hot Hot
Relaxed neutral

. Cold and non-cold sensations 1 1 0 0 0 0 0
conditions )
Hot and non-hot sensations 0 0 0 0 0 1 1
Stringent 3-scale TSV Cold Cold Cold Neutral Hot Hot Hot
neutral Cold and non-cold sensations 1 1 1 0 0 0 0
conditions Hot and non-hot sensations 0 0 0 0 1 1 1
3. Results
3.1 Data overview
The data collection took 2 weeks and each test included a 30-minute acclimation stage
and a 90-minute experiment stage. A total of 1697 valid sensation votes were used to
build ensemble tree models after removing null values and outliers. Tables 5 and 6
present statistical data from environmental and physiological measurements,
respectively. The measured air temperatures were well controlled, corresponding to
chamber settings of 22°C, 26°C, and 32°C: three constant conditions with mean values
of 22.29°C, 25.90°C, and 31.78°C were observed, while uniform temperature
distributions were observed under two transient conditions from 22°C to 32°C with
mean air temperature around 27°C (Fig. 5). The globe temperature presents similar
trend with air temperature. For three blood pressure related parameters, heartrate
increases in hotter environments, while SBP (systolic blood pressure) and DBP
(diastolic blood pressure) decrease.
Table 5. Statistical information of environmental and non-facial physiological
measurements
Chamber settings Ta (°C) Tg (°C) RH (%) SBP (mmHg) DBP (mmHg)  Heartrate (bppm) T ear(°C) T wrist(°C) T_ankle (°C)
22°C 22.19:0.17  224240.6  66.03:4.48  10731£12.06  68.74£10.26 72.1848.68  36.97:027  30.46x1.53  27.16+1.65
26°C 25.90£0.14 2599010  59.24+224  103.85£13.49  65.02+10.59 74881042 37.10:0.26  32.60:0.78  29.68+1.36
32°C 31.78£0.11  31.59£0.56  58.08+0.70  99.29+12.27  60.19:8.64 80.07+10.63  37.38:024  34.59:0.58  33.32:0.51
22-32°C 27044272 26744247  58.6042.96  10095+1046  62.88+7.84 75441030  37.1580.23 3236191  30.01%1.79
32-22°C 27.2242.53 2753233 60.53%3.30  102.01£10.02  62.86+7.66 76.87£10.97  37.20£0.23  32.79+1.31  30.55+1.79
Total 2693327 2693+3.11  60.233.97 102341157  63.62+9.06 75.95£10.57  37.16x027  32.56x1.81  30.172.31
Table 6. Statistical information of facial physiological measurements and TSV
Chamber settings Forehead-Cheek (°C) Inner-Cheek (°C) Nose-Cheek (°C)  Nasolabial-Cheek (°C) TSV Sum
22°C 2.3941.25 3.0741.29 -0.192.34 2.40+1.09 -1.240.69 245

26°C 1.39+0.81 1.85+0.77 0.70+1.19 1.61£0.77 -0.21+0.64 243



32°C

0.16+0.51

0.710.7 0.45+0.99 0.24+0.60 1.87+0.83 243
22-32°C 1.42+0.95 1.89+1.06 0.95+1.37 1.65+0.99 0.26+0.92 489
32-22°C 1.07+0.85 1.64+0.94 0.51£1.33 1.3540.85 0.20+1.01 477

Total 1.28+1.09 1.8241.17 0.55+1.51 1.46+1.07 0.19+1.22 1697
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Fig. 5 Distributions of air temperature and relative humidity under five experimental

Fig. 6 illustrates the distributions of ear, wrist, and ankle temperatures measured by an
ear thermometer and attached thermocouples, and classified into three different thermal
sensation categories. From cold to hot sensations, the ear temperatures remain relatively
stable, fluctuating around +0.2°C. In contrast, wrist and ankle temperatures show a

significant increase, with ankle temperatures consistently lower than wrist temperatures
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Sensations: Warm, Hot
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Fig. 6 Distributions of ear, wrist, and ankle temperatures under different thermal
sensations
To avoid the influence of temperature drifting caused by infrared camera calibration,
this study utilized temperature variations between measure pixels to indicate facial
thermal information. The cheek temperature was chosen as the baseline due to its
generally lower values. Fig. 7 depicts the facial temperature variations. For hot
sensations, the temperature differences between measured points and cheek are close to
zero (red dotted line), indicating a relatively uniform distribution of facial temperature.
Under neutral sensations, many of the four measured points show increasing
temperature differences with the cheek. However, during cold sensations, all measured
points show significant differences except for the nose, suggesting obviously cooling
in both nose and cheek regions, while the other three areas maintain relatively higher
temperatures, especially the inner canthus (orange area). Fig. 8 illustrates the linear
relationships between the four facial variations at different air temperatures. The
forehead, inner canthus, and nasolabial fold temperatures exhibit similar negative
gradients with slower rates of temperature decrease compared to the baseline
temperature of the cheek, as opposed to the nose (which shows a positive gradient). As
the temperatures decrease from 32°C to 22°C, some nose temperatures show values
even 6°C lower than the cheek temperature, resulting in a higher overall decreasing rate

of temperature than the cheek.
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Fig. 7 Temperature variations of forehead, inner canthus, nose, and nasolabial fold
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Fig. 8 Distributions and linear regressions of facial temperature variations under

different air temperatures
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Fig. 9 Thermal sensation votes of investigated fourteen subjects
Fig. 9 shows the distribution of thermal sensation votes of investigated subjects based
on ASHRAE-55 7-scale. The overall TSV distribution appears to be relatively balanced,
with the majority of individuals voting neutral (green), except for subjects S3 and S9.
These two subjects are also the only ones who vote cold (-3). In addition, the entire
group has a higher prevalence of combined votes for “cool” and “warm” sensations.
3.2 Model performance

After mapping the ASHRAE 55 7-scale TSV to the 3-scale TSV used in this paper



(slightly cool and slightly cool as neutral, cool as cold, and warm as hot), we employed
five popular ensemble tree algorithms to train the machine learning models for
predicting the TSV. The entire dataset of 1,697 samples was divided into a training and
testing set at an 8:2 ratio, resulting in 1,357 samples for training and 340 samples for
testing. Table 7 shows the best combinations of hyperparameters obtained through the
grid-search method. The corresponding predictive performance of these five tree-based
models is presented in Table 8 and compared with classic PMV predictions. All tree-
based models achieved accuracy above 85%, except for AdaBoost which achieved 76%.
XGBoost obtained the highest accuracy, precision, and F1 score, while PMV had the
highest recall. Therefore, the XGBoost algorithm was further examined with different
combinations of input features, as shown in Table 9.

When using individual Env. (T,, Tg, RH), BP-related (systolic blood pressure, diastolic
blood pressure, and heartrate), ear temperature, wrist temperature, or ankle temperature
for prediction, the accuracy and F1-score both remain below 80% and 60%, respectively.
When using the individual facial feature alone, XGBoost achieves an accuracy of 77-
78%, but the overall F1-score is quite low, consistently less than 40%. This indicates
that although the model can predict the correct labels reasonably well, its general ability
to correctly identify both the actual positive samples (recall) and the predicted positive
samples (precision) is poor. However, when combining all facial information, the
prediction performance surpasses that of other individual features (green background
in Table 9). As the number of features continues to increase, the prediction performance
further improves. Moreover, by adding features “Tea; Twrisi, Tankie” and facial features to
the basic combination (Env. + BP-related), the accuracy improves by 5%, and other
metrics also show significant improvements from 3.5% in recall to 11.9% in precision
(blue backgrounds in Table 9). The magnitudes of improvement for both approaches
are similar, but the facial features’ improvement is slightly lower, ranging from 0.8% to
3.4%, compared to the addition of “Tea; Twrisr, Tunkie” features across four evaluation
metrics. The XGBoost model achieves the best performance when all features are used.

Table 7. Optimal parameters for model training based on grid search



Learning

Number of
. rate Max depth Min samples  Subsample
estimators Other
Model [50, 100 [0.1,0.25  [3,5, 10, 15, leaf [0.6, 0.8, hvperoarameters
2 05,0.75, 20,25]  [L 2,5, 10] 1.0] yperp
150, 200]
1.0]
iterion: ent
RE 100 ) 15 ) i Cri erl_or_l entropy
from ['gini’, 'entropy’]
Algorithm: SAMME
AdaBoost 100 0.25 - - - from [SAMME,
SAMME.R]
GBDT 200 0.1 3 1 - -
Min child weight: 5
from [1, 5, 10]
XGBoost - - 5 - 0.8
008 Gamma: 1 from [0.5,
1,15,2,5]
LightGBM 50 0.1 20 - 0.6 -

Table 8. Performance metrics of different ensemble tree models using all features and

PMV
Accuracy Precision  Recall F1 Training duration

RF 85.6% 75.3% 63.7% 67.5% 4.7 minutes
AdaBoost 76.2% 59.5% 73.7% 63.6% 2.6 minutes
GBDT 86.2% 79.0% 69.8% 73.1% 52.1 minutes
XGBoost 88.2% 81.9% 73.6%  76.8% 19.5 minutes
LightGBM  87.6% 79.8% 73.3% 75.8% 11.3 minutes

PMV (£1)  66.6% 56.3% 78.0%  58.7% 0.64 seconds

Note: Three PMV inputs were simplified in the chamber environments: air velocity = 0.1 m/s,

metabolic rate = 1 met (reading activity in office), clothing level = 0.46 clo (consists of 0.36

clo for typical summer ensemble and an additional 0.1 clo for a sitting chair), and mean radiant

temperature = f (air temperature, globe temperature, air velocity) in equation (9) according to

ISO 7726-1998 [73]. Precision and recall focus on capturing true positive and false negative

samples in classification problems, and Fl-score provides a balanced evaluation of both

precision and recall.

Table 9. Performance metrics of XGBoost models using different combinations of

features

Feature combinations

Accuracy Precision

Recall F1

Env?

BP-related®

Tear

75.3%
75.3%
78.8%

53.8%
52.0%
51.3%

52.2% 52.9%
40.8%  42.8%
35.2% 33.0%



Trist 76.8% 51.8% 48.6% 49.2%

Tankie 78.2% 57.2% 54.7% 55.8%

Tuwrist, Tankle 79.1% 61.5% 58.3% 59.5%

Trorenead-Check 77.9% 48.4% 35.9% 34.4%

Tinner canthus-Check 78.8% 78.8% 39.4% 39.5%

TNose-Check 77.1% 48.3% 34.7% 32.5%

Tasolabial fold-Check 78.5% 44.9% 36.1%  34.8%

Taciats® 80.9% 62.5% 59.0% 60.6%

Tear, Twrist, Tanke 82.1% 67.6% 62.7% 64.8%

“Tear, Twrist, Tankle” + Ttacials 86.5% 80.8% 72.8% 75.3%
Env+ BP-related 82.1% 69.2% 66.4% 67.5%

Env+ BP-related + “Tear, Twrist, Tankle” 87.9% 81.1% 73.2% 76.5%
Env+ BP-related + Ttacias 87.1% 78.5% 69.9% 73.1%

Env+ BP-related + “Tear, Twrist, Tankte” + Ttaciats 88.2% 81.9% 73.6%  76.8%

Not: *Env represents three physical parameters: air temperature, global temperature, and
relative humidity; "BP-related represents three blood pressure related parameters: systolic blood
pressure, diastolic blood pressure, and heartrate; “Trciais represents four temperature variations
from forehead, inner canthus, nose, and nasolabial fold to the cheek temperature.

3.3 Feature interpretation

3.3.1 Contribution of a single sample to the total ranking in SHAP

We use the SHAP (SHapley Additive exPlanations) values proposed by Lundberg and
Lee [44] to explain the contributions of training samples and features in the chamber
experiments. Specifically, we employed XGBoost to train two binary classification
models: “non-cold vs. cold” and “non-hot vs. hot”. The SHAP values were computed
for each sample using all features in the dataset. A positive SHAP value indicates that
the model’s output is closer to 1 (cold or hot label), while a negative value suggests the
output is closer to 0 (non-cold or non-hot label). This approach allowed us to gain
insights into the model’s decision process and understand how individual samples
contribute to the classification outcomes, as shown in Fig. 10. The left thermal images
depict the same individual voting cold and hot, while the right waterfall figures
illustrate the decision process. The red arrows in the waterfall plot represent positive
contributions to the model’s output towards 1 (feeling cold or hot), while the blue
arrows represent negative contributions towards 0. E[F(X)] denotes the baseline value,

which is the average output of the training set. Starting from this baseline, each



additional feature of the sample leads to an expected change in the output. After
computing all features and sorting them based on their absolute magnitudes, we obtain
the final SHAP value f(x). In Fig. 10, both E[F(X)] baseline values are less than 0, while
the final SHAP values are greater than 0. This indicates that the majority of the votes in
both models are classified as non-cold or non-hot, and the two selected samples in the
figure contribute to the explanation process by having a voting output of cold or hot.
For these two specific votes, the SHAP value exhibits significantly positive
contributions of four facial features for the cold voting, with contribution values ranging
from 0.69 to 1.59, particularly the inner canthus. However, when feeling hot, these facial

features show relatively smaller contributions, with values ranging from -0.18 to 0.5.
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Fig. 10 Decision process of SHAP values with cold and hot voting
3.3.2 Importance ranking and local explanation
After computing the SHAP contributions of each feature for every sample, their
absolute values are averaged to obtain the global feature importance ranking, and
original SHAP values are concluded in the beeswarm plot to display an information-

dense summary, as shown in Fig. 11. In the beeswarm plot, the y-axis order represents



the importance ranking, the position of each dot on the x-axis displays the
corresponding SHAP value, and the color intensity of each point indicates the
magnitude of the associated feature value. For instance, in the “7a” row of Fig. 11 (a),
the concentrated red dots on the left suggest the model’s tendency to predict non-cold
sensations during high air temperatures. Conversely, the presence of blue dots with a
long tail on the right indicates a stronger possibility to predict cold sensations when air
temperatures are low, and this long tail feature suggests that feature Ta can affect each
individual differently. When the SHAP value is 0, it indicates that the corresponding
feature contributes equally to the model’s binary classification on the output of 1 or 0,
meaning it does not provide a distinct impact on the model prediction. On the other
hand, when the SHAP value deviates significantly from 0, it implies an increased
contribution to the model prediction.

In Fig. 11 (a), when classifying between “cold” and “non-cold” votes, the air
temperature exhibits rank one and no points with SHAP = 0, and a concentration of red
points is observed on the negative side. This suggests that air temperature positively or
negatively contributes to all samples, with higher temperatures tending to lead to a
“non-cold” vote. In contrast to “hot” and “non-hot” votes in Fig. 11 (b), air temperature
also remains ranked one and extends further towards both the negative and positive
sides. A cluster of blue points on the negative side indicates that air temperature plays
a larger role in this judgment, with the leftmost concentration of blue points indicating
that lower temperatures tend to result in “non-hot” votes. The right long tail of the air
temperature in the beeswarm plot indicates that the feature’s contribution varies across
individual samples and some samples rely strongly on this feature. The SHAP results
based on game theory are consistent with human intuition and previous experimental
findings, demonstrating the relationship between temperature and cold/hot sensations,
as well as individual differences within the same thermal environments.

The top-contributing physiological factors are all facial-related features, with the
feature “inner canthus-cheek” being prominent in cold sensation evaluation, and the
feature “nose-cheek” in hot sensation evaluation. Both features exhibit similar local

explanations, with red long tails on the right and blue clusters on the left, indicating that



larger facial temperature differences (higher red values) positively contribute to specific

users’ cold/hot judgments under certain thermal environments.
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Fig .11 Importance ranking based on the global feature and local explanation

3.3.3 Feature interactions

Fig. 12 examines the impact of each feature at various feature values on the prediction
for all samples, focusing specifically on the rank of one environmental feature and the
rank one physiological feature used during the training of two models. Points above the
black dotted line (SHAP = 0) indicate positive contributions to the prediction output of
“I” (voting cold or hot). The fill color of each point is determined by the feature that
exhibits the highest local interaction effect with the considered feature. This interaction
effect is computed using the original “Shapley interaction index” from game theory,
which allocates credit not only to each individual player but also to all possible

combinations of players [44].



When evaluating hot and cold sensations, the feature “air temperature” exhibits fewer
points concentrated around SHAP = 0, indicating its significant impact on model
prediction. Similarly, the feature “inner canthus-cheek” in cold sensation evaluation
shows scattered points with positive SHAP values, some of which are close to 3,
resembling the pattern observed for “air temperature”. However, a larger number of
points are distributed at lower levels, with SHAP values ranging from 0.5 to 1.5,
suggesting a relatively lower contribution to the model's prediction compared to “air
temperature”. As for the feature “nose-cheek” in hot sensation evaluation, it shares

(3

similarities with the results for “inner canthus-cheek”, where some points show
substantial positive contributions. Nevertheless, a significant concentration of points
around SHAP = 0 indicates that during training, many samples assign limited
importance to this feature.

The interaction effects of each feature exhibit distinct patterns. Specifically, the
interaction between “inner canthus-cheek” and “air temperature” shows a
concentration of high values (red points) around SHAP = 0, indicating a limited
contribution of “inner canthus-cheek” to the evaluation of cold sensation when air
temperature is high. In the case of the interaction between “nose-cheek” and “globe
temperature”, a clear separation of filled globe temperature points is observed when
“nose-cheek” is greater than 2°C (right side of the plot). This indicates that a higher

“nose-cheek” temperature provides a stronger indication for hot sensation judgments

under high globe temperatures, compared to low globe temperatures.
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Fig. 12 SHAP dependence plot of key environmental and physiological features
In Fig. 12, the interaction plots for features “inner canthus-cheek” and “nose-cheek”
feature exhibit discrete clusters of scattered points and separated points, which were
further divided based on SHAP value=1.5 and the voting count of different subjects,
resulting in Fig. 13. It can be observed that facial features exhibit strong contributions
for the majority of subjects, while some subjects obtain weaker contributions. Subjects
with lower contributions from facial features tend to be less selective (or picky) in their
thermal environments (higher green triangles). For example, S5 and S13 maintain
relatively stable facial temperatures across experimental conditions and have a high
proportion of TSV=0, accounting for 44% and 48%, respectively, and the counts of their
high facial temperature variation are close to 0. On the other hand, subjects with more
significant facial reactions tend to be more selective in thermal environments, such as
S3 and S9, as evidenced by their high counts above SHAP=1.5 and low proportions of
TSV=0, which are 19% and 22%, respectively. For subjects S12 and S7, they also show

high facial temperature variation counts, but the proportion of high SHAP values (>1.5)



is relatively low, which may result in a higher number of TSV=0 votes (56% and 37%,

respectively).
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Fig. 13 Counts of high SHAP values for physiological features in interpreting cold
and hot sensations in relaxed neutral conditions corresponding to the proportion of
TSV=0 in green triangles (“inner canthus-cheek” > 2°C, and “nose-cheek” > 1.7°C).
3.4 Mapping slightly cool and slightly warm to non-comfort sensations as stringent

neutral conditions

Previous analysis classified the votes for “slightly cool” and “slightly warm” as neutral.
Several standards require air-conditioned environments to maintain a narrower comfort
range, such as ISO 7730 and EN 16798, which define the category A comfort zone as
being within £0.2 PMV. In this section, we reassigned the votes for “slightly cool” (-1)
and “slightly warm” (+1) as uncomfortable, classifying -3, -2, -1 as cold sensations and
+1, +2, +3 as hot sensations, with 0 remaining neutral. Following that, we used the
XGBoost algorithm for the training process and output prediction to assess whether
significant differences exist in the results.

Table 10 shows the predictive performance of XGBoost models. Compared to previous



results in Table 8, the overall predictive performance shows significant reductions,
which could be attributed to significant individual differences in perceiving the narrow
range of thermal neutrality that increases the prediction difficulty. Four evaluation
metrics (accuracy, precision, recall, and Fl-score) fall below 70% when only
physiological features are considered. However, when all physiological features are
combined, the performance exceeds 70%. In contrast, PMV (green backgrounds) and
the XGBoost model with environmental variables (blue backgrounds) demonstrate
superior predictive performance with all evaluation metrics exceeding 70%. When
physiological features are added to the environmental feature-based XGBoost model,
performance gradually improves, with the potential to raise evaluation metrics by
around 4%.

Table 11 further categorizes precision, recall, and F1-score by each vote, revealing that
apart from blood pressure-related features, other feature combinations generally exhibit
the best predictive performance for the hot vote, with the highest precision, recall, and
F1-score. Conversely, they exhibit the poorest predictive performance for the neutral
vote. This suggests that predicting sensations of hot and cold can be easier, while
predicting neutral sensations is often more challenging due to individual differences in
temperature preferences within the same moderate environment.

Table 10. Performance metrics of XGBoost models using different combinations of

features when mapping votes slightly cool and slightly warm to neutral

Feature combinations Accuracy Precision  Recall F1
BP-related 41.2% 40.5% 40.1% 40.1%
Tear 45.3% 48.3% 42.4% 42.4%
Trist 59.4% 59.4% 58.3% 58.6%
Tankle 64.4% 65.1% 63.8% 64.3%
Tuwrist, Tankle 65.3% 65.5% 64.5% 64.9%
Tear, Twrist: Tankle 66.2% 66.6% 65.5% 65.9%
Tracials 62.9% 63.9% 62.5% 63.1%
“Tear, Twrist, Tankie” + Ttacials 72.9% 74.5% 72.5% 73.2%
PMV (+0.5) 735%  732%  746%  73.3%
Env 74.7% 75.3% 74.8% 75.0%
Env+ BP-related + “Tear, Twrist, Tankle” 77.6% 78.6% 77.7% 78.1%
Env+ BP-related + Tracias 76.2% 76.8% 76.4% 76.6%

EnV+ BP-I‘elated + “Tear, Twrist, Tankle” + Tfa(;ials 788% 795% 791% 793%




Table 11. Performance metrics of XGBoost models using different combinations of

features when mapping votes slightly cool and slightly warm to neutral for each vote

Feature combinations Vote  Accuracy Precision  Recall F1
Cold 39.5% 35.6% 37.4%
BP-related Neutral 41.2% 44.0% 51.1% 47.3%
Hot 38.0% 33.6% 35.7%
Cold 63.9% 58.9% 61.3%
Tear, Twrist, Tankle Neutral 66.2% 62.3% 68.6% 65.3%
Hot 73.6% 69.0% 71.2%
Cold 65.4% 56.7% 60.7%
Tacials Neutral 62.9% 57.0% 62.8% 59.7%
Hot 69.4% 68.1% 68.8%
Cold 71.5% 72.4% 72.0%
PMV (z0.5) Neutral 73.5% 72.3% 57.8% 64.2%
Hot 75.8% 93.4% 83.7%
Cold 76.5% 72.2% 74.3%
Env Neutral 74.7% 69.3% 70.8% 70.0%
Hot 80.0% 81.4%  80.7%
Env+ BP-related + “Tear, Cold 81.6% 78.9% 80.2%
T Tane® + oo Neutral ~ 78.8%  73.0%  752%  74.1%
Hot 83.9% 83.2%  83.6%

Fig. 14 depicts the feature contributions based on SHAP values. In its two middle
subplots, “air temperature” still remains the most influential feature compared to the
previous results, extending even further and forming corresponding clusters. This
implies that more samples tend to assign higher contributions to “air temperature”
regardless of whether the output is 1 (cold or hot) or 0 (non-cold or non-hot) during the
training process.

However, the most influential physiological parameter has shifted in both models. In
assessing cold sensations, the feature “forehead-cheek” has now taken the place of the
previously prominent feature “inner canthus-cheek”, which was previously ranked 2.
Consequently, “inner canthus-cheek” has been relegated to the bottom of the
importance ranking. On the other hand, for the evaluation of hot sensations, the most
influential physiological feature is “ankle”. The overall importance ranking of facial
features shows a decline, with some being surpassed by blood pressure features. The
dependence plots for the feature “air temperature” in Figs. 15 (a) and 15 (b) exhibit

smooth S-shaped curves. These curves indicate significant contributions from data



points located at extreme air temperature values, while the near-linear change of SHAP
values for intermediate air temperatures demonstrates a gradual change of impact on
feature contribution.

In the right subplot in Fig. 14 (a), a sudden truncation occurs when “forehead-cheek”
values are approximately below 0.2°C. On the right side of truncation, the linear
relationship suddenly ends, and a significant proportion of data points with high ankle
temperatures tend to converge towards SHAP=0, indicating that feature ‘“‘forehead-
cheek’” becomes less useful in making reliable judgments of feature contribution. In the
right subplot of Fig. 14 (b), when evaluating hot sensations, the feature “ankle” exhibits
higher contributions when the RH is low. This observation can be attributed to the

correlation between low RH and high air temperature.
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Fig .14 Importance ranking based on local explanation and dependence plot of top
two features filled with their most interactive feature
Fig. 15 shows the high SHAP value counts of the features “forehead-cheek” and “ankle”
under stringent neutral conditions, with the green triangles reflecting the proportion of
users voting for TSV=0. According to Fig. 15 (a), some subjects who are more selective
about their environments have a higher frequency of high SHAP values for the facial
feature “forehead-cheek”, such as S3 and S9. Meanwhile, subjects with low or zero
counts of high facial feature contributions exhibit higher proportions of TSV=0, as seen

on the right side of Fig. 15 (a). In contrast, Fig. 15 (b) shows the results for the feature



“ankle” where no comparable pattern was detected, demonstrating that all subjects’
physiological responses related to the ankle are relatively similar. Therefore, compared
to the feature “ankle”, the SHAP values of the facial feature “forehead-cheek’ are more
effective in distinguishing between people who are more or less selective about thermal

conditions, thus providing a better representation of individual differences.
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Fig. 15 Counts of high SHAP values for physiological features in interpreting cold
and hot sensations in stringent neutral conditions corresponding to the proportion of
TSV=0 in green triangles (“forehead-cheek™ > 2.3°C, and “ankle” > 30.75°C).
Currently widely adopted Fanger's PMV and Gagge’ SET models are both based on
statistical modeling of the “standard person”, assuming uniform physiological
parameters such as BMI and baseline core body temperature. However, in reality, every
individual has unique biological characteristics in terms of physiological regulation and
skin type [74]. These characteristics are influenced by demographic factors (such as
age, gender, and race) and physiological factors (such as metabolism, and hormone
levels), which affect their perception of temperature and thermal comfort, resulting in

variations in temperature responses and skin properties. Obermeyer et al. [75], after



statistical analysis of 243,506 core body temperature data points from 35,488 patients,
excluding extreme core temperature situations like emergencies, found that core body
temperature decreases by approximately 0.021°C with each additional decade of age.
There are also differences in core body temperature between races, with African-
American women having a higher temperature than white men by 0.052°C.

Research also indicates a decline in core body temperature among some Americans
(0.03°C per decade) [76] and tropical populations (declined by 0.05°C/year over 16
years) [77] compared to previous levels. Therefore, individuals’ baseline core body
temperatures are correlated with many factors, and there is a risk of misjudgment when
using a completely uniform physiological standard for modeling (such as the “standard
person” used in PMV and SET models established about 5 decades ago) to assess
individual health or thermal comfort. Our experimental results further indicate
differences in facial responses and thermal preferences among individuals within the
same race and similar age groups. Further analysis and understanding of these
differences will contribute to the construction of more accurate and theoretically solid

thermal comfort models.

4. Discussion

4.1 Performance of tree-based models and the PMYV index

This study trained random forests and four popular boosting tree models (AdaBoost,
GBDT, XGBoost, and LightGBM) to predict the thermal comfort of subjects in a well-
controlled climate chamber. After conducting a grid search for hyperparameter tuning,
XGBoost, which demonstrated the best performance, was selected for further
exploration based on different feature combinations, and its results were compared with
the PMV index. Overall, XGBoost models achieved better performance when
physiological features were added as extra inputs alongside environmental features (4-
24% performance improvements). This emphasizes the data-driven nature of machine
learning algorithms and their benefits of integrating extra feature dimensions for better
predictions.

The inclusion of facial features in the XGBoost training has shown positive effects.



When mapping “slightly cool” and “slightly warm” as comfortable (relaxed neutral
conditions), the XGBoost model using only facial information achieved better
predictive performance (80.9% accuracy) compared to features of wrist and ankle (76.8%
and 78.2% accuracies). However, when categorizing “slightly cool” and “slightly warm”
as uncomfortable (stringent neutral conditions), all physiological feature-based
XGBoost models performed worse compared with only using environmental
parameters (74.7% accuracy). Among them, the XGBoost model using only facial
features achieved an accuracy of 62.9%, outperforming the wrist feature (59.4%
accuracy) but falling behind the ankle feature (64.4% accuracy). The precision, recall,
and F1-score metrics also demonstrated consistent patterns with the accuracy results.
This implies that the labeling of “slightly cool” and “slightly warm” can significantly
impact XGBoost’s predictive performance, indicating that each individual’s
requirements for extremely neutral environments (TSV=0) vary greatly. This variation
brings uncertainty to the training process of machine learning algorithms. When the
requirements for neutral environments are relaxed, individual physiological parameters
outperform environmental parameters in XGBoost training. Therefore, in stringent
neutral conditions, environmental factors could play a more important role in predicting
thermal comfort, while under relaxed neutral conditions, physiological parameters
become more significant.

This study also proves that PMV can achieve satisfactory results in 3-class
classification problems when operating in stringently controlled conditions. Its
predictive performance was found to be similar to that of fine-tuned XGBoost when
using only environmental parameters as inputs. However, when XGBoost incorporated
additional physiological factors, PMV’s performance fell behind.

4.2 Contribution of facial thermography using SHAP value

Although machine learning has made great advances in several domains, including
thermal comfort research, the interpretability of these models remains a critical
challenge in practical deployments. The interpretability degree of a certain model can
significantly influence people’s trust in using it. Traditional tree-based models can

provide feature importance rankings, but they are unable to quantify the individual



contributions of each sample to model training, identify interactions between samples,
or find feature threshold values that would have the greatest impact on model training.
However, the SHAP-based explainable Al has overcome some of these challenges. It
can provide a local perspective to explain machine learning models by mapping players
in a cooperative game to specific features and player allocation scores to feature
contributions. This allows us to better understand how each unique sample and feature
impacts the training and decision-making processes of data-driven machine learning
algorithms.

For the SHAP interpretation during XGBoost training process, facial features showed
significant positive contributions, with their importance generally higher than other
physiological parameters, such as wrist, ankle, and blood pressure-related parameters.
Under relaxed neutral conditions, the feature “inner canthus-cheek” ranked second,
closely following the feature “air temperature”. Its pronounced right-skewed red tails
in the SHAP local explanation plot in Fig. 11 (a) suggest that high “inner canthus-cheek”
variation values can provide effective evidence for cold sensation judgments. However,
in the SHAP interaction plot of Fig. 12 (a), it can be observed that these high “inner
canthus-cheek” differences were more dispersed, indicating individual differences exist
within these points. Moreover, its strongest interaction feature “air temperature”
indicates that lower temperatures are more likely to result in higher “inner canthus-
cheek” variations, which will push the model towards predicting cold sensations.
Although the feature “inner canthus-cheek” may not present high contributions for all
samples, its overall predictive contributions remain promising, as evidenced by a mean
absolute SHAP value of 0.74. This value is slightly lower than the mean absolute SHAP
value of rank one feature “air temperature”, which is 0.85. Similar notable feature
contributions were also observed for “nose-cheek” variation and “forehead-cheek”
variation in the SHAP analysis, obtaining ranks 3 and 2, respectively.

After further dividing the high SHAP values of the feature “inner canthus-cheek” by a
threshold of SHAP=1.5 in Fig. 13 (a) when “inner canthus-cheek” values are greater
than 2°C, it is clear that this feature reflects individual differences. Subjects with

consistently low “inner canthus-cheek” variations tend to be less selective about



thermal environments (subjects 5 & 13, 44-48% of voting TSV=0), while subjects with
high facial reactions may be more selective (subjects 3 & 9, 19-22% of voting TSV=0).
Interestingly, even for subjects with intense facial reactions, if the proportion of
SHAP>1.5 values remains low, they appear to be more accepting of their surroundings
(subjects 7 & 12, 37-56% of voting TSV=0). Therefore, the SHAP-based local
explanations and interaction effects can provide a more comprehensive understanding
compared to feature importance rankings. This will allow us to gain insights not only
into the overall importance of features but also into the specific contributions of
individual samples and their distribution. Furthermore, these analyses shed light on the
interactions between different features, offering a more in-depth knowledge of their
mutual influences.

In general, it’s essential to highlight the unique capabilities of machine learning models
in filling the gap left by traditional modeling approaches: 1) Individualized
predictions: machine learning models can provide individualized predictions of
thermal sensation by considering a broader range of physiological parameters and
environmental variables, including facial thermography data, as demonstrated in our
study; 2) Adaptive learning: unlike static models such as PMV, machine learning
models can continuously learn and adapt to new data, allowing them to evolve and
improve their predictive performance over time; 3) Interpretability: while
interpretability remains a challenge in machine learning, techniques such as SHAP-
based explainable Al, as shown in our analysis, offer insights into the underlying factors
driving thermal comfort predictions. This will enhance transparency and trust in the
decision-making process of Al models.

By leveraging machine learning techniques, we can bridge the gap between traditional
static models and the dynamic, individualized nature of thermal comfort assessment,
thereby enhancing the applicability and accuracy of our predictions.

4.3 Relationship between facial interpretation and physiological basis

This section further explores the physiological basis of top-ranking facial features in

SHAP local explanation: “inner canthus-cheek”, “nose-cheek”, and “‘forehead-cheek”.



4.3.1 Inner canthus

The inner canthus is considered the warmest facial region that closely reflects the core
temperature of human body, as it receives an abundant blood supply from the lacrimal
branch of the ophthalmic artery [78]. Furthermore, being located within a well-
protected facial recess, the inner canthus experiences less heat loss from radiation and
convection compared with other regions on the face. This will contribute to the relative
stability of its temperature in individuals who are not experiencing fever. Pascoe and
Fisher [79] investigated the core body temperature of 22 university students. They
discovered that as the ambient temperature ranged from 15.5°C to 26.6°C, the
temperature of the inner canthus increased by only 1.2°C, rising from 35.7°C to 36.9°C.
Therefore, the feature “inner canthus-cheek” can be considered as a representation of
cheek temperature to a certain extent. Previous research in thermal comfort has already
demonstrated that cheek temperature is highly indicative for predicting thermal comfort
[80] and shows significant correlations with thermal sensations [81]. The SHAP
interpretation in this study further elucidates that cheek temperature plays a more
significant role in predicting cold sensations, especially under broader neutral
conditions during the training process of machine learning models when “inner
canthus-cheek’ variations are beyond 2°C. However, when neutral conditions are more
stringent, its contributions become limited compared to environmental parameters.
4.3.2 Nose

The nose is typically the coldest and most temperature-sensitive area on the face,
because of its high surface area to volume ratio [82], the avascular nature of its
cartilaginous component [83], and the influence of inhaled air before it is warmed by
the nasal mucosa in the nasal cavity [84]. Ghahramani et al. [15] exposed individuals
to cold and heat stress in office environments. They observed that nose temperature
(31.70 £2.33°C and 34.78 + 1.66°C) generally exhibited lower mean values and higher
standard deviations compared to forehead (34.06 + 0.58°C and 35.53 £ 0.58°C) and
cheek (33.27 £ 1.18°C and 35.31 + 0.71°C). Because the maximum heat exposure in
their study was 29°C, there was no occurrence of the nose temperature exceeding the

cheek temperature, which happened in this study and could have been caused by the



more extensive exposure to higher temperatures at 32°C. Tejedor et al. [85] discovered
a high correlation (95.14%) between nose temperature and skin temperature in the
elderly, making it a potential thermal comfort indicator. However, nose temperature is
also considered to be linked to emotions. For example, in infants under one-year old,
nose temperature can drop by 2 °C within 2 minutes after laughing [86], whereas in
adults, it tends to rise after experiencing feelings of happiness or positive emotions [87].
These differences are believed to be indications of the body’s development at various
periods of life [86]. To control for these confounding factors, the participants in this
study were instructed to do typical office work to avoid direct emotional changes caused
by entertainment or other factors. Our SHAP interaction analysis reveals that when the
feature “nose-cheek” exceeds 1.7 °C, its contribution grows dramatically, especially in
the picky users S3 and S9.

4.3.3 Forehead

The forehead generally achieves high mean temperatures due to its proximity to the
brain, allowing conductive and convective heat transfer that helps regulate brain
temperature [88]. Additionally, the forehead is well vascularized and has a uniform
surface area with a thin layer of subcutaneous fat [89]. It could be used for fever
detection [90], as well as remote sensing of heart and respiration rates [91]. The
forehead is also identified important body part for thermosensitivity [92]. Parkinson et
al. [54] measured cutaneous thermoreceptor activity on the forehead in dynamic
thermal environments and found that under the “Cool front fan/High speed” condition,
the receptor impulses on the forehead were significantly higher compared to other body
regions. This observation aligns with the result of this study, where the SHAP values of
the forehead feature exhibit high contributions in indicating cold sensation. Choi and
Yeom [93] investigated personalized thermal comfort modeling using seven different
body parts and discovered that the forehead and arms had the strongest correlation with
thermal sensation, particularly in males. Pavlin et al. [94] designed an embedded
mechatronic device primarily based on forehead temperature collected by infrared
cameras, providing a non-invasive solution for building automation or Industry 4.0

applications. The findings of this study indicate that when the "forehead-cheek"



variation is greater than 2.3°C, the computation of SHAP values has the potential to
distinguish potential users who are more selective or less selective towards the
environment. This could provide a more precise decision basis for related non-invasive

solutions for more personalized and refined controls.

5. Conclusion
This study proposes a contactless method for estimating occupant thermal state by
combining facial infrared thermography, environmental variables, and physiological
parameters. Five ensemble tree algorithms were examined using all of the features
collected in the chamber experiment, and the best-performing XGBoost model was
chosen for further feature selection and explainable Al analysis. The novelty of this
research lies in transitioning machine learning models for thermal comfort research
from “black-box” to “gray-box” by conducting explainable Al analysis on the
contribution of each feature and specific sample within the high-performance machine
learning models, with a particular emphasis on non-contact facial-related infrared
features. This will contribute to increasing the trust in non-contact intelligent
assessment of human thermal comfort in buildings, thereby enhancing the credibility
and reliability of Al model deployments. The main conclusions are:

(1) The approach used to map the TSV labels has a substantial impact on the training
and predictive performance of tree-based models for classification problems. When
categorizing “slightly cool/warm” as comfortable, using one single facial feature
within the XGBoost model produces acceptable accuracies of 77.1-78.8% but poor
Fl-scores of 32.5-39.5%. By combining all facial features, the accuracy and F1-
score of XGBoost were increased to 80.9% and 60.9%, respectively, which
outperform the predictions obtained from wrist and ankle temperatures, as well as
the PMV index. These findings demonstrate that incorporating more facial features
can significantly enhance model performance. When “slightly cool/warm” is
categorized as uncomfortable, the PMV index demonstrates preferable predictive
performance (73.5% accuracy), slightly behind the fine-tuned XGBoost model

utilizing solely environmental parameters (74.7% accuracy), but is superior to that



of multiple XGBoost models utilizing only physiological features (45.3-62.9%
accuracies). In both mapping scenarios, the incremental introduction of facial
features for the XGBoost training exhibits a progressive enhancement of model
performance.

(2) The SHAP-based explainable Al analysis reveals a consistent distinction of air
temperature as the foremost contributing factor, followed by temperature variations
in specific facial areas (inner canthus, nose, forehead, and cheek areas) and ankle
temperature. Elevated SHAP values become pronounced when the features “inner
canthus-cheek”, “nose-cheek”, “forehead-cheek”, and “ankle” exceed 2°C, 1.7°C,
2.3°C, and 30.75°C, respectively. Noticeably, high facial SHAP values can
contribute to distinguishing individual differences and filtering selective occupants,
whereas ankle SHAP values can not.

(3) Among the facial features extracted from infrared thermography, the “inner
canthus-cheek” and “forehead-cheek” show significant local contributions in
assessing cold discomfort (rank 2 mean SHAP values), while the “nose-cheek”
shows remarkable local contributions in assessing hot discomfort (rank 2 mean
SHAP values). This alignment correlates to documented trends in the reaction of
facial organs to temperature fluctuations observed in the medical literature. Given
the obstruction issue with the inner canthus caused by glasses, it is suggested to
incorporate the forehead, nose, and cheek temperatures for evaluating occupants’
thermal state in practical applications. These facial features can significantly
enhance the predictive performance of Al models, allowing them to accurately
predict the energy needed by HVAC systems.

(4) Although this paper demonstrates the potential of using the SHAP method to
indicate thresholds in facial features and assess individual differences, thereby
offering the possibility of individualized cooling or heating from building systems,
it is important to note that an excessive and indiscriminate extrapolation of big data
and Al solutions could also create socio-ethical quandaries, potentially resulting in
discriminatory or equity-related concerns in spaces like buildings. Further

exploration is still needed for greater human involvement in Al solutions.
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