

Polymer-protected gold nanoparticles for photothermal treatment of Ehrlich Adenocarcinoma: in vitro and in vivo studies

Article

Accepted Version

Tatykhanova, G. S., Tuleyeva, R. N., Nurakhmetova, Z. A.,
Gizatullina, N. N., Krasnoshtanov, V. K., Kaldybekov, D. B.,
Aseyev, V. O., Khutoryanskiy, V. ORCID:
<https://orcid.org/0000-0002-7221-2630> and Kudaibergenov, S. E. (2025) Polymer-protected gold nanoparticles for photothermal treatment of Ehrlich Adenocarcinoma: in vitro and in vivo studies. *Macromolecular Chemistry and Physics*, 226 (4). 2400128. ISSN 1521-3935 doi: 10.1002/macp.202400128 Available at <https://centaur.reading.ac.uk/116513/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1002/macp.202400128>

Publisher: Wiley

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 **Polymer-protected gold nanoparticles for photothermal treatment**
2 **of Ehrlich adenocarcinoma: *In vitro* and *in vivo* studies**

3
4 *Gulnur S. Tatykhanova^{1,3*}, Rysgul N. Tuleyeva^{1,2}, Zhanara A. Nurakhmetova¹, Nargiz N.*
5 *Gizatullina¹, Vladimir K. Krasnoshtanov⁴, Daulet B. Kaldybekov^{1,2,6}, Vladimir O. Aseyev⁵,*
6 *Vitaliy V. Khutoryanskiy⁶, Sarkyt E. Kudaibergenov^{1*}*

7
8 G.S. Tatykhanova, R.N. Tuleyeva, Zh.A. Nurakhmetova, N.N. Gizatullina, S.E. Kudaibergenov

9 ¹ Institute of Polymer Materials and Technology, 050019 Almaty, Kazakhstan, E-mail:
10 skudai@mail.ru

11 R.N. Tuleyeva, D.B. Kaldybekov

12 ² Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University,
13 050040 Almaty, Kazakhstan

14 G.S. Tatykhanova

15 ³ Satbayev University, 050013 Almaty, Kazakhstan, E-mail: gulnur-ts81@yandex.kz

16 V.K. Krasnoshtanov

17 ⁴ Kazakh Research Institute of Oncology and Radiology, 050022 Almaty, Kazakhstan

18 V.O. Aseyev

19 ⁵ Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland

20 V.V. Khutoryanskiy

21 ⁶ Reading School of Pharmacy, University of Reading, Whiteknights, RG6 6DX Reading,
22 United Kingdom

23
24
25 **Keywords:** gold nanoparticles, gold nanospheres, gold nanorods, surface plasmon resonance
26 (SPR), photothermal therapy (PTT), Ehrlich cancer cells.

27
28
29 **Abstract**

30 Photothermal therapy (PTT) has been recognized as an effective tool for the treatment
31 of cancer and it has attracted considerable attention of scientists. In this work, gold nanospheres
32 (AuNSs) and gold nanorods (AuNRs) stabilized using poly(*N*-vinylpyrrolidone) (PVP), pristine
33 gellan gum (PGG), and poly(2-ethyl-2-oxazoline)-grafted gellan gum (GG-*g*-PEtOx) were
34 synthesized and evaluated as PTT agents in Ehrlich cancer cells. The physicochemical

35 characteristics of these AuNSs and AuNRs, including their surface plasmon resonance
36 absorption spectra, size, zeta potential, and aspect ratio have been studied using UV/Vis-
37 spectroscopy, dynamic light scattering, zeta potential, transmission electron microscopy, and
38 optical microscopy techniques. The polymer-protected AuNSs exhibited light-to-heat
39 conversion, raising the temperature from 37 to 43 °C when irradiated using a visible light
40 source. In the case of AuNSs, considerable damage to Ehrlich cancer cells was observed
41 following irradiation and 40 days of examination. However, with regards to AuNSs, the damage
42 to Ehrlich cancer cells was slightly lower than observed in AuNRs. *In vivo* experiments
43 demonstrated that laser irradiation of tumors in mice after injecting AuNSs led to a statistically
44 significant decrease in tumor size as compared to those not irradiated and the control samples.
45

46 1. Introduction

47 Cancer is a multifaceted disease characterized by uncontrolled growth and spread of
48 abnormal cells in the body and is one of the leading causes of human morbidity and mortality
49 worldwide.^[1-4] Unfortunately, due to the heterogeneous nature of cancer, which poses a
50 significant public health challenge, there are currently no fully inclusive approaches to
51 effectively treat this condition.^[5] The primary modalities currently employed for cancer
52 treatment include chemotherapy, radiation therapy, immunotherapy, and surgery. These
53 methods have become widely used in clinical practice for decades. However, cancer patients
54 undergoing these therapies often experience significant adverse effects.^[6] For this reason, the
55 majority of studies in cancer therapy are focused on the development of alternative therapies
56 that can complement or even substitute the existing therapies. The goal is to improve their
57 efficacy and minimize any potential side effects they may have on patients. These methods
58 ideally should selectively eliminate cancerous cells only, without damaging healthy cells.^[7,8]
59 Among the advanced phototherapy methods for treating cancer, photothermal therapy (PTT)
60 offers a great advantage due to its non-invasive nature and selective therapeutic potential for
61 different cancers. PTT has several advantages including the ability to externally irradiate
62 tumors, which means the therapy can be applied from outside the body. PTT is also associated
63 with limited complications, meaning it has a lower risk of side effects compared to other cancer
64 therapies. Additionally, PTT offers enhanced selectivity, meaning it can specifically target
65 cancer cells while minimizing the damage to normal cells. Another benefit of PTT is a relatively
66 quick patient recovery, implying that they may experience a faster recuperation period after
67 undergoing PTT. In phototherapy, certain wavelengths of light within the visible and near-
68 infrared resonance (NIR) bands are utilized to heat photothermal agents such as nanoparticles.

69 This leads to a localized increase in the temperature of specific tissues resulting in the
70 elimination of malignant cells in those tissues. The higher sensitivity of cancer cells to
71 temperature elevation results in their increased susceptibility to the effects of heat compared to
72 normal cells. Moreover, an exposure to an external laser with adjustable dosing facilitates the
73 selective eradication of various types of cancer cells while minimizing the damage to the
74 surrounding healthy tissues.^[9–14]

75 Gold nanoparticles (AuNPs) are considered to be the foremost photothermal agents used
76 in PTT treatment. These nanoparticles have an important attribute such as a high light-to-heat
77 conversion efficiency, which makes them particularly effective in converting light energy into
78 heat. In PTT, visible and NIR laser lights are employed to activate and stimulate AuNPs, which
79 cause the nanoparticles to resonate and generate heat, thus enabling localized heating of the
80 targeted tumor tissues. The application of AuNPs as photothermal agents provides enhanced
81 therapeutic outcomes due to the possibility of their direct injection into the tumor, while
82 minimizing non-specific distribution in the body. Furthermore, these nanoparticles can be safely
83 eliminated from the body after completing the therapy.^[15–17]

84 AuNPs exhibit distinctive physicochemical properties such as a possibility for localized
85 surface plasmon resonance (LSPR). The LSPR phenomenon facilitates interactions between
86 incident light and the electrons in the conduction band on the surface of AuNPs.^[18–20] The
87 optical properties of AuNPs are dependent on their dimensions. The LSPR properties can be
88 altered by modifying the shape and size of AuNPs. This enables the use of different wavelengths
89 of light, including those in the NIR and visible spectra for achieving localized heating
90 effects.^[21–24] Therefore, the ability to tune the LSPR properties of AuNPs through size and
91 shape manipulation offers flexibility in designing AuNPs for specific applications that require
92 interaction with different wavelengths of light. Visible light has limited penetration ability into
93 biological tissues compared to NIR light. This property makes visible light more suitable for
94 certain medical procedures that require higher precision.^[25–28]

95 Small spherical gold nanoparticles are easy to produce.^[12] They are less toxic than
96 particles of large size and show improved photoconversion capability that may profit from the
97 irradiation with the visible light using standard surgical green lasers. In particular, the efficiency
98 of light-to-heat conversion (photoconversion at 530 nm) of 14 nm AuNSs irradiated in the
99 visible region and its application to selectively obliterate cancer cells using breast cancer as
100 model was shown. Thus, the AuNSs with diameters ranging from 10 to 30 nm were considered
101 non-toxic due to such properties, as stability, cellular uptake efficiency, and favourable
102 clearance mechanism. They were recognized as ideal photothermal agents for biomedical

103 applications^[29,30] and demonstrated a characteristic LSPR band around 520 nm, *i.e.* in the
104 visible region of the spectrum, with an efficient light-to-heat conversion.^[31,32] As such, AuNSs
105 as photothermal agents, are an efficient way to induce precise heating leading to less damage
106 to surrounding tissues, while destroying malignant, which are thermosensitive cells^[33,34].

107 Many synthetic and natural polymers can function as both reducing and capping agents
108 to form AuNPs.^[35,36] According to literature, the efficacy of PTT with regards to the antitumor
109 activity of AuNSs and AuNRs, among other noble and transition metal nanoparticles stabilized
110 with natural and/or synthetic polymers, has been studied with respect to melanoma,^[37] 4T1 and
111 HeLa cells,^[38] 4T1 murine breast tumor cells,^[39] U87 MG human glioblastoma cell,^[40] and
112 transplanted liver tumor.^[41]

113 In the present work, AuNSs and AuNRs stabilized using poly(*N*-vinylpyrrolidone) (PVP),
114 pristine gellan gum (PGG), and poly(2-ethyl-2-oxazoline)-grafted gellan gum (GG-g-PEtOx)
115 were prepared and characterized for their size and morphology using dynamic light scattering
116 (DLS) and transmission electron microscopy (TEM). Coating and stabilization of AuNPs and
117 AuNRs by biocompatible, non-toxic, and biodegradable polymers, such as poly(*N*-
118 vinylpyrrolidone) and gellan, allows to preserve the colloidal gold nanoparticles in aqueous
119 solution for an extended period and to prepare effective photothermal agent for the treatment
120 of cancer cells.^[42-50] Polymer-protected gold nanoparticles were produced through one-pot and
121 growth seeding methods in aqueous solutions. These particles were observed to exhibit
122 temperature-dependent changes and high stability over a period of 36 days, thus making them
123 suitable for application in photothermal therapy. The protocols have been developed herein for
124 the evaluation of the photothermal conversion ability of AuNSs and AuNRs when irradiated
125 using visible and NIR laser light sources. The potential use of AuNSs and AuNRs in PTT
126 treatment was tested both *in vitro* and *in vivo* against Ehrlich cancer cells. Ehrlich ascites
127 carcinoma is a well-established murine model used for studying breast cancer.^[51,52] It represents
128 hyperdiploid and an undifferentiated carcinoma with 100% malignancy, short life span, high
129 transplantable capability, and rapid proliferation. From 2010 until now, publications that
130 mention Ehrlich tumors increases. This is due to the systematic alterations induced by the
131 tumors, the sensitivity of the tumor cells to chemotherapies and the antitumor potential of
132 synthetic and natural products.

133 It is known^[53] that malignant cells require large amounts of monosaccharide uptake in
134 order to sustain their accelerated growth and division in comparison to that of healthy cells. We
135 hypothesize that gellan gum composed of tetrasaccharide repeating units (1,3- β -D-glucose, 1,4-
136 β -D-glucuronic acid, 1,4- β -D-glucose, and 1,4- α -L-rhamnose) may function as a “food” for

137 cancer cells to support their accelerated growth. It is supposed that the cancer cells, feeding on
138 tetrasaccharides, consume them and thereby “bare” gold nanoparticles that have been stabilized
139 by the polysaccharide – gellan. Gold nanoparticles lacking a protective shell consisting of gellan
140 will be forced to adsorb on cancer cells in order to minimize the free energy of the nanoparticles.
141 Irradiation of these gold nanoparticles, attached to the cancerous cells, with appropriate laser
142 light can induce local heating due to the localized surface plasmon resonance (LSPR) and
143 hyperthermia causing apoptosis of the cancer cells. In addition, gellan gum grafted with poly(2-
144 ethyl-2-oxazoline) (GG-g-PEtOx) could act as a bioadhesive polymer^[54] and enhance its
145 mucus-penetrating properties.^[55] Therefore, coating or conjugating gold particles with these
146 polymers could facilitate the adhesion of gold nanoparticles to the mucosal surface of tumors
147 or their penetration into tumors. This process may prolong the efficacy of photothermal therapy
148 (PTT) by ensuring better localization of gold nanoparticles within the tumor tissue.

149

150 **2. Experimental Part**

151 **2.1. Materials**

152 A standard aqueous solution of tetrachloroauric acid (HAuCl₄) with a concentration of
153 100 mg/mL, cetyltrimethylammonium bromide (CTAB, 99%), sodium borohydride (NaBH₄,
154 98.5%), ascorbic acid, poly(N-vinylpyrrolidone) (PVP) with Mn = 10 and 40 kDa, and Hanks’
155 balanced salt solution (HBSS buffer) were purchased from Sigma-Aldrich (Germany). Gellan
156 gum with Mw 500 kDa was purchased from Zhejiang DSM Zhongken Biotechnology Co., Ltd.
157 (China). Poly(2-ethyl-2-oxazoline)-grafted gellan gum (GG-g-PEtOx) was kindly provided by
158 the authors.^[56] Depending on the grafting density, the GG-g-PEtOx samples are abbreviated as
159 G2, G3, and G12. Grafting density is given as the number of repeating units, where each gellan
160 gum consists of four sugar units, per one PEtOx grafted chain. Thus, on average, every 12th
161 repeating unit (equivalent to 12×4 sugar units) in G12 copolymer contains one PEtOx grafted
162 chain. Potassium hydroxide, silver nitrate, and all other chemicals were of analytical grade and
163 used as received.

164

165 **2.2. Methods**

166 **2.2.1. Synthesis of AuNSs and AuNRs**

167 Spherical AuNPs (or AuNSs) stabilized by PVP, PGG, and GG-g-PEtOx were prepared
168 using a “one-pot” synthetic method as described previously.^[57] Briefly, a mixture consisting of
169 polymer solutions with different concentrations (either 4% PVPs; 0.5% PGG; or 2% of each
170 G12, G3, G2), 5 mL of HAuCl₄ (100 mg/mL) and 4 mL of 0.5 M KOH was combined, agitated,

171 and heated up to 100 °C for 3–5 min in an Anton Paar Monowave 50 microwave reactor (Graz,
172 Austria) equipped with a temperature and time controller. Consequently, tinted solutions,
173 varying in color from yellow to dark red or purple, were produced due to the formation of
174 AuNSs. The initial solution with pH 12 decreased down to pH 8 following the dialysis (cellulose
175 membrane with molecular weight cut-off 12-14 kDa) against deionized water.

176 In order to prepare AuNRs, the seed-mediated growth technique was employed.^[57]
177 Initially, a solution comprising 5 mL of 0.2 M cetyltrimethylammonium bromide (CTAB) was
178 combined with 5 mL of 0.5 mM HAuCl₄ and stirred. Subsequently, 0.6 mL of cold 0.01 M
179 NaBH₄ was introduced, resulting in the formation of a brownish-yellow solution containing
180 AuNSs. Concurrently, a mixture composed of CTAB (0.2 M; 30 mL), AgNO₃ (4 mM; 1.5 mL),
181 and HAuCl₄ (1 mM; 30 mL) was gently mixed, and 78.8 M (0.42 mL) ascorbic acid was added.
182 Ascorbic acid was acting as a mild reducing agent, causing the color of the growth solution to
183 change from dark yellow to colorless. Finally, the first seed solution (72 µL) was added to the
184 second growth solution, and the mixture was allowed to incubate at 30 °C overnight.
185 Consequently, a crimson solution containing AuNRs was generated. To eliminate by-products
186 and CTAB from the AuNRs, the solution underwent centrifugation at 10650 rpm for 30 min
187 using an Eppendorf 5810R centrifuge (Tuttlingen, Germany). The resulting precipitate was re-
188 dispersed by adding 3 mL of deionized water and centrifuged again at 10650 rpm for 15 min.
189 After undergoing washing procedure thrice, the AuNRs were re-dispersed and stabilized in 5
190 mL of designated polymer solutions and then dialyzed using a cellulose membrane (molecular
191 weight cut-off 12-14 kDa) against deionized water.

192 193 2.2.2. *Characterization*

194 Absorption spectra of AuNSs and AuNRs were recorded using a Specord 210 plus BU
195 UV/Vis-spectrophotometer (Jena, Germany). The mean hydrodynamic size of gold
196 nanoparticles in solution, their polydispersity index (PDI) and zeta potential values were
197 determined using dynamic light scattering (DLS) and electrophoretic measurements with a
198 Malvern Zetasizer Nano ZS90 (Malvern Instruments, UK) at 25 °C. Gold nanoparticles were
199 imaged using a JEOL JEM-1400Plus (JOEL Ltd., Japan) transmission electron microscope
200 (TEM) operated at an acceleration voltage of 120 kV. TEM grids were prepared by placing 10
201 µL of the diluted sample solutions on a carbon-coated copper grid and evaporating the solution
202 at room temperature completely. The concentrations of AuNSs and AuNRs solutions stabilized
203 with the polymers were quantified using an Agilent 7500 ICP-MS inductively coupled plasma
204 mass spectrometer (Agilent Technologies, USA).

205 2.2.3. *Study of ex vivo photothermal effect of AuNSs induced by visible light irradiation*

206 The porcine stomach tissue was used as a model of skin to study *ex vivo* photothermal
207 effect of AuNSs when exposed to irradiation. Porcine stomach tissues were received from
208 Altyn-Orda Abattoirs (Almaty, Kazakhstan) immediately after animal slaughter, carefully
209 packed, transported to the laboratory in cold plastic containers, and used within 24 h of retrieval.
210 Tissue samples (cut into $\approx 3 \times 3$ cm) were placed in Petri dishes, and with the help of a marker
211 pen, an area to be exposed to irradiation was highlighted. Using a sterile syringe, 0.5 mL of
212 polymer-coated AuNSs dispersion was injected interstitially in the porcine stomach tissue. The
213 concentration of AuNSs in the colloidal solution was determined to be ~ 45 μ g/mL. Irradiation
214 of AuNSs was carried out using a physiotherapeutic Lasmik[®] laser apparatus (Lazmik Ltd.,
215 Russia) (Figure S1A). Matrix LED heads operated at 530 and 780 nm wavelengths were used.
216 Experiments with irradiation were performed within an incubator at 37 °C with a relative
217 humidity of 80% (Figure S1B). The temperature was measured every 5 min using a VT04 visual
218 infrared thermometer (Fluke VT02 Visual IR Thermometer, Everett, WA, USA). The
219 irradiation was carried out for 60 min. All experiments were performed in triplicate and the
220 mean \pm standard deviation (SD) values were calculated.

221
222 2.2.4. *Irradiation of Ehrlich cancer cells*

223 Ehrlich cells were received from the cell culture collection of the Kazakh Research
224 Institute of Oncology and Radiology (Almaty, Kazakhstan). The ascites form of a transplanted
225 Ehrlich tumor strain was used to study the photothermal effect of AuNPs on cancer cells. The
226 tumor cells were transplanted intraperitoneally into CD-1 mice. The material was extracted on
227 the 10th day after transplantation. The concentration of cells was determined to be 100
228 million/mL. In this experiment, a suspension of biomaterial was prepared from 1 mL suspension
229 of Ehrlich tumor cells and 9 mL of HBSS buffer solution (Hanks culture medium). Next, 1 mL
230 of the suspension was aspirated and then mixed with 1 mL of either AuNPs (~ 45 μ g/mL) or
231 AuNRs (~ 179 μ g/mL) solutions. The resulting mixture was subsequently irradiated for 60 min
232 using matrix LED heads operated at $\lambda = 530$ and 780 nm. The cover glass was placed on the
233 grid of a Goryaev chamber. Then, 5-10 μ L of cell suspension was transferred to the edge of the
234 cover glass in the chamber. Afterwards, microphotographs of the cells were taken at 40 \times
235 magnification using a Nikon Eclipse LV150N microscope (Tokyo, Japan), equipped with a
236 Motic digital camera, and the cells were counted in Goryaev chamber manually before and after
237 irradiation. The average number of cells in one square of grids and in one mL of suspension
238 was calculated, considering the area of the square. The cells were maintained in an incubator at

37 °C and in the dark throughout the experimental period. In order to evaluate the long-term photothermal effect of polymer-coated AuNSs on Ehrlich cancer cells, the cells death was observed over a 40-days period. All measurements were conducted in triplicate and the mean \pm standard error of the mean (SEM, n = 10) values were calculated and then evaluated statistically.

243

244 2.2.5. *Study of in vivo photothermal effect of AuNSs induced by visible light irradiation*

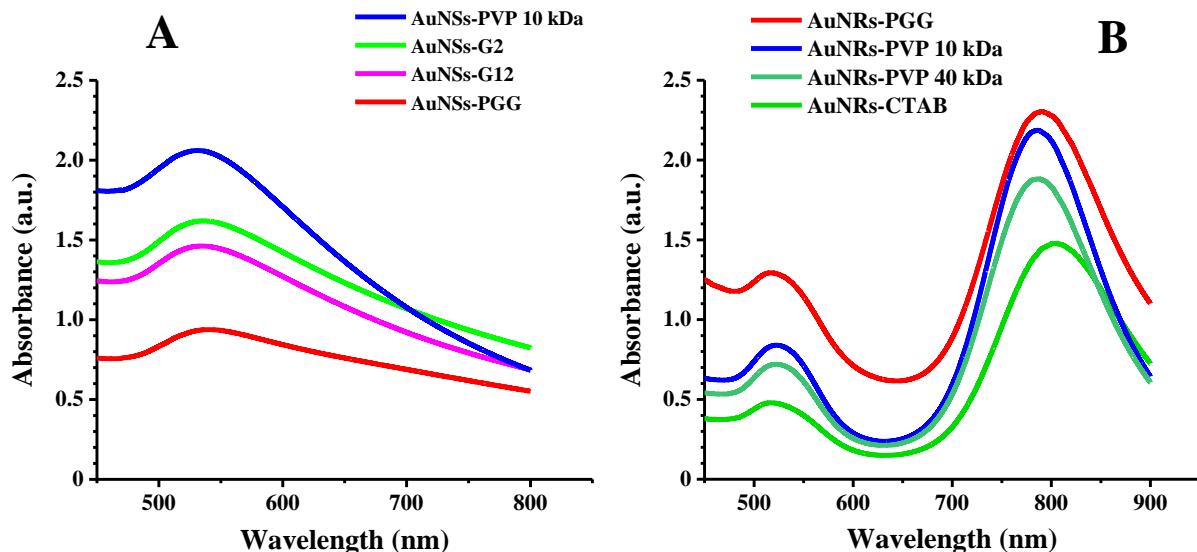
245 All animal experiments were conducted in compliance with the protocol approved by the
246 local ethical committee (LEC) at the Kazakh Research Institute of Oncology and Radiology
247 (Protocol No.5-2021, December 10, 2021).

248 For the *in vivo* experiments, 18 CD-1 male mice of 23–25 g weight and 60 days of age
249 were selected. Tumor cell transplantation into the animals was accomplished through
250 subcutaneous injection of 5×10^6 tumor cells. The experiments commenced 10 days later when
251 the tumors reached a size of about 4-5 mm in diameter. However, throughout the experiment,
252 some mice developed purulence and so the other 3 mice were excluded from the experiment
253 due to this condition. The mice were divided into 3 groups: Group 1 consisted of 5 control
254 animals, with no AuNSs solution injected and no exposure to irradiation; Group 2 included 5
255 animals with AuNSs solution injected, but no irradiation treatment; and Group 3 involved 5
256 animals with AuNSs solution injected and with irradiation treatment.

257 Prior to commencing each experiment, hair from the surface of the skin covering the
258 tumor was removed, then intratumoral injection of 50 μ L of AuNSs-PVP (40 kDa) was
259 administered. The concentration of AuNSs in the suspension was $\sim 45 \mu$ g/mL. After 25 min, the
260 tumor node was subjected to a daily laser exposure for 30 min over a period of 7 days. Taking
261 into account 10 days of inoculation and 7 days of laser exposure the total experimental time
262 duration was 17 days. According to the protocols reported in,^[58] the experiment associated with
263 an increase in the tumor weight was conducted for 20 days until the animals were sacrificed. A
264 Polyaron LG-75 helium-neon laser at a wavelength of 633 nm and emissive power of 25 mW
265 (Kyiv, Ukraine) was used in the experiments. Throughout the experiment, the tumor size was
266 measured daily using a caliper. Following the internationally recognized guidelines established
267 by the Council for International Organizations of Medical Sciences (CIOMS) for biomedical
268 research involving animals, the mice were euthanized prior to surgical removal of tumor tissues.
269 The tumors were extracted from the peritoneum by dissection with a subsequent weighing on
270 the ninth day.

271

272


273 2.2.6. Statistical analysis

274 The data were presented as mean values \pm SDs and/or SEMs and assessed for significance
275 using a one-way and two-way analysis of variance (ANOVA) followed by Bonferroni post hoc
276 test, where $p < 0.05$ was considered as the statistical significance difference (GraphPad Prism
277 software, version 7.0; San Diego, CA, USA).

278
279 **3. Results and Discussion**280 **3.1. Physicochemical characterization of nanoparticles**

281 Poly(N-vinylpyrrolidone) (PVP) with Mn 10 and 40 kDa, pristine gellan gum (PGG) and
282 poly(2-ethyl-2-oxazoline)-grafted gellan gums (abbreviated as G2, G3, G12) were used as
283 polymeric stabilizing agents of the AuNSs and AuNRs. It was expected that the surface
284 modification of AuNPs with polymers can facilitate their cellular uptake. This enhancement is
285 attributed to the affinity of both natural and synthetic polymers to cellular membranes.^[59,60]

286 UV/Vis-spectroscopy is an effective method for confirming the formation and
287 stabilization of aqueous dispersions of AuNSs and AuNRs. In general, AuNSs possess a single
288 absorption band in the visible (500–550 nm) spectral region, which is known as a surface
289 plasmon resonance (SPR). AuNRs exhibit two major absorption bands corresponding to the
290 transverse and longitudinal SPR bands in the visible (~ 520 nm) and the near-infrared regions,
291 respectively.^[57,61] The SPR spectrum is dependent on both the size and shape of gold
292 nanoparticles. In this study, the adsorption spectra of polymer-coated AuNSs and AuNRs
293 dispersions were recorded (Figure 1). The spectra confirmed a distinctive SPR band for AuNSs
294 in the visible (~ 530 nm) region (Figure 1A), while two characteristic surface plasmon bands
295 corresponding to the transverse (~ 520 nm, a weaker band in the visible region) and longitudinal
296 (~ 780 nm in NIR region) bands were observed for gold nanorods (Figure 1B).^[59,61,62]

297

298 Figure 1. Representative surface plasmon resonance (SPR) absorption bands of spherical (A)
 299 and rod-shaped gold nanoparticles (B) stabilized using different amounts of polymers and a
 300 surfactant. Pristine gellan gum (PGG, 0.5%); G2 and G12 are poly(2-ethyl-2-oxazoline)-grafted
 301 gellan gums with different grafting densities (each at 2%); poly(*N*-vinylpyrrolidone) (PVP)
 302 with Mn 10 and 40 kDa (4%), and cetyltrimethylammonium bromide (CTAB, 0.2 M). All
 303 spectra were recorded at 25 °C.

304

305 Controlling the size of AuNPs is a critical factor in the synthesis of colloidal gold and
 306 their application in PTT. Many studies have demonstrated that the interaction between gold
 307 nanoparticles and polymers significantly influences the size, stability, and size distributions of
 308 the particles.^[63,64] Producing monodisperse polymer-coated AuNPs with smaller sizes in
 309 aqueous media can lead to improved biocompatibility, reduced cytotoxicity, and enhanced
 catalytic properties.

310

311 The average hydrodynamic size and zeta potential values of the spherical and rod-shaped
 312 AuNPs synthesized and stabilized with optimally selected concentrations of synthetic and
 313 natural polymers are summarized in Table 1 and Table 2, respectively. During the dialysis, the
 314 pH of aqueous solution of AuNPs decreased from 12 to 8 confirming that most of the low-
 315 molecular-weight impurities are washed out. The mean diameter and zeta potential values of
 316 AuNSs were measured by DLS before and after dialysis against deionized water. It was
 317 observed that after dialysis, the size of AuNSs decreased by 2-3 times (Table 1). Overall, most
 318 of the spherical gold nanoparticles were polydisperse. The size distributions (before and after
 319 dialysis) of spherical gold nanoparticles stabilized with different polymers determined with
 DLS are shown in Figure S2.

320

Table 1. Size and zeta potential values of polymer-protected AuNSs determined by DLS.

Type of polymer	Concentration of polymer (% w/v)	Mean diameter (nm)			Zeta potential (mV)	
		Before dialysis	PDI	After dialysis	PDI	Before dialysis
PVP 10 kDa	4.0	42 ± 2	0.353	15 ± 1	0.309	-13 ± 2
PVP 40 kDa	4.0	47 ± 2	0.225	16 ± 2	0.238	-7 ± 2
PGG	0.5	88 ± 2	0.300	37 ± 2	0.415	-32 ± 2
G12	2.0	38 ± 1	0.513	13 ± 1	0.795	-21 ± 2
G3	2.0	22 ± 1	0.587	17 ± 1	0.671	-20 ± 2
G2	2.0	39 ± 1	0.496	11 ± 1	0.496	-18 ± 2

321 G2; G3 and G12 – poly(2-ethyl-2-oxazoline)-grafted gellan gums with different grafting densities; PDI –
 322 polydispersity index; PGG – pristine gellan gum; PVP – poly(*N*-vinylpyrrolidone). Data are expressed as mean ±
 323 standard deviation values (n = 3).

324 In order to estimate the nanoparticles surface charge, the zeta potential values of the
 325 different AuNPs were measured. It appears that the zeta potential values of AuNPs significantly
 326 decreased following the dialysis, resulting in a further reduction of negative charges. The
 327 average zeta potential values of AuNSs were between -42 and -10 mV depending on the
 328 polymers used and dialysis (Table 1).

329 AuNRs stabilized using PGG displayed a negative zeta potential (-30 ± 3 mV) value due
 330 to the presence of carboxylic groups in the macromolecular chains of the polysaccharide (Table
 331 2). Initially, the surface of AuNRs stabilized using PVP 10 and 40 kDa was positively charged,
 332 perhaps due to the presence of some excessive counterions of CTAB; however, after dialysis,
 333 AuNR's zeta potential decreased down to -7 and -6 mV.

334 Table 2. Aspect ratio (measured using TEM) and zeta potential values of AuNRs synthesized
 335 and stabilized using PGG, G2 and PVPs.

Type of polymer	Concentration of polymer (% w/v)	Average length (nm)	Average width (nm)	Aspect ratio	ζ-potential (mV)
CTAB	n/a	42 ± 4	14 ± 2	3 ± 1	54 ± 11
PGG	0.5	34 ± 3	9 ± 2	4 ± 1	-30 ± 3
G2	2.0	53 ± 5	18 ± 3	3 ± 1	-17 ± 2

PVP 10 kDa	4.0	44 ± 13	15 ± 3	3 ± 1	-7 ± 1
PVP 40 kDa	4.0	55 ± 2	16 ± 1	4 ± 1	-6 ± 2

336 CTAB – cetyltrimethylammonium bromide; PGG – pristine gellan gum; PVP – poly(*N*-vinylpyrrolidone); n/a –
337 not applicable. Data are presented as mean ± standard deviation (n = 3).

338 The TEM images (Figure 2) further confirmed the DLS results regarding the size of
339 AuNPs, and both AuNSs and AuNRs were uniformly distributed. For instance, AuNSs in all
340 batches displayed particles with sizes less than 40 nm in diameter. AuNSs stabilized with G2
341 (GG-*g*-PEtOx) demonstrated even smaller size with 10 ± 1 nm. The aspect ratio, i.e.
342 length/width, for the gold nanorods stabilized using PVP 10 kDa was ~3–4 in average (44 ± 13
343 nm lengthwise by 15 ± 3 nm in width) and the microphotographs are displayed in Figure 2 (also
344 see Figure S3).

345

346 3.1.1. Study of photothermal effects of AuNPs

347 The photothermal effect (*i.e.* light-to-heat conversion) of AuNSs was studied on porcine
348 stomach tissues as model of skin. The temperature change in tissue samples was measured with
349 an IR thermometer upon irradiation using a 530 nm visible light laser. Visible light was chosen
350 for the current study to avoid unwanted heat stimulation, as it is generally not strongly absorbed
351 by the bulk tissue (Figure 1A). Figure 3 shows the temperature changes in porcine stomach
352 tissue samples with and without injection of polymer-stabilized AuNSs dispersion as a function
353 of irradiation time. The highest temperature recorded was 43.5 ± 0.2 °C for AuNSs–PVP 40
354 kDa dispersion without tissue sample when exposed to irradiation for 60 min. For the tissue
355 sample containing AuNSs–PVP 40 kDa; PGG and G2 (GG-*g*-PEtOx), the maximum
356 temperature reached up to 41.1 ± 0.2; 41.0 ± 0.2 and 40.7 ± 0.2 °C, respectively, whereas the
357 tissue sample without AuNSs was heated up to 39.0 ± 0.2 °C during 60 min of irradiation. These
358 results clearly indicate that photothermal heating was induced by AuNSs in the tissue samples
359 when exposed to the visible light source.

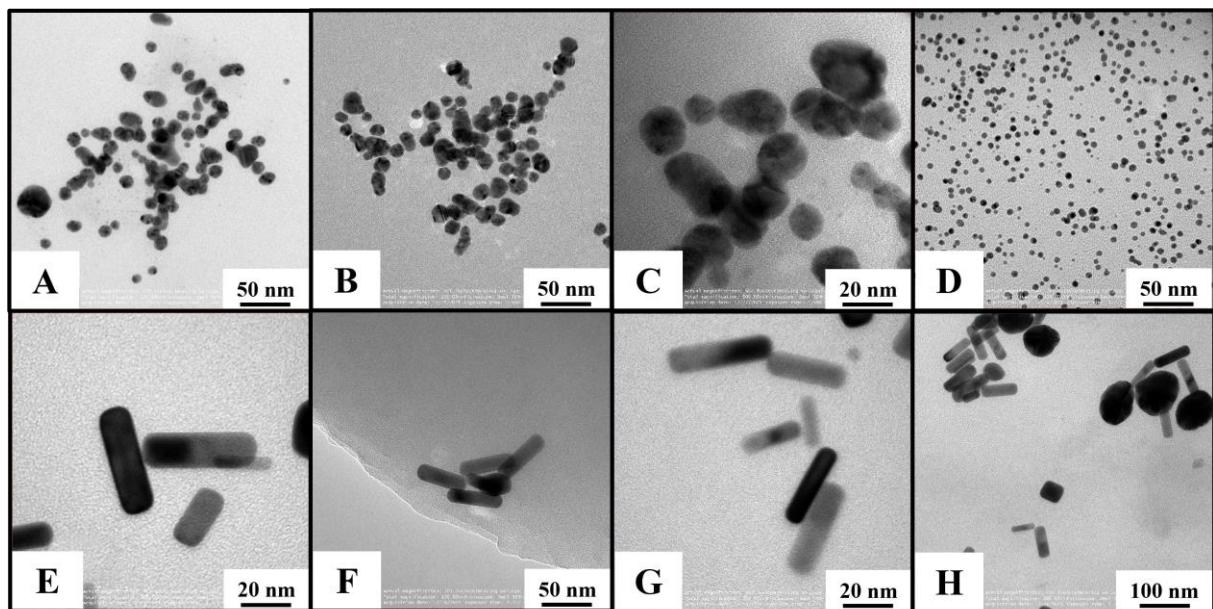
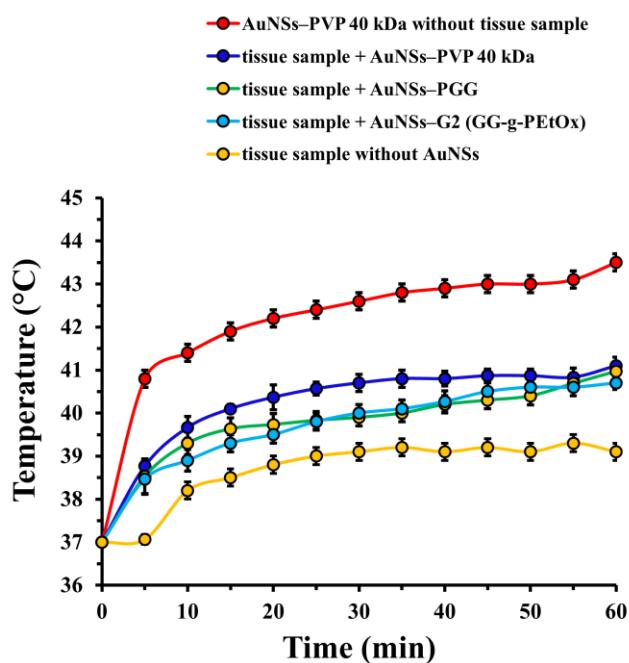
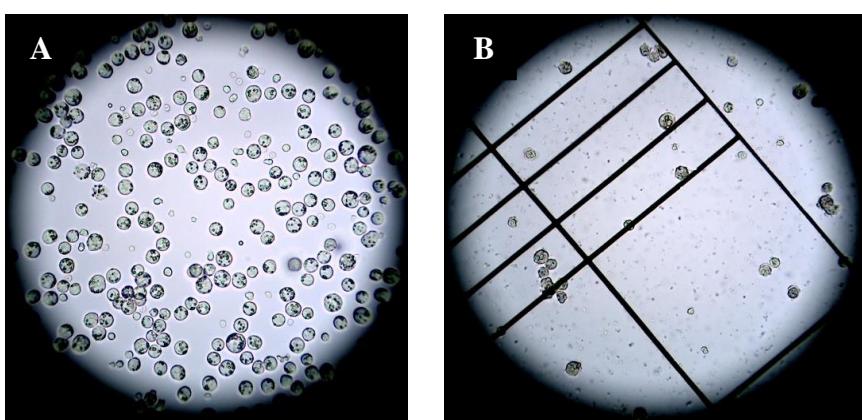
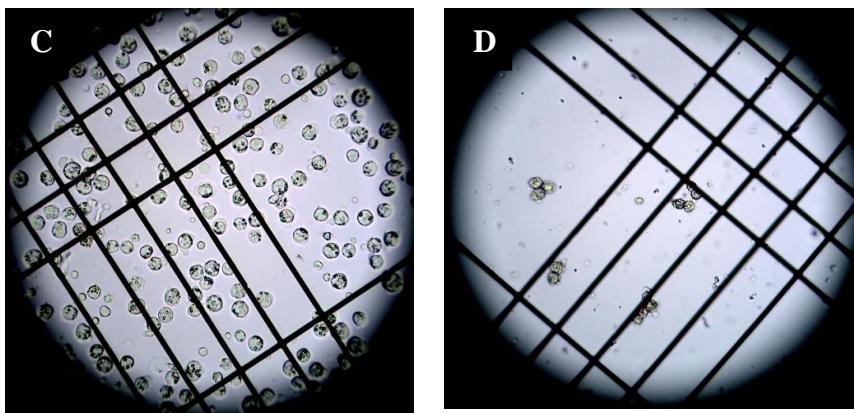


360
361
362
363
364
365

Figure 2. TEM images of AuNSs and AuNRs stabilized using poly(N-vinylpyrrolidone) with Mn 10 kDa (A and E, respectively); poly(N-vinylpyrrolidone) with Mn 40 kDa (B and F, respectively); pristine gellan gum (C and G, respectively); G2 – poly(2-ethyl-2-oxazoline)-grafted gellan gum (D, for spherical gold NPs) and cetyltrimethylammonium bromide without polymer (H, for gold nanorods AuNRs).

366

367
368
369


Figure 3. Time-dependent heating curves for AuNSs upon irradiation using a 530 nm visible light source. AuNSs – gold nanospheres; PGG – pristine gellan gum; G2 – poly(2-ethyl-2-oxazoline)-grafted gellan gum; PVP 40 kDa – poly(N-vinylpyrrolidone) with Mn 40 kDa.


370 As seen from Figure 3, aqueous dispersion of AuNSs stabilized by PVP 40 kDa without tissue
371 sample shows higher heating temperature upon irradiation compared to tissue-containing
372 samples at identical conditions. Exact explanation of this phenomenon is complicated because
373 the light-to-heat conversion depends on many parameters, in particular incident laser power,
374 light wavelength, irradiation time, concentration, size and shape of AuNPs.^[65] In our mind
375 overall increase in the temperature may be due to a collective heating effect of many
376 nanoparticles within the excitation volume as mentioned by authors.^[66] Our results are
377 consistent with data of authors^[67] indicating that the cancerous tissues can be overheated above
378 the physiological level (typically 39–45 °C). In our case the heating reaches up to \approx 40–43°C
379 ($\Delta T \approx 3$ –6 °C). The temperature profiles of colloidal AuNPs solutions (not stabilized by
380 polymers) with different particle sizes were studied.^[68] The temperature of the AuNPs solution
381 increased exponentially upon laser illumination ($\lambda = 532$ nm), reached the equilibrium after \sim
382 1200 s, and then returned to the ambient value after discontinuing irradiation. Upon irradiation
383 the system is averagely heated up to 31.5 °C ($\Delta T \approx 6.5$ °C). Our observations are in good
384 agreement with these results. The photothermal properties of gold nanoparticles, in addition to
385 laser power, light wavelength, irradiation time, concentration, size and shape, depend on various
386 experimental factors, such as stirring, data recording and analysis, and the effective mass of the
387 system. Moreover, in presence of natural tissue, other molecules adsorb 530 nm light (e.g.
388 hemoglobin and myoglobin), which makes the irradiation less effective. However, 530 nm light
389 corresponds to the maximum of SPR and makes research on the photothermal phenomenon
390 more effective. Whereas the 530 nm light is the most appropriate for laboratory tests and basic
391 studies, it is less suitable for work with natural tissues. Short wavelengths are often adsorbed
392 by natural molecules, e.g. hemoglobin and myoglobin have absorbance maxima about this
393 value. This decreases effectiveness of the photothermal treatment and one has to work with
394 longer wavelengths. In our case we used 780 nm light, which guaranteed that the studies
395 photothermal effect originates from the light absorbance.

396 3.1.2. Efficacy of PTT treatment in Ehrlich cancer cells

397 Ehrlich cancer cells were used to investigate the efficacy of AuNPs-based PTT treatment
398 under the visible light irradiation. Ehrlich tumor is a well-established murine tumor model
399 frequently employed in many cancer researches, both solid and ascitic forms. Classified as a
400 carcinoma, it originates in the epithelial tissue of the skin or lining of internal organs. This
401 tumor was initially derived from a spontaneous mammary adenocarcinoma in a mouse and has
402 since been propagated in various strains of mice. Ehrlich tumor cells exhibit rapid proliferation

403 and are characterized by their ability to induce ascites fluid accumulation in the peritoneal
404 cavity when injected intraperitoneally. This tumor model is commonly employed to study tumor
405 biology, tumor immunology, anti-cancer drug screening, and evaluating therapeutic
406 interventions. Such attributes as high growth rate, good reproducibility, metastatic potential,
407 and relative stability in morphological and biological characteristics were the reason to use
408 Ehrlich cancer cells in this study.^[69-73] In order to assess the potential effect of bio-nano
409 interactions, *in vitro* experiments were performed using an HBSS buffer solution. First, Ehrlich
410 cancer cells were dispersed in a buffer solution at a ratio of 1:9. Then, 1 mL of the suspension
411 of extracted Ehrlich cancer cells was mixed with 1 mL of either polymer-stabilized AuNPs or
412 AuNRs for 5 min. The suspension was irradiated with visible (530 nm) and NIR (780 nm) laser
413 lights for 60 min at an intensity of 10 and 90 mW, respectively. Microphotographs of the cells
414 were then acquired from randomly selected 10 points in a Goryaev chamber and Ehrlich tumor
415 cells in the visible area of the microscope were counted (Figure 4). Interestingly, the number of
416 cells was considerably reduced in the presence of AuNSs stabilized with PVP 40 kDa even
417 without irradiation after 40 days of examination (Figure 4B). An explanation of this
418 phenomenon requires further experiments. No significant cell damage was observed in control
419 experiments without AuNSs, indicating that the membranes were intact and that the cells have
420 not been affected very much during 60 min of laser irradiation. However, due to an increase in
421 the temperature of the medium up to 39 °C when the samples were irradiated with either a
422 visible or NIR light source for 60 min and further inspection during the experimental period,
423 there was some reduction in the number of cells recorded in 40 days. As such there was no
424 statistically significant difference between the numbers recorded in control samples with and
425 without irradiation.

426

427 Figure 4. Microphotographs of a suspension of Ehrlich cancer cells irradiated with visible (530
428 nm) light. (A): before irradiation and without AuNSs; (B): in the presence of AuNSs–PVP 40
429 kDa with no irradiation (in 40 days). After irradiation and in 40 days: without AuNSs (C), in
430 the presence of AuNSs–PVP 40 kDa (D). PVP 40 kDa – poly(*N*-vinylpyrrolidone) with Mn 40
431 kDa.

432 Irradiating cancer cells using visible light at 530 nm in the presence of spherical AuNPs
433 stabilized with polymers and without yielded good results. Figure 5 displays the reduction in
434 the number of cancer cells counted from microphotographs taken from randomly selected 10
435 points (numerical values are shown in Table S1). For instance, the number of cancer cells
436 counted after 30 – 40 days decreased by 10 – 40 times in comparison with the control samples
437 ($p < 0.0001$). It should be noted that the number of cells in the presence of AuNSs stabilized
438 with polymers was reduced even without irradiation. Probably the gold nanoparticles retard the
439 growth of cancer cells, however, irradiation enhances this process. The true mechanism of this
440 phenomenon is not well understood and will be clarified in subsequent experiments.

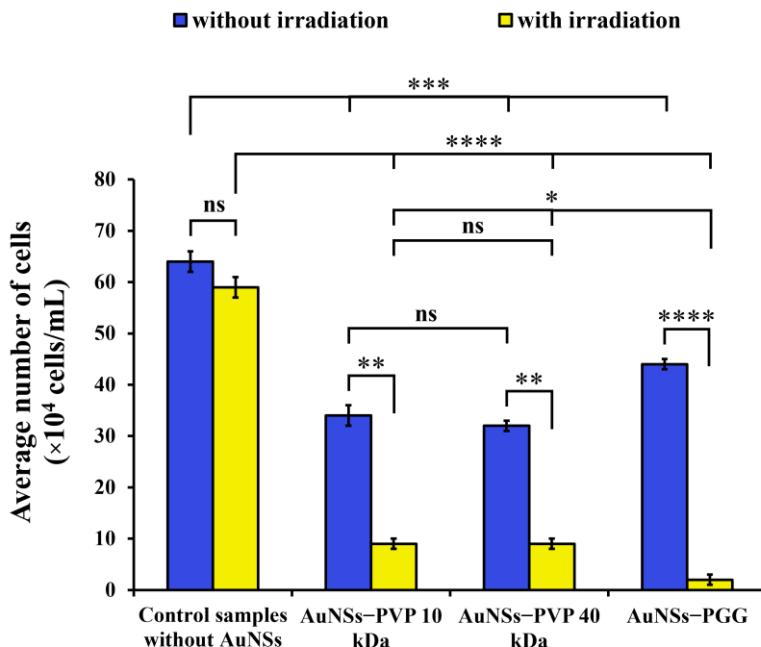
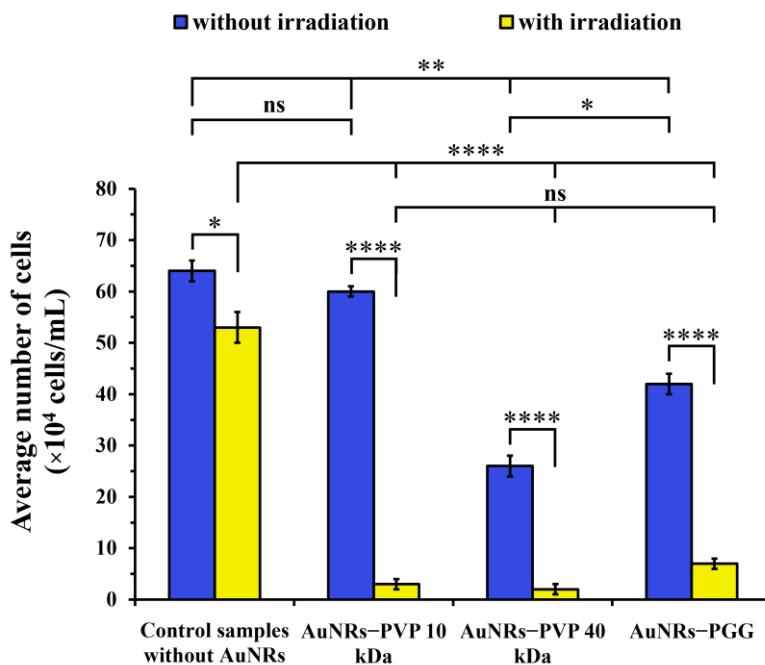



Figure 5. Number of cancer cells in control samples and in the presence of polymers-stabilized AuNSs when exposed to the visible light source at 530 nm and without irradiation. The results are presented after 40 days of examination. Data are expressed as mean \pm SEM of triplicate with $n = 10$ measurements in each. Statistically significant differences are given as: **** = $p < 0.0001$; *** = $p < 0.001$; ** = $p < 0.01$; * = $p < 0.05$; ns denotes no significance. AuNSs – spherical gold nanoparticles; PGG – pristine gellan gum; PVP 10 kDa and 40 kDa – poly(*N*-vinylpyrrolidone) with Mn 10 and 40 kDa, respectively.

441
442
443
444
445
446
447
448

Experimental results showing the effects of irradiation on the cancer cells using NIR light at 780 nm in the presence of AuNRs stabilized with polymers and control samples are illustrated in Figure 6 (numerical values are presented in Table S2). The results are presented after 40 days of examination. The number of damaged cancer cells following irradiation increased markedly after 30-40 days of inspection, particularly, there was a statistically significant difference between the numbers recorded for polymer-stabilized AuNRs and control samples without gold nanorods ($p < 0.0001$). At the same time, no statistically significant difference was observed between the samples of AuNRs stabilized with polymers followed by irradiation and in 40 days of observation, demonstrating a similar PTT effect. Numerous studies have shown that gold nanorods with an appropriate dimension (28×8 nm) are the most effective for PTT compared to other types of gold nanoparticles, such as nanospheres and nanoshells.^[9,56] Despite the AuNRs having slightly larger dimensions in size, as reported in the present work (Table 2),

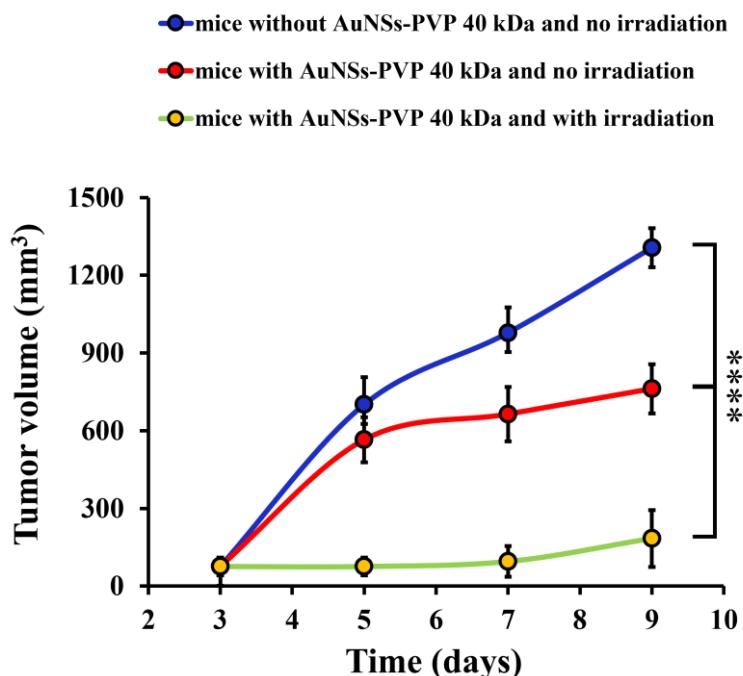
461 overall, polymer-coated AuNRs demonstrated good efficacy in PTT treatment *in vitro* and
 462 showed a comparable PTT effect as to spherical AuNPs.

463
 464 Figure 6. Number of cancer cells in control samples and in the presence of polymer-stabilized
 465 AuNRs when exposed to NIR light irradiation at 780 nm and without irradiation. The results
 466 are presented after 40 days of examination. Data are expressed as mean \pm SEM of triplicate
 467 with $n = 10$ measurements in each. Statistically significant differences are shown as: *** = p
 468 < 0.0001 ; ** = $p < 0.01$; * = $p < 0.05$; ns denotes no significance. AuNRs – gold nanorods;
 469 PGG – pristine gellan gum; PVP 10 kDa and 40 kDa – poly(*N*-vinylpyrrolidone) with Mn 10
 470 and 40 kDa, respectively.

471 In our experiments the photothermal conversion efficiency of AuNPs irradiated with 530
 472 and 780 nm laser sources were not evaluated. As seen from Figure 1, for polymer-stabilized
 473 AuNSs and AuNRs the adsorption maximums are in the range of 535 ± 5 nm and close to ≈ 800
 474 nm. The physiotherapeutic Lasmik® laser apparatus used for irradiation had only two laser
 475 sources with a wavelength of 530 and 780 nm. In case of AuNSs the absorption band at $\lambda \approx$
 476 535 ± 5 nm more or less corresponds to laser light at 530 nm. But the adsorption peaks of AuNRs
 477 at $\lambda \approx 800$ nm considerably deviates from the laser light at 780 nm. Probably this is the reason
 478 of less efficiency AuNRs in light-to-heat conversion compared to AuNSs. The photothermal
 479 conversion efficiency of different shapes of AuNPs under laser irradiation has been reported.<sup>[74-
 480 77]</sup> In particular the photothermal conversion efficiency of gold nanospheres (AuNSs) and gold

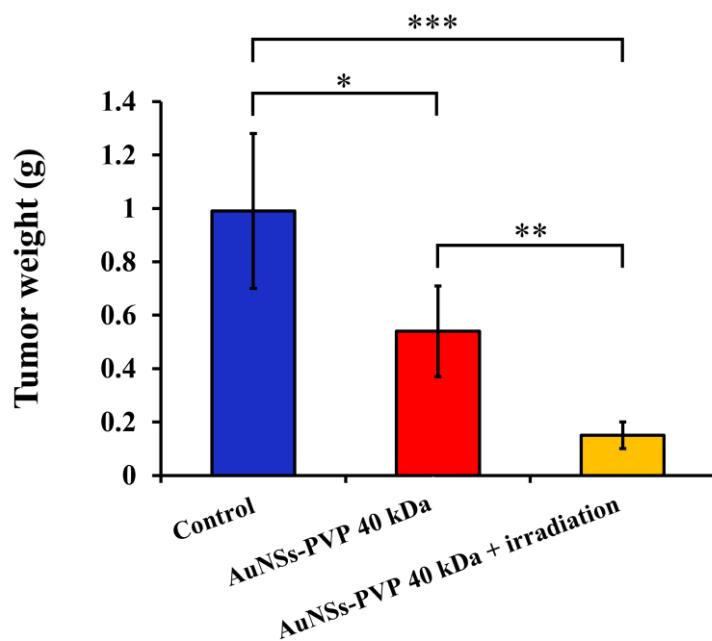
481 nanorods (AuNRs) was evaluated at different irradiation intensities of near-infrared (NIR)
 482 broadband (754-816 nm) and NIR laser (808 nm) irradiation.^[78] It was shown that the
 483 photothermal conversion efficiency of AuNSs and AuNRs is comparable. But the spherical gold
 484 nanoparticles might be preferable for hyperthermia applications with a higher accumulation rate
 485 within the tumor sites.

486 *3.1.3. In vivo study of the photothermal effect of AuNPs*


487 As the *in vitro* experiments demonstrated successful photothermal destruction of cancer
 488 cells in the presence of polymer-stabilized AuNSs under irradiation with visible light,
 489 subsequent *in vivo* studies were conducted to evaluate the therapeutic efficacy of this approach
 490 further. Tumor development was induced by injecting cancer cells into the left flanks of CD-1
 491 mice subcutaneously (see Figure S4A), after which the tumors were allowed to grow for a
 492 period of 10 days. This is consistent with the results of authors^[72] because the death of the
 493 animal with Ehrlich ascites carcinoma occurs between 10 and 14 days after cell inoculation
 494 depending on (I) the concentration of inoculated cells, (II) the amount of fluid in the peritoneal
 495 cavity, which causes abdominal pressure and compression of the organs, and (III) the number
 496 of passages, in which repeated transplantation increases malignancy and tumor proliferation.
 497 Before each exposure, the linear dimensions of the tumors in animals were measured using a
 498 caliper (see Figure S4B). The volumes of the tumors were then calculated using the following
 499 equation:

$$V = \frac{4}{3} \pi R^3 \quad (1)$$

500 where R is the radius of the tumor, and π is a value equal to 3.14.


501 Laser irradiation of tumor-bearing mice injected with AuNSs stabilized with PVP 40 kDa
 502 demonstrated a remarkable PTT effect (Figure 7). This result shows that further tumor growth
 503 is successfully inhibited by AuNSs–PVP injection in combination with a visible light laser
 504 irradiation.

505 Three days following the last exposure (see Figure S4C), the animals were humanely
 506 sacrificed, and the tumors were removed and weighed (Figure 8 and Figure S4D). The average
 507 tumor weight in the control group was 1.00 ± 0.30 g; in Group 2 with AuNSs–PVP 40 kDa it
 508 was 0.54 ± 0.20 g; in Group 3 with AuNSs–PVP 40 kDa and irradiation it was 0.15 ± 0.04 g.
 509 Figure 8 shows the comparison between tumor weight in different groups of animals measured
 510 when the animals were sacrificed.

511

512 Figure 7. Tumor growth in each treatment group as monitored for 9 days. Data are expressed as
 513 mean \pm SD values ($n = 5$). Statistically significant difference is represented as *** = $p <$
 514 0.0001. PVP 40 kDa – poly(*N*-vinylpyrrolidone) with Mn 40 kDa.

515

516 Figure 8. Tumor weight in different groups of animals measured when the animals were
 517 sacrificed. Data are produced as mean \pm SD ($n = 5$). Statistically significant differences are
 518 represented as: *** = $p < 0.001$; ** = $p < 0.01$; * = $p < 0.05$. PVP 40 kDa – poly(*N*-
 519 vinylpyrrolidone) with Mn 40 kDa.

520 The tumor growth inhibition coefficient (TGIC) was calculated using the following equation:

$$TGIC = \frac{V_k - V_0}{V_k} \times 100\% \quad (2)$$

521 where, V_k is the volume (or weight) of the tumor in the control group of animals, and V_0 is the
522 volume (or weight) of the tumor in each experimental group of animals.

523 The comparison of the sizes of tumors from different groups of mice was performed and
524 the results are summarized in Table 3. The visual inspection of tumor sizes is depicted in Figure
525 S5. Samples with AuNSs–PVP 40 kDa and without irradiation exhibited a reduced tumor
526 growth after 3 days by $19 \pm 10\%$, which was an effect that gradually increased after 7 days,
527 reaching $42 \pm 5\%$. Samples with AuNSs–PVP 40 kDa and with irradiation showed a greater
528 effect with up to $90 \pm 6\%$ reduction in the tumor size after 7 days. In 9 days TGIC calculated
529 using the tumor weight in samples with AuNSs–PVP 40 kDa and without irradiation was $43 \pm$
530 23% and in samples with AuNSs–PVP 40 kDa plus irradiation reached $85 \pm 3\%$. Based on these
531 results, it can be concluded that the spherical AuNSs stabilized using PVP 40 kDa could be
532 considered as suitable candidates to inhibit Ehrlich tumor growth and could potentially be used
533 in PTT treatment.

534 Table 3. Inhibition of tumor growth with intratumoral injection of AuNSs–PVP (40 kDa) before
535 and after irradiation at $\lambda = 633$ nm.

Samples	Inhibition (%)			
	Tumor volume		Tumor weight	
	3 days	5 days	7 days	9 days
AuNSs–PVP 40 kDa without irradiation	19 ± 10	32 ± 12	42 ± 5	43 ± 23
AuNSs–PVP 40 kDa with irradiation	86 ± 8	90 ± 4	90 ± 6	85 ± 3

536 PVP 40 kDa – poly(*N*-vinylpyrrolidone) with M_n 40 kDa.

537 4. Conclusion

538 Spherical and rod-like gold nanoparticles protected with poly(*N*-vinylpyrrolidone),
539 pristine gellan gum, and poly(2-ethyl-2-oxazoline)-grafted gellan gum were prepared and
540 characterized in this study. The gold nanoparticles exhibited the presence of characteristic

541 surface plasmon resonance (SPR) bands. The nanoparticles were analyzed for their applicability
542 as photothermal therapy (PTT) agents with respect to Ehrlich cancer cells when exposed to the
543 visible light source. Following the dialysis, the average hydrodynamic size of AuNPs reduced
544 by approximately 2-3 times and the zeta potential decreased by \sim 1.5-2 times, indicating that the
545 AuNPs are suitable for PTT. Experiments with *ex vivo* porcine stomach tissues containing
546 AuNSs were performed to determine the photothermal effect of nanoparticles when exposed to
547 the visible light source. In the course of laser irradiation of the tissue at 530 nm, the highest
548 temperature recorded was 43 ± 0.5 °C for AuNSs stabilized using PVP 40 kDa. *In vitro*
549 experiments demonstrated a similar PTT effect for Ehrlich cancer cells containing polymer-
550 protected AuNPs upon irradiation both at 530 and 780 nm. After 40 days of examination, the
551 number of Ehrlich cancer cells decreased by 10-40 times in comparison with the control
552 samples. *In vivo* experiments on mice revealed that injection of AuNSs–PVP 40 kDa followed
553 by irradiation with visible light considerably decreased the size of tumors, indicating that
554 polymer-stabilized gold nanoparticles could potentially be used in the PTT treatment of Ehrlich
555 tumors. The AuNPs developed and stabilized with polymers in this work might potentially be
556 considered as a platform for the PTT treatment of not only Ehrlich tumors, but also other type
557 of carcinoma. In near perspectives our study may be related to light-to-heat conversion
558 efficiency evaluation of AuNSs and AuNRs, toxicological experiments, study the
559 mucoadhesive properties polymer-protected AuNPs to improve the adhesion to cancer cell,
560 modification the surface of AuNPs with poly(ethyleneglycol) to enhance the cellular uptake,
561 conjugation of AuNPs with the anti-cancer drug doxorubicin *etc*. In future perspectives the
562 “green” synthesis using the natural substances (for instance, bacterium, fungi, and plants) may
563 contribute to reducing and stabilizing agents for the synthesis of AuNPs and enhance their
564 medical properties such as anti-microbial and anti-cancer activity.

565 Supporting Information

566 The following supporting information can be downloaded at: www.mdpi.com/xxx/s1.
567 Figure S1: A Lazmik® laser apparatus and the process of tissue irradiation after injection of the
568 polymer-stabilized gold nanoparticles within an incubator; Figure S2: Size distributions (before
569 and after dialysis) of spherical gold nanoparticles stabilized with different polymers determined
570 using DLS; Figure S3: TEM images of polymer-stabilized spherical gold NPs and rod-like gold
571 NPs; Table S1 and Table S2: Number of cancer cells counted in control samples and in the
572 presence of polymer-stabilized AuNSs and AuNRs followed by irradiation with visible light
573 (530 nm) and NIR light (780 nm) sources, respectively, and results are presented during 40 days

574 of examination; Figure S4: The process of injection of colloidal AuNSs into mice, measuring
575 the tumor size, irradiating the tumor with a light source, and tumor removal from an animal;
576 Figure S5: Visual comparison of the sizes of tumor samples removed from different groups of
577 mice.

578 **Acknowledgements**

579 This research was funded by the Science Committee of the Ministry of Education and
580 Science of the Republic of Kazakhstan (Grant No. AP13067773) and was supported by the
581 Horizon 2020 research and innovation program of the European Union Maria Skłodowska-
582 Curie (grant agreement 823883-NanoPol-MSCA-RISE-2018).

583

584 Received: ((will be filled in by the editorial staff))

585 Revised: ((will be filled in by the editorial staff))

586 Published online: ((will be filled in by the editorial staff))

587

588

589

References

- 590 Peng, J.; Liang, X.; Calderon, L. Progress in research on gold nanoparticles in cancer
591 management. *Medicine (Baltimore)*. **2019**, *98*, e15311.
- 592 Yang, Z.; Sun, Z.; Ren, Y.; Chen, X.; Zhang, W.; Zhu, X.; Mao, Z.; Shen, J.; Nie, S. Advances in nanomaterials for use in photothermal and photodynamic therapeutics
593 (Review). *Mol. Med. Rep.* **2019**, *20*, 5–15.
- 594 3. *World Cancer Report: Cancer Research for Cancer Prevention*; Wild, C.P., Weiderpass,
595 E., Stewart, B.W., Eds.; International Agency for Research on Cancer: Lyon, France,
596 2020; ISBN 978-92-832-0447-3.
- 597 4. Han, H.S.; Choi, K.Y. Advances in nanomaterial-mediated photothermal cancer
598 therapies: Toward clinical applications. *Biomedicines* **2021**, *9*, 305.
- 600 5. Vines, J.B.; Yoon, J.-H.; Ryu, N.-E.; Lim, D.-J.; Park, H. Gold nanoparticles for
601 photothermal cancer therapy. *Front. Chem.* **2019**, *7*, 167.
- 602 6. Costantini, P.E.; Di Giosia, M.; Ulfo, L.; Petrosino, A.; Saporetti, R.; Fimognari, C.;
603 Pompa, P.P.; Danielli, A.; Turrini, E.; Boselli, L.; et al. Spiky gold nanoparticles for the
604 photothermal eradication of colon cancer cells. *Nanomaterials* **2021**, *11*, 1608.
- 605 7. Zhao, N.; Pan, Y.; Cheng, Z.; Liu, H. Gold nanoparticles for cancer theranostics — A
606 brief update. *J. Innov. Opt. Health Sci.* **2016**, *9*, 1630004.
- 607 8. Lee, J.; Lee, Y.H.; Jeong, C.B.; Choi, J.S.; Chang, K.S.; Yoon, M. Gold nanorods-
608 conjugated TiO₂ nanoclusters for the synergistic combination of phototherapeutic
609 treatments of cancer cells. *J. Nanobiotechnology* **2018**, *16*, 104.
- 610 9. Mackey, M.A.; Ali, M.R.K.; Austin, L.A.; Near, R.D.; El-Sayed, M.A. The most
611 effective gold nanorod size for plasmonic photothermal therapy: Theory and in vitro
612 experiments. *J. Phys. Chem. B* **2014**, *118*, 1319–1326.
- 613 10. Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M. V Gold nanoparticles and gold
614 nanoparticle-conjugates for delivery of therapeutic molecules. Progress and challenges.
615 *J. Mater. Chem. B* **2014**, *2*, 4204–4220.
- 616 11. Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza,
617 J.L.; Martín Rodríguez, E.; García Solé, J. Nanoparticles for photothermal therapies.
618 *Nanoscale* **2014**, *6*, 9494–9530.
- 619 12. Mendes, R.; Pedrosa, P.; Lima, J.C.; Fernandes, A.R.; Baptista, P. V Photothermal
620 enhancement of chemotherapy in breast cancer by visible irradiation of gold
621 nanoparticles. *Sci. Rep.* **2017**, *7*, 10872.
- 622 13. Wang, S.; Lu, G. Applications of Gold Nanoparticles in Cancer Imaging and Treatment.
623 In *Noble and Precious Metals - Properties, Nanoscale Effects and Applications*; Seehra,
624 M.S., Bristow, A.D., Eds.; IntechOpen: London, 2017; pp. 291–309 ISBN 978-1-78923-
625 293-6.
- 626 14. Kim, H.S.; Lee, D.Y. Near-infrared-responsive cancer photothermal and photodynamic
627 therapy using gold nanoparticles. *Polymers (Basel)*. **2018**, *10*, 961.
- 628 15. Yeh, Y.-C.; Creran, B.; Rotello, V.M. Gold nanoparticles: preparation, properties, and
629 applications in bionanotechnology. *Nanoscale* **2012**, *4*, 1871–1880.
- 630 16. Ali, M.R.K.; Ibrahim, I.M.; Ali, H.R.; Selim, S.A.; El-Sayed, M.A. Treatment of natural
631 mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic
632 photothermal therapy to induce tumor apoptosis. *Int. J. Nanomedicine* **2016**, *11*, 4849–
633 4863.
- 634 17. Riley, R.S.; Day, E.S. Gold nanoparticle-mediated photothermal therapy: applications
635 and opportunities for multimodal cancer treatment. *WIREs Nanomedicine and*
636 *Nanobiotechnology* **2017**, *9*, e1449.
- 637 18. Cai, W.; Gao, T.; Hong, H.; Sun, J. Applications of gold nanoparticles in cancer
638 nanotechnology. *Nanotechnol. Sci. Appl.* **2008**, *1*, 17–32.
- 639 19. Ayala-Orozco, C.; Urban, C.; Knight, M.W.; Urban, A.S.; Neumann, O.; Bishnoi, S.W.;

- 640 Mukherjee, S.; Goodman, A.M.; Charron, H.; Mitchell, T.; et al. Au Nanomtryoshkas
641 as Efficient Near-Infrared Photothermal Transducers for Cancer Treatment:
642 Benchmarking against Nanoshells. *ACS Nano* **2014**, *8*, 6372–6381.
- 643 20. Yao, C.; Zhang, L.; Wang, J.; He, Y.; Xin, J.; Wang, S.; Xu, H.; Zhang, Z. Gold
644 nanoparticle mediated phototherapy for cancer. *J. Nanomater.* **2016**, *2016*, 5497136.
- 645 21. Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers
646 as an emerging platform for cancer therapy. *Nat. Nanotechnol.* **2007**, *2*, 751–760.
- 647 22. Jabeen, F.; Najam-ul-Haq, M.; Javeed, R.; Huck, C.W.; Bonn, G.K. Au-nanomaterials
648 as a superior choice for near-infrared photothermal therapy. *Molecules* **2014**, *19*, 20580–
649 20593.
- 650 23. Wang, J.; Bai, R.; Yang, R.; Liu, J.; Tang, J.; Liu, Y.; Li, J.; Chai, Z.; Chen, C. Size- and
651 surface chemistry-dependent pharmacokinetics and tumor accumulation of engineered
652 gold nanoparticles after intravenous administration. *Metallooms* **2015**, *7*, 516–524.
- 653 24. Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold
654 nanoparticles in diagnostics and therapeutics for human c ancer. *Int. J. Mol. Sci.* **2018**,
655 *19*, 1979.
- 656 25. Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations
657 in cancer diagnosis and photothermal therapy. *J. Adv. Res.* **2010**, *1*, 13–28.
- 658 26. Jain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer
659 therapy. *Br. J. Radiol.* **2012**, *85*, 101–113.
- 660 27. Cabral, R.M.; Baptista, P. V The chemistry and biology of gold nanoparticle-mediated
661 photothermal therapy: Promises and challenges. *Nano Life* **2013**, *3*, 1330001.
- 662 28. Guerrero-Florez, V.; Mendez-Sanchez, S.C.; Patrón-Soberano, O.A.; Rodríguez-
663 González, V.; Blach, D.; Martínez O., F. Gold nanoparticle-mediated generation of
664 reactive oxygen species during plasmonic photothermal therapy: a comparative study for
665 different particle sizes, shapes, and surface conjugations. *J. Mater. Chem. B* **2020**, *8*,
666 2862–2875.
- 667 29. Conde, J. et al. Gold-nanobeacons for gene therapy: evaluation of genotoxicity, cell
668 toxicity and proteome profiling analysis. *Nanotoxicology* **2014**, *8*, 521–532.
- 669 30. Conde, J.; Rosa, J.; Baptista, P. Gold-Nanobeacons as a theranostic system for the
670 detection and inhibition of specific genes. *Protoc. Exch.* **2013**, *1*–35.
- 671 31. Jain, S.; Hirst, D.G.; O’Sullivan, J. M. Gold nanoparticles as novel agents for cancer
672 therapy. *Br. J. Radiol.* **2012**, *85*, 101–13.
- 673 32. Qin, Z.; Wang, Y.; Randrianalisoa, J.; Raeesi, V. et al. Quantitative Comparison of
674 Photothermal Heat Generation between Gold Nanospheres and Nanorods. *Sci. Rep.* **2016**,
675 *6*, 1–13.
- 676 33. Cabral, R. M.; Baptista, P. V. Anti-cancer precision theranostics: a focus on
677 multifunctional gold nanoparticles. *Expert Rev. Mol. Diagn.* **2014**, *14*, 1–12.
- 678 34. Huang, X.; El-Sayed, M. A. Gold nanoparticles: Optical properties and implementations
679 in cancer diagnosis and photothermal therapy. *J. Adv. Res.* **2010**, *1*, 13–28.
- 680 35. Dumur, F.; Guerlin, A.; Dumas, E.; Bertin, D.; Gigmes, D.; Mayer, C.R. Controlled
681 spontaneous generation of gold nanoparticles assisted by dual reducing and capping
682 agents. *Gold Bull.* **2011**, *44*, 119–137.
- 683 36. Yah, C.S. The toxicity of Gold Nanoparticles in relation to their physiochemical
684 properties. *Biomed. Res.* **2013**, *24*, 400–413.
- 685 37. Zhang, Y.; Zhan, X.; Xiong, J.; Peng, S.; Huang, W.; Joshi, R.; Cai, Y.; Liu, Y.; Li, R.;
686 Yuan, K.; et al. Temperature-dependent cell death patterns induced by functionalized
687 gold nanoparticle photothermal therapy in melanoma cells. *Sci. Rep.* **2018**, *8*, 8720.
- 688 38. Liu, Y.; Ai, K.; Liu, J.; Deng, M.; He, Y.; Lu, L. Dopamine-Melanin Colloidal
689 Nanospheres: An Efficient Near-Infrared Photothermal Therapeutic Agent for *in vivo*
690 Cancer Therapy. *Adv. Mater.* **2013**, *25*, 1353–1359.

- 691 39. Li, W.; Rong, P.; Yang, K.; Huang, P.; Sun, K.; Chen, X. Semimetal nanomaterials of
692 antimony as highly efficient agent for photoacoustic imaging and photothermal therapy.
693 *Biomaterials*. **2015**, *45*, 18–26.
- 694 40. Amatya, R.; Hwang, S.; Park, T.; Min, K.A.; Shin, M.C. *In vitro* and *in vivo* Evaluation
695 of PEGylated Starch-Coated Iron Oxide Nanoparticles for Enhanced Photothermal
696 Cancer Therapy. *Pharmaceutics*. **2021**, *13*, 871.
- 697 41. Bucharskaya, A.B.; Maslyakova, G.N.; Afanasyeva, G.A.; Terentyuk, G.S.; Navolokin,
698 N.A.; Zlobina, O. V; Chumakov, D.S.; Bashkatov, A.N.; Genina, E.A.; Khlebtsov, N.G.;
699 et al. The morpho-functional assessment of plasmonic photothermal therapy effects on
700 transplanted liver tumor. *J. Innov. Opt. Health Sci.* **2015**, *8*, 1541004.
- 701 42. Dhar, S.; Maheswara Reddy, E.; Shiras, A.; Pokharkar, V.; Prasad, B.L.V. Natural gum
702 reduced/stabilized gold nanoparticles for drug delivery formulations. *Chem. - A Eur. J.*
703 **2008**, *14*, 10244–10250.
- 704 43. Dhar, S.; Mali, V.; Bodhankar, S.; Shiras, A.; Prasad, B.L.V.; Pokharkar, V.
705 Biocompatible gellan gum-reduced gold nanoparticles: Cellular uptake and subacute oral
706 toxicity studies. *J. Appl. Toxicol.* **2011**, *31*, 411–420.
- 707 44. Dhar, S.; Reddy, E.M.; Prabhune, A.; Pokharkar, V.; Shiras, A.; Prasad, B.L.V.
708 Cytotoxicity of sophorolipid-gellan gum-gold nanoparticle conjugates and their
709 doxorubicin loaded derivatives towards human glioma and human glioma stem cell lines.
710 *Nanoscale*. **2011**, *3*, 575–580.
- 711 45. D'Arrigo, G.; Di Meo, C.; Gaucci, E.; Chichiarelli, S.; Coviello, T.; Capitani, D.;
712 Alhaique, F.; Matricardi, P. Self-assembled gellan-based nanohydrogels as a tool for
713 prednisolone delivery. *Soft Matter*. **2012**, *8*, 11557–11564.
- 714 46. D'Arrigo, G.; Navarro, G.; Di Meo, C.; Matricardi, P.; Torchilin, V. Gellan gum
715 nanohydrogel containing anti-inflammatory and anti-cancer drugs: A multi-drug
716 delivery system for a combination therapy in cancer treatment. *Eur. J. Pharm. Biopharm.*
717 **2014**, *87*, 208–216.
- 718 47. Reis, C.A.; Rodrigues, C.F.; Moreira, A.F.; Jacinto, T.A.; Ferreira, P.; Correia, I.J.
719 Development of gold-core silica shell nanospheres coated with poly-2-ethyl-oxazoline
720 and β -cyclodextrin aimed for cancer therapy. *Mater. Sci. Eng. C* **2019**, *98*, 960–968.
- 721 48. Kudaibergenov, S.E.; Xu, S.; Tatykhanova, G.S.; Kudaibergenova, G.M. Gellan Gum
722 Immobilized Anticancer Drugs and Gold Nanoparticles in Nanomedicine. *Acad. J.*
723 *Polym. Sci.* **2019**, *2*, 555588.
- 724 49. Soleimani, K.; Derakhshankhah, H.; Jaymand, M.; Samadian, H. Stimuli-responsive
725 natural gums-based drug delivery systems for cancer treatment. *Carbohydr. Polym.* **2021**,
726 *254*, 117422.
- 727 50. Nurgaziyeva, E.; Kudaibergenov, S.; Mun, G.; Khutoryanskiy, V. Synthesis of
728 fluorescently-labelled poly(2-ethyl-2-oxazoline)-protected gold nanoparticles. *Chem.*
729 *Bull. Kazakh Natl. Univ.* **2021**, *100*, 12–20.
- 730 51. Agsish, N.D.; Fedoroff S. Tumor cell population of the Ehrlich ascites tumors. *Can. J.*
731 *Genet. Cytol.* **1968**, *10*, 723-746.
- 732 52. Badr El-Din, N.K.; Shabana, S.M.; Abdulmajeed, B.A.; Ghoneum, M. A novel kefir
733 product (PFT) inhibits Ehrlich ascites carcinoma in mice via induction of apoptosis and
734 immunomodulation. *BMC Complementary Medicine and Therapies*. **2020**, *20*, 127.
- 735 53. Niemelä, E.; Desai, D.; Nkizinkiko, Y.; Eriksson, J.E.; Rosenholm, J.M. Sugar-decorated
736 mesoporous silica nanoparticles as delivery vehicles for the poorly soluble drug celastrol
737 enables targeted induction of apoptosis in cancer cells. *Eur. J. Pharm. Biopharm.* **2015**,
738 *96*, 11–21.
- 739 54. Agibayeva, L.E.; Kaldybekov, D.B.; Porfiryeva, N.N.; Garipova, V.R.; Mangazbayeva,
740 R.A.; Moustafine, R.I.; Semina, I.I.; Mun, G.A.; Kudaibergenov, S.E.; Khutoryanskiy,
741 V. V. Gellan gum and its methacrylated derivatives as *in situ* gelling mucoadhesive

- 742 formulations of pilocarpine: In vitro and in vivo studies. *Int. J. Pharm.* **2020**, 577, 119093.
- 743 55. Ways, T.M.M.; Filippov, S.K.; Maji, S.; Glassner, M.; Ceglowski, M.; Hoogenboom, R.;
744 King, S.; Lau, W.M.; Khutoryanskiy, V. V. Mucus-penetrating nanoparticles based on
745 chitosan grafted with various non-ionic polymers: Synthesis, structural characterisation
746 and diffusion studies. *J. Colloid Interface Sci.* **2022**, 626, 251–264.
- 747 56. Lavikainen, J.; Dauletbekova, M.; Toleutay, G.; Kaliva, M.; Chatzinikolaïdou, M.;
748 Kudaibergenov, S. E.; Tenkovtsev, A.; Khutoryanskiy, V. V.; Vamvakaki, M.; Aseyev,
749 V. Poly(2-ethyl-2-oxazoline) grafted gellan gum for potential application in
750 transmucosal drug delivery. *Polym. Adv. Technol.* **2021**, 32, 2770-2780.
- 751 57. Nurakhmetova, Z. A.; Azhkeyeva, A. N.; Klassen, I. A.; Tatykhanova, G.S. Synthesis
752 and Stabilization of Gold Nanoparticles Using Water-Soluble Synthetic and Natural
753 Polymers. *Polymers (Basel)* **2020**, 12, 2625.
- 754 58. Aljohani, H.; Khodier, A. E.; Al-Gayyar, M. M. Antitumor Activity of Luteolin Against
755 Ehrlich Solid Carcinoma in Rats via Blocking Wnt/β-Catenin/SMAD4 Pathway. *Cureus.*
756 **2023**, 15, e39789.
- 757 59. Shan, J.; Tenhu, H. Recent advances in polymer protected gold nanoparticles: synthesis,
758 properties and applications. *Chem. Commun.* **2007**, 44, 4580-4598.
- 759 60. Li, X.; Guo, J.; Asong, J.; Wolfert, M.A.; Boons, G.J. Development of Bioorthogonal
760 Reactions and Their Applications in Bioconjugation. *J. Am. Chem. Soc.* **2011**, 133,
761 11147-11153.
- 762 61. Bingham, J. M.; Willets, K. A.; Shah, N. C.; Andrews, D. Q.; Van Duyne, R. P. Localized
763 surface plasmon resonance imaging: Simultaneous single nanoparticle spectroscopy and
764 diffusional dynamics. *J. Phys. Chem. C* **2009**, 113, 16839-16842.
- 765 62. Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J. Shape- and Size-Dependent Refractive
766 Index Sensitivity of Gold Nanoparticles. *Langmuir* **2008**, 24, 5233-5237.
- 767 63. Shenthal, R.; Norsten, T.B.; Rotello, V.M. Polymer-mediated nanoparticle assembly:
768 Structural control and applications. *Adv. Mater.* **2005**, 17, 657-669.
- 769 64. Sengani, M.; Grumezescu, A. M.; Rajeswari, V. D. Recent trends and methodologies in
770 gold nanoparticle synthesis – A prospective review on drug delivery aspect. *OpenNano.*
771 **2017**, 2, 37-46.
- 772 65. Roper, D.K.; Ahn, W.; Hoepfner, M. Microscale Heat transfer transduced by surface
773 plasmon resonant gold nanoparticles. *J. Phys. Chem. C* **2007**, 111(9), 3636–3641.
- 774 66. Richardson, H.H.; Carlson, M.T.; Tandler, P.J.; Hernandez, P.; Govorov, A.O.
775 Experimental and theoretical studies of light-to-heat conversion and collective heating
776 effects in metal nanoparticle solutions. *Nano Lett.* **2009**, 9(3), 1139-46.
- 777 67. Van der Zee, J.; Vujaskovic, Z.; Kondo, M.; Sugahara, T. The Kadota Fund International
778 Forum 2004-Clinical Group Consensus. *Int. J. Hyperthermia.* **2008**, 24 (2), 111–122
- 779 68. Jiang, K.; Smith, D. A.; Pinchuk, A. Size-dependent photothermal conversion efficiencies
780 of plasmonically heated gold nanoparticles. *J. Phys. Chem. C* **2013**, 117 (51), 27073 –
781 27080
- 782 69. Patt, H.M.; Straube, R.L.; Ann, N.Y. Measurement and nature of ascites tumor growth
783 *Acad. Sci.* **1956**, 63, 728-737.
- 784 70. Ryzhova, N. I.; Deryagina, V. P.; Savluchinskaya, L. A. The value of the model of
785 ehrlich adenocarcinoma in the study of the mechanisms of carcinogenesis, and antitumor
786 activity of chemical and physical factors. *Int. J. Appl. Fundam. Res.* **2019**, 4, 220-227.
- 787 71. Abd Eldaim, M. A.; Tousson, E.; El Sayed, I. E. T.; Abd Elmaksoud, A. Z.; Ahmed, A.
788 A. S. Ameliorative effects of 9-diaminoacridine derivative against Ehrlich ascites
789 carcinoma-induced hepatorenal injury in mice. *Environ. Sci. Pollut. Res.* **2021**, 28,
790 21835-21850.
- 791 72. Radulski, D.R.; Stipp, M.C.; Galindo, C.M.; Acco, A. Features and applications of
792 Ehrlich tumor model in cancer studies: a literature review. *Transl. Breast Cancer Res.*

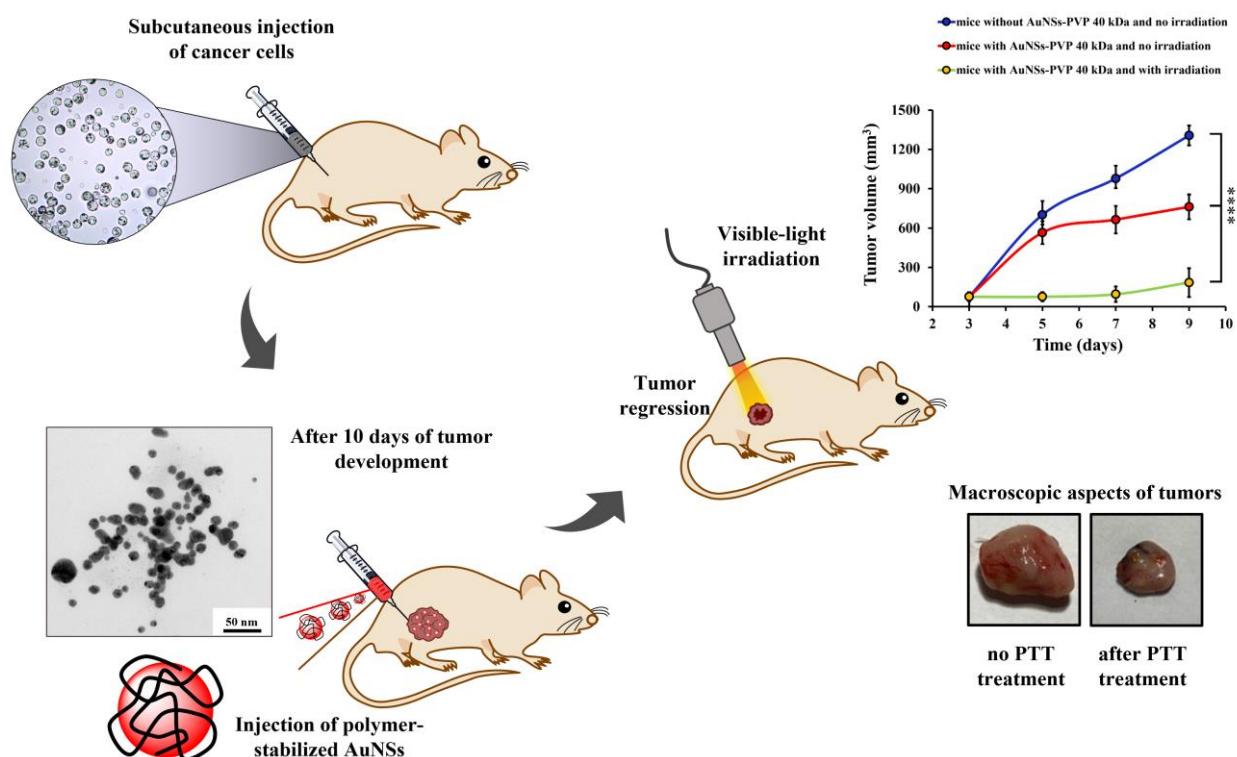
- 2023, 4, 22.

73. Lim, W. Q.; Gao, Z. Plasmonic nanoparticles in biomedicine. *Nano Today*. **2016**, *11*, 168–188.

74. Diallo, A. T.; Tlemçani, M.; Khan, M.; Spadavecchia, J.; Djaker, N. size, shape, and wavelength effect on photothermal heat elevation of gold nanoparticles: Absorption coefficient experimental measurement. *Part. Part. Syst. Charact.* **2020**, *37*, 2000255.

75. Ma, K.; Li, Y.; Wang, Z.; Chen, Y.; Zhang, X.; Chen, C.; Yu, H.; Huang, J.; Yang, Z.; Wang, X.; Wang, Z. Core–shell gold nanorod@layered double hydroxide nanomaterial with highly efficient photothermal conversion and its application in antibacterial and tumor therapy. *ACS Appl. Mater. Interfaces*. **2019**, *11*, 29630–29640.

76. Zhou, J.; Jiang, Y.; Hou, S.; Upputuri, P. K.; Wu, D.; Li, J.; Wang, P.; Zhen, X.; Pramanik, M.; Pu, K.; Duan, H. Compact plasmonic blackbody for cancer theranosis in the Near-Infrared II window. *ACS-Nano*. **2018**, *12*, 2643–2651.


77. Alrahili, M.; Peroor, R.; Savchuk, V.; McNear, K.; Pinchuk, A. Morphology dependence in photothermal heating of gold nanomaterials with Near-Infrared Laser. *J. Phys. Chem. C*. **2020**, *124*, 4755–4763.

78. Vikas; Kumar, R.; Sanjeev, S. Concentration-dependent photothermal conversion efficiency of gold nanoparticles under Near-Infrared Laser and broadband irradiation. *Beilstein J. Nanotechnol.* **2023**, *14*, 205–217.

The spherical (AuNSs) and rod-like gold nanoparticles (AuNRs) are stabilized by poly(N-vinylpyrrolidone), pristine gellan gum, and poly(2-ethyl-2-oxazoline)-grafted gellan gum. Polymer-protected AuNSs and AuNRs suppress the growth of Ehrlich cancer cells by 10-40 times compared to the control. *In vivo* experiments demonstrate a significant decrease in tumor size of mice after injection of AuNSs-PVP 40 kDa and irradiation with visible light.

G.S. Tatykhanova^{1,3,*}, R.N. Tuleyeva^{1,2}, Zh.A. Nurakhmetova¹, N.N. Gizatullina¹, V.K. Krasnoshtanov⁴, D.B. Kaldybekov^{1,2,6}, V.O. Aseyev⁵, V.V. Khutoryanskiy⁶, S.E. Kudaibergenov^{1*}.

Polymer-protected gold nanoparticles for photothermal treatment of Ehrlich adenocarcinoma: in vitro and in vivo studies

Supporting Information

Polymer-protected gold nanoparticles for photothermal treatment of Ehrlich adenocarcinoma: in vitro and in vivo studies

Gulnur S. Tatykhanova^{1,3}, Rysgul N. Tuleyeva^{1,2}, Zhanara A. Nurakhmetova¹, Nargiz N. Gizatullina¹, Vladimir K. Krasnoshtanov⁴, Daulet B. Kaldybekov^{1,2,6}, Vladimir O. Aseyev⁵, Vitaliy V. Khutoryanskiy⁶, Sarkyt E. Kudaibergenov^{1*}*

¹ Institute of Polymer Materials and Technology, 050019 Almaty, Kazakhstan

² Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan

³ Satbayev University, 050013 Almaty, Kazakhstan

⁴ Kazakh Research Institute of Oncology and Radiology, 050022 Almaty, Kazakhstan

⁵ Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland

⁶ Reading School of Pharmacy, University of Reading, Whiteknights, RG6 6DX Reading, United Kingdom

Irradiation of polymer-coated gold nanoparticles was carried out using a physiotherapeutic laser apparatus Lazmik® (Moscow, Russia) (Figure S1A). Experiments were carried out within an incubator that maintained appropriate temperature and humidity (Figure S1B).

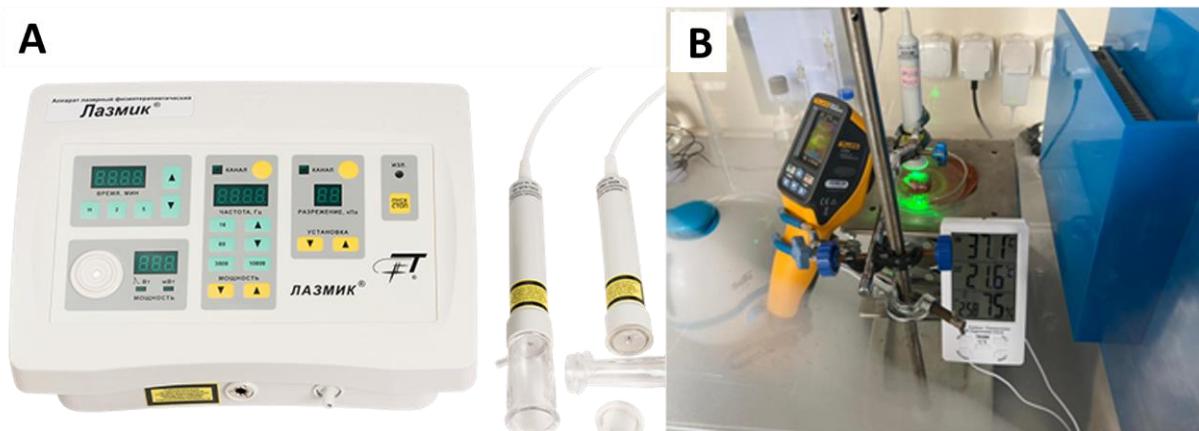


Figure S1. A Lazmik® laser apparatus (A) and the process of tissue irradiation after injection of the polymer-stabilized gold nanoparticles within an incubator (B).

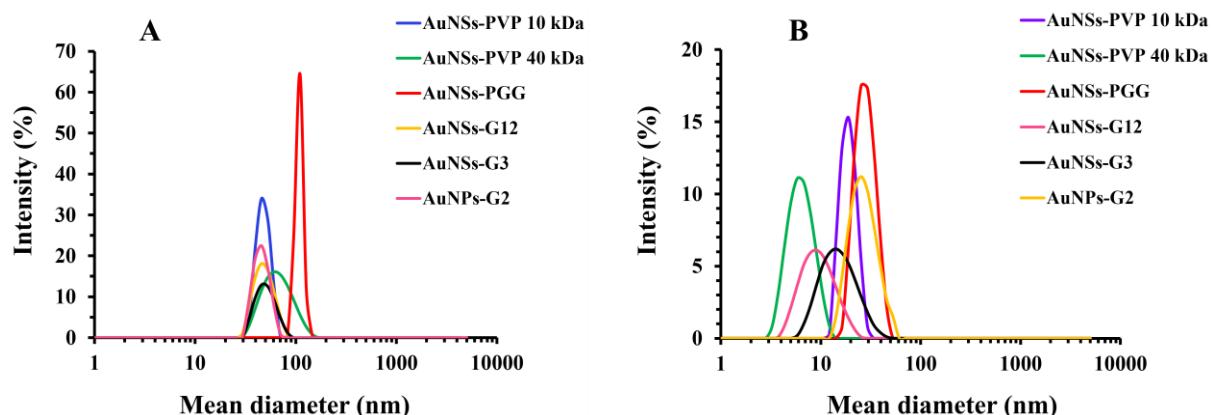


Figure S2. Size distributions of spherical gold nanoparticles stabilized with different polymers as determined by DLS; before (A) and after dialysis (B).

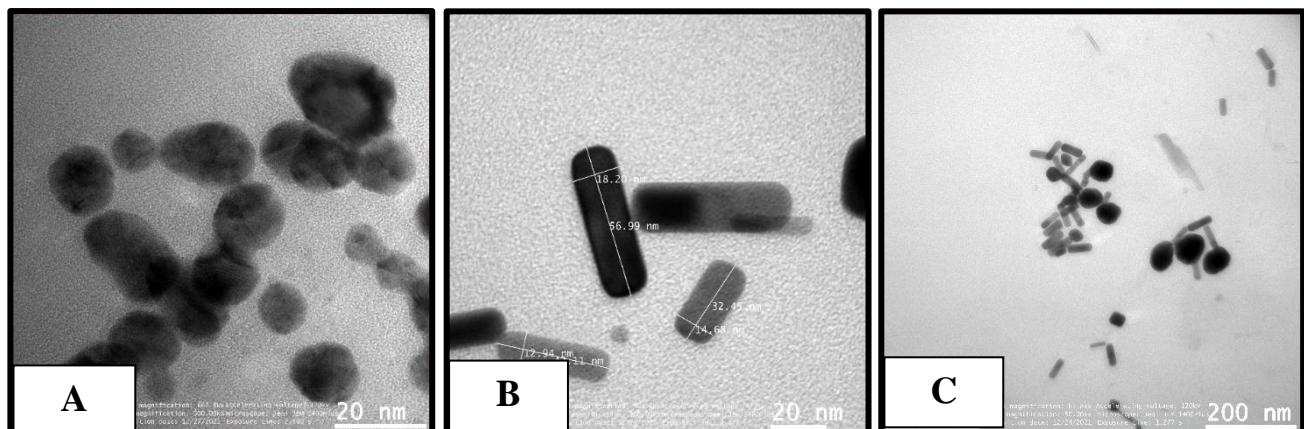


Figure S3. TEM images of spherical gold NPs stabilized using pristine gellan gum (A); rod-like gold NPs stabilized using PVP 10 kDa (B) and G2 – poly(2-ethyl-2-oxazoline)-grafted gellan gum (C).

Table S1. Number of cancer cells counted in control samples and in the presence of AuNSs stabilized using PVP 10 and 40 kDa and PGG followed by irradiation with a visible light source at 530 nm and results are presented during 40 days of examination.

Days	Control samples without AuNSs		AuNSs–PVP 10 kDa		AuNSs–PVP 40 kDa		AuNSs–PGG	
	without	with	without	with	without	with	without	with
	irradiation	irradiation	irradiation	irradiation	irradiation	irradiation	irradiation	irradiation
0	202 ± 1	202 ± 1	120 ± 1	98 ± 1	79 ± 1	96 ± 2	77 ± 1	112 ± 1
1	190 ± 2	196 ± 1	92 ± 1	96 ± 1	71 ± 1	92 ± 1	77 ± 1	77 ± 1
5	158 ± 2	173 ± 1	71 ± 1	6 ± 1	65 ± 1	29 ± 1	65 ± 1	7 ± 1
10	131 ± 1	164 ± 1	62 ± 1	9 ± 1	62 ± 1	20 ± 2	60 ± 1	5 ± 1
15	130 ± 1	153 ± 1	55 ± 2	8 ± 1	50 ± 1	19 ± 1	56 ± 1	9 ± 1
20	76 ± 1	131 ± 1	47 ± 1	14 ± 2	46 ± 1	19 ± 1	48 ± 1	7 ± 1
30	94 ± 1	140 ± 1	36 ± 1	19 ± 1	33 ± 1	7 ± 1	46 ± 1	5 ± 1
40	64 ± 2	59 ± 2	34 ± 2	9 ± 1	32 ± 1	9 ± 1	44 ± 1	2 ± 1

Data are expressed as mean ± SEM (n = 10) of triplicate.

Table S2. Number of cancer cells counted in control samples and in the presence of AuNRs stabilized using PVP 10 and 40 kDa and PGG followed by irradiation with a near-infrared (NIR) light source at 780 nm and results are presented during 40 days of examination.

Days	Control samples without AuNRs		AuNRs–PVP 10 kDa		AuNRs–PVP 40 kDa		AuNRs–PGG	
	without	with	without	with	without	with	without	with
	irradiation	irradiation	irradiation	irradiation	irradiation	irradiation	irradiation	irradiation
0	202 ± 1	202 ± 1	107 ± 3	118 ± 4	97 ± 4	107 ± 3	92 ± 4	87 ± 5
1	190 ± 2	191 ± 1	89 ± 6	93 ± 4	90 ± 6	95 ± 2	80 ± 3	53 ± 1
5	158 ± 2	161 ± 1	79 ± 3	59 ± 3	71 ± 3	53 ± 2	75 ± 2	49 ± 1
10	131 ± 1	157 ± 1	73 ± 3	50 ± 1	68 ± 2	28 ± 2	60 ± 2	32 ± 1
15	130 ± 1	123 ± 1	73 ± 2	29 ± 1	68 ± 3	20 ± 2	56 ± 1	24 ± 2
20	76 ± 1	101 ± 1	68 ± 2	15 ± 1	44 ± 4	8 ± 1	56 ± 1	11 ± 1
30	94 ± 1	43 ± 3	62 ± 2	4 ± 1	42 ± 3	3 ± 1	54 ± 1	8 ± 1
40	64 ± 2	53 ± 3	60 ± 1	3 ± 1	26 ± 2	2 ± 1	42 ± 2	7 ± 1

Data are expressed as mean ± SEM (n = 10) of triplicate.

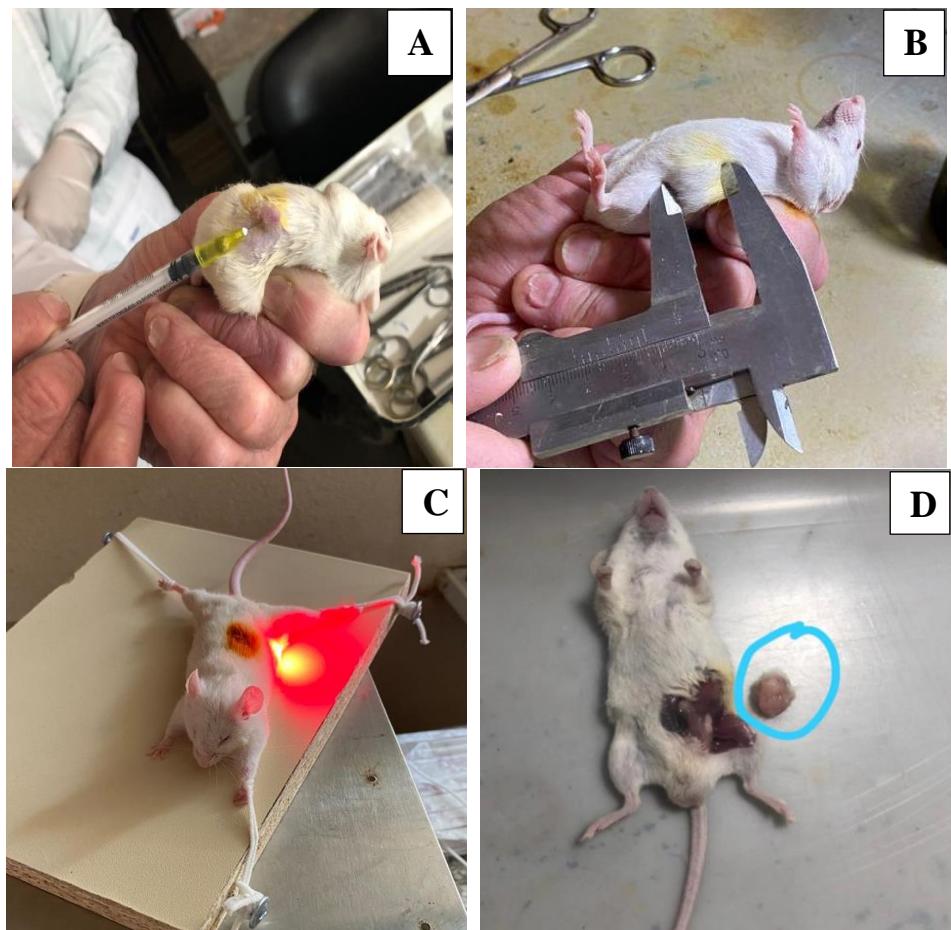


Figure S4. Injection of AuNSs–PVP 40 kDa into the left flanks of mice (A); measuring the tumor size using a caliper (B); irradiating the tumor using a laser light source at $\lambda = 633$ nm (C); tumor removal by dissecting the peritoneum (D).

Figure S5. Visual comparison of the sizes of tumor samples removed from different groups of mice. Row 1: Tumor samples taken from the Control group, without injection of AuNSs–PVP 40 kDa and no irradiation; Row 2: Tumor samples taken after injection of AuNSs–PVP 40 kDa and no irradiation; Row 3: Tumor samples taken after injection of AuNSs–PVP 40 kDa and irradiation with $\lambda = 633$ nm light source.