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Abstract— Elderly standing imbalance is a critical public health
concern, demanding robust and accurate detection techniques for
improved safety and well-being. In this paper, we propose a novel
method employing unsupervised learning and Denoising
Autoencoder with Multi-Layer Perceptron networks, along with a
custom adaptive Huber loss function and activation function, to
classify standing states in elderly individuals. The existing
Standing imbalance detection research includes difficulties such as
addressing irregularities in pressure sensor data, largely stressing
binary classification due to algorithmic efficiency considerations
while dealing with heavy-tailed data. The approach utilizes open-
source smart insole datasets, capturing left and right foot pressure
data. The ensemble model DAE-MLP efficiently captures the
temporal dynamics of the imbalance scores produced using the
Noise-resilient robust mean estimator, enabling accurate and
robust classification. This method adapts to varied degrees of data
imbalance, resulting in more accurate learning. Through
comprehensive evaluations, our method achieves an overall
accuracy of 94% on a test dataset with 53 instances. This approach
serves as a proactive standing imbalance detection system for the
elderly, enhancing safety and quality of life by identifying and
addressing standing imbalance risks. Our research introduces an
innovative solution, paving the way for advancements in elderly
healthcare and safety, reducing the risk of falls and related
injuries.

Keywords—Noise-Resilient(NR), Robust-Mean-Estimator(RME),
Foot Pressure Data, Denoising Auto Encoder(DAE) -Multi-layer
perceptron(MLP), adaptive Loss

. INTRODUCTION

The degree of physical activity observed in elderly
individuals plays a pivotal role in determining their general
health and functional condition. As individuals age, their ability
to maintain balance naturally declines, and this diminished
balance is a factor contributing to major imbalances in the
elderly population [5]. Imbalance-related issues and falls can
result in severe injuries, such as fractures, leading to chronic
pain, reduced quality of life, disability, or even mortality[10].
Statistics reveal that each year, over 50 percent of elderly
individuals residing in care facilities and nursing homes, and 30
percent of those aged 65 and above living in the community,
report experiencing falls [16][7].

The increasing number of physically inactive older adults
places considerable pressure on healthcare services[3]. Standing
balance impairment is a salient manifestation of various health
conditions that engenders a discernible decline in functional
ability [13]. The import of standing balance assessment traverses
a broad spectrum, encompassing the prediction of minor
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imbalance disorders to the appraisal of surgical procedure risks
[15].

Existing research on standing imbalance detection faces
constraints, notably concerning detecting abnormalities and
noise indices in data points by leveraging pressure sensors, and
propensity for binary classification (Montanini et al., 2018;
Quadros et al., 2018; Sadreazami et al., 2020; Maitre et al.,
2021). These limitations are arguably linked to considerations
related to the efficiency of classification algorithms (Jokanovic
& Amin, 2018).This calls for a change in our approach, moving
beyond conventional methods to more advanced ones [18].
Additionally, data from force device sensors is easily affected
by unusual values and random noise, which is a concern. This
requires new solutions to make the process of detecting balance
problems more robust and dependable. Bridging these gaps is
vital for pushing the field forward. It will help us create more
effective models for identifying balance issues in older
individuals, ultimately contributing to their safety, well-being,
and overall quality of life. Therefore, In this study, we introduce
a novel approach that combines unsupervised learning and NR-
RME and DAE-MLP networks. Additionally, we employ a
custom weighted Huber loss function and activation function to
accurately classify standing states in elderly individuals.

The research team is in collaboration with Mae Fah Luang
University Thailand to deploy it to an IOT force device with four
force pressure sensors for testing the model’s performance. The
research is a part of the Digi Health Asia project, which is
funded by the EU (https://digihealthasia.eu/)

To solve these challenges, this research introduces following
contributions:

e The research utilizes an innovative unsupervised
learning, NR-RME algorithm, and DAE-MLP
networks model to classify standing imbalance in
older people.The model incorporates a noise-
resilient robust mean estimator with advanced
features and diverse window sizes [2] which deals
with the impact of heavy-tail noise and outliers in
data.

e The efficacy and performance of the model are
thoroughly examined and evaluated using a
publicly available dataset obtained from a pair of
sophisticated insoles that underwent preprocessing,
normalization, PCA-based feature extraction, and a
noise-resilient estimator to produce imbalance



scores, followed by analysis using a DAE-MLP
network for accurate classification.

Il. RELATED WORK

Studying balance traits and analyzing the underlying trends in
balance features can contribute to predicting and reducing the
risks associated with imbalance [18]. By utilizing advanced
technologies  like  motion  capture, force  plates,
electromyography (EMG), sensors, and accelerometers, we can
gather valuable data on kinematics and kinetic metrics, which
offer valuable insights into a person’s balance and postural
control [17].

A force plate is a mechanical sensing system designed to
measure the ground reaction forces and moments involved in
human movements. These are commonly used in clinical
settings by doctors and physio therapists to assess whether
someone has good or poor balance. Machine Learning (ML)
algorithms and statistical methods play a crucial role in
analyzing motion and balance biomechanical characteristics to
establish connections between various variables [18].

In an insightful study, Giovanini et al. categorized the balance
traits of elderly individuals as either low or high fall risk and
demonstrated the discriminative abilities of six different ML
algorithms, along with 34 temporal/spatial characteristics
extracted from the center of pressure data [4]. The Random
Forest (RF) classification approach showed the highest accuracy
at 64.9, and other classifiers like Naive Bayes (NB), Support
Vector Machine (SVM), and K-Nearest Neighbours (K-NN)
achieved performance with accuracy ranging from 75% to 77%

[6].

Several studies have explored fall risk prediction using inertial
sensors, such as accelerometers and gyroscopes. For instance,
one study developed a statistical fall risk prediction system
based on stability and symmetry of gait from accelerometer data
[2]. Another research employed deep learning models to
automatically derive features from raw accelerometer data for
binary fall risk assessment [3]. Meanwhile, Hemmatpour et al.
proposed a polynomial classification model using accelerometer
and gyroscope data for real-time fall prediction, achieving 99.2
accuracy [9]. Bizovska et al. used inertial sensors and a clinical
score to assess local dynamic stability during gait, reporting an
AUC of 0.75 for fall risk assessment [10].

However, these studies faced challenges with sensor placement
affecting model performance and preprocessing time required
for data filtering and were not particularly focused on standing
balance. In another notable study, Hoffman et al. employed a
recurrent neural network (RNN) based on long short-term
memory (LSTM) to examine the walking patterns of 42
individuals using a capacitive sensor floor [19]. Their findings
indicated the potential of combining neural networks with
sensor-based data for medical research. Additionally,
Savadkoohi et al. found that a neural network model consisting
of one layer of 1D CNN, one layer of LSTM, and a Dense layer
was highly effective in predicting human balance impairment
using pressure-plate time series signals [18]. The One-OneOne
Neural Networks classification model showed improvement in
performance, achieving precision, recall, and accuracy of 100,
100, and 99.9, percent respectively.

Gait anomaly detection has seen advancements through the
development of automated techniques utilizing Convolutional
Neural Networks. Researchers have explored the effectiveness
of pre-trained CNN models like Vggl6, ResNet50,
MobileNetV2, and DenseNet in detecting gait anomalies,
achieving higher accuracy and reduced computation time when
compared to comparable research fields[17]. Notably, these
CNN-based approaches analyze sensor images, offering a
simpler alternative to video-based methods, eliminating the
complexities of 3D data preprocessing.

Gait disorders pose substantial challenges to individuals, leading
to a loss of autonomy, increased risk of falls and injuries, and
reduced quality of life. Timely and accurate gait disorder
detection is essential for improving patient mobility, preventing
falls, and identifying underlying causes. Traditional manual
methods, performed by medical specialists, have proven rigid
and time-consuming. Thus, this literature review highlights the
significance of developing a streamlined GAD approach based
on CNN models, particularly transfer learning, to classify foot
anomalies effectively. The promising results of these models,
such as the Vgg16 achieving 97.15 accuracy in distinguishing
normal and abnormal gait, demonstrate the suitability and
potential of the proposed technique but limited to gait disorders.

Therefore, In this study, we introduce a novel approach that
combines unsupervised learning With the NR-RME algorithm
and DAE-MLP ensemble model. Additionally, we employ an
adaptive Huber loss function to accurately classify standing
states in elderly individuals.

I1l. METHODOLOGY

In this study, a publicly available dataset from advanced insoles
was used to capture detailed foot dynamics, including pressure
distribution and movement. Data preprocessing involved
segmentation, filtering, and standardization using Z-scores.
Principal Component Analysis (PCA) was used for feature
extraction. An innovative noise-resilient robust mean estimator,
inspired by the Sample Median algorithm, was applied to
compute imbalance scores. Finally, a DAE-MLP network was
used to analyze temporal dynamics for accurate classification.

A. Data Acquisition

The dataset employed for standing imbalance detection is the
Smart OpenGo Insole [1] comprising 10 healthy subjects with
an average age ranging from 25 to 35 years. The mean height for
males lies within the range of 174 to 179 cm, while for females,
it varies from 160 to 163 cm. The average weight for males
spans from 70 to 75 kg, and for females, it ranges from 52 to 60
kg. Although the dataset primarily focuses on fall detection, the
present study solely observes the standing pressures of each
subject, dismissing other data points as irrelevant. Each standing
pressure file in the dataset encompasses 39 columns,
incorporating 13 pressure sensors for both the left and right foot,
in addition to accelerometer values for both feet. For the current
analysis, only the indispensable foot pressures are taken into
account, utilizing specific pressure sensor points identified as
pivotal for detecting standing imbalance.



B. Data Preprocessing and Feature Extraction

Filtering : The data preprocessing approach, inspired by Lin et
al. (2022), begins with filtering the sensed raw data to reduce
noise interference. A Butterworth low-pass filter is applied,
setting the cutoff frequency at 5 Hz, as per the findings of Price
(2018)[14], aligning with the human standing frequency range.
This filtering step ensures that the subsequent analysis focuses
on clean and reliable data, consistent with the methodology
employed in Lin et al.’s research. It is depicted in figure 1.
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Figure 1: Left foot pressure filtered data
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Figure 2: Raw Pressure data variations

Z-Score Standardization: Inspired by Lin et al. (2022), Z-
score standardization is introduced to address biases arising
from individual weights, which could ly impact network
training. Following Lin et al’s approach, Z-score
standardization is performed individually for each collected
pressure data, using the formula Zp = (zp-w)/ . The mean ()
and standard deviation () of the sequence Zp are computed
accordingly. With N set to 29, encompassing data from 13
pressure sensors in each foot.

Feature Extraction: In our paper, we applied a feature
selection technique using Principal Component Analysis (PCA)
and K-means clustering to identify the most important features
from the sensor data. We selected 38 principal components to
represent the data, capturing most of the variance in the original
feature space.We utilized PCA to identify the most important
sensors from the sensor data. The component loadings represent
the contribution of each sensor to the principal components, and
the scree plot shows the proportion of variance explained by
each principal component as shown in figure 2.

To assess the importance of each sensor, we calculated the
absolute weights for each sensor in each component by taking
the absolute values of the loadings. Then, we summed the
absolute weights for each sensor across all components to get
an overall measure of sensor importance. The results provide
valuable insights into the contribution of individual sensors to
the overall variance in the data and will be crucial for our
standing imbalance detection analysis, as we could focus on the
most relevant sensors for accurate and efficient detection. The
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Figure 3: PCA Performance

outcomes of this feature selection process were instrumental in
subsequent analyses and models, as it revealed the crucial
aspects of the sensor data that have the most impact on standing
imbalance detection.

C. Noise resilient Robust Mean Estimator (NR-RME)

In the context of univariate analysis, the presented estimator,
Algorithm, simply calculates the sample median based on the
observed data[2]. While this approach may seem simple, it
exploits the essential relationship between the mean and median
in symmetric distributions. However, this apparent simplicity
has consequences concerning the impact of contamination in
the Huber contamination model. In the subsequent section, it has
been provided the theoretical bound achieved by this estimator,

st Vg8 n <t (1)

as demonstrated in the comprehensive study conducted by
Altschuler et al. (2018).

This process relies on a sliding window technique, which
permits a granular examination of the data’s temporal
characteristics. By computing the absolute differences between
the second-order differences of the two time series datasets, we



effectively capture the nuanced variations and disparities present
within the data. Within each sliding window, the median score
is ascertained using the sample median function, with the
window size. For each specific window size, we compare the
associated imbalance score with a predetermined threshold
value. Should the imbalance score surpass the established
threshold, it is promptly assigned a class label of 1, thereby
signifying an imbalanced state. Conversely, if the score falls
below or equals the threshold(p<0.05)[20], it is firmly labelled
as 0, which denotes a balanced state. This deliberate
classification procedure results in an array of class labels,
effectively capturing the classified imbalance scores. To
facilitate a thorough and insightful analysis, we subsequently
consolidate the imbalance scores and their corresponding class
labels into a well-organized and structured data frame. This data
frame presents a comprehensive view of the imbalance scores
across various window sizes, offering a profound understanding
of the temporal patterns associated with balanced and
imbalanced states in the time series data.

D. Ensemble Model DAE-MLP

Traditional autoencoders, especially when equipped with deep
architectures, are prone to being adversely affected by noise. In
cases where the training data lacks clarity or is corrupted, the
encoder output tends to exhibit less sparsity in the distribution
of node weights. Consequently, the risk of overfitting becomes
more pronounced, leading the model to memorize the training
data rather than learning meaningful patterns. To tackle this
challenge and enhance the model’s robustness, a novel
approach is employed, involving the introduction of random
noise into the encoder input. This process randomly corrupts
one of the input features using a stochastic term. By adopting
this innovative strategy, the model gains the ability to
effectively navigate through data imperfections and maintain its
performance[1]. A Dropout layer with a rate of 0.5 is included
in this architectural hierarchy. This layer was constructed by
randomly removing 50% of the neurons from the previous layer
in order to prevent overfitting and increase generalization and
robustness.

Multi-Layer Perceptron (MLP) The Multi-Layer Perceptron
(MLP) is a variant of the deep learning neural network family.
It consists of an input layer, two or more hidden layers, and an
output layer. Each layer contains multiple interconnected
neurons, and the connections between neurons have associated
weights. The neurons in the hidden layers use activation
functions to introduce nonlinearity into the network.

Mathematically, the output of a neuron k in the MLP can be
represented as follows:

vk = fluk + b_k) (2)
uk = Y (w_{ki} » x_i) (3)

Where x_1, x_2, x_3, ..., x_n denote the input signals, w_{k1},
w_{k2}, w_{k3}, ..., w_{kn}.

MLP are trained using the backpropagation (BP) algorithm,
which follows an error-correction rule. During training, the
network processes input data and computes outputs. The error
is then calculated by comparing the target values with the
network’s outputs. The weights and biases are adjusted using
optimization techniques to minimize the error. The training
process iterates until the network reaches a predefined
minimum allowable error, often measured using mean square
error (MSE) as the error function. The architecture of MLP-
NNs allows them to handle complex tasks and learn intricate
patterns from the data. By adjusting the number of hidden
layers and neurons in each layer, MLPs can adapt to various
problem complexities.

E. Integration of NR-RME and DAE-MLP

In the initial stages of data preprocessing, time series data,
which includes pressure data from both the left and right foot,
undergoes essential transformations to ensure numerical
consistency. By converting the data to float type, we facilitate
further computations and analyses. Next, we employ a robust
statistical method called the Noise-Resilient Robust Mean
Estimator (NR-RME) to calculate the imbalance scores. This
technique efficiently handles noisy data and outliers, making it
well-suited for our analysis. Using a sliding window approach,
we compute the absolute differences between the second-order
differences of the two time series datasets. This process
captures the variations and disparities present in the data, even
in the presence of noise.
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Within each sliding window, we apply the NR-RME to estimate
the median score. The window size for the NR-RME
computation is determined by the parameter “windowsizes.”
These calculated imbalance scores are subsequently saved, as
they will be crucial for the data labeling phase. Since our dataset
is unsupervised, the imbalance scores play a pivotal role in
attributing class labels to each data point. By thresholding the
scores, we classify the data into balanced and imbalanced
states. The adaptive Huber loss function is a specialized
technique introduced to enhance the performance and
robustness of regression models. It is a combination of the
squared loss (Mean Squared Error, MSE) and the linear loss
(Huber loss). The adaptive Huber loss calculates the residual,
which measures the difference between the predicted value and
the true target value.

A threshold parameter called ‘6 ‘ is computed based on the
average magnitude of the residuals. The loss function operates
in the following manner: If the absolute value of the residual is
smaller than ‘§ °, it applies the squared loss (0.5 times the
square of the residual). This encourages smooth and stable
predictions when the model’s predictions are close to the true
values. However, when the absolute value of the residual
exceeds ‘6 °, the function switches to the linear loss, which
penalizes large residuals proportionally. This linear component
reduces the impact of outliers and promotes model stability. By
summing up the individual losses for all predictions, the
adaptive Huber loss provides an overall measure of the model’s
performance. Its adaptability based on the magnitude of
residuals allows it to effectively handle noisy and diverse
datasets, making it a valuable tool for training models.
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y_t: representing the true labels of the samples,
y_p, which denotes the predicted labels by the model,
s, difference between the true and predicted labels .

The noise injection serves to augment the Denoising
Autoencoder’s (DAE) resilience and finesse in extracting
pertinent information from the corrupted input, elevating its
adaptability to hitherto unseen data. Subsequently, the DAE
incorporates two dense layers, each encompassing 64 and 128
neurons, respectively, and distinguished by the transformative
prowess of the Rectified Linear Unit (ReLU) activation
function. Effectively operating as masterful information
processors, these layers skillfully detect intricate relationships
within the data. Furthermore, a Dropout layer intervenes post
the first dense layer, imparting an essential regularizing
influence by randomly deactivating neurons during training.
This prudent measure curtails the risk of overfitting. To
optimize the DAE’s denoising potential, the ensemble model
employs the adaptive Huber loss function. During the model
training process, the DAE conscientiously learns to artfully
reconstruct denoised data from the corrupted input, exhibiting

a refined acumen in representing the data gleaned through the
learned encoder part. Intriguingly, the extracted encoder part is
ingeniously harnessed as a formidable feature extractor for the
subsequent MLP, the neural epicenter for classification
endeavors.

Augmented with Dropout layers, the MLP deftly interfaces
with the learned features to further refine the classification
process. Equipped with two dense layers of 128 neurons, the
MLP deftly distills the essence of the extracted features into
precise classification outputs. The denouement manifests in a
final dense layer with a sigmoid activation, skillfully generating
probabilities indicative of input belonging to a designated class.
The model is honed during training, where its mettle is
evaluated against a substantial 50-epoch duration, efficiently
assimilating knowledge and experience for discerning
performance. In essence, this ensemble architecture stands to
obtain an classification efficiency and its proven efficacy
through training and validation.

IVV. COMPARATIVE ANALYSIS

In this study, we designed a series of experiments using Keras
and TensorFlow 2.11.0 to analyze and compare different
configurations. Python 3.9.13 environment was utilised for our
research. To ensure accurate results, we carried out the training
and testing processes with great precision on a high-
performance computer running Windows 11. This computer was
powered by a powerful 2.42 GHz Intel Core 11th Gen i5-
1135G7 CPU, a choice that played a critical role in maintaining
the reliability of our study's findings.

The dataset consisted of 525 rows and 7 columns, including
time, pressure readings, imbalance scores, and class labels. Time
represented session duration, while pressure readings came from
left and right positions. Imbalance ratings were precomputed to
enrich the dataset. For binary classification, we developed an
ensemble model. It combined Denoising Autoencoder (DAE)
and Multi-Layer Perceptron (MLP) classifiers to benefit from
DAE's noise reduction and feature extraction abilities, along
with MLP's classification capability. The DAE had two key
components: a Gaussian Noise layer introducing controlled
noise and a Dense layer with 64 units responsible for extracting
meaningful patterns from the noisy input data.

This architectural hierarchy includes a Dropout layer with a 0.5
rate. By randomly deactivating half of the neurons from the
preceding layer, this layer was created to prevent overfitting and
to promote generalization and robustness. Another Dense layer
with 128 units that served as the basis for the next MLP classifier
was added to the ensemble model at the end. Due to its complex
design, the model was able to forecast events based on the useful
attributes that the DAE had collected. The MLP classifier
showed a two-tiered structure as we moved ahead. A Dropout
layer with a 0.5 rate was achieved by the initial Dense layer,
which had 128 units. The goal of this design was to prevent
overfitting and retain the model's dependability. A single-unit
Dense layer served as the output layer.

Throughout the DAE's training, we observed its steady
improvement over 50 rounds. With the use of Adaptive Huber
Loss, the training loss was decreased from 0.1410 to just 0.0053.
After training the DAE, we proceeded to train the MLP using



the encoder data. The MLP improved over time, starting with an
accuracy of about 65.48%. The model accuracy improved as
well, reaching around 96.23% indicating accurate classification
of standing imbalance.

The classification report encompasses a variety of important
metrics such as precision, recall, F1-score, support, accuracy,
macro average, and weighted average. For class 0, the model
achieved an impressive precision score of 0.96. This means that
96% of instances predicted as class 0 were correctly assigned.
Furthermore, the recall score of 0.92 indicates that the model
accurately identified 92% of the true class 0 instances.
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Figure 5: DAE-MLP Training and validation Accuracy

In Figure 5, we observe that the F1-score, standing at 0.94,
reflects a harmonious combination of precision and recall,
underscoring the model's ability to accurately classify both
positive and negative instances of class 0. When considering
class 1, the model exhibits a precision value of 0.93, denoting
that 93% of instances classified as class 1 truly belong to the
positive category. Simultaneously, the recall score of 0.97
indicates that the model effectively recognized 97% of the true
class 1 instances. The F1-score for class 1, at 0.95, highlights a
well-balanced relationship between precision and recall,
contributing to a refined performance. Altogether, the model

Training and Validation Loss
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Figure 6: DA-MLP Training and
Validation Loss

achieves an overall accuracy of 0.94, signifying the correct
classification of 94% of all instances.

As Shown in Figure 6, the macro average, which takes an even-
handed approach to precision, recall, and F1-score across all
classes, achieves a value of 0.94. This underscores a balanced
performance in the binary classification task. Likewise, the
weighted average, which considers class imbalances, also
reaches 0.94, succinctly encapsulating the model's performance
across both classes. These findings reinforce the effectiveness of
our ensemble model, where the fusion of denoising and
classification methods synergistically aligns. This holds great
promise for real-world applications requiring accurate binary
classification.

Confusion Matrix

25

Balanced

20

-15

True Label

-10

Imbalanced
|

Predicted Label

Figure 7: Confusion Matrix

The Confusion Matrix is depicted in Figure 7, providing insight
into the model's performance. Additionally, we calculated the
Area Under the Receiver Operating Characteristic Curve (AUC-
ROC) for our binary classification model to be 0.9167. This
crucial metric assesses the model's ability to distinguish between
positive and negative instances. An AUC-ROC value of 0.9167
indicates strong discrimination, as the model achieves a high
true positive rate while minimizing false positives. The AUC-
ROC value ranges from 0 to 1, with O indicating poor
performance and 1 indicating perfect classification. Therefore, a



value of 0.9167 signifies that our model outperforms random
guessing and excels in binary classification tasks.
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Classification Report
Model —
Accuracy F1 Score Precision Recall
DAE-MLP
With NR- | 94% 94 96 92
RME

V. CONCLUSION

In our study, we have introduced an innovative approach that
focuses on detecting balance issues within the elderly
population during instances of standing posture. This matter
holds great significance due to the increased vulnerability to
falls and related injuries faced by this demographic. Our
method comprises a combination of two distinct
methodologies: the Noise-Resilient Robust Mean Estimator
(NRRME) and a composite model involving a Denoising
Autoencoder (DAE) in conjunction with a Multi-Layer
Perceptron (MLP).

The NRRME algorithm plays a pivotal role by computing mean
values from data procured through wearable devices. This
computation remains reliable even when the dataset is subject
to disruptive influences, intrinsic noise, or heavy-tailed data
points. This robust adaptability is essential for real-world
scenarios, wherein data integrity can be susceptible to various
factors. The combined DAE-MLP model then makes use of
these improved data representations, improving feature
extraction and ultimately the classification process's precision.

Our study was based on data gathered from foot
pressure sensors attached to elderly participants during various
standing activities. The dataset had been preprocessed, which
included the removal of unwanted noise and abnormalities.
Here, NR-RME algorithm contributed a vital part in
maintaining the correctness of mean value predictions,
providing as a basis for accurate statistical computations. Our
model's DAE component proved essential in revealing key
dataset patterns, which provided the MLP with a solid basis for
the binary classification task—specifically, recognizing
instances of balance irregularities. The results obtained confirm
the effectiveness of our approach. The NR-RME with DAE-

MLP algorithm had a commendable 94% accuracy rate in
recognizing instances of standing imbalance, demonstrating its
resilience in the face of data complexities and inconsistencies.

Nevertheless, it is important to acknowledge the limitations of
our approach. The most important of them is the requirement
for labeled data, which is required for both model training and
evaluation. The human-annotated data collection procedure
adds subjectivity and potential inaccuracies, which we
constantly  acknowledge.  Furthermore, the universal
applicability of our technique across multiple situations and
demographic strata necessitates a thorough evaluation to assure
robustness and reliability.

The development of strategies aimed at reducing reliance on
annotated data, potentially through the introduction of semi-
supervised learning paradigms, opens up exciting prospects for
broadening the scope of our approach. The incorporation of
real-time monitoring capabilities into wearable devices and
sensor arrays opens the door to the possibility of continuous
monitoring and rapid intervention. The use of contextual
information, including environmental variables, has the
potential to improve accuracy and adaptability. In conclusion,
our research lays a solid foundation for furthering standing
imbalance issues prevention measures and improving senior
healthcare. This undertaking, on the other hand, is conscious of
the need for continual refinement and investigation of its varied
possibilities.
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