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Abstract— The widespread adoption of wearable 

devices enables continuous monitoring of physiological 

parameters like heart rate, offering valuable insights into 

health. However, consumer-grade wearable data exhibits 

real-world noise, variations, and discontinuities across 

diverse populations, posing significant challenges for 

anomaly detection models. This paper proposes a novel 

deep learning approach to address these challenges, 

utilizing a Contractive Autoencoder (CAE) model 

optimized and applied specifically to noisy temporal heart 

rate data from wearable devices. By incorporating a 

contractive regularization penalty in the loss function, the 

model learns more robust and stable representations of 

the irregular data with high accuracy. Comprehensive 

experiments on a real-world Fitbit dataset demonstrate 

the proposed CAE model accurately identifies anomalous 

heart rate patterns missed by traditional thresholding 

techniques. The research encountered key challenges in 

ensuring model generalizability across diverse 

populations with natural heart rate variations, handling 

missing and sparse data from unreliable real-world 

wearable devices, and obtaining properly labelled 

anomaly data for robust training. Although the current 

model achieved promising anomaly detection results, 

further extensive validation on diverse datasets is 

essential to fully assess its capabilities across expanded 

demographics and use cases. Overall, this research 

provides an important foundation for optimizing deep 

learning approaches on noisy real-world wearable data 

through rigorous evaluation. 

Keywords— contractive autoencoder, contractive loss, 

anomaly detection, timeseries data, heartrate anomaly, 

outlier detection  

I. INTRODUCTION  

Anomaly detection in heart rate data is a crucial aspect of 
modern healthcare, aiming to identify and flag any abnormal 
or irregular heart rate patterns that may indicate potential 
health problems. With the widespread adoption of wearable 
devices, such as smartwatches and fitness trackers, continuous 
heart rate monitoring has become accessible and convenient 
for individuals of all ages and lifestyles, providing valuable 
insights into cardiovascular health conditions. These wearable 
devices are equipped with advanced sensors that capture heart 
rate data continuously, enabling the tracking of heart rate 
variations and trends over time [1]. The heart rate data 
collected by wearable devices encompasses a rich and 
dynamic time series, often referred to as continuous or time 

series data. Unlike traditional sporadic measurements, 
continuous heart rate readings are taken at regular intervals, 
spanning from a few seconds to a few minutes, hours or days. 
This continuous data stream offers a comprehensive and 
granular view of an individual's heart, capturing fluctuations, 
patterns, and rhythms that might otherwise go unnoticed with 
sporadic measurements [2]. By continuously monitoring heart 
rate, healthcare professionals and individuals can gain insights 
into various heart rate parameters and assess how they evolve 
over different time frames.  

Researchers and medical practitioners have been 
increasingly leveraging machine learning and data-driven 
techniques to develop robust anomaly detection methods for 
heart rate data collected from wearable devices. However, 
existing techniques face challenges in handling noise, sparse 
sampling rates, and inability to generalize across diverse 
populations exhibiting natural variations in normal heart rate 
ranges. This presents a research gap for developing robust 
anomaly detection models that can learn effective data 
representations despite real-world noise and inter-personal 
variations. 

To address these limitations, we present a novel CAE 
model optimized specifically for consumer-grade wearable 
heart rate data. Unlike existing work exploring raw PPG or 
ECG signals, our approach focuses on quantified beats per 
minute (bpm) heart rate readily available from consumer 
wearables. This CAE goes beyond the standard autoencoders 
that solely minimize reconstruction error by incorporating a 
contractive regularization penalty that encourages learning 
invariant representations robust to noise and minor 
perturbations. Experiments on a real-world Fitbit dataset, 
discussed later in this paper, demonstrate the CAE model 
attains over 90% accuracy in classifying normal and 
anomalous heart rate patterns. This high performance 
highlights its capabilities in handling real-world noise 
compared to existing techniques. By optimizing the 
autoencoder architecture for wearable data characteristics, we 
aim to unlock the potential of widely available consumer 
devices for preventive monitoring through early anomaly 
detection. The detected anomalies could have further 
implications for adjusting exercise based on real-time 
feedback to mitigate health risks. 

By integrating the CAE model into wearable devices, we 
aspire to contribute to the advancement of digital health in the 
region and empower elderly individuals to take charge of their 
mobility disorder prevention. 

The key contributions of this research are as follows, 

1. Proposing a novel CAE model for accurate and robust 
anomaly detection in heart rate data. 



2. Demonstrating the superiority of the CAE model over 
traditional techniques and other ML approaches on a 
real-world wearable device dataset. 

3. Providing a method to enable early detection of heart 
rate irregularities using wearable devices for preventive 
health strategies. 

The structure of this paper is as follows: In the following 
section, we delve into the related work on anomaly detection 
and contractive autoencoders in our literature review. 
Subsequently, the methodology section outlines our approach, 
data particulars, and details regarding the model architecture. 
In the results section, we present quantitative evaluations and 
visualizations of our model's performance. Finally, we 
summarize our findings, discuss limitations, and outline 
avenues for future work in the conclusion. 

II. RELATED WORK 

Several studies have explored different machine learning 
techniques to detect anomalies in heartrate data and were able 
to accurately detect anomalies with high sensitivity and 
specificity. Several commercial wearable devices, such as 
Fitbit and Apple Watch, have also implemented algorithms for 
anomaly detection in heart rate data [3]. For instance, 
Alugubelli et al. [4] emphasized the potential of wearable 
devices in remote heart rate and heart rate variability 
monitoring, discussing different wearable devices' accuracy, 
limitations, and future research directions. In a study by Liu et 
al. [5], a convolutional autoencoder was employed to estimate 
COVID-19 symptoms and anomalies. Furthermore, Abir et al. 
[6] introduced a deep learning framework with CNN, 
Variational Autoencoder, and LSTM components for 
detecting COVID-19 based on smartwatch data and 
successfully detected COVID-19 for 74% of subjects, 
demonstrating utility as a supplementary screening tool. The 
approach leverages continuously collected heart rate and step 
count data from consumer wearables. 

Beyond heart rate anomaly detection, machine learning 
models have been applied to predict chronic obstructive 
pulmonary disease (COPD) based on physiological time series 
patterns [7].  Additionally, researchers explored using Fitbit-
assessed behaviour as a predictor for readmission of 
postsurgical cancer inpatients, building a predictive machine 
learning model with Fitbit activity data [8].  

In the domain of CAE, researchers have leveraged 
gradient-based activation penalties and sparse activations to 
reflect data's intrinsic properties [9]. CAEs have found 
application in diverse tasks, including cloud Intrusion 
Detection [10], document clustering [11], recognition of 
pilots' Fatigue Status [12], Online spike sorting [13], and 
more. For ECG denoising, Banerjee et al. [14] proposed a 
convolutional sparse contractive autoencoder incorporating 
sparsity, contractive regularization, and L2 norm. 

Some prior studies developing anomaly detection models 
for wearable devices have utilized ECG data for training and 
evaluation. ECG provides detailed waveform data useful for 
research purposes.  For example, Zhong et al. [16] proposed 
an unsupervised approach using convolutional autoencoders 
and Gaussian mixture models to estimate beat-to-beat heart 
rate from ECG data from wearable sensors. Carrera et al. [26] 
introduced an online anomaly detection system using a 
Variational autoencoder architecture tailored for ECG time-
series data from wearable sensors. Their approach combining 

beat segmentation and adaptive thresholding could effectively 
perform online ECG monitoring and detect anomalous 
heartbeats.  

However, consumer smartwatches mostly rely on 
photoplethysmography (PPG) sensors which measure blood 
volume changes to estimate heart rate. The PPG sensors 
output periodic heartbeat waveforms, which can be processed 
to derive a quantified beats-per-minute (bpm) value. Prior 
studies like Gu et al. [15] developed lightweight convolutional 
neural network to detect anomalies directly from the raw PPG 
waveform data. 

While studies have used ECG and PPG data, for many 
commercial wearables only the quantified bpm heart rate is 
available to users, not the raw PPG waveform. Our work 
focuses specifically on analysing the bpm heart rate data 
readily available from consumer wearables. This quantified 
bpm data provides a direct measurement of heart rate in beats 
per minute.  

We propose a CAE model designed to work with the bpm 
heart rate time series data for effective anomaly detection. We 
formulate anomaly detection as a supervised classification 
task, by labelling data to train the CAE model to distinguish 
between normal and anomalous heart rate sequences. This 
provides an end-to-end approach optimized specifically for 
heart rate time series characteristics, unlike unsupervised 
techniques explored in some prior work. 

 Existing anomaly detection techniques using deep 
learning, such as Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs), have faced challenges 
related to expert feature engineering, handling high-
dimensional data, and interpretability issues [17]. Anomaly 
detection remains an active research area for healthcare 
applications. This work proposes a novel CAE architecture for 
heart rate anomaly detection from wearable bpm data in a 
supervised framework. By providing robust anomaly 
detection, this approach has promising implications for 
advancing digital health monitoring.    

III. METHODOLOGY 

A. Dataset and preprocessing 

 This research utilizes a public dataset of heart rate time 
series data collected from Fitbit users. The dataset was 
generated via a survey distributed on Amazon Mechanical 
Turk between March 12, 2016 and May 12, 2016 [25]. 
Fourteen Fitbit users consented to share their personal heart 
rate tracker data. The data is structured with each row 
representing a heart rate measurement at a specific timestamp.  

There are 3 columns: 

• Id - An identifier representing each unique user in the 
dataset. This allows heart rate measurements to be 
grouped by user. 

• Time - The timestamp indicates when each heart rate 
reading was taken, in YYYY-MM-DD HH:MM:SS 
format. 

• Value - The heart rate measurement in bpm recorded at 
each timestamp. 

 In total, the dataset contains 1,048,576 heart rate 
measurements across the 14 users. The time intervals between 
measurements range from 1 second to over 1 hour. This 



variable sampling rate is common in real-world wearable 
device datasets.   

 After conducting an initial analysis to comprehend 
the data distribution, continuity, and underlying patterns, 
several significant observations surfaced. Firstly, it became 
apparent that the dataset exhibited an imbalance, suggesting 
an uneven distribution of samples for each user. Secondly, the 
data displayed discontinuities, with missing observations at 
specific time points. Lastly, the data length varied among 
users, leading to differing numbers of data points for each 
individual. These findings highlight the importance of 
meticulous preprocessing and data handling to enable robust 
analysis.  

To better understand the data, we visualized heart rate 
plotted against time (Fig. 1). This plot would display a fluid 
line reflecting fluctuations influenced by physiological 
factors. Patterns like gradual shifts, oscillations, and 
spikes/drops can be revealed. An anomaly could be 
represented by a sudden spike or drop-in heart rate that stands 
out from surrounding points (Fig. 2). This irregularity often 
indicates a potential health issue or error.  

 

 

Figure 1 The temporal heartrate data for a specific individual over 

a specific period, ranging from 2016-04-12 to 2016-05-12, in its 

raw, unprocessed form. 

 

 

Figure 2: An example of an identified irregular or unusual variation 

in the heart rate of an individual, indicating a potential anomaly. 

 
To ensure the quality and suitability of the data for the 

machine learning algorithm, a pre-processing step was carried 
out. This involved several key actions, including noise 
removal, handling missing values, data normalization, and 
converting the data into a suitable format. By performing these 
necessary adjustments, the data was prepared optimally for 
accurate and effective analysis using the machine learning 
algorithm.  

The raw data was initially filtered to include the complete 
data records from just five users spanning the entire time 

duration. The data was then resampled to 10 second intervals 
for each user, with missing values imputed via forward fill. To 
smooth out noise, a rolling 30-sample average was applied to 
the heart rate readings for each user. The sequences were then 
sliced to contain only complete intervals of 5 minutes. This 
process yields a substantial volume of data with a consistent 
length, ensuring adequacy for training, validation, and testing 
purposes. Thresholds of 60 to 140 bpm were set to identify 
anomaly labels - any heart rates outside this range were 
labelled as 'Anomaly' while others were labelled as 'Normal'. 
The dataset was split into training, validation and testing sets 
for modelling.  

 Training an autoencoder using normal data is essential to 
establish a baseline understanding of regular patterns and 
features within the dataset. This process allows the 
autoencoder to learn the inherent structures and 
representations of normal data, which in turn enables it to 
distinguish anomalies or deviations when presented with 
unfamiliar or anomalous instances. Therefore, the dataset has 
been partitioned in a manner where 80% of the normal data is 
allocated for training purposes. The remaining data has been 
combined and then divided into two subsets: validation and 
test data.  

 Ultimately, all datasets underwent normalization to 
establish a uniform scale, preventing any individual feature 
from overshadowing the model training process. 
Normalization enhances convergence and optimizes model 
performance. The Min-Max Scaler was employed to rescale 
numerical data into a predefined range, typically bounded 
between 0 and 1. This rescaling conserves the inherent 
relationships among data points while ensuring uniformity 
across all features.  

 This multi-step preprocessing pipeline transformed the 
raw variable-rate data into structured sequenced samples, 
engineered relevant anomaly labels, and normalized features. 
It successfully addresses issues observed during exploratory 
data analysis, such as data imbalance, missing values, and 
variable lengths, ensuring the model's accuracy even with 
noisy or incomplete data.  

B. Autoencoder  

 An autoencoder is a type of artificial neural network 
architecture used for learning efficient data representations in 
an unsupervised manner [20]. It contains an encoder that maps 
input data to a latent representation, and a decoder that 
reconstructs the input. Autoencoders can be used for various 
applications, including dimensionality reduction, feature 
learning, noise reduction, and anomaly detection [20-24].  

 The encoding process transforms the input 𝑥 into a hidden 
representation 𝑦 through the encoding function 𝑓, and can be 
mathematically represented as, 

   𝑦 = 𝑓(𝑥) = 𝜙(𝑊𝑥 + 𝑏ℎ)    (1) 

Here, the hidden layer is denoted as h. 𝑊𝑥  are the weights 
applied to the input, 𝑏ℎ is the bias term, and φ is the activation 
function. 

 The decoding process then maps the hidden representation 
𝑦  back to a reconstructed input r through the decoding 
function g, the decoding operation can be represented as, 

  𝑟 = 𝑔(𝑦) = 𝜙0(𝑊𝑦 + 𝑏𝑟)      (2) 



Here, 𝑊𝑦 are the weights applied to y, 𝑏𝑟 is the decoding bias, 

and 𝜙0 is the activation function. In summary, the encoder 𝑓 

transforms the input to a hidden representation 𝑦, which the 

decoder g then uses to reconstruct the input as r.  

The autoencoder training minimizes the 

reconstruction error between input and output. The 

reconstruction error, also called the reconstruction loss, 

measures how well the autoencoder can reproduce the original 

input after it has been encoded and decoded [22]. If we have a 

dataset of inputs 𝐷𝑖  = [ 𝑥1 , 𝑥2, 𝑥3, … . 𝑥𝑛] , then the cost 

function with reconstruction error R can be expressed as,  

 𝐽𝐴𝐸(𝜃) = ∑ 𝑅𝑥𝜖𝐷𝑖
(𝑥, 𝑟)                    (3) 

 

The reconstruction error 𝑅(𝑥, 𝑟) is the mean squared error of 

the input 𝑥 and output y and can be represented as, 

 

 𝑅(𝑥, 𝑟) =∥ 𝑥 − 𝑟 ∥2       (4) 

 

C. Contractive Autoencoder  

 The CAE introduces a novel explicit regularization term 
into the traditional autoencoder cost function. This contractive 
penalty sets the CAE apart from standard autoencoders that 
solely minimize reconstruction error between the input and 
reconstructed output. The contractive term provides a unique 
form of regularization that specifically promotes robustness 
and stability in the learned feature representations [22].  

 By penalizing the Frobenius norm of the Jacobian matrix 
of encoder activations, the CAE cost function uniquely 
penalizes the model's sensitivity to minor perturbations in the 
input data. This encourages the model to discover encodings 
that are invariant and unaffected by small changes or noise in 
the inputs. In effect, the contractive regularization enables the 
model to focus on robust features that represent the underlying 
causal factors rather than superficial noise patterns.  

 Unlike common regularization techniques like early 
stopping and dropout, the contractive penalty directly builds 
invariance and robustness into the optimization process 

through the cost function. This novel regularization approach 
improves generalizability and stability compared to basic 
autoencoders trained only to minimize reconstruction error 
𝑅(𝑥, 𝑟). The contractive term also guides the model to identify 
salient features that are insensitive to input noise. 

The total CAE cost function can be represented as, 

  𝐽𝐶𝐴𝐸(𝜃) = ∑ (𝑅𝑥𝜖𝐷𝑖
(𝑥, 𝑟) + 𝜆||𝐽𝑓(𝑥)||𝑓

2)      (5) 

Here, λ controls the weighting of the contractive term and 
𝐽𝑓(𝑥) is the Jacobian matrix of hidden layer activations with 

respect to 𝑥. 

D. Proposed Method 

 The input data is sequence of 30 time steps. Hence, the 
input dimension for each sample fed into the encoder is 30. 
This input is passed through a sequence of dense layers in a 
stacked architecture that progressively compresses the data 
into a reduced encoding. The decoder portion then 
reconstructs the data back to the original input dimension of 
30. 

Encoder: The encoder consists of three dense layers with 240, 
120, and 60 neurons, respectively, with each layer decreasing 
in size (Fig. 3). This stacked compression approach reduces 
the dimensionality of the data. Each layer employs the 
Rectified Linear Unit (ReLU) activation function. ReLU 
provides nonlinear behaviour while avoiding problems like 
vanishing gradients. It leads to better generalization, faster 
training, and more interpretable models compared to other 
activation functions. To enhance stability and robustness of 
the learned encoding, L2 regularization is applied to the first 
dense layer, encouraging the acquired representations to be 
more reliable. Additionally, a dropout layer follows the third 
dense layer, serving as a regularization technique to mitigate 
overfitting during the training process. The encoder produces 
a final output with an encoding dimension of 30 neurons, 
capturing the compressed and informative encoding of the 
heart rate data. This reduced encoding dimension controls 
model complexity. 

Decoder: The decoder portion mirrors the encoder 
architecture in reverse order to reconstruct the original input 

Figure 3: Detailed CAE architecture with dense layers in encoder and decoder. N denotes the number of samples 



data. It comprises three dense layers with 60, 120, and 240 
neurons, respectively, following the same ReLU activation 
and dropout configuration as in the encoder (Fig. 3). The last 
dense layer contains neurons matching the original input size, 
allowing the model to map the encoded representations back 
to the original data dimensions. The decoder effectively learns 
how to reverse the dimensionality reduction performed by the 
encoder.  

Loss Function: The loss function for the contractive 
autoencoder has two key components - the reconstruction loss 
and the contractive regularization loss.  

 The reconstruction loss measures how well the model 
reconstructs the input data after it has been encoded and 
decoded. This is calculated as the mean squared error (MSE) 
between the input data and the reconstructed output. MSE 
compares the input heart rate sequences to the reconstructions 
and computes the average squared differences. A lower MSE 
indicates the model has learned to accurately reconstruct the 
inputs. 

 The contractive loss provides regularization to improve 
robustness and stability of the learned representations. It is 
calculated by first obtaining the Jacobian matrix of the model 
outputs with respect to the inputs using gradient tape. This 
Jacobian contains the gradients that measure how each output 
changes with respect to small changes in the input. The 
Frobenius norm of this Jacobian matrix gives the contractive 
regularization term. This penalty encourages the model to 
learn encodings that are contractive, meaning small changes 
in input only cause small changes in the encoding. 

 The final loss function is a weighted sum of the MSE 
reconstruction loss and the contractive regularization loss. 

Training: The CAE model is trained by minimizing a 
combined loss function consisting of reconstruction error and 
a contractive penalty term. The optimization is performed 
using the Adam adaptive gradient optimizer, which computes 
individual adaptive learning rates for each parameter. A small 
learning rate of 0.00001 is initially set to control the size of 
update steps during training.  

 The model is trained by processing batches of data, where 
the batch size is set to 32 samples based on memory 
considerations and training efficiency. The number of training 
epochs is determined based on the size of the available 
training data, with smaller batches and more epochs allowing 
for more update steps to optimize the parameters.   

 The training process is implemented in Keras using the 
model.fit() method, which handles the underlying 
optimization loop. For each batch, the input data is passed 
through the encoder and decoder layers to reconstruct the 
output. The loss function then compares this reconstruction to 
the original input to calculate the mean squared reconstruction 
error. Additionally, the loss function computes the Frobenius 
norm of the Jacobian matrix of the encoder activations as a 
contractive regularization penalty. The combined 
reconstruction and contractive losses are differentiated using 
backpropagation to determine the gradients with respect to the 
model parameters.  

 These gradients are provided to the Adam optimizer, 
which uses them to update the model weights and biases to 
minimize the loss function. By iteratively repeating this 
process across many batches of data and epochs, the model is 
trained until the reconstruction error and contractive penalty 

are minimized, fitting the model to efficiently compress and 
reconstruct the input data while regularizing the internal 
encodings.  

Callbacks like EarlyStopping are used to monitor the 
validation loss and halt training once the loss stops improving. 
The customized training process allows the CAE to learn an 
effective representation of the input data. 

IV. COMPARATIVE ANALYSIS 

The research approach taken to detect anomalies in 
heartrate can be described as an inductive approach. This 
involves inferring a general rule from a specific set of data (the 
training data) and applying it to new, unseen data to identify 
any anomalies. The approach involves an iterative and self-
reflective process [19] of designing, building, and testing a 
system to detect anomalies in the heart rate data, evaluating its 
performance, and finetuning model hyperparameters to 
optimize its performance. The proposed model was 
implemented in Anaconda3, Tensorflow 2.12, and python 3.9 
(CPU version) environments. The model was built, trained 
and validated on a laptop computer that featured an Intel Core 
i5-1135G7 CPU clocked at 2.4 GHz. The data used for 
training is the data collected from Fitbit users. The data was 
pre-processed to standardize into a fixed length format and 
labelled into normal and anomalies based on threshold values.  
Around 80% of the normal data was used for training, while 
the remaining data was merged and used for validation and 
testing purposes. This partitioning ensures a robust evaluation 
of the model's performance. 

The CAE model is compiled using the Adam optimization 
algorithm to minimize the defined custom loss function, 
comprising reconstruction error and contractive regularization 
penalties. Model training proceeds by feeding the training data 
in batches to gradually update the weights to minimize loss. 
The batch size is set to 32 samples and training runs for 50 
epochs. The scaled training data is input as both the input and 
target so that the model learns to reconstruct the input. 
Validation data is provided to assess model performance 
during training. The callback EarlyStopping is used to halt 
training early if validation loss stops improving after 5 epochs. 
This helps prevent overfitting. The training history tracks loss 
metrics at each epoch. By iterating through the full training set 
in small batches and applying gradient-based optimization, the 
model minimizes the combined loss function and learns to 
effectively compress the input data into a stable encoding 
while accurately reconstructing the original input.  

 

Figure 4: Training and validation loss vs Epochs 

The CAE model demonstrates stable optimization and 
excellent performance based on the training logs. The training 



loss decreases steadily from an initial value of around 0.0009 
down to 0.00014. This steady decrease indicates the model 
successfully learns to reconstruct the normal heart rate 
sequences. The validation loss also drops initially, reaching 
0.0022-0.0023 where it plateaus. The small gap between the 
ending training loss of 0.00014 and validation loss of ~0.0022 
shows the model generalizes well without overfitting, as 
depicted in Figure 4.  

Training time per epoch remains consistent in the 10-14 
millisecond range, demonstrating reliable model optimization. 
Though training continues for 50 epochs, the unchanging 
validation loss after 20 epochs suggests early stopping could 
trigger shortly after. Achieving a low validation 
reconstruction error of ~0.0022 highlights the model has 
learned robust data representations. The stable training curve, 
lack of overfitting, and strong validation performance validate 
the contractive autoencoder's ability to effectively compress 
the input data into an informative encoding that can accurately 
reconstruct the original data despite noise and variations in the 
real-world consumer dataset. 

Figure 5 visualizes the model's reconstruction capability 
on a sample normal heart rate sequence. The first plot depicts 
the input sequence fed into the model. The second plot reveals 
the sequence reconstructed by the model from the encoded 
representations. The remarkably close alignment between the 
input and output sequences demonstrates that the model has 
successfully learned the fundamental patterns characterizing 
normal heart rate data, enabling it to accurately regenerate the 
input sequence despite compressing it into a low-dimensional 
encoding. This exemplifies the model's proficiency in 
extracting meaningful representations to precisely recreate 
normal heart rate sequences. 

 

  

Figure 5: CAE model reconstruction of a random heart rate 

sequence. The first plot shows the input sequence fed into the model. 

The second plot shows the sequence reconstructed by the CAE 

model from the learned representations. 

To evaluate the trained autoencoder's generalization, its 
reconstruction competence is validated on an unseen test set. 
The model reconstructs each test sequence, then the deviation 
between the original and predicted sequences is quantified 
using mean squared error. A threshold of 0.00007, identified 
through iterative testing of multiple values, classifies the 
sequences as either normal or anomalous based on the 
reconstruction error. Test sequences accurately reconstructed 
below the set threshold are designated as normal patterns 
learned by the model. Meanwhile, sequences poorly 
reconstructed and exceeding the threshold are identified as 
unlearned anomalies. By comparing these predicted labels to 
the true labels, the threshold's efficacy in distinguishing 
anomalies is assessed. This iterative process determined 
0.00007 as the optimal threshold for segregating normal and 
anomalous heart rate sequences based on reconstruction error, 
maximizing classification performance. 

The evaluation results are presented in the confusion 
matrix and classification report, as depicted in Figure 6 and 
Figure 7. The confusion matrix aggregates the predictions of 
the model on the test set versus the actual true labels of the test 
data. It provides the counts of true positives (TP), true 
negatives (TN), false positives (FP), and false negatives (FN). 
These counts are then used to calculate the metrics as follows:  

Accuracy: Accuracy refers to the overall correctness of the 
model's predictions. It is the ratio of the number of correct 
predictions to the total number of input samples. 

Accuracy = (TP + TN) / (TP + FP + TN + FN)  (5) 

Precision: Precision refers to the correctness of the model 
when it predicts the positive class. It is the ratio of the number 
of true positives to all positive predictions. 

Precision = TP / (TP + FP)    (6) 

Recall: Recall, also called sensitivity, refers to the model's 
ability to find all relevant positive samples. It is the ratio of 
true positives to all actual positive samples. 

Recall = TP  / (TP + FN)     (7) 

F1 Score: F1 Score is the harmonic mean of precision and 
recall. It balances both metrics into a single measure of a 
model's performance.  

 F1 = 2 * (Precision * Recall) / (Precision + Recall)(8) 

 

 

Figure 6: Confusion matrix demonstrating performance of CAE 

model in classifying normal vs. anomalous heart rate sequences. 

In summary, accuracy measures overall performance, 
precision measures correctness of positive predictions, recall 
measures finding all positive samples, and F1 score balances 
precision and recall into a single metric. These are important 
metrics for evaluating classification models. 

The classification report takes the raw counts from the 
confusion matrix and turns them into handy precision, recall 
and F1 metrics for each class. This provides a detailed 
breakdown of model performance across different output 
categories, as depicted in Table 1. 

The CAE model achieves an overall accuracy of 93% in 
discriminating between normal and anomalous heart rate 
sequences. The precision of 0.94 for detecting anomalies 
indicates a low false positive rate, while the recall of 0.91 



shows the model correctly identifies the vast majority of 
anomalies. 

Table 1: Performance matrix for classification of anomalous versus 

normal heart rate sequences. 

 Precision Recall F1-Score 

Anomaly 0.94 0.91 0.93 

Normal 0.91 0.94 0.93 

Accuracy   0.93 

 

The F1-score, balancing precision and recall, reaches 0.93 
for anomalies. Similarly for normal sequences, precision of 
0.91 and recall of 0.94 result in a strong 0.93 F1-score. The 
balanced performance across classes is further evidenced by 
the macro-average F1 of 0.93. Additionally, with support of 
3718 anomalies and 3614 normal sequences, the model 
generalizes well to both classes. The consistent metrics across 
anomaly and normal categories, also reflected in the weighted 
average scores, demonstrate the model's competence in 
recognizing both normal and abnormal sequence patterns. The 
high accuracy, precision, recall and F1-scores validate the 
effectiveness of the autoencoder-based anomaly detection 
approach on unseen heart rate data.  

 Figure 7 visualizes the variation in reconstruction error on 
the test set between normal and anomalous sequences. The 
normal heart rate patterns, depicted in green, display a tight 
clustering of lower reconstruction errors, confirming the 
model's proficiency in accurately reconstructing these regular 
sequences. However, the anomalous sequences represented 
in red demonstrate a broader spread of predominantly larger 
error values. The distinct error distributions confirm the 
model's identification of anomalies based on their poor 
reconstruction compared to normal samples.  

 

Figure 7: Distribution of reconstruction errors for normal and 

anomalous heart rate sequences in test data. 

The receiver operating characteristic (ROC) curve 

and area under the curve (AUC) metric are computed to 

evaluate the model's anomaly detection performance, as 

depicted in Figure 8. The true labels are converted to numeric 

values to compute the ROC curve. 

 

Figure 8: ROC curve highlighting model's tradeoff between true and 

false positives. 

The model reconstructs the test set and calculates the 

reconstruction error per sample. These errors and true labels 

are used to derive the AUC, quantifying the model's 

separation of anomalies. A high AUC of 0.98 indicates 

excellent anomaly detection. The roc_curve() function 

generates false positive and true positive rates for different 

thresholds to plot the ROC curve. The curve's proximity to 

the upper left corner demonstrates strong performance. 

Additionally, the random guess line assists interpretation. 

Together, the ROC curve and high AUC of 0.98 confirm the 

effectiveness of the autoencoder-based anomaly detector on 

the heart rate data. 

V. CONCLUSION 

This study presented a novel CAE model for heart rate 

anomaly detection, showcasing its potential in handling noise 

and variability challenges in widely available consumer-grade 

wearable data. The CAE demonstrates high accuracy, 

precision, and recall in anomaly detection from noisy 

wearable data. The model was trained on a dataset of normal 

heart rate samples, and its performance was evaluated on a 

separate test dataset which contains both normal and 

anomalous data. The results demonstrated that the CAE 

model achieved a high accuracy of 90% on the test data, with 

balanced precision and recall scores for both the 'Anomaly' 

and 'Normal' classes. The low loss values during training 

indicated that the model effectively learned the underlying 

representations in the data and achieved excellent 

reconstruction performance. The area under the ROC curve 

reached 0.98, further validating anomaly detection 

proficiency. The reconstruction error distributions clearly 

differentiated anomalies on unseen test data. Building on 

these promising anomaly detection capabilities, this study 

lays the foundation for ancillary innovations like 

personalized interventions based on predicting future heart 

rate trajectories. 
However, the evaluation was limited to only one dataset 

from a single source. More robust validation on larger and 
more diverse datasets is needed to fully assess the model's 
capabilities. Additionally, the labelling of anomalies was done 
manually by setting a threshold, which may miss outliers that 
fall within the normal range.  

While the presented model showed promise, future work 
should focus on exploring alternative neural network 
architectures and incorporating advanced techniques, such as 



recurrent or attention-based models, may further enhance its 
performance. One exciting direction for future research is 
extending the CAE model for time-series forecasting to enable 
proactive healthcare monitoring and intervention. With 
continuous advancements in anomaly detection and data 
availability, the CAE model lays the groundwork for 
innovative approaches in healthcare anomaly detection and 
personalized medical interventions. However, obtaining 
properly labelled anomaly data posed a key challenge. Thus, 
the next research phase demands collecting and labelling real-
world data. 

Overall, the model has demonstrated its potential as an 
effective tool for heart rate anomaly detection, offering 
valuable contributions to the field of healthcare monitoring. 
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