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Abstract— The widespread adoption of wearable
devices enables continuous monitoring of physiological
parameters like heart rate, offering valuable insights into
health. However, consumer-grade wearable data exhibits
real-world noise, variations, and discontinuities across
diverse populations, posing significant challenges for
anomaly detection models. This paper proposes a novel
deep learning approach to address these challenges,
utilizing a Contractive Autoencoder (CAE) model
optimized and applied specifically to noisy temporal heart
rate data from wearable devices. By incorporating a
contractive regularization penalty in the loss function, the
model learns more robust and stable representations of
the irregular data with high accuracy. Comprehensive
experiments on a real-world Fitbit dataset demonstrate
the proposed CAE model accurately identifies anomalous
heart rate patterns missed by traditional thresholding
techniques. The research encountered key challenges in
ensuring model generalizability —across diverse
populations with natural heart rate variations, handling
missing and sparse data from unreliable real-world
wearable devices, and obtaining properly labelled
anomaly data for robust training. Although the current
model achieved promising anomaly detection results,
further extensive validation on diverse datasets is
essential to fully assess its capabilities across expanded
demographics and use cases. Overall, this research
provides an important foundation for optimizing deep
learning approaches on noisy real-world wearable data
through rigorous evaluation.

Keywords— contractive autoencoder, contractive loss,
anomaly detection, timeseries data, heartrate anomaly,
outlier detection

I. INTRODUCTION

Anomaly detection in heart rate data is a crucial aspect of
modern healthcare, aiming to identify and flag any abnormal
or irregular heart rate patterns that may indicate potential
health problems. With the widespread adoption of wearable
devices, such as smartwatches and fitness trackers, continuous
heart rate monitoring has become accessible and convenient
for individuals of all ages and lifestyles, providing valuable
insights into cardiovascular health conditions. These wearable
devices are equipped with advanced sensors that capture heart
rate data continuously, enabling the tracking of heart rate
variations and trends over time [1]. The heart rate data
collected by wearable devices encompasses a rich and
dynamic time series, often referred to as continuous or time
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series data. Unlike traditional sporadic measurements,
continuous heart rate readings are taken at regular intervals,
spanning from a few seconds to a few minutes, hours or days.
This continuous data stream offers a comprehensive and
granular view of an individual's heart, capturing fluctuations,
patterns, and rhythms that might otherwise go unnoticed with
sporadic measurements [2]. By continuously monitoring heart
rate, healthcare professionals and individuals can gain insights
into various heart rate parameters and assess how they evolve
over different time frames.

Researchers and medical practitioners have been
increasingly leveraging machine learning and data-driven
techniques to develop robust anomaly detection methods for
heart rate data collected from wearable devices. However,
existing techniques face challenges in handling noise, sparse
sampling rates, and inability to generalize across diverse
populations exhibiting natural variations in normal heart rate
ranges. This presents a research gap for developing robust
anomaly detection models that can learn effective data
representations despite real-world noise and inter-personal
variations.

To address these limitations, we present a novel CAE
model optimized specifically for consumer-grade wearable
heart rate data. Unlike existing work exploring raw PPG or
ECG signals, our approach focuses on quantified beats per
minute (bpm) heart rate readily available from consumer
wearables. This CAE goes beyond the standard autoencoders
that solely minimize reconstruction error by incorporating a
contractive regularization penalty that encourages learning
invariant representations robust to noise and minor
perturbations. Experiments on a real-world Fitbit dataset,
discussed later in this paper, demonstrate the CAE model
attains over 90% accuracy in classifying normal and
anomalous heart rate patterns. This high performance
highlights its capabilities in handling real-world noise
compared to existing techniques. By optimizing the
autoencoder architecture for wearable data characteristics, we
aim to unlock the potential of widely available consumer
devices for preventive monitoring through early anomaly
detection. The detected anomalies could have further
implications for adjusting exercise based on real-time
feedback to mitigate health risks.

By integrating the CAE model into wearable devices, we
aspire to contribute to the advancement of digital health in the
region and empower elderly individuals to take charge of their
mobility disorder prevention.

The key contributions of this research are as follows,

1. Proposing a novel CAE model for accurate and robust
anomaly detection in heart rate data.



2. Demonstrating the superiority of the CAE model over
traditional techniques and other ML approaches on a
real-world wearable device dataset.

3. Providing a method to enable early detection of heart
rate irregularities using wearable devices for preventive
health strategies.

The structure of this paper is as follows: In the following
section, we delve into the related work on anomaly detection
and contractive autoencoders in our literature review.
Subsequently, the methodology section outlines our approach,
data particulars, and details regarding the model architecture.
In the results section, we present quantitative evaluations and
visualizations of our model's performance. Finally, we
summarize our findings, discuss limitations, and outline
avenues for future work in the conclusion.

Il. RELATED WORK

Several studies have explored different machine learning
techniques to detect anomalies in heartrate data and were able
to accurately detect anomalies with high sensitivity and
specificity. Several commercial wearable devices, such as
Fitbitand Apple Watch, have also implemented algorithms for
anomaly detection in heart rate data [3]. For instance,
Alugubelli et al. [4] emphasized the potential of wearable
devices in remote heart rate and heart rate variability
monitoring, discussing different wearable devices' accuracy,
limitations, and future research directions. In a study by Liu et
al. [5], a convolutional autoencoder was employed to estimate
COVID-19 symptoms and anomalies. Furthermore, Abir et al.
[6] introduced a deep learning framework with CNN,
Variational Autoencoder, and LSTM components for
detecting COVID-19 based on smartwatch data and
successfully detected COVID-19 for 74% of subjects,
demonstrating utility as a supplementary screening tool. The
approach leverages continuously collected heart rate and step
count data from consumer wearables.

Beyond heart rate anomaly detection, machine learning
models have been applied to predict chronic obstructive
pulmonary disease (COPD) based on physiological time series
patterns [7]. Additionally, researchers explored using Fitbit-
assessed behaviour as a predictor for readmission of
postsurgical cancer inpatients, building a predictive machine
learning model with Fitbit activity data [8].

In the domain of CAE, researchers have leveraged
gradient-based activation penalties and sparse activations to
reflect data's intrinsic properties [9]. CAEs have found
application in diverse tasks, including cloud Intrusion
Detection [10], document clustering [11], recognition of
pilots' Fatigue Status [12], Online spike sorting [13], and
more. For ECG denoising, Banerjee et al. [14] proposed a
convolutional sparse contractive autoencoder incorporating
sparsity, contractive regularization, and L2 norm.

Some prior studies developing anomaly detection models
for wearable devices have utilized ECG data for training and
evaluation. ECG provides detailed waveform data useful for
research purposes. For example, Zhong et al. [16] proposed
an unsupervised approach using convolutional autoencoders
and Gaussian mixture models to estimate beat-to-beat heart
rate from ECG data from wearable sensors. Carrera et al. [26]
introduced an online anomaly detection system using a
Variational autoencoder architecture tailored for ECG time-
series data from wearable sensors. Their approach combining

beat segmentation and adaptive thresholding could effectively
perform online ECG monitoring and detect anomalous
heartbeats.

However, consumer smartwatches mostly rely on
photoplethysmography (PPG) sensors which measure blood
volume changes to estimate heart rate. The PPG sensors
output periodic heartbeat waveforms, which can be processed
to derive a quantified beats-per-minute (bpm) value. Prior
studies like Gu et al. [15] developed lightweight convolutional
neural network to detect anomalies directly from the raw PPG
waveform data.

While studies have used ECG and PPG data, for many
commercial wearables only the quantified bpm heart rate is
available to users, not the raw PPG waveform. Our work
focuses specifically on analysing the bpm heart rate data
readily available from consumer wearables. This quantified
bpm data provides a direct measurement of heart rate in beats
per minute.

We propose a CAE model designed to work with the bpm
heart rate time series data for effective anomaly detection. We
formulate anomaly detection as a supervised classification
task, by labelling data to train the CAE model to distinguish
between normal and anomalous heart rate sequences. This
provides an end-to-end approach optimized specifically for
heart rate time series characteristics, unlike unsupervised
techniques explored in some prior work.

Existing anomaly detection techniques using deep
learning, such as Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNSs), have faced challenges
related to expert feature engineering, handling high-
dimensional data, and interpretability issues [17]. Anomaly
detection remains an active research area for healthcare
applications. This work proposes a novel CAE architecture for
heart rate anomaly detection from wearable bpm data in a
supervised framework. By providing robust anomaly
detection, this approach has promising implications for
advancing digital health monitoring.

I1l. METHODOLOGY

A. Dataset and preprocessing

This research utilizes a public dataset of heart rate time
series data collected from Fithit users. The dataset was
generated via a survey distributed on Amazon Mechanical
Turk between March 12, 2016 and May 12, 2016 [25].
Fourteen Fitbit users consented to share their personal heart
rate tracker data. The data is structured with each row
representing a heart rate measurement at a specific timestamp.

There are 3 columns:

e |d - An identifier representing each unique user in the
dataset. This allows heart rate measurements to be
grouped by user.

e Time - The timestamp indicates when each heart rate
reading was taken, in YYYY-MM-DD HH:MM:SS
format.

e Value - The heart rate measurement in bpm recorded at
each timestamp.

In total, the dataset contains 1,048,576 heart rate
measurements across the 14 users. The time intervals between
measurements range from 1 second to over 1 hour. This



variable sampling rate is common in real-world wearable
device datasets.

After conducting an initial analysis to comprehend
the data distribution, continuity, and underlying patterns,
several significant observations surfaced. Firstly, it became
apparent that the dataset exhibited an imbalance, suggesting
an uneven distribution of samples for each user. Secondly, the
data displayed discontinuities, with missing observations at
specific time points. Lastly, the data length varied among
users, leading to differing numbers of data points for each
individual. These findings highlight the importance of
meticulous preprocessing and data handling to enable robust
analysis.

To better understand the data, we visualized heart rate
plotted against time (Fig. 1). This plot would display a fluid
line reflecting fluctuations influenced by physiological
factors. Patterns like gradual shifts, oscillations, and
spikes/drops can be revealed. An anomaly could be
represented by a sudden spike or drop-in heart rate that stands
out from surrounding points (Fig. 2). This irregularity often
indicates a potential health issue or error.
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Figure 1 The temporal heartrate data for a specific individual over
a specific period, ranging from 2016-04-12 to 2016-05-12, in its
raw, unprocessed form.
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Figure 2: An example of an identified irregular or unusual variation
in the heart rate of an individual, indicating a potential anomaly.

To ensure the quality and suitability of the data for the
machine learning algorithm, a pre-processing step was carried
out. This involved several key actions, including noise
removal, handling missing values, data normalization, and
converting the data into a suitable format. By performing these
necessary adjustments, the data was prepared optimally for
accurate and effective analysis using the machine learning
algorithm.

The raw data was initially filtered to include the complete
data records from just five users spanning the entire time

duration. The data was then resampled to 10 second intervals
for each user, with missing values imputed via forward fill. To
smooth out noise, a rolling 30-sample average was applied to
the heart rate readings for each user. The sequences were then
sliced to contain only complete intervals of 5 minutes. This
process yields a substantial volume of data with a consistent
length, ensuring adequacy for training, validation, and testing
purposes. Thresholds of 60 to 140 bpm were set to identify
anomaly labels - any heart rates outside this range were
labelled as 'Anomaly’ while others were labelled as 'Normal'.
The dataset was split into training, validation and testing sets
for modelling.

Training an autoencoder using normal data is essential to
establish a baseline understanding of regular patterns and
features within the dataset. This process allows the
autoencoder to learn the inherent structures and
representations of normal data, which in turn enables it to
distinguish anomalies or deviations when presented with
unfamiliar or anomalous instances. Therefore, the dataset has
been partitioned in a manner where 80% of the normal data is
allocated for training purposes. The remaining data has been
combined and then divided into two subsets: validation and
test data.

Ultimately, all datasets underwent normalization to
establish a uniform scale, preventing any individual feature
from overshadowing the model training process.
Normalization enhances convergence and optimizes model
performance. The Min-Max Scaler was employed to rescale
numerical data into a predefined range, typically bounded
between 0 and 1. This rescaling conserves the inherent
relationships among data points while ensuring uniformity
across all features.

This multi-step preprocessing pipeline transformed the
raw variable-rate data into structured sequenced samples,
engineered relevant anomaly labels, and normalized features.
It successfully addresses issues observed during exploratory
data analysis, such as data imbalance, missing values, and
variable lengths, ensuring the model's accuracy even with
noisy or incomplete data.

B. Autoencoder

An autoencoder is a type of artificial neural network
architecture used for learning efficient data representations in
an unsupervised manner [20]. It contains an encoder that maps
input data to a latent representation, and a decoder that
reconstructs the input. Autoencoders can be used for various
applications, including dimensionality reduction, feature
learning, noise reduction, and anomaly detection [20-24].

The encoding process transforms the input x into a hidden
representation y through the encoding function f, and can be
mathematically represented as,

y=f()=¢Wx + bp) @

Here, the hidden layer is denoted as A. W, are the weights
applied to the input, b, is the bias term, and ¢ is the activation
function.

The decoding process then maps the hidden representation
y back to a reconstructed input r through the decoding
function g, the decoding operation can be represented as,

r=g() = ¢’ W, +b,) @



Here, 7, are the weights applied to y; b, is the decoding bias,

and ¢° is the activation function. In summary, the encoder f
transforms the input to a hidden representation y, which the
decoder gthen uses to reconstruct the input as r:

The autoencoder training minimizes the
reconstruction error between input and output. The
reconstruction error, also called the reconstruction loss,
measures how well the autoencoder can reproduce the original
input after it has been encoded and decoded [22]. If we have a
dataset of inputs D; = [x;, X3, X3,....%,], then the cost
function with reconstruction error R can be expressed as,

Jag(0) = erDl-R (x,7) 3)
The reconstruction error R(x, 1) is the mean squared error of
the input x and output y and can be represented as,

RO, 7) =l x—1 II? 4)

C. Contractive Autoencoder

The CAE introduces a novel explicit regularization term
into the traditional autoencoder cost function. This contractive
penalty sets the CAE apart from standard autoencoders that
solely minimize reconstruction error between the input and
reconstructed output. The contractive term provides a unique
form of regularization that specifically promotes robustness
and stability in the learned feature representations [22].

By penalizing the Frobenius norm of the Jacobian matrix
of encoder activations, the CAE cost function uniquely
penalizes the model's sensitivity to minor perturbations in the
input data. This encourages the model to discover encodings
that are invariant and unaffected by small changes or noise in
the inputs. In effect, the contractive regularization enables the
model to focus on robust features that represent the underlying
causal factors rather than superficial noise patterns.

Unlike common regularization techniques like early
stopping and dropout, the contractive penalty directly builds
invariance and robustness into the optimization process
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through the cost function. This novel regularization approach
improves generalizability and stability compared to basic
autoencoders trained only to minimize reconstruction error
R(x, 7). The contractive term also guides the model to identify
salient features that are insensitive to input noise.

The total CAE cost function can be represented as,
Jeap(0) = erDi(R (x,7) + A”]f(x)”,z‘) ®)

Here, A controls the weighting of the contractive term and
J¢(x) is the Jacobian matrix of hidden layer activations with
respect to x.

D. Proposed Method

The input data is sequence of 30 time steps. Hence, the
input dimension for each sample fed into the encoder is 30.
This input is passed through a sequence of dense layers in a
stacked architecture that progressively compresses the data
into a reduced encoding. The decoder portion then
reconstructs the data back to the original input dimension of
30.

Encoder: The encoder consists of three dense layers with 240,
120, and 60 neurons, respectively, with each layer decreasing
in size (Fig. 3). This stacked compression approach reduces
the dimensionality of the data. Each layer employs the
Rectified Linear Unit (ReLU) activation function. ReLU
provides nonlinear behaviour while avoiding problems like
vanishing gradients. It leads to better generalization, faster
training, and more interpretable models compared to other
activation functions. To enhance stability and robustness of
the learned encoding, L2 regularization is applied to the first
dense layer, encouraging the acquired representations to be
more reliable. Additionally, a dropout layer follows the third
dense layer, serving as a regularization technique to mitigate
overfitting during the training process. The encoder produces
a final output with an encoding dimension of 30 neurons,
capturing the compressed and informative encoding of the
heart rate data. This reduced encoding dimension controls
model complexity.

Decoder: The decoder portion mirrors the encoder
architecture in reverse order to reconstruct the original input
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Figure 3: Detailed CAE architecture with dense layers in encoder and decoder. N denotes the number of samples



data. It comprises three dense layers with 60, 120, and 240
neurons, respectively, following the same RelLU activation
and dropout configuration as in the encoder (Fig. 3). The last
dense layer contains neurons matching the original input size,
allowing the model to map the encoded representations back
to the original data dimensions. The decoder effectively learns
how to reverse the dimensionality reduction performed by the
encoder.

Loss Function: The loss function for the contractive
autoencoder has two key components - the reconstruction loss
and the contractive regularization loss.

The reconstruction loss measures how well the model
reconstructs the input data after it has been encoded and
decoded. This is calculated as the mean squared error (MSE)
between the input data and the reconstructed output. MSE
compares the input heart rate sequences to the reconstructions
and computes the average squared differences. A lower MSE
indicates the model has learned to accurately reconstruct the
inputs.

The contractive loss provides regularization to improve
robustness and stability of the learned representations. It is
calculated by first obtaining the Jacobian matrix of the model
outputs with respect to the inputs using gradient tape. This
Jacobian contains the gradients that measure how each output
changes with respect to small changes in the input. The
Frobenius norm of this Jacobian matrix gives the contractive
regularization term. This penalty encourages the model to
learn encodings that are contractive, meaning small changes
in input only cause small changes in the encoding.

The final loss function is a weighted sum of the MSE
reconstruction loss and the contractive regularization loss.

Training: The CAE model is trained by minimizing a
combined loss function consisting of reconstruction error and
a contractive penalty term. The optimization is performed
using the Adam adaptive gradient optimizer, which computes
individual adaptive learning rates for each parameter. A small
learning rate of 0.00001 is initially set to control the size of
update steps during training.

The model is trained by processing batches of data, where
the batch size is set to 32 samples based on memory
considerations and training efficiency. The number of training
epochs is determined based on the size of the available
training data, with smaller batches and more epochs allowing
for more update steps to optimize the parameters.

The training process is implemented in Keras using the
model.fit() method, which handles the underlying
optimization loop. For each batch, the input data is passed
through the encoder and decoder layers to reconstruct the
output. The loss function then compares this reconstruction to
the original input to calculate the mean squared reconstruction
error. Additionally, the loss function computes the Frobenius
norm of the Jacobian matrix of the encoder activations as a
contractive  regularization  penalty. The combined
reconstruction and contractive losses are differentiated using
backpropagation to determine the gradients with respect to the
model parameters.

These gradients are provided to the Adam optimizer,
which uses them to update the model weights and biases to
minimize the loss function. By iteratively repeating this
process across many batches of data and epochs, the model is
trained until the reconstruction error and contractive penalty

are minimized, fitting the model to efficiently compress and
reconstruct the input data while regularizing the internal
encodings.

Callbacks like EarlyStopping are used to monitor the
validation loss and halt training once the loss stops improving.
The customized training process allows the CAE to learn an
effective representation of the input data.

1V. COMPARATIVE ANALYSIS

The research approach taken to detect anomalies in
heartrate can be described as an inductive approach. This
involves inferring a general rule from a specific set of data (the
training data) and applying it to new, unseen data to identify
any anomalies. The approach involves an iterative and self-
reflective process [19] of designing, building, and testing a
system to detect anomalies in the heart rate data, evaluating its
performance, and finetuning model hyperparameters to
optimize its performance. The proposed model was
implemented in Anaconda3, Tensorflow 2.12, and python 3.9
(CPU version) environments. The model was built, trained
and validated on a laptop computer that featured an Intel Core
i5-1135G7 CPU clocked at 2.4 GHz. The data used for
training is the data collected from Fitbit users. The data was
pre-processed to standardize into a fixed length format and
labelled into normal and anomalies based on threshold values.
Around 80% of the normal data was used for training, while
the remaining data was merged and used for validation and
testing purposes. This partitioning ensures a robust evaluation
of the model's performance.

The CAE model is compiled using the Adam optimization
algorithm to minimize the defined custom loss function,
comprising reconstruction error and contractive regularization
penalties. Model training proceeds by feeding the training data
in batches to gradually update the weights to minimize loss.
The batch size is set to 32 samples and training runs for 50
epochs. The scaled training data is input as both the input and
target so that the model learns to reconstruct the input.
Validation data is provided to assess model performance
during training. The callback EarlyStopping is used to halt
training early if validation loss stops improving after 5 epochs.
This helps prevent overfitting. The training history tracks loss
metrics at each epoch. By iterating through the full training set
in small batches and applying gradient-based optimization, the
model minimizes the combined loss function and learns to
effectively compress the input data into a stable encoding
while accurately reconstructing the original input.

0.05

—— Training Loss
Validation Loss

Loss

0.01

0.0 25 5.0 75 100 125 150 175 200
Epochs

Figure 4: Training and validation loss vs Epochs

The CAE model demonstrates stable optimization and
excellent performance based on the training logs. The training



loss decreases steadily from an initial value of around 0.0009
down to 0.00014. This steady decrease indicates the model
successfully learns to reconstruct the normal heart rate
sequences. The validation loss also drops initially, reaching
0.0022-0.0023 where it plateaus. The small gap between the
ending training loss of 0.00014 and validation loss of ~0.0022
shows the model generalizes well without overfitting, as
depicted in Figure 4.

Training time per epoch remains consistent in the 10-14
millisecond range, demonstrating reliable model optimization.
Though training continues for 50 epochs, the unchanging
validation loss after 20 epochs suggests early stopping could
trigger shortly after. Achieving a low validation
reconstruction error of ~0.0022 highlights the model has
learned robust data representations. The stable training curve,
lack of overfitting, and strong validation performance validate
the contractive autoencoder's ability to effectively compress
the input data into an informative encoding that can accurately
reconstruct the original data despite noise and variations in the
real-world consumer dataset.

Figure 5 visualizes the model's reconstruction capability
on a sample normal heart rate sequence. The first plot depicts
the input sequence fed into the model. The second plot reveals
the sequence reconstructed by the model from the encoded
representations. The remarkably close alignment between the
input and output sequences demonstrates that the model has
successfully learned the fundamental patterns characterizing
normal heart rate data, enabling it to accurately regenerate the
input sequence despite compressing it into a low-dimensional
encoding. This exemplifies the model's proficiency in
extracting meaningful representations to precisely recreate
normal heart rate sequences.

Figure 5: CAE model reconstruction of a random heart rate
sequence. The first plot shows the input sequence fed into the model.

The second plot shows the sequence reconstructed by the CAE
model from the learned representations.

To evaluate the trained autoencoder's generalization, its
reconstruction competence is validated on an unseen test set.
The model reconstructs each test sequence, then the deviation
between the original and predicted sequences is quantified
using mean squared error. A threshold of 0.00007, identified
through iterative testing of multiple values, classifies the
sequences as either normal or anomalous based on the
reconstruction error. Test sequences accurately reconstructed
below the set threshold are designated as normal patterns
learned by the model. Meanwhile, sequences poorly
reconstructed and exceeding the threshold are identified as
unlearned anomalies. By comparing these predicted labels to
the true labels, the threshold's efficacy in distinguishing
anomalies is assessed. This iterative process determined
0.00007 as the optimal threshold for segregating normal and
anomalous heart rate sequences based on reconstruction error,
maximizing classification performance.

The evaluation results are presented in the confusion
matrix and classification report, as depicted in Figure 6 and
Figure 7. The confusion matrix aggregates the predictions of
the model on the test set versus the actual true labels of the test
data. It provides the counts of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN).
These counts are then used to calculate the metrics as follows:

Accuracy: Accuracy refers to the overall correctness of the
model's predictions. It is the ratio of the number of correct
predictions to the total number of input samples.

Accuracy = (TP + TN) /(TP + FP + TN+ FN)  (5)

Precision: Precision refers to the correctness of the model
when it predicts the positive class. It is the ratio of the number
of true positives to all positive predictions.

Precision =TP / (TP + FP) (6)

Recall: Recall, also called sensitivity, refers to the model's
ability to find all relevant positive samples. It is the ratio of
true positives to all actual positive samples.

Recall = TP /(TP + FN) )

F1 Score: F1 Score is the harmonic mean of precision and
recall. It balances both metrics into a single measure of a
model's performance.

F1 =2 * (Precision * Recall) / (Precision + Recall)(8)
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Figure 6: Confusion matrix demonstrating performance of CAE
model in classifying normal vs. anomalous heart rate sequences.

In summary, accuracy measures overall performance,
precision measures correctness of positive predictions, recall
measures finding all positive samples, and F1 score balances
precision and recall into a single metric. These are important
metrics for evaluating classification models.

The classification report takes the raw counts from the
confusion matrix and turns them into handy precision, recall
and F1 metrics for each class. This provides a detailed
breakdown of model performance across different output
categories, as depicted in Table 1.

The CAE model achieves an overall accuracy of 93% in
discriminating between normal and anomalous heart rate
sequences. The precision of 0.94 for detecting anomalies
indicates a low false positive rate, while the recall of 0.91



shows the model correctly identifies the vast majority of
anomalies.

Table 1: Performance matrix for classification of anomalous versus
normal heart rate sequences.

Precision Recall F1-Score
Anomaly 0.94 0.91 0.93
Normal 0.91 0.94 0.93
Accuracy 0.93

The F1-score, balancing precision and recall, reaches 0.93
for anomalies. Similarly for normal sequences, precision of
0.91 and recall of 0.94 result in a strong 0.93 Fl1-score. The
balanced performance across classes is further evidenced by
the macro-average F1 of 0.93. Additionally, with support of
3718 anomalies and 3614 normal sequences, the model
generalizes well to both classes. The consistent metrics across
anomaly and normal categories, also reflected in the weighted
average scores, demonstrate the model's competence in
recognizing both normal and abnormal sequence patterns. The
high accuracy, precision, recall and F1-scores validate the
effectiveness of the autoencoder-based anomaly detection
approach on unseen heart rate data.

Figure 7 visualizes the variation in reconstruction error on
the test set between normal and anomalous sequences. The
normal heart rate patterns, depicted in green, display a tight
clustering of lower reconstruction errors, confirming the
model's proficiency in accurately reconstructing these regular
sequences. However, the anomalous sequences represented
in red demonstrate a broader spread of predominantly larger
error values. The distinct error distributions confirm the
model's identification of anomalies based on their poor
reconstruction compared to normal samples.
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Figure 7: Distribution of reconstruction errors for normal and
anomalous heart rate sequences in test data.

The receiver operating characteristic (ROC) curve
and area under the curve (AUC) metric are computed to
evaluate the model's anomaly detection performance, as
depicted in Figure 8. The true labels are converted to numeric
values to compute the ROC curve.
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Figure 8: ROC curve highlighting model's tradeoff between true and
false positives.

The model reconstructs the test set and calculates the
reconstruction error per sample. These errors and true labels
are used to derive the AUC, quantifying the model's
separation of anomalies. A high AUC of 0.98 indicates
excellent anomaly detection. The roc_curve() function
generates false positive and true positive rates for different
thresholds to plot the ROC curve. The curve's proximity to
the upper left corner demonstrates strong performance.
Additionally, the random guess line assists interpretation.
Together, the ROC curve and high AUC of 0.98 confirm the
effectiveness of the autoencoder-based anomaly detector on
the heart rate data.

V. CONCLUSION

This study presented a novel CAE model for heart rate
anomaly detection, showecasing its potential in handling noise
and variability challenges in widely available consumer-grade
wearable data. The CAE demonstrates high accuracy,
precision, and recall in anomaly detection from noisy
wearable data. The model was trained on a dataset of normal
heart rate samples, and its performance was evaluated on a
separate test dataset which contains both normal and
anomalous data. The results demonstrated that the CAE
model achieved a high accuracy of 90% on the test data, with
balanced precision and recall scores for both the 'Anomaly’
and 'Normal' classes. The low loss values during training
indicated that the model effectively learned the underlying
representations in the data and achieved excellent
reconstruction performance. The area under the ROC curve
reached 0.98, further validating anomaly detection
proficiency. The reconstruction error distributions clearly
differentiated anomalies on unseen test data. Building on
these promising anomaly detection capabilities, this study
lays the foundation for ancillary innovations like
personalized interventions based on predicting future heart
rate trajectories.

However, the evaluation was limited to only one dataset
from a single source. More robust validation on larger and
more diverse datasets is needed to fully assess the model's
capabilities. Additionally, the labelling of anomalies was done
manually by setting a threshold, which may miss outliers that
fall within the normal range.

While the presented model showed promise, future work
should focus on exploring alternative neural network
architectures and incorporating advanced techniques, such as



recurrent or attention-based models, may further enhance its
performance. One exciting direction for future research is
extending the CAE model for time-series forecasting to enable
proactive healthcare monitoring and intervention. With
continuous advancements in anomaly detection and data
availability, the CAE model lays the groundwork for
innovative approaches in healthcare anomaly detection and
personalized medical interventions. However, obtaining
properly labelled anomaly data posed a key challenge. Thus,
the next research phase demands collecting and labelling real-
world data.

Overall, the model has demonstrated its potential as an
effective tool for heart rate anomaly detection, offering
valuable contributions to the field of healthcare monitoring.
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