

Recent improvements in PM_{2.5} air quality in India benefited from meteorological variation

Article

Accepted Version

Xie, Y., Zhou, M., Hunt, K. M. R. ORCID: <https://orcid.org/0000-0003-1480-3755> and Mauzerall, D. L. (2024) Recent improvements in PM_{2.5} air quality in India benefited from meteorological variation. *Nature Sustainability*, 7. pp. 983-993. ISSN 2398-9629 doi: 10.1038/s41893-024-01366-y Available at <https://centaur.reading.ac.uk/116408/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1038/s41893-024-01366-y>

Publisher: Nature

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading
Reading's research outputs online

1 **Recent improvements in PM_{2.5} air quality in India benefited from meteorological variation**

4 Yuanyu Xie^{1*}, Mi Zhou¹, Kieran M. R. Hunt^{2,3}, Denise L. Mauzerall^{1,4*}

6 ¹Center for Policy Research on Energy and Environment, School of Public and International
7 Affairs, Princeton University, Princeton, NJ 08544, USA

8 ²Department of Meteorology, University of Reading, Reading, UK

9 ³National Centre for Atmospheric Sciences, University of Reading, Reading, UK

10 ⁴Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ
11 08540, USA

14 ***Corresponding authors:** Yuanyu Xie (Email: yuanyux@princeton.edu)

15 Denise L. Mauzerall (Email: mauzerall@princeton.edu)

22 **Abstract**

23 Improving air quality amid rapid industrialization and population growth is a huge challenge for
24 India. To tackle this challenge, the Indian government implemented the National Clean Air
25 Programme (NCAP) to reduce particulate matter (PM_{2.5} and PM₁₀) pollution in hundreds of non-
26 attainment cities that failed to meet the national ambient air quality standards. Here, we evaluate
27 the efficacy of the NCAP, using data from the national air quality monitoring network combined
28 with regional model simulations. Our results show an 8.8% per year decrease in annual PM_{2.5}
29 pollution in the six non-attainment cities with continuous air pollution monitoring since 2017.
30 Four out of the six cities had over 20% PM_{2.5} reduction in 2022 relative to 2017 and thus met the
31 NCAP target. However, we identify that ~30% of the annual PM_{2.5} air quality improvements, and
32 approximately half during winter when pollution is high, can be attributed to favorable
33 meteorological conditions which are unlikely to persist as the climate warms. Meanwhile, annual
34 PM_{2.5} levels in 44 out of 57 non-attainment cities with continuous monitors still failed to meet air
35 quality standards in 2022. This work highlights the need for substantial additional mitigation
36 measures beyond current NCAP policies to improve air quality in India.

37

38

39

40 **Introduction**

41 Millions of people in India are breathing the most polluted air in the world. Rapid economic
42 growth as the country strives to become a \$5 trillion economy by 2025 has led to enormous
43 increases in emissions of air pollutants^{1, 2}. In 2023, 9 out of 10 of the most polluted cities in the
44 world were in India³. Severe surface air pollution was estimated to be responsible for 1.67
45 million premature mortalities in India in 2019⁴, approximately 8 (13) years of life expectancy
46 lost for 248 million residents of northern India (Delhi)⁵ with a resulting economic cost of \$36.8
47 billion⁴.

48 In January 2019, the Ministry of Environment, Forest and Climate Change (MoEFCC) in India
49 launched the National Clean Air Programme (NCAP) as a national level strategy to reduce
50 particulate matter (PM) air pollution. The NCAP goal is to reduce PM_{2.5} and PM₁₀ pollution by
51 20–30% by 2024 (updated in 2022 to reduce by 40% by 2026) relative to 2017 in 102 non-
52 attainment cities identified by the Central Pollution Control Board (CPCB) in 2019⁶. Total
53 number of non-attainment cities increased to 131 in 2023⁷. NCAP has provided over 10,400
54 Crores (~1.2 billion USD) financial support to the non-attainment cities for expansion of surface
55 continuous pollution monitoring capacity, development and implementation of city action plans,
56 and public awareness campaigns^{8, 9}. There is an urgent need to assess the resulting changes in
57 surface PM_{2.5} air quality nationwide to inform future air pollution control strategies.

58 Air pollution control policies target reductions of emissions at the source. However, observed
59 concentrations of air pollutants are modulated by meteorological variability through changing
60 ventilation and resulting pollution dilution, and the formation of secondary particulates^{10, 11, 12}.
61 Previous studies suggest meteorological variability drives large daily to inter-annual variations in
62 surface PM_{2.5} concentrations across India^{13, 14, 15, 16}. Changing pollution concentrations in turn
63 affect local meteorology and regional climate through perturbation to radiation and cloud
64 formation^{17, 18, 19}, which subsequently feedback to surface pollution levels. These meteorology
65 influence complicates the interpretation of policy effectiveness on pollution concentration trends
66 and health outcomes^{20, 21, 22, 23}. For instance, past research has estimated that meteorological
67 variability contributed 10–27% of the PM_{2.5} reduction over China during the Clean Air Action
68 Campaign^{23, 24}. Understanding the relative importance of emissions versus meteorological
69 variability on surface air pollution concentrations thus has implications for effective air quality
70 policy design.

71 In this study, we compile and apply strict quality controls to recently available continuous hourly
72 PM data from ~500 stations across India in the Continuous Ambient Air Quality Monitoring
73 network (CAAQM) and five stations in the United States Department of State AirNow (US
74 AirNow) networks for 2017–2022 (see Methods). While the National Air Quality Monitoring
75 Program (NAMP) manual PM monitoring data is used by the Indian government to identify non-
76 attainment cities when continuous monitors are not widely available, we only analyze manual
77 data in the Supplementary Information due to large uncertainties related to manual monitoring
78 and data reporting⁶. We perform a comprehensive evaluation of the observed changes in annual,
79 seasonal, and daily PM air quality from CAAQM/US AirNow in non-attainment cities and
80 nationwide. To understand the drivers of the PM air pollution trends, we disentangle the role of
81 anthropogenic emissions versus meteorological variations using surface and satellite
82 observations as well as regional online-coupled meteorology-chemistry model simulations (see
83 Methods). Our analysis highlights the need for better air pollution monitoring data and more
84 stringent emission controls to improve surface air quality and public health over India.

85 **Results**

86 **Observed improvements in surface particulate matter air quality**

87 To evaluate pollution trends and the effectiveness of NCAP policies, we first examine the
88 availability of quality-controlled continuous PM monitoring data from the CAAQM and US
89 AirNow networks in 131 non-attainment cities and nationwide. We then analyze, for each non-
90 attainment city with continuous PM monitoring, the observed changes in annual, seasonal and
91 daily mean PM concentrations since the NCAP baseline year 2017 for comparison with the
92 policy target. To be consistent with seasonal analyses, we calculate annual means as averages
93 from March in the current year through February of the subsequent year.

94 [Figure 1](#) shows the locations of the 131 non-attainment cities and all cities with continuous PM_{2.5}
95 pollution monitoring from the CAAQM and US AirNow networks ([Extended Data Fig. 1](#)). There
96 are a total of 150 cities, including 62 non-attainment cities, that had at least one year of
97 continuous PM_{2.5} data during 2017–2022. However, only seven cities (six non-attainment) had
98 six consecutive years of PM_{2.5} observations that we require to assess pollution trends. Data
99 coverage is better for individual seasons than for annual averages ([Extended Data Fig. 2](#)). The
100 most extensive data exists for winter where 36 cities (28 non-attainment) had six consecutive
101 years of winter PM_{2.5} monitoring data since 2017. Thus, winter pollution trends may be more
102 representative of actual national pollution trends than annual averages. Data availability for PM₁₀
103 is poorer than for PM_{2.5}, with 134 cities (48 non-attainment) having at least one year of data and
104 only one city (Delhi) having six consecutive years of data ([Extended Data Fig. 3](#)). Despite a
105 notable 10-fold increase in CAAQM stations from 2017 to 2022 ([Fig. 1b](#)), in part fueled by
106 NCAP support, lack of consecutive PM pollution monitoring since 2017 hinders the ability of the
107 government to evaluate pollution trends and to determine for most non-attainment cities whether
108 they are meeting the NCAP targets.

109 We find, across Indian cities with continuous air pollution measurements, improvements in
110 surface PM_{2.5} air quality during 2017–2022 ([Fig. 2](#)). Annual PM_{2.5} have decreased at a rate of 8.0
111 $\mu\text{g}/\text{m}^3$ ($-8.8\%, p < 0.01$) per year since 2017 in the six non-attainment cities with continuous
112 PM_{2.5} monitoring ([Fig. 2b](#)). Average PM_{2.5} in those cities was $91.0 \pm 36.7 \mu\text{g}/\text{m}^3$ in the NCAP
113 baseline year 2017, more than twice the national annual standard of $40 \mu\text{g}/\text{m}^3$ and ~18 times the
114 current World Health Organization (WHO) standard of $5 \mu\text{g}/\text{m}^3$. In 2017 none of the six cities
115 had annual PM_{2.5} in compliance with the national annual standard. Annual mean PM_{2.5} decreased
116 to $51.8 \pm 24.5 \mu\text{g}/\text{m}^3$ in 2022, with two cities (Chennai and Varanasi) having PM_{2.5} pollution
117 levels meeting the national annual standard. Reductions of PM_{2.5} concentrations in 2022 relative
118 to 2017 exceeded 20% in four out of six non-attainment cities - surpassing the NCAP targets two
119 years early. Consistent but smaller PM_{2.5} decreases were also observed in 33 cities (25 non-
120 attainment) with continuous monitoring since 2018 ([Fig. 2b](#) and [Extended Data Fig. 4](#)), as well
121 as in 32 cities (21 non-attainment) with manual monitors during 2017–2021 ([Supplementary
122 Figure 1](#)).

123 Larger improvements in PM_{2.5} air quality occurred in fall through winter, the two most polluted
124 seasons in India ([Fig. 2c](#), [Extended Data Fig. 4 & 5](#)). In 13 (28) non-attainment cities with
125 consecutive fall (winter) pollution monitoring, seasonal mean PM_{2.5} decreased at a rate of 7.7%
126 per year ($p < 0.01$) for fall and 5.5% per year ($p = 0.03$) for winter since 2017. Surface PM_{2.5}
127 concentrations in 2022 compared to 2017 was 43% and 25% lower in fall and winter,
128 respectively. Daily pollution levels in fall-winter have also shifted substantially towards lower

129 values over the most polluted Indo Gangetic Plain (Fig. 2c). We find a 35% increase in the
130 frequency of days which met the $60 \mu\text{g}/\text{m}^3$ national 24-hour standard during 2020–2022
131 compared to 2017–2019. Meanwhile, the occurrence of days with very poor ($>120 \mu\text{g}/\text{m}^3$) or
132 severe ($>250 \mu\text{g}/\text{m}^3$) $\text{PM}_{2.5}$ air pollution, according to National Air Quality Index, decreased by
133 one-third. While $\text{PM}_{2.5}$ reductions in spring-summer are smaller, significantly lower $\text{PM}_{2.5}$ levels
134 by 30–40% were observed during the national COVID-19 lockdown (Mar–May in 2020) and
135 partial lockdown (April–June in 2021, Supplementary Figure 2) consistent with previous
136 studies^{25, 26}.

137 No significant trends in PM_{10} pollution were observed in Delhi, the only city with six years of
138 continuous PM_{10} monitoring since 2017, or in the 13 cities with consecutive PM_{10} observations
139 since 2018 (Extended Data Fig. 3). Consistent with $\text{PM}_{2.5}$, surface PM_{10} pollution were 30–40%
140 lower during the COVID-19 lockdown (Supplementary Figure 3), indicating the importance of
141 anthropogenic contribution (e.g., road dust, construction) to surface PM_{10} pollution in India²⁷.
142 However, no significant PM_{10} reductions in 2020 were reported by the NAMP manual
143 monitoring data as compared to the 2019 and 2021 averages (Supplementary Figure 4). This may
144 in part be linked to gaps in data collection due to difficulties in making manual measurements
145 during the COVID-19 lockdown periods in 2020. Moreover, PM_{10} trends observed by the NAMP
146 monitoring network were inconsistent with those from CAAQM continuous monitoring networks
147 in the 12 cities where annual PM_{10} measurements from both networks are available. Such data
148 discrepancies raise concerns regarding the robustness of the manual data used to identify non-
149 attainment cities and to assess pollution trends.

150

151 **Changes in anthropogenic emissions were small**

152 We first examine whether the observed air quality improvements since 2017 can be explained by
153 changes in anthropogenic emissions of primary $\text{PM}_{2.5}$ and key precursors nationwide as these
154 species have been targeted in various pollution control policies^{6, 28, 29}. We focus our analysis on
155 $\text{PM}_{2.5}$ pollution with better data coverage and consistency. We use emission data from three
156 global emission inventories as national inventories do not provide data after 2017 (see Methods).
157 Observational constraints from satellite-retrieved column concentrations and surface
158 measurements are included for comparison as uncertainties exist in the emission estimates from
159 global and regional databases of activity levels, emission factors and spatial distributions used to
160 estimate emissions across India^{30, 31, 32, 33}.

161 We find slight decreases in emissions of primary particles but little change or increases in
162 emissions of key $\text{PM}_{2.5}$ precursors since the NCAP baseline year 2017 (Fig. 3, Extended Data
163 Fig. 6). Emissions of black carbon (BC) and organic carbon (OC) have decreased since around
164 2010 (Fig. 3a-b), consistent with the observed decreasing trends of surface BC concentrations
165 across India since 2011³⁴ and in Delhi since 2012³⁵. The emission reductions were primarily
166 from the residential sector. This was in part driven by the wide success of *Pradhan Mantri*
167 *Ujjwala Yojana* launched in 2016, which aims to replace solid fuel cooking with liquified
168 petroleum gas (LPG) through subsidizing 96 million LPG connections to socioeconomically
169 poor rural households across India. The percentage of Indian household that use LPG as primary
170 cooking fuel has increased from 28.5% in 2011 to 71% in 2020³⁶. Surface carbon monoxide
171 (CO), a gas pollutant co-emitted during biomass burning, was also observed to decrease in 4
172 cities with five years of continuous monitoring starting in 2018 (Fig. 3b). Rapid penetration of

173 clean cooking fuel over the past several years may thus be one of the important drivers of the
174 observed PM_{2.5} air quality improvements since 2017³⁷. In addition, emission reductions of BC
175 have resulted from decreases in the use of diesel in the transport sector and replacement with
176 compressed natural gas³⁵, and are expected to decrease further with the introduction of electric
177 buses.

178 In comparison, no significant decreasing trends are seen in key PM_{2.5} precursors (SO₂, NO_x and
179 NH₃) from emissions inventories during 2017–2019, or from surface or satellite observations
180 during 2017–2022 (Fig. 3 a-c, [Supplementary Figure 4](#)). In fact, we find a 7% increase in total
181 column SO₂ nationwide in 2022 compared to 2017, especially over regions where major coal
182 power plants are located ([Extended Data Fig. 7](#)). Observed surface SO₂ concentrations were also
183 14% higher in 2022 than in 2018 averaged from 18 cities with five consecutive years of
184 monitoring data. These observed SO₂ increases were likely associated with the soaring coal
185 consumption in India following a small decrease in 2019–2020³⁸. Moreover, currently over 70%
186 of coal power plants are still out of compliance with the updated 2015 emission standard for
187 thermal power plants³⁹. As the world’s largest SO₂ emitter and with increasing energy demand,
188 India will need stronger enforcement of the emission standards and an increase in generation
189 from clean energy sources to reduce its SO₂ emissions.

190 Insignificant changes in NO_x and slight increases in NH₃ concentrations were observed during
191 2018–2022 compared to 2017 (Fig. 3b-c). Total column NO₂ from TROPOMI shows a 6%
192 increase in 2022 relative to 2018 despite slight decreases in 2019–2020. The increases were most
193 significant in the Indo Gangetic Plain and in major cities across the country ([Extended Data Fig.](#)
194 7), likely associated with increased emissions from transportation due to growing numbers of
195 vehicles. These may offset emission reductions resulting from the implementation of Bharat
196 Stage IV emission standards since 2010 (equivalent to Euro IV) and the Bharat Stage VI
197 emission standards since 2020 (based on Euro VI)⁴⁰. In 2018 the Indian government also
198 launched the E-Mobility Program to encourage adoption of electric vehicles. Over 6% of vehicle
199 sales in 2023 were EVs and increasing EV adoption may significantly contribute to future air
200 quality improvements. Atmospheric NH₃ in India has increased by 5–10% during 2018–2022
201 compared to 2017 observed from both satellite and surface measurements (Fig. 3c). The largest
202 increase was over the Indo Gangetic Plain, a global hotspot of NH₃ emissions due to intense
203 agriculture activity, unregulated use of chemical fertilizer, and numerous cattles^{41, 42}. Currently
204 few policies of which we are aware target NH₃ reductions and therefore emissions may continue
205 to increase due to growing demand for food. Consistent with previous studies, during the
206 COVID-19 lockdown in March–May 2020 we find significantly lower levels of NO_x (–17%) and
207 SO₂ (–20%) in major cities as well as in regions with numerous thermal power plants across
208 India ([Supplementary Figure 5](#)).

209

210 **Meteorology contributes to air pollution reductions**

211 Since changes in anthropogenic emissions were small, we next investigate the extent to which
212 the observed decrease in PM_{2.5} pollution over India can be explained by meteorological
213 variability. To isolate the meteorological contributions, we conduct six years of WRF-Chem
214 model simulations during 2017–2022 using varying meteorology but with anthropogenic
215 emissions fixed at the NCAP baseline year of 2017 (see Methods). The meteorological
216 contributions are estimated as the difference between the simulated PM_{2.5} changes during 2018–

217 2022 versus 2017 relative to that observed. Detailed model evaluations are provided in the
218 Supplementary Information (Text S2, Supplementary Figures 6–14). Briefly, model simulations
219 reproduce the observed surface PM_{2.5} concentrations across Indian cities and the simulated PM_{2.5}
220 chemical compositions at the Delhi Aerosol Supersite in baseline year 2017⁴³. The model also
221 captures the monthly variations of meteorological variables and PM_{2.5} concentrations during
222 2017–2022, supporting the credibility of the model simulated interannual variations in surface
223 PM_{2.5} concentrations driven by meteorological variations.

224 With anthropogenic emissions fixed at the 2017 baseline level, model simulations show a 3–15%
225 decrease in annual mean PM_{2.5} during 2018–2022 compared to 2017 in the six non-attainment
226 cities (Fig. 4a). The meteorology-driven decreases accounted for approximately 30% of the
227 observed annual PM_{2.5} decrease in those six cities. Notably, model simulations indicate over half
228 of the observed annual PM_{2.5} pollution decrease in Hyderabad (100%) and Chennai (50%), and
229 one third in Delhi (36%) were attributable to meteorological variations (Fig. 4b). In other words,
230 the NCAP PM_{2.5} reduction target would not have been met in 2022 in these non-attainment cities
231 without favorable meteorological contributions. The role of meteorology was smaller in Agra
232 (16%), Kanpur (12%), and negligible in Varanasi (1%), indicating the more critical role of
233 anthropogenic emission controls in those cities. For instance, Varanasi was ranked top three in
234 the clean air survey in 2022 for actions to reduce air pollution⁴⁴. Across India, meteorology alone
235 was estimated to have contributed an average of $4.0 \pm 2.8 \mu\text{g}/\text{m}^3$ decrease (–6% relative to 2017)
236 in annual mean PM_{2.5} during 2018–2022 in 110 out of the 131 non-attainment cities.

237 Meteorology-driven PM_{2.5} decreases were most significant in winter, accounting for
238 approximately half of the observed PM_{2.5} decreases in 28 non-attainment cities with consecutive
239 winter pollution monitoring (Fig. 4c–d). In particular, over 90% of the winter air quality
240 improvements were estimated to be driven by favorable meteorological conditions in three cities
241 (Faridabad, Gobindgarh, Patna) in northern India and in four cities (Chennai, Dewas, Hyderabad,
242 Visakhapatnam) in southern India. This highlights the critical role of meteorological variations in
243 driving the observed seasonal pollution trends. Meteorological variations also contributed to
244 ~40% of the observed PM_{2.5} decrease in fall in 13 non-attainment cities. In contrast, we find a
245 negligible role of meteorology in summer pollution trends and slight increases in spring pollution
246 driven by meteorological variations.

247 The most significant improvements in PM_{2.5} air quality (>50% decrease) occurred on days with
248 precipitation and better ventilations in winter 2021, when largest decrease in regional pollution
249 were recorded, relative to the 2017 baseline (Fig. 5). These meteorological variables also show
250 stronger correlations with daily PM_{2.5} among others (Extended Data Fig. 8). During winter 2021,
251 northern India recorded 62% more precipitation relative to the 2000–2022 mean and 45% fewer
252 days with inversions (i.e., better vertical ventilation, Extended Data Fig. 9). This is largely
253 associated with a southward shift of the subtropical jet and increased baroclinic instability that
254 favors more frequent and intense western disturbances (Supplementary Figure 15), a mid-
255 tropospheric low-pressure system that enhances vertical mixing and contributes to the majority
256 of winter precipitation over Northern India⁴⁵. In contrast, winter 2017 featured prolonged
257 inversions, below-normal precipitation (–51%), and 10% fewer high-wind episodes because of
258 the weaker western disturbances, leading to a more stable condition in the lower atmosphere that
259 favored the buildup of surface pollution.

260 These meteorological variations may be linked to variability in sea surface temperature and the
261 location of subtropical jet streams resulting from modes of climate variability such as the North

262 Atlantic Oscillation, El Niño and the Antarctic Oscillation^{15, 46}. Previous studies have not been
263 able to agree on the trend of western disturbances frequency over the last century^{47, 48}. However,
264 they are projected to decline in future climate scenarios, due to widening and weakening of the
265 subtropical jet streams, resulting in reduced surface wind speed^{14, 49, 50}. Projected decreases in
266 winter western disturbances are likely to increase stagnation and decrease atmospheric
267 dispersion, suggesting meteorologically driven PM_{2.5} decreases over past winters may not persist
268 in the future and more stringent emission controls are necessary for reducing surface air pollution
269 in India.

270 We further perform two sets of sensitivity simulations for winter 2017 and 2021 to better
271 understand the effects of possible emission changes (Methods). With a 25% increase or decrease
272 in anthropogenic emissions over India relative to the 2017 baseline level, the resulting PM_{2.5}
273 changes due to emission increases (decreases) alone is 24% (-21%) averaged in the 28 cities
274 with continuous pollution monitoring ([Extended Data Fig. 10](#)). Model simulation with both
275 meteorology varying and emission reductions better reproduce the observed PM_{2.5} decrease
276 compared to simulations with emission fixed at the baseline level ([Fig. 4c](#), [Extended Data Fig.](#)
277 [10](#)). This indicates the observed air quality improvements are likely driven by both emissions
278 controls and favorable meteorological conditions. Moreover, simulations with emission
279 reductions show an additional ~0.2 K decrease in the simulated surface temperature inversion,
280 which favors pollution dispersion and thus provide additional benefits to surface air quality
281 improvements.

282

283 Discussion

284 We provide a comprehensive evaluation of the recent PM air quality trends over India under
285 NCAP – the first national air pollution control program with a specific pollution reduction target.
286 Our study reveals significant improvements in annual and seasonal surface PM_{2.5} air quality
287 consistent with the NCAP target across India and in non-attainment cities with continuous air
288 quality monitoring since 2017. If surface air pollution levels nationwide decreased sufficiently to
289 meet the NCAP target everywhere, studies have estimated that India's national life expectancy
290 would increase by 1.7 years, and by 3.1 years for residents living in the heavily polluted cities
291 like Delhi⁵.

292 However, in addition to efforts on emission controls, the recent achievement of the pollution
293 reduction targets (about 30% of annual and half of the winter air quality improvements)
294 benefited from favorable meteorological conditions that enhance pollution dispersion and wet
295 removal. Unfortunately, these more favorable meteorological conditions appear unlikely to
296 persist under future climate change and thus additional pollution control measures will be needed
297 to simply maintain current air quality levels in India. Meanwhile, satellite and surface
298 observations reveal increasing concentrations of PM_{2.5} precursors over the past several years
299 despite more stringent emission standards for vehicles and thermal power plants. Such increases
300 may offset pollution reductions gained from controlling primary emissions, e.g., household solid
301 fuel use, and result in further degradation of surface air quality and adverse health impacts.

302 The Indian government has made great efforts over recent years to expand in situ continuous
303 monitoring capacity in urban centers to identify air quality non-attainment and to warn the public
304 of dangerous pollution levels in support of the NCAP target. Nonetheless, continuous and quality
305 data are still lacking in most non-attainment cities. One limitation of our study thus lies in the

306 availability and quality of surface air quality data as our trend assessments are primarily based on
307 PM_{2.5} monitoring in 6 out of the 131 non-attainment cities (28 in winter) with quality controlled
308 CAAQM/US AirNow data starting from 2017. While surface PM_{2.5} data is also available from
309 the more extensive NAMP manual monitoring network, we identify large discrepancies in annual
310 pollution trends measured in cities where both CAAQM (continuous) and NAMP (manual) data
311 are available. Such discrepancies raise concerns of the robustness of manual monitored pollution
312 data for identifying non-attainment cities as well as for assessing pollution trends. Reporting of
313 daily data from NAMP, rather than just annual averages, would be valuable in evaluating the
314 robustness of NAMP data.

315 In addition, there is little continuous pollution monitoring in rural areas where both outdoor and
316 indoor air pollution are severe⁵¹, or in the eastern states where numerous coal power plants are
317 located⁵² and satellite observations show elevated SO₂ and NO₂ concentrations. As a result, no
318 ground-level information is available for our study to characterize attainment of air quality
319 standards or trends in emissions in those regions. Apparent compliance with surface air quality
320 standards is likely misleading for large areas of India. Increased siting of pollution monitoring
321 over emission hotspots and improvements in data collection as well as quality control that results
322 in manual and continuous measurements without large temporal gaps or errors, systematic
323 information on monitoring station's locations and surroundings, and easier access to observations
324 (e.g., ability to download data simultaneously from multiple stations for different chemical
325 species) are necessary to enhance the utility of these measurements in order to determine trends
326 and compliance with the standards⁵³.

327 Another critical issue arises from the lack of an up-to-date national emission inventory that
328 accurately represents emissions changes resulting from pollution control policies under NCAP.
329 Model sensitivity simulations for winter 2021 with anthropogenic emissions reduced by a quarter
330 relative to the 2017 baseline emissions better reproduce the observed PM_{2.5} decrease compared
331 to simulations with emissions fixed at 2017 baseline level. Such emission reduction is greater
332 than the trends extrapolated from the existing emission datasets. In addition, biases in the model
333 simulated PM_{2.5} components (e.g., ~40% overestimation in nitrate) may be partly due to emission
334 uncertainties. For instance, national NO_x emissions vary by 40% and sectoral contributions (e.g.,
335 residential) vary by as much as 4 times among available emission inventories from India.
336 Improving the accuracy of the national emission inventory over time is essential for policy
337 makers to determine whether NCAP goals are being met at national and sub-national scales.

338 The NCAP is an important step towards addressing severe and deteriorating ambient air quality
339 in India. However, surface PM_{2.5} levels remain very unhealthy even after meeting the NCAP
340 pollution reduction targets. In 2022, annual PM_{2.5} pollution in 44 out of 57 non-attainment cities
341 with continuous monitors still exceeded the 40 µg/m³ national standard. India, together with
342 other developing countries in the global south, faces dual challenges in the coming decades as
343 fast-growing population and energy consumption risks a dramatic increase in the emission of air
344 pollutants and greenhouse gases. Increasing pollution emissions and feedback from a warming
345 climate (e.g., heatwave, wildfires and stagnation) will, without strong policy intervention, place a
346 huge health burden on a growing and aging population in developing counties and globally.
347 Substantial additional mitigation beyond current air pollution control policies, especially those
348 that simultaneously mitigate greenhouse gas and air pollutant emissions such as
349 decarbonization of the energy system, electrification, reductions in agricultural waste burning,

350 are essential for fast-developing economies to bring air pollution to healthy levels and to play a
351 positive role in slowing the rate of global climate change.

352 **Methods**

353 **Surface PM observations.** Surface hourly observations of PM_{2.5} and PM₁₀ during 2017–2022
354 are obtained from ~500 stations in the Continuous Ambient Air Quality Monitoring network
355 (CAAQM) operated by the Central Pollution Control Board (CPCB) and State Pollution Control
356 Board (SPCB)⁵⁴, and from 5 stations in the U.S. Department of State AirNow continuous
357 monitoring network. These continuous monitors are mostly located in urban environments (e.g.,
358 bus stations, industry, or residential centers) and may be subject to the influence of local
359 pollution sources. The measurements are made using the beta ray attenuation method and data
360 collection as well as validation follows the U.S. Environmental Protection Agency standards⁵⁵.
361 To ensure the robustness of the data, we perform rigorous quality control procedures on the
362 hourly data following the methods of a recent study⁵⁶ with a few modifications. Specifically, we
363 replace repetitive hourly values occurring more than five times in a row with a single value and
364 screen the data for abnormal spikes and remove unexplained outliers⁵⁷. We also remove
365 measurement sites that report constant data values with standard deviation less than 5% of that
366 long-term mean value⁵⁸. To further ensure representative monthly and seasonal statistics for
367 trend analysis, we apply a 1/3 data coverage criteria: daily data is considered valid if at least two
368 measurements are available for each of the four six-hour period in one day; monthly data is
369 included if at least three daily averages are available for each 10-day period. For seasonal data
370 we require at least two monthly averages are available for each season. We also obtain hourly
371 observations of SO₂, NO_x, NH₃ and CO from CAAQM and apply the same quality control and
372 temporal averaging criteria as described for the PM data.

373 The CPCB characterized 102 non-attainment cities in 2019 based on the National Air Quality
374 Monitoring Programme (NAMP) manual pollution monitoring stations reporting of annual
375 average concentrations. These cities had surface air pollution exceeding National Ambient Air
376 Quality Standards (NAAQS, annual standards for PM_{2.5}: 40 $\mu\text{g}/\text{m}^3$, PM₁₀: 60 $\mu\text{g}/\text{m}^3$, SO₂: 50
377 $\mu\text{g}/\text{m}^3$ or 20 $\mu\text{g}/\text{m}^3$ for ecologically sensitive area, NO₂: 40 $\mu\text{g}/\text{m}^3$ or 30 $\mu\text{g}/\text{m}^3$ for ecologically
378 sensitive area) consecutively for five years during 2011–2015. In addition, cities listed as one of
379 the top ten polluted in the World Health Organization Fourth Ambient Air Quality Database
380 report for 2014–2018⁶ are also considered non-attainment. Among the 102 non-attainment cities
381 identified in 2019 by CPCB, 94 cities had annual PM₁₀ measurements during 2011–2015
382 exceeding the NAAQS, 16 cities had annual PM_{2.5} measured at NAMP manual stations or
383 CAAQM continuous stations exceeding the national standards since 2015, and 10 cities were
384 listed in the WHO report⁶. Total number of non-attainment cities increased to 131 in 2023
385 according to a list compiled by CPCB⁷. To assess the NCAP policy effectiveness, we average
386 PM measurements made within the same city and distinguish between attainment and non-
387 attainment cities. Daily surface PM_{2.5} data from the CAAQM and US AirNow networks are
388 averaged when located in the same city as good data consistency has been found ([Extended Data](#)
389 [Fig. 1](#)).

390 We provide additional analysis of the recent PM pollution trends using the annual data reported
391 by NAMP in the Supplementary Information Text S1. The surface PM pollution trends based on
392 NAMP data are compared with those based on CAAQM/US AirNow in cities where both manual
393 and continuous pollution monitoring stations are available. It should be noted that the NAMP
394 manual monitoring data is described by the NCAP report as ‘indicative’ rather than ‘absolute’
395 due to uncertainties in sampling intervals, chemical analyses and data reporting⁶. In addition,

396 reporting of the manual data does not include detailed information for the temporal sampling
397 frequency we need for quality control procedures.

398 **Anthropogenic emissions and satellite observations.** We examine changes in anthropogenic
399 emissions of primary particles (black carbon, organic carbon, and other anthropogenic coarse and
400 fine particles) and major gaseous precursors (SO_2 , NO_x and NH_3) over India since 2010 from the
401 Community Emissions Data System (CEDSv2021_04_21, update to 2019) global emission
402 inventory⁵⁹. Emissions over India are estimated based on the Regional Emissions Inventory in
403 Asia (REAS 2.1) and calibrated to Greenhouse gas–Air pollution Interactions and Synergies
404 (GAINS) emission factors⁶⁰. To reflect uncertainties in the global emission inventories, we also
405 compare emissions from the Emissions Database for Global Atmospheric Research
406 (EDGARv6.1, updated 2018)⁶¹ and Evaluating the Climate and Air Quality Impacts of Short-
407 Lived Pollutants (ECLIPSE v6b, updated to 2018)⁶⁰. National emission inventories, for instance
408 Speciated Multipollutant Generator (SMoG-India)⁶² or The Energy and Resources Institute⁶³,
409 may provide more accurate information on fuel consumption levels, emission factors, as well as
410 emissions from urban dust not available in global emission inventories^{30, 64}. However, neither
411 SMoG nor TERI provide emission estimates after 2016 and are therefore not included in our
412 trend analysis.

413 To validate trends indicated in the emission inventories as well as to provide additional
414 information beyond 2019 when emission data are not available, we include top-down constraints
415 from satellite-retrieved total column concentrations of SO_2 , NO_2 and NH_3 over India during
416 2010–2022. Total SO_2 columns are obtained from the Level-3 Aura/OMI Global gridded
417 OMSO2e product⁶⁵ available during 2004–2022 at a horizontal resolution of $0.25^\circ \times 0.25^\circ$.
418 Tropospheric NO_2 columns are obtained from Level-3 Aura/OMI global gridded Nitrogen
419 Dioxide Product (OMNO2d)⁶⁶ available during 2004–2022 at $0.25^\circ \times 0.25^\circ$ where cloud fraction
420 is less than 30%, and from the TROPospheric Monitoring Instrument (TROPOMI)⁶⁷ during
421 2018–2022 at $0.125^\circ \times 0.125^\circ$. Satellite NH_3 columns are obtained from the Level-3 IASI onboard
422 Metop-B satellite^{68, 69, 70, 71} during 2013–2022 at $1^\circ \times 1^\circ$ horizontal resolution.

423 **Meteorology data.** Daily time series of meteorological data during 2000–2022 are obtained
424 from the fifth generation European Centre for Medium-Range Weather Forecasts (ECMWF)
425 reanalysis of global climate and weather (ERA5, $0.25^\circ \times 0.25^\circ$)⁷². Tracking of western
426 disturbances are based on the ERA5 500 hPa relative vorticity⁴⁵. We perform linear regression
427 analysis between surface $\text{PM}_{2.5}$ and meteorological variables shown in previous studies to be
428 correlated with $\text{PM}_{2.5}$ ^{13, 14}. The meteorological variables we analyze includes surface (2m)
429 temperature, total precipitation, relative humidity, boundary layer height, surface pressure, wind
430 speed at surface (10m), 850 hPa and 500 hPa, and lower atmospheric instability represented by
431 temperature inversion between 850 hPa and surface (Extended Data Fig. 8). Considering daytime
432 boundary layer height during winter may be below 1000 m based on lidar observations over New
433 Delhi⁷³, we also compare temperature inversion between 925 hPa and the surface. Our results
434 indicate an overall stronger correlation between surface $\text{PM}_{2.5}$ and temperature inversion between
435 925 hPa and the surface. For linear regression analysis, we further regrid all data to $2^\circ \times 2.5^\circ$ to
436 increase statistical robustness^{74, 75}. Both $\text{PM}_{2.5}$ and meteorological variables are deseasonalized
437 and detrended for linear regression analysis to avoid correlations from common seasonality or
438 long-term trends associated with anthropogenic emission changes²⁴.

439 **WRF-Chem model experiments.** We conduct simulations with the Weather Research and
440 Forecasting model coupled with Chemistry⁷⁶ (WRF-Chem, version 3.6.1) at 27 km^2 horizontal

441 resolution to characterize the role of meteorology in the observed annual and seasonal surface
442 PM_{2.5} air quality improvements in India. The WRF-Chem model used in this study was
443 configured following a previous study⁷⁷ but with domain focus on India. Specifically, the
444 meteorological initial and lateral boundary conditions are from ERA5 at 0.25°×0.25° resolution.
445 Chemical initial and boundary conditions are from the Community Atmosphere Model with
446 Chemistry (CAM-Chem)⁷⁸. The biogenic non-methane VOC emissions are calculated online by
447 the Model of Emissions of Gases and Aerosols from Nature (MEGAN)⁷⁹ coupled with WRF-
448 Chem. Anthropogenic emissions for the NCAP baseline year 2017 are from the CEDS global
449 emission inventory. Emissions of primary PM_{2.5} other than black carbon and organic carbon are
450 not provided by CEDS and are thus from the ECPLISE global emission inventory over the WRF-
451 Chem domain.

452 To isolate the impact of meteorological variability, we perform six years of model simulations
453 (2017–2022) with meteorology varying but with anthropogenic emissions fixed at the NCAP
454 2017 baseline level. The differences between the observed and simulated PM_{2.5} concentration
455 during 2018–2022 relative to 2017 thus enable us to assess the impacts resulting from
456 meteorological variability. The WRF-Chem model was reinitiated every 24 h to prevent the
457 drifting effects of simulated meteorological fields. We acknowledge that this may lead to an
458 underestimation of the emission–aerosol–meteorology interactions and may result in slightly
459 larger PM_{2.5} decrease with emission fixed at higher than actual levels⁸⁰. The model simulated
460 meteorological parameters are evaluated against surface observations obtained from the
461 integrated surface data of NOAA National Centers for Environmental Information
462 (<https://www.ncei.noaa.gov/>). The simulated surface PM_{2.5} dry mass and major chemical
463 components are evaluated against surface observations from the CAAQM and US AirNow
464 continuous pollution monitoring networks, as well as from the Delhi aerosol super site⁴³ (see
465 [Supplementary Information Text S2, Fig. S6–S14](#)).

466 We use two sets of sensitivity simulations to quantify the response of surface PM_{2.5}
467 concentrations to changing anthropogenic emissions alone as well as to both changing emissions
468 and meteorology over India ([Extended Data Fig. 10](#)). For winters 2017 and 2021, we assume a
469 25% reduction in anthropogenic emissions over India relative to the 2017 baseline level. The
470 25% change we apply is consistent with the NCAP target of 20–30% reduction in PM_{2.5} pollution
471 as no up-to-date emission inventory is available. We include another scenario in which we
472 assume a 25% increase in anthropogenic emissions resulting from increasing anthropogenic
473 activities with little emission controls. The difference in the simulated PM_{2.5} between the
474 sensitivity simulations with emissions varying by +/-25% and the simulations with emissions
475 fixed at the 2017 level allow us to assess the effect of emission changes alone for 2017 and 2021,
476 respectively. The difference in the simulated PM_{2.5} between the sensitivity simulation for 2021
477 with emissions varying by +/-25% and the simulation for 2017 with baseline emissions reflect
478 the impacts of both changing emissions and meteorology.

479

480 **Data availability**

481 Surface PM_{2.5} and other air pollution data from the CAAQM network are available at
482 <https://app.cpcbccr.com/CCR/#/caaqm-dashboard-all/caaqm-landing>. Surface PM_{2.5} data from the
483 US AirNow network is available at <https://www.airnow.gov/international/us-embassies-and-consulates/>. Manual monitoring data for PM_{2.5} and other air pollution data is available at

485 <https://cpcb.nic.in/manual-monitoring/>. The CEDS emission database is available at
486 <https://github.com/JGCRI/CEDS/>. The EDGAR emission database is available at
487 https://edgar.jrc.ec.europa.eu/dataset_ap61. The ECLIPSE emission database is available at
488 <https://iiasa.ac.at/models-tools-data/global-emission-fields-of-air-pollutants-and-ghgs>. Satellite
489 observations of SO₂ and NO₂ from OMI are available at <https://giovanni.gsfc.nasa.gov/giovanni/>
490 and from TROPOMI at <https://www.temis.nl/airpollution/no2.php>. Satellite observation of NH₃
491 is available at <https://iasi.aeris-data.fr/nh3/>. Meteorology data from ERA5 is available at
492 <https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset> and from NCEI at
493 <https://www.ncei.noaa.gov/>. WRF-Chem outputs and processed air quality data generated in this
494 study are publicly available on the Princeton archive at <https://doi.org/10.34770/xtje-mj26>.

495

496 **Code availability**

497 Source codes of the WRF-Chem model utilized in this study are available at
498 https://www2.mmm.ucar.edu/wrf/users/download/get_sources.html#WRF-Chem. All custom
499 codes are direct implementation of standard methods and techniques as described in detail in
500 Methods.

501

502 **Corresponding authors**

503 Correspondence and requests for materials should be addressed to Yuanyu Xie (Email:
504 yuanyux@princeton.edu) or Denise L. Mauzerall (Email: mauzerall@princeton.edu)

505

506 **Acknowledgements**

507 We acknowledge project support from the M.S. Chadha Center for Global India at Princeton
508 University, and the Princeton School of Public and International Affairs and its Center for Policy
509 Research on Energy and the Environment. Kieran M. R. Hunt is supported by a NERC
510 Independent Research Fellowship (MITRE; NE/W007924/1). We acknowledge the Central and
511 State Pollution Control Boards in making surface PM_{2.5} pollution measurements through the
512 CAAQM and NAMP monitoring network. We thank Disha Sharma and Chien Nguyen in
513 helping collect the CAAQM surface air quality data for 2015–2022. We thank Steve Smith for
514 instructions on the CEDS global emission inventory, and Chandra Venkataraman and Tanushree
515 Ganguly for instructions on India national emission inventories. We also thank Fabien Paulot,
516 Vaishali Naik, Larry W. Horowitz and Meiyun Lin for their suggestions early in this study. We
517 thank Malini Nambiar, Rohit Gupta, Edmund T. Downie, Diyansh Chug, Rohit Chandra and
518 Wenhao Dong for constructive feedback on the manuscript.

519

520 **Author contributions**

521 Y.X. and D.L.M conceptualized the study. Y.X. retrieved and constructed the dataset and
522 performed the analysis. M.Z. contributed to data processing, WRF-Chem model simulations, and
523 model evaluations. K.H. analyzed the western disturbance. Y.X. and D.L.M. integrated the
524 results and wrote the manuscript. All authors contributed to the interpretation of findings,
525 provided revisions to the manuscript, and approved the final manuscript.

526

527 **Competing interests**

528 The authors declare no competing interest.

529

530 **Fig.1 Continuous PM monitoring data availability in Indian cities.** **a**, Location of the 131 non-attainment
531 cities (red dots) and cities with continuous PM_{2.5} monitoring available from the CAAQM/US AirNow
532 networks for at least one year during 2017–2022 (black circles) on the topographic map (in meters) over India.
533 **b**, Changes in the total number of NCAP non-attainment cities with continuous PM monitoring from the
534 CAAQM/US AirNow networks (bars, left axis) and number of total surface PM monitoring stations from the
535 CAAQM/US AirNow networks (lines, right axis) during 2017–2022; dashed horizontal grey lines indicate the
536 percentage of the 131 non-attainment cities that had continuous PM monitoring data available.

537

538 **Fig.2 Observed surface PM_{2.5} air quality improvements during 2017–2022.** **a**, Annual mean PM_{2.5} in
539 Indian cities measured at continuous stations from the CAAQM and US AirNow networks in 2017–2022. Dots
540 with black circles indicate the six non-attainment cities with six consecutive years of data. Number of total
541 (non-attainment) cities that had PM_{2.5} measurements are reported at the bottom left for each year. **b**, Time
542 series of annual mean PM_{2.5} concentrations in 2017–2022 averaged in non-attainment (black) and all (orange)
543 cities with consecutive PM_{2.5} data starting from 2017 (number of cities reported at the bottom), and for non-
544 attainment cities with consecutive data starting from 2018–2021 (different shades of grey; number of cities
545 reported at the bottom); the left axis represent the ratio relative to 2017, the NCAP baseline; data starting from
546 2018–2021 are scaled to match with the ratio relative to 2017; larger dots represent greater number of non-
547 attainment cities included for averaging; error bars denotes \pm one standard error of means across available cities
548 (n=6 (7), 25, 29, 40, and 49 as reported at the bottom) . **c**, Probability distributions of daily PM_{2.5}
549 concentrations in fall and winter in non-attainment cities with six consecutive years of PM_{2.5} measurements
550 during 2017–2022 (n=2169, 2398, 2390, 2455, 2487, 2495, respectively), and the percentage of city-days
551 (embedded bar plots) that fall within each pollution category (Good \leq 30 $\mu\text{g}/\text{m}^3$, Satisfactory: 30–60 $\mu\text{g}/\text{m}^3$,
552 Moderately polluted: 60–90 $\mu\text{g}/\text{m}^3$, Poor: 90–120 $\mu\text{g}/\text{m}^3$, Very poor: 120–250 $\mu\text{g}/\text{m}^3$, Severe: $>250 \mu\text{g}/\text{m}^3$)
553 defined by CPCB⁸¹. The dashed line in **c**) denotes the national 24-hourly standard for PM_{2.5} in India.

554

555 **Fig. 3 Changes in anthropogenic emissions and concentrations of primary PM_{2.5} and key precursors
556 since 2010.** Timeseries of anthropogenic emissions of primary particles, including **(a)** black carbon (BC), **(b)**
557 organic carbon (OC), **(c)** other primary fine particles (PM_{2.5}) and coarse particles (PM₁₀), and key PM_{2.5}
558 precursors, including **(d)** sulfur dioxide (SO₂), **(e)** nitrogen oxides (NO_x), **(f)** ammonia (NH₃) over India during
559 2010–2019 relative to 2017. **a, b, d-f** are from the CEDS (v2021-04-21) global emission inventory with
560 updates to 2019, **(c)** is from the ECLIPSE (v6b) emission inventory with updates to 2018. Data from ECLIPSE
561 during 2019–2020 are projections. Red lines in **d-f** are satellite-retrieved column total concentrations of SO₂
562 from OMI, NO₂ from OMI and TROPOMI (blue) and NH₃ from IASI, respectively. Black dots in **b, c, d-f** are
563 annual average surface concentrations of carbon monoxide (CO), PM₁₀, SO₂, NO_x, NH₃ from cities with
564 continuous CAAQM pollution monitoring for five years since 2018 (numbers of cities in parenthesis). Error
565 bars in **b-f** represents \pm one standard error of means across cities (n=4, 22, 18, 11, 10 as reported in parenthesis
566 in each panel). Black triangles in **a,b** are observed surface concentrations of black carbon and organic carbon
567 at the CSIR-National Physical Laboratory site in New Delhi³⁵.

568

569 **Fig. 4 Meteorological contributions to recent PM_{2.5} air quality improvements.** **(a)** Annual (blue) and
570 seasonal (green) mean PM_{2.5} decrease during 2018–2022 in percent relative to 2017 averaged in non-
571 attainment cities from observations (light blue/green) and from WRF-Chem model simulations (dark
572 blue/green) driven by meteorological variations but with emissions fixed at 2017 level. Error bar represents

573 \pm one standard error of means across cities (n=6) for annual averages, and across cities (n=15, 11, 13, 28 as
574 reported at the bottom) for seasonal averages. The light and dark green circles for MAM represent changes if
575 2020 (COVID-19 lockdown) is excluded. (b) Model simulated annual PM_{2.5} decrease during 2018–2022 in
576 percent relative to 2017 (colored background) and the percentage contributed by meteorological variations
577 (dark green segments inside circles) in each of the six non-attainment cities. The size of the circles represents
578 the magnitude of the observed PM_{2.5} decrease. (c-d) same as (a-b) but for winter PM_{2.5} changes in 28 non-
579 attainment cities from observations (light blue) and model simulations driven by meteorological variations but
580 with emissions fixed at 2017 level (dark blue), and number of non-attainment cities (orange) with <10%, 10–
581 50%, 50–90% or >90% of the observed PM_{2.5} decrease contributed by meteorological variations. The dark blue
582 circle in c represents the simulated PM_{2.5} decrease in 2021 with a 25% reduction in anthropogenic emission
583 relative to the 2017 baseline level. Error bar in c represents \pm one standard error of means across cities (n=28).

584

585 **Fig. 5 Comparison of daily PM_{2.5} and meteorological variables between winter 2017 and 2021.** (a), Daily
586 PM_{2.5} concentrations from CAAQM/US AirNow observations (solid lines) and WRF-Chem model simulation
587 with emission fixed at the 2017 baseline level (dashed lines) averaged from 17 cities where CAAQM/US
588 AirNow sites are available in north India (north of 23°N) in the winter of 2017 (December 2017–February
589 2018, orange) and 2021 (December 2021–February 2022, blue), (b-d) same as a but for daily timeseries of
590 collocated meteorological variables including inversion (temperature difference between 925hPa and at the
591 surface), precipitation, and surface (10m) wind speed from ERA5 reanalysis . e-h same as a-d but for the
592 differences between the two winters (winter 2021 minus 2017) from WRF-Chem simulations with emission
593 fixed at the 2017 level (map) and observations (circles) for PM_{2.5} from CAAQM/US AirNow monitoring sites
594 and collocated meteorology from ERA5 reanalysis. Shading in a-d represent \pm one standard error of means
595 across available sites (n=17). The winter averages, and correlation coefficient r and p value for linear
596 regression between PM_{2.5} and each meteorological variable are reported for each year in a-d.

597

598

599 References

- 600 1. Dey S, Di Girolamo L, van Donkelaar A, Tripathi SN, Gupta T, Mohan M. Variability of
601 outdoor fine particulate (PM_{2.5}) concentration in the Indian Subcontinent: A remote
602 sensing approach. *Remote Sensing of Environment* 2012, **127**: 153-161.
- 603 2. Li C, McLinden C, Fioletov V, Krotkov N, Carn S, Joiner J, et al. India Is Overtaking China
604 as the World's Largest Emitter of Anthropogenic Sulfur Dioxide. *Sci Rep* 2017, **7**(1):
605 14304.
- 606 3. IQAir. 2023_World_Air_Quality_Report. 2024.
- 607 4. Pandey A, Brauer M, Cropper ML, Balakrishnan K, Mathur P, Dey S, et al. Health and
608 economic impact of air pollution in the states of India: the Global Burden of Disease
609 Study 2019. *The Lancet Planetary Health* 2021, **5**(1): e25-e38.
- 610 5. Lee K, & Greenstone, M. Air quality life index - India Fact Sheet (Tech. Rep.). *AQLI* 2021,
611 https://aqli.epic.uchicago.edu/wp-content/uploads/2021/08/AQLI_2021-Report.EnglishGlobal.pdf.

612

613

614

615

616

617

618 6. NCAP. National Clean Air Programme. *Central Pollution Control Board Ministry of*
619 *Environmental Forests and Climate Change, The Government of India* 2019,
620 https://moef.gov.in/wp-content/uploads/2019/05/NCAP_Report.pdf.

621

622 7. CPCB. List of 131 Non-Attainment cities. <https://cpcbnicin/uploads/Non->
Attainment Citiespdf 2023.

623

624 8. Harish S. Renewing India's Air Quality Management Strategy in the shadow of COVID-19.
Centre for Policy Research 2021.

625

626 9. Ganguly T, Selvaraj KL, Guttikunda SK. National Clean Air Programme (NCAP) for Indian
627 cities: Review and outlook of clean air action plans. *Atmospheric Environment: X* 2020, **8**.

628

629 10. Jacob DJ, Winner DA. Effect of climate change on air quality. *Atmospheric Environment*
630 2009, **43**(1): 51-63.

631

632 11. Singh N, Agarwal S, Sharma S, Chatani S, Ramanathan V. Air Pollution Over India: Causal
633 Factors for the High Pollution with Implications for Mitigation. *ACS Earth and Space
Chemistry* 2021, **5**(12): 3297-3312.

634

635 12. Madineni VR, Dasari HP, Karumuri R, Viswanadhapalli Y, Perumal P, Hoteit I. Natural
636 processes dominate the pollution levels during COVID-19 lockdown over India. *Sci Rep*
637 2021, **11**(1): 15110.

638

639 13. Schnell JL, Naik V, Horowitz LW, Paulot F, Mao J, Ginoux P, *et al.* Exploring the
640 relationship between surface PM2.5 and meteorology in Northern India. *Atmospheric
Chemistry and Physics* 2018, **18**(14): 10157-10175.

641

642 14. Paulot F, Naik V, W. Horowitz L. Reduction in Near-Surface Wind Speeds With Increasing
643 CO2 May Worsen Winter Air Quality in the Indo-Gangetic Plain. *Geophysical Research
Letters* 2022, **49**(18).

644

645 15. Gao M, Sherman P, Song S, Yu Y, Wu Z, McElroy MB. Seasonal prediction of Indian
646 wintertime aerosol pollution using the ocean memory effect. *Science Advances* 2019,
647 **5**(7): eaav4157.

648

649 16. Ojha N, Sharma A, Kumar M, Girach I, Ansari TU, Sharma SK, *et al.* On the widespread
650 enhancement in fine particulate matter across the Indo-Gangetic Plain towards winter.
651 *Sci Rep* 2020, **10**(1): 5862.

652

653 17. Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, *et al.* Atmospheric brown
654 clouds: impacts on South Asian climate and hydrological cycle. *Proc Natl Acad Sci U S A*
655 2005, **102**(15): 5326-5333.

656

657

658

659

660

661

662 18. Bollasina MA, Ming Y, Ramaswamy V. Anthropogenic aerosols and the weakening of the
663 South Asian summer monsoon. *Science* 2011, **334**(6055): 502-505.

664

665 19. Li Z, Guo J, Ding A, Liao H, Liu J, Sun Y, *et al.* Aerosol and boundary-layer interactions and
666 impact on air quality. *National Science Review* 2017, **4**(6): 810-833.

667

668 20. Lin M, Horowitz LW, Xie Y, Paulot F, Malyshev S, Shevliakova E, *et al.* Vegetation
669 feedbacks during drought exacerbate ozone air pollution extremes in Europe. *Nature
670 Climate Change* 2020, **10**(5): 444-451.

671

672 21. Xie Y, Lin M, Horowitz LW. Summer PM2.5 pollution extremes caused by wildfires over
673 the western United States during 2017–2018. *Geophysical Research Letters* 2020,
674 **47**(16): e2020GL089429.

675

676 22. Xie Y, Lin M, Decharme B, Delire C, Horowitz LW, Lawrence DM, *et al.* Tripling of western
677 US particulate pollution from wildfires in a warming climate. *Proceedings of the National
678 Academy of Sciences* 2022, **119**(14): e2111372119.

679

680 23. Zhang Q, Zheng Y, Tong D, Shao M, Wang S, Zhang Y, *et al.* Drivers of improved PM2.5
681 air quality in China from 2013 to 2017. *Proceedings of the National Academy of Sciences*
682 2019, **116**(49): 24463-24469.

683

684 24. Zhai S, Jacob DJ, Wang X, Shen L, Li K, Zhang Y, *et al.* Fine particulate matter
685 (PM_{2.5}) trends in China, 2013–2018: separating contributions
686 from anthropogenic emissions and meteorology. *Atmospheric Chemistry and Physics*
687 2019, **19**(16): 11031-11041.

688

689 25. Rahaman S, Jahangir S, Chen R, Kumar P, Thakur S. COVID-19's lockdown effect on air
690 quality in Indian cities using air quality zonal modeling. *Urban Clim* 2021, **36**: 100802.

691

692 26. Mahato S, Pal S, Ghosh KG. Effect of lockdown amid COVID-19 pandemic on air quality
693 of the megacity Delhi, India. *Sci Total Environ* 2020, **730**: 139086.

694

695 27. Guttikunda SK, Goel R, Pant P. Nature of air pollution, emission sources, and
696 management in the Indian cities. *Atmospheric Environment* 2014, **95**: 501-510.

697

698 28. CSE. New environmental norms for the power sector. *Centre for Science and Environmen*
699 2016, <https://cdn.cseindia.org/userfiles/new-environmental-norms-report.pdf>.

700

701 29. Tibrewal K, Venkataraman C. Climate co-benefits of air quality and clean energy policy in
702 India. *Nature Sustainability* 2020, **4**(4): 305-313.

703

704 30. Tanushree Ganguly, Adeel Khan, Ganesan K. What is polluting India's air. 2021.

705

706 31. Beale CA, Paulot F, Randles CA, Wang R, Guo X, Clarisse L, *et al.* Large sub-regional
707 differences of ammonia seasonal patterns over India reveal inventory discrepancies.
708 *Environmental Research Letters* 2022, **17**(10).

709

710 32. Pai SJ, Heald CL, Coe H, Brooks J, Shephard MW, Dammers E, *et al.* Compositional
711 Constraints are Vital for Atmospheric PM(2.5) Source Attribution over India. *ACS Earth*
712 *Space Chem* 2022, **6**(10): 2432-2445.

713

714 33. Saikawa E, Trail M, Zhong M, Wu Q, Young CL, Janssens-Maenhout G, *et al.*
715 Uncertainties in emissions estimates of greenhouse gases and air pollutants in India and
716 their impacts on regional air quality. *Environmental Research Letters* 2017, **12**(6):
717 065002.

718

719 34. Manoj MR, Satheesh SK, Moorthy KK, Gogoi MM, Babu SS. Decreasing Trend in Black
720 Carbon Aerosols Over the Indian Region. *Geophysical Research Letters* 2019, **46**(5):
721 2903-2910.

722

723 35. Sharma SK, Mandal TK, Banoo R, Rai A, Rani M. Long-Term Variation in Carbonaceous
724 Components of PM(2.5) from 2012 to 2021 in Delhi. *Bull Environ Contam Toxicol* 2022,
725 **109**(3): 502-510.

726

727 36. Sunil Mani, Shalu Agrawal, Abhishek Jain, Ganesan K. State of Clean Cooking Energy
728 Access in India: Insights from the India Residential Energy Survey (IRES) 2020. *New Delhi:*
729 *Council on Energy, Environment and Water* 2021.

730

731 37. Chowdhury S, Dey S, Guttikunda S, Pillarisetti A, Smith KR, Di Girolamo L. Indian annual
732 ambient air quality standard is achievable by completely mitigating emissions from
733 household sources. *Proc Natl Acad Sci U S A* 2019, **116**(22): 10711-10716.

734

735 38. Statista. Coal consumption in India 1998-2022.
736 <https://wwwstatistacom/statistics/265492/indian-coal-consumption-in-oil-equivalent/>
737 2023.

738

739 39. CEA. A review report on new SO₂ norms 2021, [https://cea.nic.in/wp-content/uploads/tprm/2021/08/A review report on new SO₂ norms.pdf](https://cea.nic.in/wp-content/uploads/tprm/2021/08/A%20review%20report%20on%20new%20SO2%20norms.pdf).

740

742 40. CPCB. Emission norms for passenger cars, Heavy Diesel vehicles and 2/3 wheeler. 2017.

743

744 41. Jayaraman KS. Indo-gangetic plains are ammonia hotspot of the world. *Nature India*
745 2020, <https://doi.org/10.1038/nindia.2020.148>.

746

747 42. Kuttippurath J, Singh A, Dash SP, Mallick N, Clerbaux C, Van Damme M, *et al.* Record
748 high levels of atmospheric ammonia over India: Spatial and temporal analyses. *Sci Total*
749 *Environ* 2020, **740**: 139986.

750

751 43. Gani S, Bhandari S, Seraj S, Wang DS, Patel K, Soni P, *et al.* Submicron aerosol
752 composition in the world's most polluted megacity: the Delhi Aerosol Supersite study.
753 *Atmospheric Chemistry and Physics* 2019, **19**(10): 6843-6859.

754

755 44. Lucknow tops clean air survey among India's 47 biggest cities. *The Times of India* 2022,
756 https://invest.up.gov.in/wp-content/uploads/2022/12/Lucknow-tops-clean-air-survey_041222.pdf.

757

758

759 45. Hunt KMR, Turner AG, Shaffrey LC. The evolution, seasonality and impacts of western
760 disturbances. *Quarterly Journal of the Royal Meteorological Society* 2018, **144**(710): 278-
761 290.

762

763 46. Hunt KMR, Zaz SN. Linking the North Atlantic Oscillation to winter precipitation over the
764 Western Himalaya through disturbances of the subtropical jet. *Climate Dynamics* 2022.

765

766 47. Madhura RK, Krishnan R, Revadekar JV, Mujumdar M, Goswami BN. Changes in western
767 disturbances over the Western Himalayas in a warming environment. *Climate Dynamics*
768 2014, **44**(3-4): 1157-1168.

769

770 48. Chug D, Pathak A, Indu J, Jain SK, Jain SK, Dimri AP, *et al.* Observed Evidence for Steep
771 Rise in the Extreme Flow of Western Himalayan Rivers. *Geophysical Research Letters*
772 2020, **47**(15).

773

774 49. Horton DE, Skinner CB, Singh D, Diffenbaugh NS. Occurrence and persistence of future
775 atmospheric stagnation events. *Nat Clim Chang* 2014, **4**: 698-703.

776

777 50. Hunt KMR, Turner AG, Shaffrey LC. Falling Trend of Western Disturbances in Future
778 Climate Simulations. *Journal of Climate* 2019, **32**(16): 5037-5051.

779

780 51. Ravishankara AR, David LM, Pierce JR, Venkataraman C. Outdoor air pollution in India is
781 not only an urban problem. *Proc Natl Acad Sci U S A* 2020, **117**(46): 28640-28644.

782

783 52. Lu Z, Streets DG, de Foy B, Krotkov NA. Ozone monitoring instrument observations of
784 interannual increases in SO₂ emissions from Indian coal-fired power plants during 2005-
785 2012. *Environ Sci Technol* 2013, **47**(24): 13993-14000.

786

787 53. Pant P, Lal RM, Guttikunda SK, Russell AG, Nagpure AS, Ramaswami A, *et al.* Monitoring
788 particulate matter in India: recent trends and future outlook. *Air Quality, Atmosphere &
789 Health* 2018, **12**(1): 45-58.

790

791 54. CPCB. Continuous Ambient Air Quality Monitoring network <https://appcpcbccrcom/CCR/>
792 2023.

793

794 55. CPCB. TECHNICAL SPECIFICATIONS FOR CONTINUOUS AMBIENT AIR QUALITY
795 MONITORING (CAAQM) STATION.
796 https://erc.mp.gov.in/Documents/doc/Guidelines/CAAQMS_Specs_new.pdf.
797

798 56. Sharma D, Mauzerall D. Analysis of Air Pollution Data in India between 2015 and 2019.
799 *Aerosol and Air Quality Research* 2022, **22**(2).

800 57. Barrero MA, Orza JA, Cabello M, Canton L. Categorisation of air quality monitoring
801 stations by evaluation of PM(10) variability. *Sci Total Environ* 2015, **524-525**: 225-236.
803

804 58. Singh V, Singh S, Biswal A, Kesarkar AP, Mor S, Ravindra K. Diurnal and temporal changes
805 in air pollution during COVID-19 strict lockdown over different regions of India. *Environ
806 Pollut* 2020, **266**(Pt 3): 115368.

807

808 59. Hoesly RM, Smith SJ, Feng L, Klimont Z, Janssens-Maenhout G, Pitkanen T, *et al.*
809 Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the
810 Community Emissions Data System (CEDS). *Geoscientific Model Development* 2018,
811 **11**(1): 369-408.

812

813 60. Klimont Z, Kupiainen K, Heyes C, Purohit P, Cofala J, Rafaj P, *et al.* Global anthropogenic
814 emissions of particulate matter including black carbon. *Atmospheric Chemistry and
815 Physics* 2017, **17**(14): 8681-8723.

816

817 61. Crippa MG, Diego; Muntean, Marilena; Schaaf, Edwin; Monforti-Ferrario, Fabio; Banja,
818 Manjola; Pagani, Federico; Solazzo, Efisio. EDGAR v6.1 Global Air Pollutant Emissions.
819 European Commission, Joint Research Centre (JRC) <http://dataeuropaeu/89h/df521e05-6a3b-461c-965a-b703fb62313e> 2022.

821

822 62. SMoG-India. SPECIATED MULTIPOLLUTANT GENERATOR.
823 <https://sitesgooglecom/view/smogindia> 2021.

824

825 63. TERI. Development of Spatially Resolved Air Pollution Emission Inventory of India. 2021.

826

827 64. McDuffie EE, Smith SJ, O'Rourke P, Tibrewal K, Venkataraman C, Marais EA, *et al.* A
828 global anthropogenic emission inventory of atmospheric pollutants from sector- and
829 fuel-specific sources (1970–2017): an application of the Community Emissions Data
830 System (CEDS). *Earth System Science Data* 2020, **12**(4): 3413-3442.

831

832 65. Can Li NAK, and Peter Leonard. OMI/Aura Sulfur Dioxide (SO2) Total Column L3 1 day
833 Best Pixel in 0.25 degree x 0.25 degree V3. *Goddard Earth Sciences Data and
834 Information Services Center (GES DISC)* 2020: Accessed: May 4, 2022.

835

836 66. Nickolay A. Krotkov LNL, Sergey V. Marchenko, Edward A. Celarier, Eric J. Bucsela,
837 William H. Swartz, Joanna Joiner and the OMI core team. OMI/Aura NO2 Cloud-

838 Screened Total and Tropospheric Column L3 Global Gridded 0.25 degree x 0.25 degree
839 V3. *NASA Goddard Space Flight Center 2019, Goddard Earth Sciences Data and*
840 **Information Services Center (GES DISC).**

841

842 67. van Geffen JHGM, Eskes, H.J., Boersma, K.F., Maasakkers, J.D. and Veefkind, J.P.,. TROPOMI ATBD of the total and tropospheric NO₂ data products. *Report S5P-KNMI-L2-0005-RP 2022, KNMI, De Bilt, The Netherlands.*

843

844

845

846 68. Whitburn S, Van Damme M, Clarisse L, Bauduin S, Heald CL, Hadji-Lazaro J, *et al.* A flexible and robust neural network IASI-NH₃ retrieval algorithm. *Journal of Geophysical Research: Atmospheres* 2016, **121**(11): 6581-6599.

847

848

849

850 69. Van Damme M, Whitburn S, Clarisse L, Clerbaux C, Hurtmans D, Coheur P-F. Version 2 of the IASI NH₃ neural network retrieval algorithm: near-real-time and reanalysed datasets. *Atmospheric Measurement Techniques* 2017, **10**(12): 4905-4914.

851

852

853

854

855 70. Franco B, Clarisse L, Stavrakou T, Müller J-F, Van Damme M, Whitburn S, *et al.* A General Framework for Global Retrievals of Trace Gases From IASI: Application to Methanol, Formic Acid, and PAN. *Journal of Geophysical Research: Atmospheres* 2018, **123**(24): 13,963-913,984.

856

857

858

859

860 71. Van Damme M, Clarisse L, Franco B, Sutton MA, Erisman JW, Wichink Kruit R, *et al.* Global, regional and national trends of atmospheric ammonia derived from a decadal (2008–2018) satellite record. *Environmental Research Letters* 2021, **16**(5).

861

862

863

864 72. Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, *et al.* The ERA5 global reanalysis. *Quarterly Journal of the Royal Meteorological Society* 2020, **146**(730): 1999-2049.

865

866

867

868 73. Nakoudi K, Giannakaki E, Dandou A, Tombrou M, Komppula M. Planetary boundary layer height by means of lidar and numerical simulations over New Delhi, India. *Atmospheric Measurement Techniques* 2019, **12**(5): 2595-2610.

869

870

871

872 74. Tai APK, Mickley LJ, Jacob DJ. Impact of 2000–2050 climate change on fine particulate matter (PM_{2.5}) air quality inferred from a multi-model analysis of meteorological modes. *Atmospheric Chemistry and Physics* 2012, **12**(23): 11329-11337.

873

874

875

876

877 75. Shen L, Mickley LJ, Murray LT. Influence of 2000–2050 climate change on particulate matter in the United States: results from a new statistical model. *Atmospheric Chemistry and Physics* 2017, **17**(6): 4355-4367.

878

879

880

881 76. Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, Skamarock WC, *et al.* Fully
882 coupled “online” chemistry within the WRF model. *Atmospheric Environment* 2005,
883 **39**(37): 6957-6975.

884

885 77. Zhou M, Liu H, Peng L, Qin Y, Chen D, Zhang L, *et al.* Environmental benefits and
886 household costs of clean heating options in northern China. *Nature Sustainability* 2022,
887 **5**(4): 329-338.

888

889 78. Buchholz RR, Emmons, L. K., Tilmes, S., & The CESM2 Development Team.
890 CESM2.1/CAM-chem Instantaneous Output for Boundary Conditions. *UCAR/NCAR -*
891 *Atmospheric Chemistry Observations and Modeling Laboratory* 2019.

892

893 79. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C. Estimates of global
894 terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols
895 from Nature). *Atmos Chem Phys* 2006, **6**(11): 3181-3210.

896

897 80. Zhou M, Zhang L, Chen D, Gu Y, Fu T-M, Gao M, *et al.* The impact of aerosol–radiation
898 interactions on the effectiveness of emission control measures. *Environmental Research
899 Letters* 2019, **14**(2).

900

901 81. CPCB. National Air Quality Index.
[https://cpcb.nic.in/displaypdf.php?id=bmF0aW9uYWwtYWlyLXF1YWxpdHktaW5kZXqvQW
902 JvdXRfQVFJLnBkZg==](https://cpcb.nic.in/displaypdf.php?id=bmF0aW9uYWwtYWlyLXF1YWxpdHktaW5kZXqvQWJvdXRfQVFJLnBkZg==).

903

904

905

906

907

908

909

910

911