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Abstract 22 

Improving air quality amid rapid industrialization and population growth is a huge challenge for 23 
India. To tackle this challenge, the Indian government implemented the National Clean Air 24 
Programme (NCAP) to reduce particulate matter (PM2.5 and PM10) pollution in hundreds of non-25 
attainment cities that failed to meet the national ambient air quality standards. Here, we evaluate 26 
the efficacy of the NCAP, using data from the national air quality monitoring network combined 27 
with regional model simulations. Our results show an 8.8% per year decrease in annual PM2.5 28 
pollution in the six non-attainment cities with continuous air pollution monitoring since 2017. 29 
Four out of the six cities had over 20% PM2.5 reduction in 2022 relative to 2017 and thus met the 30 
NCAP target. However, we identify that ~30% of the annual PM2.5 air quality improvements, and 31 
approximately half during winter when pollution is high, can be attributed to favorable 32 
meteorological conditions which are unlikely to persist as the climate warms. Meanwhile, annual 33 
PM2.5 levels in 44 out of 57 non-attainment cities with continuous monitors still failed to meet air 34 
quality standards in 2022. This work highlights the need for substantial additional mitigation 35 
measures beyond current NCAP policies to improve air quality in India.   36 

 37 

 38 

  39 
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Introduction  40 

Millions of people in India are breathing the most polluted air in the world. Rapid economic 41 
growth as the country strives to become a $5 trillion economy by 2025 has led to enormous 42 
increases in emissions of air pollutants1, 2. In 2023, 9 out of 10 of the most polluted cities in the 43 
world were in India3. Severe surface air pollution was estimated to be responsible for 1.67 44 
million premature mortalities in India in 20194, approximately 8 (13) years of life expectancy 45 
lost for 248 million residents of northern India (Delhi)5 with a resulting economic cost of $36.8 46 
billion4.  47 

In January 2019, the Ministry of Environment, Forest and Climate Change (MoEFCC) in India 48 
launched the National Clean Air Programme (NCAP) as a national level strategy to reduce 49 
particulate matter (PM) air pollution. The NCAP goal is to reduce PM2.5 and PM10 pollution by 50 
20–30% by 2024 (updated in 2022 to reduce by 40% by 2026) relative to 2017 in 102 non-51 
attainment cities identified by the Central Pollution Control Board (CPCB) in 20196. Total 52 
number of non-attainment cities increased to 131 in 20237. NCAP has provided over 10,400 53 
Crores (~1.2 billion USD) financial support to the non-attainment cities for expansion of surface 54 
continuous pollution monitoring capacity, development and implementation of city action plans, 55 
and public awareness campaigns8, 9. There is an urgent need to assess the resulting changes in 56 
surface PM2.5 air quality nationwide to inform future air pollution control strategies.  57 

Air pollution control policies target reductions of emissions at the source. However, observed 58 
concentrations of air pollutants are modulated by meteorological variability through changing 59 
ventilation and resulting pollution dilution, and the formation of secondary particulates10, 11, 12. 60 
Previous studies suggest meteorological variability drives large daily to inter-annual variations in 61 
surface PM2.5 concentrations across India13, 14, 15, 16. Changing pollution concentrations in turn 62 
affect local meteorology and regional climate through perturbation to radiation and cloud 63 
formation17, 18, 19, which subsequently feedback to surface pollution levels. These meteorology 64 
influence complicates the interpretation of policy effectiveness on pollution concentration trends 65 
and health outcomes20, 21, 22, 23. For instance, past research has estimated that meteorological 66 
variability contributed 10–27% of the PM2.5 reduction over China during the Clean Air Action 67 
Campaign23, 24. Understanding the relative importance of emissions versus meteorological 68 
variability on surface air pollution concentrations thus has implications for effective air quality 69 
policy design. 70 

In this study, we compile and apply strict quality controls to recently available continuous hourly 71 
PM data from ~500 stations across India in the Continuous Ambient Air Quality Monitoring 72 
network (CAAQM) and five stations in the United States Department of State AirNow (US 73 
AirNow) networks for 2017–2022 (see Methods). While the National Air Quality Monitoring 74 
Program (NAMP) manual PM monitoring data is used by the Indian government to identify non-75 
attainment cities when continuous monitors are not widely available, we only analyze manual 76 
data in the Supplementary Information due to large uncertainties related to manual monitoring 77 
and data reporting6. We perform a comprehensive evaluation of the observed changes in annual, 78 
seasonal, and daily PM air quality from CAAQM/US AirNow in non-attainment cities and 79 
nationwide. To understand the drivers of the PM air pollution trends, we disentangle the role of 80 
anthropogenic emissions versus meteorological variations using surface and satellite 81 
observations as well as regional online-coupled meteorology-chemistry model simulations (see 82 
Methods). Our analysis highlights the need for better air pollution monitoring data and more 83 
stringent emission controls to improve surface air quality and public health over India. 84 
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Results 85 

Observed improvements in surface particulate matter air quality  86 

To evaluate pollution trends and the effectiveness of NCAP policies, we first examine the 87 
availability of quality-controlled continuous PM monitoring data from the CAAQM and US 88 
AirNow networks in 131 non-attainment cities and nationwide. We then analyze, for each non-89 
attainment city with continuous PM monitoring, the observed changes in annual, seasonal and 90 
daily mean PM concentrations since the NCAP baseline year 2017 for comparison with the 91 
policy target. To be consistent with seasonal analyses, we calculate annual means as averages 92 
from March in the current year through February of the subsequent year.  93 

Figure 1 shows the locations of the 131 non-attainment cities and all cities with continuous PM2.5 94 
pollution monitoring from the CAAQM and US AirNow networks (Extended Data Fig. 1). There 95 
are a total of 150 cities, including 62 non-attainment cities, that had at least one year of 96 
continuous PM2.5 data during 2017–2022. However, only seven cities (six non-attainment) had 97 
six consecutive years of PM2.5 observations that we require to assess pollution trends.  Data 98 
coverage is better for individual seasons than for annual averages (Extended Data Fig. 2). The 99 
most extensive data exists for winter where 36 cities (28 non-attainment) had six consecutive 100 
years of winter PM2.5 monitoring data since 2017. Thus, winter pollution trends may be more 101 
representative of actual national pollution trends than annual averages. Data availability for PM10 102 
is poorer than for PM2.5, with 134 cities (48 non-attainment) having at least one year of data and 103 
only one city (Delhi) having six consecutive years of data (Extended Data Fig. 3). Despite a 104 
notable 10-fold increase in CAAQM stations from 2017 to 2022 (Fig. 1b), in part fueled by 105 
NCAP support, lack of consecutive PM pollution monitoring since 2017 hinders the ability of the 106 
government to evaluate pollution trends and to determine for most non-attainment cities whether 107 
they are meeting the NCAP targets. 108 

We find, across Indian cities with continuous air pollution measurements, improvements in 109 
surface PM2.5 air quality during 2017–2022 (Fig. 2).  Annual PM2.5 have decreased at a rate of 8.0 110 
µg/m3 (–8.8%, p < 0.01) per year since 2017 in the six non-attainment cities with continuous 111 
PM2.5 monitoring (Fig. 2b). Average PM2.5 in those cities was 91.0±36.7 µg/m3 in the NCAP 112 
baseline year 2017, more than twice the national annual standard of 40 µg/m3 and ~18 times the 113 
current World Health Organization (WHO) standard of 5 µg/m3. In 2017 none of the six cities 114 
had annual PM2.5 in compliance with the national annual standard. Annual mean PM2.5 decreased 115 
to 51.8±24.5 µg/m3 in 2022, with two cities (Chennai and Varanasi) having PM2.5 pollution 116 
levels meeting the national annual standard. Reductions of PM2.5 concentrations in 2022 relative 117 
to 2017 exceeded 20% in four out of six non-attainment cities - surpassing the NCAP targets two 118 
years early. Consistent but smaller PM2.5 decreases were also observed in 33 cities (25 non-119 
attainment) with continuous monitoring since 2018 (Fig. 2b and Extended Data Fig. 4), as well 120 
as in 32 cities (21 non-attainment) with manual monitors during 2017–2021 (Supplementary 121 
Figure 1).  122 

Larger improvements in PM2.5 air quality occurred in fall through winter, the two most polluted 123 
seasons in India (Fig. 2c, Extended Data Fig. 4 & 5). In 13 (28) non-attainment cities with 124 
consecutive fall (winter) pollution monitoring, seasonal mean PM2.5 decreased at a rate of 7.7% 125 
per year (p<0.01) for fall and 5.5% per year (p=0.03) for winter since 2017. Surface PM2.5 126 
concentrations in 2022 compared to 2017 was 43% and 25% lower in fall and winter, 127 
respectively. Daily pollution levels in fall-winter have also shifted substantially towards lower 128 
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values over the most polluted Indo Gangetic Plain (Fig. 2c). We find a 35% increase in the 129 
frequency of days which met the 60 µg/m3 national 24-hour standard during 2020–2022 130 
compared to 2017–2019. Meanwhile, the occurrence of days with very poor (>120 µg/m3) or 131 
severe (>250 µg/m3) PM2.5 air pollution, according to National Air Quality Index, decreased by 132 
one-third. While PM2.5 reductions in spring-summer are smaller, significantly lower PM2.5 levels 133 
by 30–40% were observed during the national COVID-19 lockdown (Mar–May in 2020) and 134 
partial lockdown (April–June in 2021, Supplementary Figure 2) consistent with previous 135 
studies25, 26.  136 

No significant trends in PM10 pollution were observed in Delhi, the only city with six years of 137 
continuous PM10 monitoring since 2017, or in the 13 cities with consecutive PM10 observations 138 
since 2018 (Extended Data Fig. 3). Consistent with PM2.5, surface PM10 pollution were 30–40% 139 
lower during the COVID-19 lockdown (Supplementary Figure 3), indicating the importance of 140 
anthropogenic contribution (e.g., road dust, construction) to surface PM10 pollution in India27. 141 
However, no significant PM10 reductions in 2020 were reported by the NAMP manual 142 
monitoring data as compared to the 2019 and 2021 averages (Supplementary Figure 4). This may 143 
in part be linked to gaps in data collection due to difficulties in making manual measurements 144 
during the COVID-19 lockdown periods in 2020. Moreover, PM10 trends observed by the NAMP 145 
monitoring network were inconsistent with those from CAAQM continuous monitoring networks 146 
in the 12 cities where annual PM10 measurements from both networks are available. Such data 147 
discrepancies raise concerns regarding the robustness of the manual data used to identify non-148 
attainment cities and to assess pollution trends.  149 

 150 

Changes in anthropogenic emissions were small  151 

We first examine whether the observed air quality improvements since 2017 can be explained by 152 
changes in anthropogenic emissions of primary PM2.5 and key precursors nationwide as these 153 
species have been targeted in various pollution control policies6, 28, 29. We focus our analysis on 154 
PM2.5 pollution with better data coverage and consistency. We use emission data from three 155 
global emission inventories as national inventories do not provide data after 2017 (see Methods). 156 
Observational constraints from satellite-retrieved column concentrations and surface 157 
measurements are included for comparison as uncertainties exist in the emission estimates from 158 
global and regional databases of activity levels, emission factors and spatial distributions used to 159 
estimate emissions across India30, 31, 32, 33. 160 

We find slight decreases in emissions of primary particles but little change or increases in 161 
emissions of key PM2.5 precursors since the NCAP baseline year 2017 (Fig. 3, Extended Data 162 
Fig. 6). Emissions of black carbon (BC) and organic carbon (OC) have decreased since around 163 
2010 (Fig. 3a-b), consistent with the observed decreasing trends of surface BC concentrations 164 
across India since 2011 34 and in Delhi since 2012 35. The emission reductions were primarily 165 
from the residential sector. This was in part driven by the wide success of Pradhan Mantri 166 
Ujjwala Yojana launched in 2016, which aims to replace solid fuel cooking with liquified 167 
petroleum gas (LPG) through subsidizing 96 million LPG connections to socioeconomically 168 
poor rural households across India. The percentage of Indian household that use LPG as primary 169 
cooking fuel has increased from 28.5% in 2011 to 71% in 202036. Surface carbon monoxide 170 
(CO), a gas pollutant co-emitted during biomass burning, was also observed to decrease in 4 171 
cities with five years of continuous monitoring starting in 2018 (Fig. 3b). Rapid penetration of 172 
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clean cooking fuel over the past several years may thus be one of the important drivers of the 173 
observed PM2.5 air quality improvements since 201737. In addition, emission reductions of BC 174 
have resulted from decreases in the use of diesel in the transport sector and replacement with 175 
compressed natural gas35, and are expected to decrease further with the introduction of electric 176 
buses. 177 

In comparison, no significant decreasing trends are seen in key PM2.5 precursors (SO2, NOx and 178 
NH3) from emissions inventories during 2017–2019, or from surface or satellite observations 179 
during 2017–2022 (Fig.3 a-c, Supplementary Figure 4). In fact, we find a 7% increase in total 180 
column SO2 nationwide in 2022 compared to 2017, especially over regions where major coal 181 
power plants are located (Extended Data Fig. 7). Observed surface SO2 concentrations were also 182 
14% higher in 2022 than in 2018 averaged from 18 cities with five consecutive years of 183 
monitoring data. These observed SO2 increases were likely associated with the soaring coal 184 
consumption in India following a small decrease in 2019–202038. Moreover, currently over 70% 185 
of coal power plants are still out of compliance with the updated 2015 emission standard for 186 
thermal power plants39. As the world’s largest SO2 emitter and with increasing energy demand, 187 
India will need stronger enforcement of the emission standards and an increase in generation 188 
from clean energy sources to reduce its SO2 emissions. 189 

Insignificant changes in NOx and slight increases in NH3 concentrations were observed during 190 
2018–2022 compared to 2017 (Fig. 3b-c). Total column NO2 from TROPOMI shows a 6% 191 
increase in 2022 relative to 2018 despite slight decreases in 2019–2020. The increases were most 192 
significant in the Indo Gangetic Plain and in major cities across the country (Extended Data Fig. 193 
7), likely associated with increased emissions from transportation due to growing numbers of 194 
vehicles. These may offset emission reductions resulting from the implementation of Bharat 195 
Stage IV emission standards since 2010 (equivalent to Euro IV) and the Bharat Stage VI 196 
emission standards since 2020 (based on Euro VI)40. In 2018 the Indian government also 197 
launched the E-Mobility Program to encourage adoption of electric vehicles. Over 6% of vehicle 198 
sales in 2023 were EVs and increasing EV adoption may significantly contribute to future air 199 
quality improvements.  Atmospheric NH3 in India has increased by 5–10% during 2018–2022 200 
compared to 2017 observed from both satellite and surface measurements (Fig. 3c). The largest 201 
increase was over the Indo Gangetic Plain, a global hotspot of NH3 emissions due to intense 202 
agriculture activity, unregulated use of chemical fertilizer, and numerous cattles41, 42. Currently 203 
few polices of which we are aware target NH3 reductions and therefore emissions may continue 204 
to increase due to growing demand for food. Consistent with previous studies, during the 205 
COVID-19 lockdown in March–May 2020 we find significantly lower levels of NOx (–17%) and 206 
SO2 (–20%) in major cities as well as in regions with numerous thermal power plants across 207 
India (Supplementary Figure 5). 208 

 209 

Meteorology contributes to air pollution reductions   210 

Since changes in anthropogenic emissions were small, we next investigate the extent to which 211 
the observed decrease in PM2.5 pollution over India can be explained by meteorological 212 
variability. To isolate the meteorological contributions, we conduct six years of WRF-Chem 213 
model simulations during 2017–2022 using varying meteorology but with anthropogenic 214 
emissions fixed at the NCAP baseline year of 2017 (see Methods). The meteorological 215 
contributions are estimated as the difference between the simulated PM2.5 changes during 2018–216 
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2022 versus 2017 relative to that observed. Detailed model evaluations are provided in the 217 
Supplementary Information (Text S2, Supplementary Figures 6–14). Briefly, model simulations 218 
reproduce the observed surface PM2.5 concentrations across Indian cities and the simulated PM2.5 219 
chemical compositions at the Delhi Aerosol Supersite in baseline year 201743. The model also 220 
captures the monthly variations of meteorological variables and PM2.5 concentrations during 221 
2017–2022, supporting the credibility of the model simulated interannual variations in surface 222 
PM2.5 concentrations driven by meteorological variations. 223 

With anthropogenic emissions fixed at the 2017 baseline level, model simulations show a 3–15% 224 
decrease in annual mean PM2.5 during 2018–2022 compared to 2017 in the six non-attainment 225 
cities (Fig. 4a). The meteorology-driven decreases accounted for approximately 30% of the 226 
observed annual PM2.5 decrease in those six cities. Notably, model simulations indicate over half 227 
of the observed annual PM2.5 pollution decrease in Hyderabad (100%) and Chennai (50%), and 228 
one third in Delhi (36%) were attributable to meteorological variations (Fig. 4b). In other words, 229 
the NCAP PM2.5 reduction target would not have been met in 2022 in these non-attainment cities 230 
without favorable meteorological contributions. The role of meteorology was smaller in Agra 231 
(16%), Kanpur (12%), and negligible in Varanasi (1%), indicating the more critical role of 232 
anthropogenic emission controls in those cities. For instance, Varanasi was ranked top three in 233 
the clean air survey in 2022 for actions to reduce air pollution44. Across India, meteorology alone 234 
was estimated to have contributed an average of 4.0±2.8 µg/m3 decrease (–6% relative to 2017) 235 
in annual mean PM2.5 during 2018–2022 in 110 out of the 131 non-attainment cities.  236 

Meteorology-driven PM2.5 decreases were most significant in winter, accounting for 237 
approximately half of the observed PM2.5 decreases in 28 non-attainment cities with consecutive 238 
winter pollution monitoring (Fig. 4c-d). In particular, over 90% of the winter air quality 239 
improvements were estimated to be driven by favorable meteorological conditions in three cities 240 
(Faridabad, Gobindgarh, Patna) in northern India and in four cities (Chennai, Dewas, Hyderabad, 241 
Visakhapatnam) in southern India. This highlights the critical role of meteorological variations in 242 
driving the observed seasonal pollution trends. Meteorological variations also contributed to 243 
~40% of the observed PM2.5 decrease in fall in 13 non-attainment cities. In contrast, we find a 244 
negligible role of meteorology in summer pollution trends and slight increases in spring pollution 245 
driven by meteorological variations. 246 

The most significant improvements in PM2.5 air quality (>50% decrease) occurred on days with 247 
precipitation and better ventilations in winter 2021, when largest decrease in regional pollution 248 
were recorded, relative to the 2017 baseline (Fig. 5). These meteorological variables also show 249 
stronger correlations with daily PM2.5 among others (Extended Data Fig. 8). During winter 2021, 250 
northern India recorded 62% more precipitation relative to the 2000–2022 mean and 45% fewer 251 
days with inversions (i.e., better vertical ventilation, Extended Data Fig. 9). This is largely 252 
associated with a southward shift of the subtropical jet and increased baroclinic instability that 253 
favors more frequent and intense western disturbances (Supplementary Figure 15), a mid-254 
tropospheric low-pressure system that enhances vertical mixing and contributes to the majority 255 
of winter precipitation over Northern India45. In contrast, winter 2017 featured prolonged 256 
inversions, below-normal precipitation (–51%), and 10% fewer high-wind episodes because of 257 
the weaker western disturbances, leading to a more stable condition in the lower atmosphere that 258 
favored the buildup of surface pollution. 259 

These meteorological variations may be linked to variability in sea surface temperature and the 260 
location of subtropical jet streams resulting from modes of climate variability such as the North 261 
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Atlantic Oscillation, El Niño and the Antarctic Oscillation15, 46. Previous studies have not been 262 
able to agree on the trend of western disturbances frequency over the last century47, 48. However, 263 
they are projected to decline in future climate scenarios, due to widening and weakening of the 264 
subtropical jet streams, resulting in reduced surface wind speed14, 49, 50. Projected decreases in 265 
winter western disturbances are likely to increase stagnation and decrease atmospheric 266 
dispersion, suggesting meteorologically driven PM2.5 decreases over past winters may not persist 267 
in the future and more stringent emission controls are necessary for reducing surface air pollution 268 
in India.  269 

We further perform two sets of sensitivity simulations for winter 2017 and 2021 to better 270 
understand the effects of possible emission changes (Methods). With a 25% increase or decrease 271 
in anthropogenic emissions over India relative to the 2017 baseline level, the resulting PM2.5 272 
changes due to emission increases (decreases) alone is 24% (–21%) averaged in the 28 cities 273 
with continuous pollution monitoring (Extended Data Fig. 10). Model simulation with both 274 
meteorology varying and emission reductions better reproduce the observed PM2.5 decrease 275 
compared to simulations with emission fixed at the baseline level (Fig. 4c, Extended Data Fig. 276 
10). This indicates the observed air quality improvements are likely driven by both emissions 277 
controls and favorable meteorological conditions. Moreover, simulations with emission 278 
reductions show an additional ~0.2 K decrease in the simulated surface temperature inversion, 279 
which favors pollution dispersion and thus provide additional benefits to surface air quality 280 
improvements. 281 

 282 

Discussion  283 

We provide a comprehensive evaluation of the recent PM air quality trends over India under 284 
NCAP – the first national air pollution control program with a specific pollution reduction target. 285 
Our study reveals significant improvements in annual and seasonal surface PM2.5 air quality 286 
consistent with the NCAP target across India and in non-attainment cities with continuous air 287 
quality monitoring since 2017. If surface air pollution levels nationwide decreased sufficiently to 288 
meet the NCAP target everywhere, studies have estimated that India’s national life expectancy 289 
would increase by 1.7 years, and by 3.1 years for residents living in the heavily polluted cities 290 
like Delhi5.  291 

However, in addition to efforts on emission controls, the recent achievement of the pollution 292 
reduction targets (about 30% of annual and half of the winter air quality improvements) 293 
benefited from favorable meteorological conditions that enhance pollution dispersion and wet 294 
removal. Unfortunately, these more favorable meteorological conditions appear unlikely to 295 
persist under future climate change and thus additional pollution control measures will be needed 296 
to simply maintain current air quality levels in India. Meanwhile, satellite and surface 297 
observations reveal increasing concentrations of PM2.5 precursors over the past several years 298 
despite more stringent emission standards for vehicles and thermal power plants. Such increases 299 
may offset pollution reductions gained from controlling primary emissions, e.g., household solid 300 
fuel use, and result in further degradation of surface air quality and adverse health impacts. 301 

The Indian government has made great efforts over recent years to expand in situ continuous 302 
monitoring capacity in urban centers to identify air quality non-attainment and to warn the public 303 
of dangerous pollution levels in support of the NCAP target. Nonetheless, continuous and quality 304 
data are still lacking in most non-attainment cities. One limitation of our study thus lies in the 305 
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availability and quality of surface air quality data as our trend assessments are primarily based on 306 
PM2.5 monitoring in 6 out of the 131 non-attainment cities (28 in winter) with quality controlled 307 
CAAQM/US AirNow data starting from 2017. While surface PM2.5 data is also available from 308 
the more extensive NAMP manual monitoring network, we identify large discrepancies in annual 309 
pollution trends measured in cities where both CAAQM (continuous) and NAMP (manual) data 310 
are available. Such discrepancies raise concerns of the robustness of manual monitored pollution 311 
data for identifying non-attainment cities as well as for assessing pollution trends. Reporting of 312 
daily data from NAMP, rather than just annual averages, would be valuable in evaluating the 313 
robustness of NAMP data. 314 

In addition, there is little continuous pollution monitoring in rural areas where both outdoor and 315 
indoor air pollution are severe51, or in the eastern states where numerous coal power plants are 316 
located52 and satellite observations show elevated SO2 and NO2 concentrations. As a result, no 317 
ground-level information is available for our study to characterize attainment of air quality 318 
standards or trends in emissions in those regions. Apparent compliance with surface air quality 319 
standards is likely misleading for large areas of India. Increased siting of pollution monitoring 320 
over emission hotspots and improvements in data collection as well as quality control that results 321 
in manual and continuous measurements without large temporal gaps or errors, systematic 322 
information on monitoring station’s locations and surroundings, and easier access to observations 323 
(e.g., ability to download data simultaneously from multiple stations for different chemical 324 
species) are necessary to enhance the utility of these measurements in order to determine trends 325 
and compliance with the standards53. 326 

Another critical issue arises from the lack of an up-to-date national emission inventory that 327 
accurately represents emissions changes resulting from pollution control policies under NCAP. 328 
Model sensitivity simulations for winter 2021 with anthropogenic emissions reduced by a quarter 329 
relative to the 2017 baseline emissions better reproduce the observed PM2.5 decrease compared 330 
to simulations with emissions fixed at 2017 baseline level. Such emission reduction is greater 331 
than the trends extrapolated from the existing emission datasets. In addition, biases in the model 332 
simulated PM2.5 components (e.g., ~40% overestimation in nitrate) may be partly due to emission 333 
uncertainties. For instance, national NOx emissions vary by 40% and sectoral contributions (e.g., 334 
residential) vary by as much as 4 times among available emission inventories from India. 335 
Improving the accuracy of the national emission inventory over time is essential for policy 336 
makers to determine whether NCAP goals are being met at national and sub-national scales. 337 

The NCAP is an important step towards addressing severe and deteriorating ambient air quality 338 
in India. However, surface PM2.5 levels remain very unhealthy even after meeting the NCAP 339 
pollution reduction targets. In 2022, annual PM2.5 pollution in 44 out of 57 non-attainment cities 340 
with continuous monitors still exceeded the 40 µg/m3 national standard. India, together with 341 
other developing countries in the global south, faces dual challenges in the coming decades as 342 
fast-growing population and energy consumption risks a dramatic increase in the emission of air 343 
pollutants and greenhouse gases. Increasing pollution emissions and feedback from a warming 344 
climate (e.g., heatwave, wildfires and stagnation) will, without strong policy intervention, place a 345 
huge health burden on a growing and aging population in developing counties and globally. 346 
Substantial additional mitigation beyond current air pollution control policies, especially those 347 
that simultaneously mitigate greenhouse gas and air pollutant emissions such as 348 
decarbonatization of the energy system, electrification, reductions in agricultural waste burning, 349 
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are essential for fast-developing economies to bring air pollution to healthy levels and to play a 350 
positive role in slowing the rate of global climate change.   351 



 11 

Methods  352 

Surface PM observations. Surface hourly observations of PM2.5 and PM10 during 2017–2022 353 
are obtained from ~500 stations in the Continuous Ambient Air Quality Monitoring network 354 
(CAAQM) operated by the Central Pollution Control Board (CPCB) and State Pollution Control 355 
Board (SPCB)54, and from 5 stations in the U.S. Department of State AirNow continuous 356 
monitoring network. These continuous monitors are mostly located in urban environments (e.g., 357 
bus stations, industry, or residential centers) and may be subject to the influence of local 358 
pollution sources. The measurements are made using the beta ray attenuation method and data 359 
collection as well as validation follows the U.S. Environmental Protection Agency standards55. 360 
To ensure the robustness of the data, we perform rigorous quality control procedures on the 361 
hourly data following the methods of a recent study56 with a few modifications. Specifically, we 362 
replace repetitive hourly values occurring more than five times in a row with a single value and 363 
screen the data for abnormal spikes and remove unexplained outliers57. We also remove 364 
measurement sites that report constant data values with standard deviation less than 5% of that 365 
long-term mean value58. To further ensure representative monthly and seasonal statistics for 366 
trend analysis, we apply a 1/3 data coverage criteria: daily data is considered valid if at least two 367 
measurements are available for each of the four six-hour period in one day; monthly data is 368 
included if at least three daily averages are available for each 10-day period. For seasonal data 369 
we require at least two monthly averages are available for each season. We also obtain hourly 370 
observations of SO2, NOx, NH3 and CO from CAAQM and apply the same quality control and 371 
temporal averaging criteria as described for the PM data.  372 

The CPCB characterized 102 non-attainment cities in 2019 based on the National Air Quality 373 
Monitoring Programme (NAMP) manual pollution monitoring stations reporting of annual 374 
average concentrations. These cities had surface air pollution exceeding National Ambient Air 375 
Quality Standards (NAAQS, annual standards for PM2.5: 40 µg/m3, PM10: 60 µg/m3, SO2: 50 376 
µg/m3 or 20 µg/m3 for ecologically sensitive area, NO2: 40 µg/m3 or 30 µg/m3 for ecologically 377 
sensitive area) consecutively for five years during 2011–2015. In addition, cities listed as one of 378 
the top ten polluted in the World Health Organization Fourth Ambient Air Quality Database 379 
report for 2014–20186 are also considered non-attainment. Among the 102 non-attainment cities 380 
identified in 2019 by CPCB, 94 cities had annual PM10 measurements during 2011–2015 381 
exceeding the NAAQS, 16 cities had annual PM2.5 measured at NAMP manual stations or 382 
CAAQM continuous stations exceeding the national standards since 2015, and 10 cities were 383 
listed in the WHO report6. Total number of non-attainment cities increased to 131 in 2023 384 
according to a list compiled by CPCB7. To assess the NCAP policy effectiveness, we average 385 
PM measurements made within the same city and distinguish between attainment and non-386 
attainment cities. Daily surface PM2.5 data from the CAAQM and US AirNow networks are 387 
averaged when located in the same city as good data consistency has been found (Extended Data 388 
Fig. 1).  389 

We provide additional analysis of the recent PM pollution trends using the annual data reported 390 
by NAMP in the Supplementary Information Text S1. The surface PM pollution trends based on 391 
NAMP data are compared with those based on CAAQM/US AirNow in cities where both manual 392 
and continuous pollution monitoring stations are available. It should be noted that the NAMP 393 
manual monitoring data is described by the NCAP report as ‘indicative’ rather than ‘absolute’ 394 
due to uncertainties in sampling intervals, chemical analyses and data reporting6.  In addition, 395 
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reporting of the manual data does not include detailed information for the temporal sampling 396 
frequency we need for quality control procedures.  397 

Anthropogenic emissions and satellite observations. We examine changes in anthropogenic 398 
emissions of primary particles (black carbon, organic carbon, and other anthropogenic coarse and 399 
fine particles) and major gaseous precursors (SO2, NOx and NH3) over India since 2010 from the 400 
Community Emissions Data System (CEDSv2021_04_21, update to 2019) global emission 401 
inventory59. Emissions over India are estimated based on the Regional Emissions Inventory in 402 
Asia (REAS 2.1) and calibrated to Greenhouse gas–Air pollution Interactions and Synergies 403 
(GAINS) emission factors60. To reflect uncertainties in the global emission inventories, we also 404 
compare emissions from the Emissions Database for Global Atmospheric Research 405 
(EDGARv6.1, updated 2018)61 and Evaluating the Climate and Air Quality Impacts of Short-406 
Lived Pollutants (ECLIPSE v6b, updated to 2018)60. National emission inventories, for instance 407 
Speciated Multipollutant Generator (SMoG-India)62 or The Energy and Resources Institute63, 408 
may provide more accurate information on fuel consumption levels, emission factors, as well as 409 
emissions from urban dust not available in global emission inventories30, 64. However, neither 410 
SMoG nor TERI provide emission estimates after 2016 and are therefore not included in our 411 
trend analysis. 412 

To validate trends indicated in the emission inventories as well as to provide additional 413 
information beyond 2019 when emission data are not available, we include top-down constraints 414 
from satellite-retrieved total column concentrations of SO2, NO2 and NH3 over India during 415 
2010–2022. Total SO2 columns are obtained from the Level-3 Aura/OMI Global gridded 416 
OMSO2e product65 available during 2004–2022 at a horizontal resolution of 0.25°×0.25°. 417 
Tropospheric NO2 columns are obtained from Level-3 Aura/OMI global gridded Nitrogen 418 
Dioxide Product (OMNO2d)66 available during 2004–2022 at 0.25°×0.25° where cloud fraction 419 
is less than 30%, and from the TROPOspheric Monitoring Instrument (TROPOMI)67 during 420 
2018–2022 at 0.125°×0.125°. Satellite NH3 columns are obtained from the Level-3 IASI onboard 421 
Metop-B satellite68, 69, 70, 71 during 2013–2022 at 1°×1° horizontal resolution.  422 

Meteorology data. Daily time series of meteorological data during 2000–2022 are obtained 423 
from the fifth generation European Centre for Medium-Range Weather Forecasts (ECMWF) 424 
reanalysis of global climate and weather (ERA5, 0.25°×0.25°)72. Tracking of western 425 
disturbances are based on the ERA5 500 hPa relative vorticity45. We perform linear regression 426 
analysis between surface PM2.5 and meteorological variables shown in previous studies to be 427 
correlated with PM2.5

13, 14. The meteorological variables we analyze includes surface (2m) 428 
temperature, total precipitation, relative humidity, boundary layer height, surface pressure, wind 429 
speed at surface (10m), 850 hPa and 500 hPa, and lower atmospheric instability represented by 430 
temperature inversion between 850 hPa and surface (Extended Data Fig. 8). Considering daytime 431 
boundary layer height during winter may be below 1000 m based on lidar observations over New 432 
Delhi73, we also compare temperature inversion between 925 hPa and the surface. Our results 433 
indicate an overall stronger correlation between surface PM2.5 and temperature inversion between 434 
925 hPa and the surface. For linear regression analysis, we further regrid all data to 2°×2.5° to 435 
increase statistical robustness74, 75. Both PM2.5 and meteorological variables are deseasonalized 436 
and detrended for linear regression analysis to avoid correlations from common seasonality or 437 
long-term trends associated with anthropogenic emission changes24.  438 

WRF-Chem model experiments. We conduct simulations with the Weather Research and 439 
Forecasting model coupled with Chemistry76 (WRF-Chem, version 3.6.1) at 27 km2 horizontal 440 
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resolution to characterize the role of meteorology in the observed annual and seasonal surface 441 
PM2.5 air quality improvements in India. The WRF-Chem model used in this study was 442 
configured following a previous study77 but with domain focus on India. Specifically, the 443 
meteorological initial and lateral boundary conditions are from ERA5 at 0.25°×0.25° resolution. 444 
Chemical initial and boundary conditions are from the Community Atmosphere Model with 445 
Chemistry (CAM-Chem)78. The biogenic non-methane VOC emissions are calculated online by 446 
the Model of Emissions of Gases and Aerosols from Nature (MEGAN)79 coupled with WRF-447 
Chem. Anthropogenic emissions for the NCAP baseline year 2017 are from the CEDS global 448 
emission inventory. Emissions of primary PM2.5 other than black carbon and organic carbon are 449 
not provided by CEDS and are thus from the ECPLISE global emission inventory over the WRF-450 
Chem domain.  451 

To isolate the impact of meteorological variability, we perform six years of model simulations 452 
(2017–2022) with meteorology varying but with anthropogenic emissions fixed at the NCAP 453 
2017 baseline level. The differences between the observed and simulated PM2.5 concentration 454 
during 2018–2022 relative to 2017 thus enable us to assess the impacts resulting from 455 
meteorological variability. The WRF-Chem model was reinitiated every 24 h to prevent the 456 
drifting effects of simulated meteorological fields. We acknowledge that this may lead to an 457 
underestimation of the emission–aerosol–meteorology interactions and may result in slightly 458 
larger PM2.5 decrease with emission fixed at higher than actual levels80. The model simulated 459 
meteorological parameters are evaluated against surface observations obtained from the 460 
integrated surface data of NOAA National Centers for Environmental Information 461 
(https://www.ncei.noaa.gov/). The simulated surface PM2.5 dry mass and major chemical 462 
components are evaluated against surface observations from the CAAQM and US AirNow 463 
continuous pollution monitoring networks, as well as from the Delhi aerosol super site43 (see 464 
Supplementary Information Text S2, Fig. S6–S14).  465 

We use two sets of sensitivity simulations to quantify the response of surface PM2.5 466 
concentrations to changing anthropogenic emissions alone as well as to both changing emissions 467 
and meteorology over India (Extended Data Fig. 10). For winters 2017 and 2021, we assume a 468 
25% reduction in anthropogenic emissions over India relative to the 2017 baseline level. The 469 
25% change we apply is consistent with the NCAP target of 20–30% reduction in PM2.5 pollution 470 
as no up-to-date emission inventory is available. We include another scenario in which we 471 
assume a 25% increase in anthropogenic emissions resulting from increasing anthropogenic 472 
activities with little emission controls. The difference in the simulated PM2.5 between the 473 
sensitivity simulations with emissions varying by +/-25% and the simulations with emissions 474 
fixed at the 2017 level allow us to assess the effect of emission changes alone for 2017 and 2021, 475 
respectively. The difference in the simulated PM2.5 between the sensitivity simulation for 2021 476 
with emissions varying by +/-25% and the simulation for 2017 with baseline emissions reflect 477 
the impacts of both changing emissions and meteorology. 478 

 479 

Data availability 480 

Surface PM2.5 and other air pollution data from the CAAQM network are available at 481 
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing. Surface PM2.5 data from the 482 
US AirNow network is available at https://www.airnow.gov/international/us-embassies-and-483 
consulates/. Manual monitoring data for PM2.5 and other air pollution data is available at 484 

https://www.ncei.noaa.gov/
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing
https://www.airnow.gov/international/us-embassies-and-consulates/
https://www.airnow.gov/international/us-embassies-and-consulates/
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https://cpcb.nic.in/manual-monitoring/. The CEDS emission database is available at 485 
https://github.com/JGCRI/CEDS/ . The EDGAR emission database is available at 486 
https://edgar.jrc.ec.europa.eu/dataset_ap61. The ECLIPSE emission database is available at 487 
https://iiasa.ac.at/models-tools-data/global-emission-fields-of-air-pollutants-and-ghgs. Satellite 488 
observations of SO2 and NO2 from OMI are available at https://giovanni.gsfc.nasa.gov/giovanni/ 489 
and from TROPOMI at https://www.temis.nl/airpollution/no2.php. Satellite observation of NH3 490 
is available at https://iasi.aeris-data.fr/nh3/ . Meteorology data from ERA5 is available at 491 
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset and from NCEI at 492 
https://www.ncei.noaa.gov/. WRF-Chem outputs and processed air quality data generated in this 493 
study are publicly available on the Princeton archive at https://doi.org/10.34770/xtje-mj26.    494 

 495 

Code availability 496 

Source codes of the WRF-Chem model utilized in this study are available at 497 
https://www2.mmm.ucar.edu/wrf/users/download/get_sources.html#WRF-Chem. All custom 498 
codes are direct implementation of standard methods and techniques as described in detail in 499 
Methods. 500 
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 529 

Fig.1 Continuous PM monitoring data availability in Indian cities. a, Location of the 131 non-attainment 530 
cities (red dots) and cities with continuous PM2.5 monitoring available from the CAAQM/US AirNow 531 
networks for at least one year during 2017–2022 (black circles) on the topographic map (in meters) over India. 532 
b. Changes in the total number of NCAP non-attainment cities with continuous PM monitoring from the 533 
CAAQM/US AirNow networks (bars, left axis) and number of total surface PM monitoring stations from the 534 
CAAQM/US AirNow networks (lines, right axis) during 2017–2022; dashed horizontal grey lines indicate the 535 
percentage of the 131 non-attainment cities that had continuous PM monitoring data available. 536 

 537 

Fig.2 Observed surface PM2.5 air quality improvements during 2017–2022. a, Annual mean PM2.5 in 538 
Indian cities measured at continuous stations from the CAAQM and US AirNow networks in 2017–2022. Dots 539 
with black circles indicate the six non-attainment cities with six consecutive years of data. Number of total 540 
(non-attainment) cities that had PM2.5 measurements are reported at the bottom left for each year. b, Time 541 
series of annual mean PM2.5 concentrations in 2017–2022 averaged in non-attainment (black) and all (orange) 542 
cities with consecutive PM2.5 data starting from 2017 (number of cities reported at the bottom), and for non-543 
attainment cities with consecutive data starting from 2018–2021 (different shades of grey; number of cities 544 
reported at the bottom); the left axis represent the ratio relative to 2017, the NCAP baseline; data starting from 545 
2018–2021 are scaled to match with the ratio relative to 2017; larger dots represent greater number of non-546 
attainment cities included for averaging; error bars denotes ±one standard error of means across available cities 547 
(n=6 (7), 25, 29, 40, and 49 as reported at the bottom) . c, Probability distributions of daily PM2.5 548 
concentrations in fall and winter in non-attainment cities with six consecutive years of PM2.5 measurements 549 
during 2017–2022 (n=2169, 2398, 2390, 2455, 2487, 2495, respectively), and the percentage of city-days 550 
(embedded bar plots) that fall within each pollution category (Good<=30 µg/m3, Satisfactory: 30–60 µg/m3, 551 
Moderately polluted: 60–90 µg/m3, Poor: 90–120 µg/m3, Very poor: 120–250 µg/m3, Severe:>250 µg/m3) 552 
defined by CPCB81. The dashed line in c) denotes the national 24-hourly standard for PM2.5 in India. 553 

 554 

Fig. 3 Changes in anthropogenic emissions and concentrations of primary PM2.5 and key precursors 555 
since 2010. Timeseries of anthropogenic emissions of primary particles, including (a) black carbon (BC), (b) 556 
organic carbon (OC), (c) other primary fine particles (PM2.5) and coarse particles (PM10), and key PM2.5 557 
precursors, including (d) sulfur dioxide (SO2), (e) nitrogen oxides (NOx), (f) ammonia (NH3) over India during 558 
2010–2019 relative to 2017. a, b, d-f are from the CEDS (v2021-04-21) global emission inventory with 559 
updates to 2019, (c) is from the ECLIPSE (v6b) emission inventory with updates to 2018. Data from ECLIPSE 560 
during 2019–2020 are projections. Red lines in d-f are satellite-retrieved column total concentrations of SO2 561 
from OMI, NO2 from OMI and TROPOMI (blue) and NH3 from IASI, respectively. Black dots in b, c, d-f are 562 
annual average surface concentrations of carbon monoxide (CO), PM10, SO2, NOx, NH3 from cities with 563 
continuous CAAQM pollution monitoring for five years since 2018 (numbers of cities in parenthesis). Error 564 
bars in b-f represents ±one standard error of means across cities (n=4, 22, 18, 11, 10 as reported in parenthesis 565 
in each panel). Black triangles in a,b are observed surface concentrations of black carbon and organic carbon 566 
at the CSIR-National Physical Laboratory site in New Delhi35.  567 

 568 

Fig. 4 Meteorological contributions to recent PM2.5 air quality improvements. (a) Annual (blue) and 569 
seasonal (green) mean PM2.5 decrease during 2018–2022 in percent relative to 2017 averaged in non-570 
attainment cities from observations (light blue/green) and from WRF-Chem model simulations (dark 571 
blue/green) driven by meteorological variations but with emissions fixed at 2017 level. Error bar represents 572 
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±one standard error of means across cities (n=6) for annual averages, and across cities (n=15, 11, 13, 28 as 573 
reported at the bottom) for seasonal averages. The light and dark green circles for MAM represent changes if 574 
2020 (COVID-19 lockdown) is excluded. (b) Model simulated annual PM2.5 decrease during 2018–2022 in 575 
percent relative to 2017 (colored background) and the percentage contributed by meteorological variations 576 
(dark green segments inside circles) in each of the six non-attainment cities. The size of the circles represents 577 
the magnitude of the observed PM2.5 decrease. (c-d) same as (a-b) but for winter PM2.5 changes in 28 non-578 
attainment cities from observations (light blue) and model simulations driven by meteorological variations but 579 
with emissions fixed at 2017 level (dark blue), and number of non-attainment cities (orange) with <10%, 10–580 
50%, 50–90% or >90% of the observed PM2.5 decrease contributed by meteorological variations. The dark blue 581 
circle in c represents the simulated PM2.5 decrease in 2021 with a 25% reduction in anthropogenic emission 582 
relative to the 2017 baseline level. Error bar in c represents ±one standard error of means across cities (n=28). 583 

 584 

Fig. 5 Comparison of daily PM2.5 and meteorological variables between winter 2017 and 2021. (a), Daily 585 
PM2.5 concentrations from CAAQM/US AirNow observations (solid lines) and WRF-Chem model simulation 586 
with emission fixed at the 2017 baseline level (dashed lines) averaged from 17 cities where CAAQM/US 587 
AirNow sites are available in north India (north of 23°N) in the winter of 2017 (December 2017–February 588 
2018, orange) and 2021 (December 2021–February 2022, blue), (b-d) same as a but for daily timeseries of 589 
collocated meteorological variables including inversion (temperature difference between 925hPa and at the 590 
surface), precipitation, and surface (10m) wind speed from ERA5 reanalysis . e-h same as a-d but for the 591 
differences between the two winters (winter 2021 minus 2017) from WRF-Chem simulations with emission 592 
fixed at the 2017 level (map) and observations (circles) for PM2.5 from CAAQM/US AirNow monitoring sites 593 
and collocated meteorology from ERA5 reanalysis. Shading in a-d represent ±one standard error of means 594 
across available sites (n=17). The winter averages, and correlation coefficient r and p value for linear 595 
regression between PM2.5 and each meteorological variable are reported for each year in a-d.  596 

 597 
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