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Abstract

Improving air quality amid rapid industrialization and population growth is a huge challenge for
India. To tackle this challenge, the Indian government implemented the National Clean Air
Programme (NCAP) to reduce particulate matter (PM2sand PM1o) pollution in hundreds of non-
attainment cities that failed to meet the national ambient air quality standards. Here, we evaluate
the efficacy of the NCAP, using data from the national air quality monitoring network combined
with regional model simulations. Our results show an 8.8% per year decrease in annual PM2 5
pollution in the six non-attainment cities with continuous air pollution monitoring since 2017.
Four out of the six cities had over 20% PM2 s reduction in 2022 relative to 2017 and thus met the
NCAP target. However, we identify that ~30% of the annual PM2 s air quality improvements, and
approximately half during winter when pollution is high, can be attributed to favorable
meteorological conditions which are unlikely to persist as the climate warms. Meanwhile, annual
PM2s levels in 44 out of 57 non-attainment cities with continuous monitors still failed to meet air
quality standards in 2022. This work highlights the need for substantial additional mitigation
measures beyond current NCAP policies to improve air quality in India.
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Introduction

Millions of people in India are breathing the most polluted air in the world. Rapid economic
growth as the country strives to become a $5 trillion economy by 2025 has led to enormous
increases in emissions of air pollutants® 2. In 2023, 9 out of 10 of the most polluted cities in the
world were in India3. Severe surface air pollution was estimated to be responsible for 1.67
million premature mortalities in India in 2019*, approximately 8 (13) years of life expectancy
lost for 248 million residents of northern India (Delhi)® with a resulting economic cost of $36.8
billion®.

In January 2019, the Ministry of Environment, Forest and Climate Change (MoEFCC) in India
launched the National Clean Air Programme (NCAP) as a national level strategy to reduce
particulate matter (PM) air pollution. The NCAP goal is to reduce PM2s and PMyg pollution by
20-30% by 2024 (updated in 2022 to reduce by 40% by 2026) relative to 2017 in 102 non-
attainment cities identified by the Central Pollution Control Board (CPCB) in 2019°. Total
number of non-attainment cities increased to 131 in 2023’. NCAP has provided over 10,400
Crores (~1.2 billion USD) financial support to the non-attainment cities for expansion of surface
continuous pollution monitoring capacity, development and implementation of city action plans,
and public awareness campaigns® °. There is an urgent need to assess the resulting changes in
surface PMz s air quality nationwide to inform future air pollution control strategies.

Air pollution control policies target reductions of emissions at the source. However, observed
concentrations of air pollutants are modulated by meteorological variability through changing
ventilation and resulting pollution dilution, and the formation of secondary particulates®® - 12,
Previous studies suggest meteorological variability drives large daily to inter-annual variations in
surface PM2s concentrations across India®> 141516 Changing pollution concentrations in turn
affect local meteorology and regional climate through perturbation to radiation and cloud
formationt” 18 1° which subsequently feedback to surface pollution levels. These meteorology
influence complicates the interpretation of policy effectiveness on pollution concentration trends
and health outcomes?® 212223 For instance, past research has estimated that meteorological
variability contributed 10-27% of the PM2s reduction over China during the Clean Air Action
Campaign? 24, Understanding the relative importance of emissions versus meteorological
variability on surface air pollution concentrations thus has implications for effective air quality
policy design.

In this study, we compile and apply strict quality controls to recently available continuous hourly
PM data from ~500 stations across India in the Continuous Ambient Air Quality Monitoring
network (CAAQM) and five stations in the United States Department of State AirNow (US
AirNow) networks for 2017-2022 (see Methods). While the National Air Quality Monitoring
Program (NAMP) manual PM monitoring data is used by the Indian government to identify non-
attainment cities when continuous monitors are not widely available, we only analyze manual
data in the Supplementary Information due to large uncertainties related to manual monitoring
and data reporting®. We perform a comprehensive evaluation of the observed changes in annual,
seasonal, and daily PM air quality from CAAQM/US AirNow in non-attainment cities and
nationwide. To understand the drivers of the PM air pollution trends, we disentangle the role of
anthropogenic emissions versus meteorological variations using surface and satellite
observations as well as regional online-coupled meteorology-chemistry model simulations (see
Methods). Our analysis highlights the need for better air pollution monitoring data and more
stringent emission controls to improve surface air quality and public health over India.
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Results
Observed improvements in surface particulate matter air quality

To evaluate pollution trends and the effectiveness of NCAP policies, we first examine the
availability of quality-controlled continuous PM monitoring data from the CAAQM and US
AirNow networks in 131 non-attainment cities and nationwide. We then analyze, for each non-
attainment city with continuous PM monitoring, the observed changes in annual, seasonal and
daily mean PM concentrations since the NCAP baseline year 2017 for comparison with the
policy target. To be consistent with seasonal analyses, we calculate annual means as averages
from March in the current year through February of the subsequent year.

Figure 1 shows the locations of the 131 non-attainment cities and all cities with continuous PM2s
pollution monitoring from the CAAQM and US AirNow networks (Extended Data Fig. 1). There
are a total of 150 cities, including 62 non-attainment cities, that had at least one year of
continuous PM2 s data during 2017-2022. However, only seven cities (six non-attainment) had
six consecutive years of PM2 s observations that we require to assess pollution trends. Data
coverage is better for individual seasons than for annual averages (Extended Data Fig. 2). The
most extensive data exists for winter where 36 cities (28 non-attainment) had six consecutive
years of winter PM..s monitoring data since 2017. Thus, winter pollution trends may be more
representative of actual national pollution trends than annual averages. Data availability for PMzo
is poorer than for PM..s, with 134 cities (48 non-attainment) having at least one year of data and
only one city (Delhi) having six consecutive years of data (Extended Data Fig. 3). Despite a
notable 10-fold increase in CAAQM stations from 2017 to 2022 (Fig. 1b), in part fueled by
NCAP support, lack of consecutive PM pollution monitoring since 2017 hinders the ability of the
government to evaluate pollution trends and to determine for most non-attainment cities whether
they are meeting the NCAP targets.

We find, across Indian cities with continuous air pollution measurements, improvements in
surface PMz s air quality during 2017-2022 (Fig. 2). Annual PM2 s have decreased at a rate of 8.0
pg/m?® (-8.8%, p < 0.01) per year since 2017 in the six non-attainment cities with continuous
PM2.s monitoring (Fig. 2b). Average PM2s in those cities was 91.0+36.7 pug/m?® in the NCAP
baseline year 2017, more than twice the national annual standard of 40 ug/m? and ~18 times the
current World Health Organization (WHO) standard of 5 pug/m?. In 2017 none of the six cities
had annual PM_ s in compliance with the national annual standard. Annual mean PM2 s decreased
to 51.8+24.5 pg/m? in 2022, with two cities (Chennai and Varanasi) having PM2 s pollution
levels meeting the national annual standard. Reductions of PM2 s concentrations in 2022 relative
to 2017 exceeded 20% in four out of six non-attainment cities - surpassing the NCAP targets two
years early. Consistent but smaller PM2 s decreases were also observed in 33 cities (25 non-
attainment) with continuous monitoring since 2018 (Fig. 2b and Extended Data Fig. 4), as well
as in 32 cities (21 non-attainment) with manual monitors during 2017-2021 (Supplementary
Figure 1).

Larger improvements in PM2 s air quality occurred in fall through winter, the two most polluted
seasons in India (Fig. 2c, Extended Data Fig. 4 & 5). In 13 (28) non-attainment cities with
consecutive fall (winter) pollution monitoring, seasonal mean PM2 s decreased at a rate of 7.7%
per year (p<0.01) for fall and 5.5% per year (p=0.03) for winter since 2017. Surface PM2s
concentrations in 2022 compared to 2017 was 43% and 25% lower in fall and winter,
respectively. Daily pollution levels in fall-winter have also shifted substantially towards lower
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values over the most polluted Indo Gangetic Plain (Fig. 2c). We find a 35% increase in the
frequency of days which met the 60 pg/m? national 24-hour standard during 2020-2022
compared to 2017-2019. Meanwhile, the occurrence of days with very poor (>120 pg/m?®) or
severe (>250 pg/m®) PM2s air pollution, according to National Air Quality Index, decreased by
one-third. While PM2 s reductions in spring-summer are smaller, significantly lower PM; s levels
by 30-40% were observed during the national COVID-19 lockdown (Mar—May in 2020) and
partial lockdown (April-June in 2021, Supplementary Figure 2) consistent with previous
studies® 2°,

No significant trends in PMzo pollution were observed in Delhi, the only city with six years of
continuous PM1o monitoring since 2017, or in the 13 cities with consecutive PM1o observations
since 2018 (Extended Data Fig. 3). Consistent with PM. s, surface PM1o pollution were 30-40%
lower during the COVID-19 lockdown (Supplementary Figure 3), indicating the importance of
anthropogenic contribution (e.g., road dust, construction) to surface PM1o pollution in India?’.
However, no significant PM1o reductions in 2020 were reported by the NAMP manual
monitoring data as compared to the 2019 and 2021 averages (Supplementary Figure 4). This may
in part be linked to gaps in data collection due to difficulties in making manual measurements
during the COVID-19 lockdown periods in 2020. Moreover, PM1o trends observed by the NAMP
monitoring network were inconsistent with those from CAAQM continuous monitoring networks
in the 12 cities where annual PM1o measurements from both networks are available. Such data
discrepancies raise concerns regarding the robustness of the manual data used to identify non-
attainment cities and to assess pollution trends.

Changes in anthropogenic emissions were small

We first examine whether the observed air quality improvements since 2017 can be explained by
changes in anthropogenic emissions of primary PM:s and key precursors nationwide as these
species have been targeted in various pollution control policies® 2 2°, We focus our analysis on
PM2 s pollution with better data coverage and consistency. We use emission data from three
global emission inventories as national inventories do not provide data after 2017 (see Methods).
Observational constraints from satellite-retrieved column concentrations and surface
measurements are included for comparison as uncertainties exist in the emission estimates from
global and regional databases of activity levels, emission factors and spatial distributions used to
estimate emissions across India®® 313233,

We find slight decreases in emissions of primary particles but little change or increases in
emissions of key PM2 s precursors since the NCAP baseline year 2017 (Fig. 3, Extended Data
Fig. 6). Emissions of black carbon (BC) and organic carbon (OC) have decreased since around
2010 (Fig. 3a-b), consistent with the observed decreasing trends of surface BC concentrations
across India since 2011 34 and in Delhi since 2012 3. The emission reductions were primarily
from the residential sector. This was in part driven by the wide success of Pradhan Mantri
Ujjwala Yojana launched in 2016, which aims to replace solid fuel cooking with liquified
petroleum gas (LPG) through subsidizing 96 million LPG connections to socioeconomically
poor rural households across India. The percentage of Indian household that use LPG as primary
cooking fuel has increased from 28.5% in 2011 to 71% in 2020%. Surface carbon monoxide
(CO), a gas pollutant co-emitted during biomass burning, was also observed to decrease in 4
cities with five years of continuous monitoring starting in 2018 (Fig. 3b). Rapid penetration of
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clean cooking fuel over the past several years may thus be one of the important drivers of the
observed PM_ s air quality improvements since 2017%’. In addition, emission reductions of BC
have resulted from decreases in the use of diesel in the transport sector and replacement with
compressed natural gas®, and are expected to decrease further with the introduction of electric
buses.

In comparison, no significant decreasing trends are seen in key PM. s precursors (SO2, NOx and
NHs) from emissions inventories during 2017-2019, or from surface or satellite observations
during 2017-2022 (Fig.3 a-c, Supplementary Figure 4). In fact, we find a 7% increase in total
column SO2 nationwide in 2022 compared to 2017, especially over regions where major coal
power plants are located (Extended Data Fig. 7). Observed surface SO> concentrations were also
14% higher in 2022 than in 2018 averaged from 18 cities with five consecutive years of
monitoring data. These observed SO> increases were likely associated with the soaring coal
consumption in India following a small decrease in 2019—2020%. Moreover, currently over 70%
of coal power plants are still out of compliance with the updated 2015 emission standard for
thermal power plants. As the world’s largest SO, emitter and with increasing energy demand,
India will need stronger enforcement of the emission standards and an increase in generation
from clean energy sources to reduce its SO, emissions.

Insignificant changes in NOy and slight increases in NH3z concentrations were observed during
2018-2022 compared to 2017 (Fig. 3b-c). Total column NO2 from TROPOMI shows a 6%
increase in 2022 relative to 2018 despite slight decreases in 2019-2020. The increases were most
significant in the Indo Gangetic Plain and in major cities across the country (Extended Data Fig.
7), likely associated with increased emissions from transportation due to growing numbers of
vehicles. These may offset emission reductions resulting from the implementation of Bharat
Stage IV emission standards since 2010 (equivalent to Euro 1V) and the Bharat Stage VI
emission standards since 2020 (based on Euro V1)*. In 2018 the Indian government also
launched the E-Mobility Program to encourage adoption of electric vehicles. Over 6% of vehicle
sales in 2023 were EVs and increasing EV adoption may significantly contribute to future air
quality improvements. Atmospheric NHs in India has increased by 5-10% during 2018-2022
compared to 2017 observed from both satellite and surface measurements (Fig. 3c). The largest
increase was over the Indo Gangetic Plain, a global hotspot of NHs emissions due to intense
agriculture activity, unregulated use of chemical fertilizer, and numerous cattles*"- 2. Currently
few polices of which we are aware target NHs reductions and therefore emissions may continue
to increase due to growing demand for food. Consistent with previous studies, during the
COVID-19 lockdown in March—May 2020 we find significantly lower levels of NOx (-17%) and
SO2 (-20%) in major cities as well as in regions with numerous thermal power plants across
India (Supplementary Figure 5).

Meteorology contributes to air pollution reductions

Since changes in anthropogenic emissions were small, we next investigate the extent to which
the observed decrease in PM2 s pollution over India can be explained by meteorological
variability. To isolate the meteorological contributions, we conduct six years of WRF-Chem
model simulations during 2017-2022 using varying meteorology but with anthropogenic
emissions fixed at the NCAP baseline year of 2017 (see Methods). The meteorological
contributions are estimated as the difference between the simulated PM2 s changes during 2018—
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2022 versus 2017 relative to that observed. Detailed model evaluations are provided in the
Supplementary Information (Text S2, Supplementary Figures 6-14). Briefly, model simulations
reproduce the observed surface PM2 s concentrations across Indian cities and the simulated PM2 5
chemical compositions at the Delhi Aerosol Supersite in baseline year 201743, The model also
captures the monthly variations of meteorological variables and PM2 s concentrations during
2017-2022, supporting the credibility of the model simulated interannual variations in surface
PM2 s concentrations driven by meteorological variations.

With anthropogenic emissions fixed at the 2017 baseline level, model simulations show a 3-15%
decrease in annual mean PM2 s during 2018-2022 compared to 2017 in the six non-attainment
cities (Fig. 4a). The meteorology-driven decreases accounted for approximately 30% of the
observed annual PM2 s decrease in those six cities. Notably, model simulations indicate over half
of the observed annual PM2 s pollution decrease in Hyderabad (100%) and Chennai (50%), and
one third in Delhi (36%) were attributable to meteorological variations (Fig. 4b). In other words,
the NCAP PM s reduction target would not have been met in 2022 in these non-attainment cities
without favorable meteorological contributions. The role of meteorology was smaller in Agra
(16%), Kanpur (12%), and negligible in Varanasi (1%), indicating the more critical role of
anthropogenic emission controls in those cities. For instance, Varanasi was ranked top three in
the clean air survey in 2022 for actions to reduce air pollution®. Across India, meteorology alone
was estimated to have contributed an average of 4.0+2.8 pg/m? decrease (—6% relative to 2017)
in annual mean PM2 s during 2018-2022 in 110 out of the 131 non-attainment cities.

Meteorology-driven PM. s decreases were most significant in winter, accounting for
approximately half of the observed PM2 s decreases in 28 non-attainment cities with consecutive
winter pollution monitoring (Fig. 4c-d). In particular, over 90% of the winter air quality
improvements were estimated to be driven by favorable meteorological conditions in three cities
(Faridabad, Gobindgarh, Patna) in northern India and in four cities (Chennai, Dewas, Hyderabad,
Visakhapatnam) in southern India. This highlights the critical role of meteorological variations in
driving the observed seasonal pollution trends. Meteorological variations also contributed to
~40% of the observed PM2 s decrease in fall in 13 non-attainment cities. In contrast, we find a
negligible role of meteorology in summer pollution trends and slight increases in spring pollution
driven by meteorological variations.

The most significant improvements in PM2 s air quality (>50% decrease) occurred on days with
precipitation and better ventilations in winter 2021, when largest decrease in regional pollution
were recorded, relative to the 2017 baseline (Fig. 5). These meteorological variables also show
stronger correlations with daily PM2s among others (Extended Data Fig. 8). During winter 2021,
northern India recorded 62% more precipitation relative to the 2000-2022 mean and 45% fewer
days with inversions (i.e., better vertical ventilation, Extended Data Fig. 9). This is largely
associated with a southward shift of the subtropical jet and increased baroclinic instability that
favors more frequent and intense western disturbances (Supplementary Figure 15), a mid-
tropospheric low-pressure system that enhances vertical mixing and contributes to the majority
of winter precipitation over Northern India®. In contrast, winter 2017 featured prolonged
inversions, below-normal precipitation (-51%), and 10% fewer high-wind episodes because of
the weaker western disturbances, leading to a more stable condition in the lower atmosphere that
favored the buildup of surface pollution.

These meteorological variations may be linked to variability in sea surface temperature and the
location of subtropical jet streams resulting from modes of climate variability such as the North
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Atlantic Oscillation, EI Nifio and the Antarctic Oscillation *6, Previous studies have not been
able to agree on the trend of western disturbances frequency over the last century®’”: 8, However,
they are projected to decline in future climate scenarios, due to widening and weakening of the
subtropical jet streams, resulting in reduced surface wind speed* 4%-*0, Projected decreases in
winter western disturbances are likely to increase stagnation and decrease atmospheric
dispersion, suggesting meteorologically driven PM. s decreases over past winters may not persist
in the future and more stringent emission controls are necessary for reducing surface air pollution
in India.

We further perform two sets of sensitivity simulations for winter 2017 and 2021 to better
understand the effects of possible emission changes (Methods). With a 25% increase or decrease
in anthropogenic emissions over India relative to the 2017 baseline level, the resulting PM2 s
changes due to emission increases (decreases) alone is 24% (—21%) averaged in the 28 cities
with continuous pollution monitoring (Extended Data Fig. 10). Model simulation with both
meteorology varying and emission reductions better reproduce the observed PM2 s decrease
compared to simulations with emission fixed at the baseline level (Fig. 4c, Extended Data Fig.
10). This indicates the observed air quality improvements are likely driven by both emissions
controls and favorable meteorological conditions. Moreover, simulations with emission
reductions show an additional ~0.2 K decrease in the simulated surface temperature inversion,
which favors pollution dispersion and thus provide additional benefits to surface air quality
improvements.

Discussion

We provide a comprehensive evaluation of the recent PM air quality trends over India under
NCAP — the first national air pollution control program with a specific pollution reduction target.
Our study reveals significant improvements in annual and seasonal surface PM_ s air quality
consistent with the NCAP target across India and in non-attainment cities with continuous air
quality monitoring since 2017. If surface air pollution levels nationwide decreased sufficiently to
meet the NCAP target everywhere, studies have estimated that India’s national life expectancy
would increase by 1.7 years, and by 3.1 years for residents living in the heavily polluted cities
like Delhi®.

However, in addition to efforts on emission controls, the recent achievement of the pollution
reduction targets (about 30% of annual and half of the winter air quality improvements)
benefited from favorable meteorological conditions that enhance pollution dispersion and wet
removal. Unfortunately, these more favorable meteorological conditions appear unlikely to
persist under future climate change and thus additional pollution control measures will be needed
to simply maintain current air quality levels in India. Meanwhile, satellite and surface
observations reveal increasing concentrations of PMa s precursors over the past several years
despite more stringent emission standards for vehicles and thermal power plants. Such increases
may offset pollution reductions gained from controlling primary emissions, e.g., household solid
fuel use, and result in further degradation of surface air quality and adverse health impacts.

The Indian government has made great efforts over recent years to expand in situ continuous
monitoring capacity in urban centers to identify air quality non-attainment and to warn the public
of dangerous pollution levels in support of the NCAP target. Nonetheless, continuous and quality
data are still lacking in most non-attainment cities. One limitation of our study thus lies in the



306
307
308
309
310
311
312
313
314

315
316
317
318
319
320
321
322
323
324
325
326

327
328
329
330
331
332
333
334
335
336
337

338
339
340
341
342
343
344
345
346
347
348
349

availability and quality of surface air quality data as our trend assessments are primarily based on
PM2.s monitoring in 6 out of the 131 non-attainment cities (28 in winter) with quality controlled
CAAQM/US AirNow data starting from 2017. While surface PM2 s data is also available from
the more extensive NAMP manual monitoring network, we identify large discrepancies in annual
pollution trends measured in cities where both CAAQM (continuous) and NAMP (manual) data
are available. Such discrepancies raise concerns of the robustness of manual monitored pollution
data for identifying non-attainment cities as well as for assessing pollution trends. Reporting of
daily data from NAMP, rather than just annual averages, would be valuable in evaluating the
robustness of NAMP data.

In addition, there is little continuous pollution monitoring in rural areas where both outdoor and
indoor air pollution are severe®, or in the eastern states where numerous coal power plants are
located® and satellite observations show elevated SO, and NO> concentrations. As a result, no
ground-level information is available for our study to characterize attainment of air quality
standards or trends in emissions in those regions. Apparent compliance with surface air quality
standards is likely misleading for large areas of India. Increased siting of pollution monitoring
over emission hotspots and improvements in data collection as well as quality control that results
in manual and continuous measurements without large temporal gaps or errors, systematic
information on monitoring station’s locations and surroundings, and easier access to observations
(e.g., ability to download data simultaneously from multiple stations for different chemical
species) are necessary to enhance the utility of these measurements in order to determine trends
and compliance with the standards®®.

Another critical issue arises from the lack of an up-to-date national emission inventory that
accurately represents emissions changes resulting from pollution control policies under NCAP.
Model sensitivity simulations for winter 2021 with anthropogenic emissions reduced by a quarter
relative to the 2017 baseline emissions better reproduce the observed PM; s decrease compared
to simulations with emissions fixed at 2017 baseline level. Such emission reduction is greater
than the trends extrapolated from the existing emission datasets. In addition, biases in the model
simulated PM2s components (e.g., ~40% overestimation in nitrate) may be partly due to emission
uncertainties. For instance, national NOx emissions vary by 40% and sectoral contributions (e.g.,
residential) vary by as much as 4 times among available emission inventories from India.
Improving the accuracy of the national emission inventory over time is essential for policy
makers to determine whether NCAP goals are being met at national and sub-national scales.

The NCAP is an important step towards addressing severe and deteriorating ambient air quality
in India. However, surface PM2s levels remain very unhealthy even after meeting the NCAP
pollution reduction targets. In 2022, annual PM2 s pollution in 44 out of 57 non-attainment cities
with continuous monitors still exceeded the 40 pg/m? national standard. India, together with
other developing countries in the global south, faces dual challenges in the coming decades as
fast-growing population and energy consumption risks a dramatic increase in the emission of air
pollutants and greenhouse gases. Increasing pollution emissions and feedback from a warming
climate (e.g., heatwave, wildfires and stagnation) will, without strong policy intervention, place a
huge health burden on a growing and aging population in developing counties and globally.
Substantial additional mitigation beyond current air pollution control policies, especially those
that simultaneously mitigate greenhouse gas and air pollutant emissions such as
decarbonatization of the energy system, electrification, reductions in agricultural waste burning,
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are essential for fast-developing economies to bring air pollution to healthy levels and to play a
positive role in slowing the rate of global climate change.
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Methods

Surface PM observations. Surface hourly observations of PM2sand PMzio during 2017-2022
are obtained from ~500 stations in the Continuous Ambient Air Quality Monitoring network
(CAAQM) operated by the Central Pollution Control Board (CPCB) and State Pollution Control
Board (SPCB)*, and from 5 stations in the U.S. Department of State AirNow continuous
monitoring network. These continuous monitors are mostly located in urban environments (e.g.,
bus stations, industry, or residential centers) and may be subject to the influence of local
pollution sources. The measurements are made using the beta ray attenuation method and data
collection as well as validation follows the U.S. Environmental Protection Agency standards®.
To ensure the robustness of the data, we perform rigorous quality control procedures on the
hourly data following the methods of a recent study®® with a few modifications. Specifically, we
replace repetitive hourly values occurring more than five times in a row with a single value and
screen the data for abnormal spikes and remove unexplained outliers®’. We also remove
measurement sites that report constant data values with standard deviation less than 5% of that
long-term mean value®®. To further ensure representative monthly and seasonal statistics for
trend analysis, we apply a 1/3 data coverage criteria: daily data is considered valid if at least two
measurements are available for each of the four six-hour period in one day; monthly data is
included if at least three daily averages are available for each 10-day period. For seasonal data
we require at least two monthly averages are available for each season. We also obtain hourly
observations of SO, NOx, NHz and CO from CAAQM and apply the same quality control and
temporal averaging criteria as described for the PM data.

The CPCB characterized 102 non-attainment cities in 2019 based on the National Air Quality
Monitoring Programme (NAMP) manual pollution monitoring stations reporting of annual
average concentrations. These cities had surface air pollution exceeding National Ambient Air
Quality Standards (NAAQS, annual standards for PMzs: 40 pg/m3, PMio: 60 pug/m?, SO,: 50
ug/m?® or 20 pg/md for ecologically sensitive area, NO2: 40 pug/m?® or 30 pg/m? for ecologically
sensitive area) consecutively for five years during 2011-2015. In addition, cities listed as one of
the top ten polluted in the World Health Organization Fourth Ambient Air Quality Database
report for 2014—-2018° are also considered non-attainment. Among the 102 non-attainment cities
identified in 2019 by CPCB, 94 cities had annual PM1o measurements during 2011-2015
exceeding the NAAQS, 16 cities had annual PM2s measured at NAMP manual stations or
CAAQM continuous stations exceeding the national standards since 2015, and 10 cities were
listed in the WHO report®. Total number of non-attainment cities increased to 131 in 2023
according to a list compiled by CPCB’. To assess the NCAP policy effectiveness, we average
PM measurements made within the same city and distinguish between attainment and non-
attainment cities. Daily surface PM2 s data from the CAAQM and US AirNow networks are
averaged when located in the same city as good data consistency has been found (Extended Data
Fig. 1).

We provide additional analysis of the recent PM pollution trends using the annual data reported
by NAMP in the Supplementary Information Text S1. The surface PM pollution trends based on
NAMP data are compared with those based on CAAQM/US AirNow in cities where both manual
and continuous pollution monitoring stations are available. It should be noted that the NAMP
manual monitoring data is described by the NCAP report as ‘indicative’ rather than ‘absolute’
due to uncertainties in sampling intervals, chemical analyses and data reporting®. In addition,
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reporting of the manual data does not include detailed information for the temporal sampling
frequency we need for quality control procedures.

Anthropogenic emissions and satellite observations. We examine changes in anthropogenic
emissions of primary particles (black carbon, organic carbon, and other anthropogenic coarse and
fine particles) and major gaseous precursors (SO2, NOx and NH3) over India since 2010 from the
Community Emissions Data System (CEDSv2021 04 21, update to 2019) global emission
inventory®®. Emissions over India are estimated based on the Regional Emissions Inventory in
Asia (REAS 2.1) and calibrated to Greenhouse gas—Air pollution Interactions and Synergies
(GAINS) emission factors®. To reflect uncertainties in the global emission inventories, we also
compare emissions from the Emissions Database for Global Atmospheric Research
(EDGARV6.1, updated 2018)% and Evaluating the Climate and Air Quality Impacts of Short-
Lived Pollutants (ECLIPSE v6b, updated to 2018)%°. National emission inventories, for instance
Speciated Multipollutant Generator (SMoG-India)®? or The Energy and Resources Institute®,
may provide more accurate information on fuel consumption levels, emission factors, as well as
emissions from urban dust not available in global emission inventories®® %4, However, neither
SMoG nor TERI provide emission estimates after 2016 and are therefore not included in our
trend analysis.

To validate trends indicated in the emission inventories as well as to provide additional
information beyond 2019 when emission data are not available, we include top-down constraints
from satellite-retrieved total column concentrations of SOz, NO2 and NHs over India during
2010-2022. Total SO2 columns are obtained from the Level-3 Aura/OMI Global gridded
OMSO2e product® available during 2004-2022 at a horizontal resolution of 0.25°x0.25°.
Tropospheric NO2 columns are obtained from Level-3 Aura/OMI global gridded Nitrogen
Dioxide Product (OMNO2d)® available during 2004-2022 at 0.25°x0.25° where cloud fraction
is less than 30%, and from the TROPOspheric Monitoring Instrument (TROPOMI)®’ during
2018-2022 at 0.125°x0.125°. Satellite NHs columns are obtained from the Level-3 IASI onboard
Metop-B satellite® 6% 70 71 during 2013-2022 at 1°x1° horizontal resolution.

Meteorology data. Daily time series of meteorological data during 2000—2022 are obtained
from the fifth generation European Centre for Medium-Range Weather Forecasts (ECMWF)
reanalysis of global climate and weather (ERAS5, 0.25°x0.25°)"2. Tracking of western
disturbances are based on the ERA5 500 hPa relative vorticity*®. We perform linear regression
analysis between surface PM2sand meteorological variables shown in previous studies to be
correlated with PM25'* 1. The meteorological variables we analyze includes surface (2m)
temperature, total precipitation, relative humidity, boundary layer height, surface pressure, wind
speed at surface (10m), 850 hPa and 500 hPa, and lower atmospheric instability represented by
temperature inversion between 850 hPa and surface (Extended Data Fig. 8). Considering daytime
boundary layer height during winter may be below 1000 m based on lidar observations over New
Delhi’®, we also compare temperature inversion between 925 hPa and the surface. Our results
indicate an overall stronger correlation between surface PM2 s and temperature inversion between
925 hPa and the surface. For linear regression analysis, we further regrid all data to 2°%2.5° to
increase statistical robustness’® ™. Both PM2s and meteorological variables are deseasonalized
and detrended for linear regression analysis to avoid correlations from common seasonality or
long-term trends associated with anthropogenic emission changes?*.

WRF-Chem model experiments. We conduct simulations with the Weather Research and
Forecasting model coupled with Chemistry”® (WRF-Chem, version 3.6.1) at 27 km? horizontal
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resolution to characterize the role of meteorology in the observed annual and seasonal surface
PM:z s air quality improvements in India. The WRF-Chem model used in this study was
configured following a previous study’’ but with domain focus on India. Specifically, the
meteorological initial and lateral boundary conditions are from ERAS at 0.25°x0.25° resolution.
Chemical initial and boundary conditions are from the Community Atmosphere Model with
Chemistry (CAM-Chem)8, The biogenic non-methane VOC emissions are calculated online by
the Model of Emissions of Gases and Aerosols from Nature (MEGAN)’® coupled with WRF-
Chem. Anthropogenic emissions for the NCAP baseline year 2017 are from the CEDS global
emission inventory. Emissions of primary PM2 s other than black carbon and organic carbon are
not provided by CEDS and are thus from the ECPLISE global emission inventory over the WRF-
Chem domain.

To isolate the impact of meteorological variability, we perform six years of model simulations
(2017-2022) with meteorology varying but with anthropogenic emissions fixed at the NCAP
2017 baseline level. The differences between the observed and simulated PM2 s concentration
during 2018-2022 relative to 2017 thus enable us to assess the impacts resulting from
meteorological variability. The WRF-Chem model was reinitiated every 24 h to prevent the
drifting effects of simulated meteorological fields. We acknowledge that this may lead to an
underestimation of the emission—aerosol-meteorology interactions and may result in slightly
larger PM2 5 decrease with emission fixed at higher than actual levels®. The model simulated
meteorological parameters are evaluated against surface observations obtained from the
integrated surface data of NOAA National Centers for Environmental Information
(https://www.ncei.noaa.gov/). The simulated surface PM2 s dry mass and major chemical
components are evaluated against surface observations from the CAAQM and US AirNow
continuous pollution monitoring networks, as well as from the Delhi aerosol super site*® (see
Supplementary Information Text S2, Fig. S6-S14).

We use two sets of sensitivity simulations to quantify the response of surface PM2s
concentrations to changing anthropogenic emissions alone as well as to both changing emissions
and meteorology over India (Extended Data Fig. 10). For winters 2017 and 2021, we assume a
25% reduction in anthropogenic emissions over India relative to the 2017 baseline level. The
25% change we apply is consistent with the NCAP target of 20-30% reduction in PM2 s pollution
as no up-to-date emission inventory is available. We include another scenario in which we
assume a 25% increase in anthropogenic emissions resulting from increasing anthropogenic
activities with little emission controls. The difference in the simulated PM2 s between the
sensitivity simulations with emissions varying by +/-25% and the simulations with emissions
fixed at the 2017 level allow us to assess the effect of emission changes alone for 2017 and 2021,
respectively. The difference in the simulated PM. s between the sensitivity simulation for 2021
with emissions varying by +/-25% and the simulation for 2017 with baseline emissions reflect
the impacts of both changing emissions and meteorology.

Data availability

Surface PM2s and other air pollution data from the CAAQM network are available at
https://app.cpcbcer.com/cer/#/caagm-dashboard-all/caagm-landing. Surface PM2s data from the
US AirNow network is available at https://www.airnow.gov/international/us-embassies-and-
consulates/. Manual monitoring data for PM2s and other air pollution data is available at
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https://cpch.nic.in/manual-monitoring/. The CEDS emission database is available at
https://github.com/JGCRI/CEDS/ . The EDGAR emission database is available at
https://edgar.jrc.ec.europa.eu/dataset_ap61. The ECLIPSE emission database is available at
https://iiasa.ac.at/models-tools-data/global-emission-fields-of-air-pollutants-and-ghgs. Satellite
observations of SO, and NO> from OMI are available at https://giovanni.gsfc.nasa.gov/giovanni/
and from TROPOMI at https://www.temis.nl/airpollution/no2.php. Satellite observation of NH3
is available at https://iasi.aeris-data.fr/nh3/ . Meteorology data from ERAS is available at
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset and from NCEI at
https://www.ncei.noaa.gov/. WRF-Chem outputs and processed air quality data generated in this
study are publicly available on the Princeton archive at https://doi.org/10.34770/xtje-mj26.

Code availability

Source codes of the WRF-Chem model utilized in this study are available at
https://www2.mmm.ucar.edu/wrf/users/download/get_sources.html#WRF-Chem. All custom
codes are direct implementation of standard methods and techniques as described in detail in
Methods.
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Fig.1 Continuous PM monitoring data availability in Indian cities. a, Location of the 131 non-attainment
cities (red dots) and cities with continuous PM. s monitoring available from the CAAQM/US AirNow
networks for at least one year during 2017-2022 (black circles) on the topographic map (in meters) over India.
b. Changes in the total number of NCAP non-attainment cities with continuous PM monitoring from the
CAAQM/US AirNow networks (bars, left axis) and number of total surface PM monitoring stations from the
CAAQM/US AirNow networks (lines, right axis) during 2017-2022; dashed horizontal grey lines indicate the
percentage of the 131 non-attainment cities that had continuous PM monitoring data available.

Fig.2 Observed surface PMys air quality improvements during 2017—2022. a, Annual mean PMzsin
Indian cities measured at continuous stations from the CAAQM and US AirNow networks in 2017-2022. Dots
with black circles indicate the six non-attainment cities with six consecutive years of data. Number of total
(non-attainment) cities that had PM_s measurements are reported at the bottom left for each year. b, Time
series of annual mean PM_ s concentrations in 2017-2022 averaged in non-attainment (black) and all (orange)
cities with consecutive PMy s data starting from 2017 (number of cities reported at the bottom), and for non-
attainment cities with consecutive data starting from 2018-2021 (different shades of grey; number of cities
reported at the bottom); the left axis represent the ratio relative to 2017, the NCAP baseline; data starting from
2018-2021 are scaled to match with the ratio relative to 2017; larger dots represent greater number of non-
attainment cities included for averaging; error bars denotes +one standard error of means across available cities
(n=6 (7), 25, 29, 40, and 49 as reported at the bottom) . ¢, Probability distributions of daily PM:s
concentrations in fall and winter in non-attainment cities with six consecutive years of PM.s measurements
during 2017-2022 (n=2169, 2398, 2390, 2455, 2487, 2495, respectively), and the percentage of city-days
(embedded bar plots) that fall within each pollution category (Good<=30 pg/m?, Satisfactory: 30-60 pg/m?,
Moderately polluted: 60-90 pig/m?, Poor: 90-120 pg/ms, Very poor: 120-250 pg/m?, Severe:>250 pg/md)
defined by CPCB®.. The dashed line in c) denotes the national 24-hourly standard for PM_s in India.

Fig. 3 Changes in anthropogenic emissions and concentrations of primary PM.s and key precursors
since 2010. Timeseries of anthropogenic emissions of primary particles, including (a) black carbon (BC), (b)
organic carbon (OC), (c) other primary fine particles (PM2s) and coarse particles (PMio), and key PM2 5
precursors, including (d) sulfur dioxide (SO>), (e) nitrogen oxides (NOx), (f) ammonia (NHs) over India during
2010-2019 relative to 2017. a, b, d-f are from the CEDS (v2021-04-21) global emission inventory with
updates to 2019, (c) is from the ECLIPSE (v6b) emission inventory with updates to 2018. Data from ECLIPSE
during 2019—-2020 are projections. Red lines in d-f are satellite-retrieved column total concentrations of SO»
from OMI, NO; from OMI and TROPOMI (blue) and NH3 from IASI, respectively. Black dots in b, c, d-f are
annual average surface concentrations of carbon monoxide (CO), PM1o, SOz, NOyx, NH3 from cities with
continuous CAAQM pollution monitoring for five years since 2018 (numbers of cities in parenthesis). Error
bars in b-f represents +one standard error of means across cities (n=4, 22, 18, 11, 10 as reported in parenthesis
in each panel). Black triangles in a,b are observed surface concentrations of black carbon and organic carbon
at the CSIR-National Physical Laboratory site in New Delhi®.

Fig. 4 Meteorological contributions to recent PMz s air quality improvements. (a) Annual (blue) and
seasonal (green) mean PM; s decrease during 2018-2022 in percent relative to 2017 averaged in non-
attainment cities from observations (light blue/green) and from WRF-Chem model simulations (dark
blue/green) driven by meteorological variations but with emissions fixed at 2017 level. Error bar represents
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+one standard error of means across cities (n=6) for annual averages, and across cities (n=15, 11, 13, 28 as
reported at the bottom) for seasonal averages. The light and dark green circles for MAM represent changes if
2020 (COVID-19 lockdown) is excluded. (b) Model simulated annual PM_ s decrease during 2018-2022 in
percent relative to 2017 (colored background) and the percentage contributed by meteorological variations
(dark green segments inside circles) in each of the six non-attainment cities. The size of the circles represents
the magnitude of the observed PM; s decrease. (c-d) same as (a-b) but for winter PM2 s changes in 28 non-
attainment cities from observations (light blue) and model simulations driven by meteorological variations but
with emissions fixed at 2017 level (dark blue), and number of non-attainment cities (orange) with <10%, 10—
50%, 50-90% or >90% of the observed PM. s decrease contributed by meteorological variations. The dark blue
circle in ¢ represents the simulated PM_ s decrease in 2021 with a 25% reduction in anthropogenic emission
relative to the 2017 baseline level. Error bar in ¢ represents +one standard error of means across cities (n=28).

Fig. 5 Comparison of daily PM.s and meteorological variables between winter 2017 and 2021. (a), Daily
PM_ s concentrations from CAAQM/US AirNow observations (solid lines) and WRF-Chem model simulation
with emission fixed at the 2017 baseline level (dashed lines) averaged from 17 cities where CAAQM/US
AirNow sites are available in north India (north of 23°N) in the winter of 2017 (December 2017—February
2018, orange) and 2021 (December 2021-February 2022, blue), (b-d) same as a but for daily timeseries of
collocated meteorological variables including inversion (temperature difference between 925hPa and at the
surface), precipitation, and surface (10m) wind speed from ERADS reanalysis . e-h same as a-d but for the
differences between the two winters (winter 2021 minus 2017) from WRF-Chem simulations with emission
fixed at the 2017 level (map) and observations (circles) for PM2s from CAAQM/US AirNow monitoring sites
and collocated meteorology from ERADS reanalysis. Shading in a-d represent +one standard error of means
across available sites (n=17). The winter averages, and correlation coefficient r and p value for linear
regression between PM; s and each meteorological variable are reported for each year in a-d.
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